h e p i a

Haute école du paysage, d’ingénierie
et d’architecture de Geneve

Custom Embedded Linux

Semester project presented by

Dylan FREI

Computer Science with specialization in
Embedded Systems

May, 2024

Supervisor Client

Florent GLUCK ANTS A.l. Systems

Caption and source of cover illustration : Picture of the device taken by Dylan Frei.

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

TABLE OF CONTENTS

Acknowledgements
Abstract L
Acronyms List
Mlustrations List
Introduction
1 Chapter 1: Bootflow : from power-ontoshell
1.1 BootROM

1.2 PSC-ROM e

1.3 Microbootl

14 MB2 e

1.5 UEFL

1.6 Extlinux e e

1.7 Kernel

2 Chapter 2 : Customizing the System
2.1 PrerequiSites e e e

2.2 Required modification for a custom carrier board

a MB1BTC & Kernel DTB

b MB2 configuration L

c Flashing configuration

2.3 Creatingacustomrootfs

a Testing the filesystemonanSDcard

2.4 Rebuilding and configuring the Kernel from source

a Setting up the cross-compilation toolchain

b Getting the sources and compiling

2.5 extlinuxentries L.l e e e
Conclusion
References

1

LN BB WWN

[ENoRNoRNoRe RN IR e We) WNe) -

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

v

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

ACKNOWLEDGEMENTS

I extend my thanks to Pr. Gliick and Mr. Schmidt for their supervision of this project. I also
thank Pr. Upegui & Pr. Albuquerque for their understanding and granting me extra time for

project completion.

h e p i a

Haute école du paysage, d’ingénierie
et d’architecture de Geneve

ABSTRACT

ANTS A.IL Systems is working on the development of a distributed storage and computing
infrastructure based on low-power nodes. Each node consists of a hardware platform including
a custom carrier board and an Nvidia Jetson Orin System on Chip (SoC). Nvidia provides an
Ubuntu 22.04 image for their carrier board and SoC as well as a development kit (devkit).
The client is interested in investigating this devkit with the objective of creating their custom
embedded Linux distribution tailored for their custom board. First and foremost, the primary
aim of the project is to study the structure of the hardware and software components supplied
by Nvidia and to understand how they work internally. The second objective is to highlight
the changes needed to tailor the embedded operating system to the ANTS customised carrier
board.

This project presents the structure of the provided firmware and software present in the
Board Support Package (BSP). First, it outlines the bootflow from powering the system to
obtaining a user shell. Then, it provides a summary of the necessary changes needed for
implementation of a custom carrier board and explores several customizations that might be
relevant to the final system.

Candidate : Supervisor :
DYLAN FREI FLORENT GLUCK
Study programme : ISC In collaboration with : ANTS

Semster project subject to a company internship agree-
ment : no

Confidential : no

Vi

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

ACRONYMS LIST

.dts Device Tree Source. 6

BCT Boot Configuration Table. 4, 6, 7

BMPM Boot Media Processor Manager. 3, 4
BR BootROM. 3

BR-BCT BootROM Boot Configuration Table. 3

BSP Board Support Package. vi, 1,6, 7,9
DTB Device Tree Blob. 6, 7, 8, 10

EDK2 EFI Development KitII. 2, 5

EEPROM Electrically Erasable Programmable Read-Only Memory. 7
GPIO General Purpose Input/Output. 4
HEPIA Haute Ecole du Paysage d’Ingénierie et d’ Architecture. 1

MB1 Microbootl. 4, 6

MB2 Microboot?2. 4, 6

PMIC Power Management Integrated Circuit. 4
PSC Power State Controller. 3

PSC-ROM Platform security controller ROM. 3, 4

SCRs Secondary Current Regulators. 4
SDRAM Synchronous Dynamic Random Access Memory. 4

SoC System on Chip. vi, 1, 3,4, 6
UEFT Unified Extensible Firmware Interface. 4, 5

VM Virtual Machine. 8

vii

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

ILLUSTRATIONS LIST

1.1 TegraBootflow 2
2.1 Extlinux Modifications 10
2.2 BoOtmenu e 10
2.3 Custom Argument seen in commandline 11

URL references

— URLO1 Nivida’s Developper Guide | Jetson Bootflow

viii

https://docs.nvidia.com/jetson/archives/r35.3.1/DeveloperGuide/text/AR/BootArchitecture/JetsonOrinSeriesBootFlow.html

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

INTRODUCTION

Jetson Linux is a specialized version of the Linux operating system tailored for use with
Nvidia’s Jetson platform, which consists of embedded computing boards designed for Al,
machine learning, and robotics applications. The company ANTS A.I. Systems is working on
the development of a distributed storage and computing infrastructure based on low-power

nodes using these modules.

By choosing this project, I was tasked with investigating the provided BSP and testing
several ways of customizing the system. Understanding and documenting the theory behind the
bootflow was also necessary. In order to achieve this objective, Nvidia is providing developers
with all the necessary official documentation. Thus, my job mainly consisted in extracting and
summarizing this information. The module chosen for this deployment is a Nvidia Jetson Orin

Nano and, as such, the infrastructure presented here is specific to this SoC.

This project is part of my final year at Haute Ecole du Paysage d’Ingénierie et d’Archi-
tecture (HEPIA). Initially chosen as a semester project, this work faced setbacks due to medical
reasons. Additionally, due to delays in the production of the custom carrier board, the project
could not progress to a Bachelor project and had to be halted early. As such, this document

represents about a third of the usual work that goes into a semester project.

In the first chapter, a theoretical exploration of the various boot components is detailed.
Then, in a second chapter, the necessary modifications are explained. Several customization

options that I could explore during my time working on this project are also documented.

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

CHAPTER 1 : BOOTFLOW : FROM POWER-ON TO SHELL

The Nvidia Tegra Bootflow is made up of multiple components, some of which consist
solely of extra security measures. My investigation focuses on the primary components and
their role in leading up to the final shell that the user interacts with. An overview of the flow

control is provided by Nvidia on illustation 1.1.

The bootflow contains the following main components :

— A BootROM micro bootloader, as in any system. This component loads the first stage
bootloader.

— A bootloader called MB 1, that corresponds to the first stage bootloader. It initializes the
CPU and launches MB2.

— MB2, the second stage bootloader, also Nvidia proprietary, responsible for loading
UEFI.

— A UEFI being a modified version of EFI Development Kit IT (EDK?2). It transfers control
to the final bootloader once its functions have been executed.

— The top level bootloader, in our case extlinux, which loads the kernel with arguments

specified in a configuration file.

— The Linux Kernel
Secure/TZ Non-Secure/Non-TZ
Soc
BootROM Load—»| ME1 Load » BPMP-FW
BPMP / 2
Load) Start - Load S'tart
Secure/TZ 7 Non-Secure/Non-TZ
d o
PSCBL1 Transfer
PSCROM |- lansfer ——contral —% PSCB-FW
PSC /
Load Start Start
AAG4-EL3, SecureTZ J AAG4-EL2, Non-Secure/Non-TZ
Load & —
Monitor/ Transfer Transfer -
MB2 —tcr:;trsfrglr—b ATF ———control —"| UEFI — e
CPU L Load L

ILLUSTRATION 1.1 — Tegra Bootflow, From https ://docs.nvidia.com/, ref. URLO1

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

These components and the security components are also divided in 3 "groups" :

— Boot Media Processor Manager (BMPM) is the group of processes responsible for the
early initialization and configuration of storage media (e.g., SD cards) from which the
system can boot. It ensures proper communication with the storage device. BR and MB1
are part of this group, as well as a separate Firmware responsible for coordination.

— Power State Controller (PSC) is a component responsible for managing power states
and transitions in the system during the boot process. It coordinates the power-related
operations of various hardware components to optimize power efficiency. It contains a
few components that we shall not explore in details.

— "CPU", a group that isn’t exactly an acronym but refers to tasks using the CPU as a mean
of booting the system. It mainly refers to the "high level" components of the bootflow,

MB2, UEF], extlinux and the kernel.

1.1. BOoOTROM

BootROM (BR) is a read-only software component hardwired into the SoC. It starts execu-
ting as soon as the system is powered on and leaves the reset state. It initializes the boot media
and loads a few components from storage - most importantly MB1 and its configuration table -,
then halts. BR loads information from a BootROM Boot Configuration Table (BR-BCT), up to 4
copies of which can be stored at the start of the boot media. The BR-BCT contains information

about the next components including their size, entrypoint, load addresses and hash.

1.2. PSC-ROM

Platform security controller ROM (PSC-ROM) is a specific hardware component of the SoC
that starts running as soon as the processor is reset. It holds the keys that are required for Nvidia
authentication and decryption. BR-BCT provides authentication and decryption services to BR
and controls the next stage of the boot process. This component is mentioned because, while it
is BR that loads MB1 into RAM, it is PSC-ROM that is responsible for starting it. The presence
of this component is essential as it provides Nvidia Owned Keys to the hardware components.

As such, modifying the lower-level bootflow is not recommended.

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

1.3. MICROBOOTI1

Microbootl (MB1) is the last stage of the BMPM part of the bootflow. It initializes part of
the SoC, including the CPU and performs security configuration. This software is owned and
encrypted by Nvidia, depending on the keys from PSC-ROM. MBI is configurable through its
Boot Configuration Table (BCT), which is stored on the storage device. Therefore, MB1 loads
the information about the board from this table, which should be modified to fit the custom
carrier board. The functions of the MB1 bootloader are also very clear and well documented.
These are :

— Platform configuration, including pinmux, General Purpose Input/Output (GP1O), pad

voltage, Secondary Current Regulators (SCRs), and firewalls.

— Initializing Synchronous Dynamic Random Access Memory (SDRAM) based on the
BCT. The Memory BCT contains configuration parameters for the memory, specifying
settings such as size, timing, and other memory-related details.

— Loading firmware, most importantly a component responsible for initializing the CPU
complex.

— Programming the Power Management Integrated Circuit (PMIC) for enabling the
VDD_CPU. Which means ensuring power to the CPU through the correct pin.

— Creating Memory Caveouts : setting aside specific regions of memory for dedicated
purposes, such as graphics memory, system reserves, ...

— Loading MB2.

1.4. MB2

Microboot2 (MB2) is the generic term Nvidia uses for the second tier bootloader. It comes in
two variants : MB2 Applet and MB2 for flashing, development, and Coldboot. Nvidia specifies
that the variant of MB2 depends on the processor it runs on. Based on the information provided
by Nvidia, both variants of MB2 have to do with flashing various components onto the system,
either from a x86 host (in which case the Applet runs) or on the system. In the case of a standard
boot sequence with everything already flashed onto our SD card, and considering the lack of
information, I have to assume that the role of MB2 is merely to load the next stage of the boot

process, Nvidia’s Unified Extensible Firmware Interface (UEFI).

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

1.5. UEFI

Nvidia’s UEFI is a modified version of EDK2, an opensource UEFI software. As such, both
sources from Nvidia’s version and from the TianoCore community (the original developpers of
EDK?2) are available. It is likely that this version is modified to fit within Nvidia’s own bootflow

but information needed to customize it should be available.

1.6. EXTLINUX

Our system uses extlinux as a top-tier bootloader. Extlinux is configurable through the extli-
nux.conf file which contains the boot entries. Extlinux is a Syslinux derivative, which provides
lightweight bootloader solutions for various filesystems. However, it is a bootloader specifically
designed for booting Linux kernels on systems using the ext2, ext3, ext4, and btrfs filesystems.
This could be a limitation as we are pretty much bound to use ext4 for our main filesystem. It
was probably chosen for its ease of integration with EDK?2. The bootloader can be configured

through the extlinux.conf file.

1.7. KERNEL

The kernel used for the provided system is a modified 5.10 Linux Kernel. Nvidia provides a
toolchain and the sources for its kernel. A real-time version of the Kernel is also available. The
regular kernel modules are available and the configuration is saved in a defconfig file. A list of

patches to apply is provided in case a previous version of the Kernel need to be used.

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

CHAPTER 2 : CUSTOMIZING THE SYSTEM

2.1. PREREQUISITES

The easiest way to correctly set up the bootloaders is through the SDK manager. Flashing
the SoC once using the SDK manager and the correct storage device ensure proper setup of the
firmware before using the command line options. One can then proceed with customization.
First, download the BSP and sample rootfs from the Jetson Developper’s webpage. The rootfs
is derived from Ubuntu 22.04 and must be unzipped in the rootfs directory of the BSP. This
includes a modified version of the ubuntu kernel and the corresponding dtb files for building the
dtb. The 14t_flash_prerequisites.sh script installs all of the dependecies needed for flashing the
board.

2.2. REQUIRED MODIFICATION FOR A CUSTOM CARRIER BOARD

The goal of this chapter is to understand the necessary steps in modifying the configuration
in lower level bootloaders (MB1,MB2) to work with the custom carrier board. It turns out MB 1
and MB2 are both stored in an on-module QSPI flash. All the configuration changes necessary
to have the module work with a custom carrier board are detailed on the wiki. The wiki specifies
that changes need to be made to the following components :

— The kernel DTB

— The MBI configuration

— The MB2 configurations

— The ODM data

— The flashing configuration

a. MB1 BTC & Kernel DTB

To create the BCT for MB1 and the Device Tree Blob (DTB) for the kernel, a single Device
Tree Source (.dts) file can be used and compiled. The sample boot configuration tables are
available in the BSP under bootloader/generic/BCT. Moreover, the correct dtb file to be passed
to the kernel must be specified in the extlinux.conf file. Flashing custom BCT files might require
the provided tegraflash.py script. Another script worthy of mention is dtbcheck.py that helps us

check the validity of our compiled dtb file before feeding it to the kernel.

https://developer.nvidia.com/embedded/jetson-linux
https://docs.nvidia.com/jetson/archives/r35.3.1/DeveloperGuide/text/HR/JetsonModuleAdaptationAndBringUp/JetsonAgxOrinSeries.html#hr-jetsonmoduleadaptationandbringup-jetsonagxorinseries

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

b. MB2 configuration

The MB2 configuration should be in accordance with the need of the custom carrier board.
The only modification should specify if the carrier board has an Electrically Erasable Program-
mable Read-Only Memory (EEPROM). The tegra234-mb2-bct-common.dtsi sile should be mo-

difed accordingly :

with EEPROM :

cvb_eeprom_read_size = <0x100>
without EEPROM :
cvb_eeprom_read_size = <0x0>

c. Flashing configuration

The flashing configuration mainly refers to selecting our custom BCT and DTB files for
flashing. It must also include our custom rootf once available. Flashing is done using the flash.sh
script. This script is very flexible and can use a large variety of arguments to specify which

components should be flashed.

2.3. CREATING A CUSTOM ROOTFS

Technically, any linux rootfs should work on the Nvidia Jetson Orin Nano. This would
require having a valid extlinux configuration in /boot. Moreover, the filesystem binaries need to
be generated for the arm architecture. Finally, any Jetpack components desired on the system

need to be copied onto the filesystem.

Nvidia, however, provides only the tools to generate an Ubuntu 22.04 and this section
explores only this possibility. Older versions of the BSP provide the tools to generate an
Ubuntu 20.04 image. This filesystem contains all of the default tools provided by Canonical.
As such, systemd is the main deamon and upgrading the system for future realeases is possible

using apt.

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

The rootfs generation tool works in several steps, one of which uses chroot inside of the
filesystem in order to use the host’s apt tool to install the packages. This means that rootfs
generation is only possible on Ubuntu 22.04 if using the Nvidia provided tools. A Virtual
Machine (VM) can be used for this step.

Rootfs generation uses the nv_build_samplefs.sh located in L4T/tools/samplefs. This
script downloads a sample empty filesystem and installs the package list according to a text file.
For instance, the file nvubuntu-jammy-desktop-aarch64-packages contains the packages for the
desktop version of the filesystem. So as to create a custom package list, one of the files can be
copied and modified but the naming convention needs to be followed. In general, a name such
as nvubuntu-jammy-[yourcustomname]-aarch64-packages can be used. After this step, a few

more folders, mainly the contents of /boot need to be generated using L4T/apply_binaries.sh.

sudo ./nv_build_samplefs.sh --abi aarch64 --distro ubuntu --

flavor [yourcustomname] --version jammy

Furthermore, a few different settings can be set using 14t_create_default_user.sh to avoid
extra setup time during the first boot. This includes creating a user, enabling autologin, setting
the hostname and accepting the license to avoid extra steps when booting for the first time. Any
further modification of the filesystem need to be done manually. If one wishes to use a custom
DTB and kernel, or a different extlinux configuration, the correct files also need to be replaced

in the /boot directory.

a. Testing the filesystem on an SD card

The way I went about flashing and testing the custom filesystem was through the use of an
SD card. Nvidia provides a script to turn the filesystem into a flashable blob through jetson-
disk-image-creator.sh The image can then be flashed onto an SD card using a gui tool or dd. My

SD card is mounted as /dev/sda.

sudo ROOTFS_DIR=customfsdir ./jetson-disk-image-creator.sh -
o customfs.img -b ${BOARD} -d SD
sudo /bin/dd if=customfs.img of=/dev/sda bs=1M

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

2.4. REBUILDING AND CONFIGURING THE KERNEL FROM SOURCE

a. Setting up the cross-compilation toolchain

A toolchain for Jetson is provided by Nvidia on the Jetson Developper webpage under
"Bootline toolchain". One needs to unarchive the binaries and set the CORSS_COMPILE va-

riable to the correct path.

b. Getting the sources and compiling

The sources can be found on the developper’s webpage as "Driver Package (BSP) sources".
First, unzip the sources and create an output directory. Then set a few variables. Finally, the
default defconfig is copied and modification can be made through menuconfig. The final step is

the compilation of the Kernel.

#get and unzip sources

wget https://developer.nvidia.com/downloads/embedded/14t/r36_release_v2.0/sources/publ
From section 2.4.a

export CROSS_COMPILE=$HOME/l4t-gcc/aarch64--glibc--stable-2022.08-
1/bin/aarch64-buildroot-linux-gnu-

#output directory

TEGRA_KERNEL _0UT=$PWD/kernel_out

mkdir -p $TEGRA_KERNEL_OQUT

#Kernel configuration
make ARCH=arm64 0=$TEGRA_KERNEL _OUT tegra_defconfig
make ARCH=arm64 0=$TEGRA_KERNEL_QUT menuconfig

#compilation

make ARCH=arm64 0=$TEGRA_KERNEL_OUT -j10 #number of threads
#Kernel and dts files are located in :
/l4t-kernel/arch/arm64/boot/Image

/14t -kernel/arch/arm64/boot/dts/*

https://developer.nvidia.com/embedded/jetson-linux

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

2.5. EXTLINUX ENTRIES

All configuration for the main bootloader (extlinux) is made through extlinux.conf. This
file can easily be modified to allow for multiple boot configurations which can be chosen at
boot time. As such, it is possible to have mutiple kernels, DTBs or arguments on the system.
The easiest way to test this was to create a new configuration based upon an existing one. The
arguments are :

— LINUX : points to the kernel image

— FDT : points to the DTB

— INITRD : point to the init ramdisk

— APPEND : boot arguments for the kernel

For instance, we can modify the boot arguments as a proof of concept and add a dummy

command line argument :

ILLUSTRATION 2.1

At boot time, the bootloader asks the user to chose the entry :

ILLUSTRATION 2.2

10

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

We can check that the correct entry was selected using the cat command on /proc/cmdline :

1§ cat fproc/cmdline
root=/dev/mmcblkepl rw rootwailt rootfstype=ext4 mminit_loglevel=4 console=

ttyTCU®,115200 firmware_class.path=/etc/firmware fbcon=map:0 net.ifnames=0
nospectre bhb video=efifb:off console=ttyd LIIKUSASUIEIGEICEINN bl prof da
taptr=2031616@0x271E10000 bl prof ro ptr=65536@0x271E00000

ILLUSTRATION 2.3

The other options such as a different dtb with a dummy device and a kernel with different

modules have also been successfully tested.

11

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

CONCLUSION

Nvidia’s Jetson software architecture is composed of several key components that we were
able to list and explain. While the lower level bootloaders and security components are highly
tailored to the Jetson environment, thus hardly replaceable, higher level ones such as the kernel,

final bootloader and filesystem are easily customizable using the provided tools.

This work has allowed me to better understand the inner working of a complex, fairly
powerful embedded system. It further enhances my knowledge about the theoretical aspects of
a cold boot sequence and various aspects of the linux environment. The provided documenta-
tion was more than sufficient and sometimes even a bit overwhelming. The research aspect of
this project has therefore been tedious at times, with me often losing myself in useless details
but has helped me learn to better identify the key points of a wiki. Testing the modifications
on an embedded system can also take up a significant amount of time, especially when things

don’t work out on the first attempt.

Overall, I am satisfied with the results I have reached considering that the project was
cut short. Various aspects were explored, but some areas remain a bit obscure, and a few
limitations need to be addressed. In particular, because the client is looking for the deployment
of a distributed filesystem, the limitations of extlinux as a bootloader need to be investigated.

This lightweight bootloader is usually meant to work with ext filesystems.

In conclusion, Jetson Linux presents a compelling alternative to traditional heavyweight
servers, especially in scenarios requiring efficient and low-power solutions. The Jetson plat-
form, with its robust processing capabilities and minimal power consumption, is ideally suited
for deploying distributed filesystems and various services on low-consumption nodes. This
approach not only aligns with modern trends towards greener computing but also enhances
the scalability and flexibility of distributed systems. Consequently, Jetson Linux stands out as
a powerful enabler for innovative, sustainable, and high-performance distributed computing

environments.

12

Dylan FREI - Custom Embedded Linux - Semester Project - May 2024

REFERENCES

https ://docs.nvidia.com/jetson/archives/r35.3.1/DeveloperGuide/index.html - Nvidia Jetson
Linux Developer’s Guide - Last viewed on 27.05.2024

13

	Acknowledgements
	Abstract
	Acronyms List
	Illustrations List
	Introduction
	Chapter 1 : Bootflow : from power-on to shell
	BootROM
	PSC-ROM
	Microboot1
	MB2
	UEFI
	Extlinux
	Kernel

	Chapter 2 : Customizing the System
	Prerequisites
	Required modification for a custom carrier board
	MB1 BTC & Kernel DTB
	MB2 configuration
	Flashing configuration

	Creating a custom rootfs
	Testing the filesystem on an SD card

	Rebuilding and configuring the Kernel from source
	Setting up the cross-compilation toolchain
	Getting the sources and compiling

	extlinux entries

	Conclusion
	References

