diff --git a/algo.py b/algo.py
index cf8e4440164b192dac2d16fa056920beb6f7a818..8e292942931104370a388648b0a45ba5ee5c856e 100644
--- a/algo.py
+++ b/algo.py
@@ -34,6 +34,19 @@ def bachet_bezout(a, b):
     
     return a, u[i-2], v[i-2]
 
+def inverse_modulaire(a, n):
+    """Does the inverse modular of a by n, using Bachet-Bezout
+
+    Args:
+        a (uint): the number
+        n (uint): the modulo
+
+    Returns:
+        uint: the inverse modular
+    """
+    
+    return bachet_bezout(a, n)[1]
+
 def exponentiation_rapide(a, exp, n):
     """Does the quick explanation of a pow x modulo n
 
@@ -108,4 +121,3 @@ def fermat_factorization(n):
         a += 1
         
     return (a, b)
-        
diff --git a/main.py b/main.py
index e1e62c9a31f4c64f908a097284e9e049c0f8c232..67d26849b9055fb4f4bc656fbda3ec9ccb33b276 100644
--- a/main.py
+++ b/main.py
@@ -1,34 +1,44 @@
-import algo
+from algo import *
 
 def main():
     mu = {
-        31726849986005826981,
-        305966565717393601613,
-        61497322861823383198,
-        269645690420162032117,
-        155457162093765938384,
-        24931468152962121635,
-        138444967690527010216,
-        282789589899417404817,
-        134251529920691060404,
-        423054566352157178418,
-        265453042944217161627,
-        39119050384849643825
-    } #encrypted message
-
-    n = 4556490129 * pow(10, 11) + 89940178621 #first element public key
-    e = 5303 #second element public key
+        416687707,
+        420774592,
+        1078076801,
+        372477309,
+        1915438026,
+        306996859,
+        1858268340,
+        1934595642,
+        444729462,
+        1953792398,
+        1118037789,
+        1220832721,
+        701508709,
+        1976470330,
+        1081245832,
+        1480954262,
+        921801986,
+        1154526486,
+        1974597168,
+        812527863,
+        1895548977,
+        1274512749,
+        712992858
+    }                   #encrypted message
+    n = 1989929159      #first element public key
+    e = 2203            #second element public key
 
     length = length(mu)
 
     # --- private element ---
-    M = [] #decriypted message
-    msg = "" #message (string)
-    p, q = 0 #primes numbers
-    d = 0 #private key
+    M = []      #decriypted message
+    msg = ""    #message (string)
+    p, q = 0    #primes numbers
+    d = 0       #private key
 
     #--- crack RSA ---
-    a,b = fermat_factorization(n)
+    a, b = fermat_factorization(n)
 
     p = a + b
     q = a - b
@@ -38,7 +48,7 @@ def main():
     fi = (p - 1) * (q - 1)
     d = inverse_modulaire(e, fi)
 
-    #// --- decode mu & initialise msg ---
+    # --- decode mu & initialise msg ---
     for i in range(length):
         M[i] = exponentiation_rapide(mu[i], d, n)