diff --git a/algo.py b/algo.py
index 2d27308cdf171248497ec3bfb4247a39ab739aff..44a45ee9f5654ca66ae2fe5a2aa1924053be8db1 100644
--- a/algo.py
+++ b/algo.py
@@ -56,7 +56,7 @@ def exponentiation_rapide(a, exp, n):
         n (uint): the modulo
 
     Returns:
-        uint: An array with the pgdc and the coefficients of bachet_bezout, [pgdc, u, v]
+        uint: The result of of the quick explanation
     """
     
     if (a == 0):
@@ -72,7 +72,7 @@ def exponentiation_rapide(a, exp, n):
         b = (b**2) % n
         exp = exp // 2
     
-    return r
+    return int(r)
 
 def is_square(a):
     """Check if a number is a perfect square, using the Newton methode
@@ -115,7 +115,7 @@ def fermat_factorization(n):
         b2 = a**2 - n
         
         if (is_square(b2)):
-            b = math.sqrt(b2)
+            b = int(math.sqrt(b2))
             break
         
         a += 1
diff --git a/main.py b/main.py
index 87b3ba9d709a51fe1f817d465650f7348382884b..4b6203e51a58f702d84fb25468ef303784f58754 100644
--- a/main.py
+++ b/main.py
@@ -1,11 +1,7 @@
-from ast import For, arguments, parse
-from cProfile import label
-from operator import truediv
-import sys
 from algo import *
 
 def main():
-    mu = {
+    mu = [
         416687707,
         420774592,
         1078076801,
@@ -29,36 +25,37 @@ def main():
         1895548977,
         1274512749,
         712992858
-    }                   #encrypted message
-    n = 1989929159      #first element public key
-    e = 2203            #second element public key
+    ]                   # encrypted message
+    n = 1989929159      # first element public key
+    e = 2203            # second element public key
 
-    length = length(mu)
+    length = len(mu)
 
     # --- private element ---
-    M = []      #decriypted message
-    msg = ""    #message (string)
-    p, q = 0    #primes numbers
-    d = 0       #private key
+    M = []      # decriypted message
+    msg = ""    # message (string)
+    p = 0       # fisrt prime number
+    q = 0       # second prime number
+    d = 0       # private key
 
     #--- crack RSA ---
     a, b = fermat_factorization(n)
-
+    
     p = a + b
     q = a - b
-
-    print(n == p * q, "\n")
-
+    
     fi = (p - 1) * (q - 1)
     d = inverse_modulaire(e, fi)
 
     # --- decode mu & initialise msg ---
     for i in range(length):
-        M[i] = exponentiation_rapide(mu[i], d, n)
+        M.append(exponentiation_rapide(mu[i], d, n))
 
     for m in M:
-        print(decode_msg(m), end='')
+        msg += decode_msg(m)
 
+    print("p, q :", p, q, "\nfi   :", fi, "\nd    :", d, "\nmsg  :", msg)
+    
 if __name__ == "__main__":
     main()
     
\ No newline at end of file