Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • algorithmique/cours
  • aurelien.boyer/cours
  • jeremy.meissner/cours
  • radhwan.hassine/cours
  • yassin.elhakoun/cours-algo
  • gaspard.legouic/cours
  • joachim.bach/cours
  • gabriel.marinoja/algo-cours
  • loic.lavorel/cours
  • iliya.saroukha/cours
  • costanti.volta/cours
  • jacquesw.ndoumben/cours
12 results
Select Git revision
Show changes
Showing
with 10312 additions and 0 deletions
---
title: "Arbres AVL et arbres quaternaires"
date: "2024-04-09"
---
# Rappel: Algorithme d'insertion
* Insérer le noeud comme d'habitude.
* Mettre à jour les facteurs d'équilibre jusqu'à la racine (ou au premier
noeud déséquilibré).
* Rééquilibrer le noeud si nécessaire.
# Rappel: les cas de déséquilibre
::: columns
:::: column
## Cas 1a
* `u`, `v`, `w` même hauteur.
* déséquilibre en `B` après insertion dans `u`
![Après insertion](figs/cas1a_gauche.png)
::::
:::: column
## Cas 1a
* Comment rééquilibrer?
. . .
* ramène `u`, `v` `w` à la même hauteur.
* `v` à droite de `A` (gauche de `B`)
![Après équilibrage](figs/cas1a_droite.png)
::::
:::
# Rappel: Les cas de déséquilibre
::: columns
:::: column
## Cas 2a
* `h(v1)=h(v2), h(u)=h(w)`.
* déséquilibre en `C` après insertion dans `v2`
![Après insertion](figs/cas2a_gauche.png)
::::
:::: column
## Cas 2a
* Comment rééquilibrer?
. . .
* ramène `u`, `v2`, `w` à la même hauteur (`v1` pas tout à fait).
* `v2` à droite de `B` (gauche de `C`)
* `B` à droite de `A` (gauche de `C`)
* `v1` à droite de `A` (gauche de `B`)
![Après équilibrage](figs/cas2a_droite.png)
::::
:::
# Rappel: Rééquilibrage
## Rotation simple
![On verra un peu après les rotations.](figs/rotation_gauche_droite.png)
# Rappel: La rotation gauche-droite
## Le cas 2a/b
![La double rotation de l'enfer.](figs/double_rotation_gauche_droite.png)
# Un petit exercice
* Insérer les nœuds suivants dans un arbre AVL
```
25 | 60 | 35 | 10 | 5 | 20 | 65 | 45 | 70 | 40
| 50 | 55 | 30 | 15
```
```
```
# Suppression dans un arbre AVL
::: columns
:::: column
## Algorithme par problème: supprimer 10
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((8))-->id1((4));
id0-->id2((10));
id1-->id3((2));
id1-->id4((6));
id3-->id5((1));
id3-->id6(( ))
id4-->id7(( ))
id4-->id8((7))
id2-->id9((9))
id2-->id10((14))
id10-->id11((12))
id10-->id12((16))
style id6 fill:#fff,stroke:#fff
style id7 fill:#fff,stroke:#fff
```
::::
:::: column
. . .
## Algorithme par problème: supprimer 10
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((8))-->id1((4));
id0-->id2((12));
id1-->id3((2));
id1-->id4((6));
id3-->id5((1));
id3-->id6(( ))
id4-->id7(( ))
id4-->id8((7))
id2-->id9((9))
id2-->id10((14))
id10-->id11(( ))
id10-->id12((16))
style id6 fill:#fff,stroke:#fff
style id7 fill:#fff,stroke:#fff
style id11 fill:#fff,stroke:#fff
```
::::
:::
# Suppression dans un arbre AVL
::: columns
:::: column
## Algorithme par problème: supprimer 8
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((8))-->id1((4));
id0-->id2((12));
id1-->id3((2));
id1-->id4((6));
id3-->id5((1));
id3-->id6(( ))
id4-->id7(( ))
id4-->id8((7))
id2-->id9((9))
id2-->id10((14))
id10-->id11(( ))
id10-->id12((16))
style id6 fill:#fff,stroke:#fff
style id7 fill:#fff,stroke:#fff
style id11 fill:#fff,stroke:#fff
```
::::
:::: column
. . .
## Algorithme par problème: rotation de 12
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((9))-->id1((4));
id0-->id2((12));
id1-->id3((2));
id1-->id4((6));
id3-->id5((1));
id3-->id6(( ))
id4-->id7(( ))
id4-->id8((7))
id2-->id9(( ))
id2-->id10((14))
id10-->id11(( ))
id10-->id12((16))
style id6 fill:#fff,stroke:#fff
style id7 fill:#fff,stroke:#fff
style id9 fill:#fff,stroke:#fff
style id11 fill:#fff,stroke:#fff
```
::::
:::
# Suppression dans un arbre AVL
::: columns
:::: column
## Algorithme par problème: rotation de 12
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((9))-->id1((4));
id0-->id2((14));
id1-->id3((2));
id1-->id4((6));
id3-->id5((1));
id3-->id6(( ))
id4-->id7(( ))
id4-->id8((7))
id2-->id9((12))
id2-->id10((16))
style id6 fill:#fff,stroke:#fff
style id7 fill:#fff,stroke:#fff
```
::::
:::: column
. . .
1. On supprime comme d'habitude.
2. On rééquilibre si besoin à l'endroit de la suppression.
* Facile non?
. . .
* Plus dur....
::::
:::
# Suppression dans un arbre AVL 2.0
::: columns
:::: column
## Algorithme par problème: suppression de 30
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((50))-->id1((30));
id0-->id2((100));
id1-->id3((10));
id1-->id4((40));
id3-->id5(( ));
id3-->id6((20))
id2-->id7((80))
id2-->id8((200))
id7-->id9((70))
id7-->id10((90))
id9-->id11((60))
id9-->id12(( ))
id8-->id13(( ))
id8-->id14((300))
style id5 fill:#fff,stroke:#fff
style id12 fill:#fff,stroke:#fff
style id13 fill:#fff,stroke:#fff
```
::::
:::: column
. . .
## Algorithme par problème: rotation GD autour de 40
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((50))-->id1((40));
id0-->id2((100));
id1-->id3((10));
id1-->id4(( ));
id3-->id5(( ));
id3-->id6((20))
id2-->id7((80))
id2-->id8((200))
id7-->id9((70))
id7-->id10((90))
id9-->id11((60))
id9-->id12(( ))
id8-->id13(( ))
id8-->id14((300))
style id4 fill:#fff,stroke:#fff
style id5 fill:#fff,stroke:#fff
style id12 fill:#fff,stroke:#fff
style id13 fill:#fff,stroke:#fff
```
::::
:::
# Suppression dans un arbre AVL 2.0
::: columns
:::: column
## Argl! 50 est déséquilibré!
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((50))-->id1((20));
id0-->id2((100));
id1-->id3((10));
id1-->id4((40));
id2-->id7((80))
id2-->id8((200))
id7-->id9((70))
id7-->id10((90))
id9-->id11((60))
id9-->id12(( ))
id8-->id13(( ))
id8-->id14((300))
style id12 fill:#fff,stroke:#fff
style id13 fill:#fff,stroke:#fff
```
::::
:::: column
. . .
## Algorithme par problème: rotation DG autour de 50
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((80))-->id1((50));
id0-->id2((100));
id1-->id3((20));
id1-->id4((70));
id3-->id5((10));
id3-->id6((40));
id4-->id9((60))
id4-->id10(( ))
id2-->id7((90))
id2-->id8((200))
id8-->id13(( ))
id8-->id14((300))
style id10 fill:#fff,stroke:#fff
style id13 fill:#fff,stroke:#fff
```
::::
:::
# Résumé de la suppression
1. On supprime comme pour un arbre binaire de recherche.
2. Si un nœud est déséquilibré, on le rééquilibre.
* Cette opération peut déséquilibrer un autre nœud.
3. On continue à rééquilibrer tant qu'il y a des nœuds à équilibrer.
# Les arbres quaternaires
\Huge Les arbres quaternaires
# Les arbres quaternaires
## Définition
Arbre dont chaque nœud a 4 enfants ou aucun.
![Un exemple d'arbre quaternaire.](figs/quad_ex.svg)
# Les arbres quaternaires
## Cas d'utilisation
Typiquement utilisés pour représenter des données bidimensionnelles.
Son équivalent tri-dimensionnel est l'octree (chaque nœud a 8 enfants ou aucun).
## Cas d'utilisation: images
* Stockage: compression.
* Transformations: symétries, rotations, etc.
## Cas d'utilisation: simulation
* Indexation spatiale.
* Détection de collisions.
* Simulation de galaxies, Barnes-Hut.
# Exemple de compression
::: columns
:::: {.column width=30%}
## Comment représenter l'image
![Image noir/blanc.](figs/board_blacked_parts.svg)
::::
:::: {.column width=70%}
## Sous la forme d'un arbre quaternaire?
. . .
![L'arbre quaternaire correspondant.](figs/quad_img.svg)
**Économie?**
. . .
Image 64 pixels, arbre 25 nœuds.
::::
:::
# Structure de données
::: columns
:::: {.column width=50%}
## Pseudo-code?
. . .
```python
struct node
info
node sup_gauche, sup_droit,
inf_gauche, inf_droit
```
![Un nœud d'arbre quaternaire.](figs/quad_struct.svg)
::::
:::: {.column width=50%}
## En C?
. . .
```C
struct _node {
int info;
struct _node *sup_left;
struct _node *sup_right;
struct _node *inf_left;
struct _node *inf_right;
};
```
* Pourquoi le `*` est important?
. . .
* Type récursif => taille inconnue à la compilation.
::::
:::
# Une fonctionnalité simple
\footnotesize
## La fonction `est_feuille(noeud)`
* Problème avec cette implémentation?
```python
bool est_feuille(noeud)
retourne
est_vide(sup_gauche(noeud)) &&
est_vide(sup_droit(noeud)) &&
est_vide(inf_gauche(noeud)) &&
est_vide(inf_droit(noeud))
```
. . .
* Inutile d'avoir 4 conditions (soit 4 enfants soit aucun!)
* Facile d'en oublier un!
* Comment changer la structure pour que ça soit moins terrible?
. . .
```python
struct node
info
node enfant[4]
```
# Structure de données
## En C?
. . .
```C
typedef struct _node {
int info;
struct _node *child[4];
} node;
```
## Fonction `is_leaf(node *tree)`?
. . .
```C
bool is_leaf(node *tree) {
return (NULL == tree->child[0]); // only first matters
}
```
# Problème à résoudre
* Construire un arbre quaternaire à partir d'une image:
* Créer l'arbre (allouer la mémoire pour tous les nœuds),
* Le remplir avec les valeurs des pixels.
* Compression de l'image:
* Si les pixels sont les mêmes dans le quadrant on supprime le sous-arbre (sans perte)
* Si les pixels dévient pas trop on supprime le quadrant (avec perte)
# Création de l'arbre
## Comment créer un arbre de profondeur `prof` (3min)?
. . .
```python
arbre creer_arbre(prof)
n = nouveau_noeud() # alloue la mémoire
si prof > 0
pour i = 0 à 3
n.enfant[i] = creer_arbre(prof-1)
retourne n
```
## En `C` (3 min, matrix)?
. . .
```C
node *qt_create(int depth) {
node *n = calloc(1, sizeof(node));
if (depth > 0) {
for (int i = 0; i < 4; ++i) {
n->child[i] = qt_create(depth-1);
}
}
return n;
}
```
# Le nombre de nœuds?
## Comment implémenter la fonction (pseudo-code, 5min, matrix)?
. . .
```C
entier nombre_nœuds(arbre)
si est_feuille(arbre)
retourne 1
sinon
somme = 1
pour i de 0 à 3
somme += nombre_nœuds(arbre.enfant[i])
retourne somme
```
# Le nombre de nœuds?
## Comment implémenter la fonction en C (3min, matrix)?
. . .
```C
int size(node *qt) {
if (is_leaf(qt)) {
return 1;
} else {
int sum = 1;
for (int i = 0; i < 4; ++i) {
sum += size(qt->child[i]);
}
return sum;
}
}
```
# La profondeur en C?
## Implémentation (5min, matrix)
. . .
\footnotesize
```C
int max(int x, int y) {
return (x >= y ? x : y);
}
int max_depth(int depths[4]) {
int m = depths[0];
for (int i = 1; i < 4; ++i) {
m = max(m, depths[i]);
}
return m;
}
int depth(node *qt) {
int depths[] = {0, 0, 0, 0};
if (is_leaf(qt)) {
return 0;
} else {
for (int i = 0; i < 4; ++i) {
depths[i] = depth(qt->child[i]);
}
return 1 + max_depth(depths);
}
}
```
# Fonctions utiles (1/4)
## Comment remplir un arbre depuis une matrice?
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
## Quel arbre cela représente?
. . .
![L'arbre correspondant](figs/quad_img_simple.svg)
# Fonctions utiles (2/4)
* On veut transformer une ligne/colonne en feuille.
* Comment?
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Quelle feuille pour 31 (`li=2`, `co=3`)?
* Plus important: quel chemin?
. . .
* `co -> G/D`, `li -> S/I`,
* `2 * (li / 2) + co / 2 -> 2 * 1 + 1 = 3`
* `2 * ((li % 2) / 1) + (co % 2) / 1 -> 2 * 0 + 1 = 1`
* Comment généraliser?
::::
:::
# Fonctions utiles (3/4)
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme (prendre plusieurs exemples, 15min, matrix)
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Comment généraliser?
. . .
```C
noeud position(li, co, arbre)
d = profondeur(arbre);
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1)) +
(col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
::::
:::
# Fonctions utiles (4/4)
\footnotesize
## Pseudo-code
```C
noeud position(li, co, arbre)
d = profondeur(arbre);
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1)) +
(col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
## Écrire le code `C` correspondant (5min, matrix)
```C
```
# Remplir l'arbre
## A partir d'une matrice (pseudo-code, 5min, matrix)?
. . .
```C
arbre matrice_à_arbre(matrice)
arbre = creer_arbre(profondeur)
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
noeud.info = matrice[co][li]
retourne arbre
```
. . .
## A partir d'une matrice (C, 5min, matrix)?
. . .
\footnotesize
```C
node *matrix_to_qt(int nb_li, int nb_co, int matrix[nb_li][nb_co], int depth)
{
node *qt = qt_create(depth);
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
current->info = matrix[li][co];
}
}
return qt;
}
```
# Remplir la matrice
## A partir de l'arbre (pseudo-code, 3min, matrix)?
. . .
```C
matrice arbre_à_matrice(arbre)
matrice = creer_matrice(nb_lignes(arbre), nb_colonnes(arbre))
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
matrice[co][li] = noeud.info
retourne matrice
```
. . .
## A partir de l'arbre (C, 3min, matrix)?
. . .
\footnotesize
```C
void qt_to_matrix(node *qt, int nb_li, int nb_co, int matrix[nb_li][nb_co])
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
matrix[li][co] = current->info;
}
}
```
---
title: "Arbres quaternaires"
date: "2024-04-25"
---
# Les arbres quaternaires
\Huge Les arbres quaternaires
# Les arbres quaternaires
## Définition
Arbre dont chaque nœud a 4 enfants ou aucun.
![Un exemple d'arbre quaternaire.](figs/quad_ex.svg)
# Les arbres quaternaires
## Cas d'utilisation
Typiquement utilisés pour représenter des données bidimensionnelles.
Son équivalent tri-dimensionnel est l'octree (chaque nœud a 8 enfants ou aucun).
## Cas d'utilisation: images
* Stockage: compression.
* Transformations: symétries, rotations, etc.
## Cas d'utilisation: simulation
* Indexation spatiale.
* Détection de collisions.
* Simulation de galaxies, Barnes-Hut.
# Exemple de compression
::: columns
:::: {.column width=30%}
## Comment représenter l'image
![Image noir/blanc.](figs/board_blacked_parts.svg)
::::
:::: {.column width=70%}
## Sous la forme d'un arbre quaternaire?
. . .
![L'arbre quaternaire correspondant.](figs/quad_img.svg)
**Économie?**
. . .
Image 64 pixels, arbre 25 nœuds.
::::
:::
# Structure de données
::: columns
:::: {.column width=50%}
## Pseudo-code?
. . .
```python
struct node
info
node sup_gauche, sup_droit,
inf_gauche, inf_droit
```
![Un nœud d'arbre quaternaire.](figs/quad_struct.svg)
::::
:::: {.column width=50%}
## En C?
. . .
```C
struct _node {
int info;
struct _node *sup_left;
struct _node *sup_right;
struct _node *inf_left;
struct _node *inf_right;
};
```
* Pourquoi le `*` est important?
. . .
* Type récursif => taille inconnue à la compilation.
::::
:::
# Une fonctionnalité simple
\footnotesize
## La fonction `est_feuille(noeud)`
* Problème avec cette implémentation?
```python
bool est_feuille(noeud)
retourne
est_vide(sup_gauche(noeud)) &&
est_vide(sup_droit(noeud)) &&
est_vide(inf_gauche(noeud)) &&
est_vide(inf_droit(noeud))
```
. . .
* Inutile d'avoir 4 conditions (soit 4 enfants soit aucun!)
* Facile d'en oublier un!
* Comment changer la structure pour que ça soit moins terrible?
. . .
```python
struct node
info
node enfant[4]
```
# Structure de données
## En C?
. . .
```C
typedef struct _node {
int info;
struct _node *child[4];
} node;
```
## Fonction `is_leaf(node *tree)`?
. . .
```C
bool is_leaf(node *tree) {
return (NULL == tree->child[0]); // only first matters
}
```
# Problème à résoudre
* Construire un arbre quaternaire à partir d'une image:
* Créer l'arbre (allouer la mémoire pour tous les nœuds),
* Le remplir avec les valeurs des pixels.
* Compression de l'image:
* Si les pixels sont les mêmes dans le quadrant on supprime le sous-arbre (sans perte)
* Si les pixels dévient pas trop on supprime le quadrant (avec perte)
# Création de l'arbre
## Comment créer un arbre de profondeur `prof` (3min)?
. . .
```python
arbre creer_arbre(prof)
n = nouveau_noeud() # alloue la mémoire
si prof > 0
pour i = 0 à 3
n.enfant[i] = creer_arbre(prof-1)
retourne n
```
## En `C` (3 min, matrix)?
. . .
```C
node *qt_create(int depth) {
node *n = calloc(1, sizeof(node));
if (depth > 0) {
for (int i = 0; i < 4; ++i) {
n->child[i] = qt_create(depth-1);
}
}
return n;
}
```
# Le nombre de nœuds?
## Comment implémenter la fonction (pseudo-code, 5min, matrix)?
. . .
```C
entier nombre_nœuds(arbre)
si est_feuille(arbre)
retourne 1
sinon
somme = 1
pour i de 0 à 3
somme += nombre_nœuds(arbre.enfant[i])
retourne somme
```
# Le nombre de nœuds?
## Comment implémenter la fonction en C (3min, matrix)?
. . .
```C
int size(node *qt) {
if (is_leaf(qt)) {
return 1;
} else {
int sum = 1;
for (int i = 0; i < 4; ++i) {
sum += size(qt->child[i]);
}
return sum;
}
}
```
# La profondeur en C?
## Implémentation (5min, matrix)
. . .
\footnotesize
```C
int max(int x, int y) {
return (x >= y ? x : y);
}
int max_depth(int depths[4]) {
int m = depths[0];
for (int i = 1; i < 4; ++i) {
m = max(m, depths[i]);
}
return m;
}
int depth(node *qt) {
int depths[] = {0, 0, 0, 0};
if (is_leaf(qt)) {
return 0;
} else {
for (int i = 0; i < 4; ++i) {
depths[i] = depth(qt->child[i]);
}
return 1 + max_depth(depths);
}
}
```
# Fonctions utiles (1/4)
## Comment remplir un arbre depuis une matrice?
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
## Quel arbre cela représente?
. . .
![L'arbre correspondant](figs/quad_img_simple.svg)
# Fonctions utiles (2/4)
* On veut transformer une ligne/colonne en feuille.
* Comment?
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Quelle feuille pour 31 (`li=2`, `co=3`)?
* Plus important: quel chemin?
. . .
* `co -> G/D`, `li -> S/I`,
* `2 * (li / 2) + co / 2 -> 2 * 1 + 1 = 3`
* `2 * ((li % 2) / 1) + (co % 2) / 1 -> 2 * 0 + 1 = 1`
* Comment généraliser?
::::
:::
# Fonctions utiles (3/4)
::: columns
:::: {.column width=40%}
## Soit `ligne=2`, `colonne=3`
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
::::
:::: {.column width=70%}
## Trouver un algorithme (prendre plusieurs exemples, 15min, matrix)
![Déterminer un algorithme.](figs/quad_img_simple.svg)
* Comment généraliser?
. . .
```C
noeud position(li, co, arbre)
d = profondeur(arbre) - 1
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1))
+ (col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
::::
:::
# Fonctions utiles (4/4)
\footnotesize
## Pseudo-code
```C
noeud position(li, co, arbre)
d = profondeur(arbre) - 1
tant_que (d >= 1)
index = 2 * ((li % 2^d) / 2^(d-1)) +
(col % 2^d) / 2^(d-1)
arbre = arbre.enfant[index]
d -= 1
retourne arbre
```
## Écrire le code `C` correspondant (5min, matrix)
```C
```
# Remplir l'arbre
## A partir d'une matrice (pseudo-code, 5min, matrix)?
. . .
```C
arbre matrice_à_arbre(matrice)
arbre = creer_arbre(profondeur)
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
noeud.info = matrice[co][li]
retourne arbre
```
. . .
## A partir d'une matrice (C, 5min, matrix)?
. . .
\footnotesize
```C
node *matrix_to_qt(int nb_li, int nb_co, int matrix[nb_li][nb_co], int depth)
{
node *qt = qt_create(depth);
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
current->info = matrix[li][co];
}
}
return qt;
}
```
# Remplir la matrice
## A partir de l'arbre (pseudo-code, 3min, matrix)?
. . .
```C
matrice arbre_à_matrice(arbre)
matrice = creer_matrice(nb_lignes(arbre), nb_colonnes(arbre))
pour li de 0 à nb_lignes(matrice)
pour co de 0 à nb_colonnes(matrice)
noeud = position(li, co, arbre)
matrice[co][li] = noeud.info
retourne matrice
```
. . .
## A partir de l'arbre (C, 3min, matrix)?
. . .
\footnotesize
```C
void qt_to_matrix(node *qt, int nb_li, int nb_co, int matrix[nb_li][nb_co])
for (int li = 0; li < nd_li; ++li) {
for (int co = 0; co < nd_co; ++co) {
node *current = position(li, co, qt);
matrix[li][co] = current->info;
}
}
```
---
title: "Arbres quaternaires"
date: "2024-04-30"
---
# Rappel sur les arbres quaternaires
## Définition?
. . .
* Arbre dont chaque nœud a 4 enfants ou aucun.
## Utilisation dans ce cours?
. . .
* Stockage/compression d'image
* Chaque pixel correspond à une feuille
* Des portions de l'image peuvent être compressées sans/avec perte
# Transformations avec un arbre quaternaire
## A faire
* Symétrie axiale (horizontale/verticale).
* Rotation quart de cercle (gauche/droite).
* Compression.
# La symétrie verticale
## Que donne la symétrie verticale de
```
SG=0 | SD=1
21 | 12 | 4 | 4
9 | 7 | 4 | 4
-----------------
1 | 1 | 0 | 31
1 | 1 | 3 | 27
IG=2 | ID=3
```
. . .
```
SG=0 | SD=1
4 | 4 | 12 | 21
4 | 4 | 7 | 9
------------------
31 | 0 | 1 | 1
27 | 3 | 1 | 1
IG=2 | ID=3
```
# La symétrie d'axe vertical
## Comment faire sur une matrice (3min, matrix)?
. . .
\footnotesize
```C
matrice symétrie(matrice)
pour i de 0 à nb_colonnes(matrice)/2
pour j de 0 à nb_lignes(matrice)
échanger(matrice[i][j], matrice[nb_colonnes(matrice)-1-i][j])
retourne matrice
```
# La symétrie d'axe vertical
## Comment faire sur un arbre?
* Faire un dessin de l'arbre avant/après (5min, matrix)
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 12 | 21
9 | 7 | 4 | 4 4 | 4 | 7 | 9
----------------- => ----------------
1 | 1 | 0 | 31 31 | 0 | 1 | 1
1 | 1 | 3 | 27 27 | 3 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le pseudo-code (3min, matrix)
. . .
\footnotesize
```C
arbre symétrie(arbre)
si !est_feuille(arbre)
échanger(arbre.enfant[0], arbre.enfant[1])
échanger(arbre.enfant[2], arbre.enfant[3])
pour i de 0 à 3
symétrie(arbre.enfant[i])
retourne arbre
```
# La symétrie d'axe horizontal
* Trivial de faire l'axe horizontal (exercice à la maison)
# Rotation d'un quart de cercle
## Comment faire sur un arbre?
* Faire un dessin de l'arbre avant/après (5min, matrix)
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 31 | 27
9 | 7 | 4 | 4 4 | 4 | 0 | 3
----------------- => -----------------
1 | 1 | 0 | 31 12 | 7 | 1 | 1
1 | 1 | 3 | 27 21 | 9 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le pseudo-code (3min, matrix)
. . .
```C
rien rotation_gauche(arbre)
si !est_feuille(arbre)
échange_cyclique_gauche(arbre.enfant)
pour i de 0 à 3
rotation_gauche(arbre.enfant[i])
```
# Rotation d'un quart de cercle
\footnotesize
## Comment faire sur un arbre?
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 4 | 4 | 31 | 27
9 | 7 | 4 | 4 4 | 4 | 0 | 3
----------------- => -----------------
1 | 1 | 0 | 31 12 | 7 | 1 | 1
1 | 1 | 3 | 27 21 | 9 | 1 | 1
IG=2 | ID=3 IG=2 | ID=3
```
* Écrire le vrai code (5min, matrix)
. . .
```C
void rotate(node *qt) {
if (!is_leaf(qt)) {
node *tmp = qt->child[2];
qt->child[2] = qt->child[0];
qt->child[0] = qt->child[1];
qt->child[1] = qt->child[3];
qt->child[3] = tmp;
for (int i=0; i<CHILDREN; i++) {
rotate(qt->child[i]);
}
}
}
```
# Compression sans perte (1/5)
## Idée générale
* Regrouper les pixels par valeur
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 4 21 | 12 | 4
9 | 7 | 4 | 4 9 | 7 |
----------------- => -----------------
1 | 1 | 0 | 31 1 | 0 | 31
1 | 1 | 3 | 27 | 3 | 27
IG=2 | ID=3 IG=2 | ID=3
```
* Comment faire?
# Compression sans perte (2/5)
## Que devient l'arbre suivant?
![](figs/quad_img_simple.svg)
. . .
## Arbre compressé
![](figs/quad_img_simple_comp.svg)
# Compression sans perte (3/5)
* Si un nœud a tous ses enfants égaux:
* Stocker cette valeur dans ce nœud,
* Supprimer ses enfants.
* Jusqu'à remonter à la racine.
## Écrire le pseudo-code (5min, matrix)
. . .
```C
rien compression_sans_perte(arbre)
si !est_feuille(arbre)
pour i de 0 à 3
compression_sans_perte(arbre.enfant[i])
si derniere_branche(arbre)
valeur, toutes_égales = valeur_enfants(arbre)
si toutes_egales
arbre.info = valeur
detruire_enfants(arbre)
```
# Compression sans perte (4/5)
\footnotesize
## Écrire le code C (5min, matrix)
. . .
```C
void lossless_compression(node *qt) {
if (!is_leaf(qt)) {
for (int i=0; i<CHILDREN; i++) {
lossless_compression(qt->child[i]);
}
if (is_last_branch(qt)) {
int val = -1;
if (last_value(qt, &val)) {
qt->info = val;
for (int i=0; i<CHILDREN; ++i) {
free(qt->child[i]);
qt->child[i] = NULL;
}
}
}
}
}
```
# Compression sans perte (5/5)
\footnotesize
```C
bool is_last_branch(node *qt) {
for (int i = 0; i < CHILDREN; ++i) {
if (!is_leaf(qt)) {
return false;
}
}
return true;
}
bool last_value(node *qt, int *val) {
int info = qt->child[0];
for (int i = 1; i < CHILDREN; ++i) {
if (info != qt->child[i]) {
return false;
}
}
*val = info;
return true;
}
```
# Compression avec perte (1/5)
## Idée générale
* Regrouper les pixels par valeur sous certaines conditions
```
SG=0 | SD=1 SG=0 | SD=1
21 | 12 | 4 | 3 21 | 12 | 4
9 | 7 | 4 | 4 9 | 7 |
----------------- => ------------------
1 | 1 | 0 | 31 1 | 0 | 31
2 | 1 | 3 | 27 | 3 | 27
IG=2 | ID=3 IG=2 | ID=3
```
* On enlève si l'écart à la moyenne est "petit"?
# Compression avec perte (2/5)
## Que devient l'arbre suivant si l'écart est petit?
![](figs/quad_img_simple_variation.svg)
. . .
## Arbre compressé
![](figs/quad_img_simple_comp_loss.svg)
# Compression avec perte (3/5)
## Comment mesurer l'écart à la moyenne?
. . .
* Avec l'écart-type
\begin{equation*}
\mu = \frac{1}{4}\sum_{i=0}^{3} p[i],\quad \sigma = \sqrt{\frac{1}{4}\sum_{i=0}^3 (\mu-p[i])
^2} = \sqrt{\frac{1}{4}\left(\sum_{i=0}^3p[i]^2\right)-\mu^2}
\end{equation*}
## Que devient l'algorithme?
. . .
* Si $\sigma<\theta$, où $\theta$ est la **tolérance**:
* Remplacer la valeur du pixel par la moyenne des enfants.
* Remonter les valeurs dans l'arbre.
## Quelle influence de la valeur de $\theta$ sur la compression?
. . .
* Plus $\theta$ est grand, plus l'image sera compressée.
# Compression avec perte (4/5)
## Que devient l'arbre avec $\theta=0.5$?
![L'arbre original.](figs/quad_img_simple_variation.svg)
. . .
![Arbre compressé.](figs/quad_img_simple_comp_avg.svg)
# Compression avec perte (5/5)
## Modifications sur la structure de données?
. . .
* On stocke la moyenne, et la moyenne des carrés.
```C
struct noeud
flottant moyenne, moyenne_carre
node enfants[4]
```
* Comment on calcule `moyenne` et `moyenne_carre` sur chaque nœud (pseudo-code)?
# Calcul de la moyenne
## Pseudo-code (5min, matrix)
. . .
```C
rien moyenne(arbre) {
si !est_feuille(arbre)
pour enfant dans arbre.enfants
moyenne(enfant)
pour enfant dans arbre.enfants
arbre.moyenne += enfant.moyenne
arbre.moyenne_carre += enfant.moyenne_carre
arbre.moyenne /= 4
arbre.moyenne_carre /= 4
```
# La compression avec pertes
\footnotesize
## Pseudo-code (5min, matrix)
. . .
```C
rien compression_avec_pertes(arbre, theta)
si !est_feuille(arbre)
pour i de 0 à 3
compression_avec_pertes(arbre.enfant[i])
si derniere_branche(arbre)
si racine(arbre.moyenne_carre - arbre.moyenne^2) < theta
detruire_enfants(arbre)
```
## Le code en entier
```C
arbre = matrice_à_arbre(matrice)
moyenne(arbre)
compression_avec_pertes(arbre)
```
# La dynamique des corps célestes
## Slides très fortement inspirés du cours de J. Latt, Unige
## Simulation du problème à $N$-corps
* Prédiction du mouvement d'un grand nombre de corps célestes.
* Modélisation:
* On se limite aux étoiles;
* Chaque étoile est caractérisée par un point (coordonnées) et une masse;
* On simule en deux dimensions.
* Interactions uniquement par les lois de la gravitation Newtonienne (oui-oui c'est de la **physique**!).
# Les équations du mouvement
## Mouvement de la $i$-ème étoile
* Algorithme de Verlet ($t_{n+1}=t_n+\delta t$)
$$
\vec x_i(t_{n+1})= 2\vec x_i(t_n)-\vec x_i(t_{n-1})+\vec a_i(t_n)\delta t^2.
$$
## Force de gravitation
* $\vec a_i(t_n)=\vec F_i/m_i$.
* Sur l'étoile $i$, la force résultante est donnée par
$$
\vec F_i=\sum_{j=1,j\neq i}^N \vec F_{ij}.
$$
avec
$$
\vec F_{ij}=\frac{G m_i m_j(\vec x_j-\vec x_i)}{||\vec x_j-\vec x_i||^3}.
$$
# Algorithme du problème à $n$-corps
## Pseudo-code: structure de données
```C
struct étoile
flottant m
vec x, x_precedent, f
```
## Pseudo-code: itération temporelle
```C
rien iteration_temporelle(étoiles, dt)
pour étoile_une dans étoiles
étoile_une.f = 0
pour étoile_deux dans étoiles
si (étoile_un != étoile_deux)
étoile_une.f +=
force(étoile_une, étoile_deux)
pour étoile dans étoiles
étoile.x, étoile.x_precedent =
verlet(étoile.x, étoile.x_precedent,
étoile.f / étoile.m, dt)
```
# Algorithme du problème à $n$-corps
## Complexité
* Complexité de chacune des parties?
. . .
* $\mathcal{O}(N^2)$, $\mathcal{O}(N)$.
## En temps CPU pour **une itération**
\footnotesize
* Si le temps pour $N=1$ est environ $1\mu s$, on a:
+--------+-------+-------+-----------+
| N | N^2 | t [s] | t [réel] |
+--------+-------+-------+-----------+
| 10 | 10^2 | 1e-4 | |
+--------+-------+-------+-----------+
| 10^4 | 10^8 | 1e+2 | ~1min |
+--------+-------+-------+-----------+
| 10^6 | 10^12 | 1e+6 | ~11j |
+--------+-------+-------+-----------+
| 10^9 | 10^18 | 1e+12 | ~30K ans |
+--------+-------+-------+-----------+
| 10^11 | 10^22 | 1e+16 | ~300M ans |
+--------+-------+-------+-----------+
* Typiquement, il y a des milliers-millions d'itérations.
* Il y a $10^{11}$ étoiles dans la galaxie.
* Houston we have a problem.
# Question
## Comment faire mieux? Des idées?
. . .
* Si un groupe d'étoiles est suffisamment loin, on le modélise comme un corps unique situé en son centre de masse.
* Exemple: Si on simule plusieurs galaxies, on considère chaque galaxie comme un corps unique!
* Un arbre quaternaire est une structure parfaite pour regrouper les étoiles.
# Le cas à 10 corps
::: columns
:::: {.column width=50%}
## Illustration: le cas à 10 corps
![](figs/nbody_bare.png){width=60%}
::::
:::: {.column width=50%}
## Problématique
* On veut calculer la force sur $1$.
::::
:::
. . .
::: columns
:::: {.column width=50%}
## Illustration: le cas à 10 corps
![](figs/nbody_n2.png){width=60%}
::::
:::: {.column width=50%}
## Résultat
* Calcul et somme des forces venant des $9$ autre corps.
::::
:::
# Le cas à 10 corps
::: columns
:::: {.column width=50%}
## Réduction d'un groupe à un seul corps
![](figs/nbody_group.png){width=100%}
::::
:::: {.column width=50%}
## Idée
* On accélère le calcul en traitant un groupe comme un seul corps.
* Fonctionne uniquement si le groupe est assez loin.
* Autrement l'approximation est trop grossière.
::::
:::
# Solution: l'arbre quaternaire
## Corps célestes - arbre
![](figs/nbody_qt_withtree.png)
* On omet les nœuds vides pour alléger la représentation.
* La numérotation est:
* 0: ID
* 1: SD
* 2: IG
* 3: SG
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 1
![](figs/corps1.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre1.png){width=100%}
* Quadrant ID.
* La feuille est vide, on insère.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 2
![](figs/corps2.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre2.png){width=100%}
* Quadrant SD.
* La feuille est vide, on insère.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (1/N)
![](figs/corps3_1.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 1
![](figs/arbre3_1.png){width=100%}
* Quadrant SD.
* La feuille est prise par 2.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (2/N)
![](figs/corps3_2.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 2
![](figs/arbre3_2.png){width=100%}
* On crée un nouveau nœud.
* Deux corps dans le nœud ID.
* On crée un nouveau nœud.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Insertion corps 3 (3/N)
![](figs/corps3_3.png){width=100%}
::::
:::: {.column width=50%}
## Arbre, niveau 3
![](figs/arbre3_3.png){width=100%}
* 2 va dans ID.
* 3 va dans SG.
* C'est des feuilles vides, tout va bien.
::::
:::
# Exemple d'insertion
::: columns
:::: {.column width=50%}
## Que fait-on avec les nœuds intérieurs?
* On les utilise pour:
* stocker la masse totale;
* stocker le centre de masse.
\begin{align}
m&=m_2+m_3,\\
\vec x &= \frac{m_2\vec x_2+m_3\vec x_3}{m}.
\end{align}
## Chaque feuille contient **une étoile**
::::
:::: {.column width=50%}
## Arbre
![](figs/arbre3_3.png){width=100%}
::::
:::
# Résumé
* Insertion du corps `c` dans le nœud `n` en partant de la racine.
* Si le nœud `n`
* ne contient pas de corps, on y dépose `c`;
* est interne, on met à jour masse et centre de masse, `c` est inséré récursivement dans le bon quadrant;
* est externe, on subdivise `n`, on met à jour la masse et centre de masse, on insère récursivement les deux nœuds dans les quadrants appropriés.
## Remarque
* Il faut stocker les coordonnées des quadrants.
* Un nœud a un comportement différent s'il est interne ou externe.
# Algorithme d'insertion
## Structure de données
```C
struct node
etoile e // externe: pour stocker
etoile sup_etoile // interne: pour stocker m, x
quadrant q // coordonnées du quadrant
node enfants[4]
```
## Remarque:
* On fait une simplification "moche": `sup_etoile` pourrait juste avoir une masse et une position.
# Algorithme d'insertion
\footnotesize
## Algorithme d'insertion, pseudo-code (15min, matrix)
. . .
```C
rien insertion_etoile(arbre, e)
si (!est_vide(arbre) && dans_le_quadrant(arbre.q, e.x)) {
si (est_feuille(arbre))
si (!contient_etoile(arbre))
arbre.e = e
sinon
// on crée enfants et arbre.sup_etoile est initialisée
subdivision_arbre(arbre, e)
pour enfant dans arbre.enfants
insertion_etoile(enfant, arbre.e)
pour enfant dans arbre.enfants
insertion_etoile(enfant, e)
destruction(arbre.e)
sinon
maj_masse_cdm(arbre.sup_etoile, e)
pour enfant dans arbre.enfants
insertion_etoile(enfant, e)
```
# Utilisation de l'arbre
* L'arbre est rempli: comment on calcule la force sur le corps 1?
* Parcours de l'arbre:
* Si la distance entre 1 et le centre de masse est suffisante, on utilise la masse totale et centre de masse pour calculer la force.
* Sinon on continue le parcours.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_1.png)
* Le cadrant ID ne contient que `1`, rien à faire.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_2.png)
* Le cadrant SG contient `5` corps.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_3.png)
* La distance entre `1` et le centre de masse de SG est `d`.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_4.png)
* La distance entre `1` et le centre de masse de SG est `d`.
* Est-ce que `d` est assez grand?
* On va comparer avec la distance `d` avec la taille du quadrant `s`.
# Critère $\theta$
* On compare $d=||\vec x_1-\vec x_{cm}||$ avec $s$ la taille du quadrant.
* Le domaine est assez éloigné si
$$
\frac{s}{d}<\theta,
$$
* $\theta$ est la valeur de seuil.
* Une valeur typique est $\theta=0.5$, donc la condition devient
$$
d>2s.
$$
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_4.png)
* Ici $d<2s$, domaine rejeté.
* On descend dans l'arbre.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_5.png)
* `s` est plus petit, mais....
* Cela ne suffit pas $d<2s$, domaine rejeté.
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_6.png)
* Les nœuds sont des feuilles, on calcule la force.
* On ajoute la force qu'ils exercent sur `1`.
# Algorithme pour le calcul de la force
Pour calculer la force sur un corps `c`, on parcourt l'arbre en commençant par la racine:
* Si le nœud `n` est une feuille et n'est pas `c`, on ajoute la force dûe à `n` sur `c`;
* Sinon, si $s/d<\theta$, on traite `n` comme une feuille et on ajoute la force dûe à `n` sur `c`;
* Sinon on continue sur les enfants récursivement.
## Continuons notre exemple précédent!
# Calcul de la force
## Calcul de la force sur `1`
![](figs/force_7.png)
* Il y a deux corps dans le quadrant vert.
* Quel est le critère pour remplacer les étoiles par leur centre de masse?
. . .
* Et oui! $d>2s$, donc on peut remplacer les étoiles par leur centre de masse!
# Algorithme du calcul de force
## Écrire le pseudo-code-code du calcul de la force
\footnotesize
```C
rien maj_force_sur_etoile(arbre, e, theta)
si est_vide(arbre)
retourne
si est_feuille(arbre) && contient_etoile(arbre)
&& dans_le_quadrant(arbre.q, e.x)
maj_force(e, arbre.e)
sinon si noeud_assez_loin(arbre, e, theta)
maj_force(e, arbre.sup_etoile)
sinon
pour enfant dans enfants
maj_force_sur_etoile(enfant, e, theta)
```
---
title: "Les B-arbres"
date: "2024-05-07"
---
# Les B-arbres
\Huge
Les B-arbres
# Les B-arbres
## Problématique
* Grands jeux de données (en 1970).
* Stockage dans un arbre, mais l'arbre tiens pas en mémoire.
* Regrouper les sous-arbres en **pages** qui tiennent en mémoire.
## Exemple
* 100 nœuds par page et l'arbre comporte $10^6$ nœuds:
* Recherche B-arbre: $\log_{100}(10^6)=3$;
* Recherche ABR: $\log_2(10^6)=20$.
* Si on doit lire depuis le disque: $10\mathrm{ms}$ par recherche+lecture:
* $30\mathrm{ms}$ (lecture beaucoup plus rapide que recherche) vs $200\mathrm{ms}=0.2\mathrm{s}$.
## Remarques
* On sait pas ce que veut dire `B`: Bayer, Boeing, Balanced?
* Variante plus récente B+-arbres.
# Les B-arbres
## Illustration, arbre divisé en pages de 3 nœuds
![Arbre divisé en pages de 3 nœuds](figs/barbres_page3.png)
. . .
## Utilisation
* Bases de données (souvent très grandes donc sur le disque);
* Système de fichier.
# Les B-arbres
## Avantages
* Arbres moins profonds;
* Diminue les opération de rééquilibrage;
* Complexité toujours en $\log(N)$;
. . .
## Définition: B-arbre d'ordre $n$
* Chaque page d'un arbre contient au plus $2\cdot n$ *clés*;
* Chaque page (excepté la racine) contient au moins $n$ clés;
* Chaque page qui contient $m$ clés contient soit:
* $0$ descendants;
* $m+1$ descendants.
* Toutes les pages terminales apparaissent au même niveau.
# Les B-arbres
## Est-ce un B-arbre?
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
## Oui!
* Dans chaque nœud les clés sont **triées**.
* Chaque page contient au plus $n$ nœuds: check;
* Chaque nœud avec $m$ clés a $m+1$ descendants;
* Toutes les feuilles apparaissent au même niveau.
# Les B-arbres
## Exemple de recherche: trouver `32`
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
* Si `n` plus petit que la 1e clé ou plus grand que la dernière descendre.
* Sinon parcourir (par bissection ou séquentiellement) jusqu'à trouver ou descendre entre 2 éléments.
# Les B-arbres
## La recherche de la clé `C` algorithme
0. En partant de la racine.
1. Si on est dans une feuille:
* Si la `C` est dans une page, retourner la page;
* Sinon c'est perdu.
2. Sinon:
* Tant que `C > page` passer à la page suivante
* Descendre
# Les B-arbres
## Disclaimer
* Inspiration de <https://en.wikipedia.org/wiki/B-tree>
## Exemples d'insertion: `1`
![B-arbre d'ordre 1.](figs/barbres_1.svg)
. . .
* L'arbre est vide, on insère juste dans la première page.
# Les B-arbres
## Exemples d'insertion: `2`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_2.svg)
. . .
* La première page est pas pleine, on insère dans l'ordre (après 1).
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1.](figs/barbres_2.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `3`
![B-arbre d'ordre 1. Nombre pages max = 2.](figs/barbres_3.svg){width=50%}
. . .
* La page est pleine, on crée deux enfants.
* On choisit, `2`, la médiane de `1, 2, 3` et il est inséré à la racine.
* `1` descend à gauche, `3` descend à droite.
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1.](figs/barbres_3.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `4`
![B-arbre d'ordre 1. Nombre enfants 0 ou 2.](figs/barbres_4.svg){width=50%}
. . .
* On pourrait insérer à droite de `2`, mais... ça ferait 2 parents pour 2 enfants (mais `m` parents => `m+1` enfants ou `0`);
* On descend à droite (`4 > 2`);
* On insère à droite de `3`.
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_4.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `5`
![B-arbre d'ordre 1.](figs/barbres_5.svg)
. . .
* On descend à droite (on peut pas insérer à la racine comme pour `4`);
* On dépasse la capacité de l'enfant droite;
* `4`, médiane de `3, 4, 5`, remonte à la racine;
* On crée un nouveau nœud à droite de `4`;
* La règle `m => m+1` est ok.
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_5.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `6`
![B-arbre d'ordre 1.](figs/barbres_6.svg)
. . .
* `6 > 4` on descend à droite;
* `6 > 5` et on a à la place à droite, on insère.
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_6.svg){width=50%}
* Comment on insère (1min de réflexion avant de donner une réponse!)?
# Les B-arbres
## Exemples d'insertion: `7`
![B-arbre d'ordre 1.](figs/barbres_7.svg){width=50%}
. . .
* `7 > 4` on descend à droite;
* `7 > 6` mais on a dépassé la capacité;
* `6` est la médiane de `5, 6, 7`, remonte à la racine;
* `5` reste à gauche, `7` à droite, mais `6` fait dépasser la capacité de la racine;
* `4` est la médiane de `2, 4, 6`, `4` remonte, `2` reste à gauche, `6` à droite.
# Les B-arbres
## L'algorithme d'insertion
0. Rechercher la feuille (la page a aucun enfant) où insérer;
1. Si la page n'est pas pleine insérer dans l'ordre croissant.
2. Si la page est pleine, on sépare la page en son milieu :
1. On trouve la médiane, `M`, de la page;
2. On met les éléments `< M` dans la page de gauche de `M` et les `> M` dans la page de droite de `M`;
3. `M` est insérée récursivement dans la page parent.
# Les B-arbres
## Exercice: insérer `22, 45, 50` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex1.png)
. . .
![](figs/barbres_ex2.png)
# Les B-arbres
## Exercice: insérer `5` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex2.png)
. . .
![](figs/barbres_ex3.png)
# Les B-arbres
## Exercice: insérer `32, 55, 60` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex3.png)
. . .
![](figs/barbres_ex4.png)
# Les B-arbres
## Exercice: insérer `41` dans l'arbre d'ordre 2 (3min matrix)
![](figs/barbres_ex4.png)
. . .
![](figs/barbres_ex5.png)
# Les B-arbres
## Exercice (matrix, 15min)
* Insérer 20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 8, 32, 38, 24, 45, 25, 2, 14, 28, 32, 41,
* Dans un B-arbre d'ordre 2.
# Les B-arbres
\footnotesize
## Structure de données
* Chaque page a une contrainte de remplissage, par rapport à l'ordre de l'arbre;
* Un nœud (page) est composé d'un tableau de clés/pointeurs vers les enfants;
```
P_0 | K_1 | P_1 | K_2 | .. | P_i | K_{i+1} | .. | P_{m-1} | K_m | P_m
```
* `P_0`, ..., `P_m` pointeurs vers enfants;
* `K_1`, ..., `K_m` les clés.
* Il y a `m+1` pointeurs mais `m` clés.
* Comment faire pour gérer l'insertion?
# Les B-arbres
## Faire un dessin de la structure de données (3min matrix)?
. . .
![Structure d'une page de B-arbre d'ordre 2.](figs/barbres_struct.png)
1. On veut un tableau de `P_i, K_i => struct`;
2. `K_0` va être en "trop";
3. Pour simplifier l'insertion dans une page, on ajoute un élément de plus.
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `4`?
![](figs/barbres_insert_easy.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_easy_after.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud pas plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page n'est pas pleine, on a terminé.
# Les B-arbres
## L'insertion cas nœud plein, insertion `2`?
![](figs/barbres_insert_hard_before.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_during.svg){width=50%}
# Les B-arbres
## L'insertion cas nœud plein, promotion `3`?
![](figs/barbres_insert_hard_during.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_after.svg)
# Les B-arbres
## L'insertion cas nœud plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page est pleine:
* On trouve la valeur médiane `M` de la page (quel indice?);
* On crée une nouvelle page de droite;
* On copie les valeur à droite de `M` dans la nouvelle page;
* On promeut `M` dans la page du dessus;
* On connecte le pointeur de gauche de `M` et de droite de `M` avec l'ancienne et la nouvelle page respectivement.
# Les B-arbres
## Pseudo-code structure de données (3min, matrix)?
. . .
```C
struct page
entier ordre, nb
element tab[2*ordre + 2]
```
```C
struct element
entier clé
page pg
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
booléen est_feuille(page) // la page est elle une feuille?
entier position(page, valeur) // à quelle indice on insère?
booléen est_dans_page(page, valeur) // la valeur est dans la page
```
. . .
```C
booléen est_feuille(page)
retourne (page.tab[0].pg == vide)
entier position(page, valeur)
i = 0
tant que i < page.nb && valeur >= page.tab[i+1].clef
i += 1
retourne i
booléen est_dans_page(page, valeur)
i = position(page, valeur)
retourne (page.nb > 0 && page.tab[i].val == valeur)
```
# Les B-arbres
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
page nouvelle_page(ordre) // créer une page
rien liberer_memoire(page) // libérer tout un arbre!
```
. . .
```C
page nouvelle_page(ordre)
page = allouer(page)
page.ordre = ordre
page.nb = 0
page.tab = allouer(2*ordre+2)
retourner page
rien liberer_memoire(page)
si est_feuille(page)
liberer(page.tab)
liberer(page)
sinon
pour fille dans page.tab
liberer_memoire(fille)
liberer(page.tab)
liberer(page)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
page recherche(page, valeur) // retourner la page contenant
// la valeur ou vide
```
. . .
```C
page recherche(page, valeur)
si est_dans_page(page, valeur)
retourne page
sinon si est_feuille(page)
retourne vide
sinon
recherche(page.tab[position(page, valeur) - 1], valeur)
```
---
title: "Les B-arbres et graphes"
date: "2024-05-14"
---
# Les B-arbres (rappel)
## Définition: B-arbre d'ordre $n$
. . .
* Chaque page d'un arbre contient au plus $2\cdot n$ *clés*;
* Chaque page (excepté la racine) contient au moins $n$ clés;
* Chaque page qui contient $m$ clés contient soit:
* $0$ descendants;
* $m+1$ descendants.
* Toutes les pages terminales apparaissent au même niveau.
# Les B-arbres (rappel)
## Est-ce un B-arbre?
![B-arbre d'ordre 2.](figs/barbres_exemple.png)
. . .
### Bien sûr!
# Les B-arbres (rappel)
## L'algorithme d'insertion
. . .
0. Rechercher la feuille (la page a aucun enfant) où insérer;
1. Si la page n'est pas pleine insérer dans l'ordre croissant.
2. Si la page est pleine, on sépare la page en son milieu :
1. On trouve la médiane, `M`, de la page;
2. On met les éléments `< M` dans la page de gauche de `M` et les `> M` dans la page de droite de `M`;
3. `M` est insérée récursivement dans la page parent.
# Les B-arbres (rappel)
## L'insertion cas nœud pas plein, insertion `4`?
![](figs/barbres_insert_easy.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_easy_after.svg){width=50%}
# Les B-arbres (rappel)
## L'insertion cas nœud pas plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page n'est pas pleine, on a terminé.
# Les B-arbres (rappel)
## L'insertion cas nœud plein, insertion `2`?
![](figs/barbres_insert_hard_before.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_during.svg){width=50%}
# Les B-arbres (rappel)
## L'insertion cas nœud plein, promotion `3`?
![](figs/barbres_insert_hard_during.svg){width=50%}
. . .
## Solution
![](figs/barbres_insert_hard_after.svg)
# Les B-arbres (rappel)
## L'insertion cas nœud plein, insertion `N`
* On décale les éléments plus grand que `N`;
* On insère `N` dans la place "vide";
* Si la page est pleine:
* On trouve la valeur médiane `M` de la page (quel indice?);
* On crée une nouvelle page de droite;
* On copie les valeur à droite de `M` dans la nouvelle page;
* On promeut `M` dans la page du dessus;
* On connecte le pointeur de gauche de `M` et de droite de `M` avec l'ancienne et la nouvelle page respectivement.
# Les B-arbres (rappel)
## Pseudo-code structure de données
. . .
```C
struct page
entier ordre, nb
element tab[2*ordre + 2]
```
```C
struct element
entier clé
page pg
```
# Les B-arbres (rappel)
\footnotesize
## Les fonctions utilitaires (5min matrix)
```C
booléen est_feuille(page) // la page est elle une feuille?
entier position(page, valeur) // à quelle indice on insère?
booléen est_dans_page(page, valeur) // la valeur est dans la page
```
. . .
```C
booléen est_feuille(page)
retourne (page.tab[0].pg == vide)
entier position(page, valeur)
i = 0
tant que i < page.nb && valeur >= page.tab[i+1].clef
i += 1
retourne i
booléen est_dans_page(page, valeur)
i = position(page, valeur)
retourne (page.nb > 0 && page.tab[i].val == valeur)
```
# Les B-arbres (rappel)
\footnotesize
## Les fonctions utilitaires
```C
page nouvelle_page(ordre) // créer une page
```
. . .
```C
page nouvelle_page(ordre)
page = allouer(page)
page.ordre = ordre
page.nb = 0
page.tab = allouer(2*ordre+2)
retourner page
```
# Les B-arbres (rappel)
## Recherche de page
```C
page recherche(page, valeur) // retourner la page contenant
// la valeur ou vide
```
. . .
```C
page recherche(page, valeur)
si est_dans_page(page, valeur)
retourne page
sinon si est_feuille(page)
retourne vide
sinon
recherche(page.tab[position(page, valeur) - 1], valeur)
```
# Les B-arbres (nouveautés)
## Les fonctions
```C
page inserer_valeur(page, valeur) // insérer une valeur
```
. . .
```C
page inserer_valeur(page, valeur)
element = nouvel_element(valeur)
// ici élément est modifié pour savoir
// s'il faut le remonter
inserer_element(page, element)
si element.page != vide && page.nb > 2*page.ordre
// si on atteint le sommet!
page = ajouter_niveau(page, element)
retourne page
```
# Les B-arbres
## Les fonctions
```C
rien inserer_element(page, element) // insérer un element
// et voir s'il remonte
```
. . .
```C
rien inserer_element(page, element)
si est_feuille(page)
placer(page, element)
sinon
sous_page = page.tab[position(page, element.clé) - 1].page
inserer_element(sous_page, element)
// un element a été promu
si element.page != vide
placer(page, element)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
rien placer(page, element) // inserer un élément
```
. . .
```C
rien placer(page, element)
pos = position(page, element.clé)
pour i de 2*page.ordre à pos+1
page.tab[i+1] = page.tab[i]
page.tab[pos+1] = element
page.nb += 1
si page.nb > 2*page.ordre
scinder(page, element)
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
rien scinder(page, element) // casser une page et remonter
```
. . .
```C
rien scinder(page, element)
nouvelle_page = nouvelle_page(page.ordre)
nouvelle_page.nb = page.ordre
pour i de 0 à ordre inclu
nouvelle_page.tab[i] = page.tab[i+ordre+1]
element.clé = page.tab[ordre+1].clé
element.page = nouvelle_page
```
# Les B-arbres
## Les fonctions (5min matrix)
```C
page ajouter_niveau(page, element) // si on remonte à la
// racine, on doit créer
// une nouvelle racine
```
. . .
```C
page ajouter_niveau(page, element)
tmp = nouvelle_page(page.ordre)
tmp.tab[0].page = page
tmp.tab[1].clé = element.clé
tmp.tab[1].page = element.page
retourne tmp
```
<!-- # Les B-arbres -->
<!-- ## Structure de données en C (3min, matrix) -->
<!-- . . . -->
<!-- ```C -->
<!-- typedef struct _page { -->
<!-- int order, nb; -->
<!-- struct _element *tab; -->
<!-- } page; -->
<!-- ``` -->
<!-- ```C -->
<!-- typedef struct element { -->
<!-- int key; -->
<!-- struct _page *pg; -->
<!-- } element; -->
<!-- ``` -->
# Les B-arbres: suppression
## Cas simplissime
![Suppression de 25.](figs/barbres_ordre2_supp1.svg){width=80%}
. . .
![25 supprimé, on décale juste 27.](figs/barbres_ordre2_supp2.svg){width=80%}
# Les B-arbres: suppression
\footnotesize
## Cas simple
![Suppression de 27.](figs/barbres_ordre2_supp2.svg){width=60%}
. . .
* On retire 27, mais....
* Chaque page doit avoir au moins 2 éléments.
* On doit déplacer des éléments dans une autre feuille! Mais comment?
. . .
![La médiane de la racine descend, fusion de 20 à gauche, et suppression à droite.](figs/barbres_ordre2_supp3.svg){width=60%}
# Les B-arbres: suppression
## Cas moins simple
![Suppression de 5.](figs/barbres_ordre2_supp4.svg){width=60%}
. . .
* Un élément à droite, comment on fait?
* Remonter `7`, serait ok si racine, mais... c'est pas forcément.
* On redistribue les feuilles.
. . .
![Descente de `3`, remontée médiane des feuilles `2`.](figs/barbres_ordre2_supp5.svg){width=60%}
# Les B-arbres: suppression
\footnotesize
## Cas ultra moins simple
![Suppression de 3.](figs/barbres_ordre2_supp6.svg){width=60%}
. . .
* `7` seul:
* Fusionner les feuilles et redistribuer, comment?
. . .
![Descendre `-1`, déplacer `7` à gauche, et décaler les éléments de droite au milieu.](figs/barbres_ordre2_supp7.svg){width=60%}
# Les B-arbres: suppression
## Cas ultra moins simple
![On a pas fini...](figs/barbres_ordre2_supp7.svg){width=60%}
. . .
* `8` est seul, c'est plus un B-arbre :
* Fusionner le niveau 2 et redistribuer, comment?
. . .
![Fusionner `8`, `17`, `22` et descendre `12`.](figs/barbres_ordre2_supp8.svg){width=40%}
. . .
* La profondeur a diminué de 1.
# Les B-arbres: suppression
## Algorithme pour les feuilles!
* Si la clé est supprimée d'une feuille:
* Si on a toujours `n` (ordre de l'arbre) clés dans la feuille on décale simplement les clés.
* Sinon on combine (récursivement) avec le nœud voisin et on descend la clé médiane.
# Les B-arbres: suppression
## Cas non-feuille!
![Suppression de 8.](figs/barbres_ordre2_supp9.svg){width=60%}
. . .
* On sait comment effacer une valeur d'une feuille, donc?
. . .
![Échanger le `8` avec le plus grand du sous-arbre de gauche.](figs/barbres_ordre2_supp10.svg){width=60%}
* Ensuite?
# Les B-arbres: suppression
## Cas non-feuille!
![Suppression de 8.](figs/barbres_ordre2_supp10.svg){width=60%}
. . .
* On sait comment effacer une valeur d'une feuille!
. . .
![Yaka enlever le 8 de la feuille comme avant!](figs/barbres_ordre2_supp11.svg){width=60%}
# Les B-arbres: suppression
## Algorithme pour les non-feuilles!
* Si la clé est supprimée d'une page qui n'est pas une feuille:
* On échange la valeur avec la valeur de droite de la page de gauche
* On supprime comme pour une feuille!
## Et maintenant des exercices par millions!
# Les graphes
\Huge
Les graphes
# Les graphes! Historique
**Un mini-peu d'histoire...**
## L. Euler et les 7 ponts de Koenigsberg:
* Existe-t-il une promenade sympa, passant **une seule fois** par les 7 ponts et revenant au point de départ?
![Les ponts c'est beau. Source: Wikipédia, <https://bit.ly/37h0yOG>](figs/Konigsberg_bridges.png){width=50%}
. . .
* Réponse: ben non!
# Utilisation quotidienne
## Réseau social
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/Social_Network.svg){width=40%}
* Chaque sommet est un individu.
* Chaque trait une relation d'amitié.
* Miam, Miam, Facebook.
# Utilisation quotidienne
## Moteurs de recherche
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/PageRanks-Example.svg){width=40%}
* Sommet est un site.
* Liens sortants;
* Liens entrants;
* Notion d'importance d'un site: combien de liens entrants, pondérés par l'importance du site.
* Miam, Miam, Google (PageRank).
# Introduction
## Définition, plus ou moins
* Un graphe est un ensemble de sommets, reliés par des lignes ou des flèches.
![Deux exemples de graphes.](figs/ex_graphes.png)
* Des sommets (numérotés 1 à 6);
* Connectés ou pas par des traits ou des flèches!
# Généralités
## Définitions
* Un **graphe** $G(V, E)$ est constitué
* $V$: un ensemble de sommets;
* $E$: un ensemble d'arêtes.
* Une **arête** relie une **paire** de sommets de $V$.
## Remarques
* Il y a **au plus** une arête $E$ par paire de sommets de $V$.
* La **complexité** d'un algorithme dans un graphe se mesure en terme de $|E|$ et $|V|$, le nombre d'éléments de $E$ et $V$ respectivement.
# Généralités
## Notations
* Une arête d'un graphe **non-orienté** est représentée par une paire **non-ordonnée** $(u,v)=(v,u)$, avec $u,v\in V$.
* Les arêtes ne sont pas orientées dans un graphe non-orienté (elles sont bi-directionnelles, peuvent être parcourues dans n'importe quel ordre).
## Exemple
::: columns
:::: column
![Un graphe non-orienté.](figs/ex_graphe_non_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1)\},\\
|E|&=4.
\end{align*}
::::
:::
# Généralités
## Notations
* Une arête d'un graphe **orienté** est représentée par une paire **ordonnée** $(u,v)\neq(v,u)$, avec $u,v\in V$.
* Les arêtes sont orientées dans un graphe orienté (étonnant non?).
## Exemple
::: columns
:::: column
![Un graphe orienté.](figs/ex_graphe_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1),(4,2)\},\\
|E|&=5.
\end{align*}
::::
:::
# Généralités
## Définition
* Le somme $v$ est **adjacent** au sommet $u$, si et seulement si $(u,v)\in E$;
* Si un graphe non-orienté contient une arête $(u,v)$, $v$ est adjacent à $u$ et $u$ et adjacent à $v$.
## Exemple
::: columns
:::: column
![Sommet $a$ adjacent à $c$, $c$ adjacent à $a$.](figs/ex_adj_non_or.svg){width=80%}
::::
:::: column
![Sommet $a$ adjacent à $c$.](figs/ex_adj_or.svg){width=80%}
::::
:::
# Généralités
## Définition
* Un **graphe pondéré** ou **valué** est un graphe dont chaque arête a un
poids associé, habituellement donné par une fonction de pondération $w:E\rightarrow\mathbb{R}$.
## Exemples
![Graphe pondéré orienté (gauche) et non-orienté (droite).](figs/ex_graph_pond.pdf){width=80%}
# Généralités
## Définition
* Dans un graphe $G(V,E)$, une **chaîne** reliant un sommet $u$ à un sommet $v$ est une suite d'arêtes entre les sommets, $w_0$, $w_1$, ..., $w_k$, telles que
$$
(w_i, w_{i+1})\in E,\quad u=w_0,\quad v=w_k,\quad \mbox{pour }0\leq i< k,
$$
avec $k$ la longueur de la chaîne (le nombre d'arêtes du chemin).
## Exemples
![Illustration d'une chaîne, ou pas chaîne dans un graphe.](figs/ex_graphe_chaine.pdf){width=80%}
# Généralités
## Définition
* Une **chaîne élémentaire** est une chaîne dont tous les sommets sont distincts, sauf les extrémités qui peuvent être égales
## Exemples
![Illustration d'une chaîne élémentaire.](figs/ex_graphe_chaine_elem.pdf){width=80%}
# Généralités
## Définition
* Une **boucle** est une arête $(v,v)$ d'un sommet vers lui-même.
## Exemples
![Illustration d'une boucle.](figs/ex_graphe_boucle.pdf){width=40%}
# Généralités
## Définition
* Un graphe non-orienté est dit **connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe connexe. Source, Wikipédia: <https://bit.ly/3yiUzUv>](figs/graphe_connexe.svg){width=80%}
::::
:::: column
![Graphe non-connexe avec composantes connexes. Source, Wikipédia: <https://bit.ly/3KJB76d>](figs/composantes_connexes.svg){width=60%}
::::
:::
# Généralités
## Définition
* Un graphe orienté est dit **fortement connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe fortement connexe.](figs/ex_graph_fort_connexe.pdf){width=60%}
::::
:::: column
![Composantes fortement connexes. Source, Wikipédia: <https://bit.ly/3w5PL2l>](figs/composantes_fortement_connexes.svg){width=100%}
::::
:::
# Généralités
## Définition
* Un **cycle** dans un graphe *non-orienté* est une chaîne de longueur $\geq 3$ telle que le 1er sommet de la chaîne est le même que le dernier, et dont les arêtes sont distinctes.
* Pour un graphe *orienté* on parle de **circuit**.
* Un graphe sans cycles est dit **acyclique**.
## Exemples
![Illustration de cycles, ou pas.](figs/ex_graphe_cycle.pdf){width=100%}
# Question de la mort
* Qu'est-ce qu'un graphe connexe acyclique?
. . .
* Un arbre!
# Représentations
* La complexité des algorithmes sur les graphes s'expriment en fonction du nombre de sommets $V$, et du nombre d'arêtes $E$:
* Si $|E|\sim |V|^2$, on dit que le graphe est **dense**.
* Si $|E|\sim |V|$, on dit que le graphe est **peu dense**.
* Selon qu'on considère des graphes denses ou peu denses, différentes structure de données peuvent être envisagées.
## Question
* Comment peut-on représenter un graphe informatiquement? Des idées (réflexion de quelques minutes)?
. . .
* Matrice/liste d'adjacence.
# Matrice d'adjacence
* Soit le graphe $G(V,E)$, avec $V=\{1, 2, 3, ..., n\}$;
* On peut représenter un graphe par une **matrice d'adjacence**, $A$, de dimension $n\times n$ définie par
$$
A_{ij}=\left\{ \begin{array}{ll}
1 & \mbox{si } i,j\in E,\\
0 & \mbox{sinon}.
\end{array} \right.
$$
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
## Remarques
* Zéro sur la diagonale.
* La matrice d'un graphe non-orienté est symétrique
$$
A_{ij}=A_{ji}, \forall i,j\in[1,n]
$$.
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
* Pour un graphe orienté (digraphe)
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
2-->1;
1-->4;
2-->5;
5-->2;
4-->5;
5-->3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 0 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 0
---||---|---|---|---|---
4 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 0 | 0
```
::::
:::
* La matrice d'adjacence n'est plus forcément symétrique
$$
A_{ij}\neq A_{ji}.
$$
# Stockage
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe orienté?
. . .
* $\mathcal{O}(|V|^2)$.
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe non-orienté?
. . .
* $\mathcal{O}(|V|-1)|V|/2$.
# Considérations d'efficacité
* Dans quel type de graphes la matrice d'adjacence est utile?
. . .
* Dans les graphes denses.
* Pourquoi?
. . .
* Dans les graphes peu denses, la matrice d'adjacence est essentiellement composée de `0`.
## Remarque
* Dans la majorité des cas, les grands graphes sont peu denses.
* Comment représenter un graphe autrement?
# La liste d'adjacence (non-orienté)
* Pour chaque sommet $v\in V$, stocker les sommets adjacents à $v$-
* Quelle structure de données pour la liste d'adjacence?
. . .
* Tableau de liste chaînée, vecteur (tableau dynamique), etc.
::: columns
:::: column
## Exemple
![Un graphe non-orienté.](figs/ex_graph_adj.pdf){width=80%}
::::
:::: column
## Quelle liste d'adjacence?
. . .
![La liste d'adjacence.](figs/ex_graph_list_adj.pdf)
::::
:::
# La liste d'adjacence (orienté)
::: columns
:::: column
## Quelle liste d'adjacence pour...
* Matrix (2min)
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0-->1;
0-->2;
1-->2;
3-->0;
3-->1;
3-->2;
```
::::
:::: column
```
```
::::
:::
# Complexité
## Stockage
* Quelle espace est nécessaire pour stocker une liste d'adjacence (en fonction de $|E|$ et $|V|$)?
. . .
$$
\mathcal{O}(|E|)
$$
* Pour les graphes *non-orientés*: $\mathcal{O}(2|E|)$.
* Pour les graphes *orientés*: $\mathcal{O}(|E|)$.
## Définition
* Le **degré** d'un sommet $v$, est le nombre d'arêtes incidentes du sommet (pour les graphes orientés on a un degré entrant ou sortant).
* Comment on retrouve le degré de chaque sommet avec la liste d'adjacence?
. . .
* C'est la longueur de la liste chaînée.
# Parcours
* Beaucoup d'applications nécessitent de parcourir des graphes:
* Trouver un chemin d'un sommet à un autre;
* Trouver si le graphe est connexe;
* Il existe *deux* parcours principaux:
* en largeur (Breadth-First Search);
* en profondeur (Depth-First Search).
* Ces parcours créent *un arbre* au fil de l'exploration (si le graphe est non-connexe cela crée une *forêt*, un ensemble d'arbres).
# Illustration: parcours en largeur
![Le parcours en largeur.](figs/parcours_larg.pdf){width=80%}
# Exemple
## Étape par étape (blanc non-visité)
![Initialisation.](figs/parcours_larg_0.pdf){width=50%}
## Étape par étape (gris visité)
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
# Exemple
## Étape par étape
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
## Étape par étape (vert à visiter)
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
# Exemple
## Étape par étape
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
# Exemple
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
# Exemple
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
# Exemple
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
## Étape par étape
![The end. Plus rien à visiter!](figs/parcours_larg_6.pdf){width=50%}
# En faisant ce parcours...
::: columns
:::: column
## Du parcours de l'arbre
![](figs/parcours_larg_6.pdf){width=100%}
::::
:::: column
## Quel arbre est créé par le parcours (2min)?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0[x]-->1[w];
0-->2[t];
0-->3[y];
2-->9[u];
1-->4[s];
4-->5[r];
5-->6[v];
```
::::
:::
## Remarques
* Le parcours dépend du point de départ dans le graphe.
* L'arbre sera différent en fonction du noeud de départ, et de l'ordre de parcours des voisins d'un noeud.
# Le parcours en largeur
## L'algorithme, idée générale (3min, matrix)?
. . .
```C
v = un sommet du graphe
i = 1
pour sommet dans graphe et sommet non-visité
visiter(v, sommet, i) // marquer sommet à distance i visité
i += 1
```
## Remarque
* `i` est la distance de plus cours chemin entre `v` et les sommets en cours de visite.
# Le parcours en largeur
## L'algorithme, pseudo-code (3min, matrix)?
* Comment garder la trace de la distance?
. . .
* Utilisation d'une **file**
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
file = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(file)
v = défiler(file)
file = visiter(v, file)
```
## Que fait visiter?
```
file visiter(sommet, file)
sommet = visité
pour w = chaque arête de sommet
si w != visité
file = enfiler(file, w)
retourne file
```
# Exercice (5min)
## Appliquer l'algorithme sur le graphe
![](figs/parcours_larg_0.pdf){width=50%}
* En partant de `v`, `s`, ou `u` (par colonne de classe).
* Bien mettre à chaque étape l'état de la file.
# Complexité du parcours en largeur
## Étape 1
* Extraire un sommet de la file;
## Étape 2
* Traîter tous les sommets adjacents.
## Quelle est la complexité?
. . .
* Étape 1: $\mathcal{O}(|V|)$,
* Étape 2: $\mathcal{O}(2|E|)$,
* Total: $\mathcal{O}(|V| + |2|E|)$.
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en largeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Illustration: parcours en profondeur
![Le parcours en profondeur. À quel parcours d'arbre cela ressemble-t-il?](figs/parcours_prof.pdf){width=80%}
# Parcours en profondeur
## Idée générale
* Initialiser les sommets comme non-lus
* Visiter un sommet
* Pour chaque sommet visité, on visite un sommet adjacent s'il est pas encore visité récursivement.
## Remarque
* La récursivité est équivalent à l'utilisation d'une **pile**.
# Parcours en profondeur
## Pseudo-code (5min)
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
pile = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(pile)
v = dépiler(pile)
pile = visiter(v, pile)
```
## Que fait visiter?
. . .
```C
pile visiter(sommet, pile)
sommet = visité
pour w = chaque arête de sommet
si w != visité
pile = empiler(pile, w)
retourne pile
```
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en profondeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Interprétation des parcours
* Un graphe vu comme espace d'états (sommet: état, arête: action);
* Labyrinthe;
* Arbre des coups d'un jeu.
. . .
* BFS (Breadth-First) ou DFS (Depth-First) parcourent l'espace des états à la recherche du meilleur mouvement.
* Les deux parcourent *tout* l'espace;
* Mais si l'arbre est grand, l'espace est gigantesque!
. . .
* Quand on a un temps limité
* BFS explore beaucoup de coups dans un futur proche;
* DFS explore peu de coups dans un futur lointain.
---
title: "Théorie des graphes"
date: "2024-05-21"
---
# Les graphes
\Huge
Les graphes
# Les graphes! Historique
**Un mini-peu d'histoire...**
## L. Euler et les 7 ponts de Koenigsberg:
* Existe-t-il une promenade sympa, passant **une seule fois** par les 7 ponts et revenant au point de départ?
![Les ponts c'est beau. Source: Wikipédia, <https://bit.ly/37h0yOG>](figs/Konigsberg_bridges.png){width=50%}
. . .
* Réponse: ben non!
# Utilisation quotidienne
## Réseau social
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/Social_Network.svg){width=40%}
* Chaque sommet est un individu.
* Chaque trait une relation d'amitié.
* Miam, Miam, Facebook.
# Utilisation quotidienne
## Moteurs de recherche
![Source, Wikipedia: <https://bit.ly/3kG6cgo>](figs/PageRanks-Example.svg){width=40%}
* Sommet est un site.
* Liens sortants;
* Liens entrants;
* Notion d'importance d'un site: combien de liens entrants, pondérés par l'importance du site.
* Miam, Miam, Google (PageRank).
# Introduction
## Définition, plus ou moins
* Un graphe est un ensemble de sommets, reliés par des lignes ou des flèches.
![Deux exemples de graphes.](figs/ex_graphes.png)
* Des sommets (numérotés 1 à 6);
* Connectés ou pas par des traits ou des flèches!
# Généralités
## Définitions
* Un **graphe** $G(V, E)$ est constitué
* $V$: un ensemble de sommets;
* $E$: un ensemble d'arêtes.
* Une **arête** relie une **paire** de sommets de $V$.
## Remarques
* Il y a **au plus** une arête $E$ par paire de sommets de $V$.
* La **complexité** d'un algorithme dans un graphe se mesure en terme de $|E|$ et $|V|$, le nombre d'éléments de $E$ et $V$ respectivement.
# Généralités
## Notations
* Une arête d'un graphe **non-orienté** est représentée par une paire **non-ordonnée** $(u,v)=(v,u)$, avec $u,v\in V$.
* Les arêtes ne sont pas orientées dans un graphe non-orienté (elles sont bi-directionnelles, peuvent être parcourues dans n'importe quel ordre).
## Exemple
::: columns
:::: column
![Un graphe non-orienté.](figs/ex_graphe_non_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1)\},\\
|E|&=4.
\end{align*}
::::
:::
# Généralités
## Notations
* Une arête d'un graphe **orienté** est représentée par une paire **ordonnée** $(u,v)\neq(v,u)$, avec $u,v\in V$.
* Les arêtes sont orientées dans un graphe orienté (étonnant non?).
## Exemple
::: columns
:::: column
![Un graphe orienté.](figs/ex_graphe_oriente.svg)
::::
:::: column
## Que valent $V$, $|V|$, $E$, et $|E|$?
. . .
\begin{align*}
V&=\{1, 2, 3, 4\},\\
|V|&=4,\\
E&=\{(1,2),(2,3),(2,4),(4,1),(4,2)\},\\
|E|&=5.
\end{align*}
::::
:::
# Généralités
## Définition
* Le somme $v$ est **adjacent** au sommet $u$, si et seulement si $(u,v)\in E$;
* Si un graphe non-orienté contient une arête $(u,v)$, $v$ est adjacent à $u$ et $u$ et adjacent à $v$.
## Exemple
::: columns
:::: column
![Sommet $a$ adjacent à $c$, $c$ adjacent à $a$.](figs/ex_adj_non_or.svg){width=80%}
::::
:::: column
![Sommet $a$ adjacent à $c$.](figs/ex_adj_or.svg){width=80%}
::::
:::
# Généralités
## Définition
* Un **graphe pondéré** ou **valué** est un graphe dont chaque arête a un
poids associé, habituellement donné par une fonction de pondération $w:E\rightarrow\mathbb{R}$.
## Exemples
![Graphe pondéré orienté (gauche) et non-orienté (droite).](figs/ex_graph_pond.pdf){width=80%}
# Généralités
## Définition
* Dans un graphe $G(V,E)$, une **chaîne** reliant un sommet $u$ à un sommet $v$ est une suite d'arêtes entre les sommets, $w_0$, $w_1$, ..., $w_k$, telles que
$$
(w_i, w_{i+1})\in E,\quad u=w_0,\quad v=w_k,\quad \mbox{pour }0\leq i< k,
$$
avec $k$ la longueur de la chaîne (le nombre d'arêtes du chemin).
## Exemples
![Illustration d'une chaîne, ou pas chaîne dans un graphe.](figs/ex_graphe_chaine.pdf){width=80%}
# Généralités
## Définition
* Une **chaîne élémentaire** est une chaîne dont tous les sommets sont distincts, sauf les extrémités qui peuvent être égales
## Exemples
![Illustration d'une chaîne élémentaire.](figs/ex_graphe_chaine_elem.pdf){width=80%}
# Généralités
## Définition
* Une **boucle** est une arête $(v,v)$ d'un sommet vers lui-même.
## Exemples
![Illustration d'une boucle.](figs/ex_graphe_boucle.pdf){width=40%}
# Généralités
## Définition
* Un graphe non-orienté est dit **connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe connexe. Source, Wikipédia: <https://bit.ly/3yiUzUv>](figs/graphe_connexe.svg){width=80%}
::::
:::: column
![Graphe non-connexe avec composantes connexes. Source, Wikipédia: <https://bit.ly/3KJB76d>](figs/composantes_connexes.svg){width=60%}
::::
:::
# Généralités
## Définition
* Un graphe orienté est dit **fortement connexe**, s'il existe un chemin reliant n'importe quelle paire de sommets distincts.
## Exemples
\
::: columns
:::: column
![Graphe fortement connexe.](figs/ex_graph_fort_connexe.pdf){width=60%}
::::
:::: column
![Composantes fortement connexes. Source, Wikipédia: <https://bit.ly/3w5PL2l>](figs/composantes_fortement_connexes.svg){width=100%}
::::
:::
# Généralités
## Définition
* Un **cycle** dans un graphe *non-orienté* est une chaîne de longueur $\geq 3$ telle que le 1er sommet de la chaîne est le même que le dernier, et dont les arêtes sont distinctes.
* Pour un graphe *orienté* on parle de **circuit**.
* Un graphe sans cycles est dit **acyclique**.
## Exemples
![Illustration de cycles, ou pas.](figs/ex_graphe_cycle.pdf){width=100%}
# Question de la mort
* Qu'est-ce qu'un graphe connexe acyclique?
. . .
* Un arbre!
# Représentations
* La complexité des algorithmes sur les graphes s'expriment en fonction du nombre de sommets $V$, et du nombre d'arêtes $E$:
* Si $|E|\sim |V|^2$, on dit que le graphe est **dense**.
* Si $|E|\sim |V|$, on dit que le graphe est **peu dense**.
* Selon qu'on considère des graphes denses ou peu denses, différentes structure de données peuvent être envisagées.
## Question
* Comment peut-on représenter un graphe informatiquement? Des idées (réflexion de quelques minutes)?
. . .
* Matrice/liste d'adjacence.
# Matrice d'adjacence
* Soit le graphe $G(V,E)$, avec $V=\{1, 2, 3, ..., n\}$;
* On peut représenter un graphe par une **matrice d'adjacence**, $A$, de dimension $n\times n$ définie par
$$
A_{ij}=\left\{ \begin{array}{ll}
1 & \mbox{si } i,j\in E,\\
0 & \mbox{sinon}.
\end{array} \right.
$$
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
## Remarques
* Zéro sur la diagonale.
* La matrice d'un graphe non-orienté est symétrique
$$
A_{ij}=A_{ji}, \forall i,j\in[1,n]
$$.
::: columns
:::: column
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Matrice d'adjacence
* Pour un graphe orienté (digraphe)
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
2-->1;
1-->4;
2-->5;
5-->2;
4-->5;
5-->3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 0 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 0
---||---|---|---|---|---
4 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 0 | 0
```
::::
:::
* La matrice d'adjacence n'est plus forcément symétrique
$$
A_{ij}\neq A_{ji}.
$$
# Stockage
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe orienté?
. . .
* $\mathcal{O}(|V|^2)$.
* Quel est l'espace nécessaire pour stocker une matrice d'adjacence pour un graphe non-orienté?
. . .
* $\mathcal{O}(|V|-1)|V|/2$.
# Considérations d'efficacité
* Dans quel type de graphes la matrice d'adjacence est utile?
. . .
* Dans les graphes denses.
* Pourquoi?
. . .
* Dans les graphes peu denses, la matrice d'adjacence est essentiellement composée de `0`.
## Remarque
* Dans la majorité des cas, les grands graphes sont peu denses.
* Comment représenter un graphe autrement?
# La liste d'adjacence (non-orienté)
* Pour chaque sommet $v\in V$, stocker les sommets adjacents à $v$-
* Quelle structure de données pour la liste d'adjacence?
. . .
* Tableau de liste chaînée, vecteur (tableau dynamique), etc.
::: columns
:::: column
## Exemple
![Un graphe non-orienté.](figs/ex_graph_adj.pdf){width=80%}
::::
:::: column
## Quelle liste d'adjacence?
. . .
![La liste d'adjacence.](figs/ex_graph_list_adj.pdf)
::::
:::
# La liste d'adjacence (orienté)
::: columns
:::: column
## Quelle liste d'adjacence pour...
* Matrix (2min)
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0-->1;
0-->2;
1-->2;
3-->0;
3-->1;
3-->2;
```
::::
:::: column
```
```
::::
:::
# Complexité
## Stockage
* Quelle espace est nécessaire pour stocker une liste d'adjacence (en fonction de $|E|$ et $|V|$)?
. . .
$$
\mathcal{O}(|E|)
$$
* Pour les graphes *non-orientés*: $\mathcal{O}(2|E|)$.
* Pour les graphes *orientés*: $\mathcal{O}(|E|)$.
## Définition
* Le **degré** d'un sommet $v$, est le nombre d'arêtes incidentes du sommet (pour les graphes orientés on a un degré entrant ou sortant).
* Comment on retrouve le degré de chaque sommet avec la liste d'adjacence?
. . .
* C'est la longueur de la liste chaînée.
# Parcours
* Beaucoup d'applications nécessitent de parcourir des graphes:
* Trouver un chemin d'un sommet à un autre;
* Trouver si le graphe est connexe;
* Il existe *deux* parcours principaux:
* en largeur (Breadth-First Search);
* en profondeur (Depth-First Search).
* Ces parcours créent *un arbre* au fil de l'exploration (si le graphe est non-connexe cela crée une *forêt*, un ensemble d'arbres).
# Illustration: parcours en largeur
![Le parcours en largeur.](figs/parcours_larg.pdf){width=80%}
# Exemple
## Étape par étape (blanc non-visité)
![Initialisation.](figs/parcours_larg_0.pdf){width=50%}
## Étape par étape (gris visité)
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
# Exemple
## Étape par étape
![On commence en `x`.](figs/parcours_larg_1.pdf){width=50%}
## Étape par étape (vert à visiter)
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
# Exemple
## Étape par étape
![Vister `w`, `t`, `y`.](figs/parcours_larg_2.pdf){width=50%}
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
# Exemple
## Étape par étape
![`w`, `t`, `y` visités. `u`, `s` à visiter.](figs/parcours_larg_3.pdf){width=50%}
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
# Exemple
## Étape par étape
![`u`, `s`, visités. `r` à visiter.](figs/parcours_larg_4.pdf){width=50%}
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
# Exemple
## Étape par étape
![`r` visité. `v` à visiter.](figs/parcours_larg_5.pdf){width=50%}
## Étape par étape
![The end. Plus rien à visiter!](figs/parcours_larg_6.pdf){width=50%}
# En faisant ce parcours...
::: columns
:::: column
## Du parcours de l'arbre
![](figs/parcours_larg_6.pdf){width=100%}
::::
:::: column
## Quel arbre est créé par le parcours (2min)?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
0[x]-->1[w];
0-->2[t];
0-->3[y];
2-->9[u];
1-->4[s];
4-->5[r];
5-->6[v];
```
::::
:::
## Remarques
* Le parcours dépend du point de départ dans le graphe.
* L'arbre sera différent en fonction du noeud de départ, et de l'ordre de parcours des voisins d'un noeud.
# Le parcours en largeur
## L'algorithme, idée générale (3min, matrix)?
. . .
```C
v = un sommet du graphe
i = 1
pour sommet dans graphe et sommet non-visité
visiter(v, sommet, i) // marquer sommet à distance i visité
i += 1
```
## Remarque
* `i` est la distance de plus courts chemin entre `v` et les sommets en cours de visite.
# Le parcours en largeur
## L'algorithme, pseudo-code (3min, matrix)?
* Comment garder la trace de la distance?
. . .
* Utilisation d'une **file**
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
file = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(file)
v = défiler(file)
file = visiter(v, file)
```
## Que fait visiter?
```
file visiter(sommet, file)
sommet = visité
pour w = chaque arête de sommet
si w != visité
file = enfiler(file, w)
retourne file
```
# Exercice (5min)
## Appliquer l'algorithme sur le graphe
![](figs/parcours_larg_0.pdf){width=50%}
* En partant de `v`, `s`, ou `u` (par colonne de classe).
* Bien mettre à chaque étape l'état de la file.
# Complexité du parcours en largeur
## Étape 1
* Extraire un sommet de la file;
## Étape 2
* Traîter tous les sommets adjacents.
## Quelle est la complexité?
. . .
* Étape 1: $\mathcal{O}(|V|)$,
* Étape 2: $\mathcal{O}(2|E|)$,
* Total: $\mathcal{O}(|V| + |2|E|)$.
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en largeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Illustration: parcours en profondeur
![Le parcours en profondeur. À quel parcours d'arbre cela ressemble-t-il?](figs/parcours_prof.pdf){width=80%}
# Parcours en profondeur
## Idée générale
* Initialiser les sommets comme non-lus
* Visiter un sommet
* Pour chaque sommet visité, on visite un sommet adjacent s'il est pas encore visité récursivement.
## Remarque
* La récursivité est équivalent à l'utilisation d'une **pile**.
# Parcours en profondeur
## Pseudo-code (5min)
. . .
```C
initialiser(graphe) // tous sommets sont non-visités
pile = visiter(sommet, vide) // sommet est un sommet du graphe au hasard
tant que !est_vide(pile)
v = dépiler(pile)
pile = visiter(v, pile)
```
## Que fait visiter?
. . .
```C
pile visiter(sommet, pile)
sommet = visité
pour w = chaque arête de sommet
si w != visité
pile = empiler(pile, w)
retourne pile
```
# Exercice
* Établir la liste d'adjacence et appliquer l'algorithme de parcours en profondeur au graphe
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---3;
1---4;
2---3;
2---6;
3---6;
3---4;
3---5;
4---5;
```
# Interprétation des parcours
* Un graphe vu comme espace d'états (sommet: état, arête: action);
* Labyrinthe;
* Arbre des coups d'un jeu.
. . .
* BFS (Breadth-First) ou DFS (Depth-First) parcourent l'espace des états à la recherche du meilleur mouvement.
* Les deux parcourent *tout* l'espace;
* Mais si l'arbre est grand, l'espace est gigantesque!
. . .
* Quand on a un temps limité
* BFS explore beaucoup de coups dans un futur proche;
* DFS explore peu de coups dans un futur lointain.
# Contexte: les réseaux (informatique, transport, etc.)
* Graphe orienté;
* Source: sommet `s`;
* Destination: sommet `t`;
* Les arêtes ont des poids (coût d'utilisation, distance, etc.);
* Le coût d'un chemin est la somme des poids des arêtes d'un chemin.
## Problème à résoudre
* Quel est le plus court chemin entre `s` et `t`.
# Exemples d'application de plus court chemin
## Devenir riches!
* On part d'un tableau de taux de change entre devises.
* Quelle est la meilleure façon de convertir l'or en dollar?
![Taux de change.](figs/taux_change.pdf){width=80%}
. . .
* 1kg d'or => 327.25 dollars
* 1kg d'or => 208.1 livres => 327 dollars
* 1kg d'or => 455.2 francs => 304.39 euros => 327.28 dollars
# Exemples d'application de plus court chemin
## Formulation sous forme d'un graphe: Comment (3min)?
![Taux de change.](figs/taux_change.pdf){width=80%}
# Exemples d'application de plus court chemin
## Formulation sous forme d'un graphe: Comment (3min)?
![Graphes des taux de change.](figs/taux_change_graphe.pdf){width=60%}
* Un sommet par devise;
* Une arête orientée par transaction possible avec le poids égal au taux de change;
* Trouver le chemin qui maximise le produit des poids.
. . .
## Problème
* On aimerait plutôt avoir une somme...
# Exemples d'application de plus court chemin
## Conversion du problème en plus court chemin
* Soit `taux(u, v)` le taux de change entre la devise `u` et `v`.
* On pose `w(u,w)=-log(taux(u,v))`
* Trouver le chemin poids minimal pour les poids `w`.
![Graphe des taux de change avec logs.](figs/taux_change_graphe_log.pdf){width=60%}
* Cette conversion se base sur l'idée que
$$
\log(u\cdot v)=\log(u)+\log(v).
$$
# Applications de plus courts chemins
## Quelles applications voyez-vous?
. . .
* Déplacement d'un robot;
* Planificaiton de trajet / trafic urbain;
* Routage de télécommunications;
* Réseau électrique optimal;
* ...
---
title: "Théorie des graphes: plus court chemin"
date: "2024-05-28"
---
# Rappel
## Comment représente-t-on un graphe?
. . .
* Matrice ou liste d'ajdacence
# Rappel: Matrice d'adjacence
::: columns
:::: column
## Exemple
```{.mermaid format=pdf width=400 loc=figs/}
graph LR;
1---2;
1---4;
2---5;
4---5;
5---3;
```
::::
:::: column
\footnotesize
## Quelle matrice d'adjacence?
. . .
```
|| 1 | 2 | 3 | 4 | 5
===||===|===|===|===|===
1 || 0 | 1 | 0 | 1 | 0
---||---|---|---|---|---
2 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
3 || 0 | 0 | 0 | 0 | 1
---||---|---|---|---|---
4 || 1 | 0 | 0 | 0 | 1
---||---|---|---|---|---
5 || 0 | 1 | 1 | 1 | 0
```
::::
:::
# Rappel: La liste d'adjacence
::: columns
:::: column
## Exemple
![Un graphe non-orienté.](figs/ex_graph_adj.pdf){width=80%}
::::
:::: column
## Quelle liste d'adjacence?
. . .
![La liste d'adjacence.](figs/ex_graph_list_adj.pdf)
::::
:::
# Algorithmes de plus courts chemins
\Huge
Algorithmes de plus courts chemins
# Contexte: les réseaux (informatique, transport, etc.)
* Graphe orienté;
* Source: sommet `s`;
* Destination: sommet `t`;
* Les arêtes ont des poids (coût d'utilisation, distance, etc.);
* Le coût d'un chemin est la somme des poids des arêtes d'un chemin.
## Problème à résoudre
* Quel est le plus court chemin entre `s` et `t`.
# Plus courts chemins à source unique
* Soit un graphe, $G=(V, E)$, une fonction de pondération $w:E\rightarrow\mathbb{R}$, et un sommet $s\in V$
* Trouver pour tout sommet $v\in V$, le chemin de poids minimal reliant $s$ à $v$.
* Algorithmes standards:
* Dijkstra (arêtes de poids positif seulement);
* Bellman-Ford (arêtes de poids positifs ou négatifs, mais sans cycles).
* Comment résoudre le problèmes si tous les poids sont les mêmes?
. . .
* Un parcours en largeur!
# Algorithme de Dijkstra
## Comment chercher pour un plus court chemin?
. . .
```
si distance(u,v) > distance(u,w) + distance(w,v)
on passe par w plutôt qu'aller directement
```
# Algorithme de Dijkstra (1 à 5)
* $D$ est le tableau des distances au sommet $1$: $D[7]$ est la distance de 1 à 7.
* Le chemin est pas forcément direct.
* $S$ est le tableau des sommets visités.
::: columns
:::: column
![Initialisation.](figs/dijkstra_0.png)
::::
:::: column
. . .
![1 visité, `D[2]=1`, `D[4]=3`.](figs/dijkstra_1.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 2.](figs/dijkstra_1.png)
::::
:::: column
. . .
![2 visité, `D[3]=2`, `D[7]=3`.](figs/dijkstra_2.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 3.](figs/dijkstra_2.png)
::::
:::: column
. . .
![3 visité, `D[7]=3` inchangé, `D[6]=6`.](figs/dijkstra_3.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 4 ou 7.](figs/dijkstra_3.png)
::::
:::: column
. . .
![4 visité, `D[7]=3` inchangé, `D[5]=9`.](figs/dijkstra_4.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est `7`.](figs/dijkstra_4.png)
::::
:::: column
. . .
![7 visité, `D[5]=7`, `D[6]=6` inchangé.](figs/dijkstra_5.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 6.](figs/dijkstra_5.png)
::::
:::: column
. . .
![`6` visité, `D[5]=7` inchangé.](figs/dijkstra_6.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 5 et c'est la cible.](figs/dijkstra_6.png)
::::
:::: column
. . .
![The end, tous les sommets ont été visités.](figs/dijkstra_7.png)
::::
:::
# Algorithme de Dijkstra
## Idée générale
* On assigne à chaque noeud une distance $0$ pour $s$, $\infty$ pour les autres.
* Tous les noeuds sont marqués non-visités.
* Depuis du noeud courant, on suit chaque arête du noeud vers un sommet non visité et on calcule le poids du chemin à chaque voisin et on met à jour sa distance si elle est plus petite que la distance du noeud.
* Quand tous les voisins du noeud courant ont été visités, le noeud est mis à visité (il ne sera plus jamais visité).
* Continuer avec le noeud à la distance la plus faible.
* L'algorithme est terminé losrque le noeud de destination est marqué comme visité, ou qu'on a plus de noeuds qu'on peut visiter et que leur distance est infinie.
# Algorithme de Dijkstra
## Pseudo-code (5min, matrix)
\footnotesize
. . .
```C
tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t // on a atteint la cible
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
// on met à jour la distance du voisin en passant par u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
retourne distance
```
# Algorithme de Dijkstra
* Cet algorithme, nous donne le plus court chemin mais...
* ne nous donne pas le chemin!
## Comment modifier l'algorithme pour avoir le chemin?
. . .
* Pour chaque nouveau noeud à visiter, il suffit d'enregistrer d'où on est venu!
* On a besoin d'un tableau `precedent`.
## Modifier le pseudo-code ci-dessus pour ce faire (3min matrix)
# Algorithme de Dijkstra
\footnotesize
```C
tab, tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
precedent[v] = indéfini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
retourne distance, precedent
```
# Algorithme de Dijkstra
## Comment reconstruire un chemin ?
. . .
```C
pile parcours(precedent, s, t)
sommets = vide
u = t
// on a atteint t ou on ne connait pas de chemin
si u != s && precedent[u] != indéfini
tant que vrai
sommets = empiler(sommets, u)
u = precedent[u]
si u == s // la source est atteinte
retourne sommets
retourne sommets
```
# Algorithme de Dijkstra amélioré
## On peut améliorer l'algorithme
* Avec une file de priorité!
## Une file de priorité est
* Une file dont chaque élément possède une priorité,
* Elle existe en deux saveurs: `min` ou `max`:
* File `min`: les éléments les plus petits sont retirés en premier.
* File `max`: les éléments les plus grands sont retirés en premier.
* On regarde l'implémentation de la `max`.
## Comment on fait ça?
. . .
* On insère les éléments à haute priorité tout devant dans la file!
# Les files de priorité
## Trois fonction principales
```C
booléen est_vide(element) // triviale
element enfiler(element, data, priorite)
data defiler(element)
rien changer_priorite(element, data, priorite)
nombre priorite(element) // utilitaire
```
## Pseudo-implémentation: structure (1min)
. . .
```C
struct element
data
priorite
element suivant
```
# Les files de priorité
## Pseudo-implémentation: enfiler (2min)
. . .
```C
element enfiler(element, data, priorite)
n_element = creer_element(data, priorite)
si est_vide(element)
retourne n_element
si priorite(n_element) > priorite(element)
n_element.suivant = element
retourne n_element
sinon
tmp = element
prec = element
tant que !est_vide(tmp) && priorite < priorite(tmp)
prec = tmp
tmp = tmp.suivant
prev.suivant = n_element
n_element.suivant = tmp
retourne element
```
# Les files de priorité
## Pseudo-implémentation: defiler (2min)
. . .
```C
data, element defiler(element)
si est_vide(element)
retourne AARGL!
sinon
tmp = element.data
n_element = element.suivant
liberer(element)
retourne tmp, n_element
```
# Algorithme de Dijkstra avec file de priorité min
```C
distance, precedent dijkstra(graphe, s, t):
distance[source] = 0
fp = file_p_vide()
pour v dans sommets(graphe)
si v != s
distance[v] = infini
precedent[v] = indéfini
fp = enfiler(fp, v, distance[v])
tant que !est_vide(fp)
u, fp = defiler(fp)
pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
fp = changer_priorite(fp, v, n_distance)
retourne distance, precedent
```
# Algorithme de Dijkstra avec file
\footnotesize
```C
distance dijkstra(graphe, s, t)
---------------------------------------------------------
pour v dans sommets(graphe)
O(V) si v != s
distance[v] = infini
O(V) fp = enfiler(fp, v, distance[v]) // notre impl est nulle
------------------O(V * V)-------------------------------
tant que !est_vide(fp)
O(1) u, fp = defiler(fp)
---------------------------------------------------------
O(E) pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
O(V) fp = changer_priorite(fp, v, n_distance)
---------------------------------------------------------
retourne distance
```
* Total: $\mathcal{O}(|V|^2+|E|\cdot |V|)$:
* Graphe dense: $\mathcal{O}(|V|^3)$
* Graphe peu dense: $\mathcal{O}(|V|^2)$
# Algorithme de Dijkstra avec file
## On peut faire mieux
* Avec une meilleure implémentation de la file de priorité:
* Tas binaire: $\mathcal{O}(|V|\log|V|+|E|\log|V|)$.
* Tas de Fibonnacci: $\mathcal{O}(|V|+|E|\log|V|)$
* Graphe dense: $\mathcal{O}(|V|^2\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|\log|V|)$.
# Algorithme de Dijkstra (exercice, 5min)
![L'exercice.](figs/dijkstra_exo.png){width=60%}
* Donner la liste de priorité, puis...
## A chaque étape donner:
* Le tableau des distances à `a`;
* Le tableau des prédécesseurs;
* L'état de la file de priorité.
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 1.](figs/dijkstra_ex_0.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 2.](figs/dijkstra_ex_1.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 3.](figs/dijkstra_ex_2.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 4.](figs/dijkstra_ex_3.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 5.](figs/dijkstra_ex_4.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 6.](figs/dijkstra_ex_5.png)
# Limitation de l'algorithme de Dijkstra
## Que se passe-t-il pour?
![Exemple.](figs/exemple_neg.png){width=50%}
## Quel est le problème?
. . .
* L'algorithme n'essaiera jamais le chemin `s->x->y->v` et prendra direct `s->v`.
* Ce problème n'apparaît que s'il y a des poids négatifs.
# Plus cours chemin pour toute paire de sommets
## Comment faire pour avoir toutes les paires?
. . .
* Appliquer Dijkstra sur tous les sommets d'origine.
* Complexité:
* Graphe dense: $\mathcal{O}(|V|)\mathcal{O}(|V|^2\log|V|)=\mathcal{O}(|V|^3\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|)\mathcal{O}(|V|\log|V|)=\mathcal{O}(|V|^2\log|V|)$.
. . .
## Solution alternative: Floyd--Warshall
* Pour toutes paires de sommets $u,v\in V$, trouver le chemin de poids minimal reliant $u$ à $v$.
* Complexité $\mathcal{O}(|V|^3)$, indiqué pour graphes denses.
* Fonctionne avec la matrice d'adjacence.
# Algorithme de Floyd--Warshall
## Idée générale
* Soit l'ensemble de sommets $V=\{1, 2, 3, 4, ..., n\}$.
* Pour toute paire de sommets, $i,j$, on considère tous les chemins passant par les sommets intermédiaires $\in\{1, 2, ..., k\}$ avec $k\leq n$.
* On garde pour chaque $k$ la plus petite valeur.
## Principe
* A chaque étape, $k$, on vérifie s'il est plus court d'aller de $i$ à $j$ en passant par le sommet $k$.
* Si à l'étape $k-1$, le coût du parcours est $p$, on vérifie si $p$ est plus petit que $p_1+p_2$, le chemin de $i$ à $k$, et $k$ à $j$ respectivement.
# Algorithme de Floyd--Warshall
## The algorithme
Soit $d_{ij}(k)$ le plus court chemin de $i$ à $j$ passant par les sommets $\in\{1,2,...,k\}$
$$
d_{ij}(k)=\left\{
\begin{array}{ll}
w(i,j), & \mbox{si } k=0,\\
\min(d_{ij}(k-1),d_{ik}(k-1)+d_{kj}(k-1)), & \mbox{sinon}.
\end{array}
\right.
$$
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $D^{(0)}$ (3min)?
. . .
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$?
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(0)}$
$$
D^{(0)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 8 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \infty & \infty & 0 & 5 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(1)}$ (3min)?
. . .
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & \mathbf{6} & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & \mathbf{3} & \mathbf{5} & 0 & \mathbf{4} \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
## Exemple
$$
D_{42}^{(1)}=D_{41}^{(0)}+D_{12}^{(0)}=1+2<\infty.
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(1)}$
$$
D^{(1)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
6 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(2)}$ (3min)?
. . .
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
\mathbf{4} & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(2)}$
$$
D^{(2)}=\begin{bmatrix}
0 & 2 & 4 & \infty & 3 \\
2 & 0 & 6 & \infty & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(3)}$ (3min)?
. . .
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{8} & 3 \\
2 & 0 & 6 & \mathbf{10} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(3)}$
$$
D^{(3)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\infty & \infty & \infty & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(4)}$ (3min)?
. . .
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
\mathbf{2} & \mathbf{4} & \mathbf{6} & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exemple)
::: columns
:::: column
## On part de $D^{(4)}$
$$
D^{(4)}=\begin{bmatrix}
0 & 2 & 4 & 8 & 3 \\
2 & 0 & 6 & 10 & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::: column
## Que vaut $D^{(5)}$ (3min)?
. . .
$$
D^{(5)}=\begin{bmatrix}
0 & 2 & 4 & \mathbf{4} & 3 \\
2 & 0 & 6 & \mathbf{2} & 1 \\
4 & 2 & 0 & 4 & 3 \\
1 & 3 & 5 & 0 & 4 \\
2 & 4 & 6 & 1 & 0 \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall
## The pseudo-code (10min)
* Quelle structure de données?
* Quelle initialisation?
* Quel est le code pour le calcul de la matrice $D$?
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quelle structure de données?
```C
int distance[n][n];
```
. . .
* Quelle initialisation?
```C
matrice ini_floyd_warshall(distance, n, w)
pour i de 1 à n
pour j de 1 à n
distance[i][j] = w(i,j)
retourne distance
```
# Algorithme de Floyd--Warshall
## The pseudo-code
* Quel est le code pour le calcul de la matrice $D$?
```C
matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
distance[i][j] = min(distance[i][j],
distance[i][k] + distance[k][j])
retourne distance
```
# Algorithme de Floyd--Warshall
## La matrice de précédence
* On a pas encore vu comment reconstruire le plus court chemin!
* On définit, $P_{ij}^{(k)}$, qui est le prédécesseur du sommet $j$ depuis $i$ avec les sommets intermédiaires $\in\{1, 2, ..., k\}$.
$$
P^{(0)}_{ij}=\left\{
\begin{array}{ll}
\mbox{vide}, & \mbox{si } i=j\mbox{, ou }w(i,j)=\infty\\
i, & \mbox{sinon}.
\end{array}
\right.
$$
* Mise à jour
$$
P^{(k)}_{ij}=\left\{
\begin{array}{ll}
P^{(k-1)}_{\mathbf{i}j}, & \mbox{si } d_{ij}^{(k)}\leq d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\\
P^{(k-1)}_{\mathbf{k}j}, & \mbox{sinon}.
\end{array}
\right.
$$
. . .
* Moralité: si le chemin est plus court en passant par $k$, alors il faut utiliser son prédécesseur!
# Algorithme de Floyd--Warshall
## La matrice de précédence (pseudo-code, 3min)
. . .
```C
matrice, matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
n_distance = distance[i][k] + distance[k][j]
if n_distance < distance[i][j]
distance[i][j] = n_distance
précédence[i][j] = précédence[k][j]
retourne distance, précédence
```
# Algorithme de Floyd--Warshall (exercice)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $P^{(0)}$ (3min)?
. . .
$$
P^{(0)}=\begin{bmatrix}
- & 1 & 1 & - & 1 \\
2 & - & 2 & - & 2 \\
3 & 3 & - & 3 & 3 \\
4 & - & - & - & 4 \\
- & - & - & 5 & - \\
\end{bmatrix}
$$
::::
:::
# Algorithme de Floyd--Warshall (exercice)
::: columns
:::: column
![Le graphe, $D=w$.](figs/floyd_exemple.png)
::::
:::: column
## Que vaut $P^{(5)}$ (10min)?
. . .
$$
P^{(5)}=\begin{bmatrix}
- & 1 & 1 & 5 & 1 \\
2 & - & 1 & 5 & 2 \\
2 & 3 & - & 3 & 3 \\
4 & 1 & 1 & - & 1 \\
4 & 1 & 1 & 5 & - \\
\end{bmatrix}
$$
::::
:::
# Exercice: retrouver le chemin entre 1 et 4 (5min)
$$
P=\begin{bmatrix}
- & 1 & 1 & 5 & 1 \\
2 & - & 1 & 5 & 2 \\
2 & 3 & - & 3 & 3 \\
4 & 1 & 1 & - & 4 \\
4 & 1 & 1 & 5 & - \\
\end{bmatrix}
$$
. . .
## Solution
* Le sommet $5=P_{14}$, on a donc, $5\rightarrow 4$, on veut connaître le prédécesseur de 5.
* Le sommet $1=P_{15}$, on a donc, $1\rightarrow 5\rightarrow 4$. The end.
# Exercice complet
## Appliquer l'algorithme de Floyd--Warshall au graphe suivant
![The exorcist.](figs/floyd_exercice.png){width=50%}
* Bien indiquer l'état de $D$ et $P$ à chaque étape!
* Ne pas oublier de faire la matrice d'adjacence évidemment...
---
title: "Flots dans les graphes"
date: "2024-06-04"
---
# Rappel (1/2)
\footnotesize
## Algorithme de Dijkstra: à quoi sert-il?
. . .
A trouver le plus court chemin entre deux sommets d'un graphe!
## Algorithme de Dijkstra: algorithme?
. . .
```C
distance[source] = 0
distance[reste] = inf
pour sommet dans liste_sommets:
fp = enfiler(fp, sommet, w(source, sommet)) // file min
tant !est_vide(fp):
sommet_courant, fp = défiler(fp)
pour sommet_voisin dans voisinage(sommet_courant):
n_dist = distance[sommet_courant] + w(sommet_courant, sommet_voisin)
si distance[sommet_voisin] > n_dist:
distance[sommet_voisin] = n_dist
precedence[sommet_voisin] = sommet_courant
fp = mettre_a_jour(fp, sommet_voisin, n_dist)
```
# Rappel (2/2)
## Algorithme de Floyd: à quoi sert-il?
. . .
A trouver le plus court chemin entre toutes les paires de sommets d'un graphe!
## Algorithme de Floyd: algorithme?
. . .
```C
matrice, matrice floyd_warshall(distance, n, w)
pour k de 1 à n
pour i de 1 à n
pour j de 1 à n
n_distance = distance[i][k] + distance[k][j]
si n_distance < distance[i][j]
distance[i][j] = n_distance
précédence[i][j] = précédence[k][j]
retourne distance, précédence
```
# La suite
\Huge Sans transition.... la suite!
# Trouver un réseau électrique pour
![Ces maisons n'ont pas d'électricité.](figs/arbre_couvrant_vide.png)
# Solution: pas optimale
![Le réseau simple, mais nul.](figs/arbre_couvrant_mal.png)
* La longueur totale des câbles est super longue!
# Solution: optimale
![Le meilleur réseau.](figs/arbre_couvrant_bien.png)
# Formalisation: Les arbres couvrants
## Application: minimisation des coûts
* Équipement d'un lotissement avec des lignes électriques/téléphoniques, des canalisations, ...
. . .
* Pour réduire les coûts, on cherche à minimiser la longueur totale des câbles/tuyaux.
. . .
* Les lignes/tuyaux forment un *arbre couvrant*.
. . .
* La meilleure option est un *arbre couvrant minimal*.
# Formalisation: Les arbres couvrants
* Qu'est-ce qu'un arbre couvrant? Des idées? De quel objet on part? Où va-t-on?
. . .
* Un arbre couvrant d'un graphe non-orienté et connexe est:
* un arbre inclus dans le graphe qui connecte tous les sommets du graphe.
. . .
![Exemple d'arbres couvrants d'un graphe connexe.](figs/arbre_couvrant_exemples.png)
# Arbres couvrants
* Quels algorithmes que nous avons déjà vus permettent de construire des arbres couvrants?
. . .
* Les parcours en largeur et en profondeur!
. . .
![Graphe, et parcours comme arbres couvrants.](figs/arbres_couvrants_parcours.png)
# Arbres couvrants minimaux
* Un *arbre couvrant minimal* est un sous-graphe d'un graphe non-orienté pondéré $G(V,E)$, tel quel:
* C'est un arbre (graphe acyclique);
* Il couvre tous les sommets de $G$ et contient $|V|-1$ arêtes;
* Le coût total associé aux arêtes de l'arbre est minimum parmi tous les arbres couvrants possibles.
. . .
* Est-il unique?
. . .
* Pas forcément.
# Arbres couvrants minimaux
* Comment générer un arbre couvrant minimal?
![Un graphe, connexe, non-orienté, pondéré, et son arbre couvrant minimal.](figs/arbre_couvrant_minimal_exemple.png)
# Algorithme de Prim
::: columns
:::: column
## Un exemple
![Le graphe de départ.](figs/prim_0.png)
::::
:::: column
## On part de `e` (au hasard)
![Le sommet `e` est couvert.](figs/prim_1.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_1.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `e->d`
![Le sommet `d` est couvert.](figs/prim_2.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_2.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `d->a`
![Le sommet `a` est couvert.](figs/prim_3.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_3.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `d->c`
![Le sommet `c` est couvert.](figs/prim_4.png)
::::
:::
# Algorithme de Prim
::: columns
:::: column
## On choisit comment?
![Quelle arête choisir?](figs/prim_4.png)
. . .
* L'arête la plus courte sortant d'un sommet déjà visité, et entrant dans un sommet non-visité.
::::
:::: column
. . .
## L'arête `e->b`
![Le sommet `b` est couvert.](figs/prim_5.png)
* Game over!
::::
:::
# Exemple d'algorithme de Prim
::: columns
:::: {.column width="40%"}
## Un exemple
![Étape 1.](figs/prim_1.png)
::::
:::: column
```
FP | e | d | b | c | a |
----------------------------------
D | 0 | inf | inf | inf | inf |
| e | d | b | c | a |
----------------------------------
P | - | - | - | - | - |
```
## Devient?
. . .
```
FP | d | b | c | a |
----------------------------
D | 4 | 5 | 5 | inf |
| e | d | b | c | a |
----------------------------------
P | - | e | e | e | - |
```
::::
:::
# Exemple d'algorithme de Prim
::: columns
:::: {.column width="40%"}
## Un exemple
![Étape 2.](figs/prim_2.png)
::::
:::: column
```
FP | d | b | c | a |
----------------------------
D | 4 | 5 | 5 | inf |
| e | d | b | c | a |
----------------------------------
P | - | e | e | e | - |
```
## Devient?
. . .
```
FP | a | c | b |
----------------------
D | 2 | 4 | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
::::
:::
# Exemple d'algorithme de Prim
::: columns
:::: {.column width="40%"}
## Un exemple
![Étape 3.](figs/prim_3.png)
::::
:::: column
```
FP | a | c | b |
----------------------
D | 2 | 4 | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
## Devient?
. . .
```
FP | c | b |
----------------
D | 4 | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
::::
:::
# Exemple d'algorithme de Prim
::: columns
:::: {.column width="40%"}
## Un exemple
![Étape 4.](figs/prim_4.png)
::::
:::: column
```
FP | c | b |
----------------
D | 4 | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
## Devient?
. . .
```
FP | b |
----------
D | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
::::
:::
# Exemple d'algorithme de Prim
::: columns
:::: {.column width="40%"}
## Un exemple
![Étape 5.](figs/prim_4.png)
::::
:::: column
```
FP | b |
----------
D | 5 |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
## Devient?
. . .
```
FP |
----
D |
| e | d | b | c | a |
----------------------------------
P | - | e | e | d | d |
```
::::
:::
# Algorithme de Prim
## Structures de données
* Dans quoi allons nous stocker les sommets?
. . .
* File de priorité min.
* Autre chose?
. . .
* Tableau des distances (comme pour Dijkstra).
* Autre chose?
. . .
* Tableau des parents (presque comme pour Dijkstra).
* Autre chose?
. . .
* Non.
# Algorithme de Prim
## Initialisation: Pseudo-code (2min)
. . .
```C
file_priorité, distance, parent initialisation(graphe)
s_initial = aléatoire(graphe)
distance[s_initial] = 0
parent[s_initial] = indéfini
fp = file_p_vide()
pour s_courant dans sommets(graphe)
si s_courant != s_initial
distance[s_courant] = infini
parent[s_courant] = indéfini
fp = enfiler(fp, s_courant, distance[s_courant])
retourne fp, distance, parent
```
# Algorithme de Prim
\footnotesize
## Algorithme: Pseudo-code (5min)
. . .
```C
sommets, parent prim(file_priorité, distance, parent)
sommets = vide
tant que !est_vide(fp)
s_courant, fp = défiler(fp)
sommets = insérer(sommets, s_courant)
pour s_voinsin dans voisinage(s_courant) et pas dans sommets
// ou dans fp
si poids(s_courant, s_voinsin) < distance[s_voinsin]
parent[s_voinsin] = s_courant
distance[s_voinsin] = poids(s_courant, s_voinsin)
fp = changer_priorité(fp,
s_voinsin, poids(s_courant, s_voinsin))
retourne sommets, parent
```
# Exercice: algorithme de Prim
## Appliquer l'algorithme de Prim à (15min):
![En démarrant du sommet $V_1$.](figs/prim_exercice.png)
# Exercice: algorithme de Prim
## Solution
![](figs/prim_solution.png)
# Complexité de l'algorithme de Prim
\footnotesize
```C
file_priorité, distance, parent initialisation(graphe)
// choix r et initialisation
pour v dans sommets(graphe)
O(|V|) // initialisation distance et parent
fp = enfiler(fp, v, distance[v])
retourne fp, distance, parent
sommets, parent prim(file_priorité, distance, parent)
sommets = vide
tant que !est_vide(file_priorité)
O(|V|) u, fp = défiler(file_priorité)
sommets = insérer(sommets, u)
pour v dans voisinage de u et pas dans sommets
O(|E|) si w(u, v) < distance[v]
// màj dista + parent
O(|V|) fp = changer_priorité(fp, w, w(u, v))
retourne sommets, parent
```
* $O(|V|)+O(|E|)+O(|V|^2)=O(|E|+|V|^2)$
* Remarque: $O(|E|)$ n'est pas mutliplié par $O(|V|)$, car les arêtes parcourues qu'une fois en **tout**.
# Algorithme de Kruskal
* On ajoute les arêtes de poids minimal:
* si cela ne crée pas de cycle;
* on s'arrête quand on a couvert tout le graphe.
. . .
* Comment on fait ça?
. . .
* Faisons un exemple pour voir.
# Algorithme de Kruskal: exemple
::: columns
:::: column
## Un exemple
![Le graphe de départ.](figs/kruskal_0.png)
::::
:::: column
## On part de `(a, d)` (poids le plus faible)
![Les sommets `a, d` sont couverts.](figs/kruskal_1.png)
::::
:::
# Algorithme de Kruskal: exemple
::: columns
:::: column
## On continue avec `(c, d)`
![On aurait pu choisir `(d, e)` aussi.](figs/kruskal_1.png)
::::
:::: column
## Résultat
![Les sommets `a, d, c` sont couverts.](figs/kruskal_2.png)
::::
:::
# Algorithme de Kruskal: exemple
::: columns
:::: column
## On continue avec `(d, e)`
![Le poids de `(d, e)` est le plus bas.](figs/kruskal_2.png)
::::
:::: column
## Résultat
![Les sommets `a, d, c, e` sont couverts.](figs/kruskal_3.png)
::::
:::
# Algorithme de Kruskal: exemple
::: columns
:::: column
## On continue avec `(b, e)`
![Le poids de `(b, e)` est le plus bas.](figs/kruskal_3.png)
::::
:::: column
## Résultat
![Les sommets `a, d, c, e, b` sont couverts.](figs/kruskal_4.png)
::::
:::
# Algorithme de Kruskal: exemple
::: columns
:::: column
## Mais pourquoi pas `(c, e)`?
![Le poids de `(b, e)` ou `(a,c)` est le même.](figs/kruskal_3.png)
::::
:::: column
## Résultat: un cycle
![Les sommets `a, d, c, e` sont couverts.](figs/kruskal_cycle.png)
::::
:::
* Comment faire pour empêcher l'ajout de `(c, e)` ou `(a, c)`?
. . .
* Si les deux sommets sont déjà couverts nous sommes sauvés (presque)!
# Algorithme de Kruskal
## L'initialisation
* Créer un ensemble de sommets pour chaque de sommet du graphe ($V_1$, $V_2$, ...):
* $V_1=\{v_1\}$, $V_2=\{v_2\}$, ...
* S'il y a $n$ sommets, il y a $n$ $V_i$.
* Initialiser l'ensemble $A$ des arêtes "sûres" constituant l'arbre couvrant minimal, $A=\emptyset$.
* Initialiser l'ensemble des sommets couverts $F=\emptyset$
* Trier les arêtes par poids croissant dans l'ensemble $E$.
## Mise à jour
* Tant qu'il reste plus d'un $V_i$:
* Pour $(u,v)\in E$ à poids minimal:
* Retirer $(u,v)$ de $E$,
* Si $u\in V_i$ et $v\in V_j$ avec $V_i\cap V_j=\emptyset$:
* Ajouter $(u,v)$ à $A$;
* Fusionner $u$ et $v$ dans $F$.
# Algorithme de Kruskal: exemple
::: columns
:::: column
![Couvrir cet arbre bon sang!](figs/kruskal_enonce.png)
::::
:::: column
::::
:::
# Algorithme de Kruskal: solution
![La solution!](figs/kruskal_solution.png)
# Algorithme de Kruskal: exercice
::: columns
:::: column
![Couvrir cet arbre bon sang!](figs/kruskal_exercice.png)
::::
:::: column
::::
:::
# Algorithme de Kruskal: solution
![La solution!](figs/kruskal_solution_exercice.png)
---
title: "Introduction aux algorithmes"
date: "2023-10-03"
---
# Rappel (1/2)
## Quels algos avons-nous vu la semaine passée?
. . .
* L'algorithme de la factorielle.
* L'algorithme du PPCM.
# Rappel (2/2)
## Algorithme du PPCM?
. . .
```C
int main() {
int m = 15, n = 12;
int mult_m = m, mult_n = n;
while (mult_m != mult_n) {
if (mult_m > mult_n) {
mult_n += n;
} else {
mult_m += m;
}
}
printf("Le ppcm de %d et %d est %d\n", n, m, mult_m);
}
```
# Le calcul du PGCD (1/5)
## Définition
Le plus grand commun diviseur (PGCD) de deux nombres entiers non nuls est le
plus grand entier qui les divise en même temps.
## Exemples:
```C
PGCD(3, 4) = 1,
PGCD(4, 6) = 2,
PGCD(5, 15) = 5.
```
. . .
## Mathématiquement
Décomposition en nombres premiers:
$$
36 = 2^2\cdot 3^2,\quad 90=2\cdot 5\cdot 3^2,
$$
On garde tous les premiers à la puissance la plus basse
$$
PGCD(36, 90)=2^{\min{1,2}}\cdot 3^{\min{2,2}}\cdot 5^{\min{0,1}}=18.
$$
# Le calcul du PGCD (2/5)
## Algorithme
Par groupe de 3 (5-10min):
* réfléchissez à un algorithme alternatif donnant le PGCD de deux nombres;
* écrivez l'algorithme en pseudo-code.
. . .
## Exemple d'algorithme
```C
PGCD(36, 90):
90 % 36 != 0 // otherwise 36 would be PGCD
90 % 35 != 0 // otherwise 35 would be PGCD
90 % 34 != 0 // otherwise 34 would be PGCD
...
90 % 19 != 0 // otherwise 19 would be PGCD
90 % 18 == 0 // The end!
```
* 18 modulos, 18 assignations, et 18 comparaisons.
# Le calcul du PGCD (3/5)
## Transcrivez cet exemple en algorithme (groupe de 3) et codez-le (5-10min)!
. . .
## Optimisation
* Combien d'additions / comparaisons au pire?
* Un moyen de le rendre plus efficace?
. . .
## Tentative de correction
```C
void main() {
int n = 90, m = 78;
int gcd = 1;
for (int div = n; div >= 2; div--) { // div = m, sqrt(n)
if (n % div == 0 && m % div == 0) {
gcd = div;
break;
}
}
printf("Le pgcd de %d et %d est %d\n", n, m, gcd);
}
```
# Le calcul du PGCD (4/5)
## Réusinage: l'algorithme d'Euclide
`Dividende = Diviseur * Quotient + Reste`
```C
PGCD(35, 60):
35 = 60 * 0 + 35 // 60 -> 35, 35 -> 60
60 = 35 * 1 + 25 // 35 -> 60, 25 -> 35
35 = 25 * 1 + 10 // 25 -> 35, 20 -> 25
25 = 10 * 2 + 5 // 10 -> 25, 5 -> 10
10 = 5 * 2 + 0 // PGCD = 5!
```
. . .
## Algorithme
Par groupe de 3 (5-10min):
* analysez l'exemple ci-dessus;
* transcrivez le en pseudo-code.
# Le calcul du PGCD (5/5)
## Pseudo-code
```C
entier pgcd(m, n)
tmp_n = n
tmp_m = m
tant que (tmp_m ne divise pas tmp_n)
tmp = tmp_n
tmp_n = tmp_m
tmp_m = tmp modulo tmp_m
retourne tmp_m
```
# Le code du PGCD de 2 nombres
## Implémentez le pseudo-code et postez le code sur matrix (5min).
. . .
## Un corrigé possible
```C
#include <stdio.h>
void main() {
int n = 90;
int m = 78;
printf("n = %d et m = %d\n", n, m);
int tmp_n = n;
int tmp_m = m;
while (tmp_n%tmp_m > 0) {
int tmp = tmp_n;
tmp_n = tmp_m;
tmp_m = tmp % tmp_m;
}
printf("Le pgcd de %d et %d est %d\n", n, m, tmp_m);
}
```
# Quelques algorithmes simples
* Remplissage d'un tableau et recherche de la valeur minimal
* Anagrammes
* Palindromes
* Crible d’Ératosthène
. . .
* Ces algorithme nécessitent d'utiliser des **tableaux**.
# Collections: tableaux statiques
\footnotesize
* Objets de même type: leur nombre est **connu à la compilation**;
* Stockés de façon contiguë en mémoire (très efficace);
```C
#define SIZE 10
int entiers[] = {2, 1, 4, 5, 7}; // taille 5, initialisé
int tab[3]; // taille 3, non initialisé
float many_floats[SIZE]; // taille 10, non initialisé
```
* Les indices sont numérotés de `0` à `taille-1`;
```C
int premier = entier[0]; // premier = 2
int dernier = entier[4]; // dernier = 7
```
* Les tableaux sont **non-initialisés** par défaut;
* Les bornes ne sont **jamais** vérifiées.
```C
int indetermine_1 = tab[1]; // undefined behavior
int indetermine_2 = entiers[5]; // UB
```
# Remarques
* Depuis `C99` la taille peut être *inconnue à la compilation* (VLA);
```C
int size;
scanf("%d", &size);
char string[size];
```
. . .
* Considéré comme une mauvaise pratique: que se passe-t-il si `size == 1e9`?
* On préfère utiliser l'allocation **dynamique** de mémoire pour ce genre de
cas-là (spoiler du futur du cours).
# Initialisation
* Les variables ne sont **jamais** initialisées en `C` par défaut.
* Question: Que contient le tableau suivant?
```C
double tab[4];
```
. . .
* Réponse: On en sait absolument rien!
* Comment initialiser un tableau?
. . .
```C
#define SIZE 10
double tab[SIZE];
for (int i = 0; i < SIZE; ++i) {
tab[i] = rand() / (double)RAND_MAX * 10.0 - 5.0;
// tab[i] contient un double dans [-5;5]
}
```
# Recherche du minimum dans un tableau (1/2)
## Problématique
Trouver la valeur minimale contenue dans un tableau et l'indice de l'élément le plus petit.
## Écrire un pseudo-code résolvant ce problème (groupe de 3), 2min
. . .
```C
index = 0
min = tab[0]
pour i de 1 à SIZE - 1
si min > tab[i]
min = tab[i]
index = i
```
# Recherche du minimum dans un tableau (2/2)
## Implémenter ce bout de code en C (groupe de 3), 4min
. . .
```C
int index = 0;
float min = tab[0];
for (int i = 1; i < SIZE; ++i) {
if (min > tab[i]) {
min = tab[i];
index = i;
}
}
```
# Tri par sélection (1/2)
## Problématique
Trier un tableau par ordre croissant.
## Idée d'algorithme
```C
ind = 0
tant que (ind < SIZE-1)
Trouver le minimum du tableau, tab_min = min([ind:SIZE]).
Échanger tab_min avec tab[ind]
ind += 1
```
---
title: "Introduction aux algorithmes"
date: "2023-10-10"
---
# Rappel
## Quel est l'algorithme du tri par sélection?
. . .
1. Soit un tableau d'entiers, `tab[0:SIZE-1]` et `i = 0`.
2. Trouver l'indice, `j`, de `tab[i:SIZE-1]` où la valeur est minimale.
3. Échanger `tab[i]` et `tab[j]`.
4. `i += 1` et revenir à 2, tant que `i < SIZE-1`.
# Tri par sélection
## Implémentation par groupe de 3
* Initialiser aléatoirement un tableau de `double` de taille 10;
* Afficher le tableau;
* Trier par sélection le tableau;
* Afficher le résultat trié;
* Vérifier algorithmiquement que le résultat est bien trié.
# Un type de tableau particulier
## Les chaînes de caractères
```C
string = tableau + char + magie noire
```
# Le type `char`{.C}
- Le type `char`{.C} est utilisé pour représenter un caractère.
- C'est un entier 8 bits signé.
- En particulier:
- Écrire
```C
char c = 'A';
```
- Est équivalent à:
```C
char c = 65;
```
- Les fonctions d'affichage interprètent le nombre comme sa valeur ASCII.
# Chaînes de caractères (strings)
- Chaîne de caractère `==` tableau de caractères **terminé par la valeur** `'\0'`{.C} ou `0`{.C}.
## Exemple
```C
char *str = "HELLO !";
char str[] = "HELLO !";
```
Est représenté par
| `char` | `H` | `E` | `L` | `L` | `O` | | `!` | `\0`|
|---------|------|------|------|------|------|------|------|-----|
| `ASCII` | `72` | `69` | `76` | `76` | `79` | `32` | `33` | `0` |
. . .
## A quoi sert le `\0`?
. . .
Permet de connaître la fin de la chaîne de caractères (pas le cas des autres
sortes de tableaux).
# Syntaxe
```C
char name[5];
name[0] = 'P'; // = 70;
name[1] = 'a'; // = 97;
name[2] = 'u'; // = 117;
name[3] = 'l'; // = 108;
name[4] = '\0'; // = 0;
char name[] = {'P', 'a', 'u', 'l', '\0'};
char name[5] = "Paul";
char name[] = "Paul";
char name[100] = "Paul is not 100 characters long.";
```
# Fonctions
\footnotesize
- Il existe une grande quantités de fonction pour la manipulation de chaînes de caractères dans `string.h`.
- Fonctions principales:
```C
// longueur de la chaîne (sans le \0)
size_t strlen(char *str);
// copie jusqu'à un \0
char *strcpy(char *dest, const char *src);
// copie len char
char *strncpy(char *dest, const char *src, size_t len);
// compare len chars
int strncmp(char *str1, char *str2, size_t len);
// compare jusqu'à un \0
int strcmp(char *str1, char *str2);
```
- Pour avoir la liste complète: `man 3 string`.
. . .
## Quel problème peut se produire avec `strlen`, `strcpy`, `strcmp`?
. . .
- Si `\0` est absent... on a un comportement indéfini.
# Les anagrammes
## Définition
Deux mots sont des anagrammes l'un de l'autre quand ils contiennent les mêmes
lettres mais dans un ordre différent.
## Exemple
| `t` | `u` | `t` | `u` | `t` | `\0` | ` ` | ` ` |
|------|------|------|------|------|------|------|-----|
| `t` | `u` | `t` | `t` | `u` | `\0` | ` ` | ` ` |
## Problème: Trouvez un algorithme pour déterminer si deux mots sont des anagrammes.
# Les anagrammes
## Il suffit de:
1. Trier les deux mots.
2. Vérifier s'ils contiennent les mêmes lettres.
## Implémentation ensemble
```C
int main() { // pseudo C
tri(mot1);
tri(mot2);
if egalite(mot1, mot2) {
// anagrammes
} else {
// pas anagrammes
}
}
```
# Les palindromes
Mot qui se lit pareil de droite à gauche que de gauche à droite:
. . .
* rotor, kayak, ressasser, ...
## Problème: proposer un algorithme pour détecter un palindrome
. . .
## Solution 1
```C
while (first_index < last_index) {
if (mot[first_index] != mot [last_index]) {
return false;
}
first_index += 1;
last_index -= 1;
}
return true;
```
. . .
## Solution 2
```C
mot_tmp = revert(mot);
return mot == mot_tmp;
```
# Crible d'Ératosthène
Algorithme de génération de nombres premiers.
## Exercice
* À l'aide d'un tableau de booléens,
* Générer les nombres premiers plus petits qu'un nombre $N$
## Pseudo-code
* Par groupe de trois, réfléchir à un algorithme.
## Programme en C
* Implémenter l'algorithme et le poster sur le salon `Element`.
# Crible d'Ératosthène: solution
\footnotesize
```C
#include <stdio.h>
#include <stdbool.h>
#define SIZE 51
int main() {
bool tab[SIZE];
for (int i=0;i<SIZE;i++) {
tab[i] = true;
}
for (int i = 2; i < SIZE; i++) {
if (tab[i]) {
printf("%d ", i);
int j = i;
while (j < SIZE) {
j += i;
tab[j] = false;
}
}
}
printf("\n");
}
```
# Réusinage de code (refactoring)
## Le réusinage est?
. . .
* le processus de restructuration d'un programme:
* en modifiant son design,
* en modifiant sa structure,
* en modifiant ses algorithmes
* mais en **conservant ses fonctionalités**.
. . .
## Avantages?
. . .
* Amélioration de la lisibilité,
* Amélioration de la maintenabilité,
* Réduction de la complexité.
. . .
## "Make it work, make it nice, make it fast", Kent Beck.
. . .
## Exercice:
* Réusiner le code se trouvant sur
[Cyberlearn](https://cyberlearn.hes-so.ch/pluginfile.php/703384/mod_resource/content/1/comprendre.c).
---
title: "Tableaux à deux dimensions et représentation des nombres"
date: "2023-10-17"
---
# Réusinage de code (refactoring)
## Exercice:
* Réusiner le code se trouvant sur
[Cyberlearn](https://cyberlearn.hes-so.ch/pluginfile.php/703384/mod_resource/content/1/comprendre.c).
# Tableau à deux dimensions (1/4)
## Mais qu'est-ce donc?
. . .
* Un tableau où chaque cellule est un tableau.
## Quels cas d'utilisation?
. . .
* Tableau à double entrée;
* Image;
* Écran (pixels);
* Matrice (mathématique);
# Tableau à deux dimensions (2/4)
## Exemple: tableau à 3 lignes et 4 colonnes d'entiers
+-----------+-----+-----+-----+-----+
| `indices` | `0` | `1` | `2` | `3` |
+-----------+-----+-----+-----+-----+
| `0` | `7` | `4` | `7` | `3` |
+-----------+-----+-----+-----+-----+
| `1` | `2` | `2` | `9` | `2` |
+-----------+-----+-----+-----+-----+
| `2` | `4` | `8` | `8` | `9` |
+-----------+-----+-----+-----+-----+
## Syntaxe
```C
int tab[3][4]; // déclaration d'un tableau 3 x 4
tab[2][1]; // accès case: ligne 2, colonne 1
tab[2][1] = 14; // assignation de 14 à la position 2, 1
```
# Tableau à deux dimensions (3/4)
\footnotesize
## Exercice:
Déclarer et initialiser aléatoirement un tableau `50x100` avec des valeurs `0` à `255`
. . .
```C
#define NX 50
#define NY 100
int tab[NX][NY];
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
tab[i][j] = rand() % 256; // 256 niveaux de gris
}
}
```
## Exercice: afficher le tableau
. . .
```C
for (int i = 0; i < NX; ++i) {
for (int j = 0; j < NY; ++j) {
printf("%d ", tab[i][j]);
}
printf("\n");
}
```
# Tableau à deux dimensions (4/4)
## Attention
* Les éléments ne sont **jamais** initialisés.
* Les bornes ne sont **jamais** vérifiées.
```C
int tab[3][2] = { {1, 2}, {3, 4}, {5, 6} };
printf("%d\n", tab[2][1]); // affiche?
printf("%d\n", tab[10][9]); // affiche?
printf("%d\n", tab[3][1]); // affiche?
```
# La couverture de la reine
* Aux échecs la reine peut se déplacer horizontalement et verticalement
* Pour un échiquier `5x6`, elle *couvre* les cases comme ci-dessous
+-----+-----+-----+-----+-----+-----+-----+
| ` ` | `0` | `1` | `2` | `3` | `4` | `5` |
+-----+-----+-----+-----+-----+-----+-----+
| `0` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `1` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `2` | `*` | `*` | `R` | `*` | `*` | `*` |
+-----+-----+-----+-----+-----+-----+-----+
| `3` | ` ` | `*` | `*` | `*` | ` ` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
| `4` | `*` | ` ` | `*` | ` ` | `*` | ` ` |
+-----+-----+-----+-----+-----+-----+-----+
## Exercice
* En utilisant les structures de contrôle, les tableaux à deux dimensions, et des
`char` uniquement.
* Implémenter un programme qui, à partir des
coordonnées de la reine, affiche un tableau comme ci-dessus pour un
échiquier `8x8`.
## Poster le résultat sur `Element`
# Types énumérés (1/2)
* Un **type énuméré**: ensemble de *variantes* (valeurs constantes).
* En `C` les variantes sont des entiers numérotés à partir de 0.
```C
enum days {
monday, tuesday, wednesday,
thursday, friday, saturday, sunday
};
```
* On peut aussi donner des valeurs "custom"
```C
enum days {
monday = 2, tuesday = 8, wednesday = -2,
thursday = 1, friday = 3, saturday = 12, sunday = 9
};
```
* S'utilise comme un type standard et un entier
```C
enum days d = monday;
(d + 2) == monday + monday; // true
```
# Types énumérés (2/2)
* Très utile dans les `switch ... case`{.C}
```C
enum days d = monday;
switch (d) {
case monday:
// trucs
break;
case tuesday:
printf("0 ou 1\n");
break;
}
```
* Le compilateur vous prévient qu'il en manque!
# Utilisation des types énumérés
## Réusiner votre couverture de la reine avec des `enum`
A faire à la maison comme exercice!
# Représentation des nombres (1/2)
* Le nombre `247`.
## Nombres décimaux: Les nombres en base 10
+--------+--------+--------+
| $10^2$ | $10^1$ | $10^0$ |
+--------+--------+--------+
| `2` | `4` | `7` |
+--------+--------+--------+
$$
247 = 2\cdot 10^2 + 4\cdot 10^1 + 7\cdot 10^0.
$$
# Représentation des nombres (2/2)
* Le nombre `11110111`.
## Nombres binaires: Les nombres en base 2
+-------+-------+-------+-------+-------+-------+-------+-------+
| $2^7$ | $2^6$ | $2^5$ | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$ |
+-------+-------+-------+-------+-------+-------+-------+-------+
| `1` | `1` | `1` | `1` | `0` | `1` | `1` | `1` |
+-------+-------+-------+-------+-------+-------+-------+-------+
$$
1\cdot 2^7 + 1\cdot 2^6 +1\cdot 2^5 +1\cdot 2^4 +0\cdot 2^3 +1\cdot 2^2
+1\cdot 2^1 +1\cdot 2^0
$$
. . .
$$
= 247.
$$
# Conversion de décimal à binaire (1/2)
## Convertir 11 en binaire?
. . .
* On décompose en puissances de 2 en partant de la plus grande possible
```
11 / 8 = 1, 11 % 8 = 3
3 / 4 = 0, 3 % 4 = 3
3 / 2 = 1, 3 % 2 = 1
1 / 1 = 1, 1 % 1 = 0
```
* On a donc
$$
1011 \Rightarrow 1\cdot 2^3 + 0\cdot 2^2 + 1\cdot 2^1 + 1\cdot
2^0=11.
$$
# Conversion de décimal à binaire (2/2)
## Convertir un nombre arbitraire en binaire: 247?
* Par groupe établir un algorithme.
. . .
## Algorithme
1. Initialisation
```C
num = 247
N = 0
tant que (2^(N+1) < num) {
N += 1
}
```
. . .
2. Boucle
```C
tant que (N >= 0) {
bit = num / 2^N
num = num % 2^N
N -= 1
}
```
# Les additions en binaire
Que donne l'addition `1101` avec `0110`?
* L'addition est la même que dans le système décimal
```
1101 8+4+0+1 = 13
+ 0110 + 0+4+2+0 = 6
------- -----------------
10011 16+0+0+2+1 = 19
```
* Les entiers sur un ordinateur ont une précision **fixée** (ici 4 bits).
* Que se passe-t-il donc ici?
. . .
## Dépassement de capacité: le nombre est "tronqué"
* `10011 (19) -> 0011 (3)`.
* On fait "le tour"."
# Entier non-signés minimal/maximal
* Quel est l'entier non-signé maximal représentable avec 4 bit?
. . .
$$
(1111)_2 = 8+4+2+1 = 15
$$
* Quel est l'entier non-signé minimal représentable avec 4 bit?
. . .
$$
(0000)_2 = 0+0+0+0 = 0
$$
* Quel est l'entier non-signé min/max représentable avec N bit?
. . .
$$
0\mbox{ et }2^N-1.
$$
* Donc `uint32_t?` maximal est?
. . .
$$
2^{32}-1=4'294'967'295
$$
# Les multiplications en binaire (1/2)
Que donne la multiplication de `1101` avec `0110`?
* La multiplication est la même que dans le système décimal
```
1101 13
* 0110 * 6
--------- --------------
0000 78
11010
110100
+ 0000000
--------- --------------
1001110 64+0+0+8+4+2+0
```
# Les multiplications en binaire (2/2)
## Que fait la multiplication par 2?
. . .
* Décalage de un bit vers la gauche!
```
0110
* 0010
---------
0000
+ 01100
---------
01100
```
. . .
## Que fait la multiplication par $2^N$?
. . .
* Décalage de $N$ bits vers la gauche!
# Entiers signés (1/2)
Pas de nombres négatifs encore...
## Comment faire?
. . .
## Solution naïve:
* On ajoute un bit de signe (le bit de poids fort):
```
00000010: +2
10000010: -2
```
## Problèmes?
. . .
* Il y a deux zéros (pas trop grave): `10000000` et `00000000`
* Les additions différentes que pour les non-signés (très grave)
```
00000010 2
+ 10000100 + -4
---------- ----
10000110 = -6 != -2
```
# Entiers signés (2/2)
## Beaucoup mieux
* Complément à un:
* on inverse tous les bits: `1001 => 0110`.
## Encore un peu mieux
* Complément à deux:
* on inverse tous les bits,
* on ajoute 1 (on ignore les dépassements).
. . .
* Comment écrit-on `-4` en 8 bits?
. . .
```
4 = 00000100
________
-4 => 00000100
11111011
+ 00000001
----------
11111100
```
# Le complément à 2 (1/2)
## Questions:
* Comment on écrit `+0` et `-0`?
* Comment calcule-t-on `2 + (-4)`?
* Quel est le complément à 2 de `1000 0000`?
. . .
## Réponses
* Comment on écrit `+0` et `-0`?
```
+0 = 00000000
-0 = 11111111 + 00000001 = 100000000 => 00000000
```
* Comment calcule-t-on `2 + (-4)`?
```
00000010 2
+ 11111100 + -4
---------- -----
11111110 -2
```
* En effet
```
11111110 => 00000001 + 00000001 = 00000010 = 2.
```
# Le complément à 2 (2/2)
## Quels sont les entiers représentables en 8 bits?
. . .
```
01111111 => 127
10000000 => -128 // par définition
```
## Quels sont les entiers représentables sur $N$ bits?
. . .
$$
-2^{N-1} ... 2^{N-1}-1.
$$
## Remarque: dépassement de capacité en `C`
* Comportement indéfini!
---
title: "Récursivité"
date: "2023-10-31"
---
# Nombres à virgule (1/3)
## Comment manipuler des nombres à virgule?
$$
0.1 + 0.2 = 0.3.
$$
Facile non?
. . .
## Et ça?
```C
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
float a = atof(argv[1]);
float b = atof(argv[2]);
printf("%.10f\n", (double)(a + b));
}
```
. . .
## Que se passe-t-il donc?
# Nombres à virgule (2/3)
## Nombres à virgule fixe
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| $2^3$ | $2^2$ | $2^1$ | $2^0$ | `.` | $2^{-1}$ | $2^{-2}$ | $2^{-3}$ | $2^{-4}$ |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
| `1` | `0` | `1` | `0` | `.` | `0` | `1` | `0` | `1` |
+-------+-------+-------+-------+-----+----------+----------+----------+----------+
## Qu'est-ce ça donne en décimal?
. . .
$$
2^3+2^1+\frac{1}{2^2}+\frac{1}{2^4} = 8+2+0.5+0.0625=10.5625.
$$
## Limites de cette représentation?
. . .
* Tous les nombres `> 16`.
* Tous les nombres `< 0.0625`.
* Tous les nombres dont la décimale est pas un multiple de `0.0625`.
# Nombres à virgule (3/3)
## Nombres à virgule fixe
* Nombres de $0=0000.0000$ à $15.9375=1111.1111$.
* Beaucoup de "trous" (au moins $0.0625$) entre deux nombres.
## Solution partielle?
. . .
* Rajouter des bits.
* Bouger la virgule.
# Nombres à virgule flottante (1/2)
## Notation scientifique
* Les nombres sont représentés en terme:
* Une mantisse
* Une base
* Un exposant
$$
\underbrace{22.1214}_{\mbox{nombre}}=\underbrace{221214}_{\mbox{mantisse}}\cdot
{\underbrace{10}_{\mbox{base}}}{\overbrace{^{-4}}^{\mbox{exp.}}},
$$
. . .
On peut donc séparer la représentation en 2:
* La mantisse
* L'exposant
# Nombres à virgule flottante (2/2)
## Quel est l'avantage?
. . .
On peut représenter des nombres sur énormément d'ordres de grandeur avec un
nombre de bits fixés.
## Différence fondamentale avec la virgule fixe?
. . .
La précision des nombres est **variable**:
* On a uniquement un nombre de chiffres **significatifs**.
$$
123456\cdot 10^{23}+ 123456\cdot 10^{-23}.
$$
## Quel inconvénient y a-t-il?
. . .
Ce mélange d'échelles entraîne un **perte de précision**.
# Nombres à virgule flottante simple précision (1/4)
Aussi appelés *IEEE 754 single-precision binary floating point*.
![Nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)](figs/Float_example_bare.svg)
## Spécification
* 1 bit de signe,
* 8 bits d'exposant,
* 23 bits de mantisse.
$$
(-1)^{b_{31}}\cdot 2^{(b_{30}b_{29}\dots b_{23})_{2}-127}\cdot (1.b_{22}b_{21}\dots b_{0})_{2},
$$
## Calculer la valeur décimale du nombre ci-dessus
# Nombres à virgule flottante simple précision (2/4)
![Un exercice de nombres à virgule flottante 32 bits. Source:
[Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)](figs/Float_example.svg)
. . .
\begin{align}
\mbox{exposant}&=\sum_{i=0}^7 b_{23+i}2^i=2^2+2^3+2^4+2^5+2^6=124-127,\\
\mbox{mantisse}&=1+\sum_{i=1}^{23}b_{23-i}2^{-i}=1+2^{-2}=1.25,\\
&\Rightarrow (-1)^0\cdot 2^{-3}\cdot 1.25=0.15625
\end{align}
# Nombres à virgule flottante simple précision (3/4)
## Quel nombre ne peux pas être vraiment représenté?
. . .
## Zéro: exception pour l'exposant
* Si l'exposant est `00000000` (zéro)
$$
(-1)^{\mbox{sign}}\cdot 2^{-126}\cdot 0.\mbox{mantisse},
$$
* Sinon si l'exposant est `00000001` à `11111110`
$$
\mbox{valeur normale},
$$
* Sinon `11111111` donne `NaN`.
# Nombres à virgule flottante simple précision (4/4)
## Quels sont les plus petits/grands nombres positifs représentables?
. . .
\begin{align}
0\ 0\dots0\ 0\dots01&=2^{-126}\cdot 2^{-23}=1.4...\cdot
10^{-45},\\
0\ 1\dots10\ 1\dots1&=2^{127}\cdot (2-2^{-23})=3.4...\cdot
10^{38}.
\end{align}
## Combien de chiffres significatifs en décimal?
. . .
* 24 bits ($23 + 1$) sont utiles pour la mantisse, soit $2^{24}-1$:
* La mantisse fait $\sim2^{24}\sim 10^7$,
* Ou encore $\sim \log_{10}(2^{24})\sim 7$.
* Environ **sept** chiffres significatifs.
# Nombres à virgule flottante double précision (64bits)
## Spécification
* 1 bit de signe,
* 11 bits d'exposant,
* 52 bits de mantisse.
. . .
## Combien de chiffres significatifs?
* La mantisse fait $\sim 2^{53}\sim10^{16}$,
* Ou encore $\sim \log_{10}(2^{53})\sim 16$,
* Environ **seize** chiffres significatifs.
## Plus petit/plus grand nombre représentable?
. . .
* Plus petite mantisse et exposant: $\sim 2^{-52}\cdot 2^{-1022}\sim 4\cdot 10^{-324}$,
* Plus grande mantisse et exposant: $\sim 2\cdot 2^{1023}\sim \cdot 1.8\cdot 10^{308}$.
# Précision finie (1/3)
## Erreur de représentation
* Les nombres réels ont potentiellement un **nombre infini** de décimales
* $1/3=0.\overline{3}$,
* $\pi=3.1415926535...$.
* Les nombres à virgule flottante peuvent en représenter qu'un **nombre
fini**.
* $1/3\cong 0.33333$, erreur $0.00000\overline{3}$.
* $\pi\cong3.14159$, erreur $0.0000026535...$.
On rencontre donc des **erreurs de représentation** ou **erreurs
d'arrondi**.
. . .
## Et quand on calcule?
* Avec deux chiffres significatifs
\begin{align}
&8.9+(0.02+0.04)=8.96=9.0,\\
&(8.9+0.02)+0.04=8.9+0.04=8.9.
\end{align}
. . .
## Même pas associatif!
# Précision finie (2/3)
## Erreur de représentation virgule flottante
$$
(1.2)_{10} = 1.\overline{0011}\cdot 2^0\Rightarrow 0\ 01111111\
00110011001100110011010.
$$
Erreur d'arrondi dans les deux derniers bits et tout ceux qui viennent
ensuite
$$
\varepsilon_2 = (00000000000000000000011)_2.
$$
Ou en décimal
$$
\varepsilon_{10} = 4.76837158203125\cdot 10^{-8}.
$$
# Précision finie (3/3)
## Comment définir l'égalité de 2 nombres à virgule flottante?
. . .
Ou en d'autres termes, pour quel $\varepsilon>0$ (appelé `epsilon-machine`) on a
$$
1+\varepsilon = 1,
$$
pour un nombre à virgule flottante?
. . .
Pour un `float` (32 bits) la différence est à
$$
2^{-23}=1.19\cdot 10^{-7},
$$
Soit la précision de la mantisse.
## Comment le mesurer (par groupe)?
. . .
```C
float eps = 1.0;
while ((float)1.0 + (float)0.5 * eps != (float)1.0) {
eps = (float)0.5 * eps;
}
printf("eps = %g\n", eps);
```
# Erreurs d'arrondi
Et jusqu'ici on a encore pas fait d'arithmétique!
## Multiplication avec deux chiffres significatifs, décimal
$$
(1.1)_{10}\cdot (1.1)_{10}=(1.21)_{10}=(1.2)_{10}.
$$
En continuant ce petit jeu:
$$
\underbrace{1.1\cdot 1.1\cdots 1.1}_{\mbox{10 fois}}=2.0.
$$
Alors qu'en réalité
$$
1.1^{10}=2.5937...
$$
Soit une erreur de près de 1/5e!
. . .
## Le même phénomène se produit (à plus petite échelle) avec les `float` ou `double`.
# And now for something completely different
\Huge La récursivité
# La factorielle: Code impératif
* Code impératif
```C
int factorial(int n) {
int f = 1;
for (int i = 1; i < n; ++i) {
f *= i;
}
return f;
}
```
# Exemple de récursivité (1/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On empile les appels
+----------------+----------------+----------------+----------------+
| | | | `factorial(1)` |
+----------------+----------------+----------------+----------------+
| | | `factorial(2)` | `factorial(2)` |
+----------------+----------------+----------------+----------------+
| | `factorial(3)` | `factorial(3)` | `factorial(3)` |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `factorial(4)` |
+----------------+----------------+----------------+----------------+
# Exemple de récursivité (2/2)
## La factorielle
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
. . .
## Que se passe-t-il quand on fait `factorial(4)`?
. . .
## On dépile les calculs
+----------------+----------------+----------------+----------------+
| `1` | | | |
+----------------+----------------+----------------+----------------+
| `factorial(2)` | `2 * 1 = 2` | | |
+----------------+----------------+----------------+----------------+
| `factorial(3)` | `factorial(3)` | `3 * 2 = 6` | |
+----------------+----------------+----------------+----------------+
| `factorial(4)` | `factorial(4)` | `factorial(4)` | `4 * 6 = 24` |
+----------------+----------------+----------------+----------------+
# La récursivité (1/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) {
return n * factorial(n - 1);
} else {
return 1;
}
}
```
# La récursivité (2/4)
## Formellement
* Une condition de récursivité - qui *réduit* les cas successifs vers...
* Une condition d'arrêt - qui retourne un résultat
## Pour la factorielle, qui est qui?
```C
int factorial(int n) {
if (n > 1) { // Condition de récursivité
return n * factorial(n - 1);
} else { // Condition d'arrêt
return 1;
}
}
```
# La récursivité (3/4)
## Exercice: trouver l'$\varepsilon$-machine pour un `double`
. . .
Rappelez-vous vous l'avez fait en style **impératif** plus tôt.
. . .
```C
double epsilon_machine(double eps) {
if (1.0 + eps != 1.0) {
return epsilon_machine(eps / 2.0);
} else {
return eps;
}
}
```
# La récursivité (4/4)
\footnotesize
## Exercice: que fait ce code récursif?
```C
void recurse(int n) {
printf("%d ", n % 2);
if (n / 2 != 0) {
recurse(n / 2);
} else {
printf("\n");
}
}
recurse(13);
```
. . .
```C
recurse(13): n = 13, n % 2 = 1, n / 2 = 6,
recurse(6): n = 6, n % 2 = 0, n / 2 = 3,
recurse(3): n = 3, n % 2 = 1, n / 2 = 1,
recurse(1): n = 1, n % 2 = 1, n / 2 = 0.
// affiche: 1 1 0 1
```
. . .
Affiche la représentation binaire d'un nombre!
# Exercice: réusinage et récursivité (1/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15
27 = 15 * 1 + 12
15 = 12 * 1 + 3
12 = 3 * 4 + 0
```
# Exercice: réusinage et récursivité (2/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
# Exercice: réusinage et récursivité (3/4)
## Réusiner le code du PGCD avec une fonction récursive
## Étudier l'exécution
```C
42 = 27 * 1 + 15 | PGCD(42, 27)
27 = 15 * 1 + 12 | PGCD(27, 15)
15 = 12 * 1 + 3 | PGCD(15, 12)
12 = 3 * 4 + 0 | PGCD(12, 3)
```
## Effectuer l'empilage - dépilage
. . .
```C
PGCD(12, 3) | 3
PGCD(15, 12) | 3
PGCD(27, 15) | 3
PGCD(42, 27) | 3
```
# Exercice: réusinage et récursivité (4/4)
## Écrire le code
. . .
```C
int pgcd(int n, int m) {
if (n % m > 0) {
return pgcd(m, n % m);
} else {
return m;
}
}
```
# La suite de Fibonacci (1/2)
## Règle
$$
\mathrm{Fib}(n) = \mathrm{Fib}(n-1) + \mathrm{Fib}(n-2),\quad
\mathrm{Fib}(0)=0,\quad \mathrm{Fib}(1)=1.
$$
## Exercice: écrire la fonction $\mathrm{Fib}$ en récursif et impératif
. . .
## En récursif (6 lignes)
```C
int fib(int n) {
if (n > 1) {
return fib(n - 1) + fib(n - 2);
}
return n;
}
```
# La suite de Fibonacci (2/2)
## Et en impératif (11 lignes)
```C
int fib_imp(int n) {
int fib0 = 1;
int fib1 = 1;
int fib = n == 0 ? 0 : fib1;
for (int i = 2; i < n; ++i) {
fib = fib0 + fib1;
fib0 = fib1;
fib1 = fib;
}
return fib;
}
```
---
title: "Récursion et tris"
date: "2023-11-07"
header-includes: |
\usepackage{xcolor}
---
# Exponentiation rapide ou indienne (1/4)
## But: Calculer $x^n$
* Quel est l'algorithmie le plus simple que vous pouvez imaginer?
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
}
double p = c;
for (int i = 1; i < n; ++i) {
p = p * x; // x *= x
}
return x;
}
```
* Combien de multiplication et d'assignations en fonction de `n`?
. . .
* `n` assignations et `n` multiplications.
# Exponentiation rapide ou indienne (2/4)
* Proposez un algorithme naïf et récursif
. . .
```C
double pow(double x, int n) {
if (n != 0) {
return x * pow(x, n-1);
} else {
return 1;
}
}
```
# Exponentiation rapide ou indienne (3/4)
## Exponentiation rapide ou indienne de $x^n$
* Écrivons $n=\sum_{i=0}^{d-1}b_i 2^i,\ b_i=\{0,1\}$ (écriture binaire sur $d$ bits, avec
$d\sim\log_2(n)$).
*
$$
x^n={x^{2^0}}^{b_0}\cdot {x^{2^1}}^{b_1}\cdots {x^{2^{d-1}}}^{b_{d-1}}.
$$
* On a besoin de $d$ calculs pour les $x^{2^i}$.
* On a besoin de $d$ calculs pour évaluer les produits de tous les termes.
## Combien de calculs en terme de $n$?
. . .
* $n$ est représenté en binaire avec $d$ bits $\Rightarrow d\sim\log_2(n)$.
* il y a $2\log_2(n)\sim \log_2(n)$ calculs.
# Exponentiation rapide ou indienne (4/4)
## Le vrai algorithme
* Si n est pair: calculer $\left(x^{n/2}\cdot x^{n/2}\right)$,
* Si n est impair: calculer $x \cdot \left(x^{(n-1)/2}\right)^2=x\cdot x^{n-1}$.
## Exercice: écrire l'algorithme récursif correspondant
. . .
```C
double pow(double x, int n) {
if (0 == n) {
return 1;
} else if (n % 2 == 0) {
return pow(x, n / 2) * pow(x, n/2);
} else {
return x * pow(x, (n-1));
}
}
```
# Tri par base (radix sort)
* N'utilise pas la notion de comparaisons, mais celle de classement successif dans des catégories (alvéoles).
* Pour simplifier
* Tri de nombre entiers dans un tableau.
* On considère que des nombres $\ge 0$ (sans perte de généralité).
* On considère ensuite la représentation binaire de ces nombres.
# Principe de l'algorithme
1. On considère le bit le moins significatif.
2. On parcourt une 1ère fois le tableau et on place à la suite dans un 2ème tableau les éléments dont le bit est 0;
puis on répète l'opération 2 pour les éléments dont le bit est 1.
3. On répète l'étape 2 en regardant le bit suivant et en permutant le rôle des deux tableaux.
On utilise donc deux tableaux pour réaliser ce tri.
A noter qu'à chaque étape, l'ordre des éléments dont le bit est à 0 (respectivement à 1) reste identique dans le 2ème tableau par rapport au 1er tableau.
# Illustration sur un exemple (1/6)
Soit la liste de nombre entier:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| 5 | -5 | 1 | 6 | 4 | -6 | 2 | -9 | 2 |
Le plus petit élément est -9. On commence donc par décaler les valeurs de 9.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| 14 | 4 | 10 | 15 | 13 | 3 | 11 | 0 | 11 |
# Illustration sur un exemple (2/6)
* Écrivons les éléments en représentation binaire.
* La valeur maximale est 15, on a besoin de 4 bits.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 14 | 4 | 10 | 15 | 13 | 3 | 11 | 0 | 11 |
| 1110 | 0100 | 1010 | 1111 | 1101 | 0011 | 1011 | 0000 | 1011 |
# Illustration sur un exemple (3/6)
* On considère le bit de poids faible
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 111**0** | 010**0** | 101**0** | 111**1** | 110**1** | 001**1** | 101**1** | 000**0** | 101**1** |
. . .
* On obtient le tableau:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 111\textcolor{red}{0} | 010\textcolor{red}{0} | 101\textcolor{red}{0} | 111\textcolor{green}{1} | 110\textcolor{green}{1} | 001\textcolor{green}{1} | 101\textcolor{green}{1} | 000\textcolor{red}{0} | 101\textcolor{green}{1} |
| \textcolor{red}{1110} | \textcolor{red}{0100} | \textcolor{red}{1010} | \textcolor{red}{0000} | \textcolor{green}{1111} | \textcolor{green}{1101} | \textcolor{green}{0011} | \textcolor{green}{1011} | \textcolor{green}{1011} |
# Illustration sur un exemple (4/6)
* On passe au 2ème bit et on obtient le tableau:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 11\textcolor{green}{1}0 | 01\textcolor{red}{0}0 | 10\textcolor{green}{1}0 | 00\textcolor{red}{0}0 | 11\textcolor{green}{1}1 | 11\textcolor{red}{0}1 | 00\textcolor{green}{1}1 | 10\textcolor{green}{1}1 | 10\textcolor{green}{1}1 |
| \textcolor{red}{0100} | \textcolor{red}{0000} | \textcolor{red}{1101} | \textcolor{green}{1110} | \textcolor{green}{1010} | \textcolor{green}{1111} | \textcolor{green}{0011} | \textcolor{green}{1011} | \textcolor{green}{1011} |
. . .
* On passe au 3ème bit et on obtient le tableau:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| 0\textcolor{green}{1}00 | 0\textcolor{red}{0}00 | 1\textcolor{green}{1}01 | 1\textcolor{green}{1}10 | 1\textcolor{red}{0}10 | 1\textcolor{green}{1}11 | 0\textcolor{red}{0}11 | 1\textcolor{red}{0}11 | 1\textcolor{red}{0}11 |
| \textcolor{red}{0000} | \textcolor{red}{1010} | \textcolor{red}{0011} | \textcolor{red}{1011} | \textcolor{red}{1011} | \textcolor{green}{0100} | \textcolor{green}{1101} | \textcolor{green}{1110} | \textcolor{green}{1111} |
# Illustration sur un exemple (5/6)
4. On passe au dernier bit et on obtient le tableau final:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| \textcolor{red}{0}000 | \textcolor{green}{1}010 | \textcolor{red}{0}011 | \textcolor{green}{1}011 | \textcolor{green}{1}011 | \textcolor{red}{0}100 | \textcolor{green}{1}101 | \textcolor{green}{1}110 | \textcolor{green}{1}111 |
| \textcolor{red}{0000} | \textcolor{red}{0011} | \textcolor{red}{0100} | \textcolor{green}{1010} | \textcolor{green}{1011} | \textcolor{green}{1011} | \textcolor{green}{1101} | \textcolor{green}{1110} | \textcolor{green}{1111} |
. . .
* En revenant à la représentation décimale, on a le tableau trié:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| 0 | 3 | 4 | 10 | 11 | 11 | 13 | 14 | 15 |
# Illustration sur un exemple (6/6)
* Pour revenir aux valeurs initiales, il faut décaler de 9 dans l'autre sens.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| -9 | -6 | -5 | 1 | 2 | 2 | 4 | 5 | 6 |
* Et alors?
. . .
* Et alors rien. C'est fini.
# Pseudo-code
```python
rien radix_sort(entier taille, entier tab[taille]):
# initialisation
entier val_min = valeur_min(taille, tab)
entier val_max = valeur_max(taille, tab)
decaler(taille, tab, val_min)
entier nb_bits = nombre_de_bits(val_max - val_min)
# algo
entier tab_tmp[taille]
pour pos de 0 à nb_bits:
alveole_0(taille, tab, tab_tmp, pos) # 0 -> taille
alveole_1(taille, tab, tab_tmp, pos) # taille -> 0
echanger(tab, tab_tmp)
# post-traitement
decaler(taille, tab, -val_min)
```
<!-- ```C
void radix_sort(int size,int tab[size]) {
int val_min = tab[index_min(size,tab)];
int val_max = tab[index_max(size,tab)];
decaler(size, tab,val_min);
int nb_bits = get_nb_bits(val_max-val_min);
int tab_tmp[size];
for (int pos=0;pos<nb_bits;pos++) {
bucket_0(size,tab,tab_tmp,pos);
bucket_1(size,tab,tab_tmp,pos);
swap(tab,tab_tmp);
}
decaler(size,tab,-val_min);
}
``` -->
# Un peu plus de détails (1/2)
## La fonction `decaler()`
```python
rien decaler(entier taille, entier tab[taille], entier val):
pour i de 0 à taille-1:
taille[i] -= val
```
. . .
## La fonction `echanger()`
```python
rien echanger(entier tab[], entier tab2[])
# échanger les tableaux (sans copier les valeurs)
```
# Un peu plus de détails (2/2)
## La fonction `alveole_0()`
```python
rien alveole_0(entier taille, entier tab[taille],
entier tab_tmp[taille], entier pos):
entier k = 0
pour i de 0 à taille-1:
si bit(tab[i], pos) == 0:
tab_tmp[k] = tab[i]
k = k + 1
```
. . .
## La fonction `alveole_1()`
```python
rien alveole_1(entier taille, entier tab[taille],
entier tab_tmp[taille], entier pos):
# pareil que alveole_0 mais dans l'autre sens
```
# Tri par fusion (merge sort)
* Tri par comparaison.
* Idée: deux listes triées, sont fusionnées pour donner une liste triée plus longue.
* Itérativement, on trie d'abord les paires de nombres, puis les groupes de 4 nombres, ensuite de 8, et ainsi de suite jusqu'à obtenir un tableau trié.
<!-- * On simplifie ici: le tableau a une longueur de puissance de 2. -->
<!-- Pour son implémentation, le tri par fusion nécessite d'utiliser une zone temporaire de stockage des données de taille égale à celle de la liste de nombres à trier. On considère le cas du tri d'une liste de nombres entiers stockés dans un tableau. -->
# Principe de l'algorithme
* Soit `taille` la taille du tableau à trier.
* Pour `i = 0` à `entier(log2(taille))-1`:
* Fusion des paires de sous-tableaux successifs de taille `2**i` (ou moins pour l'extrémité)
. . .
* Remarques:
* Pour l'étape `i`, les sous-tableaux de taille `2**i` sont triés.
* La dernière paire de sous-tableaux peut être incomplète (vide ou avec moins que `2**i` éléments).
# Exemple de tri par fusion
* Soit la liste de nombres entiers stockés dans un tableau de taille 9:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| 5 | -5 | 1 | 6 | 4 | -6 | 2 | -9 | 2 |
. . .
* Fusion des éléments successifs (ce qui revient à les mettre dans l'ordre):
| étape | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| 0 | \textcolor{red}{5} | \textcolor{green}{-5} | \textcolor{red}{1} | \textcolor{green}{6} | \textcolor{red}{4} | \textcolor{green}{-6} | \textcolor{red}{2} | \textcolor{green}{-9} | \textcolor{red}{2} |
| 1 | \textcolor{red}{-5} | \textcolor{red}{5} | \textcolor{green}{1} | \textcolor{green}{6} | \textcolor{red}{-6} | \textcolor{red}{4} | \textcolor{green}{-9} | \textcolor{green}{2} | \textcolor{red}{2} |
| 2 | \textcolor{red}{-5} | \textcolor{red}{1} | \textcolor{red}{5} | \textcolor{red}{6} | \textcolor{green}{-9} | \textcolor{green}{-6} | \textcolor{green}{2} | \textcolor{green}{4} | \textcolor{red}{2} |
| 3 | \textcolor{red}{-9} | \textcolor{red}{-6} | \textcolor{red}{-5} | \textcolor{red}{1} | \textcolor{red}{2} | \textcolor{red}{4} | \textcolor{red}{5} | \textcolor{red}{6} | \textcolor{green}{2} |
| 4 | -9 | -6 | -5 | 1 | 2 | 2 | 4 | 5 | 6 |
# Pseudo-code (autrement)
```python
rien tri_fusion(entier taille, entier tab[taille])
entier tab_tmp[taille];
entier nb_etapes = log_2(taille) + 1;
pour etape de 0 a nb_etapes - 1:
entier gauche = 0;
entier t_tranche = 2**etape;
tant que (gauche < taille):
fusion(
tab[gauche..gauche+t_tranche-1],
tab[gauche+t_tranche..gauche+2*t_tranche-1],
tab_tmp[gauche..gauche+2*t_tranche-1]);
#bornes incluses
gauche += 2*t_tranche;
echanger(tab, tab_tmp);
```
# Algorithme de fusion possible
## Une idée?
. . .
* Parcourir les deux tableaux jusqu'à atteindre la fin d'un des deux
* Comparer l'élément courant des 2 tableaux
* Écrire le plus petit élément dans le tableau résultat
* Avancer de 1 dans les tableaux du plus petit élément et résultat
* Copier les éléments du tableau restant dans le tableau résultat
# La fonction de fusion (pseudo-code autrement)
\footnotesize
## Une idée?
. . .
```python
# hyp: tab_g et tab_d sont triés
rien fusion(entier tab_g[], entier tab_d[], entier res[]):
entier g = taille(tab_g)
entier d = taille(tab_d)
entier i_g = 0, i_d = 0
pour i = 0 à g + d:
si i_g < g et i_d < d:
si tab_g[i_g] < tab_d[i_d]:
res[i] = tab_g[i_g]
i_g = i_g + 1
sinon:
res[i] = tab_d[i_d]
i_d = i_d + 1
sinon si i_g < g:
res[i] = tab_g[i_g]
i_g = i_g + 1
sinon si i_d < d:
res[i] = tab_d[i_d]
i_d = i_d + 1
```
<!-- ## Complexité
L'algorithme présenté précédemment nécessite un certain nombre d'opérations lié à la taille $N$ du tableau.
Il y a essentiellement $\log_2(N)$ étapes.
A chaque étape, le tableau est parcouru une fois avec un nombre constant effectué pour chacune des cases du tableau. En effet, l'opération de fusion implique de ne parcourir qu'une seule fois chacun des deux tableaux qu'on fusionne dans un 3ème tableau.
Ainsi, la complexité du tri par fusion est $\mathcal{O}(N\cdot \log_2(N)$. -->
# Tri rapide ou quicksort (1/8)
## Idée: algorithme `diviser pour régner` (`divide-and-conquer`)
* Diviser: découper un problème en sous problèmes;
* Régner: résoudre les sous-problèmes (souvent récursivement);
* Combiner: à partir des sous problèmes résolu, calculer la solution.
## Le pivot
* Trouver le **pivot**, un élément qui divise le tableau en 2, tels que:
1. Éléments à gauche sont **plus petits** que le pivot.
2. Élements à droite sont **plus grands** que le pivot.
# Tri rapide ou quicksort (2/8)
## Algorithme `quicksort(tableau)`
1. Choisir le pivot et l'amener à sa place:
* Les éléments à gauche sont plus petits que le pivot.
* Les éléments à droite sont plus grand que le pivot.
2. `quicksort(tableau_gauche)` en omettant le pivot.
3. `quicksort(tableau_droite)` en omettant le pivot.
4. S'il y a moins de deux éléments dans le tableau, le tableau est trié.
. . .
Compris?
. . .
Non c'est normal, faisons un exemple.
# Tri rapide ou quicksort (3/8)
\footnotesize
Deux variables sont primordiales:
```C
entier ind_min, ind_max; // les indices min/max des tableaux à trier
```
![Un exemple de quicksort.](figs/quicksort.svg)
# Tri rapide ou quicksort (4/8)
\footnotesize
Deux variables sont primordiales:
```C
entier ind_min, ind_max; // les indices min/max des tableaux à trier
```
## Pseudocode: quicksort
```python
rien quicksort(entier tableau[], entier ind_min, entier ind_max)
si (longueur(tab) > 1)
ind_pivot = partition(tableau, ind_min, ind_max)
si (longueur(tableau[ind_min:ind_pivot-1]) != 0)
quicksort(tableau, ind_min, pivot_ind - 1)
si (longueur(tableau[ind_pivot+1:ind_max-1]) != 0)
quicksort(tableau, ind_pivot + 1, ind_max)
```
# Tri rapide ou quicksort (5/8)
\footnotesize
## Pseudocode: partition
```C
entier partition(entier tableau[], entier ind_min, entier ind_max)
pivot = tableau[ind_max] // choix arbitraire
i = ind_min
j = ind_max-1
tant que i < j:
en remontant i trouver le premier élément > pivot
en descendant j trouver le premier élément < pivot
échanger(tableau[i], tableau[j])
// les plus grands à droite
// mettre les plus petits à gauche
// on met le pivot "au milieu"
échanger(tableau[i], tableau[ind_max])
retourne i // on retourne l'indice pivot
```
# Tri rapide ou quicksort (6/8)
## Exercice: implémenter les fonctions `quicksort` et `partition`
. . .
```C
void quicksort(int size, int array[size], int first,
int last)
{
if (first < last) {
int midpoint = partition(size, array, first, last);
if (first < midpoint - 1) {
quicksort(size, array, first, midpoint - 1);
}
if (midpoint + 1 < last) {
quicksort(size, array, midpoint + 1, last);
}
}
}
```
# Tri rapide ou quicksort (7/8)
\footnotesize
## Exercice: implémenter les fonctions `quicksort` et `partition`
```C
int partition(int size, int array[size], int first, int last) {
int pivot = array[last];
int i = first - 1, j = last;
do {
do {
i += 1;
} while (array[i] < pivot && i < j);
do {
j -= 1;
} while (array[j] > pivot && i < j);
if (j > i) {
swap(&array[i], &array[j]);
}
} while (j > i);
swap(&array[i], &array[last]);
return i;
}
```
<!-- # Tri rapide ou quicksort (8/8)
## Quelle est la complexité du tri rapide?
. . .
* Pire des cas plus: $\mathcal{O}(N^2)$
* Quand le pivot sépare toujours le tableau de façon déséquilibrée ($N-1$
éléments d'un côté $1$ de l'autre).
* $N$ boucles et $N$ comparaisons $\Rightarrow N^2$.
* Meilleur des cas (toujours le meilleur pivot): $\mathcal{O}(N\cdot \log_2(N))$.
* Chaque fois le tableau est séparé en $2$ parties égales.
* On a $\log_2(N)$ partitions, et $N$ boucles $\Rightarrow N\cdot
\log_2(N)$.
* En moyenne: $\mathcal{O}(N\cdot \log_2(N))$. -->
# L'algorithme à la main
## Exercice *sur papier*
* Trier par tri rapide le tableau `[5, -2, 1, 3, 10, 15, 7, 4]`
```C
```
---
title: "Tris et complexité"
date: "2023-11-21"
header-includes: |
\usepackage{xcolor}
---
# Efficacité d'un algorithmique
Comment mesurer l'efficacité d'un algorithme?
. . .
* Mesurer le temps CPU,
* Mesurer le temps d'accès à la mémoire,
* Mesurer la place prise mémoire,
. . .
Dépendant du **matériel**, du **compilateur**, des **options de compilation**, etc!
## Mesure du temps CPU
```C
#include <time.h>
struct timespec tstart={0,0}, tend={0,0};
clock_gettime(CLOCK_MONOTONIC, &tstart);
// some computation
clock_gettime(CLOCK_MONOTONIC, &tend);
printf("computation about %.5f seconds\n",
((double)tend.tv_sec + 1e-9*tend.tv_nsec) -
((double)tstart.tv_sec + 1e-9*tstart.tv_nsec));
```
# Programme simple: mesure du temps CPU
## Preuve sur un [petit exemple](../source_codes/complexity/sum.c)
```bash
source_codes/complexity$ make bench
RUN ONCE -O0
the computation took about 0.00836 seconds
RUN ONCE -O3
the computation took about 0.00203 seconds
RUN THOUSAND TIMES -O0
the computation took about 0.00363 seconds
RUN THOUSAND TIMES -O3
the computation took about 0.00046 seconds
```
Et sur votre machine les résultats seront **différents**.
. . .
## Conclusion
* Nécessité d'avoir une mesure indépendante du/de la
matériel/compilateur/façon de mesurer/météo.
# Analyse de complexité algorithmique (1/4)
* On analyse le **temps** pris par un algorithme en fonction de la **taille de
l'entrée**.
## Exemple: recherche d'un élément dans une liste triée de taille N
```C
int sorted_list[N];
bool in_list = is_present(N, sorted_list, elem);
```
* Plus `N` est grand, plus l'algorithme prend de temps sauf si...
. . .
* l'élément est le premier de la liste (ou à une position toujours la même).
* ce genre de cas pathologique ne rentre pas en ligne de compte.
# Analyse de complexité algorithmique (2/4)
## Recherche linéaire
```C
bool is_present(int n, int tab[], int elem) {
for (int i = 0; i < n; ++i) {
if (tab[i] == elem) {
return true;
} else if (elem < tab[i]) {
return false;
}
}
return false;
}
```
* Dans le **meilleurs des cas** il faut `1` comparaison.
* Dans le **pire des cas** (élément absent p.ex.) il faut `n` comparaisons.
. . .
La **complexité algorithmique** est proportionnelle à `N`: on double la taille
du tableau $\Rightarrow$ on double le temps pris par l'algorithme.
# Analyse de complexité algorithmique (3/4)
## Recherche dichotomique
```C
bool is_present_binary_search(int n, int tab[], int elem) {
int left = 0;
int right = n - 1;
while (left <= right) {
int mid = (right + left) / 2;
if (tab[mid] < elem) {
left = mid + 1;
} else if (tab[mid] > elem) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
```
# Analyse de complexité algorithmique (4/4)
## Recherche dichotomique
![Source: [Wikipédia](https://upload.wikimedia.org/wikipedia/commons/a/aa/Binary_search_complexity.svg)](figs/Binary_search_complexity.svg){width=80%}
. . .
* Dans le **meilleurs de cas** il faut `1` comparaison.
* Dans le **pire des cas** il faut $\log_2(N)+1$ comparaisons
. . .
## Linéaire vs dichotomique
* $N$ vs $\log_2(N)$ comparaisons logiques.
* Pour $N=1000000$: `1000000` vs `21` comparaisons.
# Notation pour la complexité
## Constante de proportionnalité
* Pour la recherche linéaire ou dichotomique, on a des algorithmes qui sont $\sim N$ ou $\sim \log_2(N)$
* Qu'est-ce que cela veut dire?
. . .
* Temps de calcul est $t=C\cdot N$ (où $C$ est le temps pris pour une comparaisons sur une machine/compilateur donné)
* La complexité ne dépend pas de $C$.
## Le $\mathcal{O}$ de Leibnitz
* Pour noter la complexité d'un algorithme on utilise le symbole $\mathcal{O}$ (ou "grand Ô de").
* Les complexités les plus couramment rencontrées sont
. . .
$$
\mathcal{O}(1),\quad \mathcal{O}(\log(N)),\quad \mathcal{O}(N),\quad
\mathcal{O}(\log(N)\cdot N), \quad \mathcal{O}(N^2), \quad
\mathcal{O}(N^3).
$$
# Ordres de grandeur
\begin{table}[!h]
\begin{center}
\caption{Valeurs approximatives de quelques fonctions usuelles de complexité.}
\medskip
\begin{tabular}{|c|c|c|c|c|}
\hline
$\log_2(N)$ & $\sqrt{N}$ & $N$ & $N\log_2(N)$ & $N^2$ \\
\hline\hline
$3$ & $3$ & $10$ & $30$ & $10^2$ \\
\hline
$6$ & $10$ & $10^2$ & $6\cdot 10^2$ & $10^4$ \\
\hline
$9$ & $31$ & $10^3$ & $9\cdot 10^3$ & $10^6$ \\
\hline
$13$ & $10^2$ & $10^4$ & $1.3\cdot 10^5$ & $10^8$ \\
\hline
$16$ & $3.1\cdot 10^2$ & $10^5$ & $1.6\cdot 10^6$ & $10^{10}$ \\
\hline
$19$ & $10^3$ & $10^6$ & $1.9\cdot 10^7$ & $10^{12}$ \\
\hline
\end{tabular}
\end{center}
\end{table}
# Quelques exercices (1/3)
## Complexité de l'algorithme de test de primalité naïf?
```C
for (i = 2; i < sqrt(N); ++i) {
if (N % i == 0) {
return false;
}
}
return true;
```
. . .
## Réponse
$$
\mathcal{O}(\sqrt{N}).
$$
# Quelques exercices (2/3)
## Complexité de trouver le minimum d'un tableau?
```C
int min = MAX;
for (i = 0; i < N; ++i) {
if (tab[i] < min) {
min = tab[i];
}
}
return min;
```
. . .
## Réponse
$$
\mathcal{O}(N).
$$
# Quelques exercices (3/3)
## Complexité du tri par sélection?
```C
int ind = 0;
while (ind < SIZE-1) {
min = find_min(tab[ind:SIZE]);
swap(min, tab[ind]);
ind += 1;
}
```
. . .
## Réponse
### `min = find_min`
$$
(N-1)+(N-2)+...+2+1=\sum_{i=1}^{N-1}i=N\cdot(N-1)/2=\mathcal{O}(N^2).
$$
## Finalement
$$
\mathcal{O}(N^2\mbox{ comparaisons}) + \mathcal{O}(N\mbox{swaps})=\mathcal{O}(N^2).
$$
# Tri à bulle (1/4)
## Algorithme
* Parcours du tableau et comparaison des éléments consécutifs:
- Si deux éléments consécutifs ne sont pas dans l'ordre, ils sont échangés.
* On recommence depuis le début du tableau jusqu'à avoir plus d'échanges à
faire.
## Que peut-on dire sur le dernier élément du tableau après un parcours?
. . .
* Le plus grand élément est **à la fin** du tableau.
* Plus besoin de le traiter.
* A chaque parcours on s'arrête un élément plus tôt.
# Tri à bulle (2/4)
## Exemple
![Tri à bulles d'un tableau d'entiers](figs/tri_bulles.svg)
# Tri à bulle (3/4)
## Exercice: écrire l'algorithme (poster le résultat sur matrix)
. . .
```C
rien tri_a_bulles(entier tableau[])
pour i de longueur(tableau)-1 à 1:
trié = vrai
pour j de 0 à i-1:
si (tableau[j] > tableau[j+1])
échanger(array[j], array[j+1])
trié = faux
si trié
retourner
```
# Tri à bulle (4/4)
## Quelle est la complexité du tri à bulles?
. . .
* Dans le meilleurs des cas:
* Le tableau est déjà trié: $\mathcal{O}(N)$ comparaisons.
* Dans le pire des cas, $N\cdot (N-1)/2\sim\mathcal{O}(N^2)$:
$$
\sum_{i=1}^{N-1}i\mbox{ comparaison et }3\sum_{i=1}^{N-1}i \mbox{ affectations
(swap)}\Rightarrow \mathcal{O}(N^2).
$$
* En moyenne, $\mathcal{O}(N^2)$ ($N^2/2$ comparaisons).
# L'algorithme à la main
## Exercice *sur papier*
* Trier par tri à bulles le tableau `[5, -2, 1, 3, 10, 15, 7, 4]`
```C
```
# Tri par insertion (1/3)
## But
* trier un tableau par ordre croissant
## Algorithme
Prendre un élément du tableau et le mettre à sa place parmi les éléments déjà
triés du tableau.
![Tri par insertion d'un tableau d'entiers](figs/tri_insertion.svg)
# Tri par insertion (2/3)
## Exercice: Proposer un algorithme (en C)
. . .
```C
void tri_insertion(int N, int tab[N]) {
for (int i = 1; i < N; i++) {
int tmp = tab[i];
int pos = i;
while (pos > 0 && tab[pos - 1] > tmp) {
tab[pos] = tab[pos - 1];
pos = pos - 1;
}
tab[pos] = tmp;
}
}
```
# Tri par insertion (3/3)
## Question: Quelle est la complexité?
. . .
* Parcours de tous les éléments ($N-1$ passages dans la boucle)
* Placer: en moyenne $i$ comparaisons et affectations à l'étape $i$
* Moyenne: $\mathcal{O}(N^2)$
. . .
* Pire des cas, liste triée à l'envers: $\mathcal{O}(N^2)$
* Meilleurs des cas, liste déjà triée: $\mathcal{O}(N)$
# L'algorithme à la main
## Exercice *sur papier*
* Trier par insertion le tableau `[5, -2, 1, 3, 10]`
```C
```
# Complexité algorithmique du radix-sort (1/2)
## Pseudo-code
```python
rien radix_sort(entier taille, entier tab[taille]):
# initialisation
entier val_min = valeur_min(taille, tab)
entier val_max = valeur_max(taille, tab)
decaler(taille, tab, val_min)
entier nb_bits = nombre_de_bits(val_max - val_min)
# algo
entier tab_tmp[taille]
pour pos de 0 à nb_bits:
alveole_0(taille, tab, tab_tmp, pos) # 0 -> taille
alveole_1(taille, tab, tab_tmp, pos) # taille -> 0
echanger(tab, tab_tmp)
# post-traitement
decaler(taille, tab, -val_min)
```
# Complexité algorithmique du radix-sort (2/2)
\footnotesize
<!-- Voici une liste de parcours utilitaires de tableau:
1. Recherche de la valeur minimum ```val_min```
2. Recherche de la valeur maximum ```val_max```
3. Décalage des valeurs dans l'intervalle ```0..val_max-val_min```
4. Décalage inverse pour revenir dans l'intervalle ```val_min..val_max```
5. Copie éventuelle du tableau temporaire dans le tableau originel
On a donc un nombre de parcours fixe (4 ou 5) qui se font en $\mathcal{O}(N)$ où $N$ est la taille du tableau.
La partie du tri à proprement parler est une boucle sur le nombre de bits *b* de ```val_min..val_max```.
A chaque passage à travers la boucle, on parcourt 2 fois le tableau: la 1ère fois pour s'occuper des éléments dont le bit courant à 0; la 2ème pour ceux dont le bit courant est à 1.
A noter que le nombre d'opérations est de l'ordre de *b* pour la lecture d'un bit et constant pour la fonction ```swap_ptr()```.
Ainsi, la complexité du tri par base est $\mathcal{O}(b\cdot N)$. -->
## Pseudo-code
```python
rien radix_sort(entier taille, entier tab[taille]):
# initialisation
entier val_min = valeur_min(taille, tab) # O(taille)
entier val_max = valeur_max(taille, tab) # O(taille)
decaler(taille, tab, val_min) # O(taille)
entier nb_bits =
nombre_de_bits(val_max - val_min) # O(nb_bits)
# algo
entier tab_tmp[taille]
pour pos de 0 à nb_bits: # O(nb_bits)
alveole_0(taille, tab, tab_tmp, pos) # O(taille)
alveole_1(taille, tab, tab_tmp, pos) # O(taille)
echanger(tab, tab_tmp) # O(1)
# post-traitement
decaler(taille, tab, -val_min) # O(N)
```
. . .
* Au final: $\mathcal{O}(N\cdot (b+4))$.
# Complexité algorithmique du merge-sort (1/2)
## Pseudo-code
```python
rien tri_fusion(entier taille, entier tab[taille])
entier tab_tmp[taille];
entier nb_etapes = log_2(taille) + 1;
pour etape de 0 a nb_etapes - 1:
entier gauche = 0;
entier t_tranche = 2**etape;
tant que (gauche < taille):
fusion(
tab[gauche..gauche+t_tranche-1],
tab[gauche+t_tranche..gauche+2*t_tranche-1],
tab_tmp[gauche..gauche+2*t_tranche-1]);
gauche += 2*t_tranche;
echanger(tab, tab_tmp);
```
# Complexité algorithmique du merge-sort (2/2)
## Pseudo-code
```python
rien tri_fusion(entier taille, entier tab[taille])
entier tab_tmp[taille]
entier nb_etapes = log_2(taille) + 1
pour etape de 0 a nb_etapes - 1: # O(log2(taille))
entier gauche = 0;
entier t_tranche = 2**etape
tant que (gauche < taille): # O(taille)
fusion(
tab[gauche..gauche+t_tranche-1],
tab[gauche+t_tranche..gauche+2*t_tranche-1],
tab_tmp[gauche..gauche+2*t_tranche-1])
gauche += 2*t_tranche
echanger(tab, tab_tmp)
```
. . .
* Au final: $\mathcal{O}(N\log_2(N))$.
# Complexité algorithmique du quick-sort (1/2)
## Pseudocode: quicksort
```python
rien quicksort(entier tableau[], entier ind_min, entier ind_max)
si (longueur(tab) > 1)
ind_pivot = partition(tableau, ind_min, ind_max)
si (longueur(tableau[ind_min:ind_pivot-1]) != 0)
quicksort(tableau, ind_min, pivot_ind - 1)
si (longueur(tableau[ind_pivot+1:ind_max-1]) != 0)
quicksort(tableau, ind_pivot + 1, ind_max)
```
# Complexité algorithmique du quick-sort (2/2)
## Quelle est la complexité du tri rapide?
. . .
* Pire des cas: $\mathcal{O}(N^2)$
* Quand le pivot sépare toujours le tableau de façon déséquilibrée ($N-1$
éléments d'un côté $1$ de l'autre).
* $N$ boucles et $N$ comparaisons $\Rightarrow N^2$.
* Meilleur des cas (toujours le meilleur pivot): $\mathcal{O}(N\cdot \log_2(N))$.
* Chaque fois le tableau est séparé en $2$ parties égales.
* On a $\log_2(N)$ partitions, et $N$ boucles $\Rightarrow N\cdot
\log_2(N)$.
* En moyenne: $\mathcal{O}(N\cdot \log_2(N))$.
---
title: "Backtracking, piles, et assertions"
date: "2023-11-28"
---
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/5)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/5)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
rien nbr_solutions(board, column, count)
pour chaque ligne
si la case libre
si column < n - 1
copier board dans un "new" board,
y poser une reine
et mettre à jour ce "new" board
nbr_solutions(new_board, column+1, count)
sinon
on a posé la n-ème et on a gagné
count += 1
```
# Le code du problème des 8 reines (3/5)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
rien placer_devant(board, ligne, colonne)
board est occupé à ligne/colonne
toutes les cases des colonnes
suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/5)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/5)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void placer_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
# Les piles (1/5)
## Qu'est-ce donc?
* Structure de données abstraite...
. . .
* de type `LIFO` (*Last in first out*).
![Une pile où on ajoute A, puis B avant de les retirer. Source:
[Wikipedia](https://upload.wikimedia.org/wikipedia/commons/e/e1/Stack_(data_structure)_LIFO.svg)](figs/Stack.svg){width=70%}
## Des exemples de la vraie vie
. . .
* Pile d'assiettes, de livres, ...
* Adresses visitées par un navigateur web.
* Les calculatrices du passé (en polonaise inverse).
* Les boutons *undo* de vos éditeurs de texte (aka *u* dans vim).
# Les piles (2/5)
## Fonctionnalités
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retourner.
3. Liste vide? (is_empty?).
. . .
4. Jeter un œil (peek): retourner l'élément du sommet de la pile (sans le dépiler).
5. Nombre d'éléments (length).
## Comment faire les 4, 5 à partir de 1 à 3?
. . .
4. Dépiler l'élément, le copier, puis l'empiler à nouveau.
5. Dépiler jusqu'à ce que la pile soit vide, puis empiler à nouveau.
. . .
## Existe en deux goûts
* Pile avec ou sans limite de capacité (à concurrence de la taille de la
mémoire).
# Les piles (3/5)
## Implémentation
* Jusqu'ici on n'a pas du tout parlé d'implémentation (d'où le nom de structure
abstraite).
* Pas de choix unique d'implémentation.
## Quelle structure de données allons nous utiliser?
. . .
Et oui vous avez deviné: un tableau!
## La structure: de quoi avons-nous besoin (pile de taille fixe)?
. . .
```C
#define MAX_CAPACITY 500
typedef struct _stack {
int data[MAX_CAPACITY]; // les données
int top; // indice du sommet
} stack;
```
# Les piles (4/5)
## Initialisation
. . .
```C
void stack_init(stack *s) {
s->top = -1;
}
```
## Est vide?
. . .
```C
bool stack_is_empty(stack s) {
return s.top == -1;
}
```
## Empiler (ajouter un élément au sommet)
. . .
```C
void stack_push(stack *s, int val) {
s->top += 1;
s->data[s->top] = val;
}
```
# Les piles (5/5)
## Dépiler (enlever l'élément du sommet)
. . .
```C
int stack_pop(stack *s) {
s->top -= 1;
return s->data[s->top+1];
}
```
## Jeter un oeil (regarder le sommet)
. . .
```C
int stack_peek(stack s) {
return s.data[s.top];
}
```
## Quelle est la complexité de ces opérations?
. . .
## Voyez-vous des problèmes potentiels avec cette implémentation?
. . .
* Empiler avec une pile pleine.
* Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
- **Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
version: "3.3"
services:
slides:
image: omalaspinas/pandoc:latest
user: 1000:1000
container_name: slides
volumes:
- ./:/data
entrypoint: ["make"]
working_dir: /data
CC:=clang
CFLAGS:=-Wall -Wextra -pedantic -g -fsanitize=address,undefined
LDFLAGS:=-fsanitize=address,undefined
main: main.o hm.o
$(CC) main.o hm.o -o main $(LDFLAGS)
main.o: main.c hm.h
$(CC) -c main.c -o main.o $(CFLAGS)
hm.o: hm.c hm.h
$(CC) -c hm.c -o hm.o $(CFLAGS)
clean:
rm -f *.o main
\ No newline at end of file
#include <string.h>
#include "hm.h"
static size_t hash(char *key, size_t table_capacity) {
size_t h = 0;
for (size_t i = 0; i < strlen(key); ++i) {
h = (h + key[i] * 43) % table_capacity;
}
return h;
}
void hm_init(hm_t *hm, size_t table_capacity) {
hm->table = malloc(sizeof(*(hm->table)) * table_capacity);
hm->table_capacity = table_capacity;
hm->table_length = 0;
for (size_t i = 0; i < hm->table_capacity; ++i) {
hm->table[i].state = EMPTY;
}
}
void hm_destroy(hm_t *hm) {
free(hm->table);
hm->table = NULL;
hm->table_capacity = 0;
hm->table_length = 0;
}
void hm_insert(hm_t *hm, char *key, char *value) {
if (hm->table_capacity == hm->table_length) {
return;
}
size_t index = hash(key, hm->table_capacity);
while(hm->table[index].state == OCCUPIED && (0 != strcmp(key, hm->table[index].key))) {
index = (index + 1) % hm->table_capacity;
}
if (hm->table[index].state != OCCUPIED) {
hm->table_length += 1;
strcpy(hm->table[index].key, key);
hm->table[index].state = OCCUPIED;
}
strcpy(hm->table[index].value, value);
}
void hm_remove(hm_t *hm, char *key) {
if (0 == hm->table_length) {
return;
}
size_t index = hash(key, hm->table_capacity);
while (hm->table[index].state == EMPTY &&
(0 != strcmp(key, hm->table[index].key))) {
index = (index + 1) % hm->table_capacity;
}
if (0 == strcmp(key, hm->table[index].key)) {
hm->table[index].state = DELETED;
hm->table[index].key[0] = '\0';
hm->table_length -= 1;
}
}
#ifndef HM_H
#define HM_H
#include <stdlib.h>
#define MAX_SIZE 80
typedef enum _state_t { EMPTY, OCCUPIED, DELETED } state_t;
typedef struct _entry_t {
char key[MAX_SIZE];
char value[MAX_SIZE];
state_t state;
} entry_t;
typedef struct _hm_t {
entry_t *table;
size_t table_capacity;
size_t table_length;
} hm_t;
void hm_init(hm_t *hm, size_t table_capacity);
void hm_destroy(hm_t *hm);
void hm_insert(hm_t *hm, char *key, char *value);
void hm_remove(hm_t *hm, char *key);
#endif
#include <stdlib.h>
#include <stdio.h>
#include "hm.h"
int main(int argc, char *argv[]) {
hm_t hm;
hm_init(&hm, 50);
printf("capacity = %zu, length = %zu\n", hm.table_capacity, hm.table_length);
char key1[] = "Orestis";
char value1[] = "1234567";
hm_insert(&hm, key1, value1);
hm_remove(&hm, key1);
char value2[] = "2345678";
hm_insert(&hm, key1, value2);
for (int i = 0; i < 50; ++i) {
if (hm.table[i].state == OCCUPIED) {
printf("key: %s, value %s\n", hm.table[i].key, hm.table[i].value);
}
}
for (int i = 0; i < 50; ++i) {
if (hm.table[i].state == OCCUPIED) {
printf("key: %s, value %s\n", hm.table[i].key, hm.table[i].value);
}
}
printf("capacity = %zu, length = %zu\n", hm.table_capacity, hm.table_length);
hm_destroy(&hm);
printf("capacity = %zu, length = %zu\n", hm.table_capacity, hm.table_length);
return EXIT_SUCCESS;
}