From 5e033e19944d91b1b89e2eab7511ed17f822b4ab Mon Sep 17 00:00:00 2001
From: Ivan Pavlovich <ivan.pavlovic@hes-so.ch>
Date: Thu, 27 Feb 2025 18:30:37 +0100
Subject: [PATCH] =?UTF-8?q?Avancement=20sur=20les=20testes=20et=20l'affich?=
 =?UTF-8?q?age=20des=20r=C3=A9sultats?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

---
 TODO.md                                       |     3 +
 dataSources/PubMed/pubmedApi.py               |    14 +-
 .../zero_shot_classification.cpython-313.pyc  |   Bin 0 -> 1320 bytes
 .../__pycache__/jsonParser.cpython-313.pyc    |   Bin 0 -> 1276 bytes
 rapports/img/facebook_results.png             |   Bin 0 -> 205431 bytes
 rapports/rapport_2.md                         |    70 +
 testModel/__pycache__/metrics.cpython-313.pyc |   Bin 0 -> 1571 bytes
 testModel/__pycache__/utils.cpython-313.pyc   |   Bin 0 -> 1038 bytes
 testModel/doc/articles_length.md              |    26 +
 testModel/metrics.py                          |    31 +
 .../v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt  | 11509 +++++++++
 .../zero_shot/v2/facebook-bart_large_mnli.txt | 20029 ++++++++++++++++
 testModel/results/zero_shot/v2/results.json   |    74 +
 testModel/results/zero_shot/v2/results.png    |   Bin 0 -> 36830 bytes
 testModel/show_results.py                     |    49 +
 testModel/test.py                             |   120 +
 testModel/test_articles_len.py                |    66 +
 testModel/utils.py                            |    21 +
 .../__pycache__/articles.cpython-313.pyc      |   Bin 0 -> 307 bytes
 .../__pycache__/diseases.cpython-313.pyc      |   Bin 0 -> 360 bytes
 .../__pycache__/huggingface.cpython-313.pyc   |   Bin 0 -> 452 bytes
 variables/articles.py                         |    12 +
 variables/diseases.py                         |    10 +
 variables/huggingface.py                      |     8 +
 24 files changed, 32039 insertions(+), 3 deletions(-)
 create mode 100644 TODO.md
 create mode 100644 models/ZeroShotClassifier/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc
 create mode 100644 parsers/__pycache__/jsonParser.cpython-313.pyc
 create mode 100644 rapports/img/facebook_results.png
 create mode 100644 rapports/rapport_2.md
 create mode 100644 testModel/__pycache__/metrics.cpython-313.pyc
 create mode 100644 testModel/__pycache__/utils.cpython-313.pyc
 create mode 100644 testModel/doc/articles_length.md
 create mode 100644 testModel/metrics.py
 create mode 100644 testModel/results/zero_shot/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt
 create mode 100644 testModel/results/zero_shot/v2/facebook-bart_large_mnli.txt
 create mode 100644 testModel/results/zero_shot/v2/results.json
 create mode 100644 testModel/results/zero_shot/v2/results.png
 create mode 100644 testModel/show_results.py
 create mode 100644 testModel/test.py
 create mode 100644 testModel/test_articles_len.py
 create mode 100644 testModel/utils.py
 create mode 100644 variables/__pycache__/articles.cpython-313.pyc
 create mode 100644 variables/__pycache__/diseases.cpython-313.pyc
 create mode 100644 variables/__pycache__/huggingface.cpython-313.pyc
 create mode 100644 variables/articles.py
 create mode 100644 variables/diseases.py
 create mode 100644 variables/huggingface.py

diff --git a/TODO.md b/TODO.md
new file mode 100644
index 000000000..cf6e6b5aa
--- /dev/null
+++ b/TODO.md
@@ -0,0 +1,3 @@
+- [ ] Check Ollama
+- [ ] Restructurer le projet
+- [ ] Test results for different text lenght
\ No newline at end of file
diff --git a/dataSources/PubMed/pubmedApi.py b/dataSources/PubMed/pubmedApi.py
index 1cb76b3ab..837125035 100644
--- a/dataSources/PubMed/pubmedApi.py
+++ b/dataSources/PubMed/pubmedApi.py
@@ -1,8 +1,16 @@
+import sys
+import os
+
+# Ajouter le répertoire parent au chemin de recherche
+sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
+
 from requests import get
 from parsers.xmlParser import parseXmlFile
 import json
 
-FILENAME = "pubmedData.xml"
+TMP_DIR_NAME = "./tmp"
+TMP_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), TMP_DIR_NAME))
+TMP_FILENAME = "pubmedData.xml"
 
 # term = "diabetes+type+1+OR+diabetes+type+2+OR+mental+health"
 # term = '"Diabetes+Mellitus"[Mesh:noexp]'
@@ -36,10 +44,10 @@ def getPubmedData(term, date_min, date_max, nb_items = -1, debug = False, store
 
     response = get(url)
 
-    with open(f"tmp/{FILENAME}", "w", encoding="utf-8") as file:
+    with open(f"{TMP_DIR}/{TMP_FILENAME}", "w+", encoding="utf-8") as file:
         file.write(response.text)
 
-    obj = parseXmlFile(f"tmp/{FILENAME}")
+    obj = parseXmlFile(f"{TMP_DIR}/{TMP_FILENAME}")
 
     data_list = []
 
diff --git a/models/ZeroShotClassifier/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc b/models/ZeroShotClassifier/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d0f0af56912e37abca8106b11b92e7d9a20be190
GIT binary patch
literal 1320
zcmey&%ge>Uz`$T`x;y<43j@Pr5C?{tpp4HB3=9lY8G;#t8NC_27>gJc81xx}nF1M$
znDiNfnFAS%m}8iO8CV$@7)%(0S)>@U7>ih9n1WeNn1b2BJl1q}O^%l!<5n`>;wZ>0
zNX^O2OVwn*#o>~fn3P(QT6~MmIWaFewWvzkIin~)FEd%8D7CmCvna77zo=3nC9^m+
zu{gC#+&Qr*B{RP)u{gOjC$R`7UR=fNo0?aWn4{p4nwV3PQN<54R-vS_AXUK-UBF0_
ztx6&-F*!9UKR;VPDY2+THz%<uJykb1FDJ7~(Ko*+v!u!=v9u_)NIwZAY^+<AT9jX$
zkzb-)W~66OrGuixCDq9_C?rw0%vd)mu^3{CZdz(tYLRXt$Us9B)hVe-sYN9S)d-Uf
z^$c|rb8>WzjjQxgwB(lNlw{^)=B1Y==IHun=4JZ$mKo{#n1S7^TLH4eBsVj;D8D#A
ztwi4`Ge0*q#m^@|7s3KL4&t!VyyV2<)D+#sq~emI#N?7>Mo^qUF)03+85kHoi-Ds%
z8ZH;i7|IaLWXYt$pvml4B>{4;E;uNXa}tY-Gt)AY6H7Al^Hwt6V$ID@NzEw&nNq~T
zz`#%pGDG23oqk4sZmND}Sz?~POMY@`Zfaghv3_21if&3`Nuq9IdU{c6I@k=|#Jm(;
zRAcqQW)|y5r55D}XXKYSLoH1$()TD$PtVLtcS}r8)d#sM9^|TcRPA~NmA3?wi&7Iy
zQsFYGMMc~U3=DE07YZ;iFf=gS;TFCiqPHRSBDc*27MstY5OGUp0Z~v451bZo;Dj<L
zF+>QNLUTwSODMAjRAHh40|QFXG4e4OGns+{f`NfS0a=bIlqHxMWH3$@ETJsHte7f7
zSyUJ_+5D=wf>R4iQ}dEjtrV&_d=isVbBe7LZn5QnSyddt$@xX8V3A@lOOx>yYe7+F
zUWq2_EiPCnr54@dD25sX)|!)Ae2X<DHK{cH7JE@@acNFTaWTjV3LsDfDlKktKs8qu
zfs%?MC>VXg!FZETVur+JKCK4#XY4$8ICv*;&9IoEb%9Uy3Wpkq%P~WIfy6~gtqT&`
z7x;9paOh$ce84T#;8(=Mz`)?A$##pUq$n}3I4!>@H?^p^2oxu`*nAwFTz!IXvHAMD
zxcUTxBNObDl?-5QP*>XI=BJeAq}mlpGcYiKBB0oSfq~%zGb1D8T?WNZEF4@+4Q!uO
k*g@0>AqIKX1%Wd&zc4T|+J0bT&^6xS`jvr$Q5b9@0Inf#4*&oF

literal 0
HcmV?d00001

diff --git a/parsers/__pycache__/jsonParser.cpython-313.pyc b/parsers/__pycache__/jsonParser.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..03cf190f4b6d1caf20a1147da671a2d9e107e98b
GIT binary patch
literal 1276
zcmey&%ge>Uz`$T`x;uS0GXuk85C?{tpp4H#3=9lY8G;#t8NC^b7=oFk7>XFv88w+-
zf)w~AGlD26W@lhvU}j)o_`HA-q$iXi2w4`Y$P`KkfmA}-Fe;eQ6ski5DwM*{z!1#}
z<uC*@g);Cl1Tz~m!_=iR$}vQP>;)?cWe8>oW({VuWM*Q>V~pki3o<Y;1cCht<3VU8
zhETX|c}&3|A2OIieXYO{%A~@e$e_ajcLyT_LmHC;gFJ%*g91Z1lL~_^vpho@qap*6
zEj$pDkx6!jL;(f{1!O<4gZ;pP?1yMRm>#%#ewYZ<&zvag1z@u542fb440+7af-sR_
zF0lFBq0D>?#w>_%3TDV-c4SUtOoO^ylgF=$RWGYJKd*{2BqLQJEi)%op-My{vsfW7
zzeFKX0W1d=zQtHn#addDrfZ?ec#9)7FF8LYGcUc03$9J0N?KDPIX|x?HLnC_Kv`l=
zW{QGWu)kjwpF(*e#MHF>(!7)^9mhO{)S{yNB8B|q<kF&|)D(sC43PCDMU|O(=?W$J
z3I&Np#i<G<8L0|Y>|i%oDQI%uV$I1fPb~sDA*HxHvn1mdS6E_BX{sy8tXnMk1*v(r
zSU^6y#gdbsm~x9BWV=gha()U_iJ)6%PO4vii5tin5M7+E70IauC7Jnonk=_CK!K2#
zn45Zw1;o0=l9E`Gc#AQ$n1z9XK|w)5;Z~4-Mt*Lper8!>p1w<da%paAUP-ZjUUG^q
zNU3gOdU{c6dLqa;-Nd{U-Q=9a;^NG-%w({TKG;`9#rhyO27r86q*qXRix({HRh*v(
za$b=L0|Nsa0|P_xEd~aL28IXR!u@ugc9*%OuXC$h<W^Y_ew|zQBDd}xK8YEY3nCVH
zUC?v7AnAOW&*cJ#%Lf*2)>y_Tyn+)nW;m}<zr<^_A?1m%_;kxjmNP;o+jqEpXJz0s
z{=mi{AkxA8ot=Tt_zJHPl>7S*H~)2R`HS50pBWfgeHlR(SS`p{5OqP{>w={BWj>z^
z96oorWk9lSjCc6t7ig~VSYfpx?t+5LWj@yn9Ikh`ML?3VjCc6NFG#r^s5p>yAt3xh
zMC66=s0$L&m-%8YaK!xnz|6=R%lNC<jDdk+E4QOD!$AgdM@8m?;+!D1BA259`$26M
z5ZizmL>fD?IP)?eG8c5_U_Q*j>decm$y5Z&(BP0-$?zGJ@{5ES7#MDG*yQG?l;)(`
j6^S!2Fo24ZVo=Wdz|6?Vc$<OyGnW8kEMt)v0|Ns9=Q<|Y

literal 0
HcmV?d00001

diff --git a/rapports/img/facebook_results.png b/rapports/img/facebook_results.png
new file mode 100644
index 0000000000000000000000000000000000000000..11471f24bfde79d5e61485f905f39bc853cff8ae
GIT binary patch
literal 205431
zcmeAS@N?(olHy`uVBq!ia0y~yU_8&j!1$Vjje&t-rK=b>0|Ns~v6E*A2L}g74M$1`
z1A_vCr;B4q#hf>LYYSqomp=Hpn=dZ=V#H$0<}}H(h7Sa11R5(JP(Glz#e0R*imn3P
zm9bi)7g7yW4U{ivYY4s&d?DcD;p?Hcz-W<B(>90o2c{g<IoMLr`oZN(+ZVPHRv*?g
zYy})gS<+drZVJuJxbtDx!yx6OZFhRF+_t}Wz4rUv>lvpe?LGOy%VmH0`<>6{RKMH#
z{P8~h!q@wk_{vTBf2^C6<G1+lAC8p)C9YS6H}{yi&rh+P{Hle+tbO8@jly9eMO-)e
z!_Ru3RN@IseNZRy$Adk%EYMx&`t-vW`;AStVl4l9UA(xpHPS`+M}(w}oyPw+-4p8M
zEzYsC{;5)MdR4N_)%Mx}&WENa`-Fr0gVGnKhMG>Tw~DwL^zTO2x>GKtQ}`UGJ~TM4
zX}oGyq3C)Z?av=B>nA3LMg%6$-mow6a<<SEC(T_?k0mCG1upw~pwdo*|5SZ(s%<)Z
zopAEB6_=m#YDL|SJoUG9Ma=WA``=&GY|k<cbzgZpu71rTWu~W=8@|SLzLN5KnjoLW
z@*!FLuE@%F@w(q1?>V(l|8dCGQ&(iB2dT%_%jQ))u#um_{&arAMcx1W+{@3sUgPdw
zRP{=14TI0|g;{etW-T~b`g*BAV%<~cyAGVmYeK}<rQNZTFsVKCpsvexy3Km#_s6`f
zVk)$REcBauH`K%)e^j+*_2$KGeOdCM!ggU=>oiOM1?t>qf9hBnFlSNpuBANR{yw<6
ztX8Na=c><1O|JJ5+baCRGEe=v@q8KY`?e307EkrQQMS78==>QMFQ(3T9lJDIzkXuj
z+Vt4dDTRBNn4ig*{z-4w!xxv#MdKxUF2`rod4H6Brfc6)v_B(cn|6s+v>wyciN9}F
z*9FK;VRzNr6}mJ^y!7X(YgxAbiz9dDO<N&Re*C26xeMvvea}mt+Ov}{XcN=-<R4y^
zmxKP+t=Tkh>7`uX*Jl3@nQ0wn3r$<~wB(|1qUN>3kCb=L=W`1+oq9DW>5`?ZY|V_W
z_2QS;KF>*&xLYY<uNtuO_^bEFLvFU540yL>*_On<;=KzpY?pZ-Y*~8wDNB-7%+qx*
z=et~3E$tt%VZ}F2Zk5m<2D@ILTsUXJR*|zsNv{o3uRi><pz6b9-R~!R^Y42XKXpCF
zG4VkSlfaM7&L@9aL@rsG(yg~=O75vW9N+urtIrSIR5<;y#o?Z%IW~4*I(3e^SgHkI
z58w7LYud_%vFDU7SW14~6C$Q@_~ok*N$1SPvSQLJwv>L1ouP5P_{>wO4MC6f+5i8Q
zaO2!|Nd5mG6K8h!nfg{+c(#@B8(okq&)i>}*>LdnX}Nn5((QiVHymBL!`AEm%*?RZ
zy6l^kZ&a#Z$u{UrR*!%5dZnq44-3=cozwNd=c*=suY7(f(eIXtk59+e!XIDiCVksE
zbN;h42S4A@n`QQ1aMImonXL7UENW^iy_xm+8XIny@y&gwsQIz-!5Ndv@;_Vu_#gNC
zWZ8M%-u|c1<CTlF=XX7e+jr^uDQB}IcfFbS)YRUbJv~C2d7F-p>pU^OX7`**E7heB
z1kC!D^d8>wGvw*domJ0mPJf-OUwHDF@PQ3Kdv4U+-<taH)fU@y&)s*o{M?hg*x+rY
zeah#RhZ_&6Z+HLsXlCZSoiSH7c^kifymC?Z;f!}rx9$t$X>E&6%9XLZdsw+I=hNjm
z)1Gj$d3w&9_AcVr%UjHy{tSt))9<M+x_-VeeBPmH%a_i-Hb?f^ldn4Oyt=j;7W|5w
z-L~QR-)yn@P7RTcMfW|~wq4&55<F`oAJ1F$mlj)YFP8c7$@kN`;?=3oKTfx`J8Cq!
z*<G?e{j6!ov1Gpa(~^C9<)1xyVzlmQ$5z9FTgw_7uFjrTCnmEzYeJ3NC4b?d>3lzb
z-ucj?>VN!VUHKH|_-RivuWkDL!}HsfosXjHtJlrh)xV^r^^cXsU5Aj@`}rQfd&K$j
z)8m}0C-+4kpXak%M1JX{<XEvai-nKP_lXuwUs<=S!bPt6m-hF-<66@<=!70$-UcZt
z{pDE0Hl2RbEmsq&<EZoMqSmv`I?rvKdj+4yA4}fmEEsTNV(hu#BV{!bIUYGGT7|RE
zr=1YBUFBxtXOnhg4_Dok|BR=1Djh0okqFFsWO!SWW5I#yn>s%i74uEq7-i;?Td`om
z`A>)M%&P7aRF%7*V4ZRKY4O=*iX8&pM^+vwJRvs!{mwrAo(x`7!{aScCLxg)HMa!T
zq)gu#{^i+$iOY@k?W6eJ6_0Py_CL*dT&OU5URbQ%?8K!n=DII3J(4U~&NtVxxb$F$
z(DaNMsULRUi#RJ_r~UC-tFr&YMH`;Hobx*4kGJbQ%V_(#LQ}t7mdrK_|8i|d*u2#u
zZw~PCtP(c$(8&3F<f{GQY0CweE}Q7yjf&j-VYZsfDjlhJy@swu_9tHb6q%N+y+&{I
zpSXjz$5$*$Tiol+@guPB4gY5mS@-8>c3T@v{_{y_-3}jvRaqV3-kY^9GpyK<`cP_B
z(|mtLrcXL|PH)<yB*~(j_3<TxMNQRYw>8(Uou5BLxa3ron1Ac!^H+n~jCEYYO5I*h
z)N_4Tcl%IHZNz<p<*Tl}?DM|pc6r@n$EBg`?oBbalUyI;weo<KG&^6<jNcCWo*c__
zES37%1#i9cJQcE|RA$lSnO1L|4y}2__o!e)d*<?&+fLh99$$LR$>P|D)DE_=XOjhH
z{EqeCr4ZB}eO*0Acgo>#%Y)gLJM2#EY~Eb5AmjYnw+yBG8@A~-c(1yCu;uGyhMZ^4
zX{Yxt)8IYFYG^AV+5RNt^sd^#x8fP<dwkmhEB|y(`&~Hcsf7n?*n|0t4NAVBK2*i+
z5q`xr>fDBF#V_Pd(l{i<W_M`LpZ-cF>8sD@X6rb4d)0)~oMBh$R_VO0yS7;C)7Oa`
zl0_HuA6xiHQt`ipkGR_o3*X)C&vRM@raj#Fzxd9gg2I~>EzgAn<@nmS{a*d0P{V4{
zmmMFDJ(OPC<ImxpcWFoME{)GBfreA9eum3!=XYaCyvz5>YTB!qf1(zd8g>ySp@$ad
zKXQM6LD;K)YPsZe8@|Y?DSzygtfDlG!k#&66f6I?`p;CXZE3#u+@jp?ySR>i?3!R#
zC;RDQ;SZsGeF?M5=Kjsje;TFnhHqJu^D=Gi`HTNuvd{kM^*2O0#p|?{i<(}h^hz$_
z1(KK69gThzbL0Qc9<Q$&1=HSs$Z7oW)zEfEgMiP=<1_8;J9NC4-(AjjX!63C_pf&6
z$ej85ara-@9Yrh}|G8EM9$$0IT&B^)p!Fof<#QXecuO6-JN;+=>2@-9n1AVa<z>!e
zEBUzVLcWDu+H@y(M*q&+ZbeICw6emw?_58qDzea;`<8eh_mftI7`qQyrA-D?FIu}D
z*>=Tg*;3;OufpEdMtSq2ERT6N79QuBvFxQ(MY#=MoxhL;pF`P+v;z~k|L^2}&T?qe
znV5|~>r})3{95z*!K$Vi|FS}CW*uE=x@}z}|EpCx{SH$eo(d_N<!AQ%1!vtHr&at{
zQ&l}CZuXV$S>x`td-3dhyGmtNT#rBJWxH75iQ<9%QWGq<h(3RN$iwV3?=97W>*uwq
z7H)Q}lMSs<h+wMGdi!e1slO_wmwz!#_2oYIYyB0yseJAE-%rWS*-$U5`)OJDj@SOv
z%}*4S{+yI>=i?3LDc6@6&pYrpa#fYbncbf2SDx^Q^zYir`*o$<^mFT99T8DlXdL0C
ze5mWxOg{Gm0v=x#|E4OdyDQjz*|adIVq$G8x1M)UQ|YU>cA|{Om+OU9vZcB`$(0X&
zc<s4{uR*F?VAo5-Ckx68*yrq6Je4nZ<@_Fp<CAq5cJ}K96!7l4AMyM4UbFiXu2hM(
z|5=@~+V1!Q7SpKb3ksF&vR58lExBgCyKK&a)hx<ReW|zjCinS-Se)I#%-HL9?$i1=
znhyHa(dIF7F`w>j%;y$2zVI&n;1|~TPi1TGH=a`ZaIJUOl{>2IA~G+3c{RswQ-x1_
z`crZLxp(7vS4e((ExkTO{8{_eMVGjXXT;6Ef6c>K`Qx+H-h<v&az)w;3ZBLMIIgpL
z?dR)ix}TR7FL)=TFw?zy!!jmyYpeS<Ckuq`zdpNEo$<~Bhq89LDa#LMh3TF45$`!M
zeO=RxQrEeOJNtd2zpDN-Wc8Ma72WQ(`f7-sLp-y3ip5Ox)@gU2CwHy#=wr@QOHEmo
zsH@5mSsk*r<i|wQu#6{9Be>Z8SlHLJwG{0Q=s2}HywBiC&-oHI{q+V9k3Y}ayX>B-
z`eWyKd5(||+gl$76t1*LsS9-%b=y2A=#=2<Epx46zlCSr$=Yw=u6vnl_4NMIX~D~0
zTlkq~6gr+cu<=}E6<_GP?%R6ZPP26ui}Z4xws^Ae<*pOYv-W1ST`808DPA+n_2-Q#
zue@fvF8nfe<;=Xf&m*4ZM!$^ks6EV)6>@s166b;A{fqVq#5{7!oZKwRUO!{1PWo3)
zPq$qO2f2AvYA4@WwervNhgYoqmc*|=y71wj(C-N)%2zCdclxsHZ_kvOzJ5j2GOv)O
zi+>sYjA38>=&SXAuJer#O?NHtx_Ier;EYoXQfk&I21x|}G%am%F*?8%Cv2~uajsT7
zE;&{tC~vvLw1?))qK+>&KC)`^h1Am5eU6VEN{b)9UT#&pJa&_e-Q1Fdr)5_qHQi2{
z^Qme~61`+uQaSC%;uaf|=&1`0HuZRYy=)mSx}Hfm<@#m&_n#Urt9pdbRbr1hXO`kD
zoe*hxZRQ*X-=*s}ZDP)qI$L<V#4q^h;zO^`%;mUp!s4s>i^`k+1|5uhWSK6T{n~ez
z>rPc{h(J>Ao?_RvH6^AW^7e8}-&~dVt8VJXpH3Y65AyG4yfj(T;^yM-uiFLn^z8jV
z<(xFnI_22g<N3_9Jb8J2S?IaBQNb%eiZ8Uhc5t=S60u$-mUG@0`M1@ciFF9NvNn2&
z-P5TeSNAqLhQ-Vjzgjr;lHT1cy`^il=IFiPSa+%*=5=ZpV|K<X*;I!8OpA-_tZrp}
z6LUK*F1PxJtlh;IbK2r>UgVU#G1FajLcy~e>h+!5^n%O3ZT4anIya-F(Nm&E^XG}=
z&#7Bq-MDJ?)O^jlo<)ly@-4Za-v4{)(#AE}mk+iaY<)Q8eCzM<b3#|mYJ2T>PuWx<
zJYTOO`nH_heIbREmDyLk%HKV>%4%SBCvnr{hkw%|JW7}Sz0UJsg6yR7ckQ3kCwm-U
zCg!$wa`fKfc5g-5*6iNr46P}Bf8CC+{`~7y-qrcO)iGAj`BXivRU%&$C3Bohuq-`S
z`BL=B-g*8vn#6@X7xEnxYZhP((&D{oHv3XxWLvtecVL!l`@w08qz{Nc3h}zyn%4As
zuJ&m!kK=sB>kLZ6?!Hvk)p~yC@6?A+oo8?3m*eH1#9aD&^_CR5(zNSeR@Ib*s7`%Q
zlWg|2_8NE0m2C%NR&02fAt$oD<;?8$zUw9@io|m7{PtGXyR<L7<b;Pt>!H4YTXU1=
zo|+mp&+2n!{W9;e%uSi!*WEs~)o<^fz_(Kpddua`@chlKI{rNH+u;=^HoqL-XieF7
zZgSK8r7zdadYLVLsnVePTk*5!iV_bx9OgfGvtmx`&8!s{X1sEkqOv$F@lZl3Qy{D8
zu|>Dy!@mfx%I6mLT=`;S%&(^hruBQ4ubJEzvtF9>Mf&n7DTh7;Gr6&gr$u>Pob<a*
zGkeAyxhehorbOvlv9El+{oJZxW^Kzyd@=hJ|HP#Fil482@k;m^lf(MYS<wOCudX>2
zFK)+hS8T&`m*%{Si{G>drh99Ab=>vuV(URR_owfdKMI!JHh;dtd8_It^JU-r>}S=h
zssC&7ck!Bl-K{TY&vV%^@0Hh#$ya8UY<)2;c7`)gbg)%S;<*rZ<<DZrUjN;(>64eG
z-{LvHiuzLjr7Yz><l+DPSJWY~d3^o*|5tf`a{T$x`{m7x>k~3vIX}c2o11F8-TO9O
zc0sqd)fGuO$+>;CcYjui{Z$TM95l^a&#LWuv8hp=Q{rJ`@0*IRH(D>9a`)2Q_M5Jy
zQFD{;mQ0a;zoMq?H<M+s=svUk%wN9;R(|Y{%rlRb5`EQRw?b1pJXc07g{{;wWaZZ-
z-2o*P-j>C8kF5S$6s>u5@=vYfg|A*6dQ>F4uINE&ZlYJV*4NjTKY|)t^zQL-$DNYQ
zkI;O|_AcDbo=<+Es`bf}(~o(IGAg^>=3f3X^HcL3IolIAU&^>1$as<TA%ne8cHN}Z
zy&HV4o(sCQZl-Pd?<-Sg<*L8jUFq$*)FP&|)jQ|;vUUp_tNgu>&Sxz9u3fuDiltp`
z^UisTuTJ@M#(>@ZnT^%*-x<B@u6yeyzGFU=+RwE4p3I9iQ5^SzF3YdFp{d6^=h3es
zL4y@{D_bVdU;TaCKHrF$a*saztn5;|H^*g9+1o1|Ix;K|=P*yTt*o{^6Sn#=mvq(2
zUqP>T%SdZk#~n8epK{=5qnBk>&3?XJA#=9PQw}|U^~4I1_|$bL9j0vQ+tq%ky*G33
zQZ0tf6CPeW%j%K0SXEH7Gx+JsISq^FEKqwB)9!8?_Iqm3Hv{#zU(ZgSH&ZS2=9$U9
zb>&N5NBbT4aL`NEI_}L<+dP4_7fr;wCC=WJdF|6Ac(|H(zaR6di(<ZW1NeNFo}C+^
zSQ;)nzfJt^R<EyV7T4pwpU>j%+W1Va@2{WSy}gH4FRqMW{{D35Q>o4(uZ<iV&8qm{
zE;-i`w77K6(lD7R>ks<vw#rvboc|`ZCZ%<r=yMyLrYjqtPxJru<zey`@vxcFwnsw(
zUn;+`%sg@Uk!YOl{Py}Ux0t^LK6AAzk1$ugvTBt^uAhDA*DJRTe75$-m~0YKWBfWf
z@l@fuRWnqd&rGj+p|JR!x;D?Et-Lw4yJoMu*7Bw3UH^tB%PdL@dRU+DDN{f0_ikYv
zQ=z&ZC{3hg$l7?d3$1(2^ZT#Wk>8q$=MG<LW_r1@xX0(r<|*6b&h1<J+l2Y;#s=Zi
zUkm0;PxTXD_pv?svP3SY-Q~$&4z99UC+@N4xq|mhj#!4kuD+hbEP4Gh5BMwk)_*Z;
z{j}#@#i!3PlCsaw&XSou+vYFl>($oREQ4eB3j}BUm&)-`@$mR1S+Vcj3dM;Y5B9Pg
z%sjoh;<1wQW8)OA{!5>u>~ptm+|J`a@5>bn@%4L8J}R2n<!|G2TmRkT>D#V-njkQv
z{C_#$ygdiIKG+}o_+oSX!w15l`<74MGu<hoe$8~-hWF28<^SK)xcgCD{O4q0edEs_
z_UiSjoe#NG&szsSj@f19UbVC1W2egPdGD5e{<tGG*hfJsIoPD_XPv6Y{oOx3yj)d3
zx-_)})mDFDNMH7uC2dn0ySx9}rHm(Z|41fJUuV33MstL1?`^A>_b$8W_}q5w*fx9C
z)r849I`@;3a++>#pLWuH)ynEE&3k`aWfbh&kZ}I@jjfhq)4L_+XC&OdY+JJJ)+e9X
z2M-?b78z9uOMTz(RzLgm(squEvseO)mhg0n-fVPBR#{|Nv0vy+%}b4#ck7GqmCgNT
z=eBdof`@Us0WzEV`W^PDFPxTn;@tJ`CUfuf<-65xmN{XQoV!=%RwVnHNi(aPyOo^<
z<Wu4g`yZ%17WGonCx|6%nY+ZS-!DAtrW_Ue!gO8zS!dq+=MmASYzaq_f_8JobA@xN
zU%7I0Vx!p#?@e)<>JxU%S4iIbWWk(@JB^nu^F-JCt*qU#cx{RN$|swTrM)sOc*@56
zuP$u0*$%-|-4B*pU!Pkh9#<z9cr?{YfAN3D%ZHascpuHYf6=FI69dQn$!4oRi~sy|
z{j$w3AN%ua+L3ejpLrcGeQb?nN`5ov{F+&d)$OxupB~fMRFXX9^Jc?Y=HY_hE>+*3
zY&B_Vl>P*P1K-u$ch1XS`o7rnwQ#Z7x<7X$mLI=tQug)Y+%-@3?&Lf-U%shV{pRfl
zidv#SPnVo({9L@^aa8)tgBf>DPh972DBv)$wKH7uy!r~U1J##%cxortM4SJ$EtR;r
z|KTV3d8rkL4g1PemXvrYZI9csY}zBH$IH(d&cAWinE9;A5v9x1k4s85DZ5*HF#L>8
zo+IghdB^(xdF|RK&-4}-mT)L1)`z{1w>>-YAm5t)Fwv8Lj%qyLFT8l?!OlG*g(oiV
zj{E4Xe`do9I~DG$r;Zk`;F=d?eqnkLTfDjHKjXbCg*^B!HyVn{I9W}bZn5q2l=lMb
zSM*Hwh$xIyy6BnpEA?6Me+J%b`+^m1j~?B)`pn+n&RrL+q{`nct$wb2B<J0y^8a%#
za$lbje<o1H%eP27*7kSC%?!blG1dn=qi<I}&9F9P_{cY%Z||W?mzTe+U)1$unHIw$
z>D7N0Z<EwHGw*5l`umGAjOSYInO~^bpppCkq4t-WC@G&C#j_b!zc;9S*uT?kx{`a(
zttV!?s=i&=a`0umf^qG{i`w~{X6PoUY}>GR^=#YTZ~vlS2{A7h%Y4_fu^_i^Y0Z>f
zxv^i~Wrwbd7S$A6tTJoTmDLaPUNN!zuf6az#{a;nJ?B2@tpC0(;**c>tEVpo0{3~}
zy6~0DeQJo!{8>qFE{Q%1vh0W~zP4FAv%c;0t-=cBU9+Fv5it+e4!C^c++W)_SsL$~
z0`gvov@c(@MJn@I@z*yQ{YK`d{_E<@|JJ@On=)VB)bdzs_Gg`ET`t*DH+CJrdDX+X
z@C(cJX)-<OH|!ttb%ejkZoGMN@*a~=_w>g?lg-5<46{7n-SL0Fj%`uHiSq^}1xNng
zTmC0Dn5E;5iL?4K%`&;<gx#u(zg&I1r^fbRvHJYwOD|Pl`}uzTyeHq+>3sJ1F34xI
z@uHJPYSumHUvYBJvSz;AJL_W90=b^uZMCJVrk>cKF>lHL8-CmV6wKNA+S@|xMBvLW
zYqx9I{NlOmZ;~)W?a|3v8`J6;D_d2MJYz{yar0d(x+HaZyX5@dO}~$dR~S7EP<?QO
z`MqP{xzOv6<<gf+{Jv(?d-t!2>)#KjSDIw=%D&0<7h--TJU3@{-OTNmEnS??h_2SV
z5%e}$b9atc(UkeEA+P_O=cxL-DogrCOss#cQex`$pOX7Nnwi*L_PS%D_*bmk=G5l-
z_m53$XGyEI-T$M!{_KTAN=N%zo)*jvaqB(s<bKe^Cx=8f?{wSM|8~(*E`@{h=E-pD
z`x?%Dm*8)EXYPLQqmS>}T%M-Fq+(V&ao10y&-tl0gXP=Xla81lJ<#&TxBA}i_yx8L
z1sD8UEoc2)Dt&oxUg^x_h$Y(BTP?%p%6Myft?Y<><m&NQ%xKN5T(14ap@m@$n>|`K
z&EQJO_cz=xqx!M4Kbr0Fz4DzE&$xEZ-78}sz<=7fXTRN<oi7aea@R9niurqs#oK=O
z{Kf2(LS{#%9c!~N-!?P+*KM8jmBlIh7`-gF)Z|@v{dd<`M*5HH2|vR>SFKI{-QwPI
zyU#Kzm}!5{WE<mn>$5J)X1;6wy~23YnLj5r(%X~Y`AWBz?>l(mM)Z~UwSDj0SDoDZ
zllL6|em|dkYI=H;PTBhYzwlY2{{QoyJyxe)EZ=6ZVXxFZ$>f9ruJ6W&*4H&=Mn5_E
zE?nY<oVG4|!PA*H?;M`EPsMOr^CzFOqLc!45o4deImv;p6Zapz@xkKdvAkcqr42R(
z$5`2)$*7sIFRZ_P>hA6<-}yJ0Z#?yud%4B$U#VvEZyo<txkkA=s!Znn!;KFQ_oV-p
zl(}>2=Y5OwPn@iOPYT#!dhEkgo!j$lUGn!He04}PPG0t5)!o7})vTLW?LDG5o;dVl
zwa<l<3-z>{4|WJn7jrMHY&`R<j_rHcW-I%1D<593T>Md_`gLQ5vh8uUlff!q&*~e8
zO?Y;f<&pn|zdt4Ydisq&N64@J>3MA3nhSsKFzB9R*T|KvtgmdXF+6|j)hz$zHTvum
zU&TJwU2CHLn`hr<$GUpGJb8WToTU8w%h#TgfAw4Re!Ozf*Za2{8xNRhce*{iSM6GE
zJ6r8ZUhjujN6S~dw>zSL#WlyKYx0&zj_P}cXTqW`PkQ|92Fv?vrJthL&ND8#Wq)zX
zl3&MoF0V{0GY$FFeEag5^;bSs1l8YE(y1)`P*r;G+xB#B-}u@8U0K9b-S3^VZj+s9
z{^nKsfr<MY?wk?Xt}VBCy(QO-j`_LER=!d)&)3_ubnm>brIO3;YkfL#nKy6Q+Y{FU
zncJr^lrO(#Zg+H}NLN6QM97KXjcy{%O0KUzZ!~#peN=P)gz%H%iczTw)9>8jSbi+%
zO1XSeb?p&-k5VIVOWD#UuY>Im`LnfIpUb?S!t%#!QLxh1DYqIX%x?L2-BtNu_=;#R
z`#;}2zr~m5`1Q2Op1*WeWaE^q!fDovI`5s&+qh|Ug!S%O>x;7Vj%HQQ(Rjak6W7*$
zJFnV3Tpbq+3uf@8dY`V&?wIQQ``p|3@7ltbc51TNY-w~+Vw>3O(kXO*OQ%b({Qj~n
z`*KW<-nrfM?D?)tZ?}f3SGzy2i8;A3NaTp}hLY@gQ_uQeyn8Rja;0zB5u5V#*1oq_
z#nyS)=E`~|E#v%p`{ukk4{Ee{Z%aRnf18$2z<zYAb<h49*2TXC=JJO(2uNI&I{tF^
z%|nuhwY1-J3-$J1Ilg$B&F}cd&T{E0X(yRG++8kI?)zP?^F+Gx*-W!F3*V)lpS_vq
z?46|-Zas=S-DkG#^0W>H!C6+fR{VW!?y1i`snE47@u25bw<MRy)$3Hm)~g7uT%fk=
zSkb*p7d*W6m)k3Uz5gRpN<B{TYo4H)t&7P#1+J9UEHg~6s0($uGWi&+lFr<|{=JLT
z?aVd%PCiQFv)jseMq{II=#hr0UJDkS+wJ+Mv$o{yyo5im%}+dCzv0d$=X&oe{_Y%;
z?ymo^|E;FbN|Qgui>oJ3oSb<o&+P<X*td{>+lx83`tJTT_kmf&{P-OQK0XwA+s@YU
z_~=Z&>ecU^_bhBX^MkXlHp~3)-`xS`B40$jw_BHLZ$CC8Vnyorjb&y`+uP<puld3n
zw>e+8PUEI){qx8+KiQN;91>f%*qR^ED-}N`$oR|U(BjuSFFj}uJg4Jvu<w0%-GNi<
zCT_pzyZhdmg3oSUH?G;5NQ!NVym@GIt@j*BtApbDO`cPJ$(}D<q5H19#Y}tIsRp%#
zi8DnUQi_dzdy1aE-hN}t@`+N@X2{kzvnCr`+pT=C*}Lo&Z`$=)mD_IS2Y*_9Z%@5u
z%Dw-dQw*Ml$S&~9^a){&m_O~@$yo=r3f5KLx;Tv?Y3=#XkKRRzsh=~LcK>W+{67=J
z%VEc>D?jZtuUz_k{h#ZFa=JI%`9Hg4&$+y~{rA-q_OP`8mL*%K`AVAy&AxN$TYQF^
zU|~<|k&fbIrY<3Gx06%Om0n!IygzP(qI6wg#L@_pj!@SatDLH)zvrtz#qFKme#$G`
zTA)E=qu1oCH5ZFtNl3Ig|5sF+$Z^!^;w!<<jfI!le2ks1tU0h^rSimpii?rX_vgy+
zZpmGn_~K8#LBZN-E;fF-McQxoU+_^{#KM!v`FF2PrE-^I?51^V)->E%RUW)pAVebQ
zNtT2}T4RzR)48Cs1+VxTxzw*e7vEu3)tFtr&;Q=h><b!)TOO93Yi-EjIlR|GaQWNf
z-zTny-ZFR)rFZw*UV*Ur>2;ki@5?3M$yoM1f;&)gtF^djtAbE3%g>9f=|;T=;+8YT
zzjE?B*=_SHDDbk!>uoHvAB$e|Rr2!O^3~`9+Y|8}1vMSq!DnUoKgWEJ{<M9j#Qfz|
z#|5{wFF135*NF=*eaGH0-g?cmi91}<-u}o_UiTZ96>NViJZ-<W{(ceb)!YBKN&LT_
zt#Vw$GUWO0^+7t%-ZFSx{<e6#+RUg`ix;nFEH_rNKKmj2x?%mo>B?)jcDz6T;n)w$
zbI1A(E=>H8`ZDN`NWr2_e<#Ji%xx+??_NKTTU@W`Pr|&6(kYLM`fkmw-Qv<@QM}zv
za@L8BUw7Ks34cB9G4K1v$Id;zro}nohs5W+bmob@xBgYC#GF@05A{sqn_i{!c`M&M
z1NO*uhk2~|rDw&aTl$~O3=KKH(*H{E{%r01IkS?iE}vW1qFbb>ux;+)<%hR@R#N#c
z_c-J>Q@Qx`2rqpj`^vuiu`eD@-4|BU=>Ooex6uDpn@f+YSq4{Tg>JOo@NS1_%{rMm
zuBxYxn_XMR^7=sHtZ#?Dh^L=c7f3tB9epTrRYYT}<EGc!Ev|ku`|odc_`CT1)VfbH
z`uo4?te2^nvtsX~)R`82cOM3Ol$uShoA)GM@#rV6|8{#PepuYdYvIRr=ie{OeLFYx
zI<J4TaN#YMk9^bF{5C%M5-7X$-Hqof7#3aGzRj~%mHqjjU?YD4k$;NL>oO8V?kmq`
zPg49G)-}E8w*4ca&g~o0^&J{#1~pt%IXjy-O?<P!j_Y5TryY%a7B2PjR;YZDd0pSk
z*TxdJ`!=jUyX*PReg7<bu1vQuw><yu-g$wK>kWQe>{wL0?&>_R`(``2U$Htmz0&bH
zndXrZBk*12{9NhHYgBe;^i~(Vln$@7-Z%N+`J3NOYF5p=_ehET{)|U?$K%XS?=YG4
zp`GKQXV8{~bD#HbXJ!qW?q^^z`^nANuXYv<ciwXEsrsjDW?wy});I8e**4a6cD{?c
zHrs9{9Gh2OAGVIm|8HsE)hVv&2TMv{TVC2w_A^FZQ`BAaS7L6e$U@6$uk6HbZCp6F
zZ<p#aHSvN^UaJ<lbZb9Zvis!cnIbEDf+s3Zu9}{dE3BI<`{vf|!`-oGC(J6}F3fwl
zq2}6d#k~dnS3^4_L>cQ!lQlv^(xq<M2RR<m`1EgY)AeaH(@LIbt!!eAmt5=e<nx~Q
zk4{WJ?HqdLgQbR|wb*e6Z<D+IiPp7q-mpAK*IKD^{?%{3Gg_;EDqTFKwfjAn_xnHL
zU0Z!?o^_tzba~qHisyXqy^@39&oWVMPju5>sr5`#WY4#&S4~?2J0E^{wrQQl%*{*J
zow#m0ZO*1WU*9zgGeso6tp5JvNb>C)GMj%0wN|fr<{Q6FEv6##oDZj)-S(F&_pH2s
z{tFX(bsU%GzK>h?yS#bveCIXMbv=HQI4{m|+IQf8y!Vnz3uf$pzScMF<nx0ak=7hH
zS1R`L`A#go&AmpfJAozOZ^crJ<0l&bzPbOO_1pXZOzF?NiWYCJPRy^}^~sdw=p%ct
zf}q*f;j?1d=NbkJtEfuw_@+7J2NxH|%x`}7_Uw@-c1IVnNknLG+Qt`cb!q7hCWY!|
z`+XaolGD}acUJZJC0L#de*SD_{WsNb+mB4hZ~ArcN@gG5U)D$+_N-6JVco7RitD-0
zAAHsI&h;%{ZoRLjy3{mZwv|)QMU?Ud#C^4TzV6fF&s<vkT4$<iy)6BOwro?6oH;k;
z-p7*C=uDGmmB~4?Le#u}eG7Gqvpu?$l|7*|`|xrJx&5wIvz4d&8d_IRPb$^@7V7k<
z_v{tD`ze23<zAX;vR!SRf%~LqOYF<muIWqE(Kjfz_Enp#IQitH$+?jxZc|jBJr7z^
z`c_eC(<!l8lMT!ZC%$YonR!K5?bxxIXQe`J=cq(Ut@MjctvU7R^S37~=F?wi<n_F4
z5(uwkebpPz#qZaq&Z6{Da@&!656>T49&sXNhqdiF>HP4GOOJM$_)goAb^7!B&6Z&~
zm0~%ST#6b`Hl<9Pc4CRKj(DQ(?8MB>&ZRzmp$=EfKYNtS(-vP|X+2rd*8Jd++1V!B
z^3<Ay?tAuKIJ=KCymoTK%+K2nzWFD1PomQ|wC4Y_?K3>nBTp`yIdjLcxuy?K9)1@b
z8+$gYsxLaTT1I>Iyge=ganG*nJoyo)b~s4Qw@ma*P2c-;qZ<9miAxm(M0Q$#G+lPX
z@BBNJ`7d8BO08_Vc+w|f=APQbhIrc#u6}-LHN|Vr{dN!LdSWDLG?VA$8?NjpCv_vA
z_w`*jRX2R5zQba!((JR7W=TEHTGe(;H!Mste?@Dnc8~8pwYeuZ7}QQQf5tnhKbLRP
z>7_Gf?)1IYn{k>aQU2YN3l9{Uo11y&$)tREVz^5x_q`5FN3Y4YYa9Pe7vE{{SM24N
z*gXGv={46DY+M_7%Ie@%mHeP)ll!|*pE*<RdH-;}aH#4PRrORpO=DZnRaM%uy8mi7
z{n{3mCAQwM>ZjPsl37>QuI};C3HW>CvCSH#lS^lOJsBKtQ@$c<l8y1>@QUqa>eaU&
z1$8UzH#j$Q^X8D;`^V26vAu1UcH&9bj2Sss&itNQ+3YTtJ>kxTm$$TLZYzG*@_*T*
zia&W?9u^_(ufKB2FV1JpRu$f2u&Q|K&*1RoT+1(AVn5^fD{F4JR*F&9=eD)h8FMX8
zZ%;4UvgNqKEtl)vu|2)M1+SLM9Le&`t8Uy^mfkeE#BO)<#gCu&)F}H4Hb=x7$J$!&
z>0NY0?^o5Po;bVXot;V-Z@HCyE4{qzj<ay)%O$%@XMEhOz9WofMdES8-|M^@UL=>4
zoi#8joFx2s*0)KjUfKTkJ2!Is@XS?kpK|L-S=@`Sas6VMFP7}zed31na|^>Tm8jV%
zw~O~SiW}8Tcy!A0l0$gBd3Lfe&)yVUw@Y_!x^J)DzhB{`T=cyC+9!+GtDG;tZ*lab
z^l7<IOO5xG$iAN%by4iw*HXi>gNrZj*xWxa?EmIvR$pV!M^4H5zB;XC*}Ay0{+NU}
zPY;XqMoE>IUx=8i)E@ueZtLpqw<|x-u`X;@3b=UV@XLQ@t1hhG-#`6lVcqXHJg(yR
zE!5+fIxd<O%u4U!+*h{PBl`d4oIZw$V!L)pRc4k<IeBbxiHeP#*5klcJ*KM`wUueE
z4S#nyj{TO;GfDfxX*U<S7e9L9?UV4~2lx8VG29`hrJs|oTZrG6c=VxY;;LJ0b^Dh0
zpJS8uuT`(Lbv>px|MAn0Hb<l~-o06VyOe8Q;mLC`NhwNh?_c@{ufM%0c>C44kM8VI
zpV~7y^;VNl%{PX>Npnu;&w2XvDU(}`@!7ljm#)UVWJ~9hG!LHgJ#;R2vsy~}ab3Im
z|CjfPFaII);uoiL=cJ^ptj=5C;-s!D`(^uOKf_~Tam&)P+iIh$U%dCxioVwL=8T21
z@YOH#@+SS@Iep*?&)FptW<B^6GbNY#oYnVVdUt0fZ`{Fkz0IQVtaL`|>-vNp-!ISj
zI`_-hHHKwB`G3Tg-{Ze@H|S~7rWH|J_H149n{7q>=hl)ZI}I-%RZl;DP$p<y;f5Fc
zpDEqfeEa2dL2K&DRi+mzO}56`@i!M|u(_-3`+aS<8cX2RTaMFCSM7e7xTD12=>a<p
z{;qW`v7CjsN=|z&->nsM<KwQ}o1SrYHs@j;1eU%%dc9)X$^QSlmDw$flb5PbY}2cI
zp205t@l0#=Wbe-7yPNXWxb*iu558;1`t1B)E9d*a<13!-5Vv_XkCF9%ujQxHVlj5k
zd25QUZ{vP!`sCj$k#=|S2;l^&-Y@^^?AL~BeP_+<ujw?NdDqVF{qiTv+bs;N^5;tQ
zewp*_-mNbWr!HzczhUP^$^S)L)*mrj8ufJZyRrhOE^cP^ofEgpgw`A{^wW$yUVVA}
z2kFK6x8F17E%{!u|Gn*jUFYYp%JWZpeeL&G>&FXnN|M8VpK6Xfe{j`?#IFzk?C=+P
zY1D5J_GFiVd|X$qthK<A;8QX!E9dt0vp=0*uc^LRd+FoEg2dymFZFD{Xno^F+QD<X
zb5m>YTq<pu?0@^*v5t)wcc!heQkgmJ$q$zk8`-t)NZ<C6Joo%gSj4Zmi4o4W(z04*
z?DHEh=PX{u7j{}-!~b>1fki#0-wXbvT-+uZm=vnFgk{&E@5W;D3!7f=m$@yN`!2EI
z!cA|}j<v5XPJ1ecXirJj4Bqhb%F;utHcr!-DiF3z_lns}-m8LH5sdlE56m<VZu_a?
z&(CuyF`mg_RTk3@Gn4nvZzNoNCzRT}`Rn7ZBk#B9XbB0qPrW0(b;(uLg5#P#|9xjF
z>^Xg}Og?h)lso62m)N?$y4#t%^`&vR>F%%Rd;hGytmo+J`PX2t^Y?Xr1>zQp+_!~h
zz5HtUS7%lCnd7^v4!2*4zh_sJxYVri{)7{?U)L)O3(dHnankj-lyUEwYsEkI8BS&V
zy`bjA(m4#5Td(>QJ<v;9@5hp`x<lP*&E{TfA@2w8s!n}b@^$HD*PqXfzus_CU90$#
zP3Q7X@0fkt{w_8tpYCgBAF7|aD=z-B;gnfRg5u6=+0MP8GW#X}k=2i`c=266s5?K{
zV{%m6+1;<0euSz^%__HepRF5MlCL@GHq+Ntej?(Yy4+IpRvj)Dne^d`AX}59v|BC9
zDalTqn%FN7e7!o?s5z}sb94|gsxj&FuN6(?;#?kZbJ}@P!<Fk!9$&PH?<$M0;rB-O
zz9+@$YR#T=-mEF*3o&J1mA(DntOvQb*(@fh`<1_$^SbNYi4`VH+84iE4lm41s5uvQ
zXleJUtJhbu{%Zd+`SyedwG|Ux@-KgwqSm3jrlr$O@*exFML`>^Ca&Mky&_n2>OB5-
zzsXmtrff5ikknhVzwYUe@Xe=kEUQ*aZ+K-;(xhv;Gwb5l;7ZQd;aNOI@uBmI=B|6Y
zJmk=gmIorQBlu>y{O|r*>ff<CU+a^2qJQW7O?h5E|K(lTMcNL3vCDB-%Ch)%be7-M
zubbuKWci=I=zEe7Te2#4lDc_|e7U66+1EFYew{WsM*i8on$!1}ML)DH&v>OfzbEwS
zgs(jw65)vjiMdu1Z^fou)?qr{C~nZ8ukH5Z{iM*H0rMwsiCrP?Y3aAw<=TTUpOsX9
zMw+NrAK23VZ0_k<>H$+7u5npve^mIQ&oVvPkUfA?=)&4u{_XY~3{nj>Lwrv5u`~<F
z@6jtb$p8HHa;u|3Z7K`6FP$<qEm$TgGa-0=w^vB4{`H?LD^4}?H%G7UUl%zg<G1G2
zpd7Z_q4`fz<d^B+7kIGFJYBK!!o0Z3+gEo~J#^x-bS|%1Vju85thwiKrCzjfj8^-?
zkJ%9dQX(D}N;f@U$|!p6=Ig)XpRVFGXOjYlJ`?-F;@CG@Z<cD#sk%Bvlh5Cd-=e59
zf3D;NM%H)Xp>JXnA8NRNxI5c%Ysp!abw-*d*GfB{O0@>n*6x4ZYAZ0qci~FyqtOR8
zJTzXnYpwBd1*`6Bg|`~B-L&>(m89A<`rKOheuHMr+DXas*@@LxY>q!Kd}!1C>N4Ye
zj;2lDj;-xG*8EvLUaEY}gRl99zaGjwUUsQm)9P4Y>8d<~N9DivB`?35bSQj1@9fk+
zpDG>PnVtEj$*24N*{r{*^o#uOwf(!)mh3FFnX7sC!=rVYGbb(afAwzanTbpM*X8|e
z`aWTYw_MYg*E56_Z^i`6ZK~0jvQ=`K)vjL#>Y~qTuCESHyz(+Yw!qS2YSsMWE0)Q>
z!_R(|F@7+cd%o@`nGJ6&QqxxzbBh)oX)V&Z{*p;lG%hrEW|=^`!2wOt8!c{$jdD-7
zz1;GYSxRqVUzp`}N&kgs=4IvF?K$=QXVc8iSwD9~J$N{Anz_@%^W`buc~jo)dh2jm
zdiE~acaQIjyHx!6GILLSjh*JMq=0u4synXcSz2BG9cpsFaJLqpaIfDlBM$!d`)3zF
z;Ldb!d9^vK`PAj_^{-shRlOqk<|kY+bAN8~I#T;hsm^v6?;CvPFD#m4OBWZ+UDUS7
zEbP0!<o?TBGA-u3s+q30=f}pbEUnXqa}#r4TmC5W*|5uFs@Xyg)f{Ix0h8rLdy|Dy
z_Za;-e(iCn++;20*!bAJUCKQDRcj7M_f^O6>#d33`SpAI+LmWiPMwi$UwN)3Vt&xq
z#9NQEuV+k5x1Ex_d_J?XWyNy8rLSLWKNQcJ?W(=~!}FefRdcwvKYg3tJ#CMzOxb3y
z8__{?tYQynFif2L=*`JQz5AyE4!maxmDM?}W)X9`_DV7Pv$|947vC4<#A?3Po!?)y
zbMm3TlS<<zFXgy&tDxlEN25cHjx$Xjez(b}t9^N|md{gh<?B_OOSSgs)$?7JWp|T3
zR<-57=d>U{7xv|H?FUY&ow=?u(`CMwr-k>P#21HkcNNxnJdVG<a9Yr<uTvsLjL!J_
z7HSLs`?YAp#+_ep-o7(q&d0rlDh}zgHS)EQ`E6dkL9N=?pS()oPFZ%YAn8SPO4j@*
zoxe7OeirmxX?1d&%9**=2TxBIJ5kTzrPaRcU*fi%Q#OYsUOdp^dGf2i;*LGC8j4$4
z^^dmPb$+n^dl|!=daG5tdd}TGI^oxgCcO`3NmmY@s4ZdEOK+<4y60v--S6Vtj47K^
zv)ER>lbd#Fb<vNX>49FB$#)-3ymIz;Q4DC_?%svEnTof5DXsr%Rx7cljzjhQ*@es&
z=dGAsvZXTaUG)vG-uwRP=cgL&F(s0W+}ADa&3Z3RdthvPlHpCcJ6}QHa|ynQ{S23a
zAII$2=2QH}kZ;SX_sSph51%;BCo39etN+#emr%Q3O#020=1Esf-zVf>*PEnR{`Pf7
z^Vfy%>>pU}OX?3@y8LkQ{o8IYU-$IrU%F7-vM=mq;E$p&#-*K&ldtd1Um<nL{aiA`
zc1hcUw#@H=`!!5U&%Sx}ZqeR**XDRMO|z}d$=rElWw3IOD*Maap9S-mh&$vx)B?}w
zXY5_OtT0;qZuOe;_cO0=R629$j6uB2%*}F1<<>b1e}7@Py*l@K>Z}<e71eL-KSh<9
zALqAAti5sbV5En!t=+k+H$_gnHorQn`{v)D=b4*R6O%S6eat+Tm3iyhQRC`aHy+&a
zNPB$x@7e4*66O`petg~%!hJI6xu<`x@wfEiCDXYjw(@TI`^e5JTG*xG(HntynVH+?
zwSUb$e*L0l#hm3rng5=gC|sxeFmJ83q~p<R;u4knSdB{?_2=$6SlxAIR#n{NquW-*
z^K)nF&99g_GsV97_ml0+Pd$Bmi(kHy=|1h+a|^uK;qt#fvaip~T%WSsqBLpJt$mB%
zc)u!He&A5+bcwjSS;>EMFLBG~8GiZ`nKtG63#qmGAFA@Z&GV&t9v<CUA{f&>Z|=vi
zP20cuiXY?u-x&7Q{_i5rEn0VK@9bJ`X>`L;@PuFQhpX1Sf7YKbonTNf{{!FdA8#K`
zUuVm@uKMLW3!dH4fp6sxBno7|et6-W)dG*Qhg`{z(<N5REeZc?)_?9$dxhdv2gQbE
zdVM@w9AhuZ^URhzQFSV2|LXq3CzZDP{>t}XF|%cz@7+V3TBSeA78pp~FuveitSS;7
z<P$5EoS|||n>jaU!Iec?vJ+ZmUvHcEN3zfEvr%K~%GWjf6Su#%i2VavWY8=t((rVp
zVB2%)7jNG#xW@2sPosm>>*T2iUMU4nKW1Sq^7O{X*l(-P@yy!Ye{m*DSESgwUgNs7
zo>vFsQsgCbUo6>NI&Jgy^b=dRu=76Y4=%dgGw-k1&;K9q7e6_$++g2#^Pc|?!zKIv
zin&`a(VzEY9e4JUu+4MDf4wo~QcyaQw5_o?Pw)3{?U-G$$M;RoIsS6pVj1J-=M1LZ
zbh=*b?s@Ffl4W{^|Eix0?*Gh`E6uX!dw36Dyz>2PhbJ<Bm6$1c%>8^(+2O*zcPqAj
zVE*$$_uh_8N0M#bGgp55JY&D@v6&xDdhh=IqN08B{=5fY*Yi66QHkZh?XWSdD(+72
z-<{E6&)qCbb=_>9btpO=URPIjYn5)*QP*{R{S&%wTYWmY{HO2jGS04)Wp0vldoSL3
zz`{81%d~a<pWa>#tIO^GzqM-hb{#wUx37}pH%<EfOwGdHisj?vH@O?0=lqcRnR~uy
z$@ytVe{SYE-uLr)kBsr-@RRxP7kj_9X#8Tn(<I*i`$e;-zMj1$veqZ_X1~6A#dM$9
zH?gm0U;XazUaOG5lvOyV)U^7;vP;KbKYytE_08)4M_J^ieT}orpSFdgPVQ^wQUCKZ
zqu*~6-En_D%j6So%sm#f?WPvoUzqiC?d>`LAB9)G7q|1jI$QXR?pndzjHRo;M@Btn
zy8I{l+}~I7iC^YFyXn40<I}w_nSA>KPajyh*JOr*%fvHhEX4n%v|TBhn4#pE{oHO>
zRMv-gmdC8wz8iJCjM>bfrS(|l4S$N7kgd(%XVWGApJQsBmZs!1VgGOOp5FS&J45(Z
z*?T4**T1}3JG1uK>6V(TN$`~zXQzejs`_^EQBB0}ZyN0TY9{Z=Es(PNKi}fjz8hv|
zpDtG4u`OkOm;UDZYj$-%KJO{IQl%UI>k@<dzQ4}ZI-F&4)+gsxxzAt~)BD5b{NC>D
zgNtvE<Zk*oGm$Ueq~hE6>b3bl?s^+qg61g1PKI9zxPIf{y?1=y4{uvHi|cp9_Q$G=
zj${d6b3Wh661)4^4okE1O4B}zw3=M5H#sJ~T`V%L^~T||Z|+_9t&Y87AI3N%{l@#6
z-&w`t>t$Xl=sDc+Hmv-|bUjahl6j8Z_tFaiD=%6p`ffa<Eg7`ZrZl(rUHja-vb#Kb
zX0?0``sZ=y(s`HKrj|{&d>4gSC#xR3_ip!@y*7tq(x(5l4P{=e*7$YpTb9mssmu7|
zQxiGuHb>Tps2!U2OxNYy{<C+TtmjvHaPc%AI;85ybAQ2&OQ%216Z`-CTgk!s#*)iC
z6BGMbA3uM2|8~;e-&@keV{hjbJvzJnWNn$S;nf8%T38cYI<Mc(4iV3pl=@1#e8qk9
zhOb)554S#jZ&2%g;nshhx1O(eFYS!K>HqBQ^qF<Vt=ryS6`MaXtpEHEy<NAKSr)$5
zEt0+G{Ox7F|Aef2=O->(usLE*^nx2dc+PJzjX3w}WZt}4wr8$HOS(8SX=Sfm-5nf0
zKS4Ocre9Ym_nvR@m09a67WMsVvogEs|5jW~ZRh4o2hNrKo?0|fLi+7?-xToLjZa^?
z^)IZesq{@*zM~*_=COBmc5kb%%A^Ema`DQRY*p`MEba8WwJbhOac*<l4BPbRm-lZU
zS}qfrGyB>0=VB2rJtE|@7`V8@cTD@Qv$y(HB}e7$+m=yjS&z)V-eul$?8*r{C!IiV
z9*rgHmc}2&I^Qu?MVBh(MVM`v7yR+X$-K*#b&jX5`eC!@-<y#4J4)8SzkIl&<nQ`7
z#R-Rs(qcK;1gb1w22J>_FDj;Id8oADSFski3xn&u+Vb9giw}R9l=kUsa8F!C%dvlE
zi)PI>|C4{;T+#Gkw)mwjU*w+tJR4Z_S-5A8blRg6g;uX~9?m>yts(pB+}*kVvNhQP
znY&nTAGq^7`q;U;xh2Ww?BFF0e?Gp*?zzTO^xz}!j3qnGe(@Udo-bOW@7a@@ra$lD
zomRHEm-)(S4Z3q>B=2yx@=SjI@4&Amv#j~IzOl0Kh+cT&(DnL$&d<{=wwPzuR-WwG
zc`@Z}Ff)(cPPU!<lS(r9?%Q6rIdZt)-tEh?`v(8-mEB5i(D-z1cK+eT|L3_e8x;HW
z^B79LU6j9}RZ488oNU^QKWuT8iK|mL$S!_)nOSpn`SVL{d%u6bGsn;ItzWl4<I2v&
zWB>L|oY!n?@~3?Dl6CP3U$&aBs4vy$y|QU_{e*2>mAI$Jr8<=qz4-hsLit-nZH-xV
zO`WdTkG|EfAEdr5s*G3N&9yON>vM~{v5fostad#pmI&JO)UGZ`!bK(aV{E<lnhge)
zXN5TDt@&7Tws68k-m4*E(<}bV+os7(%Kjc!QD55Yq~{-4RpF!XM&W#M8PoZfT#7%A
zZ#8vE6`gv>Sbt)K2p8+`&td=m2?^!PwKlx3?-u^OK2q|zx?JMzdw<_#t||Nd^#3=b
z@F4Aw9+@YVfzF4w`Bi<}7Ev75q9ht(74Ip|R4yyJmVe*+wQC(yMJ)drCIv=BAHExT
z#?P=Ww^KB^LqE=ZMdqD@`|{pTa!B0TA-HzZrafMZ0#7{G;hDH>ugui-6)9;mysmE8
zy87h1$qV+rU%@gVy{>3l(x%yFPg%F`j8>i_<sEpxw&U&BS9<<^FE?`DTl@M+ME03<
zKh}WTQ&h^5+g^qk`<sSL+G~6E?bN8K$zcb+^&eGQWaJfcYDQ0l$mWP88QLp7XPxvm
zeiFvxXH!2jBiGpf|0%m|_AxJCU43<@#Z>({-zOVWlbqYm=k>P>l*cvbH^}=Ge>=l+
zb6Ff)lzG+X#rJ-_e8u@A{&jo(-P3<#=LY5Mi)qiX-s5ng{Q2IOI|D1vT4rCXdOL4Y
zr&gW8hc&yq*MI5O3F$lQAm6{v{`1whotYBamG5N3S=P?vaNDsjDd768v~;_#TWmMZ
z?EEO={iyT7bdC_QR)yN^dGdLcv+nv{GwqLfop(z;J}FJHdqw~5f};6BM_Ize))nN+
zZ7cb&!_W9^cl~jve}TK^XDUlFzWV-Yr+K>MEZ@M2J*^z8pM?1e`SxDP?@_wp;Ql|m
z<bkVCn#!?dN7#H47BhA`-Dtb$@<HI@54BYdIagR7T~Rk{l(vjq)Dv>tGlY3+;dkS%
zO@(zU9@Z~dnbl$be$9n_Yo)lj&)hTfwA+2uNT!wbnb@kzKQDw$jxbKL*}8dR{@mHm
z^`Z-N{Sp!%EX`%oxRds!`?q9i+J<d2*X=8_&K5TL^J(=Sz0_YH`@+`U+vEJpHsi(z
zfs4JIi_}t9x0qh@o&6!mX~B*IcWxU-^>4YjA&?>Z#@5vnv!A~!;B@%E1hy6+e9NU2
zuRj*t_mZzXo^1L@-u;TpT&G{^rPFWU{q5c5?GryU@#W*QIi42X2It?*{CmdA;iA>8
zZ|^s6(>!P_l<@wvi0zSY6|Dj;(N#bF*S~Gf5K;c{C;o$>WN5#y!;>@#J43g+?}k+&
z5_9i)mrgvs%hK#d=3J5R$T_<X9NnyZgq^*@h)*PF&&S^FEAQSs{qI|QXIlQJt;WwS
zl4TML{B4z{J^9!cs-_peY-PH5e~9?c_2$QR?u$5k?d+=XPoG~-wb`z|Zh~*wrR#fp
z{Xg+tcW;xF>NK*r@b31cGx{+PeiU?lb7oeJdli?ESk$$27vHZ#`}(HLe)wyT<7e*v
zh0k{W4DB$#GC|V*;Pho>m+$XCeRtu>yHd$X3#Z*ZuCp(X*Z%y^7u<WUC9hrNQKbKO
z?qQy}RwvB6n0ov#e7lo4&r5@A+HYxZF@O2zkuqO5%Q)m!HN8HXwkz(<qMc<^x2wfH
zUhTZtrG9z;HC_d-_aBx|zrU#L`R6ZN{%0?`IlE_`<?)#(1pVHv{65b+Zl}A-#+fhv
z+n%cb(<@!`?|S@$lfHu8U2{x!a`uKO+N->>vO2!<Bwz4zfhWb%%eUNqzI)<n@jI&u
zuE{HY%$~LE>%8cPtdsUFkXYlLxX$uJy~M%d7N=8wsp+o`pWYWLQwVsq=h2r*Gs3&H
z^jC+s%FNX;>}<ND?Y4CJwu^1DCFP-k&XuXA`@IVDTH^28KU%#$oA2k1HQPiY_tj1M
zdp%Zf#qEDGcfXaNJ+jwkwVP<0NKIH+m_y!FQ-wo^Z8n;oyYM2v;768jXT_XbPr`0(
z-#($ELRjg4)zSY;mP`)jj-6fNzUcd(g|&PFl{4n&_k6lKv+`5!?G+I-5*<}4pFLj`
zcK>^LWbALdaQ`m_zFmu2K3d$9_Ia}AxYoay;vFZ_tk|nEH2sW?Ob#FZJ@4_!mhYxV
zovOM%FAlFLHgrG8%ODjIJ^7JU=GhZF1P{E@`kB<0t-kMo>2zjBx79~x?D-%vlWS)2
zLd)yAIX5pp_^N#`@yh}6Jq`<(&0NPkw=5x@iLLi{--W9ap5FRkdFk!>i<hGoFO&^h
z!eb`X`|FiW*`X5m#GRY^uC2YTVdj$Pn5n!YrS^uBp_%F)-g`&()$TE^?=lzvWFy%>
zY5x9G<vp^0eyvj}Jg_D|J^ndQ`~4Y@=Gy+wQ1GkHm;ZiDukhc}*LS+Zf~Ur(ZC%*i
z$7XMv_<85DPcvsfyj3H+-{OX!GmpZ_;Jel{Ee((QEStMrNKS6?vWeGnIqS^g7Vdq?
z-SEdIc(b<3?kH#3oV2R0kgs9ie!P?4VBx#P_PoPv&Y#<N7W^?0UpC8fpEl#q+dega
z`L0^mO@7O{<i)AqXOWhyD5u>2Wqj;Bf8oz~nZ)yl+1BN`yw1$cUHqd!^-*r-JlD3D
zCtbId>^tyyeig@xN0;~i(ax#<ED~H^lyf)i?5nw}&q!HIRA`-aYgnazb9?%<M*F!+
zThrzFZ@)g1^FybWdHzwA<7cwfCI0@>Ir}$v$H%!xc0JeM`(2<q>7riL(#@CkOuT){
zrYP=Us`yi!WT=xXxZ7}-p1=ed?JR@NDQBzrLfS&(lO9?H-hR0{`sBRz;r2(xWLC_%
zYPCVsXvTd_mLtL%Oa_mAZ3MrczWa0eVReSZKUw46XFqHfZ;r_3*MGO}@Bsy>?&%*}
zS$4X3yt6%~oy&bEHYQ1P?}<N8EaT!{aON0Wsru+87ChbReq+<ti7$3qzI(D=X!h>I
zQJcEwcY6i6$yWEtrcW>Wd+hLXzfF2FU7Hq~IV#<9bpK@aIJo>r%%z=v)1S>&e!OI|
z{s(LKSvMpYjlwO<lJr`daxUzx;9uP5H{1WeFN@fmcdU#?ahIpH2PUe{|94#F$%%`v
zHUF1(UvyYrTP)(%Gpi!xmXSz<<CbOfTxxBttzTIfR?cme{q6DU-P0)MJGRaJ3tWV@
zyt~WoP^Nez#_KuPP91GG(~lWP+E%6oi`+Z=yivpZv*xG5^PHRtV*SFgkxy-NY&%tN
zUM-)qyy4GV!8ohr4YlvfzHiQ0_eYsi?*49Z;fS~oKQ!;eK9F797T;6(IqTYy&drBD
zt(sr1eDBb_y$q~#yr1pc$aS!~`1(xaS+&=H)R-%Z1^Jx1e|w6tW@YqdEzi$s%{Pzg
zOlUY7`K-AA($>}UI^Nyd@KersGI+7fdrs}AYuCR&>LL5&&J&y6^RvG#Q9OV1c3C~+
zlb|#8_FjjNwJ!+_4VG`dQeD~7vC(9HQfacb=_RG9&t1~aN(J>CduCOke0I~#wm-a#
z6Rz!AqhMye@OzZihg~e*u@g24hW}=nle*H%G2!Fu7Y*CLc8922mi^BbRCUitU(PpY
z*378?r_Y7F(^p}Co$ezq7JXbk_{q8kwr0+SSAIXuPLQbl^qng&)^0xg;ez>{D|^D6
z>RLs`GaH|lbS;gk<h!jYdbQAQs>cS+hn9ZR*RRsJm^5$EmyBnxUP(zzHIuhAT3N1n
z&Ftc(YX{fuwcT^$D$mNw*SDVeZ*Z9uooOOAV`lt=Yc&&7vKK$!qrKQAQgOFZ>4{X2
zrJGu8OQUX89>1|`v1IZ)D`USO^W#$rEl*85o_m}#;LOHV2cO$dTbCN{w(^mDMBK+X
zJB1?eB|(wD`8@W|=6)O)aQ2u)%4P2r*|JTHv#Rn$Uq4&n+sVQ?|1nQrYH+so$*Ga+
z&U^De@KT*0o1_}$Y@=eJ{p9n)&jG7KB-qwGi<M*+DZXYE7+Y$$*+Fadr|^WjKP>8Q
z&sBeEr+gCFy7?j3;-)0Evy-l9&ptO{{mMf7m#v?pJ&H?f_@b;UcPT!)Cf(LJ;fILO
zd_jdI35lPsmm+t^ava%R9=WK^<;<dl5Gj%H&mwd0iibtUib@#1R(||$FZZ+WJ1l1^
zUHcUo#dCRf^2rNp&-okep0s4~**=xGx#!;W8q3JeQhNPh@qt&jq?8_|cr$JMrluVK
zhw1nC_v!z|_Z<koAM@F!D`N2uHi=2knG9HtK9b^abX7?@J9Ej5qu-ZU8XriQxl}cC
z9hYR#X@UC^pU-zL>9|?ac6EoT`jYjZK6xvjSzE<dl&jm{AtAx^-Dr7KOUZ+Ct5a6U
z{(pMKlJELj=UC?jv1^w0IahE$2z*#_af`;s^OhkQoa!Bg$2B;aFV79W%WkJL=g`sB
zo8DL^y`Q>(>Bo#RgN#>KW(IFlS^N2{%{7VCf2S-qzt@>q_nYnU<nAL<Yj=NT3AlgB
z<ImiDBeR_cE`1Wp_n-Ut%IWxItMtc*A{pd(zcyyyWxlm<!LoOT+d|HMK5IWKO>uH!
z;X5PYe6h@&yE)RARoC&(PpbGM)_vNt=%&d1pXXw)C2hSHTYRYNjqyyLnI&ycO*PVt
zuT`q0+gjxFS30kml>}PDvfFlg`OzumzjRVHgHlp8bLXBuW-uuwd-1_TPeh-EPu^nY
zR-1eFq|)Z;dIpnEP4K+`=+cMNJh8q%^?2|3cbb%L*lKn3O3ATR9oGWGCnwhxb%mI@
z>lM#F9sVrh>YGK!SD7aNZK!$0ywsxi>{gxgzMuUZ_n*6FU0!!JmjCMwmX6$|i*G*o
z_EoYdX!ckA<FkXgT_*Ledw0s@({{HXXPMc5T)MF3cKB28baMu!lWE)5oGto!N%zv}
zNTcoRjp~YL?s~T5yGIYhrpY{iziIl-lXyDqeJ-!ywk>8!cV<5L)605krpR`^*rc+p
zjn{NT6<EId+j!pnRO)u_euCm$MN{i@C#I@OS=|cMS5N!@>vc?gW<q&-ce(H^0hdW<
zRk}CF$jw)tJM~A-O(!1?k8K;bS{<D_(fiDjOG|<;_w@Z$UEM3Y<yyqegxb?$J-4Ut
zw3w^(yIFq1uEL3{S4z#Q%bPsE^NL9Deg6yh?g?zsWq7iqG@0+>CBM^bH~D7d<g9Sj
ziFx?wYvrYxJlvPXcN*nSs5w)2<Z=9ep>{TQOG}Fr4?xRzj{m4hZcR_`xO^k(IRF1o
zO39bGmx$j_tovm1cr%;tZK<^miZ{<pd!#e{cz)%kAK97b7M;z>?=v#DJM%PJ)95AZ
zvU9zL!5e$~j;}F|y?-t5?8z5XOx2C2|0xcNc26qp>)fa*W+ZuuJGdt{c8S$Zm$i$W
zUlrci>3{#N&^G2J-fp2WiCf<7o)UG!?_%o8#G^c!;Wg8LUFtiqZ`RALC#>V`#IqOw
zo+-ZX$I{227+9KWUg`hrKI)s3|KGgkj$+O%g@5tS)}0Nic~ig4wDFjitH+<)^@pAF
z??3SW|GECz|3Bw;yV(D&tXuo~{>P78vtR7@_>^zI@yz{y^7W_Y@B5hh?;E@P^2+z(
zFKWI#{==i;B)adnkB%Le&cFEjbBB)4U$8jy@PGGvzmFd+jcwm|U)K1sL6@ZIg0?{B
zeR8Ifs*KkkaBMxa{+RxuwIB8d*@t^I|7nR@ctzv7hP?O6r!l9uPbyN~?~>OmwAk!Y
ztz)gz+7GJ(axEM8a2G0Qs<gWNV7pUwrRoY_9-H}t3J+Tgo_){%7S_Gpd)|`y-^70v
z<*%Ec&DncBu6pg(>v7p{<)6!RvSr5Wi99|mU&Fuh;qr=CFYETr{i8W`|2NNX_r7ws
zFe;vk_|9$rbbb5$M=O`_^SXbad}rO^_M7*1HNU#*+VJ50e4A6x|NY3eu{Jq(|L^7h
zDRy6D_x(JZ{_|P<pN_8GuPgrZrbVlY+MoAV+js8i@?SrXZ9f0$ZGFebjq&SLT-pv!
z?!WN!%I2ElFRpce-1?@k<NN$(^Z8FXt9o|7`%^xH+s6DuvFrZ>2d>v2un)~m{w}+}
zLE2#d>@NPb&HMkFowxZaQhR@&TixCL>G$*hYrX#*nfB%8DaSMZhCjsryF9vH-+D^m
zz<I&P^#xCFM%ooT*AFano)Z7ZVak5lormVf?>qD%{;#n7y)TS)f3Djv`;@%@l-2F&
z+#Ozf`06e{`C9*fs+ZHA*{Ax~H1Gdu7Cx`4t8Vr=+x@4`i${I^@=?$HZw=@F551>(
z_U@V1f9*)cc0PTD?~k@umRY$uA7<a-srUP%NVD?)BfsJ|S6)5-#NO!Q|Jr}g-}=^U
zxijVO?|Z+w?*DuBedoh(Y<2-jho5@z{}D`gzkhhzHvbO~XPfL~I`${t(CV9W-ikk|
zcHb^axSCa7+qX?Nz-kR=rv0D0Q)@K%uD8uwwEg?)n%Ax2ns>LfZ~MRD+{5cK57vKt
zRKDIQx=6eH?$5-!cWl!q2fR64^I@4u{l_o!i<j27WdHQ4%gxuGt$jbY@9GQo6@MS_
zE^+(y;{Pv&`+onXlz!jx(OUjDYw@y_+mr8v?)sl0Q1{pV<L&L1{9&{9n}>aP7%!sI
z{%_8`)A6Z4TEjJOgKYlLz2~;UgEphOmD?uWiRZsu|8)Q7H#hEoT=#XqXY}j!ANDB;
zyT7QFf97odcf!Q=anH`r`^k2{zEafGy1xDXnq8gJGRoUdT>bz2f0D^1m)Gn6TMKXZ
zVRv{Ixl8YSz}DR}`@Nb3oE%IJw%6B9>s)Vlc<TDU`)kZalm1@2|8V>JAC;e%lwRDu
z^X0PHJ6<lEU2)#myzsJb;IsYzP3Li6y%_S@j-}x8uJ}jH3q|g~{jC-M`oG!vRHd3H
z=JqGo^<GQdUmpHxVQJ9(zhC<`Z(n)!Wu}75n`_aUv;Q*Q|92~Vr_rC<e;;j2w`}>Z
zcGW!ci<`Z}S@wIbSxe^st6S~=@2}l<|GWzMPX4{^`~T<3$G`n6by)cSf$CNDlebl8
zN9cb28|_(laPb?HzfF6ccKiviz4uT=MD~a2jydJm->0(GDCHi1{wS{cS%3Xkb4h1=
zu{U=krurMOUVM0WAy?G1Z`ZEv-Y5{GIKyd2c!%~2R({9d+FU(79>?-oTB@abbj{N<
z54IGVA6hC}$!wGTZ=ZoiHOsGL2d<-serIl&suJn)YvFyT_a`~Lc3xqaJJ;4n{Q8F4
z|8-KQrcc~2Z`j%~<>QIk=7#Y414l1Em++guVdYzf-Pw!uWW;(tS1@GFytk$={^!(E
zH~o;`XZD2ef3xw<_H^6RL3ZCA<GBkpCR&|ecxIjQTTaRRET4b3J*~nWzlEJwe-L**
z{+`*t(<-%YuckjgzCTt@h2QpX_viQ(o10>KbH4q5m2dQ(<8R%&6YGUbDthJOe>ly3
z%>MbBMy#K1nA6O7>8hRa(T;~rR?PD|?DbOVz-d;?)Wha&7i70b`kS9ByZtZiklojJ
z-_wMcnTsUV+}uv8ZnJ*BJyd4*ga@L{>mC+PIeL8Y>7QoB>;E<EJ2-zs-DkB&tN%V(
zd-CGpDQas(zxK!fXFs_vpdfO^o`Tc)X=~UHz7S!vl$Jd2HRtU9ts++*w^n_5dop?H
zjQjg;>!qw*uwmKymPZOZ>U&?x7SFSP9de>(%@L88rQDJ&Q{DWkX8*UkT;weIVTQFO
z|Joc?M)v>-)_=^Ac}J^r?&PZ;Ir7Bxacja=;R9J!+G)?@%lH5PyhI^=)pYTuXuX!0
zyteQ8nlo)?$?UkE@x3Z?g52u$N24o0aVNjYu6cLAhHKUXmfraa+)E#CzPz7Jwqm-R
z&FPbI&!_%B!}OM4(_UaE{~xbcYd7qQS$0^*ebrq-N7<c1m;T<me)Ng^eXfZ3ZGMR|
z+DoJM>8m__s=@Wh$it~h+v(@k^>2SKNY~&#cxrjw-yKsvbDw2MnW2#RbE~k*(ghE{
z<SXjB=NI_v^DCde>3{9?$!yifz8mZ7+S!^KniJmGJblo(<n*ONzw+6xQAa=M9*%rj
zxGz5Y;LE;X4e8=n4<)WoXwLe$Bzt$P;?+n$u{g#beE|!n=)G6qeH;EP$1?iw`HA;f
z|5+)oPdmB)S+7e<BWK$mFO%PrGKu9Y?shu;h*s0knK`xZmeWtCy&{)-*IDcN3%x9I
zRlF*E+FbsLSJS7bMTgn19d7pDoxjXa@yCDrrB8q8vpf&qH>vJ=@C6@>75rQmx5%v3
zmbJ6r{A9ULor|Wr(!`v$0LRv9r}(zgW1amI!+EwnHdaa2m$ZGlweMiHL|nR(wBLT_
z0HgUu(nfRoAD5m}jo5bO$??BixBJYIT=Vc+@SAOy=PgTY<F7Zek2_ddd1>y(^lMM=
z{VYtp&-wJ$F^#XAi*oOC$EQo1^iA8G+xqF=Q-Q_h3wU3=^ly~8d&BFwom-Rioe15N
z`3DQ*)N*XEXa$H~5o;1=$YefksiouTu`srxGQhoin!506fxN>VhrT||+bGKKnaJgq
zac>!y>DwtkGn!)dKj>=g4S%iNXun4B;O*~RdFw@NOf*We_iIP~<k(do>?v>g?{VeR
z9b8W=HJA%d8+~$C{~|3f*|emqYUkP}BRgKV_wM^eRI2~(*k9l3bR?7KMVqz8OSb5l
zs*-X$Id}J^Oiyutn*RBZTxYS&w7KgqE6bnSbh^1^_2&oAQ@&Q~#@8(i+*rBkZSlIh
zyYeP~vYvC+Uh!eTkr(M6BC0$ba&K(*&sC_E(JJ|MrcHEvrpKqy*;{J6|L>Zzy4q1Y
z@YhzKUY~7q!=F6W$|z6TIhS*bk*(i^Y);>6_a-kg>R}K2taUDkZADV>v9$$>OPSL3
z9dGmttq}7q`=d8!>ve^_X6NpD7su!6o9dl(**#6!=BAXDdX`E4+QTQG{_2cBE+J_b
zn|}3c<o^k~ojjIk<=kl9#U~wS!9Ksd)JxS@$o)ZETZ=MB*tUay<~KG7{r}de^mD^R
zZDvn*k>tnDYwm=9GPw9uzr5*gzh7;q+4A`*Zg1CZGdZib{g&9F3$K*E_TF5lt)2PD
z)9K5JtB1007v4UgC7(Uv_ZipsuX^S@=L&x*BYtdF;t8XP5C19|R`UG(@T6BJbW!Z?
z#ry(i&spx-@$LBglPvL9xBhh6=FD2b{p2e9IloUcrg(^Z9gnE_!NRL2=d5YGq~`WS
ztv{Z7ezJ2F+5dd{SgYe+{kipb=CS5$_{_5Zl~Df0`~B1f`ukS2dCOVHedNl%8J2i-
zt&)x9uelTcoivE6_#UMmm9ObwX;bl3=D*EcEBlD4RhG9VYF^s;rT+E)%{IC5+|_Ej
zk0)AAXkuIKFz@8)#RmdY)w!nJE-U1inWX78jhQd?xMGHZ)y1{3{-!Fc0xz8skugiI
zn%U(YE7zP;)Ua-{yXAl8@M(O0*$P}U^*Yt={<QYpEyjH_a>o*`BX<mz%fEec=_*h6
ziZ+*pht1SxF<&h`kay0wLH4GEP~)UE7dnbJJ<&KYL84g1<9U>r$-a{YDnD0fd-M4R
z&AS(VZ>mQ5%z(z?hz-h`+a*marlp6Ujuf+Ox}>~?X`2g6@|QU8WSa-!tzZ9D8nSKu
zB6himSM)_4>zRw*yi@0?_p)9;xTs|HW}%gr6~0ej_^Pq~g34dZ4`zJjHd^1*9%M45
z-g)^mXx{0yZ?$68-fVnRX&dh-t^RpMth7|my?)2Pudb&BL}}iM_OH|ZvHivK8O)d8
zs5mnxFIg(iU3vY>-W@UN+Ec3kMxC3OoKdj*UMOR!K*dz1wQ85v^JpJFxmQ2=nzP$Z
zpC1P}6DFSdpxHO~m3r{K1G46?KTYLblB2RU`)ByS;(~~p7smaQ_%~@P&akNNao3MK
z{QhX|t4Z^$r`_GkepuCg@+>I_Nsbo(ecsFOMLQjS@z#}ptJTMQ)%`X1T(kn*<N2np
z=VsluYajbfWyx#tb_dNKr)RrQ^S?JSOd?J7=lc+@O&6=?nXRAlILd)5{YfjM<$_7a
z*FN4}6ZN?|FFHOq;FGS+Cg-jHMJ6xFoSd%nBV*nXmx+@<KC0xKC!x05o3$gSqCx%E
zs=259CMt8hj9aDuB%X8Wg#0Z(H%wSpy6fze)GtpQcTFmsWnVwznCXGl&U0!qI#wyW
zXGXo&&t{)`H@vOtZ`kE0Gyl$cY8P&2r)hh|x%|J3>BZX_>pxdB|D5ez*R>|zdjHFA
z87s3Bb9e>1f&w?soO|}2xj6UPGpRAb>2_;BzG^MI&$M#dtM7U9UMsOUR826py?i8^
zfAjuzXIj1IK0nZz_&l_tX!_b!)eZVvL!D1uNqi;$;PcvN-xVf5=fAXbL$~^^tVYjW
z-{vPB`PQ+JW2vaA$ySrg0g{G>?bm~LFP{5#tGH$5C!V{VkGEVE`}L|puTXz}ozYpf
z-!JxAoVZdVw&-a{Zq~9?chf-L$vrm%ii(%CRqeQ8e(+1pyhoQ<q_>%F-h1xPmH8+5
z3O^;7>wA>)I9=IR+xa_JHs*}MwaaIheiSMGDX>)3G$;F}Yi;U{mhA;G!B1otEqm)N
zXM3)%v}ld`k#)+sSKK~&X6nh-_N3fxwz(0~`Cj7$Pr;)I`_%85M*0rRwdT9VS^Vc%
z{(RfVYW7!=kDtUpeY5X!&(qM$Vykw~x6fJ~D%1GU?1fL6?2{)Q-_FkXq$^{&vDqu3
za80xS{F#S-KReB}O@6!GKLhKN^Gm;fnEQk$a#6^YoP|r5UaY+=UKYRPrR^^X{fv@R
z$<FfX?@K;q?fV{=AzAnD^n`>f`zADO$u9nVfPLcq9N`#c{q<rmcRbDV+otCFow2lQ
z&fYoS^B+GH?$uG8A!~K`<w}e1TTO%FQXH0C(H3>*)_wA6uT0VpA!X%)>9KQCEzW!D
z?|mz<aFL|jvGj~PL4C7WPW|h@x5lq^;mPw8JosL)+s7E~{A7CI?Ds97FZ{B3zk1TX
z_X`jHSlVPz70;sN`16uSo!!w3NAs-Cx%@n&_}!Z~U$rv!&?&YM#T!p9DCi&GzN%07
z!Qa~!HG3x77+9CIom**<o7;QD$zjPA(~gA#H#-C8oevF`{@9)Dd}WJFVl|UX-8AuE
z)fJyY%vF!ymZ@Nl5WRoy+pa=C{yxL_+YX%X6HfJAxO&q+@3Nd+-g=cOl8c|;$+TMR
zZgEHA!%vys{+kQ^tg4E0GV+$I#`&1t^!E>EUoS4dbnC56TNZN7;@c9aFDS3cYh4kv
zS9Z?qRZoQ9y06eXJ9$@8+qz)!j=FuKzq{j=LJqE%&v@J?v|Yc;+jRNX8Bbm=H@>s&
zc|pVDmYWOZ+>~!O%L;Ao`4W?;cF||I&>Edduih@mUN!02w{}mF^qIRZ`CebiJ;kGh
zspE@i)iSM2%Qsejlh0|*>X%7hUAlk5tLNHx^#dZ4_x%o&vnv*wYyK$tgsxTmwij1?
zUA8Qn%D(ORUGYEdi(WmKT3outZo||atQ!n29zFR_BQ>yrr*`i0pME9UyXDp?Zkw>^
ze~tO_U5jM$*B9?!#q>v`!EZ_Y-OgWD%gQZ&vVLk!__AbnPXEj4pG24QoC?4ECVxIx
zj<l9awbq9ps<j_|4(g}gisozEVCSjEa%aaZ(~VadM5c;5uIPzK?J0V~UbOtht@>GS
z=AIStk9o9nrmE6ME4z!^+Iv%(cAT17E3RSn!D21v<QsQ9*xBdR$@9<MGd<d%Vg4k^
z>PhdsA1`?();VSU^1Nzp>+IO%m2X&ob_Q^0t$KW>w`W4$Ex)Ck%bqpqENkC!;qLJx
zU$mbnzh9p9*)M9=67l@={skY;xV8m<cF}rubJmFq#)8iuKDIW9&)Dpc^}y!&@8vVj
z=?PZ8*UkA+!F{$gn{)EBOAi-+Ie(+?U-ui??H`WK{(0!3+bIK&?>0v^I#!<xKQ~SJ
z_|3q~?+2AmexCpIig&bS-48vlwaU+SZoF)BCH6@E|2paI_c@*f@yvU@EZ^v?(~c=!
ztK7=AnG|_%d~%1mNj*G9Fzk5Jn%)M%?u&O!4wmcrOk6fEnpMKy*SKim?B(jqW}bF5
zi93AluI{s(Gakh+CnkSMf3waa^;6b~Jxtu1Y`e}~wzu@v3-NN@>Y2XhM*Fb?6K6j>
z`r1<K)oPzPOy8MzKGaAx-2B}sRk3C1{9oI<I#pKa`5IYGU0k*}yCpWTm1Fv`2x;aH
z!R&d-Ul!V}JA2^mYn2$KGrwlBJY1)u|4e!X@9n>7kA7u-Qkwr-MlHTr-u?Tvpf&3c
zJvj6_)6nwZ)(>oaccM?9WyqeDanIz?#!i)+$7Yx>_!zM}Qmrj`%AKDEyI*Uc{j{}O
z;cKKHzyHS7yUx|vZ{i3HlT%)%EW(hv&hM=7{^hN^g`SxoJyn*Q{>E5*#t-Wiem4&5
zADI<#=Ff`V`nm?T6`dhx<M_heOF~UjC+t4;w2{M_&vb*>`bL(D(lzb(Qdq6~u5XT7
zX?ytU6QQfOqcS~a{FThkOnS7?ZdqK@s~x>5(-xi%4%sHNNN<&*`5~9<vx;JU_zPZr
z;yx0^cX6BHs;I|zLaT&7=oQ1(0;pPjt!xnZ@GAaWfo0^uZ;zjSH=R4xarR0NN%PsK
zp4KXd7g~x=&0evhM^KolN8YgHp{ml>+dFib&Zy0twLZZ+T6pWUx_7tC4n}-u$$Yh9
z+t13gQ=Wfom)hXG*6HBN8rdfkN_NbD+H<vknUle;$KO{!-dd@lebBG=A+JKt@oej;
zmmJM(YtC)y`rz66O;O?emy&tk4$pm~eD=W1;}+NFF8JkOd&&C9*1qCGiIu14yqmY|
z*}nFh+x48vR!uifx8C{XLtt6RsV}=Erli_h+s7TxeOc!gY`sEf>%+BCJ2my@>~bnQ
zZP&LgJmF05#m`SK&*}Ul*DiI9!SdLy^M-S7JG?&JJ0*R6(bDueHm_wK>cqWW_W6{~
z>~AuQ)*2mg`otCg&gyi+(ZE?rPfcVk{A%kuQ_d%U`6OStp>prn%tb4bf1IApSGY%!
z|Fd#QsgHuX;-Mq;JKH>tO9bC!lUl?S@uam=CFJim(ZKV@Ro_IIkIql{-x=jKGi}N0
z$$jfxejfVQyKK+Y$+M=le0kizZJLCF*s`DJJh&d$Mz6`Y<yseSceeGVRuuoXqSL#@
zci2_TTX$~x&Yw^G@)pin#@-h^|NP`Pl|84E*!TbL<QEc45Q*F~DfNjDd-KG!TmDx9
zvV4rI-kB`l754e(H(r-5|4f+eodbP7A9>BRdA*~_s`H;qw8a9{SajAdde+BP<)(fj
zZ_Ra)KrY|bhNC(s4+f^W^t2hZ3oQ4lD4p_XDG#^zjQL+h^t#N8KI`Z_IeA`xg86};
zEUQhO?uLu3@@;<5yHr)9??YbZR<%7=O%bOyt887rC)6#<S1_s5Mj%df8eeWprN2f?
zM3j;Jk35E-B6sKiRJrRWxG=*qbawfrs`FJ!ZH$k2KY2HKY!tcM;_PzBTj%eUX{#HK
ziri)YcFFg|k&6}jYkfJxzdvhx@$(mtz2>V2mzx#6R-0|!ee|x7!;_t5E8ADHdenUj
z{xT&bU~?(|?pMhzZ$sDLQJFr!X5OT=`;X5($L`_FofdHNc)#5`sSB;FMJ^Gtf_*XZ
zzw7kF<L0PO`Ni|Q=eyATEpx9`=P&n(+dE74VTrr`=Fsnj8O}3zolzI_{APFZ%4@ch
z=ieE>ytD24qRUdj>wSxMrgu$R>z<);xcB|i$a8;Acz)~SD)xRbt$)+vr89R$NE|lU
z@$p)9<&&^(nZpiedW`32EnT;BmI2!o(}ER`^^P{_KPd``Ij1$7UCcA?RpP5s$4?9W
zFBV_^z4GR@tV^BKn5M0JGS$2G_o@76>i18-oPYS>skeI1Qxbp9TphoUNqI};+Api;
zYX;6)?jP`SvQx;FtHS*ZAwlu-%eOywO<SS9FDG`!KC7cKNz&1)&z|eMmb*0Zf#9)8
zn*%au7wd2S^;c->pM28~PxpIls-4YdZhKDT>YHqz8Qy9a+1{;u`S{6^(jwmMjt@%b
z)fble8%t{+mbi1c?`7dU`9j(My<2l_;<O*?W-r<GU1jA<*N)cCDQi<j4Wt=078{9O
zPSN0SKOG^>s+?3i)A6xN&1tt)O0qsaXD<iHw;ok_96aI1XT{Hp_jY@#O;WvLTf_d*
zsDZ^ddesa2-!}T2CT2O<mZtr+>N~b8u4>-8zw?)zUZfKeclz8nwrf$PkFEVbrM|J+
zuxw-BzKhR2(^)^h=v@;foGfavoom6B&NZ@iV(UN7aecnasNt*F+{sH;IN#&l*8lDF
z^7^;&2ZbK-o|f@k&A)H`)nX+R%j*w%ZA7kL*|@HJO6MCkW25Pbu6-MWt0j+H8Op9)
zuy1ScuND3_Q7kvCLxKvJ*e2ept@+n^SD<r7+xf&p6JCTfh58G9eq18=T5bE+?-`*^
zewH;?n!*zk0{lutEzk3O`*8pI+eM0ksdb++_4>{S?RzSw#B}6U?-n`#4J;CF^M0n-
zKd-iWsr8%bxB0qFDO?*|eqCB@V<xx!uLtib%||cTqWbG6>=9__eayM*)INvmSe6rp
zH-GbN?tHuD{jDRvcb<E2)6eRhn?>CVJ>w0hc#2<E3!1&nOup^DDCPh0$t7iTA32?@
zU;6c$fs@XpH+v66d|Y3&qEOdK#j^fG;WN9Bs(d*-$?q5Jey+BuCsr~+Z{O8Fn}iQM
z>W<l2(;E>iy_UC7Y4hTmrH^%F7q(j_>VD-=G<a6rlKi@3PeGsizt09|`S1BVSKbi$
z$lt!hB<#$xYqdG6yC&7HYd^Q{_|AZ$rfaVzJdM#e5ZgJ~xi{N!&w-!KvS&=~4>s~X
zd$BL|ceBj>q_Qfz@6N}n{?Ax<j^pXIdFl$b&o+A$C3MW}a=WD+yH)ss-Kxz6z029x
z2j9DJ#>(2`R86<{{pi$Fmltks=DsMrCCvM@a^ED*e7Ud-i5{1QR^I1bxz2#cM%j7C
ztd(^Y2Lk3z`~AFVU6IxkYpz&!%Sg+Y2CvQp?{M5%vnbr0;bF&a8L`g%WlJkXQzw=D
z<!S59R^0AT_lRfyt!lT-?Tg%uf*c?A2Z<@g#XG;~R#ut)NNf8}8Sc-*bN)Q(i2ANv
zIeGnjy$Pq=H6mrpGP>QCZq;RcGU-eGQ=7lR#!u$R{u2nTV0~{|{ch{RgBk@7qi+O=
zKIA{XEMmp_=WS0cu6u0A-n;Wps?L*$6X!pCO|JgA>&i00RhKh1uuaR(5>bEmrt+D)
z#ce~kn(wtHNA4)Ib-z?RR~nm`WTh>e)-n0~ZrvaMqcRoU_5K_EJ^t;I{`2-%7cP7G
zscZLNviL9U_1f|IWL_SPbqnnZXEtsOzp>DPizRVYwA?e{kMbAqS57N&macw%N+vyN
zx9-=*?EPgAj(NE3EKhwWe*KjihsL@Ed570e=wIKor0agYg|)5M)4sBIr{foF|178%
z?Bw}E^x2A~Ywgmmc5P65)^~YpcJ$4{w+heaRW}~(-ELi7<kS*T`&u?9>TBF7r%#$m
zjBAq4-U<yn&6b^9ePf=@33-2&lh>~b&5~bS|LSj!^*sk0t_|~+O;bD8&uctwXZJD*
z6?V20d0ENnYk%?{_PDFJ&0prpo$_T7d%l)=#6J6@kz=)?cZYH5rr!R%kRlcRxr=@u
zwb;!ceNOU(?^i>)TW6YmU!UD`immLu#N&m_+jsu^csDO#|GJ6aoXe9xXg!`gfAQ+)
z)mLP0xQOg9vp7-n*RJf^wCIw5@;UQ=#GdQ*+Z0i2eQ4ol^N#kd`!+JI{_slT*}3Tq
zNg><zoVl`be@fP~$05g5%nSs$&l{WA`7hepXLR-iSHm9@=DBlg^lzOx{QXYOx5mVX
zPj`;*-D=2lI3e_|UYSo#+q#RIpRR75*T1s*K1<31yLX9CEt^kYDt)QSd+6Ns_*)5<
zQHl@4<c#$T5}dEUtLIc-y`16nGw$T&i=O%|fBp2^LOJWA#ItMf1g4!YYPrLHu4v94
z8-*5ykYfAvZ`YfSA2=~_=EFB<Z~d@ouhx3KQopk2eaz|rnf-|j7p*H_e7vioV`S_5
z@}AE>Q?Z$EEDulp=__Nk^RNkzTUR&#+>m`t>$%um*=46Nen^}7Gw|_=nVidtq&xh4
zCdS`C^Q(hJcwNHpiHl99?#^Y&oU2p)b?0x6)u)r!^qO3nA@StV1rckZtuwgGGUr)d
zK3wvsuFpQ^>@0%`FCU-S$Qggf(X&PCM&T2U=%oDgfEEtXo5g#l9-Ck_#i1p<@b)qm
z+i<rTy|1l>6_u7wU9)!0l9d}LB{Mgxn7>yO6!WWnUhdg&T}HGg=&pm?{%}!W1qGSp
z$LFdUe@uL2^K{lGnWtgb19pFA*lOMQhC{Z$MEK^Wxw}@dPCjikn?F!&t8B)MtEz&Z
zjPqxl-X*jyW6{KFVTQ?CoI-q)XBpUs3n|(s>+ybmWV){X)Q{d3A~92@1)j1g=2kc{
z!Ru`BwScbOMFMHQnNw<BmBz8h?X^0pE!ul$a>Ubu73^AKhD-EHFIYyoeQy4~^Y^R+
zXReeMrAkk2w!FB>Na-{8o>$6&2eVdXX+3ypvOeH^meHOS7d3ZG+;mB3noWtDNRL@u
zv#VIz^GF>{<t%o_iyDDqC$x@dpS8N#>8R#pdT0B==Pg&0W;F&c-*HGxuEyckbrItw
zL7&%TYHWRX*3R%{OadcE^4XZR)6VR*`KkJ8l3*dvDwV>YANlS+_$8INyYJn6)wNU8
z_dC^|bi0r)ICc7@KiWP_72zLz4xC^8qw$2?;*J0d_jjh{Vlz)aRS;21IVj@ZCCL4G
z2m3DZnZEJrlT8a(o^QT+?)saAn}xIM4b84iH!>~b?H1bn$5v43XXPf#^1oGzlOI*3
z9XukarzCRf^Ra9_ZSI|OZf~2Bt~Pn`o@Mh&rzHyfl;P$Ux<BdM&F53Ox-P9h(@>Da
z9Qsft`MmnhUp4cNv}qOFdooPq5PUXs?(|pb#!G@W>%1z_I2X^Q)B3x+V^d-=@5AS8
zlBc6eo-dm@uY1Ce)YFAr3iDGBPTX&;F{d~(Xdi>iM%U;5G5`I{4u8F(Qz@t;*3K%;
zuR6sw(abiuVCUtP+WZl^t*gxfP3;ffi1~1RM{+5z%CqB=Gd@+%5-!?oe8$~N^YXlq
zjlZi5ryKuvOmutdtuHh~y{Xdn`0JoFyV=ey&MkpYr=C{XX}9{)@-{)sWmVNPwf0TE
zJNxeBT{}DV<SffPXI;?y^y&}OLXVAG?}WH$u<X3k)SYuNW}+t7dLDNR5v3`!)oir|
zzg+4*6Obiqz$M6a@bt<|G1;(UAOG_kSFJfxsiQvs)x(8*t8eZu*I!%hZ#3s>sMYbW
z-m)b<Za02DsJ(LhP!~^^ldDeZr86Ftn_u$mycATdHtXHvBM*&ZrXHDbes<Z(DXpH*
zeYD<Q;IxdJHBb4G^K<p@?^4&hEcbluZBzP5@LXS7?5)j_&pJ2UTHGY*#uhXsC!>UK
z(N3jv1|`2l!f%{u<~IpkIc0T8)ZQaoT$an-_-X6YX56=T;oRN4Ew6PB&h314E@X#L
z!9Sfn^R8Rm+8kP4d1F^t{H{ce{rmDAKY7l(ernx{Yq!1M2T5O%zwzx~73b#GG=|qZ
z)@mL499|{io$8_9UQv`VYtpKyyloHi)~#Kn^Off=v!~H!dlk!)X_NcwSigVNsGNIM
z|K!uAO}ngDc=#2?hE49`4QXFiv8#H@>zS6z)PGxizL6Z`voEdiWA~c%5lLAUQ)aq0
zp71j=F!H_k(9}yu?BUaib;mAkPDx)b`TFhipL>2^*!Fk3Rg{yR?ZK-hZ8OjC%=|g$
z@tUGy$uuKLBje3F6Q8T=`x_e@A3k%3>D+FO!>?Da=9(<C<IrdB*Eb_%3%?r9SzxyD
z$d99+dzPoo@boYE_+{~&SG)7v{sqmyp;Y)ysCmw*wdI>1E)#KHeC^}SP|=VnXN^q_
zT(Zo(zqL<}sd{Glc|wm)5#z;4LZ2=R$Nc@xGgCh8L`rd*^+OiZ*PnahZO-5L%42*v
zd}qb4K&xNDI-ZXM3U_P@F5k7g=hdyExXQeiEB>j=U%lV)R8%vSBiiI{;N}Bcvx{|p
zS`;WcthsmK*(`zJ=HzFe7kh1(kea07sS)Vf+8gY(b9MTUH~;?DJiF2%$x$VBVE5mI
zgDuyuPdL$E{PI!gCHq;b#y5{ozCUyEqirnTjs!BC;k!`yMn&E3`cW6ZsWY4P?z+FX
z$jP~PY}W>EVb3cY_3Zupze`+CH(KJRS5T?s^0lq>j)p^rSKfNPhgI?B&L??_i!+bu
z*_;ho(KU-}a+}AZzKXgz-OrDEq{hgEN?)7V9xU`VN5ix5=^58!L7A6U3hp|`zd7J)
z$Im5!lBQn^KPBItBRfN7uBY+M^0s>^mb1-fTR(j2%WhHk$KrUu{PQCpAJ4J4wCao&
zYxk1hRxc#Z1Yh4X*P{5@j8iEyw$FKZ_A7758Q!98*&W$0d9EMVEBbbd=i@Q9JT{j~
z){U*4dgc5R&&()$>2%*jwKMAs``vpobC2s<nQKix_Pw||lyl|2JT|q<DVHXH`Oae$
z9Ctj|(APfLndj`3%NGQ$%fz-_yxf0rvgd_8i`y>DIhn3zoV|BVa;4SOhf5xm#ZM9X
z@@MOWgt^tKMSKQYn+{+7{_e@m#oua{8U+RwoD9uTe`S@tfBSaHwuK*Z9$1C!pI*A=
zg1WfRv&CAwR&Yx&{gr5T5#7*rJNnz_Q#(J~RDRn3A#25y(yh8OclMo={BUG@aeel@
zcizi?#`w<*sGP&Q_HEAU5^IYNf%2P<r~0o2%zvS1sTwG{bLw3FH&1HH_0{DK<(>R<
zcFq6B_WR{}joGti&wTOb*+l<R;jUvlH?Nv>q1)_|!PT?BZ&W?Ax!Z5&Vi)3f^_tr%
zub`Bz-?V3!6{WwDN$;=iwh>sB_4Fh2SC<n8cYemdm|N!QJJ<3UheM5czkHrT7lV_E
zSq)2J)|8#I%vQ}&jb>c4Y~R<qO?Pd-%&9q2l~E<l9%Z&c>wxvITJ~UDTiNIDc56$@
zNj$jq?7ouVzL{%tb@$vUZJj*-ty)Oj(P_tSYs~d}_+|lD@y+F%R?f5ze*PnW{%^5v
ziI!DSFD(k#k1Bc9W?SEU*DW@8^~x1DPc=@n`Yy8S&hkS`&P`@H@@jjaamBRte>|I<
z*KT#0>Jh;#{;F3XZ<&Dkq#cXfCOu4iwlpnNTHx8W-LE_5$t0C5Yg{%Xc0zL12Oj^p
z^$T8l=&qi^m_BRvg;g9A3p$QIN-F;^ki9-+o2r>tHa9b)o2PB{?dO*DADR03qJI6<
z{(iZx{EXb!wARq4N4%WQxSWd2?F~sy_B><s>4`z{$G2PVuk-6aI;-l|xAd3)F3b7x
zr7KD;PfNGf-72Uq(e?j0^A^3b;+J0x^>k+G%is9vV7&d7LiVeh=?^R3Ow@5R@yp%Z
z>CE6}aWG$Y*L;t1eSbT%Guf`HAy>A1IIzy@xnbX?wlcm8hmY>tY;$X}dQjleXTSL`
zq|9Bw>3*t1bIJK&o+mP^E&PjYT=n=5r}r7=oDOriI#1mqK)&&m8lOzVyYBE8H74$L
zp_Zn%`7T@vNbAyx@%_wvwxs-f;jf8#V#-U8WJg)-Fn(yGyz|+*GQKXke_yh-=6=7E
z^GPr+_2SDfYh9N+m(Otd%otU*tK!!i!>Uh$r-WzkSikpV&6}fvt*-0%dOl75QT8gi
z$WCIXNWJCM)K0@)em$0{Y=vcY4-ICYPB?4yNoUF*owj!c7v9<OoqT@JR{g={E;F~<
z$$#{c+>e_ce{QnODq;7&Pv=rAxAi=U*s7Xnd%o@H!{r|~ZTxZj_5T&?bbj+xo!=WD
zBHNO@voj@NcTsdv<wBL)Vykm+i@kgwYw$a3;`L45BCg7N>}n>px2>`$+R`bZwdc-r
z?aJzjci-(l`$WBD;nU_n60QczrXD`=R%Z!Y<)Y6@myd4E$<JS|_-v_jxT8M5k>6Z#
zNx$GXZ}@lIsO)?AQe*bJ>V~^pUj?_fPOjfwRPz4Wj!H-Qe|(3;Y&QI5^S*FEG-}?p
z<8{Z?<}wB@;Cz11)UD3!@`Qxiv+a2+zwViOqfOy=Fo&Fe_ollJr-~DnW-ryXk6w9M
z^?vqGyS+j;y6ZCTzua<2FeJd3Q-eQm<AonvyLtZeT|8Z?{y<>4Rq*Dns`ZbJc$$@F
z#~zpA^cA@l{OZ+omx46qeY+Hw*gX6vA`%r4k#hQc_I}m2J4Kmyw3sjdEWHt}Vr`v1
zZ%J)xSK~sFiKld*Eo8RbG4Z4F!|T6-tU2FJ(dLWR+B|nxv2Wtf7qxOG3uOOpcsVWe
zQpG|3W0g@iPEA;^`l~fa%;EDU!O8MH3PSl$7CsKGsZVKX-SZ|T<cGpEpW4t9p;=Nw
zGV`(>O*S?=zx{fR^OE`GKT~g<Ug)=$W5>7S&%UQBEd030Iz{@@F|GgWU(L6Dx0G@D
zf^A<99RH}*e0aivy<Ly=G<GnbC=GKu_<m1{gFr=x%S_7(mUUb8?@QmSKAL9nJ70+F
z=z>*$v>Sad{Mc|iBrT@m)r)Q3=ZlxFx%_4;?|T<6ql=DPbhAG%wfe`{AYW#$vT2=H
z!6zTj`5S-9giQL(6umk9NW+iYukAlQ)IZ_<bLx79mQOsswE?T$4!-YJZB1xaD!l6<
zdFpDY)%Uq+O8hNKQ^Io-%d>?!pKs~ge(h7%!{giglsT@kmj;N76x?ZD^kl)4haTKw
zIqo{_u6*fH`^+bOy7Zd6neF-WCx7=Wji0L^HSML@@jkB#?owC9qQ9^H@w~Zt+wb(z
zpt=o?d#ZkZDcr#I%qfU_(V;djK82Fm56maW-#d2Fv`HjzSNQzP3k2Tt)m}25)V7{w
zX?3LK-)R@Oyl!%K*(~VD&1Jt@#3bc@&$2aFEZMiIu{*J*D^7|@)#6b;QMvE#mP?7-
zV&+c07GI~pVwrZA^Yn*JzeDA(n5*#oxVG`(p5HtET@mGTdy*Y%=6ECg)yhAwM2)1L
zt^Yk?Z<p`EydUgM9SP03=8LDWM}BeQ+Zym-<D`qbWaRAUeA_x_EvrTAHikc89dBx!
z!<lDZOMUb1{Hbd3OUIlHeJ=d9_MdxiQu&<S7vfq2j#n$XYAmTaxXnO=q2N}@v8EJf
zk@d?LU!9V@^RL>?=f7WMPVoQv+{2MCY$1ET{^q7V+x_Qsu00_*=b_o7?d8ke)w@<z
z{5o+?z$@0$-_z^8=hI(l8)Mda_-WYt$u8ww_-CETeQxms&0)vo>KwO4t$!KHqqy<m
zr5B}-R&5R|RM=^;e;W7EBCD;t5*-`GqhdFEn^x5vT{icxaF(RU?4Loq-?3k~d+}Y4
zGDmEfQ12n5DMHbo%32PszVNPj-BZTJvPlKMJRV%z+`H)huDugZ|6S6W^<|FFl~9J4
zQ345H!jf|T{5tbNjI-%;)2tffzOtQv9!$IPd%;?kg@p_D3vCft+qzTF<ki)W&o>%+
ziT+l;b1GwF&gxa==T`1mu+-~i)Q#`c<hWMGZ2g!e>zeA)P`9^t%bdKEsk=(1Z{Mzc
zbuq*CT*H_p!OL#zExgKj=Pk$YsI243zn|=y#kT9>l<oPYVj{^8lzk<quira;6L0S|
zhr^rZ9Q<f(XS5=RqqKSP$-`UkYJJu&|8{SeR;QD2yA?;_sZi69qYt*}?haIZ_#rAO
zww9Z7-Gp7M19#0AEJ;n)m{W0f=DHp&){LcXN9Ou=R_oV1NZn#*W7#FRK;}@if5y4H
zd#A4``V#Y2P;+0vr1xi-^w&J!(|RUqVaNgHUppmiowpfRJ=oXuaJv(;WQ_TXeFC@t
z6`m++isD;s*Yqa%OW4de0j(zI<}SF*ctzlr(=@B20a+1cK~m-WoUVTHW&T*Yt}1<B
zugDXbzjc2T{`@*~Mn52$<G=Xf+YjREmM;Dwr?pn9(P}{j$NI&r=O27K&EN9z!eVij
z#~gQrukdtKCLTO}%%$kuuEvS7dxcm|Fgh<hao=&xN1-JZyBas`c6}$eHf}-Ugdd++
z;>|dP>Z-3g9#x#<;8~Vymhw;|ZXdr@;%oIOQ@Jjloh-ZXT&vZ44HJRZL(4rI-+Z}h
zvwv^xbYWAQK;K{iQM;pujxJ>9IaK_@{h32n{0jYD<-J?ElPgwhmROih`)pHnJ+pD$
zp=qId>??m&D)O)VwpMJz?~8lh?D*p8xNpG(w{<!{U#A&NnX_jtn|+iL=N*HP#j4Gj
z7pLx0)mYOX9HGG@de7!$*30?^hB^B_CcntFiuR8_{e*pD;1k)9PYb>-x-|V@Q%`ej
zp1O0kvn|JyNs@d1@0j$&yy|a)LPYP^qU#MW3fIg2)t<O-t&QD}7Ul<b)+;rpsucge
zpuNpTWqtaIj8>PuPh?Wl-*2?}^>wzV)9xuB*cXXJU9OU~KfJoM`QhZZ4N>B3PH~M)
zukRV$iEn39j7eWVmDOm&94W3ZQ?ufopU2vMXg4&Gh&8F=T`$jZtN#1sB{ggN6+{2;
z`R24~ZP1iw&$;JTA9wR!pE$YHJL6brW_+S`1p8B?{fg@vPyMXxU-i?j>(S(vvV~_P
zO~g`ynyMbHRViI@dt2Dv?Q1*Nh&#PyxoUUYDQL=_fSHr#uKhD((s|FYqsugnisWTK
z-d!bn@88DRwb4%89*)x<#;&{ef;sZRnz`ARYa0uC_Dx{Tj^}!Ka{FtJoqeUcG6pl-
zWL|D$Y*S00TGsN-KmF3t^hYz~q*E%2{In*jKXzKVoJ-3=ZC?ET*9)ox7S}AX`QYW0
z@l$V(j=8%3EAP#>*ThR6Q#O9+ymg+sPU(khTYrb8-K<-q5b*lTABB%v7KLelJg(21
zs`1+C!L*Z`lOyNauF~DJ-zn|v@_m20*&c7-8xX)Jw4W<(H-BrG>+1Ix*`MCZKU3+x
zcy^e8rpDS=zusO=Ox@yH_4tJMs!aAt+jI>-KNbJ#oqYJE^2*0g`-(lvST)Ztnp^nz
z@sm4-ON-YFta-8Q(mFl2yNubjIUd(N6s&%2pY-R|@0$*$@2*u}-1j;0h+<G!!c{Yi
zr$r_CH~#7*ZhmlQqskon^NZ)OojTY4UgFEdqqlusw@I{|Fub&J{(7HBC)9$(mZy1h
zTfbjr60fvQIOpzd@BU9h%g#p>eg3Otp&8HcWZ8~OR}Z^HPOI4Z(^KAGB%lAl0uF=k
zd%Bz(HY_XYlk&)3XQtQcvU7eRyQtm%bDvtKytlt!CTcwU&EnsW6eeGOHal&Vnd#+C
zi)UTkGgH;KVgK_>7ms^flYMk>nb*ss_sgW2eSFguqdc!Jd%NY$3bm~58)hW#dCoNb
zSbU0}{IV^J+H!SwuUOAxJxQQj@>tcmOSW^=!Z%LVmoc?(dds(*^^)`5nw`(}XPykd
z`0EJctEJ}0ImA48zkXO=8(x`N*ZJrYf6(?^_1mvc$wtL{*Y&RJZWfy>$~SlQTgSaW
zoR3xQdMUgAT+Tj^rNIn075(JiOuKhft3fI2*1QFK&sFhXc%w3XSG9!ixrqFnTZi6F
zb9*gZ{mjCH_iMq%{HB*bZ6?ANLH&(ebT{2<?z!ZJAV==nX)-TKFMr?8^w;ZR?-Ul_
zko^G?K37mzF)PN^INsvc38^=dH$%_WyfS%QX}XCocgKAF_s07tPycx<P;RHr-hHPS
zRwVrXxY%Up`W;_abQUCBRZ>j%*j%uF75CD0R#U#-Track)vY(?KT_{F?s_-Z?$qjt
zS6x#h)y~h`b9(9|L4KJyF|~(rrzaVFn5lSko6n9dnx|E?xcQ=%*0ao;%A@Mvkp44L
z`R`hvLp6VPeU_H_wR_#Q4;igFr)3WA`0nLwx7Ld9*daB+MKY%*f0WkCoVw^7Y%Rdr
zbBXFF<1K4W*qu4N*lDA>sAi2o(pTBFHanIwoiLug$Ep0h=B~xZGgpV|ES%LcJ$0v#
z`my!<)`s&foM=@hulMZT1*^-2SzU{CcK)_Z;dVd$FiEQW+QL11z0@=k4xG4IHD&RG
z3CHK%Pq+|nn{wj~N9^3cPt4vv{P54q$zEph^M3#0s;`1__hf>nDKO97_SM+>i^}4O
zvNF4tPm+F{#<RKCST_7bZq`GGY}SQ04Xf6g@tGep=y6>aZ|8bFMAiDc{Illw=ZwDk
zn8z;H3;5I;w(2lb+}=|^CqI|q&rR^Iou{4Yn|8+NQsty~A(G{J>z;l+X!Gk$Y1xX&
zefMOfXMNvn4O`~Kebha3ZJ$F~%jUW9>f1BL`L~81`eMHG#^3fieR9tW7XSRX^7UTX
zIkR`oeD+PbW=YA!*Wu?bmA>-tsM~k-SH%v87Ok5_5A5D)6h`ao@kU-r`4ROzbD!{C
zx6_ABr|9qT`2RD{Y8Pm&k#g3>%2nl!{bt)Q3pp&;I$x+a*V;Gz$`o~nRok2Oy3eh;
zWV2E`{l%|G^9BC?kqe%8^L_EZC-TN}zchTmddGNrf7VE32z_HyG$%Lg{=RvyAgiH%
zclXI1eV6szW$jN!Hf8(M#kT1$qt_(YYGws!znp!X<3}Xd+B?P5Jf*W|*?(NXWwdSG
z%M$iSr+Df%G=JqwUHIqK?-ND3&cE(oUtPIwYgtWdhC=aU%LB?!tt&q*Tbq~sMdC=o
zZ|C>ZpZe|p)oQHmS(o$b@9XWM54XKMb$|DFd55VNOr3*lQYS|nO*=H<-sVINi!0$j
zB44Dm>ny%hF>R&xrM(`3g_0X*{4_fjv1V$nF#Ai%`o^QTZgU!YUjKJF<^3O)iJft3
zY12B6yw1qGoxGPr>cmos7q6DpXU&Rvu{R{dbkpXid5;9Q-@Lh6{N+1YRm;ihAyJNJ
zw~3Wq4WAW1<wWo0!Vjl?p88ffnSTGc^jmLB;rG}he^jRLs*><aJMr|e%PHYIH}9P4
zd$r=G;7&t7S)0Qt_nv5lTs}7a)@zR4IY}v#zm&(P6lBfP3Cvr0)63hN**x0t5dZJK
zq8y!b*M68ZFTVUl>FJf6+*E((rJs&|JDM$SdCk&i-!r?uZPy-E9(UTXZR3nN3X=B@
zG*)N(K99TR@_CtHU#zdueTm{UqkX6AKfOtOs5PBk`HjUD2cNQQOf&pGO<IxUUu^sO
z@PV^abE@;E^gS`@?lnA=)VBJh>Z<z1Q?2bY_D!+dwz~7V-R<L_^&P+JD#Xo9T$si0
zUUqHMmHH{^%S?Bjn6Rv|*?qRhnb?%1f@6_JhNUIbIv0vuY-|6y)>`ZAo*QyI{()B|
zy}o8OZJn<{?556d)#gIx4LA0_nej_bHrTVMe7d0FrI^}(>POyZE>ukPN;|vmZBOkp
zCgJM~tr9=#I<3)+_dX*yPi6H@mGl3XOw!Huy>g5pX-m%Rggw74m#s`TEw(W)nLEi^
zKCOK3*Rn4+<UArv!mbPYsn0w%C0&VU(Wf-mdFDoEudbZGVcp54n{%%7O+B}Bx^CsQ
z3Gc1bSe1*Ow{;#n^Do|qzi8EW)+Am2i(%o9zE!61ZtP$@Q@nNc<b!|a%Glg+`Qs+u
zecOJW0E>qH#7T2k<)*)pJ}P(m+;#uusjHQwOXe?`D_zpNx8QVm(v7{#%rv+*c!#FH
zI{Gv|Nh3gSU4qnJzlgHgyEadJy@NYEjeQ5ZN$V4qCo6^5Eyz9S75b$v&`&p;aR>7<
z_W1V>lYD3V=9n*KA$e)5=j0`u_ceCQ-u3L^*sA*c`h_Pi4rKYf+V%2qyY6nK?fQ58
z5A4Vl5#;2Y_9^d;+KJDXz6gDnuWK^9#53n-?XF$IA+k4IT6C1ttt5Khr2PLVb?>yv
z;@G)!UPYaKe%oAt(Ph{4zRi!P<la5JaFywk<-aZN|8>=yQgiQ*P}LLVEpnEQeKsq#
zm%ljo`cOm4drP)r`KSMs+gJ2F@!&5h{FTGsX`f-N{M*BHt$UxhMM|KA!?cU*{C*XG
z-6C_#omKPK`SQ<4=NZ}EkIJnT^V(oCIVmsOI{t=iYTX+d_1)(__8tkGwWNIQzK^$T
z)<6IBWHa}*@W?YYPe1f8w>~?`{F8Tp%*K7IGnWOJG(|)e*?Fzi`5jSuHC;&DGp=gV
zN>&fME&cN*ab<0Ln;Krb^W~H4cilptFfG3Cxq08hNsG=%D4(?H%q`UBSdnu4;_*<{
z$P*KlownS#w7x?4_Zoe!beUaGq^{oCegDrY=Hjdc8F9}dg#@}<=Im+{d}izFI^q0h
zHi4TL{M_g2tapt&{hV{X*0K`}iqj%aIjaP{k@{575&F=^yL(-YtDWojgL_MamA34f
zv#S5?lCSev1eqf)A6RIg5#V<8&><!f_qEgaKR+2=vg`K_^H1{@2_$89nhSK4nufUR
zeVBVO(=O#?vB}Kzzt>9dXs}4=%{B8io13o_<#xz@p4plrpZu~Gdz-7LW3JY|xf`J7
zc*}Se>m+giqB5mZ-`Hn&Xy-q?-rJkADo6LqSy7J4l}Gw6O_iK|t7*;_S?>7uRV|;Y
z7N}dlbK0zT`k!w4hp(Yp{JvZtHBK))Eg3jhb>`d$?!hJ93e!D|zOU7mHQJKXu+RPF
zsqojT54n7{Eh|c|oL0xn={ITd{ZAief8A)OcVY5+tMCco{8u7ZOAD+tyRH(^u$4P8
z_|;>Vza31WE0>(xmik?9_oB_^8V_gh|Hkw8yz`<o*+gl#mK8T5&hP4QShH)U^}7z`
zW${l^S&}|VosaDfx*p<R<J)pIm2=jtRSK4^KYRHcpZ(N~)67r$Zo6H0{hE~8zj<Y5
zY8p{9wx?;Yj@WB<?AF$)Yc#`Hv#q|lZrUlc`dZlJ4%be%<U7AU9<KS>X_mKFklVfG
zYW8)Z?z=vb8?B?}_CEh(I&ZgF+Tp&rSB@qhdGz&7)+!})(}Sg+WeYE5No8FZQ1gk5
zWe%MvIcen_UtR{tS{uKA4;=PxHBaZ4Um3gnb82b%Vy%g?kG~xJYhz~e+F`}%d2J!l
zwkC>3_ZOAh99kC3U+~CVR_5NuX(8q8^+uVsK~_c9Yv1<je5vd6fB#qI|I3MamrTE3
z42ysEV8T>k(5jawQ-8!>d0Cy#YI=709kIraz|hchXC6%EQF$JbGI8h1IK95}g3<Ek
z&03sG1t!dwdouHR*Ubw7M|+DTy_e|AKE2$2t~mE#t2k4~wTo4MEY$sEo*(IKx7=ZR
z?2Pf;lHR9NjCuGXcdGdFFX^~@^?;Rwz~WcRPxt)km1A3Xc2<dB+@j~z#Z%OMtRh2C
z&--@viJpA&|9g9DUQNuqwEeF8ZQ0aWqLE3zE(LzGFPWFZceK#rO@@i467!Loz5pG+
zC#}UcpKkKC8F!2Axtm}4>~r9?spmg`b+<pg@$=+!<waMSogbK<s+(A|u&8$X<*Nl>
zYx-_|Kb5Gk*7E#Jxx3q6oD18<XC<Pv{ds_%uZ>95-fOq+ZxR=n9H+9FbCuMVH7~C(
zc+aRg|L3-B`B?RbKX`6iYso%S^?Rut*><TV{B5>)`+T3~FuAZvO{>_}%AGiOZJ(Hz
z>|t%^>`f~Sl!Vv4*?Q~ep_fmTSmU0|{C$km?kDf=YNe1nmGZjfE~0Z5KI&*T5W4Sk
z`dsJ~t_NRbcK+c3FJt+hzvEov`RAVmIt4a;loVW5z9mprL8s*!r_z~UzocH+oPED9
zz^`&mPei4tw3K;ZteWl$FWI#`2FwvBCN7@wJ<?eFaD%k6pwmy*uaD0z)OhEY-%)Vl
zsH%I?Lysd9`@hdrTR5fhf{3rfl1aOGzdm`q`oXL-tFH!bax_w5;`QL;o3Qr&@x5E0
z1ywJ}6Thu)cX;PT&9czzLi1!FmONLubMx54T}3k_AHSUU|Jch-|IaKuwpA=DdZn00
zoYm1*@yA<a@)CNTJ0AYY*Iv4Ag3*!*58j0ATs(K%AJ!^s`GwPk7A>?)Te)y;-P+*G
zH~-I&efVZ&ozrao3v({)7mIP(@{7;R^`3X;#5_i&DW3PYcO8woInU<A&Q9@&HLIsi
zyUnWe&z5;EWQob8?{o70Rak%5ExmmEC&zTng+~@%zSTTW_TiVz;CcO5rY4{1`B-v3
z(r<m`4Ch|M?YmtBFGjz<xn<RqOA~HSEfYVrL}ULZh3lr5>Q)GzF#2}HaMwJU<<A^!
z1Ff0N7F~I3=OVjd#=awq|EHV(EuWK;e&?wA61TgGnsff|Wp4<X+&n4##KTo?u|J-y
ze0FwU`0Ep|-fnyGKk97L$@7k{j!uf*lD>4)=L_jm<qrLsU2=0<?v{D%pSV`*&wH9y
zd`~v%>cc8|^$_>f?E4>HGkec{{?wk;-m99gN>8kul)j;E^G)-~e|BvTm{-0&^iqi8
zNxu`fvUY4Po}GBO&USvY!jV_I_S$UN+9aT;bTMerG~G*TOZ6I4ubyz+&JnudamV)~
z^M!8wl;nRI_TGK3PSovVA17<Z`J~S9T<)p5zTj8NEav0ok8j*^O1`sC<lp{pTjNEf
zL&DF0zayPBQ<j&xqoAkv`#Y9|Z?jsY*PnU1R9(?%Nzmshrc=Ba5>I(~N9@{n;5Ad6
z+`Gq7H^utu_w)rZ@7OtM+tN%vJ6oSu@8%xKtx<A+6~sPwajJ=Zg?#Dik0mYpzQ3BI
z6P7WhW4eUEnuXu)F<*Jd^345(#U0-zne9Iv6K`hy%jmhRK0jq$o<0A&j^f2j-kANn
z+UfSrm%-=Ok=YtWk)KPlx7=`&N-Om=^fu1lz%uRg7MbTO^^00{ZGJc~uUo~npy$?H
zvAH(|t>j*+ZA!J4UaV&Pa$()Nsd*27^z}|*3<=w$|6hoGzMRt4j8nlsF1=)vDT-h9
znagueSH|Ly>tPD>{EXfAem<D9Gib-AX)Y%fjEyZj+_x}_KXBn;ZSA|XRy%dY^T<Ck
z>vOi)O4LRLp5662=4$m-$=B;+Lkiifqg)kDyG-7v6}=8fj(^d(IqA>doS)A<ukZ5x
zaNuW{eu9H&T?oha`&*{J;0`T&#<lo~#hY8-(zYDl(;Kp@TriT4WBmzU{qFZyCKVJ+
zdaB6vr%IjWQ=>uT{4=T1nM*{cP6?Fk7VMrX*vp|F|CfEzlRLW~LDq|$+AJBgGBTZC
zUxZV!C~}%ihfMJFa~EvQR+ntLz3R@SojKO?{S2k6?6+ULTKv6l?wjoUel>O{pY)tw
z5EmY}{ZZ(eN2NvFdG{VU_0_DHAsxP;rz+~q(}*uCRxEqKq#Dn`(R#S!y7+_>3iHo8
zYPdugRXH6v<TL3?j^Aw0c8=BuPeX3aG~}N6c<J<K9aE;xVDI}>d6eDiQ^cv=wF*Ts
z`>!}2&uDq({Jrq_tqn;vwvH`ZdKPn@jJ!GF^PCihCo}e3IUVxEudH5YnbgdihUez(
zIgpcU-Cm}4hQE$`&B0g~3zZYPIy)@H#UmoPgg5b>)bT0#c;dNU;n{c98$HVYl{!sK
zauQ2anxFXMi+E+*S(&N_a(VkMzT-dJ*vYC^t^c`ZN#p%VX)l!KPv==XW!kh8%4_Td
zpA>!jw9hkLPkxz3PqVvtZ>_$-1n?RXpC@-B>+JGhweHNGll<mPqTiRLvAM$DIy#OP
zAy2+E&R5g={_DYq;6lqRvn#uP6|Jd!Z?<l=qk?Ro&0G8HXQ~%5tX!t7&l<NiEU%ZT
zEpXNA)LVz1_gGdwJ+bIO+`q{hqGdZ5F4R`YU(V}%SlRQ0{(bhT(@N$wd&N{r$VHwK
z{j$P)UXqua^Ci~vQhSfB&JF&OTCru-x}3k2dOGb>RVs5{?-!C~x~D2H#HGZM!?xt9
zSbLyn<)POrJ#`H0HqPF7h5zJ|^+g*$2U`7Fw>f2_?CMp^N}frVeD|GjZiy#f?1J<U
zQr<^Z)gpgZ8qMUH=`-sltAhD?A2sK+w6-@&3ilL#p3$t^|5;Kk{n?3g=O)NVKTch=
zrZ;Nto*!B>XY$NEv!x{&v~c8ew}XYFZ_>o~v9A(sOb`2H%~Ah7FFiC=cl!c9yYdF9
zQ+wC?ftFpI|80LZ-RfUcWqd{H+gQ1zhevW%J|%yNo0Cvg);IHHU6tGO6)QXiN<TEr
zkX`clhNqv5_3^87V&xa~%=%^Vb7S5)KA%bFmdt!(?VP`9j_>TVtshSPvO2Zw_sd-+
zQ(wQ#3=02kae4NVC);}OG%<*IelNXXIAi&`O6%7%lqa7wFrJ)fm%eq&j8wD9ijz+o
zn9q0DIU8lLS%>4Y=h^cqGft*>oIm%O&GLC&U7)o8<=Pmz_Fd0%*X$0I3ctB}j_pm?
zqPJmXW>Y4dO*vyX=j<%@jV`KNud2qpf1Rc=GqKF<?2Y+0XF~!-P2Zb;bia08Fka?)
z(szlKGkI1{<o;qOz9{Rk)n|bjCk%>y8O}SSl5sE4`Gx4@<ulL7Sf-ohzbv}7=(F(c
zj`kQit=F$L=DvG=XDR18|K*;sZ=d_*Ps%v!mVGVq<l9iynD@I66c`=8^Ts4ue4T;l
zszuu_8LjA!Ofxo4F)}`r_IbkmR5fE~HDh-^=2P08x;__f+qxJTJ6l=0l;1Z|?TprR
zSBN;e>xWj{tM?BtT{SVD`MM|ekMX?IM^|>;{+u0t+2LCBNd}KuDYq@2>^t-{dgryZ
z>$lk`&E{gibDUvSS*UF8Hsx<@Yg>Ky$8WmZXvO#R;)~~bu@R;}EsLF-LO;K?HQg_M
zq$1-=`i5KU^AogGj%$674v?OA$;s&Q=RZrIu!!&2^v#X8?O6Yk3_GPTCWrZ=Lgio2
zvac<9zkJi_>Fgy9VS1M?ua8K1BJtAV#O0^$7CVjKz3SLB#lZ9Wa{tM<Kd0WxuAL$1
zVCH$h^0lDA!&;8J24XX1Uq8JwH89B7vg@Ao@?|SqV|k}OJ2+u=`i=6cGc#B2%6=SZ
zX8XgU`g*fr_0-StFB5H2>&{e#M$WmtZTqE7hHfV|6#RK8;r-%Q#-of_{ynpnyg%g1
zrhe8v^pR<F=FPhfOI_2SWxHFNg`NMnxOWO?gNV4i&B-(QHs>0B1>McMub(S^^D*#q
z;M8qVN_}eHMHipy2~PF>cJc4>W}m%NS|=3=&7PHcH!#(9SyJY)?8zmvwr8)NIBxOb
z1K+jQr{|`~y_$boc;$+u&)>whg-o~b`nUL`_m?kyAO3u?aoaNINZVSI{QDj{ISiY5
zWd7>-`>j45tFR*LuMqpIaK~5wpFQZzk8BT2IqGrY*Ac~6%EEJQUOyQTx9l{-p(}U)
zr{2oS-Ltu8j*T1tZOft;dZ(UzQ#-%m{}l<#SdXQ%Eo&}C#eJ*%=@9H~%scg+-SgEa
z?erq_=L%f3FpVz1bV*>jguqTgx%>BzewLcrWHJB8p+u><%xjJ2@}77e!<eS7fAO+)
z)?Sr`bB?%gzqn^_U&IZi*k#2R7Zq=JUCtO|fBvBG;d2k=%p*VPv|YdC9JAxX@sO;(
znk7?y<lerqb@ja*W`U$>@Be3-?_KPfRwS?%6auj(q1LY-c*R#;HtLcLShwEg)U5@{
z0Z|u^yG-!^l&#RvD*ATn%Ofvaer|j<x#Zsyq0-EVyoh{{;}R}QYL}n7Gl4UbZ)#sy
z6Zf-J)syR$_wIdnNnc<1boT+LCX@HPmC7N<-ySa)Fm^OD__O-g!YP3-E6eshvH5@9
z!!cRp&(%Zg?S6dkmo=0$TEMHk<d@@#@L7L!t`(izHKDaRA@y>?l<hlyOnG@SZdZ|S
z)9n+V+|n(%qi-;XnhE}^XnM2S&sE@<)6;xS*4`BPW{yeoB;Re-t$(_JZB=Kms)D(g
zOHa4zkGh{vqODK7*B9r%VGwlvRR4F)gf?yd^L5b&H57L2JoKQIP4`FHDwhe58n{Bg
z?!JEVgQAH>+Qr}ketq$UKN7!MT~}aE^^kpHvrpaLX;IT};h$nxO*@PY-&*+BD?c*d
zQ!?YJ)R)EkCv<A3y#F8W>A3E&{?AkE1Ewe_M=uoA%1{lH;#jjJ_-jJ&q1+z^sZw^o
zPs=;<>bW1_at>WSr@?4%onq9Rn3EbT0biB{Pf(3Hw#@SCmSd&Iv)F7Mdsmt^P2MlV
zee<BX?qpFb(etP8uWhSgPPCU4Q&=@&^^`y<IVNt)VA=XchJa^>`9mk{k8bNX&!66W
z?7CM^JLht{$1jZ%Jldy<+!l9fivF5wDQ0N<H#z^!LIvJUo1#`XKAgRdr_L!Ra%YN>
zs@4@%#=8%9U)SSfsJ*6qq2GZ0Fw5mVGVyg%QX*C_3*P&1O?p?fp-x2Ce#?E9Ky7*F
z)9$$oI<B7N`mnf-Np(4c`)kRP(_gpyMF?E1+IfA+uf!_%-%r*a5vV%QY;~!Iu~tye
zeQVcg>u*<ucf9}d;$r-c2NGFxP3$)@-_TF_8nTy%>)0Qgruv=lLTX;tbKAUFIib|p
zW<q}21NN<p(xey6QDB?m|7zxUJ+DZ<K51^F*Flr+<!W22ybP;eXTTvSc5vN!)0ha>
zevwC-3+LueN$G0|iZ`uW*SvYBn3$j9Lvf?K5f*FO<6BSfiOiau$nCITkHx)~iEJx2
z*Cc#=S99IZXv3w?vTe&&e%tU}FTTosiTSPX-mN-wvqPT5)LYoP6yE+C{FPz;m;V#L
zf7@6X`@He{dyzeli?%!!c*yZE!@0^<%ZAD6nd!_fH&^CG8<PYKSHw)=a!T_}_1&5j
z5FF{<xH9(S+9fST;YLYX8?W$&wq&{H9!WUL5Eh`xA=<*{B)T-};);v|CUF-HUe5Y5
z>rB;*suyPrcD$D_wm)b2{m#sVD$8H)a~F7i@AJnw&nwS;F135Nm#xFf<gkJCtIFCP
zkAghz^RP&*=KdQr&04ZDeqV~yl!dMyr|S>>zH0sDv3KmZ)RrgJ;>J^FJDx~<B3izb
zajKXWx05x8VEFsk9jEMCS#C(X+<dz8yI$?D$Ewf#o-Vcf&-`N3n$zbke%a0}^;5eh
z(|6+A@yl7EIyO54csA&YuUev^?w4A*^{OGyt>W0thnmbd(>>!3@}1dXJFz77z_bib
z@3wc`Czo5zTDJMzvh#tnUR<&+Ti2SSsT#ekQ6Ole-|{~yeecgNsrml>?e_ovir4NG
zYnkm?xW3kica}@9PY1X3&p5HR-HzKL<_0yZ?Oi)NMMCX&<|fHWA4BckRv)}tuyv_{
zx8Z|EH?`^M97RkqS0xu3YqI36NOV~(@1u4(YtaD~U71(4erjfGoYR`t&$_(DzNFU6
zeNjZv@%;k382^b$Z3}W$l@a|Cs&Jq2)Qnl{N?p#B{+acvYx14#GgmkXiKzr`E1$JC
zJk&csf}v#LMgDyp3nuInKX(60`h&+ZYI}U|-dp_W<l<+$J!^{+o!tC{l+=t<lKKyZ
z)IK@)+1#{MGCo+=y!E7$p`_+BrFT}M1)IDoXT%zA)lTaFn{fPY`j`6D1HU#$?K><M
zm9WH;W$wO!mwIU@?udjfd)7WP!dA5S)_2p^-uZGCRmqFk=iXxeu&q=2=$hzEvGo(W
zjihcnaqW<6U(?yvduqBs&K8@U%(4ah@-7t44l>-4=;wVXT*5<FZ{Na-6Y{&m9*P-p
zDH<gxoIHK$>)oHpTbL8iWyX4?h%sGebeVqd!&NrPHs6NG1-u^rqW)}tWRtpWmA70*
zW#SSMq2ReG!oSLw@A|(jXvR(c$H6mxiH03bxZSVQS~)w(W7>l?wgGuto=duIO>}Hu
z^Zux|k72LVjT0?`j0eB{%r3oYAk)Q@d-t)ZnE#Ad7T52sWr&V`#Ch)1yY*pWLgGt|
z9v|7oa;wCI`IqX+E+z9s=lCO@toxN;DXUDeku;PnbY^F>Vm{sF^eE8taN@I?h2iqk
z_U&0)`Z#Q%!-FSb!Ut`ZcK==^(wfCK{oCC?P799O|Ns2^-=pn9&paevbN}X2xcR;7
zgN^z9kmIipH>|1Axp_J$-R9l*n>ovU+JaAHoOGY(D}BZ-re|Sr#EeDPC!X%|Y<}nU
z-ft3DXWz-p*{6K^{+Mg6&|ILdb~LoNUqq^EQ8IgqbLpA9$p+m4J>JU<H18a3+xcO`
zMo!<QHzq3`@b%mJA@0#$Z?Bb&?w-8P?@BETKPwzDnffBZ_w>1E%$?<~i45V%T3ok8
z3}>9;wwMw$xwC)im8*B$F7Cb2<j~Ezzi&=%&dl<8QOk1FpVT_5Dox?#5qjMm%<}o`
z-6b0Yj;VZY{lyvm+-Pm{&YwbO8XkXp@W}Pkr|S5p-`!8;etBwocY?Ntwh6ay;@br#
zlCpbG7R~A@SJd8Z*U5XBL05k5o9ojKCC%IL%5`p`U3}@8Ag<Z3IJSH&5;R(RC~xzH
z7418VRQIb0PSg_Z;ciw>ocOM}I<#DVRx5An$q8JY)q=ueQo-5<K3iJP#-z@hDzT~U
zo3`lM+b?Hqxw^mX__ee8-&mYI@3x+m{*t3<pR>n%@)Co!6HYf>oK$hVaNc+8R>>nl
zG3koJa%rzFe)6sTe{6}<v6TUv1rD#hRw&|s|20?RT6TtG>1y1SHYyJq-SUn)rAe=q
zo1uEl%*ptq`$CB*fBBgo#3k+*Ft1_r-}Wr!>g6|iWrmBRcKtNC$|HN!fQ@~Zk>eN1
zC;7~G&nBy>T1}l0lC>ge%f^E*#pZH~z42jPv7eznw#G=KMd-sx*M)ssMRK|Nnq^El
zb<Z!?VsTkH(O;20nO&dzCg<&lVE1$DKTotgfB#6xDvlGShk6QEs=YS9*67UGuHjm?
zEX~jM?}G``Umi5F_W6ABqQDZ7)D65+a$;$k64|BAOIhD6n6y96a>r^BG07H%rSjJ%
zHLlQ>G79+n>s`Q<YEwBjv&E?=CUZGS@4o7NaOVY^B_Cd_ytKsXXKAtbt8?75a^m+p
zwX20#{;j?#c+&J*Yq$qX;F29KzD5uAxAXNid)}EkYtviJD|=UZ2iG26%XMhacYT2=
zm8bjj?l-18e3F=X?_Ge`lQb?KFHW^X5AJ$vnQ<Fl6?}b0e`%lIjH68JoNP=wvrg7<
zE1wEj5;FO<rTMRUg>r(4YWK>f+%r|#cF&+<xkaYC+h56|j_I5RhjVnEsv1AM8r;b7
z^m=>huMc4}jLmu{8lITcI8|ZGvbD^|S9>Ka*;p_y^jo_8>;G}fIM+6CWcVo?JT5%j
z)2&}un^F_IOC;{J-?cL;SJP%rb2wY{`1RVgPuFHM2C=psk?%A)dghj$+rv{YAFuOT
z`{$<Fo?Q#emP}|b`Z)Ox!>7H$*MB?BoG$vL&-3=7$@@C=FF$?a`9=N+Y%PF?-{uMP
zw>;fd#=xoE<Tf*G$C|9w5kH=P=UpE+!O--}u6e)I(qlOC7TN}L%;TBzT}buP1f{&6
zaq)|;JZ$;8@XQ(?la_~hi!N##@3fliH2cn)nD}+e)g~{P`Kk0oqMyZ@f9q{UyS2W)
zYFrrjeW7E#)>Ovbk9$)#a87Rx@SApS<A#rhvFqh$ygU1(Ygh28|84J2v+mw`|D<U{
zqj9eulPY&|hna_w;FBD~ho4@*T;E%KntPGxv)`t(d=5^FH|<fh>TBI_J?rHky<_)<
zSdCu9{9WMoHpzCH_7eTGZyRp<u)lg0+p4nhgJ0Cjq@+d5{qrhke7>-8is9wYhct9b
zp7`b`zq-$IoyFZ;;pn7b{WmG=e$I5iQj_vq_52(z&aNXhPA{(VFA%vUVd@!pafx<H
zVQNYA$)88>oT!rhX}dhhuxmE^!G#we-0(_W?it}ACRS4=dslXA>z%K=7HIuaHCd3T
z82a&j*NUz0bv5~}K8Wx&Yz(yMezMZHb}p~fFDJLSw=VTHnhkM^GcTtE^Jn>3h^uU9
z2`PBDS<aO&#p<B;v!xepR{Z|(qUT<zM_j_a_Ne>DbI;YzWYRW1c;KMovb*ma6DPiU
zwS2wmJJVTvuN?1ueY$RTgmJBY+2;-1CBJNb`}==ryzXf_-?pmh{PkTs^a}qTDUO--
z)#_l@i-$|^sVSY~I9Yq6p~Lj^o9??gh3_KwCLZ}bp?Nv)nLe3EKVP5z7hqYj?2a1W
zJW2lUtTH*<gYTlg*L7|bK5w|_;m@`A)aI;rYW<}2)GLayZdcpavx4kx-7A`wH{5pS
znzt?1_x48NE!THA?K$%Gd8o~4xtqtmf6E^&lKC>%yLOI5^eJ(!iO-*#&pY)vlX>R+
z!e6VO+uG#r*6Dx#So*GGa@msrxi;_Uqh`O@zD+7pJ$3Z*<xTz8e?<6H-y4=aIxl1M
z`A8J+Z<)GhtoBpp^JT}>-8;8)Rno?#tLLXjKbq&zezK4I@IKok;W9sYdUh8a`}?!B
zXE$%iu8OS3^GXw+9shgtZRoun_kX_IY*YXD`407sZ@bd?cuPKSIC6e{&1W{rnB&p9
zA1^PPQ6qLKG@Sj-8J6YFPcE0G9BqBbdUk66#qYh#YoeBi{yefS?fJzz_x?{i#Ja3~
z%C?CJ>r0!3KPgFmeo(NkO-Q@7G@)T)eQA1Jyh=f3&C><9%48d&rFt&>`L-_aM%MOq
zT$z7oNC^F~TXCS;b<rJ#A7*lQSGE;LzxcBuH12kgZTZie-i%6196!&Qc)!uBmt)H5
zFHa8cZtRdfVQ!)|<M~CAM=4W_9CWmd&+EKg`p4Ypu1K$HhwD<QnX1z+2eE2<h1xum
z6x)<JZJM!%mamSWJCkEtCZni}=*JoC3oGQmGx}T4POG$R&c2_cqb2<DPr1D8zm#cW
z5fdGzcvf&dm>wk0w85Uqre62Ymd#71Pd}M5w|e67&5Q2jPl`T!_(M;N=+op-QJV)@
zVP<Emz2!GN(`}s=xHD7v>7_TRrI!86t+|6gh%~)nf4_0hCb1)zxy$P#mF$=5?-YBm
zT=!#f^Re^ai}(GDxTv*CrS6%Lx6abyeR6kS@3?K|V%E~XJGZ$*V0B;cJ1I`Z6MMe%
zy)?aFFnwzMo5h!v%O%!o$gl2tx_|HM2QT}o<@!6+=N}VY<)Bq7x5_`oD?d_Z**x(B
ze)D<7GGB;RZ=U6}euDAWm>ox)m0!#bJ<=Mpa!dT>GdnUaEtcywKRPWy^iYq>OsCb8
z-24`DHtAei@0@wL?&xlA?QPx@J0q7BYTk<U*!^4a&Hrh^Gdx6A^)Kw5ojzsvgiZ0;
zMv<0#ea;nqU-tBG_Tivi`Q5&!o-j=hdN8GH-P-TdgO8rr_ghZ(gcWb&TCSDBm9q~9
z<Q)1rZ%5*cw=8L?KayiDT4$P0X4G9LEb-~RJJ(mwIM%&)R3x*WmhNv+IMT6$FFtbL
zH?A+Uovt0(zfU_osv~8uC*y%tui8#FuZ-CjuF&>G+Ql+u$C2Id&KQ?`zmibm<90H{
zTxW-7!-hkAl50ZFXQY_c`26m-`{iVKBeC>q|GKQdGuD;<Yx$^E@>oHqWT*LMv1PYK
zPHLN!sJiFw?+eMfFLTmSS+-74;wkePqfddsQFpdT9aBo!P&!j&*28OzBFEIvl-|91
zgWYUuh;3PVdfxjudB)?>Tx^b=ywyPu;@r*Fe789l<*p{uy7Q5(=Pb{cxw5++Zrtc_
zzSU%Z#dg=b5t___PH`Vfc{j1V?7ik593k{xZ^_;7w<-_m+6zsP4{v66&01V#_Ft`G
z_p=Ny%Pm6BI{xro{k5#waoNAad=gWu8ctl;p2_yKe68gp2a|XF3tqauPH4Xz((!DA
z$iB3s9dYqmDLsd(ID+r~o+QGmYw&GZQS_k`F9NPEIkzR}@WV;J=X*Wd>@s`#^~N^U
z7bzTkN4Ff~*c##N8DI0c!+i?><_|kq&ThYXX4VsfKd)6@`**Fsa&hxhsb$l$o=#$t
zoGh$6ZM}o}*Y(P^|CxR_T{!e7mNRfdoyN<$JwZW#^2=|Q$(}4Zboy*~!|A|%ap7i8
zKY8v)CZ{c_Uwdtbz1sh}<pvuktQIl2l{fEpkTKV@?M#w>Ox6WW%WDsRD7_f#9`M-Q
z=+C|ROTMc-7w?|=o@;W0Ft7aln)D!r%;X3CE$hw0(vH{_MV84<6ytf)Z6X_Yy(oKP
zUhIrpduOMg7IoInv@!ph{JXvUL)*aw-;&f1C4uiFj$Qa4`+fCu5fxP*p1W0#7C*?~
zV)*kr=uWKRoTg(YKdM|6|Hi)meDJlKr}4yvh60ytqv9?$xGZ&D=D&9BJJ$PCKmXZ2
z$>$Gma$>}X-Eq#}W<TD;y(A#=)6@&Tt>4xhiet>E3US{b7IZQ4!+Q0ZH-gUm)Y@!i
zU>%X_>O5)10W<d-rt>!H8bt2c9&$u;<~GYGX7X1(T3Z*mxkn2G82sSemwxL&;!%nA
z%F;b$yB2F&wn}Q;zB4=O;ky#mDYGtkT%8&ooc(vA(0{M`gXjKEnR;Nut}3ClpqP@g
z7q~*Ws$On7WW49Yi@Qf!?wcG}bXv!Kb$7Hx>w}p;vb_>(*goGl@%{CqS_!60ljhCR
z?YZtH@ctZE%Lm@oJm(8!9lV+pttUF^Z{IOrlV$Y<qown9H!a#;+PnEf@#hq;w&=1|
z%NoB#Onlz`Zim+=S(a4KyzKVe&=<*C4;SWq6?t(wBy820SAVY8Kb;=&^4C&}2=nk)
z5mU4OIC8N#{9EIanQ-GA*W~F=lht;<W)Rf#irTWkN~`kb&XVJ6Z=3n2#)j=o$Z_UQ
z-Sy_XtW4x>gR+DE(PE!$Su;5#w3o|UyS#f+qj+2BzFlj*o!{$MdtJY8d23~$XV}Wx
zs><HIVug6|D>e4eGY|jYpVlR*r=hc;wMo_K)H}|LN!4eT-JBWoOi_dB`#sO#+?ggk
z-*<Dlywm*IcHwrjq0ZjlTd!6v+_OVH=giL{`%l-WOqsT9v!Lpmg<@Ub-@9wMs&|=9
z*=%dnEFT!4mewfO<sG)5%<;+LLxrMVGZshX8|f|5;5+d)kR|o8UBsi(muZ^+*0?Nd
zsWtQ4vwg#(D2b~RGQHhgCmOWgt(p<Zaxx&Id~*DTet}j#%bMiHuD5?MC7;s&GEH%B
zU!hy*sfE0PMsanlb+UQ~QsNJV+`6*v%M9PwnhQ>@NR?w^TP$}YeVez_k{J*8?w8?z
zdG@gJiLW-6zwDL?OV_t7O0fPDJU5H6Ml`=UYJGzJ_xM%5%T_9Q?egWe@ch2_;HtSN
zrr)`JaB)*?wa4r|xf|9S>~hX@TNNTO^Fi&6dj<QVIvu)H7RyfJ2xgkNAznPdafMKu
zclZ7a20XLuVkP&U@Je2y@Mej0+;69It~;;s#waqcSR|eI)Th0e%QA53J|1%(`DiWU
z&nG?}(TZvMzAE{v^y)gtqGMb$AF4a<{gwE;fB!+x@S?BR^}kjmmP}g_kaE-Dl#|Ev
zU!|Ns+8T|oPJe$`(c44Iu|=(7-5JkAi;o|((rf*#KSf3M!v$lOj+PgDqwlvQOpLSL
zvEozVdQBcT#~<q^PFcRFYu~QMV|$ZVY&d(Gqu6b!tG3#HAq{P|d*Lpkjw=iQh1DA#
zwv{`kHL0iD%&FTx;HZJc4YQ=o!lMZ<9T&%)EmPF~y5vyO#4fgDy)(YHeVX{c;j_k;
zE6+<`YN$EAj5FVsu;@z4D&N#9Y2o-MW)iPvoLS~5m3sVj<5iiKxUdcTeg<|qiHH>K
zYJKqM_3{TZX5RCZS!Qsof2Q`i>A$^RRMl+toF|*IRHu2)Ot$+C?h!G&?ATKc4llc^
z>&zfGVW-1_&2~NSwl5B?NJ^P-u(H9e`I^gV{jT@}El*1AD?UYR>-?^^A+g(@F<m8H
zO15Ig(TSh09FF)dQ`4e3Ddy<45cgkObFa)y|G_Y`Lu-oubkVNFYs~KZrW^h{>(Sa4
zd!E@i{m`i=CFjj<JqdXF=fYConN1U_KJA?>{-E(-p7<k1mZi`C{aT%LXZqS^vAD`L
zfy~wn(~enuyu*>dt}#|@@z0myFV}@v@3SqLuvs{>sA1}x1^+#?KUOb0el+Mm7uTwd
zde8FTHSJt_qI$zbS-tFge|4t+@++#X<h`w@e6g%W_^oMUf?mnDsG?bqKTUkTbK4AN
z9lL#t`-SJ8tma}${V!=}EV62H>1UpYHJ*u12U4W=%vtw-#peChUVi_#vwbhlGjhJx
zc4C^|uisG}yFcW5`0qKfaA9T<#|Eh%pS<_xY)z3VU67|G7u0rBRG20CuoJ`FC3__9
zJz4hYYwPueUS1J)K`9IN|BEnhvf|Wgd62#IZ2GQ$TPJtkKl;h##Cpy1)9QK)qstnj
z&C@mn-~Lgel(a^hA^OGqe}#<}i&gYDo_sp*5$Dpn3z@gPoUa!C;(8M%&d2j#W##>i
zo$~LtuD!f|2~Y84;X9i74?b4im!0{F{XCPDir0zKnsr>~A3RlNOr06a!D9NRVp;n%
zt?rDNPy5%MJ@vH1q@-|*Eo)d$@1)wxfA3U1xwB;Izwb7od77tFTf;<S=5Q$luiEpw
zcCpdXuZrt<D*yap@&6*bSao({)(erxmNNf#?fA*_d4Z>~{&v5Q*ICw0JngvZuSP7d
zSlF6V8s)#XzKmNQIkCJwp#G@uG4(%d?OWe8uMC!NS+aRugJcu;*V$WJ*>^9nvATP;
z_MwLRe}&_hz8cS&TYmrXo7odj9osA8otE&AOP?ooL$TSROUF*WFnx0Gtn#92e&zW*
zsqbFqw*H#XsQdZ7(H#kk6BE97vUX>bPFm|<a`EDn32|z%5;GU9)(%s9y6m`RX~7K1
z@B6CM-TmJz3(HPtPRi{0_gpRWmHnagM^Q6N)_#xHsJnRkwZYd!E{kOhxe1d~^Zv**
zFTSi}mH)u6bgxIechA=)i_TR(lX~8+zG0Sd%`R(E4gDu8d{17tcJFAt@Z*J4%4Wk$
zy-m*}_SnAN(@=ftp~ly@`QMBBYWIA3>i_enp4=s)`5H_1&dglL(`yhqHLZBBzWvdP
z8Ov{e;Y_i-a5+vP-D1aMY3=R`CC5ctH&zSuB}Iqkc&Y61+w(DU-`S@R1@rdo^Oz-J
z+H3u?YSYvd6OHnhCyiw!&t0h7(m$=jPT$({z`ui;FPoY2RxRB7Un7_E_zsV<tGmCm
z+}(LGXR6c269(pXXC5r|6e}t%*<aFdd{NP4p5n*KJn?gr>MYws=ce2ij@{yIrfOT<
z`_TLP%z6IKYi8}rl`VO@?)dcy92YB0123J~bzhL-e@@Fc?Jc#TC6X?>*Zt4BX_-&*
z@Q8OUsQh@ke21mci4WSJQ?jfqDt)3gPv{jCr_4BQo*sEBGUTes2bb%UO|EBM3ufR>
zwyFOk^|AKv7ZW#Co80!}>m2SJz1i}HX|mM3(0NjvC(eD`JW+6+-@S*=vjyv(FLeKL
z_?+Lit5d2!&8hq=<vjh^9K)3h^P+bfsqI`E-NV;kRGc=mC)Ck5R$Df9ZBE}WnZA%?
zo*_(y+|N{R#TG3x6nbhHq04Smd8cJf;-?vk?#y;N`tftiX4*HbTjuo5;U{llQfd{0
zQ1-irH|Lrj(CQA>H@2~0_*nN%rS$tx!6gyGcmHY@9XNGFfjRhDmQmvC!fVU+Bz>={
zZ~et7l_YTH!{dvYi*EB5tl8OQq#)GIdh68NL%;N2EO~8hapyXZspdO(t#j(8>N)&Y
zJEpH?^ZnQ3k^R_hKHGDdAIIj)xwy}MVHM-IdaI>Cg{W66Q@6u{=XZZ<t={kJz2kq2
zOil)4tBtjQ-X7L<^DIyI-q4$8bH^d6bXvA}o29MD;{DrC8YeI*6n9UYm?^Zo@6(Qb
z&!n@H-W%`si28Z^>Pkhw*zS#nY9H?{c9{3-6?0Sa@mTg&>4QceFKM==KhC*-@xZJ8
zV#a%^dHkQxPPBZri|@i*t@P5WDF+uCcl_YAnxt?^m}l-zx3t^AGVj(Njhd12<WJ<e
zBYj0nOc#E*^n6A4GO-&c8Kr*sh5B9MxvCysvH#G@$Cq9eKK)yt@}qVCvt?VSZaaRh
z;-_w>Awx=KaY@6%mr+(#{FAl(jcZe9d|s|E^!xqYE1rJx(`HEQJe0Jm`QEV=!W<Gm
z-sxxkNIm5!y?<7_?=LZNzq!wsZJj#ztmV2hl{$r5%V*k@&+2}^<i!h1r&UUa-~8a1
z?pMqH>-*&x&Tqf%AK#g|I%V72hXMY)XZk<ieYkl}=iCP#*)p5f8yCHjx!f6RbMv}G
zQ>B_-e?b)kpM0k3!q4Hq*NfkZvd!NnZm?p~z7u^{wu;Ysw{mla<(IFw@0|`Rohfc(
zz4r8}$8joqG%uce)BAj9Z940u%Cl$A_7{IV6uRu$^pmdHD{f!(439n){Nl_TiTgVX
zdapmb{G{X4#w%e~yS{&Txg%L@o!sLeA>7ORwgfOf`EKmD@yC&FnT$Rm|0mAVc|U4Y
z2_4W^KmQ?~ZTTMm&a-m2PIE8>&YEATxncd2t)fEva}|tF-}s=qZm*U1t-ipyx7^&n
z=e^R7jZ2A~vE#&r)4^x{*YLi6%)fbWG5_w@k1HKEPk&MUFjwl|il&*_!8&P+uH?L4
z@Z7s!h&}%%hqb$&cxrHM*Dc>$8ha}no0o^Z_>rdX+gIc}|2J3q+y7^_S4-K}@x|^q
z_T{$rla8RLA2wg)RbAeG!~Q{yf8YV<c#D(8YYSc18*hHh6Tj=wl^iMSY4V%*=4w9Q
zoF-XkRxm;PVywxM<2wy^H^qh?KezYp7S+Xa_qjR4tNw_zA6sk^S?ses`{qTV)U29W
zC2#fkzHFP|z#y4+ylrPe?yR3BeHo#X*6!Z@B4d@>A)D#_GS6=<;{Iq-Z{s=d{A_E>
z$|X~G2<Y_AeX#SR|Al`iU5~}hOjMnu@bzY1)vZaDQAU$_WMooq{cH+bvamh>?fLrq
zM*9!iA3Si~?Zj63rTNuy^X~7e>Uq9i{l@kC&dFDnm;QUj=@%QB=6yYJULN1=&MR|Q
zuA1>v<$Tyv$$)!CRtLA4Ftcy8Ih?J%b<5Y9K7aKCYL3_C{R)dKx+*WasIKEZYhY}3
zDC8&~U%vl>C7-ggvL9W!qIP1sj-j26|CU7Yei!C%+><}MpA%oktk!*|Q;bh0S9xnq
z=Sq2ft#3RJ-ma7^`s)8FrP#>+a?Z;|xt|0cuh&<Y#93!)e6(ll)aJRpHXJuTnpti0
z{jhbVWLT7NU$4d-r)JsfonEWeK5=U{`LkPCX<H`di~asw9{Kl4{j-d8<(=8bcN#sH
zNY~#Hos#t|{EF>GUvI7T=AG-zmhr`={>ok9|7-6Ob$5xmD-+A>jo0nu%=x@?bK-QV
zw+E&e?ViRNANS<&uH_cjZhCxsWmsph{9|hAtj^2~s}CZ&{Lg#+9(mu@+4Ipxc>S`>
zyv~hQpS3=3OslfqK8fYVm6Okxt4q$Pn|t-zagF(s&!2h8R`+eaD8cIS;paP(d>iv~
zM`Big@qKb>(wU;^a+Ad>&um;;b!@Y^5sT@IYlr!+o_zNC%Yh?2XQQ`?#yxl~JTdj<
zH;c>Ofo7^&pMJ{UdG_dl=q2lFi(UKKrm0K*luwtq^FV5`<vPCJO*7s+`|wZ1uzKdn
zhm8NSDvbA6FPJHj^+hq~Pn~I6>r?v=9^&r5ZzpEXF-~8;vU->JbLksX!aW-sCNR9@
zE=-zw@-uTy{ldm|%&}J@PXGD)U+R(m`LIu44_kLI?=*L}tSxN2)mK|$E2C^{dMbXt
z?2=9Y4b~P;tXKBP>oX7kR{Y?ooYLp(k~I%)p3C1kwE4ESKtA8+oc|W5^>p?B7z%IW
zJ*0HCbke@Jmo}{}n5n4TdHg)<%=zN}#d#IR>ho_-<ByQbdtUJ0?}V;_S%uzyD<ysZ
z)I7tQw3eN_^!Q3tH%^Oxc<HAx&(Ys6bGs_<uDvsJ`8Nmqxt*bT@fJsK=EpxP_ka7*
zZq6F+$@5&+&5}L7E7PL5W8zZgFW>W1U+kav{Fe`Rb<l^?(TC^k+;n8y@_9>_UrQ=|
z#?|cH{Ab5AiQLYtTYO(WN9Y|tbAmf&+1zw%xnoWZqRM(-XGPCSd|1wZ>Hkr#u>Agl
zS8ujg?))b**VJK4-@D|$DJKl8pPC$wl+R=o$Y1uFd$NqYWa6iZakIjX@A%OyD)s&A
z$CtcWcdsrrS-q3zeR|OgB~hub*5P*bC0Bzj)c$&%3uX8y_A4%DVis4JvE+}pul|&~
z%Sz9mTRZci^oF-HV{Lvk-11$rZ?bZc!cK#e+M7dj-mc)!Ie6kP%jBA@gMnV>4_vwY
zvm`d|PMzMKnUl`UxYKUA<`Zw-{6%vzM2yaryVXxUt$1qjj_xH)9Y+>TI6d+54l%Xr
z)=4v8U*d7S6)jw}GH=S{+%Gm$(*HCCuY0%k+NR$(%=c*AWphzGtQDB_iL2n5*<$6(
zA#bc+-CUcX@c6s7HAjACq?PPC{oNfY(zbnz<0d3j6%=o9lMK{WGTnM3;b4>=`!?S#
zFEit6LT2UO*#D$?tLYlvz*8GeK212=6%eL&aO<LoClS%cpYKcw*H8!#yU}_^+&sR*
zrf~9ijtL*Mcl|!KO_zIlpX-dtp<6@#v1$~%9d}Op`HS;g-0{E*UUIiSipaj3b@;aV
zOtI20Tb6yw{wu1x#Wd#Wm9>#Zw;#JirlyJteJ#Bb=GrK+mOXw^==5Jsb1tu)bWcr4
zd16PSsJhmopSG&+m$Y7Uu*}xsKk@(c6&{m6CnuXMS4y}Zw0n7Td`#p+am#~lr_(;l
zFORIuP><D}f698Li}h`_dFfeJzOTPYFg0$-%FOc()NHu*HmClF(ew9vS~Gr%{P`U#
zV|CF>uX?uk`FO=m%lqxCG~`!D7+%lZ$>!cwGiT$8{^RX`l0rAE+&7Q?abS+M+iT<d
zkBm1RvJW`9%y()-LbA(~xyx6_Fjf2xO*1OB`I%z8k|W^u!FMY?+49a!%FX)F6SZYs
z>oXS?mzH1G(pLS?>)NU6kvUm!@ne>bV=Glot=Br$dGvIr%c+j(&m;aR#6NF5CdVeV
z)a_%~D>r{b>-nuNExaFDq#KrMaI9M4n`87PHTmePianZsEVDiSmc7zan=#*CIZJzE
zr_k!YAWatS{k%%gbv|+4p1k}=a`lTDHpfn!uy}b@TgU#B2)oo`#?y0tUDEt_{GHB3
zUcvi6r78r<=I#%_(|3?@ci?)xce8|2(kd$7_^y(Ff8sn#3&U^Sb@4wmSNqnVdcNHy
z;i1;?KL3k<zAA4y)jpZwgpsk?IVWFj|LecLg_Zjhy?@wt_F&8p<Mj1&mA5-Zo;wvD
zQTv$b__;HeKIO#MrMjhuRZTKJ-hT3pl~=jP`K%p+Z8z`g9@Oj;KCAKg{rlP9K75|K
zMNmZB=ih_lI_m!$+=cb-=&X;IOWRaq-Cm|5aOQ(KJA1^tA7bpYl^&{Hlr{LdQTXzu
zO)m8r69m04PKinV@+tMzuG=1=Pbz*-6<l{de1oZE`0=9)&8`0@*BOMKyO#dy)3>Bz
z=2D)*)F)z{cS}Pyo;W*k`pk`Hn;#1&%Ca9{yTswdldUOEOJ5(jHgRq5a%t`g#(wL~
z)8EIcueM&aAX)2kPxoe)z?)YN8}Al6(?9RoA@=$M|IYaf9<G%8&>R|ed3(jf{`?iE
zWlJsDceZEz+pFcrFT3b{{_2}s3YF#Se|)dlvvgvXcbMM72aobZc2}NCZ*TFLQop`u
zQ(4!!=%i1pG9FF+Jz;B1%l)6_g8bsv7k$e6<I_vOI^WpPSfu~urbAA%!sL^l1*bRY
ze79;6?VJ!DefqwgfbzT*EMhklbk<bp&Nkb*!((D^0sGzk-wXfoo8<qMV0Nzk66-sm
z<M>Ly+@-12%AFlY)bkH)4c~2<JZ<Bm2*LOrivqbfPI?$Vi6LrYhy21wv1xOam(Mlh
zd~<jAk6@=$X9`MRFkN3JezKxK_m$JC*>krzxM*)I$h?0ddH44T>pH8R{%m{2t+wO`
z=k0ZmHrnpqS@?(P{${C{mbXr@@w8oUV>kP;eA;`}nP2XopWM4mL}cfo`E!%soQeFW
zc<o?)cJcMYIb!Shi&KA2E|Fi6&U|R8(T#<?Da$1H?>scEPtDAVWoFLAm-k9;-938y
zTUN&U<jXxX7*4Hvm3eDgLUE{M=JgwjfA!Ztytpj)$)vy;fsRvN2^@a2X3o1~2TxV0
zEl~{?|NcPp9*^<=*RE~vRbE=%c_gcK>Rg{u4f8C18^@qq%)E!A4+fTBI+XvEReRar
zn6><~Ep%=7uHlP+^r!gxNf+&ov}q?*tTXQBEU5j-R$ux{>RKOjNnYoZSl2b3d)dP!
z|IO}}v7eFXoWp!`>GzfQZh9|vzy52U^3{)5CL1bDh*WaY(t6I7<NmIOQDocm%DJ9B
z+!6KbOnzLdf4L=hUu2}~oLeruTXXjxKfV0e%!rCP+geP*L~p;WF67r#ttl0(XwZ$f
zId<}R+79FWCmux?`^4KH|D0b^yy<)3lUSdHFK2w{I5fZ3@+U{><LkvDC(a!=v|>9t
zb?3``f!Ss=uByzbS$Ow!y)Uz#&6}DVPMTAzuY|h)t8EB*Zs=!b{b$bX^r|;9=g*fE
zZ`$6uLS1y#3(m8RKdQO5vE4ry-<LC&tueACSNqnR-nPlQ$L*b78Q0H$I^T`$r(>0L
zt$O+7p2oNDO1&kf+WjsJo^oqhn)AL&mx7G5>-IQXr6;D|Pk+g*@a%L_f}6_8m3r^I
zd|usNS1O&p*ExLF$#ceKzpfoC*$7(;U=sdA=e*tJLu%&pP4a#A`PTfFlk5HYHs;UN
z1zrxnuD<qhm3ooc^>THM5M$bsv&YVuD{pE$Y4uS0oDJW^Rcv<mH8;GCH|ji+v%Q&J
z$fUHaiPzh>qDEZE|KhO|Pd``vh&^*q%;*6l%bl2)aUG#)`tzT?>9v?!`#YoSA?woa
z?aO{vzD@rTqg63)vB0`jbAI~Wny)g0?W#{ZL&wsL*S2ob9}d2C{P$*ytM~J=^Czp{
zPE)IV`Gmtey82~yy@vhkk{PnT+b$I6SWig(cB#<s&*8--+plU(yY@afuKA<)(?ag&
zl^=^#S4?-|>eW3}-I1#3<ne;*{#?tx@TrpbH%<RJaj{QZ!;{BbuKk&^aie6}8&AQ5
zZM=btvbC3lv$}k~YQ()+XOhB94fcEKiDi<ng}<6yyXI*8=EkJQtHqbkT;3^?5Scn5
zQc3xQe)}`Kgi_Hp9Zxq0nSD`P8yNA5zg<YN>S@^qza>2#TaUeBk1P<^6IYYiHEG$?
zm1dI!JKRnu8XjI1uIy~}_{=Q>b;;QQ2d5fpbql3VJfqdYaU&(-?30eL+yVpt%`ZND
zzP$D8jk6n+pMEapKB!;$<oCpREAI-Z&N@BeG*|zXt5;1ooccU*vXTpnXyEpcpm|=a
z18(04stv0sS9C6QHugMzqx%he&5l){Jk4W%z37}!<tXRD=h3LXVe{smy62)d3L9#*
z??1fr^R<c0&4)6p0<T*BKB&JpHM&Km?%iIVdts-)G8~%X({}6j-!pm!b!83OTRy!p
zwqDtLBdS}b`+DEz@3VSZtV<{CNYghkH1p2Mo^P)`p|`hrb&bK*FKaRdiho`YQI7xS
zP}#C|D*p+t3I=IKyA;#pWZM+Q4Vs&Ej<m0?c@bfysIYxfV@K=LGR4TK@`=Y(gip1K
z-C1KkLo@BnS<S<5o-(qjoqGA=^~wC^1|!K6XZs2=-mB_A*pka#o^8eBzgRag%}c{C
zbiMi^hV<t<%#2ule^)3;2L6tmmGa?=fp_m-nO8oQ!t#~#Lpd7%-qVix^-_Pu>#XI4
z%@dA!9XtEYcc;_jU1<wHFWAsGJJ?}<Ov5g|(<e29OAZ`%4QGo#a4O}vW_8%?EV*1y
zL#t29aku9#GSu3TUDsdrT7RdJjbqLA!&7v9jjH}}t={cdpdxrQZKC`<%d^q_Zx-*?
z^;ETg{_U*w6RoHf1q<@lWG|^I>6y5ifAj8zlfECTKd^eq3lCQnuLXM+O*-+3$2|Xh
z@=@IbN>QTfVui0<v^zH)_;N)j`qe4T#XT8U-L&R@@aU^<T65RQnXAoB-$?ML<E5yi
zN1r$*?~Hv@bYVr_n#GTPg}NPEePd?V#CdX0j}`G+zrOapW|?NCM5y_sRXfgYomgo0
z)+_OB+~ZR|Q*`~WTYMGUS(etY)BW4UyW3_;oc6iD=Wvv3_y0YiRh>_L_=>o7o+spH
zHnz6P2&hi$5L{c?qI<FU&x1!S(q(Fz@iP)iwA^E_r(H2tTUYXX+R4MgT}4;@^M7u(
zblvlm*Hp2AYn5=ISbj|MraJMJpLmRuug^H=*n4btgez<I<={KBx+iZqVb3l0S^2Az
zBj-&M?$eSA$1iDhoZ)(}r<0)A5vJPVx@nK)FWEXT?%LhkCd9m6@^PnQ+cCS76R)+X
zn{MMZ7N7U@ihsCA-9rs`yU8C;h$_k7%`%+%Yq#H8{!3d9^lsMwu(wsWq;_ZHiBC#D
zn@@;sbeW?u)#Pi<TwTk0ooiypetg?$$-Ah*{J3Pi&xK2yCF^H8yozRc8JV~5ALG^1
zuUGOewDIXq3p#OXQe1=@^OI>|5z5Y0A7#Z(DMoGWj9|%<3W`YIfByfR6)E9b$4-4w
zU3V_*;s)#Um)V1OmlWN9{AsEGrK?fiH?1evygzn+<<Fe18Pb2bqYZQ1Qdk_?T5n%I
zlkaiqOF&GaRMq9u^*kw;b#&8DFrI!XqqP0VqeD#D=VnZqociw-!}9gdZ~VG4IVWwV
z>+>Uil{$`V?kxLN%>FX}+%JRc_nw?Oz-q+yC+u0?$6rBnLXveCiX9ht*m1{8&i{5=
zWh(Ec_aDz$b3d`U`SE4^KEp%(;gf0>?hT9-RjKVh80>sT<<`s0l?r<|I7l7n3KH$N
zG!9@)+3|C){D-oyetl-gr&jveSrlw*R4IPIdM!?O`@~&`#1%|iSQEARz2;?p;H`9W
zx@X$@v%0?N<?EILHTfVHZTZ5E+`s)cR==jl%=fu`L&(|X^~;K9+&ujKpAHqjch+&t
ziq_wIZlmErv0L+R9lUU&^53JW{3iqz!!A3df9EsXDWP7rX@7O+!qfFfKVFo%_{ys6
zTiHdK)76#R|9d=^zj(D|ns<7Cp|1LdpAu``;}>kc_R#H%U|G43kwsP0V`YZWHx^Z=
zH1&^d*61&jPe}d2bYI@WZ<fZ@m2ba%+w$ytOM}Ozxy-SaZSi);ueTMutPak(ef{y?
z35q&SCNH<oSuZi)V^ZHeJw3jDqYp9v5}&kvi`(@oHqfu~PtCunK5>j$QZHVVrF(t&
zc6zzR$5Wf`KYWxqZ#Q2A@0Xg@)0br^$L^KoiI;e~<+A(Tb8)+tPTpoW@84V*kDXy2
zH)mg6Q93`pWHtAPX|=5t4gRIyHoU$qE@4;LF(=gbukieZ>yoC4_9kx4mCc!Ndw%ER
z^-toX!>^z1W}l^*xiGt`<#D?DQgP;<f<KlG5@&1mKP@pmRUUV8)7iVlT_%?<2A(f=
ze!erVe8#mF|MZf_Y-SPJIX4v6n(U}4*!e)JMAu;IY3^kP-4kY}7FqfBdA9lac(Hm~
z`90%j*~z}<Pu^pf8Sb`K^PkEe&->8*Bu~z}LUixUW!3vlDmxEel(5ym_WS%%DVa2Z
zubKPG|L9D%jNiVm{?U1fqmM2w-|y?M?DBed#j@m<htvIwGc3KgR2fI_{(gC0$qte1
zWxLB;A9{;d{`<vsWR+*`@8ECS)s{RsJ2!J@(b8YM`Rtx|9^QJOP#)EH>5ITK2KN2E
z^VY8~((t`kH}kpwo=N3O3_3->cD{D#dN=)7M&CLEV@q!}c6;0Jrgg6lZdv)>?r`HX
zjftPMgaR|KrL7O(OL>wSukfGalI6M7Tb4H?q_xx<zQ5@GextW<`Q8KOu{P&r7Fl}j
z`+r8)ZT*>`y`MLHui4=K{*Ldm>BTA2+$$bhYVOZsclRrOWLG+Q?%p#`R~BuveSKSb
z{{DUPf<H`7>#zCnci(=WQuFGipVspj3PkVxUi6{E?A$zavA%UH%=F@qM|xKLzgr(!
zE)Z5V=`qt>k;%XR?>81*WMZ)4-1^K1zNsx&{=Z<mdZpPdHsR)Vho!somfm64+xsjr
zC^>4Dwom=WixXaQHf!8%=e<y!JjcT1kgUUw^9uD`PgF0yJouN#Cyk*a=iL6=+p_L5
zhhOl?u=xG6?yS!LFK^cuRV9iq@7o@v>O47o&7lM9xPvbjFUhLAP{8$oPkf&3L2di<
z_ru@*DE2G0(@=b@u+zq^{=TT0+z+<jbJSU`E$7}G^UC^Qsk+$OTZJvbb3K#K3S@Gu
ze|fUa;Q8s$8BcfDs?W&ccyGVO{N;y9^UAl!2Xf6^QR%rbzDp~=c6a+`^SR7ZPV)I#
z^)v2rn!4{JQ+r$5iJN8-rC;_`G%Q=eclCMr4Dp@wPc~;OT$pWQJ=Nt_;k>0B&6@T-
z5(}T!ZejZyZz#HXbJbmg`^EfcIE&eLX<v9f{aH?vL6b_$SC+=FX7A&ITb*ns@7~d#
z!uNEEs^lNz(q(+TPZ!479=?<`YtCf(wO#_7Z5$Gu%TgPk_FTT!HL)O$=TYM&Cid-T
zT&6mh>su8iX3pH0?7m}~&4KRfE8BxL*{yS%?{p;G{kqhtaZ7yKWYxV}-psw!=khq@
zs7}exlYac4t{P|F@|Rtty3AU4tF-L>J+|S$H!cc2l3e~hZR-OM2`0(Oc?>CP5<gyX
zT$^9heDBzU&iA`H`JVP4JY9P#UT9ai^xE%peDya>DSR+3^vTm`4|jX}ihkDTmGMW|
zlCFyW6kXQTA#%LPwruSZ6~-y;XRLEqZ?@Jk<2Sx^D8T)n>CEuWhT3=BBPth)m|1=}
z#WQ#Il+#o6`}_7yNm;XgtENQk3?+f!{Y9~BcWS<T9K2%Py}1Tku0I!kwfeKki9=rm
z3$C1qkn2whykljuMBwf+BYyjrr^<u;YR#p1E4FJ$3kT{dxl5k*aBXsNoxrwmtEP?L
zC&j9VCYR;qC(7=hwkh9mH_yp!53&=PoYN0E7H`N4i}<i+QdE~3Hw%A&<b9W=j{-if
zU~SaRnf6>fqWk*fH3eQz_m;0Mc1@oX@7QvxqUn@ECD*p49kVm%JZa!<(f_<FIC@U<
z!F9{tmMaInzVwURF6zk?_Ov~f`VaDso?zd2=uN8OuCMcyH?qvu;$h9Z*4C@CXj^-H
z+~22vT`%WYp7EIVk>hc+;btMWfNPxj&wl=&9dbfY^devQK41PBtJ~bT17#RFW;=4M
z+;#HitEbEU&SS{^|7vkm$I5*Z-8uJh3kSS#$<TP;Gr?zv7}x!hIbH^fw}nI>yZkd*
zD&IBcTJp-?9j|(Q1>GP1T{@{^J73IU=H$r?;!O!%8oAEC?&o~`uBc?U?rCcYQrN)f
zq-9yz=yxMp`(5C4(bLNI_a3EsvxqAmQt|zM_DahQ@Adm9Tt4#MdZvo^F;_AEmzMs;
zPwRs<@A&<${I!0bkI=&d1@}}R_G}b+eKVtJMXdGrPwG2c!{T@Jsk9h8oM$nmfL|j1
zdH*LHrH6j5YLQD{)M>Qx>1s^+<jrg2!aR|QYwxeEa;a?(bBwkYZILs2;up6t&dH{I
zLexpdCT-^`yDS9-^_!g9Uz_%3tz}Y-ThPjJM^x*&f~B|{pTq>?)7#F}Zhrjbph)q$
zI$3iY=HBn07F3)w&7YI|(l><5OH1h3J?@>K6tq>WA8ZlG+P3Pr>%&&{&GUYrQr<t|
z@PCmxJDKO^2~Ju+IqAsF;Ex5W0d1$w#d9q8S-JYj&%O80wr@I|Vf69i_B%{7EoLUj
z&bV;O#ba-f0FQ!BjhsY{zd&D{do!yBTUh(sZ_n>O-X6#iB%$>EQ53)Lk=(c8Ed|HR
zmK?e&Bx|^St*pV8b*D7{gwNUC-{-FWFF&p@WX+fA{*=S@!A8$dA3GBt5u!WUjv;T`
z<=L4FoR6JY9IS12acTVS_b&shH>*}SHLs3}xSS}ll-aV6W975n#hUTEuSY(3q#>Ou
zYrb#`&*TQClgId#Vl_SmJnGKL^jz+cm$CTMeR<}aQJojQMcH?~<MOv}^=^6ls_Vm7
zjWZFF?+$-ayK!bhcE=2xT|7p)uND_<+NxKR8JH5W?Cu1w*V-1VtoFStYyWN}b29Rj
ze(uLyWv!sZiOY1v^>W_FCq{3RyTzgq_V4@t73m5kYmZFGpX5LJpJ<b6>}z4(z3T&%
z*FO|8;9T}C$llEH-tNE^+!yzUuaE6mmdf&erpFgmA(?|EE@AO*A76R;Ox$=~dF_U+
zad-9FdawUt-dwuWpwQ@g=+C7(I~xxzH`r*@_V4uv?q_a|aZ6Hyq&`2dX1-goso|$d
zw!~qti>}N9bJu72_C7z__&YY?fUIUbbD&a+*W<k_=jnUD+j`%rY_}rUqsHQdSHC|5
z&2@^_UAjc!{#~ZsA!<`Ew9l&9AS76&wXI*}px)6dYpf;t=CH*5b2#yEU(mOrYmI9=
z&B8_Myo;`6@meogI!C=-#E56_nU=*Y{yX+t$#k;+TI2m)JI|KYG<vnZq|O$rN=Gg$
zcmFl9HnI6SkJ*A)RJU$fx+0R}X|KsTgA@FMyU%<5l2`ilyC|`GvSCQf*YaDtD)03;
zht<{kbX9KK?X#;w;{@v~uJ!8}E*aY=y|`l7wmeq$L*+`H^qqeuKJk!GHkMP9as8KV
zs~-30)7tVAT1~ND90G5G_kB-2cs#Ig;+L`vlars`EDROk-akpc`gHFnho?qgTQwgB
z^xhTuT)yIu-k<yII#aG`#i}h{x@~GapZJ^G9ZPz%8hHCIFLsrlob*Xez0~K^d;hOr
zqOK)Ad|mF)-~BDo>}1?b=lK&v-Qv8izMRe=vgqcO{D`{>mz@6gpJxAWe}gOk&-Knn
z*QYbRfAGD{cVhg9xZ~k^e|2k1FYM;aRJhKou~DBr?Rhqrb!*sh6&WiX;km6_V&7d3
zIUgz(DZSxy<xbYTzbSK~xg$5bx-H<C)w8Ag|GnH}$JJ(@KH;^1cgLF}A7eY$`>?gI
zo1pA^qc33P#aY{O6koR_-uW8RG;f{p$!0A@$G+B&jD7qu$qTEj`>&q*+wCwx^^Q|z
zM$FGCskfFMPT;<y!VtKz_1TmMSBv8x>+7A}&~;|#gPo5SI82`=!mRW->$k<J5{=|%
z&p1oZ_;_E-(ps0W>dVjXZp@lZwL2dtPFZ@W>{LYTHI{`>UhX}$<>jWO>Ym|K>i5-E
z`5h@fz;ZNn)vLc!pS~Cx_D}5DZF9}f-S5K+9}bRNuP#k`xcA;W&WduThhLvxcyFoI
zl(b~&hK2fRyT00p_9gdo`+lBVbUtpEUvTlFRlL`JUn;eUnSIJ;zF~D^^WXJ9@@qEM
z%DK*-_i*XFs&XFY<-WeB7n{90FzeKmtDMnmUz}VQ6W)-UK11Th`3u<<9B%g0mOLzu
zEy-E0swL?j-8{MdwY^s2YSuW*2iIrrJod9&*kzXa$CvL!ez7mf<A3*j{f*<>t6qgT
zOmaHE_mgegdfm$czw2M*RyjyBS?A=`JW5r25qD6u%-rdFf+hQud%yJB_m#~}6@TiX
zYTEzD-OBowN2pMZeYSvg|0GZ&Zd3pCs#o4YA+~OtCjNMx_~P4xD>I~%3sUB#d>5>m
zy{d*G|JhSx-KGZHpL6!Q-0ys?v%7SS#MS6+7e7w<Jh3>>_)7JxPEZ>sDD<*JbU3^2
z)^nF{PGsrbJwMI+v8vx(sT7N={{G23-J93PypuUA!oc$KTJW#l)jajztuE&;U$|)2
zu4jC^%C0|;KbmIbXQXhm;bw7<Ty^8jW$BgM)=ulVw6Is<_-paLg0i3dKR+{{J-0pZ
zvqM@N-={+^QmMBWKvqGCIhGYQtmpBw&d-^|c>Th?`krkq{l`x|k?iY_u&G?r-o_RA
z-}ubGlos#n%Vxx%OAKB9<8N&27W1Q>J05J}_UYp>`g6)=<}5xxxop>;LUCn%of8Gu
z-J6qYnI1SX=Rs#5->mG@O9KnniLEPs^uu)3x38BkOMESioAv0^2MzNyF^^zR-^1xQ
zFJJY#R2lN<+l4y6>ZXSq`B#+{{0LE>&AMh!;Z*MXd(VBTk<wbd@^@|K85^s%oo^mQ
zhF(4(9P586=Cys%CZpo154|fT%GR{~%6%)u)3~>!`}E<(f9{@9dLQiQd)V(=No`xo
z71K?U_i9pGyz8xx{yAS9A@9HOE&uL}`%>ykoxO5iD_l;RUU?A|IrVUDi)-rxtHS)A
z+|51HCzTwRl#74LyZd({|IM8%%I+l0yknE;_Lg0(Vq0kG0wJblm-lm=va$a2e*S|K
zonb|0I(v;y+`R4i?duk+_u^}v+En|yG<Sus`x@D6axl2ARD1DxgCz$=4=viXb9Q?9
zH3rLRY3m9eUdq%9+rhQ?gXiIs;&O^tgf@JXQ!8U%wXa#Zw%^g$Yt>2~%~#FeKGn)S
zYtG#(<Ms4M#oj*$N-u2HFuOQ&;;-L}GFVPtkD9X3_{=Sz>ifYaQ@D#>TKB|Dr6m{~
zJGn3IbG5PRg?sF$w{~owlCtgpzo1!}ods!sj_;XW)AZMO)|uKzoPBeC@I>ZJJI-!t
zJa@_R<x{h||Ab$NEsOFjlYjMW;(fM{4{hv!zB5Q?UnFCD&+QOfi|gTei?`VGJef9Q
zr`e$sFB7$XRcG}4Qd6IG$G7^j@42}D)t7qvt!pmzcGx6&Tu)Pfwe$<i^Ybyvo8M~k
zeZQ8Z>tpokdb(wB;gsiglO29~P2!x8@_*Vf_Z=G-+P=474rM*F_soee%_Xv#WpTDE
zPx-D{I6M8;<Osch)sy;9ZcXwnvESUi<a1LyWMz|Jf92c*`so!vpR&rmv~yal7BDmV
zFi+2!!0Q*iuTLwwwB60JzK&tzN0zys8}9Ev`holT&d6<$bwn>8rq4QAyj(KQ<Ko8m
z1}kr9ZGJpmqB4==S9NCJ&cqoE(+~@ij;vx`$3O4!`$fB7*xhk4%{MfwnRmHa`i1=k
zpH}0%uvqnWYrC2Cinf+%Zt)2!n>%L+eE4@>qDs>~&HdZ;q`k%`PyF0GXRXbtiPu=R
z@orws%;S6g($4=HrJ<H->v=xSy)3@+$NRfi+&?|GvnXgivrUh$<a&axZ_!WCN~=!>
zDK_)1?zkK}Se#(s_22mH5tfu?ZIU}o++)-AWBI2~t}C7L*_m0u-toC}T4nIpfPYiw
z{0aBiS)}~XS|F9x=e4qq*O50TxI^@3_*8%U<a4>YEk;7kbJF9GH<=4Js~o$$zfwB-
znPatrn~fl|^cpShH5Q$>TE3k-berd`y?0eL`^A-k%kG^OtX<LBH!p9N8PlDl4bPRX
zHHyFVdun*bho|6!muaoKwI^4D4)<hbp7?zy-xU3uyD|Fq?iYWye7l;;ANVr-QFLVG
z92cejSfz_+<?mUYIC1v+Ni#E{jfr2+7PjrLZe4lPB;;Da_QjLmZ4(Ln6#VtfTzNy2
zKhDdZ-&a4*wo2}wt<|@>&SN{0FXZ!Y{Qrd|PiNK}i<1+>zMtKmU-<LH^&Q(@D1G<+
z=4W;Nq@SN$rfT2WKTDlu_V0V55O+4c|J&!v_mN*@jK%+HGk@Ow!v0dz=cv>$_45T8
zHy*9b|8hZsapNyF`(Nkoe>i;oo?3F~$Ie}0`)*u4<s4|8vHEM~66*_PmQ%0Jz9GUY
z#A$VF*^a`(S(dXt$CsQqXINM`WBT%Ek#VgzoO$2ey8QIav1dDKo>*MJbN*8CtiA7E
zhfS8{TkDWEZR0}jnA!8xlS2c8uY0A3YkR(3y5&{T#Q)~=#daG1W;8uJKO|j_V}s03
z75({#x`JaLpI-htqoqUWcSV!0G=osh#@Bqo=lwsua+01c)R3E4t8;J}%MFzqS2mvM
zbq=pg7L=N-cb}z+W2O7Hgt_w{`h6>W->ssTzu9=YMcuRIPo(~}B;Wniy|vrIPr(|z
zs)!l3s%X1!!Jn&=m*#s4Twb_i;{>sJx8?67mFS#$=d3$x-Y&uOLXQ`(54?TVJ@`zR
z^zQJBT3N!JYu5(H#rgXB&bf8V_uTUf_mXQW=JE3Gu26Y(c*gIKscF*Ri+1=)=SWXW
zdwxPS`elX9|3&3?*UxQ}K5uM1y{$c|<Ed-d>v@krtCaTJ9^-%ZvB^|gU}k2XkMrfm
z<r#%`auaV{K6~iQXCI%XnRy@gmR5ZdT5N2(<$J#Kx3^2~CuHrLCF_2Bh5rqQIr{JF
zdS^3l-!VCNnIhBwb-xtN!mm{A5tuo<=bS_A^{__{-+IGmcIG@iATIs+{r}$W7dPfM
zJq|WrQm)crc>Ky2uG#k2UA?v1a-IL!Z#DjTwR_JmwJXaTc1k{5`FJJY_rqVd+I)P)
z%a-=+<TkaACGq7S?s(QZF@%=9oA>P5fz@Z8$t}LPDRSQ2^xR@?+1tS(TnWL}x9h&y
z<eyn8crwDXeY(qu`0@*1QVUg2Tn&HY_0E5<S?kP1zO5?m+WMBvpFXXfv)m#=QoL2~
z|CwD~TdXuSKSxOm8U@ZuuCsH0KXLjC!Q!6U->hwVegWToj01gl_GXq%F&2NG`D60o
zFFAda=E<dgxFe}2Z+R^5r?7O^56L+hnstkMK5_gzK07=gwtDD|XOeDj@ykDvZIAwb
zF$-n*93v~0npkY!UcFr)dFIK7;+E!nW=>|8Q*Ps3S;qH$yJKGC#)HLYv^i8VtUr{_
zDz;2>i%XbNHt(&+Q{}MLLf=h)Ud^rjvOOj7DVsBM@GYOCj~2SiD^?{>dikX+Dv9aD
zr(aiiuGqT99$^ccAtCdiYD@FI_4ZDppMB=opFR+v^WWBg;d}<Me<k<ka&pHT<Vc@5
z^Re9gUQ2)dwB9GF56``jY<vFdM)ii-DL=K!>q;6IPLEsmEku2`t7-1}FPG<>{@CV{
zE%`)NiXl^tja{O<?85E)6OI?Z=;=>);E0iX!89#VlX>Heq+cJVsc#A8sr_%HP-d18
zc`9hx9k-OrXL@`$cr;DZ5^vi-MP}t6*+o0ce-`j|tXSSy|Mj4L#MzWc?|O~B9s9Oa
zROwD{{-p6VPn$8!RitRAjZUVkyTpNKQ*BR6FIL{OjVu34?M!b`Qxm(3XD9coc69u?
z9cA?2;?&feqHBuTe;S3VY~OnM?#%}$)j2K+FTY{!SjTC7^T@k(`WK$mcxeaycb&I-
z`jp(nNgr=&Z7aL-IM+_6xA^5PrTrV&ew-@puDHv$YhF&Wx9Sb1Rj-3Wdi;$Fmp7iz
z)qB3TepZ52tZ(os$;T<uw&z|)i#sd~W_Y6DE*a?kFJ+qRl~bQDo<4o&*>C0bfg4|I
z=ob2F6<HR!bh<6|*t2Jj#_2U{8#^2}y=ADqB(Y4r{!n%pv%meM`oI6y7e)SftMN35
zC+X-C!{pwWb3dmnw9XUkUNJRU_w}9px|UrpT>rg0CKDa?Nt;i2{qq~2T#WW-O*p;L
zZOV!qkJF2%Y(8^q7O&unb=5PvK6>Wux#<wSY0lF6Sr4|xTl|?4*6vm4RriT^4abWm
z`vRBVl>YPl{O6*RRx%X<>Avfn%k0&rKY7Z!>`+=mrSMB@r%L{iv*ls`PFSb4Dw|E&
zc`DOprjDeH{4!VHVB^{54Y}7Z-I<e8@`UewSK1`Kb5@^Kk`2nUXFYA7pAcT##LjYL
zR@p_PZ!+fT(*(8_?vFlsvU=jSW8&Li{GF-&r$B0(#r&H|{~&9O=Fjr9Ww=uE>1X)=
z#>SJ@Pi9GNe8ZzH>2c+1aC9i2lH2P><1MH5x+JO0ndx_@sj^j5aM4F!m&T<U4x(E-
zeH$ISj;!)H(vTq<wje~H@<rgQMa(|F>n~iAX@0|FzFhI^6)`1_6Xy&}gB>r|-*zin
z%&_gkx10V&Z|~&3+c32%+_QA!q`w+Wo3>l-uh)M*w{goV=@)PA_I(x<oHTd2#FQ1?
z+sz8!9y9rz>2XZSWv+gOPW6_o`vE7;eR$==>f1is^B7~$mbYsj-`bg(mbu7}Ipp6Q
z*jj*<Yr6OD*|LEx`;tV)AE&yGSaoS$9fz{UPVLD$|NNMv@BFp2KK#V|`y)LOfwc>F
zTK^A~x8)O0ZP@-;U0Qs0Ml!#8{HvynDI9qvdD^FR7pM5V^gJgcueSNM#@)oghI3l&
zygGXhJw2&$d)}*uox3DnhPzuBn;bYAVSl$&&?Rr0_Wk(_tDf6^+osZ~cQ@h17fZkB
zcFT>s#iVDq-<tpQh+li?>h}hfKW&`TPp!23SeZ4I;W*o-Gd;bVBQATb-(EH8;kOr}
z(}LfADa(B<yyxWCgT`~@dM?$kXtnroU>YCamibS=aI;IEWePLx|N7-(*xL!}zFd1$
z;*STJsD?}Kt(m#&omr5m<-NMp7Wwnx8%j6twwsvx>=Ucn>FuB2^kuOa$5>b#C_28q
zV%f=0r7GKxXfNM)?DR&xzIRjH-TKdn&y=X2+_iT1%KjfGI2e;sCvCnogZ0hUy~pmn
z_`K)Cch9PR(-jXE_m+IuE2?^65iiNs5wtm3zV_VnJvKQ--aYfJj)}7S{|w1X@n&Z)
z`>)EpoX=<$^Ql#t*M4TMu6QZ3D`eHC%pkS@;X536K63q>yGMMFNA2qicjQuDsQ!px
zR(rPR!@oZ<imrE8?OADj>cG7f#Sd>c)Kt#gXTHManUIdSG-Jfm!1Z}1JDY7~rGLy=
z`zW#Kh|_`gnW5K~vHiTfx4B5rl-Kg{rOk6{Y>IW_?GN62ofkJ{*4y6|MYA{OeAJgT
zN)1%v|Ir*07uWW;?w@tJ;KU~zmsv17*UIdQ@>SY5@zs^EZTa~J{?@JC)Be)GG&XVK
zbH9Hde*T_g$Fu*4z-`xm%+aq;Sz1@l_W7JV<*bj9bC>#di{eRFd1l^Gy1wt*@tDby
zf!jjgxlEGL{Ni$|TP5@TZExpq={$Tsll}zp>vG<o`~2B4OZ$@6l|M}^`Qs+V@I5}G
zK0(H&zM@9oe#+`7U#VH!N_7A4stJk@QrKg&JVwnwEG#@MN5TB;&%f1@MXw@4c}u=*
ztDYa|6miA2az@`1q3h@7B(GcA{!Xp-^noS+9NAnJJ&miIvC&9#Yk7R!;l<J0CwjX*
zES;(sov(0Q;=q~yV;=dxjpp`p3JBy@P5QQSeNo*bvzxozuI2sLH9uYUA?NnAKR%nc
zwXXZN|M`W}_K9WRr+X+>C`>!SUVg)&iG8=&Ogp=i+1&G=A8fHvW3o0r`{S%=kgV^&
zNmW&ovM-z3T)h9N=828#?a9_N|J<^e%&ogcRiXH`(sK99S8Q*(d-oo_BpohkX@4N&
zX=0hZh@qX}qQ2}o$M@ek{i@Y_PW?NpnHj7X&lt^2VPAW0L0Y<g@k6#8>kllm_dYEx
zkEvNJe2q;m>sReIS9?dx{DtQ>*_b<&rS*I~>VM(Z>iUZ=4wbyV?`E9+QSmFC>C}of
z*=f<0q92Xq_Xs5HH$QmO_<CYBzx%9JiG`D<yPqpmtDCX!T1$U_=(%Uh(q=6-b(#73
z3!8M<@_*{g)9)`|clzP;*Wo|!{bbY&mrE-*TBH@$xMZhW>YCa<kE-m&Laz>P@BRDI
zsQ-$|nt5?G=6u^C=Ecp}p09Pb>+{9+OGCsuLU_J@xw#~1x%surdkpu?&EdJ5VrqAG
z`~18R##fFD)_z^huyIArmf7k57O;6oxFi=Q1#Vr}w76R8>g_LEJxc#ss&7AA@ceCg
z<eb^bRXG#(&v^MP<^AF*+H8S!e0mudzKR(9_|e|+<@j?}{tc<ww$kVJp30u7rnPL@
z$)#2|g{ICsvDxn6yT!+EM!sEtxw=3^e=&c9jB1|3w~tvu(ovbdvFT6Lx8IzbrLw=v
z^!U_+g3p5dFV`=bw}VwD=IM=(n##2cPp(?{cSSLivC2uADL-FMkB&%flF^zwFZgPz
z(A&6%4U@K5v$t(X3OTy?m7~;crKnKvMcby$U27^MFa5Yzwz?uBa$0G_TE>VO$<Hob
zvGQqTRanE~D?3*qA@kVs!_lmVY_@FMdtmNOQ8T-^r?0nl2&`YF@cmi)8l{N3x4uRn
z)mEu|m+j71*|q7^Z-$hUI!jN6?vS6so@A(Xa>6;*sd=fdtky^IzPT;+xv0J}y)ANe
zm--TCCnY)cb6nn%2mFjHYlT+-G^n1F-j|jAJ@M{Ot>?#<-Q2qVVtkPK(b~MOr8jO?
z_n0XZS5J8E7oGF|&O6JGN24$6T;FnO+9dn0Yl`o&EwZ`s$yJVJhVj>QX303|{U^O%
zai1`px_sh97T>vZ6AoW`&DO$tWZRZcM@0_grmnBb`=gZ~^7hH=-Lr3S+}OJH%ado8
zKR#J(Ui+`yD3N)quIv@11V65WuCq>V+^>GAW`@40J;x23h~51s-h^9zUz}O?)#R6Y
zo@|MCsog%mQ^G9s`~P*ve!6~dHIL{o)#kOwRF8>Bg?Rb;CguokP+hv{T-Z%vQO3P2
z&%f5pYd5ykvh@GgzmQLC+Em5Q`jP&MMl*RLrhON>`-%7Ihl5>T0&nVg=bzm)f$yN>
z@w1K5VS>xeCMpEVsz38%_-B9bp1s++*LENN-qCr#V~>;Nt%9Bcp2?Mq<ZPIX&UEE?
zE?yK^7`SmoNJt&WR*ujax71f@FY_<Swpx29>fY2DC-QXiefQ3aYSD6f+jXm;smt+5
zyNBxurI5r|icj<;LrlVwZF(mrK1h6!IIq32O}}{Oj`#h)U*9P{FMG-U67z)O_dh?{
z-v4ZSKmPe~+vB>MPan9Ul^phG$Jw+0Ijh$8wudhI@L~CkllqsgRdy&J|6RFoyJ*q-
z4P6$uc*69gf;T=a)0?j$baU_h2hVSn-Hcc@cgwug#HWm>wWF6<?K_~iy&_kaO<Kf!
zj?gsLrA#~9U2h+-*m6N&|G`hD6TffVx>;l4#@XMT*B+^}Ien<zPxfhO-LK;2E0_Bo
zUTIh>)ad*Bc45|9!2`k@KAsU>$zpU$R+GJ2Jl!z<gNA5=x%ZFad$#PSyUWdZR43bf
z+;K3OFZPJ4fcQOO+1Mp!VlyH&tJ^NWSL{CfNJ{!xdgYxD)gec2>r7wz?XAw07gjmb
zZi+-4)VW!-DB3aRbgRz$we0o_FI?z+xnbJr&))rP{SmRT>EVm|?n+&`awS3R(;uG)
z+mrS=?6i9*F?W8^>r2`_ceQ_dO!1mx@Mra9n}4<Qf6kOCeS5dDH@N?$)y7X+t6dwd
zR`W+5j$C)($eM;_zu!7Cml$YA3r?F<@PAjNR%KrLw1tb?|F5-F`_O(Y?49+Vl2!AA
zm-~HmUw-d_yf;(CUbeZur<5ek&2KJgn>Fi!tx8np%$up*+nRIVh{^1c+I#GsvEurj
zfo{dWc(N{(YD_n;{d3m$l;~Wka<kK4?0*S1Z%f_8YNm54XBunmrpUC(5~ilJe9!B?
z5k5KhaOeh^s#($Z5{{N`oAS8tgn(J_ry$mjzYptwzdF6Dx}Z^E_qsowSKk=8Y;2cS
zpWUJH`HN?>#p3M$x8DBl37Woh?jq0kMf(KA-=zK*=LuV8tn-BH$^E&?#+$ujy`_Em
z{?5L2>B{qEGiRI(iqM}hclW8K`+tdjmKMs{skhVbs>FTX-rt^*+CKlUS8i%G{p4-F
zb7zR+-Hq4fS~Kh)pPOnfaaL!d{xl8IVjaC_2Cwbh=Q6Jd(hAbp<F6RMAR}wWQKnX>
zMyEt)10AW4yR6RqG4ifd-}~i+x32j09Et4LGiKzh`FrGCaLMNgf$FYrTl~t>W=%aS
z;?Hd@w)KYHtsu4T$^ToAe&<@VR?pb-m(=w9=Qj>bk~sQRfV1k;EP?i;$+~y9{IBZU
z{hh1q);hO&e{wpf&a}LzJ?%!te>?Mh-P^NMmMCm1T^q0<K<oC_V?kS%`G~2n-#kNm
z!?gIMqA#XydCxhTICriJO20Na@2|}3)89|5Tr){SHn2vcX?s)s!5pz8w_oP<ZZz86
z@OF3Sl{*QQ?-;AJd>21g+3DrDc#p|3@ALNO=l7loR=T4V*>Uvwjo`IQ&ba2)Rd?2G
z^hkVaHnaM*$+l&G-rMLV)V59Jo?cN}F()<fV>V}$^=!j>lY{rq-BbVn&p%>k@znQe
z(iR`Abt9%7eLnx?qRhYY64LV@->qr<E@sr@yZ+*x+6ih7k3DZ)Dt(gYZ%}OSuUJ3-
z_RRW(wF{fC9eC5oy3_L6HK`Y`CM`1zp1bAx(;0HJQw*o4o0^~B+POPt+3w0+awfWt
zr!V)4JXf1B<NT!a&m(5;bW3wwzSKCk{`t?-La$k)%eqvB&n!|-cRe*}jrjZ28Fw?D
zW%x%Y2uB^BsHhkB$7+4to)bsA<Db8N?te+}d%8}?au0Kn8E0$e|87+}`bTK8xwv6)
z?welL>Qx5z&g<4S=RKcnZmv2lD|P<P6IY%Htv;%ht-bx^nf0Ha)Ky<!?IxTXzu~3j
zblm`*XOTM!yG3n%Ur#pcS$2-^Rrq^@y5i0lyYtoF+jm+`U7Gj*@|(gBIhhg3YM*QW
zt^C0F`lqUqx%dsQt((l#7&$M=_O7`<_rb5d<tNua+hJebduEZ}FNa&d^TOu%-sx-<
zoGVcOK;itl6HQOAsd6t)uvycfFMr6rO~?Mdip$gfto2;&{n<I$dsZrR+%XVwy2ADB
z>-9N2w|=p`l-z%={9Z-tq&WZLY<cJStZ#{LUq1X9tR`&kE_rUokx6H_eCIC;xs&<2
zYL1fKtP8ob=D&NW`Cye~?i`6XPk+_VOnNd^=!kTtrO}C#e9vF!&U<v@q;pMn(VYFe
zc6+u;J?dR6^ZtF=wm;c_zFd>uQx#sY^153^s@R2S$se;Ftz_~yz4Xv$FTTFRszzLx
z*S2<&dHcMB3l7|Qq3yHwSI5(1`;OU&nSB5FY-fG$`&X)Nt896v-%s0H+OS2@U~#B>
z`hSI`ojfzW*9R#1CBK$8_!84zpSi|crBPwl_Kj{SMc=p1eD}`n-MMoUY)hJ^+&i+F
zx%N*^%`9(y-v#DNEdT6Ydu9J*ZqA#}`@dY8y8GCDzWYm=Uc9VxYqK)!xO~(8#IYkw
z8lDHny?LE5z1{V~?@bp!_D=de=Z%fm>o=kMN*`;Uo0s!>zw^}GwWm53RfwN%yHpaj
z>-NgsU!0$D$I5u_l05Y!eV?b=^%E06uR0%~^Cfnx#IC-~D{N-XCxd;oL~h>o{6AAj
zc(VDA)%6;QN2PC+Kj3L@pLFn$8}rE>=c00%cW1jeh;^=WY}>*!`M&()t)9Y*SGGDg
zJInms6P*1xv8_!<O>Mbk?b@D9lM7W}Sbyyjx-sRt=U2Xq(<Pr@yPCK!`Q4-9mG>Wg
zc_27X;1{!&&e=Q3i+8sBReIS?dvxTcv4n7Nir(F&Yp!41vA<vZm(`v+Z#k(au10tM
z+|yXUcJ_<Tw5Z>43$~x#@V)-;7qRtwU&+@cZanrhJgrgWZ~ok;Gh_WWpZ50geV$?Q
z$0+uaQ0W<u316&EGMTMlJ;nFcbl!vS?Ccu8cb>fZATs;SvW;Ignrr7C`B<(J@npvA
z-;%ts%qHx|a>b5Vzm(td`_0yyLPw-MWGxPV-v3%S_5DW0UuQX&xwY@yxb*W)^=M1G
zE2qWFEvweNlyFX0FfMKOE|-yb`<LhIk~vFTRovP9gJ<nHd7rO-`X*)f=GwXUVwd@s
z*ymsVd@XuUn8=Ht(ry(Ei&O0ESGb(&<DWJ8z?Ze3?{oS5K5;>&V^*5{MD<V+gQzG2
zKUUwq+j&YlS}s3tFiG8>#=k?jzoq%1=-VyEJD0M&aZT2ijxA)LyW+m1FT=!+PYvdq
z6qy!%TDJUyRG`7#wV|b#Ce#G%-cj~)pLTxh^m~7}yPl@=d#}IP*z5LbrTeDv#hsl+
zkB{_)Y;c~ExUuDad?3d<;dbp3&6LEAGiN83m>kZ^)wXSJE>Ue2+H_dW%vDf)joX^=
zuiR7qb)LNV|IFR1@y`#u6t}!6_UqNB$E-WEkEnQ-g+%|YwJc)wo2clZ(rU!rU9S=6
zDERbqpGJ`D`Y>jp1CG;*Q$K1<-Q8Qnzx3CI)p6-tC%-x(uvA^S+cnbu;zqGmQ-64^
z(e9dGCKghovMj2vm#5BJa#2pn@t<d%1ot!dtXjFnU)v><`|ZRU$+E4p7H<&anJ=z-
zb(x8I;5z@QR;#`&wbIzqxV~ZTxiWuIrz8_!lgfXyW~>sDueore%kk~Soo>wnlRMox
zcl~5O&dv4y6<f>gbyqa!ull&=nrGltZKs_FF8#5Yy)wDP?B~TzAFrtV>+0gargkZI
z)&7$Cw~eLWyna_wHleO*!6p~$lg}li<jwQ{MloM}d3jIn_f2m1*BRSSv%GWcOPlfP
zH+zI;a0Iyd`vo^mN;#<=(|dp0bJwYxz7@GuN+{i1wMt||%Do=GMXe!Ma#<JKuphZ)
zsJS{p+*f~TW7#GbtF3`oYYqkUwubz)%j1yt*H>lQ)%AbThMyYiUYC6hUF;HKf4Wrr
zv-X-j%Nyr*F)8oVV7ukW%<}j}XfH#Y!xi%v2iZD5-oCp^F4aHu#^2Aa8c$VK!i!g}
z%6u=&vG5e*CwtFH>9SX@zSD5|xKhhcQ+ib!%lciD%S(3ud^@S@_1%_D|L-WOs9r5;
z)oS?_@^)s2^)1(|7Q>tCE@h|%^}caZ-n*i1{VUHF+chutbxn}9>=xKBymslb4yo-9
z>lpIgITksU?M*WJ`){Vxlpk+h^ndNneR@CZS(NZUohw(?hgFN@7-rnIi9WPmZSUzF
zs}ic8#+(x}V&ArUr(4Lm=U+CdGGF<#iBVVaz!jF{%!fTXv3Z-g*?LyC%J<Jc%QeAj
zgLYs=`RZP!^eML{d|sK5vCt+dI`u@}oHI5-WuZ%_g~arPE51M4UdZuS+Q!i}Z@0vL
zS=%GqTCP2L+7mb5>qk_QoA(P3Yp>6BwGN9OeqYTMXZnn3+SEc*!9O9*PrGNIUf=jK
z+j~K+Y3-A=Z%z|Ve41Bg-hQY4(KCtOTy36~3(sqn(iZJGne;)BH{JBk-MZ^f&KN~#
z&sgJX^V@Yzz^>m<j%!ZYx4dQ1mUfmaLS2ptHA<h_kNlhH`*(*UYp|<wXx;6KQ*G(H
z`NXHroU{JcdawCzSCyBq6j>p&YHJ9qHH-HqlTDANHFii{Zq_Vly~B54{_#sJeG?1I
zKJS<naln<kNxXN-`iN$W)pnO}yo(jh*E|)`sQ&Y{?|qBbse4^!Ea>a!+q7AwiOW)F
z)*OYz_xsrGdDp8gIaRKGNTcIwRmJJ=!BI>MzDgU^K1}}bCO461n`VZ^B8h;Ut-Jg~
zE6Zh+Qlc^obf$P26=-xHe{FR4iPxgueh=;aclT}Nb-vrj$vMGXA%4*x*95U;-^<Rt
z|GeV5+|)pxm$OcADQ9t9R`99b*mFK}*75010`|)TZ;CM<zi>}^;hZ(o?N&|vy+m=<
ze>>&$70Ya%KKJLIcwqObX&jl1O5ujTHZgKmCN2^TI>346Qkzbj=$j0~xIdw$3R^aN
z=`6Oa;F@-!*>}Rql(*udDb9<XR&#L#vUYo^cg*--oAP6d!pm<W+()<%xUxzbSxpns
z4_oOHb5ql+X7T;){Eb=6Typ36sw!Jq!cRtoMM$!~E9E_7cf#SRnb)jkUb{oq?3tU?
ze~G=(;%1+_M8K1Op&yoIG`Q4F{HbBFtLN2W4>w1-iQVd5nok`=ThF9Tnk4emsU@40
z>*Tqm5i`AB$W{n4Nl#D>>_6G(ox<^b$EgKfyBus7+=?qhBPR34yR6L!E8Va7NBofQ
z+1>Mxgsr?Fa5()9$M%oY90Y#upMAbwY^|@zqoVK?Au}V?Qp!cn@vzKv{}MCxb&VL~
zVeM<lJ5y8i+7~S3Q&2T^xRkz4No1x!x8eHuUIFQ+J9ER=YlL6r__MLO_VnKVwiP8V
zt}4sedsj|h_p|<0>;;xjJDb;BFqz-(w&S2u-z!fW`T6~_Da?u={2Rn|XP4b;lNS^=
zmw$KgZ`g)jujTG@x<U<K9M8XA)}`(x$SM=avRH7NSYorX9s9Q5+^52g=9I0<YPvY-
zU%--`g^BLUn`$39o64tIi#WM%ak$;o&|IXtT(i=7(OR`XZN5n%^{alk&kg?b?xxv|
zNp7E?M8D7!O%6>?oN6!eMS0uNu%-7_OJ18R6_fZxbAF?;-1QXB$|GJik8Y~gC~L{D
zUFH;%xPD4U^~*&Mr|>M=F7AFpxoX2aW0e;Mz6W0z1-eSe8D}}g>2|cQ{UDoo<<2fv
zb!Uc@ogSWS3MpGu&j)4}*oi8y<O-Y?c}-=J({-kuQxpVmDK->(Pv2zR6Tj=gky`nV
z)P)ZeeILoo>sK!335pciFY;WXwsgvD@77n#*<CXgC#p=FbMRAd&*3Ti*8JQfRJ5n1
zjIF=2C+x@mRSOo)&iU;0Gxlb{5_T4TU!f}t6gmC=X8$Nz?ZzH@>s*WK0rjRD?NZkT
z`vX6_Os#rzU!mV=g7_52)QW8z`L6c1^)yQbmo7cGei>_e@&%^F=Nt6IA5G!gG$;O=
zq`V`;s+-do?A@PCzi*%HeyYnrV@sf-#)*R!-^+KOTYqiAi9cMdPfyLe&B@5`YF5DX
zXT?{CrN@=8=u73E-@%!}bK~fv+IQ#lCe(|xs7o`6%im<=*b=X7khJ>RLHYQNZkdf)
zQjQ`Dk&`_xMp@k4eo>UG++CvXGhgfZ(vN4J-!1t$p-z;qY>ukU?n;;D#YH)`jVrw`
z&TM+R`tTmJnOpmlS1<b$^LpWd!>2ba?h^=|Zd1jltoS*5>vR8h^%ey|gM<K=f2FTQ
zeuhq-AKR>{wA}JTh*wmZOw%eoo68SgFU;i)+^Vp}xJa^bLyX(mH7wlTZK@NpG#?+W
za?TV~(r9bA7__HdOK{%SfLUG(ST!CoI4-=M!hYoPL%o#7XZNl#-0awuYUe0^+Ju9j
zwW)IJr}K4*;qzxdI2!(Zj&b_YMF}N)4n#9&GWOV9a`@;o^-o}BbI%e!)o1#9PgHE1
zdGGr9i*p&giesuW`?gdVREE^MechO&pQ0-NaMGRs&pyXIHOc4Q(h^vD>Ph~*<R9m(
z)-u;0esKBQS$6A%(|Xo-RT;fnsP<I7GP6SL`x+JB{?93|75l!+DT@B;3%u%Ycjb3-
zvtRUniFKx2E3>{#ZD#xP#7z8O*0duhr%QhEd$vvH-yUyI#v9Mhi|O;vtv_Y{E4qX6
z=4*YUT|Z^=dABfr|9S26^qKnBOG}%79Sh_8{?$sn{&&FXot}EJQ7V<cl$J;Ho@ZlA
z({ITy*qav3^mfYbgf{`F?xiIaO`96}d&$f%jd8#Fwr=?B?|u5oGb5jSacQN8mu$0h
zJ-&JGmlBn?!u?*wdp<sDss7mBJTdQcLVK;=no!LR6J{o48M<G*vNAvC>CJu5U*v2$
zzk8)l&j<Bn?L)Oo^D>q^f5iG*N@uOlzjooC+Vn<KW8eSL&LwU71+3h5F%{kQ_8UFV
z|J+<+t9N;|)3;yRJ?rdG|6J%NBzJAy9_|K)SNw(VCe_Z^)t^3LqmGniS>cSszxXTO
zF6FU2lym*ke=+B|Z2My*p86k~)||UF=*!;9Y3uIt9hJY6X7l)4r1DE<+p_tV4x6vX
zJ-Jk)*`UVT{*!;b+~Kc`_Gdu;Zku|Qm;KoE7uMfgci-<e-t+5{ilu|tvMtT&M-Og(
z^l2gMtZ9#SnxDTUI=y1ctjpgyn`%0GDqeTbSBSI@fBBPjwe`{@j@64EOzL-aNM0#p
zA-UII`AUVqzueQO-R%aAkM4x7TVqmOwP5xVK8g9EA?t%SEMg1&x%=v+vLuVU3l_i5
zKBF)4qHotR<x>S=o4*F8rb@`Sa++jV8J)N}#nai_=cVqcwR{yxT|ct&IxZz&n*Gx9
zwtuv4h*{B{xpNXy*7RLJUnX>1lz}Ng<WHBH@ER#0C5D@fokc!6C+^Kn%{?D@ynst`
zUd^=W`en&UmVb7-KR92-@6j7~_}C}guv5BQG^gxn^NYS;Srya}sZy=({Ol9U$8P2=
zTt9oC$yHg2NzRQ-SiF||V^!Y&30%u7=WUuKCH6J7;$`kJ_xAyI1(T+;zxAGIe0`mP
zl>Pag@3gL8;#g>5e(FTX%y0J`f6dC)OnpB=Qa*9>H>SV3e$HRq>hd!h(qH|_yAk?6
zUhD6@D;(FuX8ri|pz_jJwVf{wkLllE@J{;gmLoDbk7d8?FPM_{oafNlr-gcVxAA{)
z*EX`R>g;Ui<de%vExtD8SNMg3+1@qkpZR#t&s(njFv~j8WX628&6kdJ7O#6)vQl*U
z+W$&t-}&lGM=m>NByvgDq+^osq0ds&-yQKhqPxXtfqB7)FAVK>R{!WKj@h}#V{UQ&
z47Py!3C7KLRkCB)J=OQ!&OCq2CV6qWM)|kGvIT;lihb_wIF#{6>G>|<xar5Ee^)MC
zE_pY1k=*ioM>m?Bzi~qM6#FlUSNTr*dIg_viMl-&x48Z`=EO>nJ>f6>uHA?btv~VN
zsq3S6f77P*K3~wh{4r}#_;VYtw&0!YOR`ohQ)!-c>RHLb306~go(}x>R{O^-S7vP<
zg&%!NevP};o?c#3A$o1qE4xm|wI3ahJW`o+dj3}z-WQycd_5;I`j*fC_<VhU)s60r
ze`2Ry_vv|7R>l5n?(6DllD|)}{JOyLS5x}yr$4E2d%jwpi~HsLe2>TELx)s^&Bafy
z%}+F0lJWlK<BHj<br#Q(=*jmn-)v{^|L=rh3v<SvfRpD7lOLI#Uj2H8oAOKN<1ek1
zWcI{HC4I_j+s$uoAjMx`vehkZ=gjHx#SbD=i|l7S_%&BF%v;T^*7)uJW&QWQsTk^>
zKRdmB=V#;PMz4*Qi_Lv*yLZn&FLO@rPm|Ln=S7wW<UjcEGu-l-VzgrQUww&4+fzr2
zWAA<SdfFNoH|v7s&+E+Jc*UN|7(c$gbMq#z$o0z&@1Fg*FK-s_e5)c3<GzFM+LqM*
zOE>a-KQZ;4@1Db2=WjfJ9ro$YZo`A$r-lEllzen{?H|Yc#U-Ya8EZb3KiB*4J-aWV
zV5WUk!GrfNpMEXAYxb@`$L9aPxuJ3|znat?JXk#aLg}<GJq;QRta5fbmv780d!e{R
zPfUH{mbDFM=l5Ix(PT6UTJn1HooLO=*A_}Ky?pW2^Ud!)lU1s(&$O?e{YGlbTfq;P
zla_p2-VuBH(}qi~tKVsq_&RSk(Yoo`c7Ip*&9YhC>Th4)jp1snxzV(L^5sK^&gf0P
zdRx-!UfSoVM;v?EpGn4@3wq`EF5ydLN~NCr-GkFDAIj~YV#B#}|ASL^MdxL|EI8+N
zwQ|qFy_<u>L@K9+ncXN}(yx~u@W|&fY%KuSqmR$4B7VH$t@|UlWyyh6xeGQLItB+%
zQlC>*Ur{T%_^rlo-rf5@l^B-%Ggvu4Jz`#@@Qm{>b51jzO8K8R>FKWf51%%B-rrDl
z&TZn(mA_5C&Rwc3Hz(nG!z~x)tqf0P%#SbET;gB+&E=M5@r|ZiY*Nzl%QtGioZ}mt
zlBd*vvFg~d%RQ5Ga+30ch5ap>!e+!L?tRFxJlJr)X=$@d@+5Va=Eo9?-EXFbz2-Bx
zaoce-n@WH2o4KxT@6t8py&lMV#?D@_((x%n<b?B|f}<>M{^t3elwfN5=}rH0$&=3v
zcTav%HMcok*^~2p<COA?1~1q+x3AsgJDF$s9>(CMiOr5ruXe4g_%K;<{`1<DCiU%}
zYGu0}yVaJi?#UL})m47=MDSIokCn^awyH&hta0K=nsf5is*?|PZkKqVex~QI`!V%r
zp8Tar8t(m$hbGNVDtWYg%RIZ|2ku3AX$SYj%07K|THNB=5~*m#zg8b+S>Kqy|7^`W
z3Ez3y&s#p#=EclgR#MUMxw&`4K8I(s7xzd$x4b=-;gpU~%;R^9%YMbbTefh^nUXX?
z;r|T3PhDbJeA$(6&YxnoStVwhFV}pIPCjE-*{FPyt&b;m$z_w1Y4;Mk<o@k3PxYVv
zvQUVxr|oe1&WZ~yy_Lt@pZqpVep6Xxe{3&nm{)AcQARDBh;vTAR9;FrbpG5ZnAQ`=
zroS!dyw>N(i+g&GSJrM|zG<?;eM3<FwE9DPf69a%eqYIEZT?kE_@{|_yWghmWs~om
zDLv+%|M91Hy@&Dq$0xYOE7P=ZT$AG75;3QREy8YI`o4FMD}T=FO<((f*WGZ%-?(KF
zZFdXPS1d^>Tw<bm&m`k*j*9VqpOuRzpGaU#>wLriEb{WClB?Vw`4p3Pzh1F+&BmRq
zQ9f5zNJaOX-Ovd)@SZ*6+=}2k3F1#4JUFIs+2mptZ&vHImxate!G^A@xXSGA3iL1O
z-?(}io6qm6)e;RelOG)o_F1s_xU`47mEZq~Qx2O)&rp-ty48*|*~+c=WZ2PTn$zsg
zX&=gJ35|I0uKMei@5?$P#U?!aF>}k@AH_3w%(|Q_HTBMx;>fRovr4#i0-c>IU#eZ+
z$(yyVZtD6Ek+b-}T&Ul3R&wLc&q|g1?2QiD&zQUCLUO$LvsF(bP8Xi*T&>p1`mE^d
zmhZQMzaO!FVgEe-jGyZ1Gl#5t@5bIMS;e-Yto>ndIm6t$Cq>w+ep_A>I=(3({J28?
zwr;kShm<e7nBU3f%e7eg(|gXW<8eY6|9tzte!VoYB=6>(-|Ic3&3BZ)SAX+5Ytga|
z2lle7{hoK%o5#EJ`I_eRga(kw|Ew3hJR%(=^P|ZA_&$m61s^nC^Zi-tu)gJqeolf)
z_L?)ACQ&SUA<sV5B%BR8;+^`!_3(1X1S9pVDXTV3=u+6OrIov!?aKUZp<3#pg>#Sf
z`OV_x&RDd$m_K-C`<ja{W1ea889qsv7$22rTRLU2F7J_sisOO1(&7>oe>0lc>MdNK
z)g_yM>4foGvHLaF-sd+5nXc|$Ga+q(b*gkng}8fEesQLy`%dk~gU(@_E>vxr-nUF*
z!jkmT#;KL^E^Bfd%v*o&@+_G=Z<kBnR;H5@Zc3euBD@V%vnD0x8;kkhh}%Dr<IbLk
zOW#+{+G2R<lUL`ua~2_+bk;e%dSVy-LOXKW=F*ZqcRY)k6pl_jocS&$_MxJzMp&ft
z7dGBAzkBTKy9(9A@^75~cu+4rjB!@~{)6Us1t+IYeDUtV@6XzQo;Y_uyIU4ro>>;H
zyL#TSwv+;87uD1K_t!ptxqr*YD<+)&jvhMR2e|+LwmrV)!Tm(Fy4%}@?Jw{}t6kYv
zcEQH<e9_9e1?#6oN?0Cc;^T5to~!=*MM-;gQmAReGNW`cx7V5bK3*$Mkmyt7{QSGj
z&Soj=Iv)Q3yQ+DUy*L7$=BUigOQ<qCeCD1V-?CRXcG#bN^2my}eRl3+iT4ZsC!I1p
zrY3#UI_7+j(Y%Ve2l@W9@%i3PDt%>oFCruDgVXB8|Ns2^ICb{P-NwZt^K6bhc)oPK
z&|bYw?vw9L*_JB3_vY*396Q?+8?Ph>{IC;moBndoi#Opbp6oE4y7b`(hQG1Z23`Nn
zA5ULzv}pgC)yHT3xfX7A!$c}mN4MbTQq^zY=cg`EUbw)&_01WX?B2UPtClTk_;iY=
z`>Dv@ce8e}Zv0z2Xa9}l{j+DUIT!o<*9(cx@bgvMcXZ7Ds`WE++4QVTc`xh5HQlzh
z^~a7L?yI|{v!UR#)Z@jwGb*+oH>*3AUr_WRJx1=Q)Omk~E0-!>n50|ZO=XwvyS?nw
zDIV_GnpL;|R?ay7?R(+B*S6ofo1Y(<YA7ULYqPkg^H!p0e{l(Si1jUlrqy?EvheSi
z@BeSjg+$?au_qT7Jy_1xvu=W3eb<kP?Y&BSw9a33xEkWw%~Q43{+Zz{{)^Xlb60*4
zf2Srr^=y%3ab=IaovE0^#*J5brf~9o(_LAt>yVzGF8%B2_R8-k;uiYx%1zarK5b{o
ztK1qlhD+yCw@mdl^PRiv?!UA9K33Rx>?oS{zCZr?xl>Z9mydcr=dM}vFR=ZF+^x%O
z;bLJL<z+#WV^zGno`19aa#ttV?D`Jlnl9@k%e!CwLRUpTocFT&rDgS`u;O_eC$i4+
z=eaPor&1>7=SlvZWx2DS)^J`{b~28RX4xBl(EH1(>p3>^q1SeN-Wq&IaBkpU<t+v4
zZ#ByPx#qjKIoecwp^+KGm2H=1&Pqy4oSUpPGbd?+-AALn)m?XX7EP_W&hXctyF8|{
zBkEy%W^uq7f#d(O`T{tYP2aq2V&6CB8E4s|%x>si-4WH3Z)J8Ov$$#H#qb%6`mAc_
zmPSc_c*kq(@#A~RM4x#})PIMr)3sl4>0;aYpQcAHvs(m2`|sV})|Srl)}8zH#oD?Z
z0ZLbIH||Z*tlRxc%hP^;wgb1Zu+RGCFXg?o)0UZ>(k_p<!vFEPyNvtxmkPDE_K%iE
z7eDEndtkSt$+TxTCfJ_RJs11v&=C>s-|T<3Mv8ZT;wtWzHk;S=?|{}ugWXN{irUJ`
zn-0tUnw;}N{mf)_zYh=osZNuh^77S}>mDWtekIJ?IMMn=d)o`&mvR%1Kk}~#ellUn
z%KYA`4_U*wY)w>kHSRq=^+HF+=IqWsl{J4mqG#?;HTgJw&Rf5#6*m?hdGv;B;}^+W
zbGvJGcsq`Isy)89Y^!>V&3)a=Uv~(~?AD05)c#)DlVe`9PJFTAvoGh}ziGS+*NAfZ
z_*=E|!79!QjvrY}7Vj?xou2UG1dH36`CUnT*VJ#PnP2Ic8N#~Q?TFk47w+>as~)fM
zT+F`rE6;tI9N|~IWj()hmhVs&cIEY*TXHQn$?o=xr(Zjy?N8h^|9xY53eSGqMMmF(
zwf+RB^}M{qcy3=^&ohgRCqKU3^#0>>V*RhF$Im21S==bElnS37skvP^KJK8;*G>Lc
zPF5+~K0j~0yJK;cXPx-&+e}%V<|>|2`@O#hZ%%pku2|>ko#4!;GxyC>oNsmb=>8l<
zLFQ|D#fcS>nQKiNZywb$-8)gPaQkMZ2%&a%R!Il<^^C&vl~s1HU6S9SWY~O-S<`6y
zGflJW9`hw$NPP8GvA=)hp>r?K`9BSB-p^4G4KCP~X`T7W?6<#^&7@<KN@VQ$91LHF
zEADm?3iI>0P*&5i?eT&3&pm&BbN1YSz3_18y{AI1!RmtMGJi_Tu3t@Bm%A}F@|(#*
z;YTa;`j#_<v8W%so-k`!VAQ;)$E&oL-+nyr;g@S$Vwkg7{R5kXZnlQL;{W!u!gFmz
zbft&oMY)1~k2_h89aEEcyP!YOZ}JJ94ci!Bx=iqsKD}ATx`OS+b0fdRc{|%nx9q>7
zWFZi6Q)AP@>l0U$Catxa#I|PI=?8ifA`bjw3cq(^!#%qbH<QoWJac{!xbaBX-N#ps
z&N=hZ>XFT&ClyP6?tDLa?SET6x$0YmB2tnD;guh+$?SahxFftbyS4IJQR$ZdmE8TD
zYa%s8HLqToXmH0gfc?CC>IRmhfm6d%5Ayx{UeK}Oz^lWrR8NbmE-9L&^I+W?w}pBV
zzJhfRgzdCh-U+vA$o`i!oa|K)>gD~d=da1!8F9=0ocO<IPmEsjORHUzmtR}qs-15!
z|44&tEB_~c%_&OfY<NwSDvFl7GW(aSMMPFy*L?ZIc{fkiS)rwy>VF?eduS^sHius~
z+4RZ_wf~<d+Mm;$e%k4;>NT$Zj11cYapjv`p9;>NT~{4i@-aEa{XlKdN(XD(X<6!P
z(<38JZrYMG=~aPk$%1PK7Pu5TYeZ{JI4!!8#lpW$_jlI1rqzr0?iQ`BoW{DH*(^L#
zS8B<;G9Gn@r7n^09xV7Tta4zzq(qL!hd&1nUe<q6wf5iq7tgOv>~J>RFScm?nFC3$
zZ5V}4y@<DPs7jvMT3Vg*fO~fRj=D{YyKDFV$Un0t=aKiC{_LGQj<p5)D-~SaB(L?f
z=xeixl2h-x!)Z7FwO!#%TgkJ_&nN4Bnxgl*h;NS$c`ZHj_r2dozqgKlGFcyPMa0QH
zpUPeDel2%T+NX!d)T-XDx0Ea9t?G6Cd2tzU=;Z~QJa6^{K3;3MV{b@8otk^>@%NXW
z^?hkkW{Yipx$C4}{_R3F``w>S|Gl^(|IvN<zmDMbJ|BaH^~-zXnj=qaR@<^-hJL`h
z_2q7Tk?ZE~K9CZ&pk!yyOPv;$!VMpLwwHgFHuRL5)ARo9xsRJu#ADAY8EUWb;WM_`
z=XA9D_JR$ZZGo>ZFWhn9#%p1b@BBsIegv~Tmkpb_?+e%cJ>M1M&Mp;F<$1I#_@2q$
zJB)F+xYn0GPkR=T{bEt}dWq;nRpT?)*RAC+c9C9_+w|~EQ^@~yAy=+#n)h|7d(7_d
zsm2<I8<k60esYKCbFDwMT>M~HrHG?ViQ<RVKiPttSG8|i`Skf>cJX8BciKASW|`dh
z&~|iQv!>#sr-}N%FSEV(Nsp+AP?!%{QM9YqZMTMRZl>Mr*=b2?r=vDHl)clM9`{@9
zv+BfU`x4xG9q!)$)yHg-8eZXl!ufIjrA7M>e>rk{Pk4lS{eQFjHIGZxHm9~5e%rME
zV#?EZHmzJ4OMjm^vp(pfgu0*erG(sneD<g654ahge{@AQ%xC{zy}FOP;*X!v-#kVC
zL*2vLYhJVE_VstY57t-{7!iH^$P@AG%4=NNYeZvh9J-gj@OZt)+W4&XY)z|6TkXC?
zbX~h5);(ER=gBpVC(~!j)J~mv+j5)Jx}F2I3oCi{2ZI(DU4J^GdUt~R6|+k-G&X)}
zwk$d-v~=t5J9FaFE=N~?ao)4;T;}WFB3$o-HKyj?*tk5yH#B0-o^wv?92EC2IS_0o
zs`ev&yNctkt&LxwRu(m_o07Xt)#T#ujHm@{(|Ru(ubrK;*;Q+rYRz)p2b*`#y?-<Q
z@ToWbIqBy%)ksW<n0I>7@=GRdo{p87J^L&ERqnGgdT-fe&ATx~TeEoL?8)9wx?Q=x
z=TF|b-7h&?Ys2MhTK^g*KJ?yWW^=B-KINx+XeD0*tNl;A`>_pu_tJ0vo^d#IR@=l^
z3vR}!6xTM!JghCs_cz!Y;=Jo|eW_cF@0O*nPu$&iF6LWpm;9fWR_Xi6uK$_V_D*6u
zeb#XMHHYg5ZJn0nN_f8)*AU@)(k(s1CMo%Boqp(nMSaWJ^*(*=j{pAe+<eOu&r9O3
z+26nE`uLYl^5f!^&#Xn<lY4yEUwo50DKjBIY3}aHlKtEB(%)^ocfreR-t^KBHWeFg
z-q-9_;On3E<KQE<YQEA*JRR;mwQn=OOx0ZX_XFe4tuo$|C+kf6eqo|f4x6^Faarb^
zoKO4~_d?xQZb&=ru<?lg#tRuGFDwtf`5SuellGl+XFhFiTb}8C%kA0cx&FcXtJ*)#
z_I~oIvdDY8<m^*H+y7^}oC=CdN-J!B<~;Y`ti7xP$@lY@U3~9fn5*Z#Z$k3R+mm&s
z&3@@2*(AsJZ4$r3wj?>mmi;R}Ii5~?_-V1|1pC4-&!?7O?T^_i@#Iyg+-94s;3<<g
zpW5d2)Tkz=S*zyBlj~2kRygoBS$>bZ`$zAfLB?z8C*JpW`8~U&JtgVuo7}g_FTBsz
z9XI=KP;u$Wu`3#fC587cocZma<G%%-cR4P0u$^t0ER?_0_^Yhk8jg7rFFL*Fj(_&+
zh{*c=K~CN3p0XB)7i?c7_uL_0-+S@(%BTJ7g}dKBP1rT@hV$_Sf{T}yH>4j|n^Eyr
z)n{+xmy3B(uZk31Z<Z{Xe*au-a?TGuHL;CfH2+ntm>erIL%OzgW$1p^og2CL@Lsrc
zeD?EQbMkePZLa=fU32>Ln(cM1Vuwu)q{K=~zRh1~V(9toQmogNi#MvKEZoOeT_QDs
zk(IskVDh%KUHqm+<z;Pe778y(@|BT&k^DCLa!gewlkLoB1?AdbwRZ}1EK`numhet0
zy#4*H-L{wi?y<bmc`(oF_x$B1A9Fd+FaH}@!qEBRgUj>4TWRZ!>XeV({I~5vx^$8-
zYk%;cbC*8xJV;(L@1}pvJ3Z+}*XYx?C9@-~bnm{s5<4q---V+Smw4|o`Z?3kXs27>
zoP6%LS!^qAhI+4E7o2=W%e*<1_oLr0c5fe_dk?lo{+`fsrO}wD>wZO)*sO^vk;^xy
znS9W{d;U+$RuA9k^ncd>JqpiHm&hr$zf*84tiGY~Apgu6bDms^;e2#<i){V8eP)N1
zBR+2we`&tHxVU5nXYlfUD|_#W@AL6qa8S+Len$G@o$coiOxeSFN8Pxll{N8($=6rf
zJ_|1wKAX+6#W7b&@<u2RXVRLg_hFX><7ApTPiDHsYbQ(bZjqB+<Uir+xqpuCY;g-)
z9Gzb=ENAccn7<-4V%E;%$L7h+t8_Aabz#Am$GdedpK_SJqa%ZR;>B+=&GGvVetmhG
z=YGSF$?*?9Jm9nv?rS=&ziCrmP~7=~ms8*WF!{ijeF47uiQ8wE-n@3tUF+(C`Ss^*
zoH1wDLFsa@h>vVR;B`X<=~WjOY$=(Zx_av6+>aB^8rLoEKX{LG-F>Nt*{UnDeTpkK
z^rzqP^<Ci>7r5BxW2EZxO<RSg9X%rA|L>4;eC26}D?7{^Ce7Kg_f|mDB*#;2MqOIg
zYyEEjxv8&n^`m<nt5D*TwMS3Q4dhZfwIN2rn)8&OV#;UL<46B*JLfy~v_orAX7{We
z2cO+h{g<S7wth!Ji#k(Iy64v)rYHZoTKEYkoG@5?J!xuX>(pY^&nr0=K9Z9>Dck-w
zI@;C5E=a?EPU07@wyU?os@T|Hc3H6>{%fOh=VzSN19`^f2MoT%>^lGCh3UI>*Dh98
zbqMEvbeQRXZ&!fwA*N*_Je<kgTLpGiWL=!TG~D~QiL=OB<z1(>Kd%hcWB6`n=(#^H
zN@BOh+n`*Y$H&7b_c-_ks-L<m*BZv69Cc{&`u{F>g^uoBCD&OIZhB;GXrlG1))UM!
zcBP7+n|sPkC*`%fC2U`7^F%Cr;&%4;M<PxsYWbV?s}}SnDmV-5FL-=(;;QT=NB-|$
z67t6~_41*p_{6ezwmr*~@A29GpHO}O1KaCM3J2ym8p~Ssx;K_&7*A36aCFX8|MB+o
zt*EmeZeOcHm#tAdSoivhgU-wEkJ*#+&C~UlMOIbM^ZhzqiSg)y$gb@3EIAwh$aPKl
z&G77F2){mW*`+r;)#VGemkH>!?z?)ZN%ZAPt^%gdNwe<TwHAJGf8?}#>5ll&3rp^2
zoe!)Pk_<VQFlF!NCcfqzi@T*i7U-OoVNUGwoT?F&a+1?w!=H6icUxT9w&H%kT*qd~
zJF>5ze>vDKb(B?yc{<PXRgLRT2}!Ng{M4ebJ4ff*7wwc&Z!6v`KGCvm=eO<yH7j1M
zWuNIYA^XlAuAAb9TbS(YX5A3Co-$*F;Kn)ZhpN<D_OngfdgMj;x(|<aH)Qcl(rvfA
zSl=?`;jGmk)I}QuSFrHMRIU7Yb6f2@`-2%#3wa)zxwgp`HlF&WrS<1U!}j$?tD+3&
z2Ze{`Z`mVka7g@)p;us5@R{AoSuRE!v)`&d{Gin(W~Rz<C?SNeVb$FKF^;KCWoI_&
z$+KigvR<v7Cdb-1IlbYK+n34gGoMXcl<dU!v2Rt__f<F4!~-rk{+Q8QP$;}w?D7$X
zr`&HRiGD3%`B8sv!J;Li9-PmvncZ!EsO#jy>(go3cGXzp((daYv{*K_d}%na`qGL#
zgVj=(1(vV6zc}qwh}-+cKHjI_U+r08^P=ElaMiR;@21>a{Ah{P(L1lY>aIFomG?4U
zn)bAy!*9B`yCnb49v)kr8;(z<KD=9OvpegxVv^09CCb}*Z?F8{pR&cSRp9FCRW=by
zoGK5C7oNE0A)?^R^z5ok>umo<|CEF)2bg~uw!HJ(Ws?#qdmuE%>3T$$ngefCR=#P!
zx90AanH~p27-i)dUoGD8aer4pZl~{`eWA{akD1PrS|F3TGdM}?gt<qD_@AtM_7gS#
zn67+a+iEwH$tC1u$B~LpS2jw^8_l`>_m{obVzt*>v)rO}7B>lM$-5{|IN!W}h4YNF
zU*GtixWZzg>lM56{rm>q@}#LDoAks2q<jOj--T>-U!L9dT%&Pn>iu5s`CFRWcbgkC
z*Rf|F+T2~gqxg!C-uBG)X}+m)Wl1vsEqPbC2e;-Y9%t8CHd+7CHovKVIVzq$jN|P)
zR<n2cfhU)jwu`-~tNb7!+j7kHqx;ky8vCYI#@)NVFh%L=?j_5otl)V0&iql}wuqzM
zMirs6%fv!r<lN%!bqmd565l$-)ptU{t6rUZx8{hZ*tHZf%v#F&ph7u(drx|YOV^|M
zIuDa1uKG+ZJX$Z#yQ3wcR5!8J`r_)-K_y$d3`3+MLxlY1r1vZ}bI~pBd@Fu7RwP(6
zN@>b3k*kZnDqSO0IkJ4bb97v)TpLf>*}c2U;~wG9!vE^SzW5SRE3<u{q-L=@sQ4VP
z3@}+di~qCWZk<!<H~kd<a#=Xby8N<?V42qH#F~<R^r860jh`l5Z~Ey}lfOM~ieT%h
z&YJsy9iR5Jq@Q0t>50^G&xgJ-TAvqrxu06RXqmixYJ*K#uhE37DY0(l(#L{Cr(a&|
zlKgwYqsA3K3g+xl@=<8#e{cLRz$B;i2>;($sZ|ko#e=wS&fdI!d7;+Umh$tw!Q14@
z6>mph;M?U@^z6arRgYJFX>zyo)zXr(VZGmGlM%Qq^{(c}k_3@V&i7pvJDDbKjF~Dj
zFHNY}g)@Gtz|lWiKc}rOR<@Dg<BMxPvhVsK1832?U90Yz_d4$Qr>+y$;D47lW>&I^
zsl&aRq~p8qO=F4=+}IKJHkd>468Fct>ce~2U+TYoeMyzti8Y_}E85O4of^A7ezn@6
zj}N?`>P}pKBq(r?{ISr~$BXL9WfpO0Mly6SFwV6+^v=&Wo2l5PMr6^CsoFfs&tE-r
zShMuRTBSZ|{qU7ZyK;G!t+JB*y<sk&+&tyFm-6dELJKbxwU#cLV;<2x>9CBze8GMn
z;ZB)1Hd_-#6I)#sSKKmPnNy%=x8}r?V4a%t_wz$8Oo)z4VVEZFK7l`$N0vE*Q(;M4
zRsFigsSj8Dx#O_s>FK?%6Ho05S)=8_KHq891nUzK4~4EC7q@<p7g^>yPq=rH#QUiK
z2TD?=EZAK*e_!F0W}TMCi%YX*7{C8gc^^5++I)S!!QYAxyz5R~<U09d`HhrF+m_vW
zEAsvbOk3#@xA94vXYZ8>Hl7df3NjR?JiT<rm;W2%z0Imzek(++)gSp4=Ve>0ewpF@
z@%ge$$Jzw<Y$n+h-pF3hMb%cDdYm?Pyr?`s=^%gT%BHV|P61O_@YH<p{j*E4XKP1-
zNKsMTO=XT}AHO!IWV0-)b<2I*%n*8Ld8K9|BhT$z`=j4ix*XQ3ipsmC{E6E>;a#1f
zL({76oqY>_R-SrNZ*rLb|4ZhWr($;wy-i4M_0%u#ovwBvMwoj?mBWImt9KkSxyliw
z8^WD+SmUzo4%WLuS$8K2Xi96?v>%AD6Fkx?ZEk1qXj15|RfpnZIRe81BFg4l*DT*@
zWw+u;P28kkH(ApoFG}04y7)C*BqmOHZsN^M(Z5;0ZBIOvt7k9Dc8X^&;#w~hUr}f`
zzhX-1Tz>I%@1U8}8a7`_sN1ukNHg}tBBkviKV3{j&J|0{is6X=&f&tB7c{BVHDto;
z8#C8v@9!%3<Wc8ivgYl?+lu?XZQgU;EspOBlVvK)lX*dV-9Pr<n7FBL(!=(vv$VNP
z>#iAncbk`9b5wuV>U}e>Dc61}Gfh;e)DR36I+4ygFZRUMUk9Z{r`%7hvN>E-+xcu-
z@+HAc$E1v)S-kPhpSUhRo~(1d-lO=mp<REK?RC{<doF7&@M#S@v3p(9)>AwWjN0<~
zY8@~BF!)`orj}lrUdsH4x8~u2=`XFX9m-o7_w#1&PWyj0)1RMCbh;-0=+5hNiI=A`
zanCeVd$%qq@72?<pYMLNo#P~Ynm^yz%<AZ=Hpk=h|M4=%i%eOT8hGknn$l<fHBanY
zDnM&qzQ|?^`Y}|w)a5m8Jj0ZoHtXN^wihCPt5)jtd{R$7eMxej=C6A;+4obUW<9>t
zEu6yq61-9=!CgndyRgsuu(1ixyvHu5)*m_46n`ss@5g@orFU+eel5OhrTDT4?W3yu
zs*}5pzOhQReHWuw*OB)8!Q4}aqW`?SnySSZbi3l;>$_$1F8#fI=f^u8ey-GQWu_lm
z@4s63J;M8kSU-nN`Mof1t;#&U|DxP074_y-oU)AaXFm1hxlzpiy+{17Z@(Zt>*v~Z
z|4WxAJ}|8LH%-=OdiqoUOFCy0TP~cl@LbKdEVIex(Lyz?&W4Q~?5Sn@zs}DR=w0$E
zwui?;Xx5C#1>Mz76Q4(LI6b|1QvT6OK4;F?GM4v`mngKnX?)A(WbXEhAt*S+VEcND
zs+JY^!Ubx=<Uc*gEaUgv;dk<q>%td#TLP=R{U#l`^~o!_H>256{oc*<^JVi`e6DT2
z?31Er99TY)@%az^sn6ApxpQ{3Z+>+5tAk5$>qWo&r}w*U-#6XuP+X_i8>f3qFFM{o
zy|v`^*&4fqW2yaj!nG<aIi7^}SA<GLDpn*eettmfY;o?F_mw3N>YwYg&+ZTvo3W>?
z_2Q4pbEV-s=eclI?V3Kl`tl301v68Y-%|+o3tG;&RCV3{x?b14a}S@N;qyE-MC(cV
zx`Ln2ew)bKx>Ws|ciUr6pnK-LjS~~@aSFrM0%V?I|0Q8{vm-9%K^nt(rO%6}&p4rK
zQL$p`*_$2Ob6@iprEQqKq<r37zZjc(|NJK(E-=h}7aABL@paO}B}bf|nf2HG=Gm*s
z{QY*+X{OxdnXjiGi(HZU`~&0UmwW7wW<`q4n)%dv`nn?f$|=v!ZJU%b_2+EKdo`CI
zJuSX_&vMbVbbg~BdwQ4a8d&Xq>?iwkc2CUC_QDm@7f$ZIGG*G#SvwAOR8ISRe0J+>
zs~nrt?CdXnHTiyUZx!vS`nkZq_s|>DG;?c<Vjq(^A2MEAO*dY><oCSiA;r3_Pd)Q`
z`USEpdgr-4<gh;&5EXTy;MU#M6B7IdbOSvOI~QENwan?}s%zIns+=;<*d+#7zFNd9
zGW~Jv;`EhXyIVs}M0fp}ChFH$($f4Z?YN@T+Ln2DHKwjt?)6YkY!|xP%=7hyK}SeI
z@T&N@ubmV2^ho&1UtcJ=Sn1O#Hjf&yh`6mggO`NAusdHLI9p++&mu;DmEV@T{wU2n
z%Km55+Fpt8lJ)<%mNxHw6E!a>^X!p~cMHlF$bXNEJY|`7Z2jl&+N*6Yz0UM0|J+`C
z_l;ow*T`8<eqFKMl&!Y$m)ke{+sBLN`r5EXJY{u@lX)!b{{Pil=09f>*bV;(t`6OG
z{z^sL?wh7^Gp%+@1<91;*Rq?iAM0Xx{9oqH1H+3erpgsmCrzr4h+KLk@7tDtjJ36~
zCYBXqdGQGq3umU!u0M5Vugz??Nq^n_i#Dx389YHsYU&#maku9N(f-8?_xHwfDZj1`
zEc+eHwjyPE#e)B8&c|=RDYg=Je_?BI{zK8UpmL*%b*m*<YPY{GK5O#7YI3dQcGes{
zgRcyiYQOF67P)>S$MWRQduC^>#b^BMJg;K5M)%si^-o`%7Jrd-%CIawZWYUk^hnjS
zC-3<M87^4anO<MhKk<#$)ORX|Tu)vmz4#*-^m?++`L6O54o7nj6ID_1klhR0T%0fM
z6uvkqjr(o+=ezF<ci%aCV58daDBZI!InOqIH8s1ezVpIux2NA&mwm1X-X!Hv*4Nr=
zQY+qfA**4T>PySWM+dcw&phA#)BIfG%2{~<_a%;8UV7~CPu6R*`ak{J$hW+H5|7O3
zk4evR?^)mTIdwAp<UOGeC5j!BqMR2kY)pv>USfIvsHNIF5zp^?AIvd-{rTGA-~20I
zzIeRT?|00Vlus7?_v@zqzRCY0(~D(J+k)6F0uq543zlSrDEGbnvP&tJb=j<{zgu{g
zzgWRuwvkKfV(HS{*(*6WANl0rmiUV~O#RNO2EOlivJCT{r|`0Fy)LJ)Vb#gFLdSJV
z%QMSE7TWBZQXgvYr?F2|W3^Ng3%kwL!q2jYR-FxyIKAqp?2L7crAJRPWx1@D(u;Op
zt9NG!bHhphaNl!ts=F^gnJHP_{IRn#s?Ew!!_eOBP|wBFGrQMb*?em6$3VAZkN4Q!
zNR$_tyZ_{gtFA)s{zYbU55(*}{I&D+pX<Bw3pS~?r7d}BUq8{;N6s()S(~KTt~Xaq
z(@wwrBmeyTrIaZr&-WBR&1zfz@76w<>qeL6*wjxnQhV<kpLVF^_T#c6?PvP?i<Z|k
z2&c1GOp+;I=U-qMeBS(5^q%a6XST}7%g8>FR)6*5=pj?R-hSiRyAHfpk3G!sY_ZVn
zRN>8APKrJB<I7(oq>(u*AiIJ+o%uy6+l+_WT}%!vY?=T5DxTwN3jTFbMtft}xi{u-
zPV9A;C|DP-wZe_-%B8}jhE;R6l-p-MX8Zo`>CNj`U3?Q8f3mBsOusuZjQcoy^qW1e
z13Q?r%O&he*}J96%-=lTUgiHOKdOwIrLw<M+`n+HRMJP4m(F{?$a^MMXgr@eHzp<7
z`FVDIjqu~*wK9LV*UH>^d`DyBa|7n;oPhVv8El`XiyD;9oh4N-u=FLHmD;mu3jTca
z76|8i6dou%lOwbJz|N%eyr!mByLP^e+0VA&)kDiaQ#E_q!usY_^sRdq>$mIK*3u@4
zsz1d`_+`J}di6!+v#@z&uFbKZeLF6*#Xs8rBme$`($k0H9W;XPF&)0JH&3K|OZVoE
zNpjrw^<0WsI**ohew1Gy#o1-Cq^M4p<ITITUR}qS|6EMV$WS}oogl*`y`srzonX%9
zEZt)Fl<8~Vx}Q)#x8pRk(TCoKTb2_V-7N)+er~W9(9xB0HjjO{Wv8;kS*~#Dr;R7~
ztjU`7XH7%yXCB8{tN~vP*L^hFUD?tjeKYgj8i!T+>+4_HTlLD$ePeoHQD?f<?4Nnh
z6j`k@*QG?By7uwQ>A7!w8J1WSS)84_TKkWE$pt2nurLiXnP;uaxi)+ezO`S()FSTP
zVGwF?w8<1;H_JL`RC_1KL_257=__iNmrN>@Q$F`D`T37$h7;`^B^13wPJVj4#_#uq
z!dtT)l|AoIOr3XL=d+ydo8niOUtccSs@lQW*{64Drr^D^Q-A(l^6+8G7TyoN+kYJ}
zn4m7<tazw%>6Qa8KCnDp{QPDABY)936E29%n14F(`|RTxot{nWpS5UB<v5t}_{jsQ
z>F#Znbxa2qe7ul(uB<KWr%J~^lf;~Q`RDrIZYVEW`@jF{&et*WvdV=Ybz(UeteZPI
zzW&rpt;xM_WYzW=pW6N^{`t@4xsM}unIH98I`wh=t<(FnG(Nw(q7m+P%y6Hb$L{L)
zt0MNRn%r-?aW5=NBHe1U%cqE0Ro8yx&x}s_x>u&^(z)f<6}K{SHd&R=?bJ?I(fel^
z%h{_w|6ll(-kSc-pXx7j{THpj|NPk(p|sDOv*!3|p7l4(-gfD?lm2gMxrwD8_x#vX
zt68#V?!RtLADx8m-Z#1H(%mHeW0E%P6*KAP|Npx*&o1M^i`M2V(Hl&DiLR4Om$1G1
zXv=Y~Et@UMyInU=o&5W8<I58h{_zWBq~F~i8z6c&?~~r1xt`}%dQEQgZVLPoB)Ypa
zH2v?dZvkdAS~|rK=?8s1J>%U86IVC4n@cpD1vzim3r(NBhGD~8Ejjs1Wox---~I4H
zdP<$YNkwRBQFtv&v$nqG4!_chy{0y&)*alm!KTePa{k^ED<h|W%*uRY<$J$z7eigu
z+V}F(XWJ{*m5YBB%b1;dYN}}-|NKXMc7i5*4}U&(#$9bz;)2~TCAP>&FJLwGKXFj$
zSTK9k!&9RBel2KBF>-Wvp7re=bB&>3_ZEM~M>*3fU3BNK{(AXq6!YCXM?^lqF3eX+
zNbHZ$Iiw?MyhQrW_RlX;pRLGUviL7U+Ga+65s&Uxr+bt0WwdX~8*Klka<{qq$)Wi=
zBF}dkS#h(oSL|HOn48=9KJ}P{@0`cycT01~&U#q!cHMytsfa4slPPn%O->4{|B(M4
z|NQt(qgYO6-sa=;KfL^LL|FZ2(6`lpp3B=W_*5coxc0zp`-s&08;wg$j&3mUkheeB
z_|*H%+9?_Dd)iOPC4H}8S8qS%6SM!|hwjv#T~TMg@=EdXUwT$$x6$I{68pq?Hib>>
z+UqyZxw}L=QNUX^eTDwvBWwSk@D>&;Wm_}7?BdPM^3@j?9QfliFXX)Wi;OPDty?%M
z%4AkBpH-M>Vv{nNSN-M5x~bWx|2M~P+x{`)r(N(&(N}zX&*Ymwc+0_86Qh4);-yO#
z)AvU&`g@=E(LIZ26aEGBnem^RJ)!2W?yA=h^codJwwI?UPTVqcPv*()&!=xh%J>PJ
zIkLLXez$AKsY563wMsn?Fm#=haokRIzf11=f+^JpDkogq%qit%IRDn8u){{DW_Gl#
z;5@n|q0Bn=OS6f3)Q`|G`Be+JUTICy)x0_BAWP<QK0Bj-vzDhehC2Uw8N8=pi{RZ=
z2XFkf_!xCP_;dEBZ7;K>!fJ2r`+V-GZ~dfspT#XcwFK;Z{noPgTfmg|GmCfxmvx>N
z|G14&Z{NJf4-YeCudXb*nYk|JlyS*N7EN0YbqAB}e42Vs7KSgL{bO~J{?mBF6Swa0
zR!!==7st>QY3}>L=Avl#laEH)#oakes{Vd`F5B{U4sXMsJGq;_w*UOKu}sdrd70Y2
zq;*DL_R4>X`!2u9{mZM?ecKXme|+XPk#}$3uc+%@f2};3!%n9jIG{CMW0qCtj%<hI
zKc{y^X=O*}L@t<Kv}VoKOEL1oA675c<m2~FE%2FspY5lyR`f)Pv+R;PF0lTYbmxh|
zdcAj#p9ua>JK^<`+3br2r}DF_4<AQzAMq&rR=905zlOo*R|c1RkH0L`KlsPsxYxpI
z&s=;I@??EWCurL;t>v4u?b>z8zM%e%yVr?r-f&b*;I#gyb8fTr<ue}{W^Q<Dw_EPl
zvA?flc71EutA4(4k?TgoOn1k`BTOIb;+6ig*_Pa#&}Or@AbCo5yI)+rgu>I$^J5ol
zbcGyf$Y^={Xt}^5w)%;W4Q8$hRMrmv_SC;QMk*t3?kr*1JK+zP3YxGbu30U4WCa_`
z{aB7g>xF|Non~#n^X8Muip(HhR`c_I7sS4<XxLgmr}GU9TmIre25y^rHG{ZoCRwk9
zOiXVm@7m$GL0EU8uxrJ%$=|Zs*!C~@!F~4p?}xvi+>2iRDCKH)_JWv0Uo3W=`8zu~
zCcb3fa~{LV8W{~?3#Xh9yfS~u)0cj``eoA-HnczM)%kwC<<q7+T^#?TblbLhRtm2-
z)|#DqW>!?vRjUBb%X-m*FBLDbXgc0_8L{~FhRC#FhK#x&9ABhLnq<QCQcjAB&R?=)
z;g&ORjJC+-^xn(Z;yXEKif&47a;R3^y@v1q?B8yU^p%sfIPm9>=sSPD;)l`NAqA{?
z%}$bKmW#iA`ed=5=l&PF`xjPx_@9@vNP6oZZU)(sYmw2~zePjtJ%6~%RY{Qlx_ri5
zjly%qALVE6+3mRNx%U>yyqocxCP}7M{Mom;E|XD}E7gFfJoVQ4<zE(SE(@2o`16$c
z$lVtbFJ?6_zumfDXTopGE7y-R=hj|t4taR^lA5X8+UIAZo*9Mze<Jet?{bT)^<DqB
z<g_hY=>2{D=U-PvXZg)ry#MXuFT1pU)Jn`-B~&_RX@JhUL*MqB9Fu0%OgX^%LhAU0
z-mOhsmo6VWXtb!qRdStwmPM%UgwpZ{kxOsbZWC7M=-AEs@z(2VA4c^fMcr(_J-42B
zDv%eM;r69dsb!YX#e%{~2aE;73}&C$EjO2`Rws1Xrmwe?vN#RP7Jg9I&AL^)WbQc!
z-wxF$Us)<`9nL(SRx157qU%~n>zOB|-@eK&+PLh%og=32j{dIr`;*1+w9-t!;Q#e!
zLFXjS`};K~?frzACpVREIM<e)7ocIsl-r$jv#F?as}rNFf!%F~KO1#7ZFifYA^W7{
zzvHZ==ry{3J506x(&w^HW1A|}I)6Ij<VR{BUN}p)r6#J(Q;@suo_$K?bNT(W`||&?
zrPkUQZ-1Y>g#D)QQQgLKrB#=jK7Eo{-=mkX?Mv~;R=-E{lpjqBSu&d=Sb5ql|5cx4
z^Zb^*e4Xc{|EJ^3-uag+EJS78MbjlD&rP@-ZTWeZt*Lqv(*`rp85?sq=ekWeucc}i
zp}(0`#9M7z<dOi5fQ4;$PaZdHa6ihVDr{0b_tQ18Tj#?yMM|==?7fxb7O&jgeE#3#
z+<jlm=Rb{bXUeT@eSf#c;qE`hf8wV%$<8`t)vsgFEu9m%Y)jaKzflISCLc*Q{I+%Z
z#r1xLxq0I4!B$6idWxCP-h1AnCxrcMTHDFjzb!7_<=AQMqkDaV-P<+WrPs>j%zfmQ
zHf6S{ZHd~p6Mpv-7CvKee)nvJSLdT&%04Dts={aZHAL<mcTt~LBXfB2H6!ks(QC|P
zp4Fr~Em+e0{D#Q&x)%>BuOIxZ+4*9s&h}-~R@xR!bN1(0l(gm3?cd9P_|FW?yC$>P
zIPueiYc2iDS-1L^Zdg9);cdU@t>51nd`+JFWq<LlUCY}yi}Q2;&E7PrvNy9)_w-Fq
zw{<#6GFE3Frp$C&nDgB1mFF>e<&HHrenK<%?0PM~CH`N!<D)b_|CbTx?5FMvYt_n>
z<BtxSlcKY@=f-hfrI^ByR+0CnS4|%&L<l^z-0<9?LVW-9sZkI7Ke4LE9p3%@uVDQb
zkC)0pt_F3C$6btKK7A@U;gWIii^t;#Uf0ygE^nXN|Mvg4BHD6A|B4N(9`+dAiP{-Z
z<TZ7seC5Pw-t?U%dn}o{{;u@;`NUi@r&y6gIs9}}Z~4yJzqik<TN8At?DCHP-z_d)
z_x-FleV1rg_x;pA)t{eSJN4q6BhUGr^BZ(}KTg%=?z+3I(CYj?&-z#Y)!+YZUcBoa
z%l-3nSBRGXj(l6R{q$W;@7*UtOIGQqd2o6~dg;#M@{wG|<{!Cd(~OCGx+|J(7}Fai
zkFe}vG*hxZCYq3J$bCj>zhm9RAjjaw@HWkE-P6(2w(G<N#4TCrxKhF1Ti8V|s7-Bg
z*u}T2KL6XX|D5IbJMYAf&AVCE?o<mttLpvtn)<o&-{TVgNj?9?w)5A+^(UXQZgkQ8
zI@>z)|10qtiM{dx9B-VCXWlEn(^h!AF68LZ&D-jPW#49Bbq`%v*E_HIwMUd#hcr)#
z{L^d2$8Y>KeST$$z?0?Y3V;0gzaZfMahX@YjQ#~G8LWs_NL{XX(Y~Oy^QKOi&CyfK
z%(hwT%YRt#M9rf5g^GRe+T`p1&f0{o{Kjw@WLVW{N4{L2)kc=JefGAW^di6Cd)V&U
zcJBJ_%&vQhUtY-ls_RSU`BOVN<uqg5+YPCSb&qW9|IGeAbH+(08`re6#ap(TP1+`T
z?&WkpBQc3B9KF_l7q2o*NUmBkzgYbE%(GmNuC9*QzO=blvRwYk^P^94#2#(ElApDB
z@lvt(oR9zby0QP>S@P96PgH41*8GKAH&1O_viXQrZJ#aQ+N@2PxqVg%%g%p1HPQ3c
zw{IUFi7!o#J9O~#-MVwJ66t2#A75Er`<uuv9e(UDXTyf4kL}|;H}743y6%mu+`B(A
z?|Hu!|9oXq+{*EC`K*k$IZN#x+OM2Bch`}fjoN?aI=_D98~q|9^5NxGs^1S>cs;kY
z;pi6!bN6*;7M~7VQz*W^d@a|O>$+1<)@tQU$lX&Hd+No>Jsi9Bl|_rc^B)TQwRgqo
zsxtX$k=<V}>&7`B-rHVq!{tcZy8UZhk3I?ZkTO2(F|l^4QQ<L%HfC*^%&SQ&e;zY!
zcKG{%JMWG4Ps0P7E^3<3yik_A;=RrP|I>UPe*C-H+K1(dQSlj(xaAT1R-XB?P3Ui>
zeL4T7^OrNsBCr0QHo>5)JCOUd9Q$O)c)jAMNh{Y`bAMQruW9uCzzMgb4z30*T+TuH
zOQ)aA_1P2jQ!H)Wl%kc|HyzkyQVmVsU*0^m<bi8++sUb%v!cY7sh0)3l*lxna3%2+
z(?dml|IJ@S&I!my&z;L}=27tLg3Qv{%dI^wD?a%&LF*aMVU>%z*Rxmk1(!}cYF`s?
zGE-vhbL|65G7f#peU(4;^7a33JSEoOoy%A`-%a8+=i6IfvUL})Y2p3;YQ}?|@0qsp
z&fhodeZAn3wcTG{2d#Z_^0)V{Co?}WiF!?aIc3VCZ6Yzw=6V**vZk8*>V6#4p8R=F
z_3;QL6+15Wz7M}P&Z%KuE^5iGq%WMPHF;wB=g>ITyG!pM%6`hX`NMkMB{xnU5udqU
z?PkC(kz0Ga5+$Ztg{Do^R^|VsFe~LWkGGuS*WGLUcAD>-cHTnRs;!tQamQ(sS#DqK
zwklk3hzy$=6mjAC$<2qI{wK3rCHz(L*?#y-)P3XYOAm8RY5dhBsej;Nkb-(o<EG{*
zqAveRU!D9G<YDH(p}7Bcm}~65>+HKC{v>!Ad3T?k=k+ywRUaSs$~w#IOJC^t+g`D$
z?fFu)Q>S5f=F8*UoOf*$88<JnNld$-?sv3d>g|aa4~g|_c=5D_pG|K6t5_a>@y_MW
zx)xpOK=10w)3Z(9T%2hCWZiqilj@btlcbh~s-5wk>HqM5=_XyyH4dD8QyC73imC=o
z_|r6JIZw;Qg0{?}8EKEt3N@Xc{OQ~j&us5V)xAD->FeYDD~_Bxci6ls!R(lw=IL;m
zovnGReU<m-EGXKvC0_CL4%M>?&0fnUJ>%-k+gLJJ?>IAyW@x2?Q`YPCS-g{EPi+r!
zi&i|m@{MBZ&#EOKkEYCG_?~>@+4Y6o%!||%)GkhY*s?nGqsX%e-)E|4u5qnhGvns<
zLcYc8XMC7`=JGe6mU;T>vNsRR>bk(DePnTqqS!2-McI!Qbk0`lSmrYArB5rjlfCyt
z)6HMXZf%-9(X2G`xbdn(m$Fv&NB-~&m}c_d*6tafw_$l@+NK*hj5GO#UR-EDb64Iw
zOUK%?e~E!`qF0?lppU<gLDO=X!@nl3o$kG)T3YGGx#sGkf|Sgp*S-c`k}X1-XZ*xB
zhksw%wCTa=Px_pVp8^Xz%|B_gH=p0}%1W+d5sznC;kS72UCukj80}hGW4Txq9Ss(W
zyERQ$f2?$RrT%xj?7!*B-mIp}_Hc=OYM!`I-gMWC2*x?3C8c3)yxpE<zJ2GOFYIYu
zwd7Z^pHpMl9L}ozs@n?;HH`jn88e01zfeeh{XF#~+rhO-0vCQ?^4i|$Y2@3LsQmDA
zSjCHoOC`P+3%QR9p1Lb$ZT)cWlPTX*3T5Xp2;O;rVZYD9RXG;~X7qiX{pn(s?TIB4
zqK*eX&g4tp@iUR#^p34{e%V56=j+X<`Y!)?9d0gZeK)af$3}&NyLL=9Qj&N#*X*bq
z%Y?^_+xrA}8kHPR`SW#IVyfeXwp&LRsc05`X?8vSA^P7=R_lljJm&(-XCxlnAQ^4z
zzP06(QI^3=p`{z5GID)-E<aV$@iJr!HsagY%dz<6_5V-RvkUdK&&-%!B(m(!hLlTF
z7JX!Y#&LpWvBW&9ipj3}6Z1D^sHJD<6o24~{ub!Bpk>0=9+7jQlNWEyUj4md?rfed
zD~+!+YN#xnyvFU=v-TaOi@Iknt>1Z4Lf$hqZj;I>lQ_1@j5A9j7@kaT=MFK<JN-1#
zPH)SkxHz5_CHm`KZumK6seKMLKQLcmW^S=$ybD+9+C*7SWyiRN4y&M|4==vzu)A~d
z@te)m&`X^;wQboBpLM}L3q&r}%zHWi0yp<8U-nM9j7i5Xmd{&e82H4oOm4-cw^m%X
z{LZp>XGRz~tgQd58SSkdEECN!FQZ_JN6d<+aq_oLuz%vM)!4FPiNxttE8fV&x-BIR
z%j&g!d-wD#zw#yVQbYB*jdOOWhNSt5$~$cNAi2z7dB&;mIdYRO7EkkWmj9{ol>2HN
z2cK8P+MrD;>g(s_@qBG#WMEtQ<;s1|1ua=GN@V`N^D#<Vv?gRHf9SOOo%!4M?O7Fe
zhhetOUblvD_f<(hy<4ni{Js(P_sB^VX+~ciWjzD4kQNW^kS31fdYOKK{>$E1+ZDKL
zYHt4Rv-ymq{rQ!<EXv&_BvZPSyvpQ){Kd6|olkS-`mim1@}hmq^_N^*6*Q_A#CRJp
zYa3iDozc(9edf!%ztuM_r#Y|D$oKiu_r+@Alom$qbOXEQB@0)-5xvWAq55m9^@Q(J
zo&1fWf|hLz(yV)Ro$Zc6chL%8?Q0Roue<m-__Y*8pSp3f`s`B83!i;BX4r39Gw-p9
z?X!S3Mh#Jmj1?7;vvMz-|8Bb?Ws!=H@YIAIA%7b0op^gftM2_1P5r0pF?xH{<}XXW
z!g1+)+uui@s<(>e-xG9O=bU+L(N*2$*Pp&{=iH%oeDQ*Ofonw`mrkGl__`?4@?UhD
zv|pX%g|5oCK?+^Jb{TBX%lh$B?S9+ubEnVoTRGeM_lea;JdD4su`gy>3LCG7z{B6F
zmJ@uw`RO$;kkK^L52^Q-aMZp3KE5pI>FX2fo~Iu+&Jkw_&^mu1@<kzQERWA$yM~Zc
z*H%vTJ&`mmJk#}vzV@YaGY-XvJh&cU-|#mxir4gC@YksAyk#@1_uD*Kb9AS*+inGG
z*`p6LE=hOnN=@W8nfA$$yXE$hnCD@q%G))|c5?l{xr3c&uSAue`^Bfv5*Ik14XEVX
zG-ILBR<0vyyUrw(_2j8aPitvD@IayY;*yWrQbk6*@6yd5#9d-Gog5?18}9Vfsr*rp
z{<E{0>)VqoShMYKh;YQT>S_DkpLJG$mAu3$lfvoYNxc;w33h8QT>QbrzC?f7i*)@%
z=VDJpXI9-6*t_BF?x#2E1Q*@6yKr79fy<lmwCZh!b~oD-*X()zdrsb3@!2mSQ0>YK
z$vVwT*OoLCX{k0WvwK_iEw<29|5;Tj&mjY@V*W&tm!+jzK2QB*V{dGI^!sJp{l}bk
zT{^`ZY(DZEYjCY%j0tsragb}K<*x%g7sD28o}}@A^YWme%xNDD6538Uv$cffMQG_Q
zHJm>!nZsL^-$%5#<Eh$R%~N(7440M&F1@q-WZw&o)4#;;G+&ineqrvy>o*GW%`bdX
zY3g1Q<aj83?vts@4y>9G!>M~?+ZMwLh7+@oAF~U{{CoLqy@=!2g(v<N$p%~IZH}-{
ze0QT|`N>^k&6%%u-}z(E9&v<6O!@ZOqzmHwi;5MG*DecAUzg0|w(;rwd{e0lMJ@}D
zY>MCD^ZrSEnby;kQ>9*Bf8;hid)RkgdwRNH>KUyPsg#=c^ZyE!HXasxwzS|eSEEmS
zf*EUCD9`0mrlR%oOSr9$26Xa!I_`e5c;&o=^1B=URrw?*L>Ou57RgU43I2Tk5f3Mu
zTindd-$!iEa;?g-DcDmYoppaD`>mG3RB4;%FYmG)m|i9(vNCzqZ_mr=3Av|x`A@N?
zZz`5xQ(n?1^8Uuxp0<NIQq%g^@Ep>3dvxNzbZ^H<-g&Qhj8`43I=Dp2$2)WV!-t`l
zW#(t*E3e_+zW15IQw6W(HagoP@2$vK>npf-x@^d#3rjz-uh@3<P?+s{6Q<M7XCi`~
z6hzt$j)$v7xjw#X<Y>1-WQODHZ$fw9iv7HGH0)Y`Q1!d-jy?u_7e8EmS35_uevZ!j
z<Qqo~bj-^HFXhkBvTsnF+F^22V>_2(svL*zfzU~cH@<&TjTY0meo#V<O)f@M*`ZFl
zWA<wPy|eQ7=^M*@ZF5oPU_A6GQ@1q0&HWdn%H>bf>fRq;R@ZswlF^pZ#A?0}i|?1}
zI=*XdzmOVuVA8$*#X0Y+d$yJow<%^7{d{LWIrSE!Ua0s%MQ7H=hu3{t4t7>oc%+@1
z8adsZ@uv9G<38UL8J>omV_91vzVuC)f&0Vlhs7$La<bOxm`=Z(>M_?~-ZZwzH+%he
z#eO?|*l&?|ef7l8zhuh4Iz$(LuM{b23RS=4vL&ESq^n0kRZY`9gn>bU!PCVtWLM4W
zmzURCct+k&eW0fLspY`_^#NH=?>+u8&rXdiZ!5>lKDk}dlj7z|GvBTGeyWLI<(|*?
zjebUYXFBcT><mv$y6v>&M#T$`wO94xpI7dFE?V~^@!;dqqp$S#?cY4n>rM6VVsGw!
zk5^`;-T&wpwkvtE^wS&j?9}G!Ye)0VtG=#gyTwjsOJYSyc7@T!<L3T7kLu&Bj&8nh
zcj%ea_qurxmDd~mNIaPAzhqzc`~7!3mTpMgRnhh-sc_2U>R&Uy*j){ET=ux*u)no0
z|C`bTi^XF3%YNT5V?96J)W%%K<bh@Ehc=^27mj`}zww79@$t|5b#HmC`s;e%z0dvn
z`$X@r$9as09;SO=n!Ggg@Q(Mk*G`I`J`!AT`{3tfe-`amyDRQWmOp$H*)so$o8`9K
z&zA4)Q98NY*zI!jT^Y%^4^tmpOxv~py63UCU(##e*cf`93s#W#zir|1_}!<?_on+d
zyp*@7*kzDnqx<mVW!ZAY5F6e0`L>E%qHa`uIV-$aM@;hj_NRsJ0xRoJ9=se@;=e6M
z`NNCrFYLBW?a8*hQ+R&&zPrbY@4vtCDKoO*G5cMapZP*OvB&DeyzKri`6c>!P5ip_
zEa@=0X@{6nYBkS2nb5j0__5uZjT@_8hHrd-rP}hs<>%`@%{lwTj3>{P`$g00|F?WD
za!)%mCzS8jiOPSyKX<uYTB*DKPGQr+wQn>0BBcDL-JW)#@Kg6;`Qk}c2Y;Q_{~!3{
zpwqlJhnOt=XFho7e)&kU9pBG8HrzLx<P$=Uc&I$Cxwm)!^wfvfEkDKC3qFeXxOHE%
zr1aai&mU8l_j~9ZeB2+#_KP9?f^wPs)E$ft^WMB=En=PjDB{j>VVzGqZ}ai6Z}gaQ
z<Z*w{%SThs8||Mkd7reD;=HmCB|+zYdTa?-o~9t#Uty4HldJvPpfg4EU%2%9iF5y(
z?rd6LxUr(E;!HS)Xq%UIL&3){i|XY4!!^b7@0a{|*<y2%<>ZdnlNM~)vfx{w;Mbp-
z#ocfAoc6c&f3}?UPVw=(N415NXZ8pe_BJ-B-+O=L!1-u1d)dToKVR1S8}GL`e<+r-
z)1&9eV>|tVk0sU{6~dlAc)20u;d0gx3xhj~8ZAA$Q<fKT7pK%ZbsP~=c{Ek-?XMX-
z_e}U%dHmt>+iuU68yvWBd~eOqFQQgLz7uM`eBQyfd4tMV#Rjk4{T=GwmGAC+J05%d
zvP-tayvp;OA#5K^q!&(zoM5!qRN}+|ug=PAOWy5{y2TT@AT8ow|3z!1hc80Eyqd9%
zIVS3Fb?r9sXDKDSnvLZew@g^LQRhLOvxn)VubN9YFdQ{eHw#F}$ZSf>5K^*Rw&>Hg
zyelbxpFOi@+kU#McfKBb!Zhw+S*Kf?PSRmJWfYz&tT=4+HMmQ_{@2Ci6G;=N%<*}Z
za>T`=e#ztOiQby?|L$8nAtL^Wf=GIDruC;zgAm3Uex|c-&A8{VczgW64(Gy3UA6Ch
zXEeRj{c`U*yz=!`@O~t<Wz(uPv;4c;Omx@Hv)bn;TgkL_P43r8n?k+5|Ft?A|KY=f
zpp$FW-uFlOzj*Yy;R2Vm+xmRxd9(A&nu^{|xOTM0%VTenn(MKnHfg6*W~d#%mS6X?
zKkIcsg`fBOjg3>iq9+>~NX|++_V}Quv*z_kpZljX<HeX%-!9EoT=Ge&?aRT|UR9F~
zS3bP-WEOoEe>LzM@8o#7Gr=2m{pxQ#W^i;lySCffM7SrZ)K_p>OxpI#+j^URKiMU$
zdE0W<ob7TfT*<!5D-4RfHeOk}n&k$&=G~=1mVOWSHF$k-x}cerez1n+P|sQBgbu4i
zRqD$YT->W|nxrMO-$Lcn#N6hCZ(cty_hR=`>yBNQkaabH+5Gpt4>~*F+8jQze1?X2
z;;bV1mUJcVGtMc8eDp3?PrN-tX`;c6(|(DcM8cjaDsfLb(mF}%OQu5hx$t|Z9)}o8
zm9Es`$*w)})t#-z=gZAI>A6ntl`~hgNuEqPdr+KPb>^44$TtSkX2Ay%dnyk<YD>z}
zyX~`nW#+Uvoe7$vJtEx>f4BHtj*K(<c;tzK>0H5IUoLd`NW5KEbp0Ub@-&0{A}wse
zod4Q>x=G4zdBqkVd9JJRmqgsol{4l@WKHKtI<q162ixACXZ7o4FG$O}%-rVia?_06
zx`+O6`m#0Sx!OZBQ@v*!Prp?!_!ICxUZ20n#ZG#=O#GVZvv<f!c(47x$baUHMH2(o
z9CGtx`_?dLp{1O*oM!9I4B0J?JDb{dc^p~T{+(PY!@MPD`HJ|{$F^{sNZJ<ZrzWR;
z_3C$>cKz;|1=oUSxL*_8`tZehQ}#*ON2mVdx#&CbAn%*ST#_wqs{{9(?zH%_q-|E+
zJihmKTUJc*pSHQ>lpX8mBr|8f?`vNz-811-#?mD>Hfa2FP<!w%chc9{@&9h^m@f0|
zhuzjC*4B&fNjga;ODqgrq|@s4bm794t3v*XE2{9F@OqZ6^;gVT^=MFLTz3KU!t0T8
z4-)KEd*dP^IX4s)%eJJQcaTnd_|L<8)32iK56ypYIY@WCG>yB*eSd15?>(b4(e0II
zl1}EQ$BRy1zDVIq_TIkkNhNPgJ{0UI{_F7lyO%`vb#u*aXRoY_Xi!nlt!O%3sHpaY
zacPmtV_`-<V<SIVS5}i*@^3zJ1Q!I{;baTc|C=N(S(PE~<+`{rzRW17JbYHA-Gn95
zdIrKTuj;2IED1ET(OGGwC);Z9Sar$%EUj-&dg4td_3VGBSRWU7#%jiT<=OYE%SF!q
zwq;L0-WY%O;LF3QR+pFPrT_F0uU22Xt2|Tb%9Ar^1y{$5=_x<6I{J${yy~t(LV;K6
z$>5t+q7LpxKK#FSa0fXEPhnnvs;H+du#x-iz7@K)6INa^n4<0I_0(v>_hSY}R9-Ng
z-W-_7u_N_p>4ExpQePT_nhz|vCMBD=ae;oq^FI&tJF+j#Ywrwfa9aGq%5-k_>v#4#
z9RaJwr*%#FEnmL1X3YoLx$e`Ru`FGswWo;V?|iM3eS*yTvR$U!!X2I}YBL^*Zq5B6
z*YWbFYV4O7_LcIj{P(pdY~bkq=hOEp-Y=>zzUcFpFP)k?*Cw*q{5U4E_2KddT7Pfu
ztWEy@hSg=6$g-n}f%7Z9olCj*Rq`D&co8yFv*)ejZeg)KCqq^KUR!>ni*L67rP*=&
zUw#)&6ZO?o>Y2Rs@}}rkUdE`pNVmJsX1)p!nH9qxt8>Eqv82%5oqwemPVQMTVY+;7
ziAtf!r2tL-tGmnsgQ9AWJ<yuO(KUrHx-EOj#xqs(OO56UT>b9FH0eoS(^-kx)17AT
zeR*7)=a53mMMm>)!k6NA-Zx-gWgn+7#mJ_yu+X((!-Z@?k>G`5vlrTLNO?59@9y6(
zGRw~E`S-}~DD_fYxWPw|!Tx?i3ZqV<T=+s09c9lQQ$Ozw{&{!ts>LFT2dCVd*q3=j
z{cMOQUv{n@@9E;tXZ4e(^RNEdt@JPDP<`NT?qdcQ1!h@quX)uH{7#fp)LVStneh4i
zOV=#8-@dfa_nh(GdXFDdQ^Ybi37*lu#kSV===0=FI}48Ak4+4^S1w@mF7eZ&w}I`t
ztveq-y=k6n8hoN4<mQ%l|B4*{Uh)kL|EsS%)9p%(`j?v?2ev$a`mCB~tBGsyE06g+
zn~bkA?)tw#U*#o(6T|Dc@O42t1*S|BS)(-0o;teYhKkpWBHwEfRrf+O7iza<Dr@KP
z8v3k0Y<A?(x0|}owu>{m4y>wf@R2(cw|JLJ9!HV$C%eM^Gnys8-@CzZXgSZa>g_8{
zR2p@eoiAV5_x0b_PYuihX*>8YwX{X<*z}vXxFB(A@9eV`XLzcY_|!X3Svs{=YPGyt
zWq?|Vk=>=jdy{ektT-meaBKhO=l<`rZj;UNbc@B#6BL|TB-yS_ZcUZwIj^(8VCQ6m
z>B(kNaiZ~IOOhX`EtjtGjfy<IgXPNVKO)D<FaIplEQ)Wtl3mcf#qbQ<*B$QKdRfoq
zE9PuDv*dx`sq|^RGj6io4*#_EzJtg1X(jm_T~19Be{~%d*bf+`Srz*2+a#_wo%N;B
z$*r8fK23h-730%%?)c$_H;R%P%J0c<wF#MCv+vjD6j5>U{r*=!wk~1#pL%JoP5*4Q
z=LPYO3r@aU^>=n#Lgcy2B7b*uCI2%C`;l|DU6Xg3$>GaZ2GPosr_45aIA76*Ln|>r
z!}lGJ$&}Vr?0E|-9lpk$onf<K$@x!DUQVgG;TiXNLg1z2n^>~c3^^8?^<))yi0S-3
z5;IHw*$M4tAMpl{InQK|zld2HHuJ^p!zVB5uqp)IK32}RM*ZcNbrSlAeQv*yS^8qv
zoDi)(jW}uJ$-Iv%-hMefM{;w#sl>^W4|Cs%$?4zCx#{^l{e0tnRn4jF{28LfJWG}I
zcI#w3uUXboR}*<Z+_-e@c1};V%KgSwb82fRi!f*ho&Wa!{gRDAd8TI_z6Y+;5ozF9
z$@|+fsY>#r(PYg7T!*hN_3acq@IaT>?3u7fcV0EK(SwHVch+&d_6u0(K5>EH!Gq#f
z+m(OL7Q1J)H~4tH;(Ghd!k-@PQ`OvSw6fsUES|N0Rx63k6ThT)M!sD#bgua?o5KRD
zMI8NqSGC7o+*&IYkehw-*onKJi%x$s-}&v|dBx8>yf4pZ@6`{!VA3{Y+8*EEyVkAQ
zUG%U$kk3L>?bEBNt&4Q(+wAr}`8Fdt?TziS#k^bAcq#O6;oz9|YKqU_S$8+a=|{MK
zP<dUp_sFdjR(^G!t=z0iUu9)-&N`_01<jhfb2GnxoXK3nP2R=J9y&H2WY}3G9wg%-
zC0*Mtx8_&LZO46kS04CNps$|J&6Q`hZfVer^@2D4tXc8?!EHW!Vb_?&ysIlTPkhol
zxmI<m=PsEW`Fx_{u|IlaUr&#_H2c*uy}0`)56+W06Zd56KA9RGjdPzp=e@S`@J{Uf
zxNmWf$9j7`wTD&r=l#9DJ>W^Uufd+8{Aa7rGJSZxietru(wL_~p|`)jHCev(d3S50
zhOa+QpYVc1@}FcDAOCjYd-=I=mo*$4uLQ5TdByK``2L3fvkLbd6c0*gS$Eb$bnDBT
zf_?8^rk~pDpZnm!#IsjU^c2)TzyECa`k18~pEJCkY?t@xw$GQHbLS~f7b$Ppl{lq+
zdB`ba<D$09&((K6-J@x9xvuBk{m#`_Q{prg`+GWHotpZ3<>@^a?Y&%!yMCSX@ifja
z7cOa;w}5lX(%jl<i|axaZ?w<LeKa}i#M{@Mm+wE}sXy~NcK_N$9j3)eeYuTySj2y`
zN&2U(jNLj@>gb{0^Nzo@e{!e2`2D#*0n-I__m-D;ADmjv=;E;?Xo>vx_su%O9Ve2P
zT+-~#+&3@vc$KA%#KOM`;$I8*pHMn}=7hp?y<X$p0Sk;mPaB`#x_ReE?t7<yrSh@w
zU3aiy_t_<X?p#ql#}|`WWXAn5E6jB3rF}d5b}awncdGtKKi_}#V@A7QR2nMR$}nm@
z_PkWcc#><zRp0mvDW}<dpKTY*{mm8;H)~}@Pl;Bm(TYdvbN)@<pR#5_iL>itKEK@j
zf_Ft{_F13Uxjm=OEoiIBUq|+}y_xT|y-wYj*%FhSda<N<#(TMaK1tR5vAlummz#dh
zH@IMb<m$@kCrX~HUSHd|^l|yhsrR<zAD;K{&%*07vi=x<%Ud(?hpvK{y6ozvrR@ze
z>vDco#d(^{R5}*BOj*w-{Jg2n*3Z&Tr#`!Svb=hECP4L4Uh+v<uMcO!`W^BX)JNWn
z-M^e?j>>1RZNFwZ{XTwG>guu6LD377#q(b!y>H7(=-l~{dr##r3zh1Mk1M_Io?~qe
zR}{?KFlXLIqjNdBYbunZtHXjA-u2CU_G8C{Q%~df$6k={J}`CSL@qAHz5}0U{$pr&
z?OCT+ebpw~^yt)uo{O@}i#P1-;#y!N7tYSJeckMIRt@f5{Jslb-}(_&ZXA-XBCTnn
ztn~5x6NA!O?|ut(>d8z~^k4rzp8KJdmUwCS#!`3nnxj)H<+GRkjSjr#I&TxR{`8s}
z={2vX^tG0+|KRhe^G$n7WKfd=bEVoQ)yI$0q8m=cKR+)1?8l{Rf3F<BD%CCg+``Vn
zIrg}om2u!SwKj{Z*SSwB=d7ICaM~*&^8<4Q=lp<%HyX>U^e1O$E#JMGE$x2dg8kF)
zRq(T4`#oQiWybDH#|!d!t<BTltlzfdvGPR~8Oie0yU(Y#bqF2tC}HVeZgumJv~+m(
z6>-~Z9}gXrtGnO0)ueXj=D*ihM#jEwJmvePxaNWK{P~le=UDx=Qi-YaI&bWC{Os2U
zHWuoWEZ;4=-NP4`ptreIcGKf0YSXL!cYRNee}4aM?z4~m%PXI=|CO;8eSBhG+M^%I
zX7)x0GQL!P%Ukhrzgen)MWg(dmz#AGIcKLkv9vin-`KtIc>Y{1XWJ#!9A$!UF3DO-
z?kf9qQ#&Yk=btnCb?Vdv&A-Z-@dn*^b&J=%QtOV>^aouTlS-_39jxx2`tqWD=8i(~
z!0h_lAMd#<|B?SYeTUg@2gNYoySsGv>@akmdin69F9x;G|4lo2Q-^hticxmP>p$B~
zRNj8t>D_K=vu|2B{~x|WmT$j)XWyxMSN$fhZ=%obLn7YCavp6>z4IqR|GtgwyV_Nm
zyLL}@<W_L|yzV;lZ?8nNXdOS}JN5^je$0FqRTwl=?bf!uw5yBPDLmV0`b#an-sYVB
zpIr_|g(ai5m0XB={$`O6|ApF;X}_*n*zdPFw>G9nefF&vRfW8sF%n_{3iJCX#%-PS
zYKsepSkkZcH;cdM<zAY1<h<YeCo0jFS5w`O?0lK{>s)Nv56R*mKb3en+jpEafAe0`
ziaGN3w^g|}bWTgZz4L|RFSEGh{B7y{rLVVL*lGB<#!Tz@i;uQ39l49_tPj2T66<kg
zV_~$q^xT4QdtY_qaE6=ZeVg)C+>%q;PVP2clig`(XXLppO?Y?tmJh7n3MUNzmf8QU
zw?3J(%|R#dba<5YjZari1Pu@WWN!a?JAP-4^}%hc{lvHC?%8$!9`_u1yF=Q_SGQcd
zoAl$Z<~z4}3Y#C+FV0TZHB?kEKlagf`P}yzQ7*5xfBri+{%h~)KN`pR_=7TRU(^Pd
zKD(s2uUhr&w|RO}OWr>_8)J1STU`7^$(!`_;-E`X^NXH(E4^FMmGB_g$FMa-&)!9$
zVW#%;nd{!C{9o1nSBy_;^W$KVSGRsHUKVA?f8o->W2=8xJb(Xu!L@7m8;Ym!wEtuj
z+?tg4N@{cH`3;NLP84mJde7<gkx)M$zlqWB>&5zi3jWg954gT>w$*X*mUrT<F{iKk
z{uKB!*Go2be`>p<>c@~SiwW~3pB=eS8YFu+C;!XxPn#cKKY4xY<$E#SEID<3Z<C+=
zl38TdYonJq@7R`QPwz(U6W(22I$`0;tf=Z)D?Sy7PMDwiDs0O7H@AG8brY6m-nKaR
zyE*twXWFWmik;a!yvH-%<|+0j&Usqbs-JF@U;1CzZ>rB+xkI~+Rtv0Z(S3Etx39+Z
zImfA2eY}2i86t)FeNUY7Gq2ev;WaNx^t$42Z=ZX+xmsj3LSHyNTwOcwXJ`40h>nSV
zHxH{7**`ujEPgWY#<_!YuWm3n_F(08OHpf=a&M*?PcPlvpZIR2-?#TMo^x1_{pv4X
z_FpsZZmzo@*VlVXO%~}f=51UW)>*T%Ilq3n=rebVpVKE_sZCbb_1qoz#jrl-kH?vP
z6ZeZHOiW($Uc$NfYss6u<yM;x-1uq!;_ccZK1q&Gmz`y-%jeG8_O>MDQOfc5ipAee
zLT!IX&M#3AO`CD<UCQ;1Z(Y*bEdNHy*P3d-%<DW{Vt?1&?Sox;O^NhkGu9NVxUH{W
zFsn=RGEOr+ymYhknX6@+>fPJ4p6&egjPu-_)laY5#w+)+YDfRPRz9!wkj&xb=M7#r
z6-rLqeQf7F$Fx^gH?9VHr_{AHnpauQe)I6@u^s03%Ja_zZQk9!t)#EB*xj=7mCaW7
zc$MT^#giv@7b_m!b$ITYx?1_>?d6v*Z*DXH_lLJ_c~pfV^Uv(RU*hI0&wL%X?Yc|E
ztX&6I?hED#mrqN!I(qD`t%*375AVKX0&Cyop1yIqf1<mmmtkJwL#tx{x69JKMZJZa
zWo&=O?+7TLqHF4~rte&{?UNrfUUsWnJg<F!)zRvvi~DVfc6Rok3+mY8&+=Zb|ERZm
z`}?JK%j6VJoV~9YexlI*SH+5#9{ZFwtXSr%z)?I$jwM(BxN~`3%fZvzPlU-lpM6+R
zZguqW{k4V4+N<9@`V-XH_2Te7a~DM~6Rw>(2R9@o%=&nGnOcQ@L&RghecRbQ<v;6)
zeF{0UsK&2iq446r&Sz|X+OSKnR=H7^u&_<WvF^mNFqRKnr$il8k$&_+g(16c$~|G{
zJL`TY@4BwCx2B=mn^kFJduN62BA4V1Gjv%Rr+R!6YY-}qJn)F+IlEd#%4NlCYAP%O
z0g<O)iB`6`+b8554fm|KIs7~M@)4uAA=Nf#KY#w*?4!fE?AzWW4p%2%vA^zFT|CQ6
z_eki@wd_9ceu`dy_S(k8#s1To(2W~eZbeS}@OHw!LkhXgFKRZ|J2wf>47bXQ3t|r7
zzOJ~~;-y2;N5K`hLpRNzR3*%zRkD6h!P55J@E8`krDb>bFU}1;vTy$0Q!4(Kx7sDo
zPwL*jVdFm`_v85!vONWq-ObcJuG{*SDz&8^jokmc^x94?730`%bNP~4_C5Z5XUDnO
zrz~EU$S8R(Qu0!otMpWMWidyX-<=a~XHA98CFVE%dMj&^u5@7kqGidQyT#uZnCp9l
z9a@_$d}r-l2Y2teZ@*kVf7#?$>^k4H$m>Ge*;RvlFaPR^joUnJ>rBOaGv+yNS#zkW
zNcgVp>l4q_e?F|=<>7ifE-L)SD#^~{p_`U8PR$fg>dfH_D)kSZ+rt>T=JwaxYnGy{
z4ymFqx8!b_Bsk-0YtpynK2PT@+q<{ZM>Sw`>)FT2GV;G!zf0}+S$a8qOP;RpOAdkb
ztGm*I7C%07M=V9oUAEaEUcg&OJkV}kmyo~P%AT6OBhHm#VsF_dw!M|f{=mCrYK;Hg
z3)y#O>}~hhU2R|>FMJ^R%97xHIS*D>xrWMSOHX!bII&9X)v9~xWoF$gI+Fz#Yso6}
zr7ULR%Bz-t=~8U1UsEvS;6cGnJG;+Z&rc0+-oNmPmiMy98ud44E&ue;E51>Ob6Pgf
zmz6<+awnt9oqibUv)6q4RMgk`S$yZ-PnBh5CZAR0i=LL~ANM=@;$@zqW(>3P3E#h_
z?N!S&Z|*+NY2?G*uIQa5=d0m&r!+xp?S%g?xWtbyUUT#Bmd)$AZf5`G@wGkpUOq>W
z@z0X&-R4Qw6|qrFLXGj8xxWgQf0f8QIqv{p%hD^Q(-d?UKGL0OJ~3A1(-E$u`u}X}
z|NN|9{`UMnNAFwqp2{r><$u>(mV9!K`j@l5wt@Tp4DtVM>y8!9JbABl-pbF<CA!z8
zzP}#Kv937pe4*H_edp&LJJ0NStt|KXvyaAmKB+Iy<(`w7dVF2gBEI`Gq#wG6FE+`2
z`)KDbi<|TLF5NDlW4^lTMNFvVlhrvnQ=4aBs_-shlMCG5qB7m$+|ixa)Ju%kd*A4J
zWbKrt@VYsSIeh(<$*fGt>#G?JY!|JtdRVl5wbqpL{)``w>6PVr8CsV#{k!vibMa}d
zRWbMUpGBPM`}}HK;Cz3kHKDBTbzv9ws2%*c`S*)DZP#BPRaQ=oUzqxKx@Y(=uLZM=
z760-pt((<cv}Q-tvaYSnn)8+8I|S-29zBhEskW``XKv9>RTrIO&P>n0WcRF+(0R%w
zw1;D2$L(lU(TN;Cn~G-{2&qq8#gyH*Vuiw_6~`iZzi%uOy*IUiA@={QXQusyd-CP)
zP7hi#*)wRS>6SIQ3Tx-g<9^=$W4UY5L<v#B{c$Eyj5k%eoC02M*m_8vMM+Re<b-&^
z7e8~pSIVAMEZXl~t0SH+t62SBX1aR*#LrDXIZCyx|CG&gsw!Aim{~Sq$;z$GIlfnp
z1;=e<xbLhvYyOg-N5kCs=O!Cma=3nwEvcy1Gf{bChs*xUcOs8{oNDz$X3_1b6aM{v
zr6;VsQ#kSG{+s+eY$DGV+v;99#u&C~<KxI<eESdIxD#cztky16<yA(G*XNK=#diel
zX09sy{89K*w{*%f)=6az$#qjMtLp`B%rn<d$$2Qelk*(E&!-c+{;u(z>EIE@du6Yw
z=aMJoGP_SFMf}*zcs<inbWgnTt$phq)+S$Fm+t<(O5ya?dxz)9?m6}9?z^}}u^)>&
zt*+TjUS<~Q7<S5i_q5C@OOKh97Y8R+briopY`lB^;;_r{yT9@r-kUDbpZ`Ewwp4|C
za}OWy#cH*a2j})4X<WIz{iNMzq3BnaITWtlIQRMbzbXI!{`LG+%Igv%W3rdi!Y+J?
zb6w~x-J@=tUqzGa_~+^T+@|<u@#m@^DOEWd1?!vx^Iit^$J;FOo!b0QwW2LPj=eBU
zZ>jjR9fEGHciII$>~x<LvOH_Wy&Y}x`>hUDn@8W6F|A-_l=t_-bW8tu6@jTK+hm?x
zefIj!jK8AW)6!<j*c~okZdF;DuKbQ~R%geCJr`<ORGholYgDy7>0NongYTG4vT#J-
z6w$lo%-a&h6~8{=d$LU}=xI%{Y~$JU`!nV}I`&3p|E!<vYASVZs@e~w3j<RukG%I)
z^UX-PQQGqTdduQML0@^T{_~Y;Z2rZDw_U!+=WLU0GCh0X-r_q<rIGF)yiePA$)?o0
zt2Jnt_WIVPGv<Cee!BXME61msv+roStkAfVXvcoUSL9Z~mjk{ThaP>7l6aTux7wCv
z{h#~Q=F4^nR`&Sn#W7XrcsA|66BnfDHi>u3HqH%PJ&{sAN6RvnORIKysT$h5y}#)A
zZ2zX_ch^L}o%B;oNb5Pd+yC;mjmNAXzLs@hT#~ugWv;LR+pe;o;t3P%ryb&qGhxpC
zuA=X}Ys$;d`R1V?Oa4wSNNi)B_2w<VdZ?Q8jXkUi=OZNS4Q^yI-{NwdcJ$6x&u8;v
zj<1^<xbzOU)-typHo>R4kDFZ(*enood0Xv7>Gd&>_RjA8b5H!)kE35=g>>IJTZlQi
zc&M#9;s5-E;)k-r)+5!H6+tp{B9~u18e1x9(sC+5Ph_j`C!q~mYo3Wlnn!N(<9;4G
z)yb6cS=zCpo1TxFgC>N|zq$3ZmJdsFgQ)JB^>x!9KGeLncgDu)-{ty*v{O#%F`awZ
zb?1)Bc8|c>eT?O+4%P6$)&lIX-0Sdk^6HEgk*sGo=uJ*PKYQ|-3n#=IJye)>R*E%h
z9XO>wDY~i4qqTp!=z(MIQTKc%T-(>8%H1CAn$$H%%iev-rURFf<XVjTcUpSgKdPe}
zUEhDp%h5!vHM(1;QTXiB9h)^eT(z(K+v-?wcIm1|t0cd&ZB#nud?%@p(?!*x?@rRZ
z45eo$_MScO@l{J|)$0YE`}P@~pTE!YU{8dzTb$a(-u~HgeS+FgG@i76UvvFZ5Tg>m
zrTf}cJ?WH#A4N}jHOs|u@9lh_k&`?#_1!b2mA}%$b}V;$ue)i>lb(qJLhDtWS4&n|
z?%#1z+{(-D${!Qw^!u%)yKmNg*Gd0%FYRmN*Ck75<(+!|E>Lpy6$QZ^*N;cae?G9I
zy2QiGk10&DQy_9qYMPwUyW~~-_Z*brH0r<cDeh+gYwPa+E^#+Lb)J|QEfTV31;<lg
zjq_7pO3wSZL5I8WH}g4}x9R&5)vIqCefzY~Mz6Kd@9mo>Q&{w_t+}Q-)o0tLFEuxE
zel$;LoarrNX?uDz`>r3GHlGR5cp@;7OJ=q6lZ9Md`+usxQ(Pg^Fg4k*XTFoi$H^)2
zQ?`HmVY6lS4Zk%X9xB|u&8C|0?Nzsf!#;<5hdthz`ma+ESk&a<Qjq;i`IGMIIl9wj
zHgEoXWK!t7$6ubm+;llO{Y23^nSvK{Lcje9S^p~h+S|s=U%63_LeFf@GQD~@F-lqS
zq1c0|ijp;5Mrp5Xf)@r~_cf1vFlSq+SFD1jRCJh;$qzH(+2Oa;1y^4W5Vt(p`tQ3(
z&Zz)H`(yX_6iz(qYb)b%ydgT~o$a|ZuilpA)pS{K`^4>ad^l0;cZlSK6|0|jF4X4P
zw{_CBHustGJ5N|h-U@T8QRC{c3vxYrNF>?*cZY`&lS_x{q$6{m#wYa)Jr<k%_;Sjt
zMJ{tbt@8S7_~SvP!4IX?;atDYeK(ehbk9whcky#`O~8#K@566>vA-B_Tsd6N&|p%6
zvzlL7QO9@jRW}2kzYmxC<JNFKZs(H|t*>i?zNV~d+iCKF@1?J#lKeki@j5x>&%Ig8
z>p1LJ=hP`Zh%1}d8pF8S;P~671qSxV@5C@VPI13nm~=H>N!a>utGRn;?g~{i^HcrD
zxUZDjxVjt_;P+KL$`-Wdk^a)1Z+X18U;5WMf0f75<TJf-No(?iXGZj`eCX{X!g5t=
z{i;=~G<^C#PoAmrlH;3kcHv9K?Ma&RQ}Yr9f6Vx)%DB_|&aBysojBzD>KZFj=Se^R
zul;`0w0FLeVIpx0{@MQ#tvy^S6EXi=;WnMRx^=U|@9*_~%YFaZfnOybA|w7zP1l?J
z<f&|=gpSCMx+&Tw7EIZx!tpDuP8|)lSJ=07ruvMhr*;ZXoA>UB<?}<6ze;NP@m;k4
zr7_zm^v+zFCu?7_e4YK*;J~|z&Ykmp4Sw&paZSz@y8Mu{QEGD4+V_82F1!Dp;kEtJ
z)@@yH?#M(oc=Wg!`919l`}WPIJ71F9hez(={}6)-PvYWuCmi?XV6l9r_P_7u4K8W_
z$IhRp*}tAJ-&UxP$Lm<c!sne?K|8y7=1M<&=qtHs|I9~^qBn<J&3(qH-mo(7M8HMs
zBeUPzo?51V>(8DiAA>#2tdFnl^h}dmw{)Y~OWmI@li!`(GG+R$9kbt?c(YI7x*TJ3
z(f{1u`YhhBq3V|R&3#Ie+g2UYy=PxP@#dANTiFg1mh9U(jl22poOSOW?A&EheyrWX
ze(Ivk|Em%r9zN2sRN8qad4jb<*F%wgpTAdV&Iz0l)}rG*QL=tz%)gQa{K2Lg3HQu6
zirZD^Ea_QX^5XdQy9>5+`!w|2GurV*r(jy{(^XxH(VP2Boz-_5O<TH9m2YF{o)7PD
zzo;+nSiC+(ah}rUEzNUvJ=^sqqqeVGod1D$-|xIWCc#Jk>z1u8md%`AxsvzIovPXU
zKBrsQgeXjlI=b2VR%YLBjhmX6E_fZE702c$_pFFf;ox<Cxu^Vdw|jKnm|n3@_wdVw
z$}&=0PG6Vb;vdV_?&NPMWnDh`t^M(zkK0cQDNl_&-M8-Rz1MrRvZHU_4P5a5kR;!C
z@s6cNCb{p6{BDVPulvq;)oY=SeG=o;ty|u{Sg^moBYAzw#z$Az)YYlKT|H-}y5zj+
zKW3^QT732Eo(n%qgZQ@pdw6KIOlA4O_y4XH^6@ZFtlAZK-!pkl<2TvdFY~1z{m_nF
zv1(b~VZUwbI;%6dVx;woPjN0udB|t5X^VmNoh9qmcKa?rU-)kK?;jSE7Uf;8dbMiV
z)LPZkn^xSsaqQMhbBo%HBXwt^V%3kAnSb8!RLbL|rMFRTqM{m`MM)9QeH-4Q7Y7ss
zmhb#6@pj_pIe*{Fe?If>c|;(mi&VwK*5#E;-|OVt*EW33l$p`gE)<v~%9><YA0ML{
zc}XPlIFt9UEbH*Zr>a*P9<Dv}A?Z6`(qCsDncC?wOS)eD;`>)yz1VoSz>%=6n_ss&
z{?eC8zwgu-v1*#>T<grWUng#K{MY22?q__rXo9J>P)024v@fD5>FbPkPDn3IY*@VB
z<8*mvsf@+0)?25vf>vs|p2>F$n4Xt9uY$3~ao!r~7`x)G_&>9oO|CWBHD9jOZDDLv
zm!EYf?Apa`uUUWn*1!1M%f2<D>DDj4vaM@X9$DPYh_&8*tIp$p>*JE|KmXM13wwT+
zS8uN6+1{=9x6QR#I(hf^a7ph;VR2;>T&sE+kA!`6-)$`^wa4N9YUY%+?knql-T%<r
z7nUWXBBX15<1D}Aj*?l*&8$gRS4VvBjm;^M&tN<Gjw9Y*MCnO>!LQSI)slR)IS!fd
z#mx*mf5D1@yK<Y%nw5+6Lv~9|@_H94UCnv#cH@i*>r~D3&-~f{G|IugK%>p)LF$<x
zV_sj`tDgifPW)sQ{yBzS?9#ckw*PFBlESL9E~Uw4g#;JL$QKA5^sel^@g=(<QQUj8
z>`KmCTd%FYo~jU^I_s?pld<ui!oX_{yr;7HB<wGzOo}w$uQB_1yXB_*37HCSB%gF%
z)-O&vGq3!{`=nU?z1>&k8RPA)UT)uIBz^ghf%~^um7TAvOV)DDF)FSK;$4|O-{;7y
zl`|$-L_S^~zvz1HUjJO_^;#v<`qNi_*?d|5^ZesQ91AX0hHt2g_)|Aoon2_&?eL%a
zeSs+pXB>1s&F}0NeNAWCEvp%CUIc#o>U+~MWl7(<<lUJeV)@G~uh+7eKl58-ed40-
z(fhg5%Vt$Y8X5{#9d%IOWP9P$^qD@}&hRGr_{AQK&X-y7;>CkM?)!y`_SJYO-)Q`G
z@S?-=`4*XXc-QP-U=UkcH%)$R*5#79Qw~(O%j*b6UAjAAj{fxzbIWG@(Ks)booaPv
zLw~%!_DRPHeN*<8M4p*+U%lSfFfl;!iOtu_IANE1&6P6T>0NH#kqq1a34Jb(<l>tX
zq2wFtQs+GB=w55{pI;{_@1I&2)EV*9Z}pjy{6`}7RYs?ug@4~@rpG$f=$9L_pj+g}
z^Zqj#o^CGIc{1m>$D9(QE~~1hKSwhEeMy;iE&TgMA#=q{iTK=QQ}<V&t}{8cX~Ckd
zFOT`Xi#!u{FmIf9Wv$YwAZz*ac~Nqvi&h%1S@Y(%^fQ6!({`VY`Ifx=PvWDO7J;dE
zKBYVtKOvek&n<~luD?Ext3Y+O^oIRa7gjG$G1%6qIa@Mq#<88>k2ZxG|L>|;S!A>C
z@@%V}AGF!0<#tzAmaew!I9xR8zZxfV;I!y>U!>G7Ond+2^!#Pg9x-Zyj?9l-lur4a
z)4guD==GQ7Hgakqhm$|FYTY}=waQ@n*3NYgR3s(E9a#gXuAf${|NoVD?!6aWo9BLW
zkH0N{vEcgsJ&(72yQx^Slk<Y+6^*!c3w8d^`myxkLe9RW`xmj^lymW1vgj7K^`9a|
zmZ=|2R_@rjx34KcBmAk4eWBL!)|-}GomRgWOv{;jMy0CK(f4@vn(u-F?zs=NA7{?_
zzQ&_0SoGP?o0gyYuWnrAm0@GhGvBd{H6U`TQs~q0>GwTzu1|i`Tec_8ZsMzkFV+(U
zf_`ewJ@)Ma&+NM*^NU`nH$N@9p7Gl4PIzc$42yvGq%P0iy>A)C(^^)!oT^Wrct&}8
z#Z5hl51+o<r^@i&*!?x-_JYGAN;l3OV2w{Q$yS>1?L?|o%$_@*p$l&0_T)D^z2Hq)
zc-E#{b*|0j=f{}l3vbr0x~_O$c(&*dVb%GmiRUF(ZgtM!GL);6j|=w-3;fk1BsMLv
zYxkkaass~?=U-fU)Aoe-h10KedCG+wmr2fM+;wkb<_nX$(_Rl_l`pSjJsGrjgM>GK
zPS?ViI4*UMskS@yX34a%&szH7)9RPT?^9J`TLLOqpPJ>}5X#~{c_;7nP|@%H7BX%>
z(k@nCSa!0!B50mMg0$%U(4HHqMoMQ+)<%7q*510XEg(Ge$%189oTl&8pS*CN{FT24
zH|N!toG#716u+JOzGFq-MU}nF7;6|Vtv&xD#8_Znk6_EmdXe9yw*yq-^)Bza)P1(@
zfv~a0o^b0Uzf(RiZ}1Ilys6o~?hOaCy_bfw2mg##gB*j?o=abex987dWJ}%HlJufT
zOw1?4?@arjlXeL?QIWyNpV~c4QcL}L!ROM0+bo~AOP%gK5peqOn}$255>EIopLSYl
z`I#l`-<Mr?ZEMz9roB{QMvK2jd7kahn2xGxF3X*{`3|*(xvhO8a;`B*O3&Re&q2fA
z=uXPrfAx7gqvGamjz}{)`=sRQwfiR`wwx~TU$QKTS?Q{wF6Zo+7Jeg%-K_S_VmYB<
zTJC+KRbKo-0?~V0ZPXlR{pmNHo+;4v(b_~*`bv<Ls9U{2qrv`=Wh+F~m;1PjclBJG
z$iHripmuNU%3_IEKDSj2PkXzz+v}{;EX<$xH0#_c6)_{uhjrI?Zu_&AL*Kjh$-y0}
zA=8eB2u_;2``w4XQuC9FQhoRj_&82ZUGTu}%<Q23Z_0L=hBjX{FgW(7A?A+%7Ui!G
zEzb-5sEVsNqsYJaO^S)0`0E8zo=!S-r!jon+O7vO>$WbNwyY#x%~WQOW5(0H8v|T<
zU+&%EGfQV8<Ns7^+hDC{AFc#yKFcrZShnQ$uL~Ywc>!yhpPoov!FWut_%n~9g|SZR
z#qPyx7VBC&zL&J=H>}cHKY!8ILpG5o90hM$YPSD%u#!&5Sp7g+jA^CbiW!mz1NPks
z@u@p~`E+W@qS)C?N;emtbe4N1f9T6&#$RtY<Qk}2T({B*3rk!6aGqU=_!+rHGxq=1
zP0YzztYdTKZ}k$J{Zk){wEjLa;q}9o@Her$kGY=k{rmjT6ZVz0xBeO_Cac%zgwCm5
z)7sv^nEv?xh7_&OpIf|z5617mbMSc4x~0y-r#|Nkojp3quI%3WzMcZ_7DmmjRfb|O
zYC`!fU)F@Hy2{J1x0aNB`G4-p#B=+qI`+@wP`sq-9mK{z<&gKwsEO_~&429KY3r2l
zuW$eBr0=J5J2+lmU+n**ghTP-((Bwi&4ia0M@f6N+JuI&{4jb_;q&$05vPTBUni?>
z=j1TX6L_{i&tGGQ#(udvBiTuDuZvzDx?EsT7<@iZ^YY5jwXQ3dNas)fI{E*rfW77!
znqF;HYp+jVud8`}($5v2BM+T=ygb-{vuT&z37d}vAwQR#UhBEe*X%}!{R#Kj9iclf
zoDTWo>Jj_!uwaq!!V?Sr-M=zb-8@f3>*lokpR~DHcX;)l&M^0uc<OiFNa@At#v?(d
zStc_h=l*=QM7yVDUBG(ZP1@5d|Gz)`adNrakCSKjyk|%~tiZeNy#2y&<-gN=c<K-M
zoI7j$II>6S@!?au7^hD4(kgHFpQeAm-($z_)E~*hCQD`sd7L|RIDEUH+QaLS5AHsn
zS^eCiy+1ZhZ|k)6p{FnDpPn0VyY+(p<;Rcm!%CLNUG<uGlH=HUnP(>sO!@z9y1=jI
zBQv~HMU7szMx76>lev1Kw?*yDj{~7g%{Rs@a%j_(_IvnUbBWD)!4q3fCd-~;-S4)u
zu~pA(S^VC4HIH8}<v6vsNZ#cCI^~bY9VZEKt~2+@lf7KO;rNB0@>}Fz)i0^Z&v|0g
z%slO>+{^p|n~++KWnGS%{2u+s`AZX8Rz6lxlj64BpW<2T!Od?rTQxTHhQddWORp97
zeOlkPB=3jpk&vkZa-AH{?{0HqxcvM^@srq1EaBcsy}K*+W{V2>av0Ri3DbD%(=ED;
zk@t@G8J=}4Pb>Z(IX!3Yhl9r_Z8gbxvtaGgV?Q0%Gc)`@e$037w%b>qnDW-%J=C<)
z8?-iNiKVM^`myun2|jb~os`^m`w!>B?6i~#|4wsXIUc_G^3PXWFRVW4-5)p8<jk~(
zTl3}Ce%jl1^bEt@_VpI`MMVWFr@Z>Le)G~?Wy$x3oc9w>?KtsBt>tgP|M<w;m9@XM
z_RrgLE>ZvFPyK8$miKSdUUAPAjXT3roK?^!I`{X@n=k5$12sOaRQI=A&VHl%N!Neg
zs~w*wem-}0O;>Y5)4u8c2Cu4)c=WiG+DcpB%2-)=?pye>mG}2d_W8@Oes9^VV(sdR
zm#1I7W^7fNF-_55Fs3r$&eDq0O4g;F|Kxd$EoZm7U%q1dnMrnb_(S`hN>k*w_b+fe
zTk!8fwvXw%)c41vp4Tq_^zW<fvU7jgtDc(|7M#ES=KM@W`%el2pOs~7ZG5txGsc}c
z!t?jpOsnr)d%4dS7L*%%vNp}#l&o%P65;s!px!>2>C+N*%lFt{`f%mA-TANo!e7Mx
zVCH+5#kJ4n;HHGSmc{M&wtf8b=<uX@y92m<=2|<vU;n?MdAE#>?A-F~6wopukU7&c
zCddna64>~&^6ufw-SKm>%=G>AY>sa)H)sFIBJJNf|KN`B=gViY6qK)-?%XWcKA+8G
z=EFY=7yFo&Z7xsVdc;5Uor_@P7Xj|dwBY!l@NXHW@(+8LZD{fj)i|uO<klszzT78!
z3`5n}9MAOpIJI<BT-3BibwA(r9`_Xm4tk%IVhVU@T2UnYyZTzNgMod~tjUx8H}1{0
zec90v5u|)eG32Qihooau4pV^tChqAHUmx4$?aQxl=-_&EcJ7<I0lXqJ=I`?Of1vQ3
z?Iq{%=06RS`(|+%95pKNc_q7XRd0T&xpS$TR<NdcOTmGYYwm4m-aE73^W^>8#Y<1C
z-Yb0KbT}|EB13#ug7yzimlW3X<>f*0t^M!)KA+?NWm%?mZuRe3ozlOJQhz*t==i;0
zlS*0lqWy`Ld9$Q;9$I_Lci!VKmnNUz_}}`qW`x22bDDnt=4#J((0O=xU4-N7eYtDu
zJPusadC#}c^ZiDRcE0~|nK?Hj@77H?8^1;1=j}g#^6O6=_*iUn>2m9rNdKg*=Rg0M
zW#||8v%#8IH={q<ifN7Z9D}&(JH?;h?Kyt)y8guMTc@^{T@#ooo&2G9@*X++6OCU#
z?anOaFgpI`+;exf3j1$1_1hNC>S&&v-_tO&o5v^Y^1l5uTg<Yz1fDW7tLVIQYwniR
zkh>qN=I%VeueSQ7#f2vpe!H(+{!<<N=f`pL$h}_~ctiJH{<1AY;7mWyr@Adu_ey8I
z5no>&^u%HI&J+A<S##`slq%XcHg1oI**#g@$nYpbRpv7$=E<gV^Wt_^&z%40xOm>D
zrEA$&^zZ(Ay6sj{UCM-u5v!kDFb7!`Pi#CXb!)HP7uk(E$<6r_qkkLer|el@ut=t)
z@I#LM1sA862OCTCyX50%B!9j3*W`$)_NzN*_P_qLd6w71!yBgLmwA2j`nK>>kU_=y
zgjthb9Z}gUT4lR(T4F}XZf#3_(XQ~kTi(|Sx1{_jVP6?DyQZ;k`#md*iI<#(|F71X
zS~w~5wu{Ro!44IV>q`Pcf2Pl={i$+uYp#ur-H{(_nJ(UPyS2;eXO>XQj$<?JD<^l|
zJ^mslvwV)U?YVi}nY;S81$MKB&D+V(_Co&G{u%Sm3wx(VT)uU1THEnJrM?3qUT4>L
zsCin-pYT~~U71(I&m6vfa{h+>nbT*>Ev$c_^!V~O>*V=y+go#`jlZ1{IpNEHx%{2c
z<js*>M?6xlUAXpBiMQ{pm~ic$nwl%o+g9KGq{V)1xA8*BbMh8vo?4nSS)AL(f2Zr;
z>*Hx`yDV#t&ShVEqu>L_TGMwMp6sl9ciz%)cjr9jZ|yCDO-nb%?fR{p^EXbMcWT1Z
zWs>i#k1stbSu~O5YU%5nmp<;kQdQ=sF>$N<jZdHUbO_cf<?atRp1UmfvBmrE{zl5P
zB3UQ=@3?4w|H+{rI^32W*RO3}x%lqP-m^vj4k+r~FJgaWar;ibY2_BK6TY9z?px~l
zpWF20;m&)<gS}rBmVN&&wtvRCk13Zg&s+GN&oA_t=aSV2Hm&e*6PT#7a+Zl^JNv(&
zsGe0JT_qw4zR|yV*VUHyWSg6BGSqG0nCLPq<dodxFWlUFw!aq&-o9XA*s%?h&b;E8
zXufR6#QcQ|gF>HG2Q&XUey?2fO8)bN<zIXQR{C|kRj@Zb7m~ued;68(X4aFuTTJ&J
zf0%v!<T`)B?<L`O@7_zRzPBsy{e0MP-u>&3Uanka_PK}0H|Xv?-^D_zKieMMyV75&
zy}fU`S$ObD)>gAUm2T(!gD&4YJ8Osh=aaQ(V=T{?)T;k}eW#x<OPhCR;W>Wy%6+?!
zR;zFBZ|_g{Jsx-MNNC*7JE#3)9|Yyu#?FpizHIi6%6qc2mMmLr&C=HW-0a)>OLled
zmfi7}km|d1Ywxrz$GA@)E^f+N&d=ZUdIrm#-#=OJom#tm_10Nlo$iOK7q;1`WiY3`
z-gNqW{?(&Qt9iw4JpQ-sj6Y|S<BLN+tHN}*_{?``yQ;~yT%yMGaN&YU#v(;C|6CF?
zkB{;-`KEZK@Qb>nUX8oo#tE|348gi-D+1V#Iz&v^!L-?!wd`H}+_z^8YMz<?I=9#T
z?!5Ja#k<3vz3I|A)cg6%xAQ^!|3;VCiYi-M9$9I;*X5i1B$@8}^_3N&9|BmoDwqGi
zWBRL_eP-pZxp!s#1!u}9KIn}*r&fLArUZN1jxX`&jlYMe|1MAIh~A&}=8oaHIjf(B
zK7YI;CF*C``OOinmTms?6Wt~rP`|O`wY7;jSB!j3@BW2T_vT9eF7=&g@y_N&XYbvb
z<x3gL-CtVUt>g7p)!w&j){EcCJ}J?2!Y4ib`TL{hirZeXst086S=Y|lo}ByU%}RB}
zG>O{9(;wFs#@&5bBOe;c=V+L7X;H`bY~6F8{=G0!`npDZ?tO_@Pw)81-Y&~uYPRdh
zmk*ZbzQrwg_ChSHvZ;4>b%vJ6j7b^242zWfoEkQ4>X~PC?!#fBd9{0GtfN(HkB55Q
zdg=Aw{P>?m3Uc4?)e7+}o8l{Admt#1(Lv?WUN`UQ(i6{r`us33Z(>^Rq4kfoBA#4y
zuUPRxyGWkfWvPBA(~pXedOKqpoytyD3hwRlc9^dFy??=k^U88vx8$Ram-S7o;0e?S
za9HLjk$Cfa<+5}9Mmt%8@9G;ygr0r%eA}gqe^{0Jl4JIi&Evitsgz!JSyjm9>YY>9
zwy{lm*S&7$!&Ch0ioWNyILA64x%4&X)r$p3`_G(+wLX9J<?fI<HxGNOtjNtueLbxz
zf91tl_0t<q7pEv6ul(uN;&Rt2?#&I4W5w4h*UgvT@bS*|qY0s=U(c6bx;JNA`l$n#
zepKq+IT2Kt%pdC~Kezsd!zE)sV;=sViD%s`u9VJ;*maQaT~_kB?k1h0>uoy>YNvNy
z-fe4Rz1?I&N$-b09L>}7C$6<PcKWd3q}A6hUsTME?XU^9mr7A$zrK67M91|T6=q9U
zmZW9v%yy31Q8>Lzy84RUo{6&_p5i}t;$CmTi>04!=42&Y?v`D%wzulhMwNpvlnw^_
zuFWY;U?`|Q^7y%VyS7T*uAs<-SAQ5Ldrv!jUaEiozqSdlB+e|~*Zk;Z{^pEN&$#Ap
zdAmUWC)+mNJ4Tn!1hgwEKU^2a@i6tI-KpE<R|G<uWoFu4y~vfku6vpRW5CDaua`Fc
zx&Ha&y}O&exfslqol291w;BqBT)wlV>2tIB4%Jza54V)R=6=4O=hfou$!F5%J^mhk
zvpM$aj?QTh!zE_VYM+&oAaLh>N!1PMo{VqL#dq3p&iuAKhjG?l&FkXxmn~jA(}!h6
zUh?N3636X+uztU0@}aWmPHa<1tnAg35@Lnd-q+17HPTlKU2=JwpubB3TfM`=Nf}1I
zB0FT69h+Wlv2qu8NVV~_(o>jLVE12jdQ`~2*KV(p)FtNcIecrGMOb3jYT>3c*Lrdz
zxPoJL|KsTWJ$r>OlhWa~^w&E|(k8`UIFaw2^Wpf_=TndWJfxBy|L)0}U?I<|m$wzK
zmEFp<;%?ED;7LzZubF<j_Iq;8lvdG?UW+<K0(G7(=3D!1%h}~m@0A{_k8^#zeb!1}
z4u!+VcuQmKj8F1PMLxa0#Zb5|Wc@OxN69mtcWF+j{>sn(LUFow`IF}odw(!)U-jzb
zlGqj9H3do1@;i#eswX`=_txb2-D#IDRkAw79lqzcvF+`jqp#lzbl)^KTX>V*<o5&3
zxhyKyZtow~70u?mw6b%nU%&6tFJ0Sq3Z9Ga{dnfu+dq!6bFA%Umu!D;@i)}AWZf#4
zJF}l1x*)PLefNu;NXMLiwZHy-mh5x?R=i{@n?Q<tyM*4FwA1T!Yc#i>xDueR-alXU
z*5=9UkLkM9&64N${dk0p^H}F)v!1i24t?`^V-xHypE~zVZQd5UC#PP<_08|Qc=@iA
zQ$y+N*g6xj#Va>=`}!Z>`Mch_!tRpu^Zf9p%kEw;4<GzozcoH=UTuDd_Rp$YWm`8|
zO-;^PG5y}-+9OqEmwspzyk`?{Tle|MW~rW2f4^+GRpB>h|ADtt&u`wmxKq9GgN^9Y
z<-3oT#S|;g*)O#;Gh6)p)uSi>l}xy|FL}>T5B|BU?f8H4?=&chJ@mQ0;M<YRKG$!b
z@1Fh7rN~ka^4^up+p@V=2Y37M&Mo=zbCd1qGxr}Hm+Og2`n;I2&d=h{or@P;Oy!Mg
zc1=&_vyZi@FEMqyd`-{HvSQvF>t~-Yi<)^BPSKtGz{JON^*f%M5`QeE7D>pe%7p%1
zWRq>?(qJW})~?EQ-HUtenJ*kO6mPnCT-VT<{Js1xYx#Ax3ga-vAG-M`y?-!-Ojl<r
z7Y)qs^W0J<E1Mht*pPF5!~LnJrWJXM9P|IIK6h@;?Q18uoy%ie&Mm^l+JCU|a`HUm
z@(%))V(VlUZr(gO_x84pzpn~@I{(M;?b*T>fsXnp74gnMK`kCeGuT>ykA;;QQH-ss
zZ?3DZUy$kBbaG#9iM-XJjrT79N%$dET*-Xt)`u0A`+kP`?XJ4MB1Yt0{qoYMT>FB=
zpZ>a`V)@|SSHpFaAI{XbIvu}LX6GSYJ=uG1>Cerqw&y0_?ldfFZMweSCP^)jSs}>#
zb)#I>x4Z>blNP)@`gY3_ZQIIo=X(l%U66~rwXGNA)VEVVpLz26$!ETOLVMK~ih5g$
zeJ+l%%IQD8E%){d8^dEs3lpZWOV0b}umAnErwt2Jwn*NQ>GPMof9kibG%xw~{5?+p
zd!^!TT=ZJ2{n%y2>mO$KEq63Ob7A$jyM6SU>B$E=67nfG{(G3X9hvI8b{~)T!dt%u
zJ6=p)6Zx6Pck9J~It>9EnZ&G$8P?}ZHY~OCH4#$YyKL^YU#iF4)px2Zm{)eL7JZ#@
zf5#-3HIp*VMp?~UpZc%4d`F{$!SU+D#wk&^BZGyPZZbN#N>~4q$lR0^qi%-^11qyM
zk7HV$SGQca7<Kv&yYd|Yro!jUdj4UXSMCKB3reBdH!o~#RL|@AaL`x!`Rn}szS~~9
z-g*^$L@Rm8wLgOA*Pk=|_fMr#@r3V*T9-X`V#nUt324omcuJ)-I&O)k)j{jYku42J
zPi~i3{liLDI$X=(nZ3lu{aKS`AAd?QJzu&dKzhB3(D@A;lbQW}`VGv|`A=T?u%S2I
zc~(YhPe`)$`Rn?HZ~uC}Q+#8m^g84IjE_HGKI&xXoZl;FZ!J@IkCCN&^7I|A4t3nB
z*k=F!vF4`am{}WsMoO<&2}*rDbCz7<nTOA>+&-K#zjETXUnYj>cjm|MeexkVNG_jk
zIeWpgcz=IUdxe+lbgplz%lPiGzes%9lGi)4G=27OGv55Rf#vw_X$mJNJFJ}7yE&!%
z<L8*$YacIRk)I^GhC?VJA!g&07}w3apDFZDIxzbgcd84E=<59kSI*^iJt!vM!4cX!
z_sy-4+<F%4c?bT*6-jKf`Y31=z3=Smv%#PxPQ~(PKa?L%w<xOBc8~w36{uM6<!zdD
zZ>nt{U!+slrxYoZOzsQep3k&PkDTi<o*C_2Q!~lw8S6fY$x^PXGHok5dNWOz1!V{w
zD)@1#mx0yk$cic@U#)HPO10M;{5Z$5R$F?`-}{n!bEF<DKEt<fbG_(EuY`9(?R@>&
zGE?Ssbsn9lo@rZg<7T*t&LWFX51yXBxVm|Bs%u9G2Up*j6V<iTRNc4M2|Q{n{a&lQ
z_1;4br9z>TGxmOe@=?p_%SNe7rdMrtzw_kd=QrNEuGwel@4w#RhPpo_w&bh-_);;2
zC3EV}#d3O=MK&AxKAxtlkWl9}S-W^TU!M8S!pC}@(~f_beoIM3uDaz<NuMeU_hj=3
zpLK=X1l}AAJ;}0hxAz^!6Mn{);!DjUH4m;`w2Uk7&Pm3?XKHy9s`p&9ypj~Y%1fo=
z?%6{26ZdC4ayy!wGwFM<y!Ql^({EL8JN{4lrFU}Lah1*Co=SnPiB`vj4BkKZIpfIO
zRVhs?F1Me!m+&cU%B>~4%aj}b_wV}NpZ9tPe~o<ygIi1P0n>|89<F&Vxh*DbG80WN
zww-ai<MyiihMS#wNcJkzs~z_`GF8iUpGRh@?)S<{$zL;PR-Vs()30V<I%kL*t$%VX
zDcLA{mD$veDpS$Pm5R5yB86icIS+<~C~r`VV63u!-~T&1?H#L!`nh+Ni=7|do4ND;
z&$|7e|C-vro4b1jr?b`eCWRx9a%R=2cuqZ=%6_b0fNfr5^$q3odLgbI8_s+UWz_i;
zRyA{#?01Wj4u*-V1de{uTJ2PDIPdT!^Z6&ao991zCS!cF_ez+h`x)nsR}&K6rO7$Y
zIC|4WJJfU48-)|@Kb|YIO#l4HgQKoc&(*4cpFc|eBl{8CP?wg*<pPn<F8S@3{uJsM
zI`!&%iQsQea*Zd87OP*+(mH3g#rC-3#l`*4_OM)CwbozMT4=!<-CNtdiaNe6Q-3I7
z61~?XI(w$@&!~l=3R9dJO5E1Gd}tFI#F4n?d8E*c?#J&gPW^Olvc7}DhC`?NxyzV;
z*2pn2n$7rgBO;RXXX?wT%}m}iO>WMyTX!*bN7Z|N$;<5*S3I>?TH>yH@KKjxk<t9q
z&$~JPyB!wklHo44Ur_Mg?A5HYOP{P||NL&>=3F(c=Vs!!-`zzv3hhx+t5Zz8cNcu$
z@9>B59d}G>k=fDNn^_;7WSOdVZIO|Os^vO;?^P2{8<}rEqT8z7_u%Av##PortOAP?
zpO-OR7N4=jO2Pj8pI(KJ@rJVM3SE|;8{*jWCFi}Kd-#->)=?wx)00j-*>vV??DJ_x
zlZxkUzNtE)fIm>Q>Ge$4&vAOe^{H*EmH#R{%;<^G@j6p7=bq6M<!L!;`)XP@-rN(G
zcVW+_DXQXYl!QW#?K8XAS~D-Y?8_@T%|%-?Odoz{SD3G^AF6jJhOz!Yg!i_^X$Mao
z3VpWj`O|5Q4F4Ju4CgLP`0hXN=TB)CWyM1c_79fNIJ-gP;if4kC#_#)WS0C>@xg9K
zv)xU$Q^O+?-nA(RaVoYPkpB=IvBNFwRmW1FX;W8eDLE(zC`_3D{MMu+JLS)8bPzq(
z<=)`Hu<0caYqUO(jkdC)Q^WoD$3FiuWj@a#QBl;KWA^@pgW~Bsyen22m9gc1_^qjv
zaw6)FxZ2w9A%cPe96vapJU<z;{Y$vQv-?V?ZI8TTQvAch)O2+Jd5OQ8EI&S-Ij<iW
zSt_oW&|Keqn0xYbHvM;oa}p06C@wVY|7-VbE$bz71tHExfggXRHB#1Z%sAbe@bVUu
zc4%k_BjbMg`nq{%CaLt=&q!{p&Z#@~H_str<8ND)oqNBkuKzgIEM$W3f&fKp<Cb?f
zg>Kh*3Fua5-3~pieUk6|)1^z|*#%RawL?^vo+|piimmb=XU^W>dzVGur62s|(e#L;
zRw&rSL67;_9qIb$9}j9B)7sf9l;^5WmP${^nHR7~?)8eRvwpFJzWn^9H&%7`6jjr@
zX~zEl)zylO+CvlrtZrnT-dy|nrSI*VQgc#w<TqV$nwFi<XJiqpGVxAQ-sJd{Ex&p0
zG6$!udwwF;zxe4XnWF(yCfux1-0o7Q=xsJRbtS{mr8?X<S;aP4hAmmg(fV%Dgqe@d
z`b=xhnbta|RBumWjrgWWF|qZ*3l4lrI@YjLWp7oy;BrO52d`E?pBdYGc>;%(&WeuU
z?ORVw{a5UBF7;&G>_z{7E`KRCbFqeSZlULiKbI=gXWh-+ox!oRvQ{a33hU~dAybpn
za^`#q>YIJ@y`hDT@4gjW%LJMVG+Y#okA@t3;A)mGVItTOEUs_#^Qyk_%yXLx-umwQ
z_2+U)?~>lkqLrKXC?{x#PF&Gllw8%c#kO@__g<f=UbAETL!~{<mPjdGIpF^K&zYDR
zCT{%K<};iyw4JB4!StY7_uin(KUd2Ad+}j$&9dyKIZI<E35Qpv+vc<Sl;-IA8Qu7=
zc70uZdg3!tHof}^!FR)MGf2rL^sEa`uXuH3`ixVzcRIA}S{Btcx%SH*D`&OY53ARI
zF__VHX-Ba%(~7)12bW2USA6tdU;OnJQ}N`#dn)WsKbvdK6U&qLT=};4Ot}|n1zNt}
zZiU9#-##w=&#f%ae9^^O%hFcm$1GT0K4<kzo#M&yPmexy%_=ty)@3;|yW+t*%eMGG
zT9b>f?=UOx)UU0abM<#w(w@weM?a5QRvp{tt~NU{ZAtsV)!#oY>{k<T3b?zaIZN`q
z`981n@p_vo(~Yk>9WU-{%?_7*Z+ZMl8~?`BM=m#A{JgX<==!E5>c3xF?mzJ?R&8xG
z$R?A+wtx3bJXfG=>-c_W_mlUxU7I_fe>)b%mH(x%%;(Yb(B}D8`av^wUYh^njeC=0
z_A~N$-!6q<HG6R*&12`k8D@S8X1J=>Bkn6vJo&GgeKx}*Uz3(gbKbv9H=3)M{AlN_
z8%sYGUpjdCLHZQ_+AEdkW9r?5W-i+DUbb@D(_7m<UfXJO>hlb)urHBe3iE69A1{#3
zcQ@C$GuI(xnRD5(xXPt-7f;$_l-p#(B^nj-$h_tmzr6j*!{?XpKbt*M;_TV?kM)*5
zk)J8I*J<NBbI)TkOmh+|8ot*&sNG{-I&ppd-`9J7J>y^L^GB@yLYaN}zSDDxc2{ff
zFL^I?|L5uHKYxA5u6Zv1E~WbR@{GR+Vsjccz24(?F!$O2U$d9I`(v<s+uu1em$zy+
zO2}8-pL?eE_3J%<K5^Xt^>2T`=lwQL?w|D^xif@b+4nsD$L((Y&!0}OH>i5JerEM`
z_Kdd~s)A;0kFWn*KY32gOVPO97ANa}fBf&Q_xJjqZ@04de0y8J<k|Jfe;%<dURm%}
z|HJwFf7Sl~e61W)@z-?U-@_XFzpXZ9IbrmzRlV}z>-8URJ>CA}Vtst-KWp*Iw_mSU
z=*lkqd4JFJa%MZT55@oFKfQYK{YT*=$6K@O1k;;d-3_T<AoekS|Izrmzo~Bf=Pugt
z)cnPtC+<I3OWA{7mK3*b^w!?<|9bt@Squlx3x2Kbe|UXb#eMg8%d?zk)c;-Yyr;Bs
z#(MsF&mZ0YH-o?CMf~T*`~M1>?*Ep5L#g-GVblEw?EUK}|NrwzBYFMaV@u_a{n*NX
zRUkpxRQ?82e(mgs>-V2|v3-C3qo4UZ%mb>P&%b#0Rmt<Y`vsC79uiouzpp)hUH8Yl
zNHL$ACqS|I*|5xHf4_C=#T}NXZyf3G{Qs+c#l-vR8!p=$*?v;{|95)%=L7l-IS=m5
z|E;c9_t<*R>*=#^RxLMOyTvQ*jr}F#LU!G`{2#r`t7>MK{mkEKvh%?1th(0t>Ib%K
zwp%mYh&ao>%^~YgYFpdBgFo*7?O1h;&&qyZYx(J~F7y8Xs^5RI_ru>mw`JuYyyLy`
zNUkPd_M`Qtn&(%;e;hME_H(wp`^}%#b8UXu2|N9$y|VXx>=Jc1N!h&zwg>+|H0}N$
zlli}1=s#kwVd=PAZy)M?|8eyCn&yYy`JejB)iUk>+|JpZ-JGa!=>6in*KC)jyGi_g
zCUM{Iu2I6DS&r*(1RVXgD=X~ZJEg^k*MIso^?#fGzuP5pKLqwCymJ4rxAe&Sm?zf%
zj~*!gHs9A~d!A0?bKR`^#gqMOuUueuZ1{c$Wa0n*-skprW<Gg%c)#zXb-a2K%8Qe0
zw7=?K`L~R@nOD#*V*ANspSPae|2+2n|6D8nKU&{sDQMk~KK}cC%#%~~KiSsrF*>*A
z==rr`_S=KL+sVJ|%r`QsYRsRx=SR8x)?fRYZv6c&yz%Ex*?$kuvB}weiO%8v+1tmx
zw}02#_e!=OeOLNh{Vd;~_Tc5`aLI~)Z!PZ2)J@%A_4s{d_@C{T6%WFB>weYv?XUkV
z&1PROll=U>?305(j$Qin>=#GVo~2i8MYXMUujhrYUwOTBdC=uO_P3Ypx%}$$vD?{6
z*S9Y8-2d<49sZW;C2QucYW!Ypn5r18=I?m<_71PLJFH%%*L`Y`Ddgn8dHGcCo*KVe
z#VuX)&RlBT$Gn33ySQo2kErdHTcg(Po>RKJ^zHL9^Jk^{&m$M_`XX`nF7ui2YZrgL
zNSw9!UdKtk8{TQ5Yiyoe*M6Gz;(c9b_h&^Ze!0Z@y{|uW<XcA?En4Tz?VIq1DfGc9
z{;PAd)-22_(%sD)thOY3{k^ID2|qHIgdDp#Np*d=^1aR{MxJt2S>X}<4C28PLcJPa
z{}gMR`u(!eMxReXx;uH+{+zF<Wgj@{>ycghA3rJ|-S_Hv+s*x_{F=*IoS&Ziet4%m
zNB*|zl<FR)Yk7XA1xqi@da!5Bo|v#>2Q|$OGq-K8jpBY$B~bJG?lOs}--YY>xz;>h
zvE=J^t%q->?sqf&tGV!|%-Z!j)o&%F+ShN}@qDw7ug?al``*F4{~rhCwS^y>_H${h
z@0F~&;IOp4{0#Z4S3aM<Dp>7hPW<=FdX3?Xf1aGX_;P)a)mk<qBfD8Y!#-_^zsYh^
z|7><u!qZ0oq)C?|<rq8tdBe6;_-6)flD9v-WOn$<Ow|V(v0c;R-$mtZ4A~hj8?(*L
zUi7$nz1NlJ#q8Zx(p?Gb+fTk<a=X0vuB~?3v#iF6@7wdwa{KSg4xA*lcEy3Ue4)pC
zvIQd6-A|3OIiwP+`S!$N(_KG2AFcU%Roi`G_`Y<8Z03mzcG^GN%{S+MoY9Zv50y=~
zUt4al_tI_W(!DX&zfT7LHC>)=^88_F3H$S}+Sj9*-v+6@RiEsm`D(%fOSaS9*S>!1
z-Y&E&v}A5@Y4*(`%hMkxmsQ<%JY+Q~dEp)7sC$ij?`f;b>~Xga%ay%%>+;-ePp6fF
z4QE2k@0~kWx|jF)+_d!zWaj)Sm2L=<_u9ZbrTp5w%9oR7t^aiAb53UX7JbHvlhtOl
zeg3jyyPRX?ZBHguVRpN<`PUBolJ(g2@RPyPrJ?TTY)g4s=PmCKdgFHOeDeEQn=Cgt
zM7f1lMIJJpzU1NWZ8xI(vg0Ox{FPPZcx}1uS1vE^B34_Y0IB-ln?laL+*|8gxLfV$
zip<Si^Zv=a-MHPe_i4bL;5(`gRhlk0#ZGmGX>ML_{_OLakDL77PnfFJt-3~+c^<<x
zrWc{{Qzr0vPTjk#%l7Y`^GZsZllN3@o$_yu=&~1{-=yc2c@(y(a@4c`c%X0Zbh-ZO
zvD7<vww-8P?PBb-HZgYU_SB`^-WxA04XMgM^+Kb~qqrc<R=DHC&n;}N-D>kENEa?*
zbro!}dk|lr&-J=K{CZ^c>ZQBNmb|*#ekxzG{l!}$UuONq4^CY_cmKky37=)R%@o+u
zs<fOxv|G_;ZR=%yxA`|>HWvop`o3hbh<cCIp{eVwl`N&iyZFu5`Oeu>u>HufL(va@
zzHYreE88|mzT)bqnAzG7Z|}LTn<_WexOr8~%9G(t_CIZ1{@y!1_tln_)l4nyy}NQW
zteysI3UcXxJvPV6j(fxO$Cu?VPPuVW&HUUsX`wLR`626W%?~=*CBA&mmm{)|c19IC
zUe;}|n%6&P`S!KB(Lz%8PXxDJKXLJ$P5VK!`<nCb80o&A8hm{H1QpFKOlML9Wpw8H
zP3E{N75ly_##3X`7E29_X&(QydSuEp59v!Mt>17)$Vuk$;;1rq@tM4FX^x>4`I{HT
zy>{x8GOUcK_{|xa*TUqPc|!KACDTGK@0a_6Zan<F!_9QhA+e~FQ5q9_?lq(u=+?jA
zp|W(AXhp<Rr?SkYXG&I9drn(wb5vmZtZR<3?1gg{Uh7)2Rqt@LmS@$|6HA)sPTga6
zey7=&ot~lVQknDm-BX#@mha%c8q{L(>;0^)pFKA&muac`X@4}zdJAXByxq-$4=uSi
zzil_)#b+v~%)D4u{r)BEfaR%QRdugxOErA`^zYWUjZ;FbJE}c5PLHuR=6zMNEMQ*X
zR%hPkxiNuGYQBpK%nqF_JG*OIi{B+>eSuw!!c5`+BM){ye=;ll|L&=gi*DZ*du8Gk
zFHzJHAk*uzKqWLP`JI~A$$iP;OVVx2#I+{m)|h;;6?IU*VR$5L=f5fbJ9aF%vwN0C
z;oI2YK8dv}u7_w;_Z|$X@wIp|GgdY4;;pheUDvC(%jY!qt-p}@ZIb3n!K44YHglfh
zi%;B^G5Lu$@8Q*g*Pd-G-)Sc{ZEtgUK>D4VTwFo>ZZoV7UV80tSH@J&Y5yvY?~U8t
z>^ifEo%dmwnPmKAvD*P$+`F#UubQZTH)`d#z$aJsT@bmynP1l~`uUrzPwUKITOPP@
zYVYj`>)`E?VYWBREN{jIt$r1_li`+je7N=1w5l5RZ8|2J?!jh?mP!lVZ$}k8ddK3P
zKSy?*MWx!IQ`Zlc98sD3nJ;UL&Gv(zmc>>SUdVoSxcjtThU%xQU-ViI{42K2e){^5
z(wqNJUzPcKzi64jvu4?ZU5Bp}21re@y7K4p@5NW<hwtRBnQ7E(#H*Y5zp+?Xz~Zvz
zp>^5zi|^jnaY$`EBNXZAot(RJR%`#Co+T@yrk$zdHdk!k{z>(4!hsFHE-b&aE>U|+
z{Zh+UOJcHm?is6Fnky@2K7KaILOh?Rs^xJ^&b){}<q>MnJ6}I8vA=ruLCCeAUEMuR
z;p(0xCp}G<*gcu0H!nk_(#o6v;I@xp?^16TdG~d#pWSY>*Gg>D9IK*!E&UA1Z_Z+|
zeQR!<yM0YnW`@-K6stXRC#%fY>k2&Ob(7QPQ>otGxldT#GY{YWnis5da!)|ZMWzLu
zP2!AEzl#<m{gmB%Uv#&E*OjG5wg$Ysu(9Cv1|8$2^NZtG+phSwcls8Nw{b^9%T4uo
zRN`*Te;yoI$Q|zKXuR+y@6ClPbQr7LcU!(z-H{jLC7Hm_Q~Emp;i{53$~|$F*S0oq
zdZlpj&wjf(n-b&y%RNq>oboAaXZWSwrrQM`T`JE{IxXaEUdJQGbNpoW_YG%?`{#W>
z@p;j5mwjj5xAL>FipAAWn;fg0viPjY)d#E6ds0-GwXN;%c)b>~oX+Rfy3nGxaE4uV
z*Ye-N&nnj$O`qFWR_yjmeNMX0Eg7-ZQman%wQUaaZ(g6hvfTb*<@-zxRk_<1oGV2W
zm6Z+_m&8tU+-|p9Rv~I%*YZ_&i((}w1$c%2y}0GjpZijePDNC0UA^mO(6+;0zshOH
zKT>r%6lt-4Td$Vtf=QQ;+%aEtU_+MIY^GAVo12tEqMj_czsPmj<<oK+KW<r6efE2A
z8roix`6bi8Drlj{^xf;PE;+q*l6rFX$({bwYS;F!jc?6s)c+j6Ub6gUu}$4CCCl1L
zH=Zls`0&2+-{tSSH%_iuvgZG`dpFk<3WxvW++DcV&Y{oyyp3P}s%f?9eVetJo*c9M
ze6vufzG%{2!}CkIL{ln{+zXravU191nJ3+IZ+rQia7_DPvD__x!`{!`GJb3y;^K9T
z=LYmG)RQvVm-frD>J^junp2GeS4*vLUjHVY!)yJ_r9P;g!{GL34O^KdyNhQZj=nE-
zgPZf`*FEMFB_BSyEZ$Kf^SHq1(UaxpKmG_7Uz)FEtvREn=ehNE#WPm>mL305bKFd;
z;mXeAm33dsU%va3%5s14_lwVGoR}><y-^|bYU!K2`V%%kZhQVLu}?o2qgeLAWbRiv
z^{UrrE*-t8?Rj~n`TD*K*XtW^{*-B1tRf}9sP_Hemg~9`Dla`|{?hMbygx=ILiBkf
z`|S+hV=Dw6M9V!t^SCx9^p~c?-Glbe3oiZ1@-saB#6iA!a`7DvwiT<^JwEuYY*rRi
zL|a8=TFbtL+%d6df_dCLO}1UyRxT|lJJ+f0V6eZjr2V0ne+z#f$YLlm=J~egNQRdC
z)pL*M+zem6Y4wDsryTg7>z&&ib@$kF|2IlWr$gKJThw)3Tyx63!QqpDzTBGWpSYHs
zv-SLbsd<jYrIZINSa<AO)c9OFy8pwK_ebA4GpFtQqH#X<-0EG=m{*k*{h3*N<(Go`
z_nUVEg?e+hyuaJ_HTF-)`^R%;PEfhRerNY=VgL80cKg*8rW+-kIrIEO>*}5BH%|Sw
z_x6t4hYB;h{_Rs-w?yn@wVc*`bz?h+`zK63n|HA++G=8V!!g@v(WgJMURKt7KJC3^
zoe*`k?bO}o?GJ+<SU7gP`rv&#c5d0;%>BGS#J?B3Ss5$Rn(#7-U;oUNq7B937a0WB
zINj8Ee0N&W>ssA~iGm5zA`5LEl<8gaS+DP~AZem^e#*_8Ld8wyuRj*;4de3Ub$)!S
zwqlK`;j63Bi(J}6w#z*0T+6!XJNuO?E{Q<9whsrQ6{gfw@+91uEf~9C+O@^9IqO?)
zpU#YX|NimKc?RcYO!@wa3B_E0zU<D~MSH%hUfHzCzv_(Hi?d6Q>2HYG-G2CFN7TNT
zj(v0QxiTK?{kXa0ywoR2ZVqQV-;RF`^Pj%tO#8(7s`*nJ2X{L|DgXQhU;jE3c3yeG
zz#LoK;#VFdUn0emm$%fkvQ=EqXVU6ywVabHTepiX_?fd&?{a5YN_BD5y?272df6??
zcC<N^O=_GTx4^ol>GAF))whj2m6>~Hr?-DHu_>9+o~?ayshh-)OPkl^*?1oRTP`uN
zXu+(z{iT;g${1KyYx(Tdn;=&+?cPkOTYU1#*{OXuAKLBv5+h$;yRSJ{l*y>s=J%o0
zChOZ4mjZk3&Cdqh=PnWLFG`AEo3v)Lc-77gvz}atyIQy|<}dfW>WAx3sDJw~@$B=T
z(lS2<ogDJIiqqpBdAUxy+soQ!EcEbNhUbr!xs`MJ+&)kElGJul{G3s^XrUVqQ_al8
zU+LKuKO&R`yYCtq*KRPlb~@tT0pkSG**&~>t{>aDt>x#=y-F(=>Kjbx7i8LD>6rh0
z#p?6(_~$<G+<cxzVAbmf8?Qw@SDD{XnPB6P*Cf8X?WFm(;w6h`9k`^@9JJqg+QfI8
zWBA@ZIdD-;>8Q!$zqQAHu5jmxJ?sDV;~j@Km*0t2S=x~^<R1Kg^Y)N@ZP#AYdv5!t
z@Vs0ZvTs6tsc_sP$A$4zxJ|q*ou@l~*Hm_S8eBb1ZrTM~cKOq0Rlg;^YW9|`-F9DY
zQCQ2$E~%(z>$wz|1Q(eaK2e^>YW&6S7t>DJT$bhRGvoI7ZZPwVe$M#$@X^a(YJO?|
zkpFEgSGm9O`KzaTa`y61JJY`fa{s8=e!`Eh;GO=u58wZXEctZLg17qi&G6@4sj(+#
z6}fP%dVl*&Zzrdb?%EUb3pUEcDSoz!e<__<^>4lgn|a~=bG2KxAK7RxHF<W@g6G*i
z%Zpi7OII5F<NxBH|LjI^+7yp@Uv7k3m|GpLS?94~)wH&~Z?~u>hfGNPa6{AW|3Ri}
zN0lc(OU;!&FLU3O<-`~Hr&n(93a{7DRp(_iXIX#X`|p1p>(0p8mEW;>A?En6H_z^N
z_`yc|*Gu*>omejU`mfRA&Gr+NF3t^7(Yn0uesq(lib$^@H`7IlT;0nt?`Eqi&$`jp
z@W@8Ewsy|{cQ)o>3Ng{g=ly+a5+2@^KX1Q9*`$lE-Ujm*Kjtl-Ki4x`RBYaJiMez2
z1r2wzpUImeUZFiVJvjJ~jhA<ko2cTdB*g>n3Xj?yS|WUVX1u-V<8jcUvpOhd-r3;!
zJXI{Rj7*`1Nr4R#8{6{=UT#*7iEY^x#XW^V>&CBxYk$OheGFT8^96VCE{B5GS@z3!
z=?AT`K5??Is_E$>udU`9%a-kw%6Rax_G<{UOH@YooCi-zy6)&*j)-pT5nXX&!cn2i
zk29U*e<pu3zbf%`BlCoR$#FY=nE!dVjqS1Y&O`nxQmSI#CiS}B^SS$MAG`GpL31n3
zYxfR)Nq3*|mvP4=YbV%RfSlE>Uyi7BZ>_FK%fEDGw#3}(%Q7$jo7L}MKW)d+)zXjW
zNXIH&tZQ*u8j!T)&LjKHFCW@3)RlbZb-gm};;+}olvZ~#&$$uqpZG-OxiM3A)TISh
z4xwvi`OY>M>}CD<@Nw9y(6pl2H}@`fo0Sy(=<7nsRq}RTMsGeI)n(L)U6TKWt@E35
z4!6~{c!eF0??sv25B2rcN&6D=kE>bpVC~yu8}qgY1utRZmAM)2Z_1>!yK+TgQ}E^R
zojbMDJ{{+Hl9gm=qiQ=jY2I&(3)fusI63(8^4EPgid|XBwL2+9<e8@~Tc*XP>A#{5
zr`cRFI(p<l=q3{(rhBt$x$BGU_ut+zl}p|wnSbKEidi?W2vujVQMmMYwcn-nj@!aN
zyq{?Dvv^9xsp+z_wk%nguQcUmV*b1@p4W|ZPD*n94wu!bcpD@(FQnpXv~}h6LY2#}
zH#lu>vh&*TsVl{ZRnGRG4f{!hZ;!-ZyuI!9$V1q1$yT}3d8@xDJ!`A@cgLobz5n7)
zRgb)~j(PK*OWKr8+H1PYv$X&78;%8LC)tgaW4yM1vJSoF<?*lji><lOyX3ilPA<&)
zvD}j_?#(jwil)V91r^Re**RU}y!nNX$9H!;TPFGMmS|VbHfc?t?-y<NxI9*$zu<E`
zYlJWF=cIgo@m2npgt{*kJu&G$s&rre2UGKwqLO%-{S5J~!kPDW|JIm)JFw*`XVvay
zXH$8*XK~$|eaG+V5tYq5(`FrJ(kLkX^?Sk(l}@gP**;%vPDgC$J-qz&illj+_wsgC
zIolLlbhiI5aV@&mCh4qDJK=mmr4sMOyCE~VCdj>6ra$??fn@d-YhzSx%lhs;k6-re
zjGb9`b*5#}tYt|PuN)AUSTt4rR?mvL4mV1QEY+%Z*?i!cT@htC?-@&s?e0@Sa)%!7
z-q2n-?aR$wT1#w#&00hR#G7*RS3S!XzWij8Z`&0vPdVRCp&tt-D4Ujbx+a-~uPovY
zC@k+d^~iohRrCX%<vm>6!>2`_71w+grrA(wmNm1JdF6%(okPbIq*V_;;SY6Mn2{f}
zDf7Egjfe(UqrJoiD@jLI$Ny|D8xQ32l(-t6-FaO8p$sF_LygY4zh7i@&Mpc*d~fpk
zRUOYhuj%kQG*zv>+tuYjf4tESX|o@kcjBIkO`Cki@S^#Vno@0bDW?~j+a5Fg=6&E5
zf1_qq?!$z&f!Alv3|;(3;%s~W?GG&4XZm6nO5`usd{kg%Z+fJlO7j2B<1d$V>GrOb
zxe@MvB(1uybDyKp)wOec+Lr7yO32Bp>{)!NHt$nu8gr@4t-LR9-X;kKMxJzAS<d{>
zOG8Z4t8!<jv5gU<l7LFk?F09|nMoyywynSU$x-OwdV|8BQt$KEB|3lO)r-{?s4p;P
zWKr5M^X*pFV|sfJ9(ty-@wTMi{)uW5^*1;+vE*diA2!}p(-HcKl_Ttz>av^jj!)xP
zO_=z_Bf8eO>&e8Wktcs2cI3PJE__+dihaHs_G~&2E7#hoPPsonchU}pwc4-eH*J~p
zW!`e<J)7%trQ$f(3Dm8c?3=TWrN-36^s14GfqR%q;A#a$N!R7#Cw$HpDgRTb-ga~a
zgVV|W&B<>(*Daa0KyA?`52FQ}J{rbUn98qf7S~^zQ5%pI#xPU+%%lay;ddl1w$9GH
zX?JMmN)v5sC6<}V-+piSJ2}_nO2`9cx7UAEjD`8;ik8m(6FJw#^|9YO=|4=xGow3R
z>|WX9vXW(56GLc-``V1lf=9awS|TJk+$Qv&*m~Mr-IHbajCp%Ki-RS&G}Y2sKQg~x
z&cxU%5*+SqB9om|Eb1`luDrKFQQ0)hNh&RW7`Z-c`-(Nc*;y;U$iVsi;{FTS+vGZ~
zT`c>de8k{a#piwLKl+7kEAO7v6Ep8=6rWkUHiughi)vKwi72mDk;^LuPA2<aapSRx
zE>oAVwLTras4>^#)U(N3g(c%1L<C(Ezi++%;NZKohZFT5lm!MvPEYxKfhE{nx?`n3
zqqdLTcaCc=j0dx3S;;NC`1Nl&W1WDAjg#k!HSeF;*KCx1H-Yc=x2{*MYrajI`H69-
z=dS->w4Z$c!zmj!dr`~GfEj|1_qj~@EY4O@>TPZPNO4+v+spk$%`e_X9ky(nTr#IG
zd5%uF$+g$}uAQB}%I^HblnaMXKc68Z_xRW}TazO_b~mQn@mulQrdIgs7E>3_J2O%X
zDrP-;R+e=py*Rj*C$9I?N8w{{PR_nN|Jl+9io2}0ojee0@>gZqg%4LJ$IRdjD9_j}
zyg}sB9-AqT?%kbRVv?`6qh#j2=jSeoS{w_m&K6Lc=e$y*+Rr4I)n{gf-TH@_OLT-E
zXFBn}Q5BrPq|f;1nabVzTkdt|IX9m_QzO4;`&UlC_hxS|XH7eKaQcs+@(I=RZ+Z9f
zyQJFAx7l){ICi;34WEL?*LBS@xm(iiDw)XJczoNr+2-d<Ifg?Y!}!XrjHS0ZnqN)J
z{9_ZIcm3l@tMsaaVd|b&_N)`#cj~&_+{abNSRc=Q@o?+pH<5eZUFUT#YV#6E@MWF-
zOYydDY5Rt+t%{0*`pJ(zr==~pBofVd@YdWd+wU%%6QOVIm-sKgm;3Wio7R`&KffsJ
zYZ<KGF246>Zt?NN$&M}!x0YEk#R|vV-Fvfa6%(Vj_L@6$p3QXETPYa0DC2<UlSs`U
zoOj=@acn!3_&bW>$^P>m@25-7jWs#H?F(a_5Lc01%BwZj>5>k8vzN#giD`<?&h%h;
zId4wt(v_V5uWB#p`26Ab*^Rfd=G7EVyl7wB61X$6zFBk6tLrWzjnk}e#e80)?RVj_
zsps2&&2Ks^wS!yFSnS<<xTf6B{ou1A-J^?m4;s93S{7QRSyS3tV|e<+Nj|qHjVZ1{
zymfEl*Dkkh%bwS`;_I4CGg3u=%+Z>9JF|=b)2k;!`&qf(D>^LtE5UzN&+u05w4cxX
z_*9h7Z8oy-m&xf}^r&w^SI*42Sxj&GEpJ#~(O#Wd@xWQcoLx}!_}=yESKrv4S>E+r
zqUxVTa|=iKA7S$qj}wBgT<P~x+PFZL!F@6N50_WQd%oOVEi&orv7Ot@dMksPW54VT
z_5S@aZ4G0r>z-cax6EJW{%3Oktsv8~G-krGYgSGTC(avK7<gwqH!M3Mlgs`(%DmX9
z^^=5aZDc%0VvVU+Q-b8WH%Bar%WWNAZ{v#A3r}<3A#~%Uux{Fhn9DxZuT|#T+WYO=
zI``He9_PQtEoE}%AGW02oTqABuyxn^2~v;0=9uoU+i}h5!prHWvZSP>=GslZvPMZp
zS!&Y{sm0G8x~BavnRN3_T-Krkmss>m;u~b=%6Pja7EXHDxY;JYwCDW0E=I{?yUrVl
z-a0EU<Nx9F(MmmDzK=EjEyC@SpQRbOpDPaDTf+Oa;=zN&SIt`IL*Euy{M}rbxk`BQ
z?F+Ken(51}<KIu7^noWpcJI|M0eV}dx9w5dmZwpX;aqt6%&q-Kv+CA295kEw?N;;W
zP_D=mj2$WlOzPVge=)NYxKY<3&VN0d<<}f<SDq#BYrOp8I2u>vEiwGUs<+%svy0oI
zg57=oUH?1Gtm01J*0U}>@a8}_&vPluUuWVzm-L#%+g2U3VZHZDY4WY7-#R?^U7sa%
z%C%uFzY51c`O9b4**N^zy;)@YwvYe3w1or&Zn(VeoIK<AqEmh~r>;bte374g)>!J!
z(RDvqe;rTH?7cqwa=GNW?>rMa<sTIv-zLb(5h3&R$;!+%ksRU<GRbLsGj#u4HJdl@
z%~uaC{R8d{`|nG=ep%Z3ZBF<)&W%bZ*rgwTnLqzQ)!HpaiVgw`Hmz!lDCON<9$NhB
zs$r1zcVT{yu5`mM+ZeLXIaJjA@s(GdHlwQOac*4r5s!Db*$)JHtzT%Ht+n;@(uEvf
zbKO_uGZzV${LQZose2==vQ{?Xr_A+kMy15;yW5*~J5Lo6&$qt3YuRHT{<4pMo^t%2
zXW`)-vCPn6OQyZQ$yVm>9^2Bchp)_{wuegfo{3K^vviF1-f9@E#JOKi<)rl5slIZP
z1UJXCZfJA=^~Txo?2Xrvi_WsIoXRDZ{w!i;)`C+!IV}P$%7R+Om3hBvI(}-O(NWL1
z9qa4xTKVZ$b;SeQPn~%^S?Boep5{$!OVzvQbxEAuR@-3k`;6E2h@Ja<3`HKk;}TA=
z@QHY`GtxlgT+jYPS6B5HR^>Mv&W#B^d@!l)`1$?k?yS4N(Cn*~^5@x^)!SNsEnvvH
zaeb%Luakmmn|PPyN&a}2cCPT*(*4P&8`W>_*X=l*9qDBIgd?(VZfEx0k5jF_U3~2w
zes6wr$a1^f<EpG~S>0Z)SNGlccf5VG@%fkLoSDb-s)XO?t#9eqiq2bBo~h@aymZd<
zLVf!jtL6rK|9{6>ci%g8itEt(?a$h8O5Eu<@q9<-?i)<kjWflHKAmu5d!MV-E24Ze
z<mj6eue1A<JyHv2&aPzNTVv*HHQT&I@xgI<ji8u=^A^ROd@g&hD|Hih<-4`nNt-i$
zj;s|8`^>lZlgXylpLHy*bwnmyR@=;{AW+}X@?R_e%(5A?G&h)5%1;%$aY|vT&gLyT
zjb~G5dg~W@XM4SLuhl(h<fU|k+4?nyPp@I+WhI-#e}Ys$rW`7m!*F!=lU9ec?GyA{
z%GN*B%&}Q7ot?aGcF6Gtt;Y@p;u8&YQpMixdY7(Zvd3X2N64M)9*^cPpSkDZ_MiIQ
zTO9<lZ#e#$zy8CkGhMlCI*kHO8#Zn6SocY8l~(JmmYW~e*4&F+9HV@4%MWJ8h_jou
zrivC<a)iuy-QB0RCS|=*d97>IrVEvm($g|JZuVN=*l(PsJahiLrzeA(W41;HJ#at0
znx$##kBudntzQzvW2ZN7u`Qf%ETT0w`l{0jUp^z7di~wEXU*{~=Wt2vn&&RR@bN_V
z7ZppI-@O-G`m!?SwBD^V;V<KLs^(6aFZuXX(VSRcL)Cic1OA4y6}vB+Utg~~Vf`v2
z87+sxS@YcGA5L`d*)P7VJBoeg*E~N%Gv3?fR|KcAoRR;a9QOH%>OGNSZGjKM4h;4W
z{>)T=xpPjj#f;r2eYH5F)t8E2HOrN|Z+6|6d%LDpb;Hv8O_sk?7g-edrJp+&RQ$j~
z_N!uVCRd8Pyzk?**&4UiENjB1Ikl)T3mHV3%}wHOS9v|#U+;k7uA+n_X@k#))NR#G
zvQosC-i+J6v|zE?|5ugg=6}!#X770Kv~%i?7p<)<vHt=ZE^|iTn8#scZFAsB%ru{@
zIgJ}DojR*lo&9C{m2=gl!(V!rp3qC(X?5@L%;o!!v|Q(|k$T^9bzK2Rx614rQ)Z?5
z&1w?7%B%9nc#eH}XGvLS_WkNs@$)u^!`H8q@c+3@;C@I#*&m^sOdD(t-#B9P?adl}
zmoK)CV*0&Cm2a(fzLr#LcblR6>X0&MaoUWTkIrUu>*(lAIJ@?S;FnWhS;ZjB)0Uk0
zl+@PxhKbwz((3P`g>oJ&9=*KAo2ArePT0m6dSqp{_{=x<$5X7lzulVsrQF{4y2q^B
zaXgzQeS7O0$)F`<oyoDhvi8u8d5TR}b5@-)G&VbT2edv-lI^_zWc@`p+yY#!8Y#;v
zjVG(lKD%jxv9IURFyZt1(iLg<mhAtn$?AXGGVoldo5vN`orb24yB_F?Nf~ZBq@DDd
z`JU|ZkIj|qmgObfl%4*kMf%5!GW*TqYA0`2+<e#c@}o#&#i1K(7B2l0!e9U8#p0S}
z*@wQqTj?~jy0GKGwYNFCexJnSYbR%4UqAWpJ&wQAr{CC8tDSiBL5%$3*H0wpSzSGS
zrHduzQS*r&0}D>xT>ecv4=r41G%uyNaMHix{0ZmMJpI2In#exb*QUE{qy7ZRmy2FI
zHMX_eIqG_+Z06R{N!ht`(Sq(BQy=|#U^2D$_m7Mai?a87*V=r%l4<vS=jAzewX-fS
z_rEZWV})N)YG;m_x7luwJk~sY{fUt$Hf=~@Tiq(-eN%_~rq1<ZSC_)h)>a+vo2ns`
zihW||xLtXhP#ux#>Kkl))m-nwWotjJ$*Q(D{m*|;+PZsI@7&L`qbnbM$+RnvIvkw5
zoIy<Om`A(RjZpcJPs|^!9v#)@`Q|?{GAb!Ct>xco^BW=J=F2wRbg5Nxsan#%aVF2r
zGd#-7;t@S+D~;2Wvt~^SIop59+QQXpvZAf&p>Ai*cfTI2mxvbKZnEL;x=6O_<1;+d
zcTAi0WVJq@vHaS_2Wyrp%zw3f^>40&vTtj2W|_b7HamUjY||=cCu43q-}$=FRkp<M
zlvz7RX#cK-A2Q!Y?8w*`v47e_&X?Dhd4HO#w}1Dx)0^%t{PX&$kM5$mM(bzUrEg!m
zb;@GlrLXqoeEV`VtZ~7lUEiE*7JZlbn||yh>#7xNv!8pc-aNJARv2Ho$V=%r&#pKK
z{@=S*#hUN)$E>a2TY9IoweLBh&7u_J9$eFKWz81by+)3=lXJg(<t==+<D*d3o{s|U
zv(L6x3NG5Xw)f>byLo^9+A%$hDpN6gIDa!wcEb^8_Ma8!Eq~4Xr_<^%<;c9)JK|p2
zZ9xpCy16wfe}&ThW0!ES2+7)1FX>c>Jhpp&O2)mF^WRw>WpT*0J};MVru>8J5ijS9
zT}OI<`4`78J=1Q`%g$H0dHwvx^kX|cXS~|gUz}1u$*VTX`^4TyVk*Z^UfEQfZu&Sm
zIp*%p`4z6b)mFD7-^e~Ylm45-MflCVQ1`1jQto$nR+#GYZ&U`^-<!RqE%TLy%Q}#e
zeUm@8u3UHf@Wir8_YE69YLqS!a@bPHfBX2kPxF60l6kwL{95G_dG|n_8J|QNGVgE-
z{QpqqB(A?H#>sU-Q|@jlj=7TQO1E?Td!6U~+$hI(>FOK1K!4R^DbsV3%~;GgU3{PJ
z{M0RZi^lrpC%SU{-L1agx$AO#p-k=H_=hjK`)cHFi3ZQ-b?a<nN@)%}^exRR(r(%e
zi5(|;Z}}JOxHoIP!D*%561jbz@&B(|e177~aW&|AS;x0uUY~EKuG=>;Z7Ij&bbmv=
zuilFuSN54$&hFY&fAzeJ;mLzxZy&RZCME@zE)Ttyzwy9>h_XGiA3IC7|0v;KuI3n0
z-*j2MzWD}!+_RO-_o=?Ts&wAAlCk6R$3KCybQn*?CFzJRdYEx&@990uT9w@wtgoN(
ze16=+GJ|8^Z2K?fy{vYfk)gB3M^BICi)Ow2gtQtP?=3qgN1gOw63AQhc*E}Ve79@E
z4qj`QTReBVMg2Ds=A#N1E0o#!x8GR*yK~lF8A}#s=lF*+C(5+ESDp9f!3p(kQjgC*
zFq5m>)4Z_p^B23z{(S~lJNrMdzpY+r$o%ll?BFxv;R#PH{dz4#Sn8j0oG;HSUbbgy
zrkL-|Ei1#H-o8AEapUQhsPJb!kE%_-e(I3EzDF<g{=oxYadPpcRa${dqcmF`cm8tQ
zsb5=q?om!>`?ahacb8mmGMM3ZME&dp?hEB=|60zzTJ-MJceZGS`MZ1VWl~E2@XVL>
zFL;!~{cF?R+rI1WMmt$g^R?^tSn<{7^6e)_rEX+8cxy~r=c&5j#mQ^2s*8P6*Rapo
z_UR>eN%?o<_(=EH4-cE{Kg$;=Qq@~CJqu|?m))^{yEdpSPReyyaN%`pv-z<#yk|n)
zo0U4JbMJa8v-d-Nbk#C>tMy6GBqCzZJ$b!-^73s@u6(!^kmMQ>W};@}a9VKr)t2px
z3(F#3InFa~UiA6gjkTHwFELt(-u;<s->dfd=uY#D>6R=@uW7F}y2`rq{oeVyhW@V(
zon8I@ONd|Lo?8=7U%UP6mQ$?X>zLBg%Ws44eb#yV-&;y?<pH(RaRSp=POFC-EiPHT
zre(p2;Ahz{cWv*g+!^?DbA@Y>w|URj7HQ+2-sPOv-fW9MSN`F``Tv_uJr226U3GuF
z>2-DIrt*osIi9T_6>co{czUpE&BDwA6F2Sir}P6(@m8H&;~I4Hg)8&3s4ZU@?V7e)
zTUPzDTc)NKp<87id+N)pr&j83*5CG6dZ;Pok?_4=oPBaxi@xP;4tQx@&Rn*8magvG
zXC+xrY}RL&%PtI^d|jgToXqM~O!taRj8g7?oO)=1iR-(f?^{zp^sW>5wm$T5`{d_0
zCmp!CVwt@2Ghx5<6DJJ=R@EQ9RCsrJR6*hYC}$mh#gexVt}sqHVSd1>bWiHtjYs?L
zeso$|^8aOO_TAH}uXkUs_qKG__TN{&;rpVCZ@ay=zP!e$s(0~`$@<1!Mjqk5yPDS;
ze+u#3bo=V_;?za4*||F^U)7zu+V^LNb-cK8zuTToxs729t$JoYYQ6ve{!BflMuqS9
zz8iik-;z+5bF^9|;+o-}zfUgqtG=={O?mpktfWX~wdoS`f5EExrC<NqObZP1TY1`g
zme5&kwm{_#SN;^NJk}b0$txt9d1lbDg<C3%Wjek3-YJNxoMOAZR4ZcXG{>S}OYUSm
zRrg$XaGI38cIDD5w<-@T-WQVhdv#FZ&HoFYq^^8oq~X8p&z=7)U#|OPdsb>%KNC#e
zvHOb7he`alVufcHyy%_cRI|25-*)r*(pRkecCIdFy6afwtE|!Hk(;4=drjDPp~XQm
z8t-*P<sT+m+Xic1uxIZ4%Ei|b^2l!O9+o1m=BIX=mp5!btH*imZv3k+GE>agyq4U!
z=j{^i_19%)*<Er^ojP5nLi6LTjy1=1PVKz3!XbOjnorZ6wuH!r&;Did%zA=}kZq;b
z^tDepy-qHxd)w%y$^6Iu(9Jc+EB8D$eC0p$TF>SW@APiQzu-ITy7<Dcc(xe3KJ8u~
zOQ$a(=V}!cmtPmGO4Dp8+Bf<6_mZA4*<7!KdEq+_?ouzmDpbBL=TGaQnAEikpM1Xc
zv}$QcMf_>+2}@<VCab&3Pl;L(_FD4;%Z=c6)t?HEp)&J+N;TZhU$NG!Hl=a%wTwIJ
zCsr@>(2ZVSt(p8WM<s=2Yu2?dJ2qro<}Wy=cH>yswUFFXt7Tp-$|=metPyW%5wS}%
z#3Y4XQ~mxg%dUbK-z!f}d>-udGuGcYThjdXnpdXbVm8y1ZJvMpYU8=BH@iLT`@#od
zzU(jOA8|Z+aG~8~<^QWn=g!Let$uNXUVh-IN2@EBrp^3v;9A|KTk(l^Br1y%US2Mk
z{>JK3&g=>I%D3%y$vV6$|0n<R&5JkLPh|8+*)22UYfp*(=L_FFQ-3`B^o8q?S94qK
zmESA&T>ZXjS{?I*C%<f-#P9!JHbpM6F_$BhIsX@*Y0^chkC&WTGfq~syKnz6eVJ$5
z;!Ek8E2d9)?34X^ap_qX?dIyu&8;DKO=T5Tr|)^06IP-6`1R#a2XEiladz_Ws<%&0
za=nfdPN?1+n(wQ$;mNIA);8+T<yM|_^E!IumHf?r(~lfWRoNhVyDh`oO~0yi<{!>U
zOPa%imbIwfx%2JhOONQbJ<pOv+bUT5Ha*^WDy99w<yX7swsYO?K2fxCi}0sIUK!_i
zL|@q3&@<nUyU1Lsfb~+;dM@|7GvA(AD&+D@Wq0z^=<9Zx54QaBsyMLy`@)R28`(b(
zA3Ls{H2u}>yWywWe!N+5<B;pWq6ypixQaV>hHOYYIZrdWtT^lbj_H#_+E={Vv+v!j
zccJp%w&#95Uiy5Y@_U7-tZmn~zF8(w@iOkCSe!=I8S{ldR9-w4+u8d1)aF?#6N;Ao
zzGcbht`<<#qSjO7oy(Q-ur_wnzHa-B>q`s2?~Avt{FdG6apj%=^>;~E4XUgT%s-$x
z?NQV96NmmTP>%PK?L69bFUm80|JR-?>uid?alRE!)|;v4{$0xE;)jB-Q<H;pn_u?`
zZFqX!D2GkJ_q~d2Xc|k7xpML=)#`gD6_Q@&h40jL!uR~!;Iu90-u0&+wwxBZy7@=q
zlvA7e-S#E2=lIP!|7$`{kN=^An{4&&FO>`mS6KFN-!#XIvU744)UNZsYINGz{?L>C
zX4WeclCNJcXO%X3V!A+c@0|sF@l$TjFZFD=@b2{0((4~5g}e;@<7e`K_g;}y*31tp
zw5(kg`dnP`q&ix0@jUb3EoI&t53p!nIhB{3&g#FTe(kTN&pw~N^-t)l%)Ti_b@%oJ
zD5q~dqqw#wa$E0mmu~J#b6dR(FP7EUr>@=VU%RCzxW+nW!uu5WCqc@Mk5!heOmO9k
znY(tXvhCs<zIRvtSmL&pBb+t7PODV5>;1+0s(pS-l)I~3-Z91;c7D3TXZG}mQTrLS
zr(S!Nf0VJ&_C##(+-sK?<glNzd7L!4{p@F{DX;&X?ehNe<A|xBgZAY@{X{A6iFwbf
zAHFSp%jnKqKQ%4(de-f{pWiRFPBQjYeOF)9S)G1qcgxBMFO|&9&Kwt&#DX-YHQhlv
zA<7|%|6jf-DVlq$(r9vW&v~7l8}(9~*VubIxXwExoxI0xv&z$%^&U*?SMG1^bY1*0
zbXHOCdUnItQL=9%Hg0j=?eM%ssf1~*$n71wMM77p^nZC<^Ow<ew^!yi|HQ4Ix7?b(
z>!t43<?cI-jvD!g95QLvZIO=cmb2EH^uXKb!K41O%By9k_FY=$`RwqmSGwhm_ssS9
zq87XL#5dODFM6V#UdyZCq!cn)q5q#wZ*k?RQ_F+SpDZX1-TeEc^|~upPu)Hh-Ous%
z*7I|pe|`3uRV(uJ)_1XzsndeCZ<3q+|7F6LWqVKU`NH3ytuM3Z#?Q&84*b7Ad1>{z
z_J^+Xykq+>S-%e93cDI~{gPjFac`yCV&lL^!H)uJpDdp3WXT_WBllrxBKw+iMt_zv
zE>pJ55<bRwbzb++Pa-0(rbzybJolZ?Aa?5Fve{J`+j@6<dws2r6i)ed*YjDkbkp{0
zPlA-ce2q^iyZ0l@^O1AzmjBnx4i)*{E%2CSbosZ&`Pfs|Dv?ho&XqCeS6DtFwP->6
zzV6R!LhO$itCw3om+|8H&}n15SN+8~lj1)q-AD8fdS$iT`^Wv~Yz?2_I<<>8ynf%y
zJy-5Gec6lm(vQ5dE`Bz6b122U{)TaGoz{6J4Zq);-81<(xx(i?=8vDV@P(98{-Uod
zgSQ;%N&oaxuxeNPjGdBC!uxE_JAR%aU0Zfwy6oeX_OeS~1uuWOhTrN<<gCOE`3;>{
zlq{V>u5aD2zgB&#qxOZ<ljY<W)IZsM=DvnN$Fa<s0{gWmwX{AszAHUvbFclE=~IT%
zx$#d5HZh$rsQ4qYxZ8`hr2(|4s_vGJz{9X<+VQU+-uYqkbC%gW%Z-ye_GUWWI4lu(
z!l2?+rrKk7i@(+H&98g=b->mF6bLlEIpH}^X4Z9<WZ|{TuR62L30x${GNo*Sz3-+g
zfgeR@6@RvRB5kapVQHEaKGmjui^&7wKHCD>HEWmxa{EoJ7v@xHzMQJs6mu_JE=<ex
z`q_xp`>duvD!!`uT{~K1yXmH&m4?gM_j@J%v{#>+b@$Qq>(NY0%^N+x+ALD}dBf=Z
zXPddpm|JG?6_k|o2Bc`3`rLOAf9|yWXUSjLuFDa{e38@bmo8FGSoK}RgCorB!-tK%
zZ+LPH{qo%BDwhju<w$(X-_ZCiS^B2vjYXDzqRHDoPY(>g9(n4L&P4UgdL=Wro+=jp
zQr15y-{!zZXH%9<lX>=hVY>TJSmyuN8Miu?gmxVi5b)SixJEZ|-v7WSuP#WkeF}W%
z<d8Q@fBws-){QFi*;)p30xwRuy!OlKFaB&d3QN?l7FFgo&3hO4srRkT#Yo=IkH381
z>rno~<aoJjgO2ju^qn$yPBt#~b?M4H_WSpXs*RH__t)Pj*x+=)R{r6I#k)IL*Bnqi
za5s@#THv9IZ2#MZ+YYVRXLa|qxZB~7Ru(6b6Fqwm6gx+5v)M8E$j{TKLS}05dB;de
zsO{d`>-_Z-JJaT#lKlr<D){;3S1WI`I{sp(-L5L<Id*eYdiwud34bBA!)?)9fwv#M
ziY`0vx$;{_>66I*;A}641+(tDTV--t+Hl<qRy>=+a^ufN<r0%to=aSxd&>5oh*3#W
zm^J&^otbg#LR4=4eYohNy4QsV63^bWPTv7qaCOf@^wO`OH9rmJuhy3O8xfOK^+4yo
zj#{U8{Lc?Xlk%@yR?Q4LetbsJiZ?RXd$wg;q{T*8<-1x3JxI9vHFMj+RqZR8*O{8m
zm$liwxahcm<>s_~LSLW!iYs%ID|&S&&|H0`-i?#x3wH7@`Sp^y_Qb0#kB>#3)4zH-
z?(n0a($F1oKX%X8*k~DCZ09shc41wkZ+V1OX;y;TLDQ$_Pm4$HbFFhbb~4l3{`RdC
z*YE!pcbf6M(yQgSwz5ldAj6`K%x`Aa&1uvQ-x(V3-#X)=cmF<zbvt_>d=a?Z?b@`}
z^Olvhhnr7U*yWzD^O8%{ob3bx-4v!p#LR!SJpYB!%A-n+tFm6n<vf45OzQEBB~#5`
zRPAYx{CwJ|ahKn|3X4p+%9Leyc$)Vz$N1<@(r4pvd;BKjb;5hI&pzk=sGRpS_@mZS
ze)`Xur4lb+KR@)w#_~|k%G-wzzdd_p#`51fJ#(I1nHu#iXWsKePb)ti)F|aID_F3z
zjq71Y=)>QC=e*kIQTW@@&n`*sbEwxgk#;SOn7K-#84osYv&#D5xTJO4F-||<<vVt2
ztIfTi9xdRj#&YmQnpu0+ioTich0oO`eH<6rda?+ZZ(5_q_d)&lE6u(+TjnnJKENf}
zc0P8=44XsETThAmoLs(a=Kj?a5C5KYEHL1r*|&2(mrQ3X?bmkNU~v9wjw)~e`=$HD
z6uhEOn@nflcV0<eEu~jW>)nD?R&H04+9fA(GltyrE-h{G{jcQ~!k}Y#&)h%tuG}_u
z#=OllcsD)2;W;b&*$c^?ITs!-{J!&KU0cxAE%Wk>Dl?WXU42F`KdC&O`>P@I`F8m^
zX`AwA@puYxOuKYl<I1~73!hmeE>OF6s$I|4_f-_%=Nu~*##Qfn6YH;qN;<H1xU4>T
zJx}S|JZqk7akW!#K8-3fm;S6iqqZpNzJ9Qb<-rf8ijp;&9nn>D_gz#KdfPvdV^ytM
zlVFl#gG}&V<`|844>l_6x;=Q9)|nnuyCCa~PI}&5?wbxbUA*-UezOdE{Yz=lbw8)c
zY3bt2p47BfA4!mOD$P-A-)U7E7c%`3+X_FY{^ro|=Ud&Lm!?c-jxAdlw__T2dCBq}
zX0k?nM!Z$sSrLobnD}_E7M@ycseJC@oCU`ZcoqgcTmLSkba~okl>(W?*_v)#2V$lq
zo}T-6&DS1&>H68lPEG0$-+I}lK6yFyPsp!@5e|>?CjRtkbUwb%L;drfTg7eniVNRa
zUpgVXFI8{v51r(LwK7(F=W0Eh`Qq)foA(6H%b3{-=@~Vb%-!pha-OkIO-baryXE!o
zGVz?X^ZIf{1$-_PJ~FB7TGBp$@%k6XUcI{D-Sbr1qU4c==|P*%$$LxY%O<>@U%E+`
zAw<pMgSuMJev`zAMzw|$h8J(2&Db~bo4VD?Z%ZX@uOBaF4z1ajEG@b$P+xCZ<gXu!
zcKhwmd`i(zk9+mh>5k3jOHbTC9=8np?Ao<6w2SL;ZQ0^&5*#}>*WA$)6O`6It9+v8
z+_(1TjwHtC86Q3^+pz5^hx^j1ohJ*yi(KTkXkEyxn{FS?=Jzd0UVPf?A6J~CW99Gh
zsquf#xpeT@bL~%$lLYIZx;?H~eIV`C_B+q6dgpKWa1XScMeW{<#YX=OW<SZ$wLY}c
z-K~M)Va6Oc%?F$+-wJIMC(fRmViW7?eB11E@)O5NzpXDWPP-oBQ`fezalhi0=PYLh
z&#rKrRr%;<+LO4bv(E*k7n_~^p4TnB%i`pb7+KwDt(|tp2j3J;dGh;kU%bY$m(_m+
ze|-?<IPUT0mizH{7LM``Q=Yl^&pyG)QkiyaT|m$F%OR<s)^BTV-pZE7E#{va^=4km
zqWlh@Qf>7~uZ~}zJ4O9!ecR^CiBa=2HZDIQdv8jCe9@8Kr;nEi&fUWu88@NSS*x%&
zYlFkhPR-}5FWlJ~H`~|dwl-to-tV8LzLP2S)!Di+b?v54efeuA9Jh7*x+b+*@Y8MW
zRhP>xO*0>?uMpC_`ON34E%$~`l0mk76K)&*FJ=|{^!e7~z6o8Q)@-(){o-Ky{5kLS
zj&1olZ!&LOb4}vfN-xKyU!OA<-Iq`MlCN-YUn^I)qtbz8DU&THty#7*liQg&f1`);
z*6r(z=5k#uSTpe!hr^s{cRAh8pEGiwl<QDdHck5CU75_4=Ki($%XM!b|MJR6fU&71
z+40bUBGryXE$amyXm6TxUbsiK<M^SF4uOZ)lK1QgUv{D8Ve`}81eskLmFEwIE(>Oq
zlFL@k?3*HY&-SQ%UGA*?>C%P4vzWfCWUTvN$;6>_vfevsLHCuIdDAj3nB6MBQa|he
zhogT5)|m9}vC&m>pH(%fsCaV8{8!5RpR>qjYfb#TC3@l}pPuEMrf-hg6rSY#vXvv?
zX74T&zxyAQKAJst`89jJ{o(ZES(e|v<OeD<8?ZjUw$-q0xproSO`@EhOyco_{u?ip
zPE)Vn&)!h5XX;`0*SX6>HtwA(yga&h_9Ly&kDtG&Uf6!(<>H9;_=cwrT}zG~I~n%=
zNkFgjN;~hQp5P}QI~=k$^q)M{|KZ3vjV6)ja_=9x-4?f;6ykoFBf<3O>Ez5sXLBQ-
z{|m{<eSAVaZozBre&Y}Zrtg=o{EUoR^RURm^Z4^^Nj@{gBK&$kJ#Bpca;??jhbb4H
zt(X1%Ozr3Dn+&)4bC+*wG5mJwwC`8LDP5bMyBG^5tonU<kBH5Y&$73dEbn^Km6)~I
z(rupADVJb%_iw9TKaC5H-^5d4WwiJF-boXBc80lEJbC$L-(*j|aPO_lZyza|JlkH|
z=Bt^PrPE%Yc=v6u8XgOOxo*PhCvLH+!RWo_5-0yzr7Wc^duF`2To*expy_cH`$@;y
z{=cq%yg2oQZ9&<Yjn`6c{w|&JGt^PP=<%UUxt$4HV?4k1`4?_5R4Hvy2zc4D<KV6S
zOZUp!KRSNBYV-4v(&FWEi6MEa6Smyef7UI)Bjx^qqw&1B%EhV)EoRHtoQXZnrN@+$
zyQWz@?tyWAx&Fn7mIxEa!|U9({r$81?JqTf*;Pk#);^0Al-{}h(nIeBMjiVnJfBuj
zX58iAVN_A~r>;_c4f9r|h|KMamtC?|`o4U{8nv4jJT{tfXf9t9!m#A@jIVt0ieI(X
z>xXTAU7*`nUHB@pM6++Qj4-qFncQD2%cY&ACLOA+t!>(TzE|i*Wy`j;)0|HkT&tb-
z@<ZOgg!(3r!g-ws73bMYKRohKrM$UFN5r9|-n!oWH|w(C$}$(Nz%6?Ar+-XMeU!Vu
zX{*$Oqu!PA+6UHt5s07Hz;F9cVe7e_=lCwCq-v)~RPURuz0j<0Ysl@V+QGFYyiYxB
zYNkAU#c(}%{fDjh^w|1k7H>6USTxB)Cu6%zuj~TTuaa@I{#oa#zJ9B`drg{{+Oe73
zrWbbk7T<ds1S;Snoviye9)9d1>7MRvvc=x9`MkTK@rhvn`H!da&riIcHZ|<&?<=nh
zd&->imajN}Z0+@ndxH5^&bh34{oL)1Q(wCsIGwr1_~l{;{e8cd6m7|V@_cFhc@4+n
zS$cP#R^R;j(!kqQ{g=n)kb70u%R_di_1UBbemi{VtpCrdy_=T!vqe|dJr_FQZ}F3(
z|Lske28M$LEd>GWOBIE0x+S|v<+HBJv`u{X<Fd%rGOuUzf9cKpl3nO7$L4*u{WagG
zo#&T(F5j$^X0#;u@SXy-!xJz6zNvLvW8tjp<z9_@C*6*%X3v_}7~$H}R{NVF!mH6+
zS?6D7w#PZ6nGB!K^u;GuX3yUIZ%x88#&C{g5xd9gl`8}@8CKY5E?Mfi>pahfD+Mza
zS7*=NEF1i|=iK#A7dGquDH32Yy;8DnLS0eI>6<FMlLJn~rdtZA32oUE)e#}^?6Y=*
zOwErSmZrx-60F(fIV^u#G26;Kel&aYofS7-PhVT`x8s!h<f+@&6+S%we@^24ynom0
z_cyQDTQ)iQ(;=0{V~^kDuX1F#YRb;J#QyNjjgofvBK=+Mj(<&R=vXTudPjEEk{uPZ
zZ!efv9_e9hwl8BI|H=hXm)N))&Zrpg{GE}#($KtdW>xcI^Ihv$R=w`HZ+a}LOw=sA
z>VtO%)5`TSRnp=Gn`4jvT<-b$;^d(7Yt`Q`ck*)f>vt5{+`9O@s=dtP)-`5aB0=gL
ztM8~P$a&8D@M%~4YfH&}?(<sb`*izf9e&zj6LQV_+LyGw>okL(J^kag@$~Dc_gT|x
zzhxZ%I8CbDyk*sjzN22>W_AmHlKFbftLe#(eL4bxJnx=uS~C4l&Z^#khs_6M8BaW4
z5-#@X%pX_z%cg6$sF!|zYw~JK^n<i#>^kk{6Fsg?@-TB;*JeCl_F;ARhO2wmUeh(7
z>e#eqQhezquGN)YjRK-mmPbEm3qSL`_u`gq8=clKx8Bd&$neK|Ug%~!hmX&=SeUk5
z+>-Egv!)pH)hljqlH+BL{b-ndxySeLx8~B8Q)_}NzbE%~KChea?eSM?ZRq^SSxcV#
z$X|cWS6mW*$4)`2;ZQD@+A*ibxP+w|4NRMv>rZ(f_5YOK{(7ZAL;lP+T?!IBr`9$^
zBs_AO6>vE4)%{-Q`7(m5*A$lBVQSsU*k@;?aFt`igoF2^68^N>Ki~61!{27x>{(oq
zm%9Jdzu8-#Gw1ls=RYfD%hGQi+RzJv6C?xKFE^aD430FkFqANqC^SeCs7%!4m}<CH
zyDI$4x)-v6k{2T)i#MrF61cp3k&t)wGPY%DF8Mc_JDR69c{B&K2Q;i~UFq`0b&hp0
zLurChKyiXm!Dqj-p4<7}|GoIWfBCDm-*ZoWRFRDFTJWp(_3>bT+pkwX*RHx(^;&o8
zfxgV*TM|>a_!%_L^c9sXn$~!^I<x53kB6_MHo9!x-gqE&r-Av&Gg-pbw=Tc%U*mJ^
z@al`39vswB*0(#~vEf+f+PpR<V`cRjYu-P8D!cB`^oVMPjW^V5<VqH&Y1>aMtF--A
zwO5g)yJwd~-2D046Y}cJ1n1=Lu5_7IxP1BZ3A=n&^Rpj{dTN<z6v^y9pTFtYk(9k#
zw{^2+8ErVzkvwZ%)y<s$qVkUZ^E#GZS1&h~er9^?*^F6IO&6u=pH&CXTp^jV^g+JG
z<>XpE-}f^^W{QL|E#7qcTrf*+``pzNKB`5{_Db1TJW>67Sy24c<g7PL=96vr+?ubH
z=X^K#?3K8E=WblJnwRVQvH$aRiT!rx|Cbz?nJV)6Nf?(yC;znrdQVP1EjrTRk~=Hq
z598<XHp$cZ$@Tf{yc>nQHyi5&I#*vxT(!e1@2TB~hNq^|T$R&Ar1<7fKbCoGb1z%n
zG5&q^?JmXk`?co@R?bbmz3+mFgVr6nhc9-PYna-f?`$lav}|VMb@`+Tx6MAP&s(<g
z%k`LF=YqeKm<dGBQY<cR{Uz(0YNf}2dNPmv`3b#SKgq|veO}BNQm{?Y+}3kj8h7)#
z)spjy#6Ih+7pY*VnV|2OIkS4FjBAq0Wlf=vX;po56Q(B=msU-A82RVdXZy62j440A
z=>4+FI`RD7MD~u{1!hxK_GNOfHGRIr#LBZYT=-;A-%IcN$s6B&f0@b9@%hQL<sH2~
z1&LYA*0Yjy{CkZzUppaZ=)HwuQ?QTj)r%LeOGNZ&=sZ6$z2OqqcW>2*NQLR$g5Fmq
zc^zB%+Ui8-H}-u2UXknORCYHl-)On){9ZS;>n`WH*B%KgI;W=PF192iZ*}^kQxf8r
zcfVZGKXLy2lp3{T!M{(hXF59T){Tf$ALe%Ze_C(-TCuv<d$ZxZTl-IzSL8^q3C+7d
z<7n31^OxT_dzAnA^T>Hx{XRF&h_YWQ<?rQGr}y8lop$*C4`ugohTTVEo{5Cp{JNTR
zXGX$DuQu=b@0QvAZD?KTeMU^`=2pXfdWS{Cz6UnN&o?+AD#NNQTf1k*0sd&;%b&Zd
zAFt*&IxD$cPiIA_rO=nKvuhaa|Gk=d&EvYouFD?WYk7qdS^rlZ&+MN+MRr}oKH<oD
z(%NsGKeQywj|`rFGiuf^zx{8I{xAz-moTw<_rI!YhV|0-oYy`}$%rTKS{ZlwMaQhu
zTC$6-yq2G&aOB17el~`8MyuSe-&dHJ@_Jw0r{u>y{IaQ2RlcsZmVA-<S?t-Gwz)EI
zbPcP1GA&o*I+7)w`PS}){C11teLH!MpWpj9=LExvf<GD#lfE6i{KZT)<MluDJ?66>
z{`r_K;$_x(%XiDScgfwmH4F3RJbs?{Fz?D%$>%=;xo1n=;-A0l`$?7PYW@!oZ&=J+
z==sUUEBUqDza_g}b9#j8Pwg&u5_1TB6dw>Px_H&Ec!9}T&-)5}|Cv=-^S@28{>}G9
zQo6o7`1<K~6`PG;8UD`Aym~<8)r!@f6TPo|%$R!X?b8XVUeR)2etk@zZdv-tP4W#x
z#G^A8Js)^h#mg_TeVBLQlc@5<u7y9kxb2hjmU<+r9=;H`UNqo0yG&&%|7@YNHs%}p
zJI|!*@$`OPICsgyr{66vY@S`kF0neg+Tw!ku^Uqp<9-Ur<z}S0*Ym&a|CzK^v#9!$
z+RtOLIcqPw{!`q%Sl`%6pY7}oZJDEs%5Dp`ealmt=P}XmMB|70;9lQ@s(~krjHfR@
z!n0UCy=95i%et?rR>1++Z=Pq6+*kcmM?Ku@NVat4uICDO-~C>+vh3Hd&po~A6<;&t
zCiQM9`+j+|<wA?uW$$v;p4Ye6SN_nf|GsIpci#MpHP7bQWiI;uM&a$%r_T=ul@=K;
zb+1^nxxaq9&9Nh`!7;iHoA%ALx4Lk6+msj8P1og3S;|bU+4L-wh1qTx{Qi8NKOnu~
zsmApMJ9xLxy*c|u@X>ugAD`L#Vawr4^YwF{cq=emcwP4{yS+l8DB-kO=j#Ji`ck^$
z3r>Gr^>dxg@=L#u=}X!LUwvpIvHbbezq|W<Cn)7hTz9-+#27BI)=O%gmE6HUT0dqv
zhEC)D7xn({-954~2ewaLRAuUNhkf?K<t;xKRw*Afxyh<@y8ruq{h}hzYrabk{kouX
zSisEp=AjeeuO{`|&&V=38C5ZNR{FZrw-)eC{XVyabMYbupQh_u^`mB~nH~DI(8x5H
zHSt)0a2Jnatis&Y?b%QDg%3@!*4cjE^Fxc6r~d_>6DJG`rktC2sDNiPx5BKRuc~3T
zGvao*Un<Oe`B81@_0LjU)pgFci<d5YVRoBc;k4&P$Ma?<?krthC-*j7a*>W~OaCT~
zs!cf|Grt~LpKfA%#)Dfs{MmLdd)fOx*7*It`uMK(=Y^$eYDYJG`EspnHUG}?^{rP6
z-`8CG>+w><l{L^!aOGOH*Eg?TYnjaJ9baz{Id8=rDT}Cc318M7-S9a@B4^EYv$d~t
zd>I<IxpFD{Y`nWbYjySl-HS65qr}oqmAriUlX*=m+gg{7iCaG!IzMXiJ9T!^XThbx
zuel#GtbFZm!Rr1jsX){E%+ucjU4Ml$@6}EaHJ#m%82x2!D_6rdHA&~?xB3#U+wSH$
zEq*O?hwnC1&DGvZ^7drRbn|4tyg=3T@2i*le+8Vp^z!@EA2IxU+dKK?efO<eRk*3<
zf@)Ca=|5rtUq8s@B^+s4@{?_oO~esn=jOdzt|~by=Wg0v^>vbPc~53T!mNoe)^;nb
zetLPK$(c3ojBy_<+fFssCAIfQ{Of-A)Z+W?hJ$85pT0F%f8fr64|^8A5YAa2^Ncw<
zdtv>io~)27$G-+fi65<6y64uWHhFQg=!x&z-|p{Nw}k6vOYi#r<9}wBc+XwBqfqPE
zO$~3hw#bD)Toz4s|2%EVQ?EaTYwfRH+|+*ev~T=EKXw*_5MPt&k@*HMBT~baYgW9d
z{U4ZnHoxe?*}@A|E5ExOVL!OKXz%OZ>yJzJ9saa?hYJ6khD~x(<~*(&)p!?Vih8$-
z-d0YndiLJcHPUtRx0_n+2TkiwE3cj%8$Bg*{tx+Ov#;m{ih3N$bbY!pv~JF9cc$e|
z7nptbmwmNM5LrAcSdpdt{!7Q$EUn`#`_DetckSGkRavrF=-X-$0|tkqWv8Ax6!Kbp
zm)drVCCyY+er9Nb;+_xzmak9uym+|Y=w&U}>8t8{V;thz8Z)vp*VQZu>{McW7H;PB
z=J0XJYuQs$>x4C4WCpJJSIp+RBIoC|$$7i3Klc-uGF5ziLien^*DS4iFV_otrp12U
z{_(Qtk4+(QZv|Q_UBVgbZ?BWj-~B&lYtr^Yy~Cf*udqyvdc9-LvZoyD^Lm%C_!X2N
zfAv7LY0t6jp2}XCo7;?T#NNEoS2)$|7;C|LwaIA@B~ouMP1VkfYtB79f9cZKXD__I
z_@a%sU_aN+i9YO>_MzXJ-|M}oQmxkxTVoV)Qs|~t?epui&rSJU@m_*^(mzfcyYJil
zFDd``Pvlw3^S65DyCRXC+4CK>8eLyFO!j=upzX@LG;m|>PY?e+lawD`<azx#Udg35
z$@~R_gc?(AN7$+Vueqik&--GqDn-!ulhMWQZ42r?h#9y1tEe<N7E^mE{_phCUB5Ri
z(a*5_fAf=hLiXQdn!j|UbwA%axQkJ4qVlP^J1cgl=T1I&MNjGZwIC}A`7gf@B$?IK
zsqWJZKmEckLDkgIXw`)Y=fiX-zH3~jZ1nwTsmq+%wyQo*$ttZ*KP9|uq0)ZN{Hv>S
zRnLXpT7K;IqjUWG`dE1P*iDf;v}MMcX%pI~uX#C><>00{e<K(FDZPJN`}ybfQ{N|7
zU3Z*jmle@3a_Vg8@%RtPx1QB~5b?gbQB>*whN-f`*Rp=8te!lt=8D|Pe(N>Mxh!jJ
z9%t={)7SXNHA__TTJpwg#?5@QC1<59d>($uL^xaWQ*~;Nt}j#nHOZnH_G7!AJ`b-m
z{U;)oXf|!aeXoMV%zCBxsU{9Vix>~KN|lQr3NdW6Jso}i@H>TuS*KVoFOmzDoIX|H
za{c7v4^t1UX|0NyG3U!fZP5c}ll#<CqnxH*;`-J)%UNG>t5ObE_M?F0u>VtU@*E3`
zH~QFBU3q8j<c_D}dwJCs1*!kbJhNb((5uDFz4p(wcD#A@ed;B5vvWZc8_QQ3m?hkN
zSf$Z3ZF|pC7Z2s<Y#%LRSDq{RU)X)s<j9h@Mt#w5<NE*mvbc8St(NwApwd1mn?2_A
zsv9gT|1WcnUbA4H*7t31_ZKZSUh;ISY3yWKF$Oo;DTmhiGF`I1@r3u~m&0eKd0sH`
z{eDEpSt>x(;KkIsz0vlEe$158JzwQ;S>jLwH}e73n_qhJUa++oEO)rX%gmzQpLE_Q
zA;TmrF#6n5$E%GOj^tgK@_Ngn=9_oerv%75aIN4xew1a3(*D`c_J=*Vo_+fLp04RP
za~GQ@w?}{Pm+;woqGIM{^VkR9XZoELU$Ay+NX0bkewBhYNvVr9d-;8~Ima^{o}zx?
zSikv<EhaoFi)sRF@0I*t&GY&o(}mr7XKr#aEjsi1VsUurhu`<gL>=PAF0juFpDD9N
z$+!N*3VW9|9iJ3S1WIzu?;f+4J^77ylb*?BPvgpfT}?9_EVyF6?)p*@_)hSsGl#D5
zpLDPC_1bKQJFfl?QS+7!n76v=X6xjVyZ@IQD1E%-+OzG4S6{z2nKggg%9Ixh{F|~a
z+3i*Q6+fkZFW=^*E~78aDQCrg+US`i=R^e=Ufgbb>z7*X+SpT8tL(bu?!|;niU`oH
ztu_Ds>Qm(IicN1dS3Lc%)YG*5%DMUJ7Cb!M6Q(3PX7(Qpn_1J*FkkS@C-3$LpQHcB
zy^Z~Pz&KhnyY7?plX6>KgI><PH8<9u$&_BtxK#FCzUsLtQ!Q?bnZ;(!QvK$XF=yxU
z1t-sKZ`qXa`}?nH1=cQVY8OIJW$aIEyZQ8JxA3GOIg6|>wsyISA=B0V&3C$<pfB=U
z?~`V8?Bqr}Hs)f%#O^s;-0w(;GCaM1-1vydh08YL(SM|R*Q765%GG)7h12JVYg^CV
zH&AMC`tvn4J=16+vojz6#fP`{<_U$gnl`5Xuu-28es=knxsK=e*09~Zny$LcF!9l;
z>Q=Wc_pgV}jDBri`@mH~cWF$kK;U9S|5UGk9j5k91uL`T+GKtN*&X6&*>=UiPh{;y
z8L?WX-yhcptrp_h%>Hl21o!Bus99c){rt=2H>8L@I{c~i<;-6*Un{8IPT*f6yRG)O
z)*hMDo}Y8}op^m);WV?;(svg`MYm7>YN+xmjKlNpmevz3f(DH9<rc*~HF|2^SHC?j
z{MsVDROxMIeIg2GA2K9=T%Psr|1P5mrP;ZkJZ?TZpMKMKHCH{~HvvbpElHDlbF+E3
zZ@qKrhl^fQ#+AL13x0<16`v0AKQDV})sd$Mru}i@y|Lkk#?N2OmoMxpnzd~EwrS5c
ztzn*Ly@PqPtM2}!4Y5l<8SS38c6P?e9y`})fi4!e=$)5t%UpYGG~>~s>`$7vqH+(a
z7AZR1eNd5m<<qY7@^_OC+3kEBx~|6aVq5MJ&dm$UrbNhVt&o+knYXS_`R}cGzc1x4
zPM235KE+;r^T_m-{$J#-m*{`7i*UERR<^@j{(z#rjL*XMov^h4>-JPF_5Uu~9Q!Wg
zw&(V*C6=c@S;fYkj=$M6q3pCt?eAiS8+Ue@Je_PKmENM1f8eL+$5X!#OX+(FREbOQ
zyxXf6&FrviiH*aN>5CU6Hh(_1pC!{>J$HG2?$0|Cf!D4#7Jd6vD=P17Af0B;^zqPE
zM+Z0W<+Hv2vQ}SbI3;r1+wsVYms<A&)6CCU{k?Qei=#oRpwg(g{$h#KriF{UXFofZ
zeKsKN!!J+6ZL=NO?E;Kn6}FjWwP~DjnYChe)j{5=mztl&PBXc>?EbA+dsVHEe(RQy
zTD*GukqFH)&INf}bTc!|9zW)Ee89z|>a}Oru18JnOBA0c?n}60W90I3s^<JAnW#A7
z4y!x21#F5gSzb7_l}oL8%|%^%XOUSdtG^j|NZ7p(f6*D#pZ2~a;7X%=xJYISv)qOi
z`dQbP@D;Sx*oj&CHN1An(ErNLcaMGP@x3MHx?AER<G%FjzTJCG>`(eZvu*VfeQ$R-
zZ!2hTUB2=|hW3@c8x<U{T>ijtpXFfiskn)o4IVApGijwyyvEjS!yISN;5nb9#h#mc
z%G)gyl3)F|lY{Z7;tPjL#hN{{IJ;ABzt6n-YS+}0nZ5TawbCCl8zf9w#1Ojd)w63k
z+B|b++%&i%JWoh5#qw+M=Ur}o=cP5)DKB!nmcVb*cSuHBiy_%{>DAxL6}pXvIjU~=
zPAAOr{gt!w{gGMqz6;nLV<$cJVaR+GF6F>}fYoBxt9563);{n{|NbZXX)g2hUA@IZ
z)49Y%j~6bO`=jc4uWvI`MRFu_toOf1_oY__K7KRdi-AIc<Aw9evYy^kHnP<2&)jBU
zo%ZzV<&fS`-G-&pg1#89xO~uXO@7qYJt3vt%dAv*trqn%|K0Az?!A5fU8%h@yEZGI
z+ROWD*U4F@1!5$E*_TTB9M*pIYcbp1!Yh{-Y+_E#{CU@>tA4@qnKSsa0~mOCTXNS5
zPxbPVO|#n&b@zl~@yf3FlPqnfuKo2p>`WM13o}oheI&I;!DaQ|Ws+Mo(vNXo667~d
z+7|WnxJb##)z{xWFk?*r@v8e)L&81-adoeNX|s;A{g0I}+)(mw>dhVohrs3c^5q1o
zo?bDVA;Wrmb^M87z2&<~wGz}y&TBt=CM+u#vCo8InMRjLv*#J7nqM2P&0a8J!&SLY
z``&9Q?X5momQX+O$<1qz?pSH@$e#VvdW$hs`fAKF;nRPL4*vT#KX~<m?l84C#`(YM
z#BKAZUXpCxE@@ZNxO39&CJA3#b%{SoT;-jn*8ham*X#ejqkdb`=C1eT+aIhK@2N<;
z^`A$i^o>Q?q*z|P!>42HE2n(SIVl{pW@~@`_w9n^UMa`fEh}q}M!3&BpV`LWJMAaS
zfrpz9|DRD-Rx?3(a;ns{r5`hy`Q~R&yPe24|LfCj(K^L{uLK(1oMe74dA6zD{^A{H
zmRko*ddtISAOGy~wuJ?gA3En7g%{m1N;0wi&dX*k_xa};o}!{lQ<p#eu(Mw++^XEI
z^5Yp_|9NKfm%YB>S!TY&YvY+E>gS7QuDWIy_x}H$?}_i{_w7Hzx%|A&0kKURT5SHW
zd!m)xqh9S-5HUGDWq!+--+AvJKS{MSj$D6vOWk(ayIrro&*tIZbMg+exXJ0ibrrME
zKleA*FH9=B8NZGD<#z)+-P04F-<@RMmAtmL=J!#v=gRjc{OwcbzMgQk#^i6v?Oj(F
zCbB+>lsl98@5K$yeU~1DtvYr2nA*KxO!wdAf41vQf4BL0W|42##PgGR%C1;_7rXiK
zuwZRc`{~P)?(-gsN4%1*x4u&tI>(|=_tb*p3mNzOR<dOts;YdkHOS4GS@o`qx6(`%
z(Kfq9Yu;_oFfvNqoH}JH<73ykjMtBctqQ7XT+z9<?{Z+@re{qoKTNMC3U$Bw)Lv^C
za{m4F305M<7H3X-b$zMqY%PatvwolapZQzQXW}1rZ4s}!Vxf~(lQ`!)tlV(MYu^)N
zDennhs-2eKMLyST2>P&ZX{O*}wYi`6XLkHpu~GO=zvS+PFRmyWO|jqgX6r(ay2{o=
z%=X?&Gu37muunRw|E~VPsaMSL9&)`!(QA|D@lWHPvS-_Ik84+_{VdtCdBYs#_%FLv
zrmax@`a<27S9{&sDL+e0_1@LUNX@ZmKR@Z*^7~6&UFV4%5vtJ&b-uG#|Jl!kr*?JT
zt5$d}zoB5Yb;F$GtxxVB7v6eB>d8yZMcUl<?i}-3GFW~cIUVrt#kK~w=ggPmf;HDz
zd@9j#TwzoA%Wz+#|J7?BJWv0<5;BqBJ|gjLqc-=7bt{!;en^*Jx>aHR{8hf6Jg@Km
z*V=ggxUAjWJf0WN+oFO@Utc)iui-B(ox~Zm(p|Rw_%W?@oAv}Pc+qPTKJTAHTy)%{
z!;|XY_b)E;pZ;1vp1nVJ!L^IJQ~mF|tlfS8ZkBiDwCUVaY*vRo+Z-j8Xt<g4j&xeg
zvg2-zuHunmj>>1U+I>4OeDa8UviIbv*H5>U&1ib=aU)CkPQ_)ObIgG!yO*qdyiM%d
z<u6~Sbu%5^u<7;L>;Trq8S+kd{x3N=>-Wj~m31Avn$Ni=J1Z9c-Ds@uHsj^(nqTaB
zdrRIb?kta6`7Vf6?p^dVlj-7@opo*fo|HQV#83WyATT%QNrj1~UfYlR9Ri!)z1^yx
zl6lo+@&$9(nRZ!gp7csB4Qx6x;hQ1*<<Bmci$$l-{c0eZddzOsP96gx7LA#z7H^uW
zLs@3O7TV3nH`O8Nd7&*wlF(gu*@D2DmeOVu{k*Vl29CCw%QifJ8fccXcg<h3HTD+L
zZC4cK?(AIE)~`}>U8?Jzxzx1@*_jTh{|<cCT0Vz=#kNT4#d1Yn*=r)xq))})negZK
z0{@?m(^s9GaLS}twCQ2^syBgbUTMa;Oa;GBOj=)a`&M!CM<2(AB{n7Z>!+ozuHmp+
zcwW?Z-mcse-wj#fL!K%B2x(g)EIQ3xYX{SW-iy8u-E$U93C*atJ{eZ<L&KE&+aa_1
zwx$S;z_l?EyE?b=9h!P+X~)*ADLGDZd2Ibt9Q~KdzjxbF*tm?_AoR?%W9yzR*4XoE
zPy5~fW;QhyM;0i@{m4*w`F&H-k8LLW=hg(&?|3hpuwZKG=hyLvKWwXb$$XDxMdJ6Q
zGLfA1y6Z~V56|)66sY+pN~B`0Sy&;1$Yb@VqB0+gwmR4boex@P>mYLR)H(Oc{705v
zg<rpTRVsI}_x8!|_%?gN`%lHU-^Sm3Bp(-N`ywpvUmeT#Qz@3bt|ErrickJNY+k0h
z{@ljv{Xd?Hh8l#e`Iz21#gJ7~t2SVE4d33pzxO^Z-m@(`_kwxf&Yx3Oy;*Q)%F=A>
z6LM|UbB}I#)^dCE{kDGNKSA#+y_{d3Wjnh5dGGABt{u%MgB~+)c0S~2ARxbIt;w@P
z$AYeGa=TIS+c!Au@~KTsEk91T{pz{bdwKf#r{~<}Z(AzK9ldm+vFNsaBBrAMC7PmJ
z*Ldx}CV8R!(MooP7hkTru^8UJl5u(Olajf&QnNZ9&9In0ZO8VjkqiIjT-su>__+6l
zg4badrj~Yk`H9~HH@iBW3OSX$`lsy#;~BDd*~=M&D{noXB=q%mRCr|D4u?GpIrsDa
zw>jj_=Ks`kabd&GS#6&W?a!6q2%7vcHl+1})lWecAF~SE$8VHFe)|iR+<v~**Emh+
zL(l1(=RCsaaclE0ayr#GKYaFE?V^n?Gc}SWt{qtMI$r5T&Wwmj4(a!n#r170eBNti
zu_|?OdRx_n)?}^Cb%`urn2cY{EZZhE-!yvPKF@%V1Mcz>Y8RYNFE)@Z+#h#<ckx0?
z-lFBJPVdgHQwi`A7TKT}wcGdXe+}PXxj&vu%Q0Se`*kdY?RMwq={~usW}5tZ*QUof
zr}xPvI<46>OIK&7P^Xvh%=qm>tC>$tU%$^QwX^%crLB$gxTj1jlUM05-&`{N81rR*
z^Zh4V`-J}4GYYJ0-*U3@)Biur_nxNd{ftxbn6PE9wXNQq?iDL9RYeIL+9Un+xADEL
zF9Y{Ya-TAFbAV30+N%6ZK@P!Yws)jC&CJ)#(b1o3>+@0mkp9KSb5FKwSMt7jHTgl;
zS6iFe`<HEq<5-_CrCyrh`OM|%`i_i8Hz`>$P1zk@SbiXD@huUhU*2VbH@0@VEY(|^
za?kGFgU_1t(^+MO-Uno;@87lP$@wCt^EG>IelV=MSfaa(<<y4BE;iXonT3~(W=pMz
z|1Y#q=$+T>+@z&KC9a33*>C=G(6DD&pFm#B(pigk#H0%tJL;c$aQnur1xFV7KbX6p
zp<PI)^uNP3S=EZ#&LdOqw;1K^N&Im8$AR@{8k{2xdNqT0ai0IWNzF{VHGb({&TBfB
z9FwQySk723w(QR*yPPZk{tKt9K5+kTN6j?Ri0_6BPu(ZXd?QqQQrV}ISEeOIHZ||M
z@cZL4<CHa?8|+Pca3y>3I{{bLa}PGH3f@0q_uJg$l8lb<Qm3Q2vsBsAIIJeL30D6I
zIQd{kRjO^s;j(qB=I0t+m0QN1SlnzN%W1qh&_tWVjOWD>{U3+VGds@Rl;Epp?zM|C
z&nLSl@UYYNqk#@GZBfevl(b}TEUGfhTH+ia{N-62<I<C%zrMDt2u#hYRbAQQ`?%CS
zVEYNRm#$x%I`<o-c4wW>uUqlywyK*R!|Q_YTT)_UmQ`Q=vASgczFCX2bnZ`2)|t4f
zY(~<K9Ci)g%@*F;*}-;uFLYHrb*PTNn#|PvHDsIdt!FRYB7R879QL}fxZR*xSXBQG
z^PiauPHl(^d+R=RmEDT#%|cbP@_sI6k<g7<pQh`XckSZAz+3wL#=IW38?Lmi3e-K6
z)~q%=O>6aX*PGkgFRcIiB5cZMnN<6dTH~EIiEI8<H5i?WHLy&*_)YhYuR*Ip_FCqZ
zda-+#AIg}0z|u!j{@ATQ&syB~te!Bl)AOUx{-7&H_e%2l_*d^+<~Mac!-@CrI}dZ;
zd75_H{O~=amFagvE_}JHqkp&l@3E~d?~Jx5oc?>&Jj}CpQm&zGc**0ZL9g98s_a|-
zwn>^Zhc_-<I(@=<iI3|_Z7-Z%m?yHx!YuI0R-g02sjC+A_62#fR8)rOd_5msx8+QU
zNFIy#w%O;4UpX~-<}5qMvw5mff82p&r<4nGbKjqurpmlm@S1a=o{z)~x0&AzCj33i
zp%%cy>@!(g;F(s7Wq+d3l&`xAgFKf6%{;bh<(zZuO6N+}UN-98Z*ca<*Va`U$&ycZ
zw*C#{OOy@c6y0*ULWX<sJB5(@TRwaKKCo&|gh<+Q-AHLC_L2bS*=#qW{&f`b7w32I
zPhP~M7P>Yiq2$)HsvO<=8Q0g;UGth1zIow=%f5453fD>Z8tm;dVt5+g%6vOm@iV9X
zw8q6xJ^kd)PS9oAsPdNG@A7S>9a|orYjvJ8_gpYjlJsuN!Yz}p9Ol`lAvkl^y5E9s
zwx;5f^1sjWcjr2FbN#vH(k&6)S6?QwxxWuMbf|0VrSEU+w*5%wSa&*Q-EltAv~xun
zDcfpHlGjY#clqxYRVA*PCkaxizc{XxUS*l2c3$m_->g&Xj(g3Xs%dX~#(Qyb-<o;L
z-rxSa<*4i5ovZg0{SoR`J$>>0f2aKJ%sFoJSA;%O`0=r6gZ|8p%&ws6e)ew+`#pCh
zUZ3hTHAV5v7aN&l?wT#qhtfnH{g2My+wiI9ViAkjChm~R!blrto;_dIZ_l&UTXSd`
zqk*rl>5GgT0>+*`{@gs1llpF(KVO)sJ^OOumw=W0Zx2l6D*LrP><mNtBeS07uUS)1
zR+~1i=lLEvW2Rd4T`%|UdWqfpjMfz>Kbn#n`riJ3cqQk(Z|_C>at^FpUc8_`cdMb0
zrhW7BjZ1|#F0Z!Owwg1^Q{KY&tWl@E4^P+Ko)_}bVp|NpF3+A&vRM4vRk6R_dU<(g
zzq;<)X}b1z#nU5F-yWs@`}{)c8}o)oyTn{Aou)pT`#OkoQuIsfJ<Y#vuw@CW`K$6=
zN!hnTAhqtR$>dm`&piq&M5=BY?0RbPH-NwLY5#{$|4&|v>zk`#Q5)32E_QC=-KSwo
zwiiCQae2xN_2L?**UB3&sef^1nlHWhcD(n)b6iJS8B-!6_s&_rcv9GeNjlFjT|OAU
z=XvCVw-23rs^&*@Ok9zja@yFoWc$*iiI)PG$sS(sV?Hyv@Pt!c*FtCUndQaT-afc-
z@~%mOz@JYl>T&ZHzI}4KWLdzptp$z3fvHpenr@bOd&0F+lu2e|w~pW3^pvE&rA|K?
zeyCUb8Q+-5BWtC$hxc%i|E<s0f1KW!x$4&CoOiigPbM$TP3E-{U*_h?Ed4cmk!&i*
zAFKC0drnk-`&<>@tvG*AdE4sOyCeK==WMw4Y{#Fpw({UgspwO`9#6g2aCvVy!v&$O
zVVlk}_2lZxX}jgd&MNWJR-P@gUUjY?yX(f9cJE}#ymR^!)jexp^L_hPa%skeQ@6Qe
zs!}_Cp64&xvHIZF{8JI1I*(<({cZL)*D#UeOxwwH^*bDmty^tQ|G2?o{MlP1X{(7z
z`K7y?=ej+A%)WE=@t>PJT?6?R%!^g;yEwJXCtS%h_EBKO>SJkVS0Byo(wESz2~Kah
z+x>bK%gT~jTQqsOE9QHz|C9dg_P;5IW9O^tS*<mwpL+45=QFWz#Yq3p*J8iC$y1a(
zIr*fSTjL8U?%?E}l(YyfTi5rm+cW%6{9)Y`EO~7GzSEDqCPv(yoKw53JvMh`(f#!Q
zUC!$H6Ry9?epfrU@f+{cI&D3}xss26Z-4iRf2qXQ-nDPu)b)L9`;^Y9qvLU9f}cv_
zTB$kt&wi}G80pY-{E~Eos*p#)$3)|dn$oA=8&9(AsneUOe`n$3%uRE65+CFgF{RpF
zzQG|gX+qBX#~=Et5_<2vNxdf}*>;8Vo7u4zhLp$GlW!fgWw>+tapRodH5c2Sh<%$|
z(Im9t*Ef#C@3~ev{bQUs<5*vc;;DmIUd~v@dRi`WJ7<~4uJF4y*VUhS<VZh=sOAlI
zu*sCmn-t3#toGmhf$)}+&-2-CFZ{>ptnA}7;rg;ID=aE=f0<f_-`cu%sk?>pv0n2>
zQTyI=I4tU&H+}WXHMgEHE`K?3ANv%gvp;jz7Rg@|Vs&`BSNEU8+bg9nv-(!2pD+A;
zajs4IlBr*!re!B5^Yp7(UcB#isYp6yqmAjgvq$py-mfU%SE8iVVY(rCLI1Z|MRR(6
z7j66VS9$+)?fGk0pOboObjx;M{WqJ-o%RX$6RcMTO<VcV@LZ3|k7Ewjo)13u)$O|&
zr88Yu_jBGen{e-3o5<JK<=!2Awcn_PF)(D-O|z35Y^FX;dlboT;kxgSuiLq}#T&M^
zAKX_JF(;|!jZXSx^~#;bsv0eoQF&1k{$d{(FQ>OloL+Wg+uzJ<>!!O@{oGzq-ShAa
z)7iW173)^cx_XmSuV>ydzqwDcdk>`l6Lt6dqv)EW<8^1Y)KmR@)y&d8dfh_h#>*vZ
zzZdTMF2B%n=czwi3y+=K<NE2y=PfEF7cQHBW_|j~sgEUK^ZAwM@;<Iu&DYjq$GviG
z7N2>z#0%DyD;;#!`!=jTH><fc<mKGp(78%;*D>o{dYOLGZ+_CdcUmUP7-l~@#9x{H
zMr(7o_7ovro2`3i?~V1{@p;AXa`l}C-?rb0{4s(38e7)vZ5Qs|KKv|XXWN~t;Xgj#
z<lFbNh`pa_+SI4k?d=i2!k0^C_)qYfF7Kog#Ces$(nx<_@wERIMz3p`G_8Nw%q-%(
z#lO$*{rk*R9|?wl6GoP1=dRw44D<Z-a@pFF@9&nWzD(1dG`p_*;_1yg>!x&EHU0Se
zu5HcHNVYATAM^0(UfQL7@_zj6)Rhw!)McC3R^MI`x=JrlM|DMZ=At+sgPevpu6(>}
zFTJ((Z<yb+=Y-|Ak8bzV+Ru8r>BlAK8Txm&Ojv$-fpxyt{ogrn{w*_}QM)+ggrA{V
zUF*%9eQyl&-!I#~x|2mLAfc+F;dJNREzj}`jAyss5-a=iZt-fvg%8&q?6^5$zu^&Y
zd!Gwp(FuC@4}8;Cn=yBm^8F2y8~^ofnw~FyB2NDCqpg-=pH+pn_U7D-jl0@$liO!c
z&75p+y$N$4{*+wrSo7IKy+3k;P35G;!C&8G#U*_@X7h8E)vR6fp0}=ZTgCYMAJ5@<
z`H%bjC9~f?{`$`>W_$nB%(nkF&M$8!^VAu(<{mzDHQeIs{^d9S_u84|7tBgIeCX=r
zJ!Pq_%jPM6saF)`dgI2fbE<s8_r$XQ&6Ur>Uf;ZU{pd3jhgr|d?xm%@G2`BH@zJ8%
zhsS+<)GEpfq)WLn%O4!^xVqF+{p+jdc{Ly6^fG?RHQHCRbakK6SIv<A!8JddrDD#z
zb>%x}R`#o&dXTA}<*BZtaQ^K@p2<sdd3Z`LO4Mv>xGBg#dtvL*l@9W9JcsoE%;-GH
z`$p=|q8T%%eHMF`9=YbG*Z+BDQX3Wbw%;w@E-`QR@(Yo#dsIEIvo~j`PP`Y^$7&^E
zan1FzSKH0k-cgm^{F}I^Nd2Giu1|gC!DC+UlU{$(ycd1KIa%nD>6K;K8#eq%_*MGv
z*EP0%H6IvmU&@PJeJ3_%X<oMdT-~RpdrQ6>UDo$C+RvlQo3-Bi-c`w@fJb?9JGZ5t
zO4qD?vg~G*_tlWnuvN25!{eI|tbAQ|Wlc!Aitlx!by_h$yL9f)Ov+1TE-l?3?5BC>
z;acPHA0PUESzNo{u=fw&%!!-#Otd)mV4Fw;cZ}@Z2XV>z`rpk14|5qOAD$zh{bV-t
zTa~9v4wvnz%Jeui$9rM?$K}-)WkupT{)OM}$ejJZa6TWqw$RqLO-{G!wu{fGES}LB
zqixG<d*%4FnLA4w|5urv?3`}x$+-W7UqRIyTf5tP=Rcn{=}Ef!j)J_FC!L>+HnIjp
zJz4%U-J)Vw|BXW`&*P<2w=C>D*r!tVO{rNu|3R%=#f!>iji1=t<5M>{Z_YTj;lNdM
z^%J?To_f>^dn%p}XWthPr<Zl>>_p+%fL+I*oQU7BLVEroo#b?59TWTG4(HX9PTQya
zITYy@to|~8^~aWdRo~N1cxsw$U)Dc4cU1A*-oj2_=jzk)w%?wtKPNEtT~)yGZ;$u>
zIlq4Yk$8Rnf=5Th+~Ri~;J^3!LA*WZ(VK>G`}g=%zfb%nm9*w;{KMXhg6ppDcM9Lt
zx2{n*M|awc^Lvi5?6%mmd?ioSMwNa`-%Yt1>&{HRZE~Q~)^yF?lLjU4c>h&@7KqPg
zFf;l5XQS|)?cOQt=OnIq@>)vlLxi<${M?5XYKMKY?Q>f_kL}y;^?JW_%I0k{ySB|)
z{$YVb-P$GnS3Yq1s0K{gbmj7rf6KQSR_t<C+!hwm{7OZ750mS?-BTW(liKtB68E1{
zU*@&vzkE9Ww)Efj1n)>axmT$@78_G!&))ui;r7=SgD;a<uWtSpudH?aSK*=Ne)CJW
zB2tQe$-c|YQU06IINP|~)5O+&@1+yJ&-Cv<_4B66Zoc;#`nJ-01*8ACp4HJlI`dT9
z*@U|RDgT1ncA9qooF1nT9PIzvc(2X%ICq(Dm)nef+dV&M6zvaDnzo{B+WV3VQ)*sb
zUuG#8v1P;Z|KCpuYA^d^_Hvr~%AJOXZ{J-0Gbq_q{?5#_Jkzt&mMyt->(5(r38~Yc
zZq7TLlikrBl~uWEYv22`KE=xy_f5MZb@Qd<w5-`TW7DVgX8NVI#=KT7W%zb`)wikj
z>Fl3Qy4Sqgw1Ml2Bg41M*=Z{RPj6nv>uxn8Y$Z!h*t+>k$}i1K`Jf^F|H1tWci-qF
z==|%jE;Fv3>w6{2VN>(EYpZ$ArfKGQPfX~&%CsbU*2?w14O5qVe(<{F*Q9{sZZjrJ
zJoPy?dCBWZ0^Soh%zZAdX+Qg;hhDV2Tlr2~e*gFNeczT@nDJiuzGmY7N$T+}w=8t-
z&P(39vHQ8zoOG$ac600L%Qr7xv*O6Bo40O;_~qX?_TJpLKyi1&-HS}~E87kV&z<5`
zoZ=U&c<uA@H$`{eMg%b}&nsNINHik0x#V-O$r2$4-nq<uHg{`2s=O?bWC=E$?K=0|
zqupoj*LOXi_nXPLP+IEShTnJP4Q-02Cq=LRu48?1Pw%%9nU2esc23<jd-I<CJih%u
zizWXSR4$z@q&Z2YV!|4=nXA;~)+<fb*!ak&^YQH868GM0xx%)3@8sobZ98@cw3N(w
zb<5<cn2tKb>S=AewtT8;e;OjOI&;}#UDq>h5ykBOf6w`fiGRNF)pLW;l`E<%7{gXK
zK3FBbQvb^Z+u}JsX<aoBxwO~*miQ5)WbkhGH@=Vi-|7kZOKhtRn-#fBkztM5DL)l|
z#kmy^r<_pqO`P}Nu5$XWzC5Wyw)%H$)ALj_?tf>po}GPS|Lli%UKspe`;29;ZlOos
z!tXAVKO4RkTK)O@jv1A6&4brpTAyp!TlMVmuV0Sy<sTSY{rYu+x4+=a{rT()H^1oo
zWw(D`!*ciR?}nO}fl{wO#aMq8x*Yx8c*FPaM>acgda3ar4JnV9^XF=>k3<6VPEEbL
zUK>j9bK6{=qw@cqMY_BH=diOUH`#2p>gJvtGjna)=>x$>oOx%<eUY3k8zAVN>HOd>
zW0G(D(+BH{dH7`?<$H-8vGe`?&vD<BFv}hL+4@bdO*$>}+<$r5wDjM8+pm{@y}a4t
z%+BfSrk7V;-*(A(L%Z7JtcF+DThBiA4fDCLw(Q*08i7x#3(qU3%4y2Z@8YU^_y6F`
z_51oBJs13TcJ<XQr>}2GJW=Lh)uwgx8&mzJ&zE)LtPV#!JpHA9ZL9mjJ;`7H)pD)g
z%=7nlW@ysccWR4!x8$!({c(1>#Gg9Zmmyudmg$z1<fzFyUtQULF@JjpTSwdJ1$&K-
zL>@KuS}Jjpci*;%mt|GIYYf+kUQ?L3;MVDh3Ntroig-0e^+cR`+h?&cq9<r&gkP7s
z=hEzkYLyN_Z_^3iruq5I+uT!bnZKm=^l}Ng+RlTkGu`L?pVXH-|L}%|*CgKje{R=W
z(G+oK`^BqQ=Qq?evOj2iuD&X%Zec`^gsPV+llr}ilH9MiN;b{6`PqNS=DJ?YlUH+9
zugUGmG@K=PW1;DNv#*7vK{hM=FaDb<_v!1^EH&>xjcTt%-rDY-VQ1&2cFpU)_H56V
z7cn-1{I@=BsQ!Ly$z!ADEk@g<@^7up5*43mQ$0;y^?SjR)dx?1zW0RxM1F1KyR)Sc
z5h}OlJ-&H!eeuI*vh%Wk$`}eQxg>34_412d+1dKJ`{&GEer20vY^{%U^O@dBy|wdC
zZhk(~_uYd7_tJuv&Nr;hY?7~xkA$rS*!(<L=5_wza>4A3+twb^0Wm-HmizS<e&t@j
zarwoRqQkGQI$pbW$@j7QdzHySQ$C;f_nUP87gM#_booftTU9qqt2?;OpKEN}()E14
zna=$ue`aPM*(See_shvqf1k}=_Ozn3eEBT*cq0~0rg!iE-p)6)nYesu`h>n;67px_
zRf`j6c=yXCh9}=S{k@`EzWsLNAsg{{$!F`AMOogP%GUL#q-Ms(R<?ar8~Tr>%zN{d
z^H{t4%F3nFpS9d<HM|+RH~q^7IbJTk`M-ANPE^mayt>8zn*Vm@>p|a^eF|)loKg8|
zH;a8>u($KB#y0)jho3HpT;9pI>yljRikrtCe2AO1<cLjd@8vDeCDv~{UtC_;x%8;(
zvvu>IU#Zbw|84u!y@8?Wy~mDJ&y1P8dd)eLnkD+nSLIl`iI*Gr8a=zr!!*y%;_22r
z-^0r^6T`x;DL?(mucNDDVE$8l&aC<a=D%;>U^wNbBfrKaTgTq-S#X2z^ME6n^5KRT
zc&AO3t~mA5^<9eFjz15>*y8W{CJQN?{^9Mc^HRv*rt{<z3?3IQT$8(Js%W-l$1LUe
zE<x?5k^A_sWPE-3wLMZedP((HOTk?+Jk5dr{CC8~XV`q!)!W>Bn0<TT^NTx<-+iOC
zvM<W<^JJT_*-NIxE^auxxHZ&HBXpwIuFYpG`md>I=uJJfnRmTmV6R!@%#Qi<AKiN7
zw#&bM<(@ZZ(=%UaPq3|;`Z8vAzPZcIio<EMves>$qW!?Pb;>SZhV<-0H3e0r{&gZ%
z>3Wu*d^(K`gSMJZ*~EHngUp95iIr`eogeGuzf3Rq?v`%8?$pwq^`)m3o_pHW2a2(M
zIukQrao<;t>f5KIA4*Am6FyxxcmIqzk5AXm{<$Ph?c$MVzJ_&McJ%m4b-ge8dQ8e+
z{)W4|w`7iVmH7l|nWUmJaox9`i&Zb*ouiO{&?fQL($g-tk|+DzF$qtaT6X1E>CDfw
z%udW?xEc0}uj#vT(H`x@WcIo9Ba>dSe-^p>g_l!^KkVfF@3%vDOjq6gBrp8r<kSCp
zf?~O6-?o1F>fO_Xa_yAo5hX=ORwdnNP36*ifAsg7wT_`{xMEKP8a&?orb=|vl-Jn{
zrj~deUEOiiYt3E#U%cmijjcZY{p9^NB1C=F!hnRc+R+N}4K7M;Qa+cZZ+}StaCVhY
z$Y!_1v%33_MLlHfe8uZG)8_jo`^6F0ow9$I?fPbO{@}ai8{ePX_`>Ae7hAXQ5*9ie
z%vC(5a7{VVQu$V1-eJuw|BR=l6HG3KMM<pNF1NQRB2_bd!Md$?8U0TEjr;J^q>s^7
z@6=w?r{$+l6zxA@WLU*)#eU=dwCAT@sO%KT4$u(^{jGh!ev>O>Wo}B4l=tTAG7=At
zs^-o4EjIlpGaG-|$D2Fm=LxEdH7|X`wEshfNJK=8+Qe0goOkBePF{Rm-*WvbhABS^
zO3zlhi7%Y2n08wtzQ%#G+|%>lR1N(LA~Pf{Pn}%-zIzitXnRn^)G#(?*~#TXX^Spi
zQoP|NEEC}{Rr&n)xv6>F8XI=}D0ZLcckgL*4^Qt$$87uN>Ukw$OHXly=`Gco&CT@c
z(&{(W@;W{-FAL37<t*m)E6tUd;>EwAfqz+BWo1QIYQNt^r<E;lXXw6m{F&KyUVevu
ztc`|ibMlNSOIf$f;rV50(lVt~S@+{>YsJQ#9oyngZH*}x@Of&%ecM(0^sJ_RQ?w5&
zFLXQYb@|%GBd_|^W)^SUn8<y0qorQI@8sC1w8VE>%Ks}nK7PN$;~isbedOkuT(N1N
zpG@C;XVy;dmCMc*zssH-y)t^|$sbp(_soxea9lWi#?sESzJ>l83|CD(le9nYDSlpC
zv{UALk^G0mK!X`87S56>-fW+$xc$i9J4QbjiB!*M+|a0=ncH-;^Z&6ge||sNWdH2a
z4GZJbg;{gHuGw|gKXCG2yO}F3#frG^%$)P!*{Sr5+;xH_7uNY^sa}7nJMnhYuCRG4
zcAma^M&$k7-N)~4Kfco@{;aTn{jxdd&wbpU-fl5{=h;U^^ZtB_&AYqHTQkzV_wt(f
zC)0OMKV6uwc${5TL-+ZPa{c2$dhulecAriBL(Uhb=FIvT)Azl;rqg@7x5@Tgr95`V
z%c*DQ{+0G!nYY<zmfq(e=UA(Qm%f;$iA_JLuWw*n*t?V6@zKdyQeNDf@5G&$7=3Eu
zY4Jm^ryOMK`dKvd4%6xE15xvqR$CT*FM8755UXPSQO*2KuFe0aYG&o-mv<Q*e8FGD
zxb3+<-zTU4-E&GVeOZ{5z3b`joPP<tpS!-U{dVwRZU6T3yoU3to8H}B8?yG!<G6Qn
zJMS2=9#}T*?AzHIXL}0kKJjtyWUVVIZRz}J61{!8`5cv5cK*pP#U6{NpLkZ3vi$gr
z8EY3+o>qH1H&^;oWLnz04FL}x9$Kcm<=UCT%#umgH(AA=rAx@~Jd_lxoy*I>DJ8u+
za?iAfm)^1#?bI=Td_Q&DhR(FdtMlL0b{IX~eCEs<PP@fEd*w>XW3EkJv~_Rb#OHHY
zEBl<e{&9a!zUK4O|7V!D-Al3i%TsNY^~0dNKSs|z&(c3|<?&<Z?mwM7bACn5sh=ex
z7ETkd#`MML9Y6F*i(g|x{HcvoPFrr%KN_6-Rp-9M<40d?y166Y`NSoF_De<2?qpth
z%xcE|L(!AVBThV>F~6?+bg|*QnyTQP>s*ARXM5i{6_fDl98))U`HZ^aDgQTKJ27qf
zk=@UCt#5i3(QUIXUNc_(%G_K{=IuS-UtikR;{D{7TId$HS$$Vb%}@SM=lZ2{$wZj9
z`mF1lZLU}C7sj95_I8W!oX5X>=ADiAaaz>6{-39Ley^{=mm)dq$m5fv`7hj`Skz^@
zG5da*o3Xe><>CX(Nms6H|8(`<+a-mDJG;fJr&oTyRN3c0#p8<Y(Y}9jx3->LzVYnt
z7n#=H&+Zhio2s*5+S}u8H!eTuFu!<e-8)G)HNOIz#mn10?}XlG$=%C-vOhK@>Bsq#
z!M?GV&G^2QKH8>oZ^!J$c|yt4&llIMaar_^bKAT3i;b7s9SJuN`Z4Wpe0sUH$Md6Y
z70P%2+U_wmJ2=z+bn^8pmw)Bh+wOm^mu~v;&Azuieen;TgfvbPRsK0MY}fqz=N|j@
z&5xCP^rTm`KH=H9f-hE2A0OX$)&F+e*)Mx;oV^k6Tkz|tjZKvQ=f1is`}rY9lcnye
z{db6K|H;Gn@p$ITcgfFBxE}M{=b{<r{`s8Wta^3tIPL2fuAbfYhV`8M{=m4noOe&Z
z90(J7$36X>2k!})8K(>W+~N7BVtx4IVg}D!?Ear)a+=KZr`)jGF!|UH-j8QX%FT;Q
zN~WBArkvyd`#{)SuMLXd4n${ONbgBpU-{#D(P?I{IMey{Z<mU1I&<c!rs3h%$=h9i
z_Ll7bWi(f_`&M5an?(AbSCxLLauZh6cfDojyYzJ5jaj$6;{Uhz^rlN#&1z3kUVHcN
zmmI!%?%QpQ&z*3YwC}R+sYW4D=S8j0*{Wuqh<SD>U|G!!=g($*Uw*I$FR}W4V?Sh1
zlQw8ilPr7HDeEV5!&vLjCf|6zIr2lM)cqj)FAuD?{4+Kvcslc;b@=&Wtzf0V`)9r}
zv){b<;L65=?)}l4ff16=w=Q=2oVC3;C4+x9i@vt;<2my^HpNd~esZdN=WONTKQhKi
z&EJolT<jz8_%r*xg#T$3dp6H^PWkcf>E<~xnu4oymu!8mP(7z^t5n&=`_V~nE>-%a
zaz&hUn|IGt;g{{n=hghdCsKa=`x*RakI3R}`)2CPPpNJC<Y~>X!ECE^>Fz^Ksmxc5
ze_uPU3(#qL8p{-R;=*;=s@keWGV4-*|M803ki)-b@8>hl2TTOMzx!XP{y^dN+%><;
z)ugjO{r@vFWlHF^$A_}a0{Of9rEIDu?CY*xKCSnW({mTLm#&OO&Z!ela~#yVGsA6x
z=axWO=7W5^*>{}V4cK@S#AlY<zI<n^_~q;av8{}b&w8u;URpc<Gh<0j{`ZOB;%88s
z&V#+pcOFgOzTwA75BvMGA`c%^ySJk~f6p81{ELZuckP`Q@Z{Wy>z0#mpIp6uO8n(t
zq3wUZ2<Z2ovwpt9>~eY4fr4jm^v|a!R?YZ#ac7bK(OEaks~YqzzP`A2+@$1;l-RlF
z=J79|7&7OY&sY<3LxAtG{;5^3N~_9_O;~Xy_3*2+ifnW3HYS~YQ~vu1>;5~Tah7%m
z&wC}@=Dfuow|x7}g{hnqj_5N>gzrpgW=iuuc3Ugg*5zijNgb0-3rEoMhtD={IC91~
zNoU=0wcBi>7dPIn$zA0-jVC*E#;I0T`+h5iGjnF2`FprwS#@GEo9}jE=J&f!`An0F
zy{K-W=`dr)A{QB{YsPoJD(;t?GA%Rl65nIjtJ<|;8M74I_RbRAHuLxr-6B&(3$}(3
z>ss|$dm}e|;@c!VYghk=-no2#BYN59yngwjUwO@@DcTcra(--OP~Y)<Mb#vwOq(^f
zv(A6r5z~1s&To!}MW*3WxyfPe7kP_WRp*=b^4g>=NPQIj+;MwBmE~oPE4eM4H7Xr1
zzdSMa()fN-+i(7jvZj=+^D~&kb~XR|zjZ1*-waik<tNT|EIa?<WSdvOl+-WD##7T*
zOk<lcOQ1L1KU&Ma>rTnch1XWsMBJM^{q4S0i>|EYxY%2~H+#Qx=~qMEZw98*4lZF!
zjB$|`{$4*lT-(IIWVY|tYA$Uf%{aj*@76Z$(pd#cca#I2C8E}wuQ~m!ZKmSpl^X3E
z_L)yL_Kfqt>=?+jP;1YIx37PF=KGm*m_1;6*VCsLPq#PbJdLgSml>J$!9B=krrO*q
zzRNuQ{<kdL;ZVjZwfj}Q>DQS~O09t*Mj;P^y$rA9daG302-?h1@p_y(=j5fAX3dY7
z%EJ?ar&sy3ES=iDX<C(>{yDavUk;_nP4&P3(xv6>rPFL_ZJi>eSEXVDm+O9s{+X~_
z&0)Q6*oM7vvzO|MUOy$Yfx(kAW7}zat%O&fCYUfi58#fQP?}v+ee>>?o8|9AB$fuc
zUA}U5nGt_7htJcdy}H{?XYb%TyttJ0y0ateX@=;uYuDN>)l{#YZhvZcHCofoWQNp=
z<${yc&scU{62EIRLuRhmmD-2DzHc+^_rAS8kkv*~D>rd^VWLUX!-dvQwjUHYbgX2`
zwO7vH9+s>ry6I)2!k_58HE34nv^B;C%$u7&aoVJdXsx_$Da+C8kjxOQ{CH~9gYcQP
zU0*i*N}WBmNbSUhoXjP;*MD%^D2x7-|M>CN;oO4@kHqY~`fG2~Up6VDh+A8qJ}o;v
zb6ff8>X)3eq7t$*cRlY|dyjp}{cn4vk}o`tRa(|1dT560qe}*i%T}&4kebK#@-M?h
z(bqg~Go@oM9sKoXLdn+nySHK=p0tmwwmi4|#pMqNedP?-GSBnYuei3fT6UTki^ty=
zR^Gp_9?oz4yqImJqnf6B=Gx2?Cu$N+d<tI|)_(~U2%Ep=y7%VA?ok=7lO$#>oL(8j
zP{fjKdHvKIU!&gn_8)pKnO!#Lvh7Lt^@xk@_;shsXW5yc+aejwOP_IXIUDwL;fIt2
z%L(^aewbMBT28H3<Ert>Mf3fo>@)rDYR^2~qO8^tcI%A_%b5+bOl!6U>D=hiID36|
zWM<2ZBVw)ofwI|eUU>Z#3Y$4w{Zz?`1@an+Vw0ENU0M03?Is)J%!8iKZ}8ojJuTcf
z^-F5_+<CvGy6pIvqL%#qXJ+HG!lK5h;pmj>FIckcUvJD}l;hbmtKqK8=}W>}x~3@V
zUAkKqtrW*7{{5Cvnj5=}c!=q-JG;IJ<_kVip0J`?|Mf?mlz$q=ORj(4@b!i4+hZ@k
z_-^r;7a`IwW+U_@V!bJkfUoI`_5W6_&zP~tEq14BY4HA+%np(!hm-^F1)G$H-SC(^
zm3@m>a@6~bSVN!hpTeK3EBHls8}r8R<<$G~;!I>?j8;m7*Bn08O><ggrmuS?cam*t
z{nhjdudZ9hyuFZKSGS9+?3Z;!puSOiKFg)^yrw5l`mQy3R4;8;w4rtZ2LrQ&`3@G3
z8(IY#=Z|qnGcJ5nu|M%}%=3%B+)sq}MC3)UNr;}Buz`8gob3A|QGT)SvXzfD`<MJ)
zy8W=wflRJljMpA7KGk;7`0ngP)d>F?yjKqza=9G-abe@Z&wf|-yN8@BneKdV_KH`f
zul*OlaoG3u#P!E+?^B-JbM^>n$gg6$yw~$bhl%a`DrwPFh9xgl4f(&8I&cYv#BbtU
z_H)4t=GFTX-B?Zbgxn0dZ2tGomxL~<c*#k3tL2SyKYgCu!?*X)QR{>H7BAi>u6!+V
zalh5{e_M<9|8YJy&*t>f+uxb=_y0GuP&~6^=BBoWS<;8j`S4kb1ua)EPu=y@$E11P
zWVhfa6BlH6eqopq)%NUk%{2auZEnXi=ENqwQ#tVM^h}>gm&{JD4_~<cjNTRt*#w_M
z6K!5Hh?}Zho2>S-#WZ01$wafL=f_z-SlypmF(tLcGV0!$;H4>MU3RLnNvgbiZPj`L
z8v=ia=CwMpv<RniYqL(~URA!LI`&NA@Alw3=Qx9<EQJC^ud~_hIDF-a^{tZ{Y4=pm
z%+%VvHKerDNJGKW+xYCi3mH4Vu1xy)@|E6HIiFu^s-Ip=?Y=Wx>e>1B^%GaWUa<Gz
z8vDSn|AH1S>s;$=Q2ozh`LXAfH=N7=-DI7txJJQez5S6Hyhkz>G@4(|wZH6h+2r+=
z_~e4qvl_xI*9n=fza-}UIJjw%<I5>oEFah$0#B<Sypr;N>UE7A`}IQVt1sj{JNzY4
zqJQCm&S_#|>B37EH%CqRd*$-s2EX;nr!;0%gdXr%to-`QFPCLM<yV}Ddvf8V^pjS{
zQr_G}Z~ZIwu0I+v-&0TT2J4jgvN8$5nb$8}(mkMOQ2Wf)?fIWIo&KhmZe4Z$E-vly
zqKWG>qtC%9<^QC_k1gxmy8Pyy+aeF1pOe-vn)i3lz3YpvX`9p}Y8}3@RWxey+ArIW
z?me>NdET<`yz*-MpYPDAX+QY*`p=!w>1*14U3*)z_P4jqL>}gVP?mS^=T0n&-hcPH
zkidFR^Di4krXGJ>{m@EzrmNXExrO_E_t-ppnQowRi*MS~`LgLBo|OKVUbRuB^pW!O
zg7%Bz=MCN}CFwZk)@sMv-Yqe)c<*)Oa?ZWG=O@oTE-59IxaK8GZCh|<-OUN}_n*4)
zqx6~B=Lu^TS7w{r?v9Q)A0Bslp+lM0;UA&@lix<qf0-B_eagOW{fuNa<3l%kUAeyA
zJ$RV4%QDR<IcC??)TI)Ox9yvn{>{#P_wT>QcZ*w=XlZ<YcJI1mhW_a#J8EWkZsg26
zyS`xms<vOx{Pu0zKDqa5>VuiPKPaUy3l%@It?|}dnc7_b-k+Lr)+TD_9<bi-+xW9J
z-#VG~UiD{z^>@!yr|NRAxP5Tr<lUJY4(zL*xPJbwgYAc&-7wo?1KJ)TzN6%eMg8t4
z)3-OK{8l*pZU)<$tJXE;PnfPh`+Oy@e&#~k-nPh`i9fsDEq8z7InH*g@{G`~m@^;C
z(t1{J-=s4&>5AF5Pd?lA{cp2*S>~m>?Wjnexb;`wzRER!7M7PUi;UWNcIigWyuI6<
z6yuzoi`DPi&NWdxRr5dTna=-@y^&sA@xEW?$hrJ<DUhhp{JzcDqSbv-$|jB(iuuoy
zCD(Dvf2lHPoO|-#?03FTeGlZfE^%$#UM=tD{~_q<#eZjvWh^gxaz@OPdiW+rxwdxh
zm7@nP-TS~-5!bXMcbA#z0hI{`@0A|hJ>s$Ld(n^nR|mB=+SIph{Ak>xD(jri<Y@b1
zF7LB*c`u)x@O~Tco^R8FaE0eh)7I{n=J*=RE|F8^5bJ&C{PM;H_SQQ8*XLJVEN}UB
zmcw52c(t6w?IY_B*4o7KF1@M~{5W}zoTrh=jd$`@xdOfZ$N!sJrY<X7wEXpBujOys
zey)72WBM+nQP|<~`QqZ<H}7BT)W7n3mA+<TZ1dhNVa(axKE3^gc@_sZhVRm-f1>P`
zecrIllyPb5v-PPb=14An<{~eoEZn>M#?`X!;_K-r^50c(1Vp=^@HejdCe^z3x5cIV
z4m#$}&kk9hQ|td&l)kH|asg~<$los}q0{ZJ*;(<doctz}<<s_^KVGrs9o@cR@!lg-
zS(h(((edVp!Qx`xny&{8XJvc;`BJUiGq19HR{pn3LhP^RKeVr1eA)8F!XuY@1NH8B
zUAi?x<MypfHZvD~zO(Z7NqPA^)w4>MryKF`AD%efdgbQR+f1+BIXm&)vrmGb$~yP|
zpMCv=$fbLg*N?oqX?VeXw{YU^4T?`|Sk6eQoxB#u_bzM6DcQP>D)Wopmeod@cbP?m
zbynNUJU!Gu$!4#iVor6B`mX*9pF_^fPt9BLRp#&3{riu6xcORSR{5s2AGwNKW~@G{
z-E-b_!}pBc-zR=EI`3LHOET@tU6bl>@(V3zrvHm-+i09W(dMGJH`5#b{Nh57FDHN7
z<t1`fE-U|ZCqcVEy3fY{@WjP)D`ri+b*%B9-=%j~j&}+EaM>U;W7$nn7WVmk3#Psk
zO;R*D{OE8+!R13gdYP_l_@W_j{j}@d?6!5McK55V^qtPnw$AIQ!n8%}6n&#k*0*2$
zSNvpq>Ew#?rkhKJI**y{`dyXj-I#kn?MdtQ4p}ST_rgz`TDP}bmMrZ%xX{*w>4s~O
zvE(teyos@T6Ftl~KD{aTtwt~Po0`wTrd6**ULHUFYKq_YPiNjJ8X3P2yc6>;EK$+=
z=#3wuX`3rOu3g?!%fC0)_g?x%uA822|6fTJcUO9;tjN9PRQ^8B%-${1^Ign?qxrto
z@%1-v{PpcCvkRLx|MAJV(>ocy>i&D%b2vKLeEq(dZy)Z<+n<>q|9|J@DgKvB--zs%
zig}=8RR2-+oQ~b$&gs?#ZHBEgi+TD&H@@HhWus-Dv*PKm7Y)~))7>EE9eDrF$$9hq
z%&g=Wnlx_Ia+02%mG$b<Q}K(JGk5Jy`zfDXyvN^Km*FVuvinkxKfO`XX06z=ajO3J
zFCUJ!v1~Z7bb5br?#Zjo#y0sGt7A_XSyoNVF76gd+A25y)9T>BU(tM)@6x!hY&U23
zpV+DHx%9M{(z6%ow=Vjds(9?mRXsaz-tIH=W+j?ke_G>j>bA!0ZOn4d^7RIPFNHpv
zo>06vNYU5dTyVF+`MXK%v$ygmh&?}US@(@?>9xOmF72M#K6AF%^YoehxrqtqpMAQy
ze5Ky5?S92IW%Fv%t70AY&WT-c<%Vau`{Yj>zx`~rF;PoQ?c6%8R_6BRnU}7H*L?V*
zCdvKh$2l$O@-H8bs-HGp_OC+Rxc-;eX8YD@Y9ce&-?8z27S=SEoqxmHa|=!FkNWJJ
zxp#fZM@#p6@s)Px@5|49^!B^;&ASZJucU59Ty}82^>XDQo_b^cv$nZcs<;Fff4iJ{
zssGno?wl2#OKPN6{M1R@ZC7#o`R2o>aZ^h3oj3Izm+!A`czHHR_s55OTJtO4NmSd-
zPkHu5^jXeYKJJ|AneuV79&fH@&-DJ4nYwdbQF-CiFW2g}ZJ*-5#kYL@hi~4K_k3sE
zQX}@`r%?9U-xlAt7R|58KPV~uj>Z2(aj|Jc*sR#!pZ0uD5BAxA|Kz*#yB>K>C@Q^Q
zV$&b-^^>E^f-Sc+&dx5K7;~o1hkx4Ms=0rDz2tawynDKW*t6Q`tce#a=FWRJ^L5;A
zoz<JAOh216?ht-|-ezmfqzyv(QzQOFcK(|lzr3GS?S4h?#f_P>*l(ToUY01jOVRq^
z&Fx~Dck5gB`Eq_L7Vi0TG*WMAoThgByTBQH7=E%lh+YkyV!u0;x%GC>+_M`l+&O&U
zo?FuC;GX_@sb4k<f64c3+6!8&vg7)We&xUZleUCaJb#pVu0QwD)yA?(5jT9#7d<(`
z_vVr9y7~XP#U>h`vf9NrFCly7iJE7oYB!E1e4qR@U**^&K7pt!rF)Nb_6dD^b-Rae
z|LRV&W5>?h`+hxJzGL$JW8#y=%=SO{KdY91*7u7t>?ewgpYYgw)J**+ymrYC$^8C(
z=U!fvihG-%+-$x(v@xX1?!xj`);z!Tjjzip7^cp(IDNy(crWu_ld$y@=k7W2;^t`+
zp0^7pTJ2)<yAY>UnQMFJ?vt%seU#6CIbkrlGw+xGmY~y0mlvl?%K84fUl<!6k-U@P
zWQy<8HLrO$O8jzvvM1n-vAyM4p-d~D<Ij)EuU)t+<X^@1e_vm)e-Dq;o}%&ex&~{v
zTO0dQp^(%3Yn^pwHUwqf-SR4G){32mhfB6iUDtb6=e)1+^!1C^YDT{Ma!l`AzRv50
z-)AK<#UC;*6;cth6ThaOtdgWEClWe)&VJiNtHn3hl)X>fX8J=uMsL~zk?xP3{wLa0
zPRR$A@0+ptr8hGVm+GGnb2Z<EY`ye<%Z09>Y1{Yxvq>)NiP+RP&F|rhpl6Q{Z*Q-t
zlX|m?W$Wy1AEwUByLG8BRcXq8+d~(kBkgV%&*(dU%vL(^T=1iB(*Nh(GgsKRaN7AT
zWgEZm<hvvK>Wg^wP3{EoJyuK4FkDMh-!Umxwd|ijZJBOwbos^KThBf<Ojus==%v-V
zJF}koxy$OVG<~<v_OSgGv(46Tdk*);ezD|>I=ArcOrPC4=h+KG=Y`#w`27FtGNlQ-
zPkp?%I^n42HPek-cTc~oE2uY}sVZ)XNBKWv#*I4ZofVgb@>e`8KNzxL64NxM1G(BB
zUhFQxp=u1*PS5`I`peT=R-I4tDz$D;{mLcUmV9OV*2@vR5xiTrn;T8sd0Oc0xidn>
zm#nXIZ+{+9`AD+NY<Va1$!&8>{yfky{(SnvgrJ#MZAEWZOq@4=|Dmmx8Mk(K?qJo~
zce>`G=DgRL%Qg9~yiY8Dt=o2g=V|?ITZEQ7>`R!Om$yuDE8}b_EB3hO{HhX1CttZb
zb??nvTC-W7d_HE;88VAy!=w!xJT6XHS3K*T{CzS1YeCalv_DE1J~_z$^!|@y=P%EZ
zNGsFxcdr)e`ur#3+@j3;lWT;ycUzo)`}6+8&+hvil2095)VWUf?4P$kE#F;o>lWyG
zxkXxknaS}N-RF&8-8uFu>gBup&(7YG`p)yQO=J42oX4-uTArFLv48Dp&W2kLcotZk
ze^bMo>wYWKhmmjobsM|u(q11H6s;?5PwIQAZLD*3%cmvBiyCJdpMUH(&-2RVd(wYa
z@jvL{GoGVr_Wk48>(vSqFBF#kRkS~R^Kr6BncU*<irvTNzesy<vzTXpRY#|g!0N@d
z{}-6w_!Y~*puphi;u!LSp|qgY_x_&8O)q}mw>_F|+`Fe@k7$6pDns^vj+Muvie^5R
z`Ss9`PxjR!L&lH3Yqvx!u6e&cfAYPnKDyq2G>T__UuCv&Z`^uzh2v+XBPZqV&g`@N
zc+#xO-=xxe9eC-B<>}d5*I)Yo)2Qa(yLE@>+zDJ3pz~zL&XPv+^J*)sBmY%(XYYO|
zuCVpu!{RJ;X7=4b{@<wn|6|3v&*%Qv=AOMFCCS@)Y-3wgk%W-T+rU#A)9!fOTaXj5
zuXW3gcxSUkTRjAMi?S=PPcS{lq&uM@dU9;Hm}R_kyjb=T^GVT9q$~y3x+YJINYOny
zDf?vfG2X}P-Sw2OFK!836=<_~-@EVqJMGWe7Qgd2x9zv`$%m@X?iJ7bJm>kJD!cQ=
z=k|VIqs7R>{2_0#_U4nG=jOh8R^dNEIex_<Wi8KxFN@Bs@acJe&W$rKC;9iTsXx;6
z3SZsuwAxc$S>mmlQE)r`_RjZj`S$%g!D`g7T<6fX*yv&_kAOXVUo#%GEo(FvdC0f7
z`(OGoj=X)%MsH=^s?Q64U6b@z|0&1b?DvlkJghFBDPDKz%7x5b^DP`7e2|l34r1?)
zTef0?ZhvsWY121d-SZZ6&QP=e8SM6Ha@edX{$Eo|+1F_ac(L4cay-U%bG2ymsm~>!
zqe8zFT{yzt7Sek1-6lbsqjuWo#H0LAUlTfYq-N7@9S$pdd;f1&h5y{^6Xu&II&qEh
z{usuE{Ux@i&$KFUiMw#ogttUqwAXs)`h6m?*Dqemyfja!%VuYfmDSOst`lZGpMSAo
zs>zjUg==1)wy`PT)@Cv<_P#pTWZi1T7pC3Y_Nye<F}mMr7jX=#`z5OF|8MW&&b^9R
zhwb*+eX@GlR@JrW{&S<%JM(+>r{~-GT3MexurQ2GMmAvj@zn_i-x)U_p7TONaZ9dx
zuVeJn^heHfUcE}M(NcAAJyF<Db}->Y<-ZGj=l=Jf_^B_L;=EADsrYx=8_`Jqhtu|&
zv`?Dz-o|s!#@?{X`qIvWuYb$eOjxm_Y1gf)O^Wh;>S<go+!v0Wzwj}q>%%tNHM_4K
zJ|oTi<==I_b9D*&(N1ws%cd5c?o#@5mDgm-l)$hjK8Bgiyty`)7?v!ysa?>#Jie!(
zAX(sS{PAz?m*%{*JG}62rq>_4O~#r{(ziM*KAk@0!Y(;$-GY^|G4kI7!`^K!DKOYE
zw_3lxGkATRT5&k9IfMC+<|)&YUbHDpy}hjR?*)#@ow^|$zr7B&naS;x{!%jKGP~7_
zeG(5398;K;@MaP7L5169{hOcfG+eeqDdkCd^c$!4FHacme_!|9K5xyb%2}$tcgo*$
z#J`h&bn01d%L#$kFCX~qnRMR%$}z3_F74*pFE;mFUoN~eZ~1|9Og`-Ubk{E~y)JWi
z`EJWEODny+YE#mJru>hp&b#e!`M~Zu2?aY@{SHnO)AN@}{qsqtmshpy_)3ODdj#U`
zOl{RFC9kpAYwuSx?cpeLs*y`b`s}=DqtUJkH?4-~tO>S(mg`S#7Ih7ns$IG4Qc0je
zXj#JqxfRP4A1E!+`@{Lub|QPlr^Z=(79IVxwr&$!IG;votoz~S{p+T-n}r6r2-?*%
z?DuETSZ!~b9Av?7b9G0fX*B<*<Gj;%8kwH8{<wXn%pYU9-n{1<zwJITcaQR+#C<<E
zPTA|Wy*gS>KXhwimw%t(%zeWDf3VzKm3FPe>Spl4XUy!faz}sjKeI~^_6-$(Av-I@
zd+JVq@#X(r^gpg*x7f3NR)e?)Pr-)^KYnX3Ix(TRRcY;oAB8OZ^OVfv^E(}D5>7l`
zuA@-hCRdX>l|@_o=7o@h3lBOjdcFPW9%f6OColeAZ8G<`du=U)O6mulgo^B_uIcRV
zAFjMljdsqfU%RPDecp}f79S6(%zn52ptiN*jbC10bWC}tt<PMvlglL6X=hRTU$OPe
zo+-=i`(GyH%l%C5P2^RN+XvkgoYy=TaCcjMBTq)_)rI3rX4Vu=xw$Is6;qS*WWR}L
zsyKAMOFpfNjEg#R$eQ~}n3nOGz1H5><P&yYzi_?IereULY{})xDKB&4MJM)GNc5^V
zDojxOnm6sy?7tPfbKmHHef;;NP4TiGrH+|O+_@8HbQp$*rR!XL_UNxUyT-h^&u6hk
zJqtZopFZyd^X*KYYRBeNvZ^ZIWKs*>#2w<TTWz?uSh@7K@#1BUahqNRZ;|~YGHcqy
zQ|5eyDJ5Gk&a*sdv{GgByi}H&XTiUhveZfifBxLy&lsaLL)S=9_C0@>$s+}UM-$k(
zU(W2ZIr>OOZe2th%M_0<r##F<RQB__*s*T1d~tUjYvsCPRi{aTJ>feyNj0$dtNT`+
zt5Y|c>(_idId`3yxcK7pXN%6JEKKz{maLMtu~%UuLw3@WhRZsuSD1WfIN0^ztj>2&
z|3%Y&d`P{VVr-Ui_Pl<>ad*K5#l5RHYHoUZ^@@qf#=>mv{|hU1kEqR@q_v#${{gut
zWx*%o*H64#`uq0kZ+qw7jt=#{A)K0Gbm~URv{kz{>~)WLbNIN<$;if9Ek~VcQ{o=P
zXMG6XZP%3khe`R_Z}yj(%hGB>?xr%RJD5%VU$=Pn(`C{{S$ai!X+E82mrfPZXicfH
z+OKo<Mz9~l;Q$Uc&S#9vjagnxt(+yBS`hTtEZxfT?3(pG4c*N%J(o|v$M1Bv+eXe~
z`AqRA=VQFBzonmDQljLgqj`Gz*|l5}N2bMTH|1Q5`#x>{M}fzsdpXvNUwT<-{cf+x
zXKuN5=GP3<^~yG^Pwr6JmAEI(Gu`NcVQ=K-8rezWKaT};eRy{EipXuzYrVa;wx;JE
zSh!qs)wr5#Yx_S-{5Stx)vTBAc~;7w4-Sbr^VRCbuiJC1cg+_*tXbV}FjZ;k&kxdb
zXYaXj@L#g?o@~+CiFUKkz72lukkpY}f8k)O%e%PiiF#9&ijxgh+vLhEBD>ywuIN6Y
z_DF?gj^{DqC8tjnrI+b>xXtIYa$WFRM@NGB?uspXwo4XsJ1m;5Fny25`J*Bab)#2k
zZnWw+dCytq)hw0dNY%|M&kly?$TTW7rQC~~^X$jQ=abU@cTQ_DZD6re`*E`2b;L6P
zu8C^}4Kw<9CcV0H)=lI`N0Eg{dvM%l9m$%|D&_dt=j^_M>pLIpToL}@P{fk!;Tz4~
zByZY3eWJPWk;Tqm`205N#3avM5%=?>LF&fhIg&j_bA1GAKdQLP*LFS3ZkjVIt+F?P
z-|XgQk-aBltR>}QkFMWv%lzO@V|_tim5%<oPv2BbD~RRbw~~5au<x^m|Cc^t|7AO-
z?K$+_Jvqhu^xEUkjaRC4x-_}i9NZl_H^*q=ZvQ1SHoFV{yA)*f(eT(Kx2mjjSrbZ(
z9F+>E9x0imBbm1R@y_2%Jeez2ui&lj;QMB58Sff<<GDw7NUG#p%d;Ljj!JfJ{?8Ye
z@Eoaowbn7eRCw!B!?w2G;~q7lAybylkdaZE<}=aDr(j$CoXVSjFCW;yX3CrB$31&f
zubIxxX7d-Fc(rX#xJZ%Kv7KkEulF(@npl)}tiAK(3Kjmmse#|?n)grpD#$-s+)d<t
z|1t^ru171m7F)4s+m<!y+y79Ae<cyNuX+_v+n#%?I6}D>&v`4WJkO`->sH2jKkxB~
zPSo-`x=V%qrA5h<!|b~yyl*RTGOl{RO2P8V*~|K_GiP;uyv4ozh3v<Gy8`DVd1i{7
zbXhn5-ri}AYYgWJdtPc-78)e1r)qZLZ1?o_lYEXzS{C<pF0x*+@(iaG$5iJn^Nq#T
zI@N_-+RtD3ziax{{X$0DynO`bK7Tr|*k@|~lh0ono!PV7+LtbTJwZb5iEq8`Yvo7D
zK~_gsXLF{yzqI^o6uvG_)$ES%{T=NEZ?*C+Fyt*&+tXuyzTDX2qgeR;s@}$X+&=e%
z+?Uu~S8JU5^u_ewFY6MUR=%7w=ee5An#kQ+*W(UyY~Akj+5B$0WVh;!s^pG!#fDyo
z%L`YhE>)T7r!r&SJhiE9_49m<Oy@p$wL7yUcKM=x6T4<Q`puJi)Vq=;zwcYYqnM@(
zze+9dhQ+u#Tbw>^yIf*chj72Y!JjL^F|+ss#lJCIrKEYPE%Q_nQVEV+?Z0e!`i$)x
zLfJ3vxpVn^$WOOf(o9U7?jM+S%ld=Qx58IPPahFBJXTdD>AQZ(x>YRBo>s?Z**<SE
z`RJ+IlFci<<cPk1g#QPw=HQ*`3E#CV<5ucj<Vwhq65HjV?3edC?&(p_i@O%_<~YtR
z-5SAB^JLMHM=JeWPv{<;=;?DkxB2MCJ<KnDthjmY+_QC;zu0Y?KV^GQz>?Ox(N1jE
zvbtMlvX`e={uMuN`Q;4LylAH@+qQj{o@(`sZQJ98Y&jRU%s%t)+R7T<hV^Z^Z=)@1
zcl9U#PCpobP*(a@rs;hB<y~iQU%!0y_R+=Sms37ISl@Bs&aQb20w-@jU)!rJp8n?A
zoOcQTSq}&=eCvOE<>zOoR^7RAX4ef(Ke=5VVjo(fD{I1;?Syzr-!0ESwa)v^5ydt}
zCtaI;=WEIhwwIjVn3$%N+aep+H^1##S<qeEFLHPNx$H$J`o77kwD;d|O3@`am{ol3
z(^Fn%TelkAy?Xwl`>u~u+HY>KbGqrGlW!A}my>pPwo~lt=*m9}*=lCZZ<B4C6Cb^3
z&Ziqj$AUh*^L6?6OvS%6eB<)1Z2P;fF5eU08-G=0L(}wE%c8vc`3&b|h)g?n`3SrJ
z1?klZhZ(<SYq+W&6{)rn`Pns>d-tT@NsRL>7XIbUsaH5U^PaIymE!k_Em!APG_YS|
zpF3~S`Z)<J+g%DRPj}DxrFG-Vxx6aN+xJf{HjcDORaCky_vo{l#opRJ_x_kCvkYgN
zyp`>HyPqNCVpR?Q*P~Y2?`u1*y^%a;_fd40vFnsjmm9mXwI4o;Is8)e`=xucmj2fF
z`{Zt$S@Pd2>)qX>wa2(OriB`B+&oA2d*J?bTgQ@;yYD94=?d&wxR7PL$u_}BYv&)h
zd*}ZHo#p#4p1$~Z^8<dtpEcIHrfMguR%G2fTDy1oi~pO~fAG2HUKwg@ecOD)p`6F3
z&RSZYpZDZq`lT036_sYoFFKmR9m~II<KONjyXHT=a*<JN4`bN9n}^=5Rb*bESh#WW
z-`ZfahS<tU&HC9HQ)gS&6evHPDt%+Gv|s(=`H$T%=}eg-yffYWyD1yb`HfR<z2!H)
ze*5r&lkPK5R%xu>(d@f>+s1Ph>h8bWi~mf#pl)z><KOz`b<cl2c{k|}!^tDREUe>v
z{?79k7Lh-9v9!iicT2wQ;g`j-GPACJ2yeN0p-!Hc@ucvUV~gk2>)Kl`yTvp8VBoT|
z)zdv5y?1-f5YqB<(T54H{*iIdw(f~OXl=@9eg5;**V>o8KJJQG_a(bJFC+Q!`kOaH
zj|ANen{wsa&ac0n)~$5O=XhANF<x`6vg?Ya6Q2FCaClffb?SpB)AF-)rak|^VS!Os
zNbK?~BhkIm9w&c>Z0WLjsoh*+ck%R<UO_Ya8-B?<=Wf&B->&#%n%ZYC-wT&3yShIH
zy}Dhtajjbw&-MW887fWZ3N9=E<bSv0^ThRYO%7R1=P2Q}Fnw;!d}!Wmt@*3&Uiq1N
zcg6Fmtg{@F@2|df^5pp^iN{Xv@vSSnJ2x|L)6?h1sfLf|zFi!-XU^NGjD&?})TceZ
z@xA1P>I)lR9q)zpA!qJNg}W|Z6wEkRx5Dnn$xkOfwmu4Zs%d?G#r{3}Up?sLt>d!{
zHA$LqN_cv0=<nl9%5SHByk6oi{o1eKOn3Q)O^g@zO;6uZ(bUEzP}<lm9iOhfV&9hJ
z;xqc{`&pk_EO)V=oT%yWg00Jl;nbGa7f(ve|9#50I(TDg;<NDlg%8bK<95cS1x#Jb
zl~=mY?BIdc$ZIC10-wB1g8trN^j*6>MJk|qF-O3vYD2$pjg2-2EjCt$>(99JZhF;M
zbb2;F(=?Sd9gojJYrR7qf=?tAJlmQ&>Gbi5&(dz3STO6p`Ok*=^6#H$KW^4|y~yF^
zGh01V5vKi1FYRocCmkTBmA|rKw)X*1Ue^Ve3o<JVeHZTeWED60MJtm@(Y)ocJ-feW
z*h(Zbu3V!zm&r2zWx=t|rX9=+?>Kx~AF(a?Qap>Y2-BRSZ+OI)zCZE!RQ$r;5RXMt
zPS0u;y8~VKhx`<0PTc-*S-`qh8=usRTmmAO&jg$ZE@2KeZ#Wz3`J-j=q02^%-aX~t
z9~>z$^;bWTIVrESYU$5Esr|vz99dtP^=|%`CTr?C%d2d=!sS~wSAWjAw`BJ6_s@Pl
zm*niO%<5)beY>GFKjmw!VqNQtr!||_v{tOFOO<=nGVSXmW}}b>jb+`AOre54y-!}B
zS-jwl#rIRMpUj(QynIP8_ezGq%`OE^OFrLT|MS+G31yR`-KJl<`{_Rqdu*ZZzf;#+
z8(1~(o@EfJ=hi(fvc)SkvgBc$X=dz`X(v+)rdF=F<$Xq7V%4s^|4#q@h}A#MZm(!^
zGMT#QN48x;vR2T?@TZDh39FexqYq|(TXTll&yc_J>5~(4duP19RFkUTw2^1av)Vj~
zj@~uex4es=oIc)KlYd(#E$MEqko1!``)dR)FDX>N->mj@Dx>_uy(XQ@rP(t33>QYZ
z7Ko_u+sxd_<&r9Ob-jgu>b_M6buaCVJzdFlam6de)9TZeFGao0J2tzr_y3xO>u#DP
z*)5cJTu}N#aHDSV_UoPLrl;iP&)Z9#UisF9-F$=pi-N4|-}TnZ^`4gUZ`u|<lT+)+
z4@=Hf&nDJ~UN_=5ylZ%1`h{tEVyTK#B76GNzHPp;d{Ir&-4a{-*f|;3wg#vx?%y3G
zHg$2Nsq~R4UgxJoF`agbOIi5ZDM6F{ER$Ed{iy?qOo@sgwx2dk+qmGxT!;DgX;1bf
z?e0|2d6f|<X6?(8c2QZp(P(<w=kSkb&86N{t+?eZ{OHryKAu}j^3SuHgx5?r%A4ZI
zs&np?#rvc2-R^OT-|kE-ZI#sjG;y!P#)aIhfqbF@s~zr~6)0z}aep4ky8HTVncbW2
zP5FH*i~sj_4;imba_63&tiN%r?$lMw%$9{tbpn}ZC#A4<PFcrvc)oIiN%I|<qV|&?
zHQsSwj5w>q<D(s0yv*{+qyvWfXH%12pZoYk!+YKor5`6tif-m9?7gv9^lgv0t<%-I
z+d*>s0vqT2wp+OQjnkhJ&2ukVEp4y-Nezg-<R2AhH<c&vW$UYjUZ<bW&KG#1|JSOQ
zFIIed-PvCj(}O;zUR1G6Su;^R<llwpHTzagZ94iZDyQ4VYO47R<$|VpuFC}?f__zg
z{IoT68n^dOo%W4dA1B$mZ_l1+=3nQTud}LL<j<W?C)zr=R+P%#{=MaE)I`HC4j-gH
zr);-5Dl>OoPU!a6PPQtCzn-`B*u|PYf8}FW=_6;$44vn>b9m`Kd?vJlZIP??tOBcR
z$@i6dmnG`1jA*`nW}C@^;w2|1y96cd%y_;e>eS@rc?Z<l1QS9Xx0Y+3R%PCz6P)O<
z$*X9J=II4p@mZEyhaH~<u88@$>%ynaUHiM%?^v#}MB?sz{)Bh@MkjL@&EwKy_A*Tq
zGuAs2Z~i_wbIlG;HFi;tee)kITX(nO)T`*J>iid4vb7h_&^wd5eCqV`-jVFO^ZU>2
z7g*7K(DD76^QAxMFWmfo&c-BHSJut~-T$3mjMkp;zw*caxMLpMO}4;`E7o|b=HLA{
zd9U|WQ|)`*CTV*-vb9w2x>lV1<1f6ZRDC7KgI#`FRvy<cHqV*Yu*Wmyl)`D%Bdg`s
z1isZi<vrooZv9J@OD6BHc&hdO<)ffEyTg}qb-xY%XX42FY{4w+BHPgGtqzgPO1X=E
z?>s&8zI@)Nu0kz_qRA^KI4*j$J>u`vPa%Io?k%0MOe%X-YW~#52Q2Bueo-uba}$<{
zUSc;2d#P7>#>6~U<#NZC?x&Gl`NwO-KOD*Zw_>fV>5o%ZzSml{>Wugwf8SN35W=|F
zS&J*XR8&AL>*4(733C!M3R-r&(k^Ii@Si7>HfL3~kLs(mnVH94HJ<V^W1FDIqn15M
zx@4DT`;YWbTf&r0q*;9RuQ0hTeE(UkkKt8{2Ty6ii;s*#+f9nfm%3y})$P(dnXvrz
zuFX8{o36gCdcEtzgIOzA{K;Ms&%6HL&F~+K=b6tiXN*_h&ZMkiZ+tFr-BsD2TsIbG
zw5pvv`n2fe!L!B_8=d^7i|)Ezl(X<@;?+%Sc{qyXX6}~`IQ`&5-L!`L{*tTiJ3Ux8
z$(yyWXwU3D?~fOpnjYLSo$>r0w&xoPyM?drnzK#h!0&jmI|i(uWQ`u1^VgiMnB04T
zW09YuN3n?drCSH0Q&f-5OZz^t`;>q0&sTDfDrQ$~n6hg7lMm~!a%;Brzgwm)wdm)@
zS`*fWD+2EFl1hK<|1f_2F0bZibHcOC>+NHnj|<~=oj)(28SDK!mUZ8@RkIXUl@v&t
zf3xdMYkClU|G~ude|U}6)*knFO|gxhZ65SA{?F6O!b|>hY9>tnCH^yb@w#WtnwA2G
zB(^{EG=IWy^-%i3N5wbdnO-pcif*3sqIUL$zS=F<*@|pTc-PHI`@VSR`pq5d9Tz@5
z_I&<39_KeE@l{`}1O5xtUzzpWC-%$ByE60t=UTo0Z?Ws2)bf9S=YO~~C(u5hGgVa3
z?B4Y=ySyG}o6IZ9vb%n6)+{+W>t8B&L)~v=*1SE&;^O^NOyZH1)vOIEYaho<@^xi@
z@owh<mp@WJPOr?n;dOdimX~<orfrY>i=Q5qt71D=`TIDxNPU6n*6${pcj|S7UoS3B
zDmM>wx3B8h@>lb1X`H+LWSK`V!u1MHGgsdXd%F3Tf$^n-`|S;1{z%JS_lN7<-&c%w
zyO}l_KmJns-LS~g^H#7|>euv)efhSly^2!R*!VWx|8ZuTt~={&e(7S<vRScQdxQ5b
zp4|Sbd*k!nE&<!-)w*xrbV@OL+G+pyi;JJh@x95~aBlTg6W&S5U*_1I&M28xncooo
zKH~hfX=>hn9>Vgk7FH+BSvgZ@-X{Ux{X2WBvriY#w>Eh)=jxndwL4XFVtMUK{_384
zXMH4o?_~Z(_jb!YIJr$~@!8%JM-<xm=c;e`Y><0Qe6|U%$3Ca?FYVkGU+!~$8ZODc
z?8(cL*j;AzsrFCPFXaa=+;>MI&nt9lcwT_v6Z5i(qJ^*XH+}z*eqzyN8LNZBlNHOh
znF@Yku=}{=!GGDP`_0FV&wlV|TK4~D#?RoEQ@wBBtUMJIm&>p`<w-=LmjC5h0?X3X
zRCZR#R=zyssXX(FsNT1E4?n7VSLXOLpXSv*{biL*jnDa0EC$YO!W_OA&M+=dYuqNP
zue0{nf?3Svv1imzNXzbWP}<VTo^_g`@&4M`H-2CJnqu1fq}%_~k=Lu&d|WABe__(k
zUyGFL{=8CEyPRnEPWbi}h6<Z2Io1dEt}Z>H);aI}((nGeH2=Qx%c@ycxbiXg-P6-{
zyH!5Qck{TqCVA&FBa@c0iA@<kC;mER%~*Ht^OD!wH-B&Bvgs78@-Hpg^M&E}tSgTr
z&2lC=AAkA6J9zt7$8D`$p04LFSHF_@e3bph$BmQj2z(0JkQgq_yR_`zBmOGc(hFa+
zd%o})d_P&XZJlP}7sZBcfAq?1wscN)-TC9ojbItu_v#PW|L#5g#ip$3<O8)Rxs?lJ
z`iob-m+X^m{=cQ%)=}ZcjdKq>N++m2-m7joe{FK_%AmZx?R(p2^E8~BB=PFel@;^1
zYIpNm{&9)oFTUaO;ig8ddezKz>(n%=t3TFNscGNb_CGIA?3SDmPszL|K_8cA);`HQ
zWwg`sLgAs~4`X?MG=6b0KVEfzQPu6dsPOwI{-ntJ+m*^N^<UZ(<i7fcueYCX^n+L3
z{)Jgr{8gS<Fm+yNi_KYYzHh?ZxsPg|bFQl~crat%tZ7e{-mAM8dD&+-#~hU(*FH|J
zS)XEiTRu}^La*VK%V#$V+wIFbq1mS&dxTZwy8U&>s{-9eMR%QJ5B}|8l&{&Cu<o)g
zBYy=Gi*~cc@=q+W{C196vBvv8+8tZI`G-@f$@Z<2tc41Dgul-}xcPNq)aoM3ONV9O
z*oB{)w>Y}jSkzd>t?H$nwO5W>_xe3ux6bP3tgWn1*9vQKKEuN=e1Au)mur=p-I1B^
z7>_MaJMl}4WBq-v)5o-`8I~P;VR`ZN(HlDZx~j}VeJ@+fCA}A%96#$ug8B0E{zg+z
zJ<{e5+`Y8**)D~+M|19$cYMC~Q2zLh#ChvvvYu_M^<`<OI4{S?drm@m?;KwC{tZX}
zoZ2x>vFg|9k|XAY74^!DMUxZjwoG>4Wt;O~KX<3`pJ&N?K3usxXa1a|d(sP(?xaM1
z)AA48cfN9w-Jk6&n%`dr#QA+b7QXY!U#mi?h;@zs?nU#=f4S`c)$KE9Ue@Gw-LZUW
z>oG6+jNqNS)OZeD7Ad`2I%D@C?%3r&SD)0pG|woH*ZgC&u5XK%$<o*f>`P{~xi#IG
z{W;`H`_9N)<%eFYZ%DFaaAoAL3Y=+bC%fSN>PLN>PS?EuT4@*eyjU-s>4mFE?S?rC
z0wzssGUh$JH2u7At^4A%rFth`F3rjnowx4vkxji<Dq4&he73YZA8$W#ZA;;Xt!+ss
zCm6n76BTqOM(%OZ#kp^?`T{sJ%<HE;`<1xw(<|vSb!n|nYj?e!o^^|7eO!%j{o}Z(
zSH;Y$7X2yD==-Z~rSDf1UplvNR!{rvW^ImXR#V$f7z^7T|M~O$g>6eOS+yL=`uwOU
zZ?EZrwW3egTres58{4L~{DZ66#%t_8Jcd@%%bq@PQ?k3TMPc^#<sJVH3LO6UwdS1}
z?_Kc(S5Lkr$9GljoDh3_U95EEQ`2d`_SP{u+Dl2DeCSu@UYk?(f>Ek@+nj5Wb6!f+
z#-5+d@&3ugX<4h!7MFO&*;pUUy)CzJ+m)XWCj5(=bGkDrt2|e6lhA@W=kq1fcbK0t
z;nlfr@+f)w$+q{8x4#ZAYF@U`eA|Y?CxUJN-f6AjSyb({v(i;_7oYL;qN017wbj+r
zqSvob*t@AI!GOJE<_m?%n-$GWtok#&d%t{oBQ1L8_f;8%D6?nP!FxXT_1|jW7O+{U
zq^YLvu*LMM#e13^wfmmNx6~h1s5UL?e%<xiMw~Zt*|JSr-dp=g7qa=+^salCcxboO
zv~L?fMaa*+8|+f{ZfWk+{wpc+>V9QKW$zugtq8cF+wv+xT0X&ITk9z!O<miAGn4-=
zG22qOU@ude+l$&wlZE#&zsclb$aLG~UuYQX{raBTso=+7bUjU;!`1?P@0%pr=X0*7
z^zzO5OX_|f-V$0hqyO9Il<S;&Au=h+2IWSz&Su_QzGr{gIJ4b8zSW(1?+O2z7w>J)
zxpDa6F`YAfm#<E=mcRV(NXzu8<!g_YXSSRSQSPm~aH62nhU?+mmc0y`aaErR^`_)J
zJ*X^rYR03b%lnGoOqp+Aw_w^N*KhOYOgwh}kI3}4<bu;}G7c}T^1qc9rLCHEE!H}s
zGI^FcyZ_~@m3^ny{}od#DqVX%rQ-04*Y!E;4l!rQ)#qjU%ufB`!rr_u?N<MlfMv%k
zSFWDir)S^4^?G96quX)!w(gC1{_nBPNs}Lcm;Q{KH{tlIzASmI*Nc}eY??Ryn8#JK
zh%IUkv*&GY<C`fmoxR=j#Z!}Mp4?2c+K%t<dDL1yBmRKhwaW~@TX#l2doF$=#(VO`
z(wbR^irx3J?3-}bX(Ru~8o~bi?ek7fh)m(v72lLnBHMpn`9hVZrdCtVw0g7O_R^2P
ztP9&^s_(jVd%)c<(OdG?EV`kU+{JCX_{_f>rx*S{|46%kLuNGh{HUkS*AGVTo%&aP
zbCkG{GSAUdD{|Kz<4)N$;cJD4)~4I?{ryU|hYvL|{P-nvao*xNGT%4<eAwGk^UcQK
zwzcUumHyKBg`1uxUJI>~{X31jkj=_U;>@+p)y2F^J07z=JND~E|Jk6DB=P;rrwXpR
zf9Bh>S$BSXY3pd&#KYG=AtKVfK=Itti4v;W?-n0=F!8UaSpRyJbcYvKv%-4Lv%d_v
zma%${$jXhvHf2_6r!zSvmTat@Z{Tv-hp%ta+N_7~X20!vQ7ruBtKX(K=6n|<HnfH0
z*;G5PiJdw5^Q%)<VG>2ZR=s;1wp&~z_jC6LeR-~(pLhPA&tzj8a>aB)^x73m7Am^L
zzZYGWsjwv?Ou^3Vq|a5`oK<{}SpSsH&XBot-ou1*s`q!h%^?NlEc0qKPd%$%a%5$o
z8t3I}DRX|k%TGy8X;}Q&@KP^hO-!N@*TlDHuY^`LD$HK)HbZ7xWJUI^iWr;q))!oM
zyw}*cl85E(<d>7}E_^l8YO)j#i8;DEv9jSo(E;%V9t%14YQI-{^E#o%$ThiH-YC#b
zJ@M=NkcSsbPq<0;PYc?<zA=DdLD%`bHP8NZawbK|CSJ8$x}!eh4gV$s&+E<BFN{v<
z?n>1?`*!}B%3OyR+xH!t%+x=7_NyP)mU`aXwM_U^wT7Pd@#UFkelVQcp)0Ya!T);c
zmNTix?tdu0UZ159GHr74<2Hl(uj%WHU3YhH*x{4SmN@hJH4E+uqI)tf&JM0fDC*8S
z;3SsUb7kYJo8CQ3v({SO;;%nrSd_!AoHq05_MrQ>oSI+G?L2+Xb-`=NHSEh;jJlPr
ze?ES!`{L-)rbAnQAA0*x^!VgCn-|*@u9&^^{txG<wP_otA9<R<oHe0f$DDr$<=C8c
z*R0k`En75y-bKk%^}17--Rou7wy%!3V4~pt>J!7=^D@s@ZaSW^{<N%3?c1fBV@|kb
z{Nq3C(v+z;|Lv34$9HL1-to&_x%g%y&&7j^%d}@@nD^X~4s+$WeDw3)WR~qMn#r>+
z-Ya&oT^&)s`mXwfRI}IWA@d&nS=?_Bvww2z?Nzd;Clr4!C|=Ry@?LSD$rjD$bARQ?
zRjD1_v%ab8iblV^k>8S1{@l_=ng2dL#kGN_%(q;;wPVtxC#t*p<}O*Bq3^yego)9v
z^uM1_|NJNXb^lp*@%>wMcFX%M{$~u^ovo^7HP1DalD~KO?5yJDF4q(PsTX`+HD}Il
zUdyvnqfdujaGWjs@X(U>6U^C~X6<5<dh_3=Jvmltv&W9Z#d7cN=9$mzQ^V(qb6mKw
zZL-U8&u{<laWYH`&wbX|o~0ppJm}tuAFe;*1?#vzu=sC$oBYe^b!MiXW7)quhia<k
zz4^gemw%koy~fqW&Y>t!lf%^IgN(G=uE3_ZJ563*v2ZWvv3`8mO>$=CrAYpzr{A`h
z|EYWVrKe;{<2q2|LM=Dtaw&gaKWpYSx$d;s)!+WhcvsKkFMck2w5B#?Qi(IO>%~C5
z*Q+ysKAj}f|3&6A_xpl>7x>s*6h2<DtbF-RZt0H;eOu#Sau&Wne0yc&jw7AN<JG>j
znn^XwWy^oqyFKnnNVxs_eYV+^b^=KUS8RXz^reLG^^X%Kuzk+FG?V4|{!hE-m}gux
z`LZag``jt+3?+k(dFksGe%kBBSYv7&Tk+%Alk|`JeF6J-^>Zs5=NLZS-qddW?)K?x
z0h2z@Rqr(4wsEnZ!kW1^8}fA3vwzldJ<!y1`_i|zO#gwY)q(%VqF1h7t1kS>@rvK{
z&)xpDv#w8#zIAiv+hyyE?ayb`O%ql9sc5?8?p~$~7q<v8Iabe`Ha-9Oy%*ChOzUR)
z#PY`39{lh?By_gC0gs2g{O`57HA#Oo^!=8s$er-~u!{5I%^{}O6D@=OSw)pEwJiR{
z6Mu8=vK?2BAM)vX(Dv=lwC1boby?frF629L<b2VSi+Shn*G_ph;jTGoSxz2<uI$s7
z&9Wu@t`-_L=NDA2zPU%+{P!eh_n%(n^1|7-f6NenrpEqbU%Ku8!sK%i*R-TFZ`vGE
ze%{uRd-IsqBOW>XldJ#n{`t4fpz)2!;q>1xY$P8zRL|Wiv+8v~h}g1qb|>7KTw^Zh
zuD|f6@6#_cxpmv0+UTClY+J3*`!Ow3cmC>arDv))+U?Rms9tv0`NZt~-E4(=CG%45
z>~Cb}vDD`*(mTHM_p(oR^$#chJI`$|T4Ck1U{>4r?XjKepBVhNUDxs35wRj?!NM=u
zF<n}H+TYeEpMQLNMV0)U9$kwIMm}HWJ-D;AO0F`eyKt9V&pcaq&llfZHpw#>)Gw{I
z>Rvxvy^uNk)vAwkWzv)0`Ta>2PFX!G^09D5h1QKf?d&&aT<$!yY5f*{HJip&Hz&3g
z*iB;(7x-d&amzENz0Q+!B4rJyN!@?+Q+Th>+RW!4_GO*2v5HD+XpXNmRo{K^Sd^Zq
z=<XW~_q@#hKV&px$(5?S&hYS_h(C+&hk%m3^QtRc9wh4Sd{y>XyynaQHX)_2p*ElY
zs7_Ms-y-vRsY-$L)2UPcL<O_P?<{D{xNNq{rtP&NgF5$u*RFk^LcBMBs#UxxQ@O|S
z)wVp>>!p(pU0$N~;7t8rl>^7?v&BuL8?PA1{@(pDcgOUo!_C*8ubX(LYDeYH^BG3^
z@*l(}`|509s0cPxTi(sdy2okf(mT)EBeZzi;xoKvOYJ|fdLBpon$lyxoqFHc+~7#*
z_$u@0;zg~x^yH<@ZeMQMPBjgg8kb--v2B8W{Kem^I@WwLu$t;3K5vJ>OQwegse6@u
z&O4PdEK^TD!}>~xIgZ_nnXzW`=OqlbR!4rW6qsLMll)H6NNZ(|xA1NI0|krvdL3u~
z=WUeQmcx3&pvhX|Wz!rf$LB>^YR4X2*iu-xa_;}R8$HvsX5ENLo!`ESv)-fVRok3!
z7E4*96;CF;tKaDUYrXio-_ui{AAIaNdEV&=!<QveHgeocyK9e5m?tXddwxRCagP=E
zCJHv~`rLfQbc&&+Q0avis&-wQH!o@VuJwG~u^mOGbAwgxDcQ`^;VyRibw_4fy@~gu
zS272s9!9J>BlB|0-`?Qp=eNDCJ`ClU*Yu{hqvYPIs6+EKlqUxsi;qt@8+-NIJdvYz
zHD@Nx5!IURCD5(9G5QAICZp}&=kQ#(=)Lpv<?N3=@d+xaOO`M1IR7IeR$T3Y;huFl
zT$^9&tiQ-&#3-V>@2FkZ*APFy#p+u^nzT2nNZz*GCJ}YY>A^(dT1oTYijwoo)-`s@
z_^?Ma2yecwvu{_Qd5nKW*_`Q<UHw><z65VrH*wX?z_=MRHowx)ySQxf<v%-A93nSX
zec5Yn?(R0tHEP~eUai>cA1iD#>^(mVpMAGDN2~YQ*9W4z0xm1e-QlA%bDK@^&4gwX
z;o4dsvGtF+4^7_n@}u52d8=%zEg4a5@=Kq6{Lxihe33aWZN|K9>YdX(3sTvb7;nEm
z<2gN{!oV#vS6Kf0t<6U+YMt!<5;Ny%-`UwK4W}D=8W$zW_wyZTwLAZ5GV6zmBB{i*
z70tD>&ev9lSV`7RI@@%7N&lxW`<lPF7=N4L`J8Wqd8JroSA@rrnaAY9jX$!y+_dS=
zHs7?yp3f(Wl=H7eg?<vNKC$fin#!ey{#Lwl_3P#=QCaTRR_W}wQMN?E*7C&n^wk+z
z6C6ZO9I2{IInG!1=ElMI?<`IQoI1BWUF?KZk=3!y3d?tNJ!Xh|DE{&uZ-99BZ&wYO
zf2{|LMY9jvsr{~&>{RV=Z+{^>XOT%vvaMirr0_DGYyRI8rnne6mb?J3nwhThVM@rd
z%f*6j&I{HxcD+yuZ@IZ9^oo$)tS2$w4K}(=`f-FoeP7v>d*+wgE=3-F6>aRpv)4t5
z`PbI#I|^RrJ~k}j)ll8BsO5+^bI*~<G1cF7-F}_>{Hy8m<_o2=^_iMCe^?}cWa)Hi
zT7A8!V@;;iXXDE;d#k3d?kqn!>FM$JK80Ujg)U2f_I6iASn+dN*FA*~E7hK_Ua@!a
zjc>BHt0Q+?9nLs^xo6Kz1w&J}_rmo@Ha1E`3eNDI$#UK&&)8XG&sE<$JKu0QPhVDC
zSqoZGQ}OqZ>pGR-nBBjm(&yJtEphvBr03U+(puGd2~}2(hc@_?oX=7UjdZK>Gyav<
z<Wkd<Ut)J^<7Y!LAG0=xU3$K0XIau6_yyK!ra!xynA8<oGg(i4(%VMsAG5dI(~_!F
zJu7`ta?>Gax4w^0)<3<R-92NEfzzp1)tgtQNy>KxZTZEg_34tyv*Z4sp0dlQe1EK8
zc$Vo*&0?+XEm_Air7Bh{tvT28N&LQq@;skOGbA3&e1Ep!^(`$K{$pzFm46-t_Q||T
z(s}zPuDiCTVV~fR?ANwyzT9~Fd(|tBRQH#aRV@)pj&GJ4+gQI_xT`Gmoo7sZi@#gV
zo?Ew1-rOj0`J;xj`ff?xRm(Hip3i)6q^+WG*PPN`MR8@bvmW{O!B3?##HKAYsaeDG
zvt$1Ir*9(WtnQRhwoRAxZr`Ci<#Pq|!lI6Emu)Q^Z6-eGeQ0cB{&Hc~+MjIcmhzlu
zKFpmL7uWan*fodus*|1yuIgE&B`vjb#?AvL*C{Ug$dcdprC?G0tbpKTzxQiasRmhj
z#$Q(u-e{5U>i*+cXWg<>%2y=2RvHDhmT&5R_fW$4q{_yHd2C6kE!SCeElr)zt#oNR
zeK_61{AJ?VsE@wE7d#B>3T13J^>y5r%eD&GS18`jFaPYs!^1LmH8T#gN3HzKt!=zI
zD^mM}r1+CPt1rp;`W-l9oYXQQJ!H`gW~Vue&({lz@m}A4_kT6}(-S3ccGpyEc_cq}
zk9_9w)BV`_{z<)mtV&N^zi7jf|6jx0rTxe0{WX2!aX;B>uKw@4pZ`xZZ`VDApAMqi
z>orb(-~UtQ{MY)~@BcscU32%B>$W@ldS0{oX=Q6&Klt9T^d(bxUfz@7)zc65$~Wxa
ze?a@PdExKn(mzl5E~v~;Jp0!C<F)$gzRl_TPnQ3G*M8^Dg;VEv<)69vI$zI!FkNf<
z$78Me7d}5f|2bU${{;T}FKWx`B95us*Rt2Gd+xkC|M9N<(vNOFpZB<R`l1x&`A??*
zOPusQ@BRVxJl#!G7VrP${O9uO`lFlA&rSbu`~I`t{{^00p1<OVbJM}azbhZ@6tDbv
ziT}q#`{gsMo+{n{_ig*nZ&Qt~{hiHU?7WWqhr>nt57(dnpSJUZ+P1s3+H%>GpSo$~
z#j}RTE&8uN|M8#lMJdknpZ>f5Q)PRFsi5Z@Rp*CNzRg!un(zNrzxF4}R@Bw%17p~S
z?O*=;PU>ItTa?N5^v@UWfB!sKT5R+E&1as!-|HWJi~q}EzpJLV%m1(R@2L{8$K!u0
z*4gM?-MUX`eVMZ8{ykiEA7ba#zq347|D0DW?5|aB{127wGuZYkOyVe+rk+1RclXjM
z+u7%*zL+a|N0PH>u|vM!yPewipB`PQ&^!N^#_1NuMgL#q|9t(BweG3;yOh>4+s4%Q
zALcHUc>gy@cYj^Fz?S-yng^m^tj&v_>n_N=UVNIp{zUn{pIq1L_e|`+mtvMa>&JuZ
zKR3U>d*s-*^ToSG^VhywbbjBt4<|y`t^N~gSDP-d*?P@K?Tgk8U)#L$;#u=!YWnu=
z%l|a@wEdzt!fUtuJ*Jf>^1NZ%v-kVIa~c2Z|CleG|D5@{_48)8Ne_knjej-%pMC%S
zr@-fz-|h1{wEDsO{kPA@+m+ArHssGXd;egcf6a*xxi&2J-wc^fUjK1!`@WN(#p55!
z=dXIa?_0h5*G;ckTW2M{IY0l=q<rPI`@bc==1dH{n3iN)^6zK=j?e$@FI7}Hm-J!n
zuDPNsJ>zQrS<d_aI`N-f^vVBUTf^)&Us|zpf0wo0l$1BK&tLw(cK@?#L;n4HUUt_!
z%nLquM`p)6_WNhgHoo6?uHWv<>YU$?_J+*7E&Z>5)3?RfKR)|V$#yROf%V1j9DjfP
z{qt^lJ*WPH%DjhtAKHIh%&tG{@PB*7!~K67T2Iv<-nLD5joFb8_lm5u^LCwDn*UF=
z{$70}D9gBPtDAVfm3Qxx^^d08Pf58m;q%iO?WTN|z27`)X0O}FQl68&>>KlS>tC;{
z`ui`Xo{rd-BWbQ1ea!b?<-gzY|IMErmi}=yewUnz<^NL?K6B?r|5#yQ;KCr%%=ITF
zVT$cTr-Nq~|8+gV`gZEa{eQ)y`KIei$(A0T{ZVUu(8=&}EyeBev*W5R-cGd)zP#y7
z?CGE<-#<?7j!!<{U0(3vLi*Zr_M^5sqWtCiqT=Q#->X^Rc2B&dbMvX<#ir7X)9nPl
zojt-E9UXUNu2M|*?K#(+MV@@08$Dm&O_}ddNzMdytLjd1_Zy!Qtb3pS{F!2ynz~?R
zN|~f_pYEM2EVgr(OLR>S+FvYwJL?Z$oKgMu`0n{<<XPwH>@JC4F>lp_Y4V-zccy9C
z70p|E;z?Qjiak!1cSQdEW^7)%M10a&pJM5HEvu)iZu)E95BhOBcd^#`fZckkZ^aMt
zt>fp>HT!ww^->KVQGJyQn-__8dHrF1?tLMTKTl)-w&aT`o~r3HPQS>oubF#rp@i!8
z+yy=hrp}*N(jClN-S4&e$<+HlC$Du{Vllb@hQO+J&w!(zM$bQ9Ds{gdojOb5fy!3(
ze!Yv{Kc{C|oOJBb<~05I;h{nD;lpRrKUH>r+4V*Hl#bY{&cZ|MojoPKep`R<%slot
zfAcDBx@^{d6R11-aqjW>N#}hFPo6rpcAl18nvBKm=;@E1?3?gYglU<R!!{9zsg*lh
zmp1H~@vW|xJMx{=o=}sb>Ya>t{F!Z5?K<)2&aGtuv3HJ5dv(wEUwngR*7?m7L?11<
z{CRDK;k`X=OB<Is8?f&`G;jW?%O&31fA(Cg{4d;-T4IvV`Sc-gPWD}ospt3FEU)?b
zZAomtqu5HL$~~$Jg0CLm+Z%I0WOw|VEr0e+uvJKv)Uopv+q~)Slw`%lt0zo+wk&`<
z@^PNqygB;=ZW_(iSv}ivVUW$LqL8l>KJPpkt?@qS*15GZp>pO4I$ydU?Fx`R^5B}-
zsx3!T!Y{6@&^PN#xwTY6qV-g4&YT^sOSfGOIzHL!xqcdtuIst^M;|bpcj{7kA0BX|
zb=sDI3t~}4TT?VS!hSwjxk&J3ij?SrXU*$x3MpB5=`KF)-a47T&+TdIgP5F|;i4(}
zI}FzDn$N|!jO)*tA4{8>Po!&3E;fv7{n1(ZG<)ity#0BpqCs-46{`>Vb1zf68#HCd
zsyj}JD^I=utMTKz^n16>A_;LmJ9l4w{I{W1Yrph<r^2KknZHsu{!F_hJ}J{MF0Ur_
z-=ZA*eugL&e~X<PeHLt)=C`z3RASYor`d&^VLDgOR*N)CZ&>wBJk)!Kk^J#{@(~AS
z?r&FRnjRruy)wjD>VQ<pq#UiA)0t+Z#eEH)^Rrgrxb-y7((j&IZ@5fX)irVC)-3;g
z&-dmI&47vX&qPlPRb9Tyu64>RpXbM-zpkE?Z`k^b?ZTt=(iW#pyhH!xebQ?^{+sd5
z_vDP7y^5iB=5?)2w=H71ZtP~9a3iht*3q*ZfoF9?>p~-VL_!tz-H3?f3OM~#pLIfg
z*r8IbRu!%2tC!|+@f3f5wjq$;bZYy`TkAy_{aJVfBd#_meLg+iwdVh&z-6kdPKN7F
zj$EcXTVeXwz6DPIoa6%pUccTJuidm%<9?F&y0ovRSA_36b{8j|d^zh;l!ntxf4)x~
zg^P7r5|rj2J$0qvR5XXq(~FyC_-r~f>Ay?V&5Q}_75DRpREh_mE3ylfKb7hIve~IY
z`<lC+@Tb#3Tl+OG2QlUtw#KjMYjwEkGo9CF;<a2G(Mg4xkFWa9bNW~`E6Yyr>V%-J
z({0vGH)@}rbl}f?xpl^kmmbc|c-N50Rvj4}^6u4SyO4QPWz?IOaA}0zTm1Q<EMrf}
z?}o(L`E@@ZY0K?861+s%G2p3ax4g5!YhC8`ucE%F-QANIT(>#@NcCzaC)uZ+`z16)
zm_#SK@#H0}(po=3Rd3nusf|<gv_s5WS27)QI<;@Yq<EbbKJJFRpKf2_)kuw+Iw^Y9
z!bL_FE_SOnMAYkT^@+Usic89Jeayckw_eZ3$NbGCxV9!MDoi*&xvNgIhU=-mNJw(b
zH1E)5bMiIW7Tqb++Lt7E(;)g)#ZP<7nCZ;6%Y)3E-^KCPc(ZvPU7vS}yRdS7tHjG`
z<?J)M7m6L2@&8Pz$3pM5M$<OfzhHZ!^*}iDY4%6|zVc@qv-R|nyN`AIuKy>ht)<Pr
z`CoUdlh-}n6I@Fs7)71&iqEoK^}uZ5-6`LbZ0;OedFC{40Jr9hqYQq_0vj_HTCMnX
zfVbsriD-xTsl|`9kMF(zFEmzv+VTMF)jUg%ewyVtEtYjvUhWzx_oACx0+U~gGskTI
z7kSF2P}~3N_f>XbXDfHg+4DDOw!Ic(ZrQ_L%JBK2IQN$$s&2;TmY5z4-L>7ydDr&%
z#~#A<l@k_rs=PS%yT|GMlMEC0^{3)yuRAX&FZtx?^?RXJ>%AF61wHP5(@ou{)O*?5
zeEr-6&0|mBbKd?Kw(H+NHT@Op%jPT#vS_stn5w!iC~lFE))JkNlGZ5`xfZy(sy5G$
z4mi0aC`9SJlcTo7bG7c-LBSuVzT{@y5G}vzfJ>^zic`}bAK4UQ<60H^C+OIkRl4{5
z=Q*{_^H6SX(OG=zM8WIjOTU#a{Frn}WL2}z>ucrRy^>RFw3=P!@fZEH*H?&QS@y`^
z_|8X#*vS$6`+wN&m~<k2`^K#sjlS;<^({8(<LKD6Va`hFsJPRH=S?^5@zJW9!Sz0L
z{_F+&SGR{VYdT$>y)uO1dJ_Mw3G<%(3_fr0?V!kNyKk0jidV$S8BF@FE?YgjGT{Zw
z0oT-tO*8F9WgmPo*E6u3%2aRp@K@Tl+I6=+&NTbUD8J#o`fj-=Hwvuk1*We}e}8f9
znnN;AB=1@5o&VVQdqF}t^P}y5N)znN4s@QgQwy?tC1>Rqz4f$;2hXP$3qMbJYvU8$
z``352Pf^dlcXn=zjhEOi4QZKu<JP4V+3PB8S3J~z@4lR4xuLzZN#W%ShFDwiidwDK
zck2~m_Rq|XUZrXJs(NR(dAzir<?V$v%=HyV>;&#UnV5Z^Yt?J>%Ss;<EZzLe<riPf
zyfkmqorjNfeXo5CUoZJ~rueCAoBzKE3p?hw`S%IeBj<Uu56G@Pe)H;t-)myGWSjT%
zE}v6;bi!vdm)5BdKfU~0a_-JyNB8+Xg`fVZS6IFdIWlh-`;YotSv^LV_n2Ps{(itB
z*f`SWsiM@o%%}HuHGF)!s)jZ4#EpYb<9en)-zV*FZl~4yHf_hs7p{_G%sZVjwPd$R
zeAs<5ilgSv4>6{A^JZ7G5H88-d2iKDZwXQUu-x~5B)@BdR-LRY|5DzyHhUH_otV_~
zt$5jYiMvbNZ%S&GH7rf`ywYL(K-FFSON8G1&k^dIW45ywZke<@<7V`k^gZ$qx2f7p
z)MDdqsV&{|=Ih3N8ZNC2`_9=0?am40vp!LhCfR**g1`2=z*kl;uD88>Wpn<H`nJvQ
z4|;X2>-%tKrMksC`vZ25mG9@Ba-C!2`Y`RAS$i>i$mFL*_piV3W!H3_p#xqjk$Lm_
zfwO#al8>7G3)bi#T;=<k^LxBjz-pDld;hAenpNq*;Aa$A)j#ja*9U4*-&{D1j(Vq8
zzkJcK_xG$dn+;7I{QE!pyjMBs%Pw<Z<<d6Gi<R?AYPtEhhaR{hV0+iU;7<LFT3^Q1
za!V(M$=#AUHFqKBgO9h5KjgIewk33dFYia*Ms}4SVb49=YF}sGz3iYM{rKp-yuP^~
zK3<LGy>>AqZn14~yuis%Z5QXAW_Ww8`bPDRPF4r?(_aF_V;9#cHBDW>d|G+!pZ2qg
zi~SwU`S{8;oEQ6Vdz*ctcFtih?#nd~4E879Ie+}z=aBEITFR@}?0LB{@81%0za2~G
zUJEen{22G|{yILJr|vi26s`D^G|yL2A-FQLwc)t$MzK%-LKY}g7kX>@tFD$<Z^R-t
zIn&TGHS&y!d1Y$UPMy%bM}O`3sFPA4a!P;o=A#F`{@rr?eAbD*s}^NWD-RBlQHYrL
zTP|utjrHtfWuMQyNHv<sVQ%0UUah{e^z4tg+G*j-H;c5t%E-%Jy6#NIwlAV_FRae~
zJgIql)BRhQj;s=rX1HJbRJ!DQ?4#atF^yjj)?WGZ%&czrKBeUX&*PRQf9F)|<!`Q5
z%9W}Aux^f!k>mGU*>m2$dYV)+>nE%J(d}!}VvDt-R~651F|6FPFJVrSVCLf=&7~DC
z3w&IEhL!V+t1b6<m>zmo?cMJ66K{JJ9hfFzabn>_f!R*MF*{6-)_7V@^j({izs7{m
z{@lk?`z{_n_*nd;TUpTt)AAkbvgCtH=XdrM?_4o0Ho92;-1XCDmtySC9Q>%Ua+yNi
zC-uokPw&vz<QLRhyTnN1jBmpij`YO>c`G;DNX}JpuALmR?af2I{b!0BU$*pDf0Ijz
zeJbiVFT8m<Ta5I}rTS3^pB?7yYwp?lLg4;<-s1ZQdtGW69PO^pder;ZndkWIA2CZc
zt7pBq8F$S4`sVW33x)@uFM7NuHtIZc^lJ{rr~>V1HTRb@dM4#@JurU#p8E;kW3_nB
zGw#P{YOP&<_km-9_Wap0Pd}d2`0UGAGgEWXWjoLk2O*|jg=q7>;+5v7te?DkB795O
z!N31Qj>tQMTfyHMgmt1|YXN?7vJ`Li=PSQt{3`jfGyesNDIyc}6Fv(3KE3DIi^;d6
zzD3BhZ*QJ{DdF6YlSkMsua(bCI4yVU)gQ6>@;-43SFCHjpSR)=_Zki}Vd=Ulof(tP
zURwC6TeHGkO7w2fr&C=KYzv$eG~>Jfa8>$rS9WR@O!&F8adp@FQ{4J2H}XD-8+mXw
zRxJEC>9xx8op;5(qIu3dwQ1#9J%4II$}Z<e>W_2IZ{V08t~^<gAuRgA+wI~R_si#)
z*`9mQxp>a2bxMB%Y*laR=+Axe!0BYzE&laOdo=atRyFnM*}Kc{=}vN({c7>!CmQDW
zFQ1xM(D3F;<vhE)2WO_%`($qwU%O=1HRg8D$*R}td-5KZ@Cw)5ulTmVNU>J^ExY`}
zMHPKN62#;GZ%$wF>%8^KZ%tuBWltFwWNOB}diA7c*Su-Axgi3N|Gdom_hhEgzl>^A
za|vY?Ygy%;E9V~H7vS~kX|T-OS4jn59qo1>dbZWT{B(`g=|gX9BE9`K%RFCSnY&Cs
zW%JI*dsuGT)X7JgWq*u1bBZtb&QUo<T~nhYOVkfBXXpBB*j{t5&zZJp^6t#VJpq5y
zqPAaq!pC>)c<k+4Q@SoJd~yji{~omKB||UcbCpvmimyLD5VZTYqPnKy#HI}ipHCb)
zSNKb)Ch5AG)?Po=hpV%nf3yl*nKt8e+Q(V$8ImO{A1>a)$1Eq`7@!*+HESjBGrt!f
zu5P^?sD4fHuzl+0ikhP_{4eeam@d@O=jk`tyQ%L}tHpG;q#vM({pSB#i*0@7Hg|oy
z(vY33ZgETY@wRF0k>Q$iIy0B?%RepWwLGn2S-R5y-SVEPPV*x^ski_9wb3r^kagzT
zQl_M@+ZM~Xh6H>*lYa2|=KgzHOLm9_&&oUSXxW|6J*jeea{aS6O|KNwx_tI`A+xmk
zhvLsHp`TX#5Xsu?l)E!zUiZ~l)pErEk=M%AXNrDyzf>}JevoczAty2E{@gjWk1N^K
zO0Hd5b0}Hw?JL)iE2bMZMYwCPT(VHHMeaZ2<%WOvQsZh5``>M2b7GV~oga6&Eq*ui
zqRBCaKh)LKXKLO*P%EvpX3dI((!aGixlzr})$Pqr=^c~j*_3oNm!)gtw5qog9^Sem
zqpE#qjh=q$&rb^Szwg-1v&myv&bI5FaYcxb!Gx2H88bE3?|Zng>~z>GC&#9RY*BX7
zX?aO={`)hS`$x_=Hj6>-uJ?j<6JJfrT(oh^;cA_}Egz2`@Bchse$pPpi>FQ8=C6Bv
zBKzVpH;aA09sBrH#bsZ#uKmPv*xAr4TY4kkhVw^WyzdU$x3Je;?su?U{SMCiFFgC^
z_G+t7KM~Bb@WstMx323Ob87`UimJZ<wXvII{rAFVtwXXsm+xD<Da}=!-DiBKy6^P7
z&^7z6J`sF==w<hr>svQ0J=Hx=;=zT#?iGqF!%ofo!TRfX_s-3RXL#N2w42+X5q#{i
zoVj{i@No_Q(r?1zDd8Vim{vG69NRXx<?-D&|M$wisrVr9_vP0u`Rg~@M!UF9dZ4=4
z_HbPK?j_F^1+*S#y;s~<lF~3^gYU10XZeeNd`R4<b<#3*+xm;@j*I>Ooj&Y4rDxs}
z=NG~ZX_rN&wrlLG>9YS(#O~bbGw+c3ZC%TfzKg9KzJkvauXeL;Ui-wx>SwCL($ke8
z_vUu3_hK`@ness3x4359GxdJWsWL_dubzCKe9)OysMRJgH2T!{yoBd$_dHCr;(mU5
z@^9w#q_=ZYZ*1Li`ux+W$Gc;u*Tns|W~+2rc}Cm(^QC3_MNGldW^%j#xXaBpGtMV9
zSz4F3Zn0z0fAPB!IZIyu08jBR<hf91bUsGy;DLi-YzMxj?JbYwS4_Pexn+{j!;C2T
ztI@YOysH<kDmN}}c(Qbr9aDULlm6dW%cln!w3`y&#l-uU9>~6UvU2UJ*A7-^=fs`S
z6|-o5?k0b)weq>*Wx4&OXC^PRwAD7OsNJ`xNOwcqo`ZAMg9};9uU?zX`}4x0ch_c}
zT2%5Su4IDva_t{J)h8CspDmMcWb?ds^RTDCR&1I$?X0p*QC^33^tPwdJPPHt7-mMu
z-<`f7@w#nGj{50&D*vp?-gsTE{l(K>w*2GNUnkBj(YSxXub0uP^I+bu^h0lMg!*<W
z?7lSHgRl70jY^x><ria8tFu8zSwyF+u&vCQnf3^Bk_FpbqnAScGXE{~OXfWZ{m)ic
zA3ejNtjild>3#Ue#YUf!2@79x&Fc9kk{WaI!m)X57cK?Pv%7Kd<wA~jvu7<k4$7yr
z{tT>a3Xv%ClPFpyT3a-KmA{kkmiL)VK|N)1k5=9b%<9=28943cMm?)vL3eg;z8hh7
zo_|&0icf3Ag736W*~xX_j?JQ_Q`U3k&0C-4C-P}p%B`iBR;LJlK6O3GGB0jc%s#C+
zz4N|(ceZjC@4WxVGVNGXo0_9)Uxjan<AWLT;=9A&R9x+toc&r%KYsP0Am8q#TUNy^
z^D>k9e(mx$%L7`Awrrak`#mIRiTK0M>>qv~sFU!xSlXC%=5v0rL*&V4_BIFHo>tEH
zOAvV+vc7kR?UcvsGas+6mr?$f*7UMsPQ;e^>V3y<mR3lI#+BN=7UlPyWw7gW)Jw^%
zvRQjXR#&|}a;m+!V+U`|9>=Whd8`VOq2+VA?#vNZI(y`T#^%toGqh{03~VKpWmgp2
z#J=Wd`Ed4Jv9DtP$?zwC&)rZt*`+48>XW8uKidzd-Yv2@F6z+ZBr@(sWL{Xl!^X(<
z<}R`0|K`P*^In*&Tq5^YHS+d3<>(gn<`WbA&P~$g4am~@`RMy&^|Lu)S;~#a<(k<U
zE-Ie$Z_TKyQI`MS=%>1U>(ZT@>KnW}t&Y#Q>S1hYa;ksztd-m%FZkm{Cx*)Hv!BY+
zG;PkzOAM!Z4?BMU9jSN1(pED0-V5Q$^KYpCJayr`>_jdLarMsPR%O$|S&NtJZO-~_
zw=ZC=o8MK7lHfmD&R$PdS7vZe)%_IIxMp@#=*I;Iwyt3c-M`N5w$i8l_czQ)T<|EC
z<3R6p=GKz*wR119SH<n&?JBEO;`i;i${V#??Aiaco3oC_U%FlSHIy-Rp<H-jRF|dN
z^WcvfDyM@E+?e*$%5v2T69?By%YzFT=L8k}e$>A#GXQeBgQDKl2WQRGPe^T%o6nwG
zckSNg%a?rS*dDyBzhC=<(GlTWhuPNhtgPr+@;vO&R$i0bo2SmPn+ebAH8OmAMtz_3
z%ZjLNH`@CvFMT$PO|v`OwB4e-V%;;H@F(h@4A=j!|8~!Q$6D>(pZ_d4e4KA#)}h-i
z+Zm^OPG6{bIGVBAS1l>LWnIV2j+Gt3+DqHKOs9%Y6`eZc-V8sV@3XvA@>5i&ta3fy
z<=4H+&@?;C{esCuuA8EU(neQP{4YoQF7+uragQT5yTtW_*^4ZLRD)ClZ3EsFT))}n
zKD^t#<GbyJlRj#;JN0J1zbpTIPW3y>=hg3iH-2B-UdbhTOG(1JeznQj`nJS?TW2?G
zZ?Qe~^q@h;fjps~K9ksQ-U`=P<*2azpt<>i#{uqNR|Yn)EpALw^L3k$YCTu+{v{=w
zfRu|tQ-wZgh(3Qa)0k(T<>8sekN?E)y!B7D;mz(ddv-f7S>MmM-r~Dbbhr4~kLebl
zZ^^t&(k<}oJ$|B$$GA!<rtZfotAEb_D*l+>+ckUh9h>RO?bFkoC){7MQTO5p1`)Zy
zBLO>NCbqk39-R0ka^?Sw)TUx#?VRxA;x}}~G$p6n$rq*nF<tiV*&5SHPyTQg`)=D%
zk#^M7Q@`Nl9}(%w?);4zH(f)I{N7&i*sW=~-~99qm&2E;s%NeGu!!rHkwMqP5OcS8
z>gwUU0@N?vUcF|OQq#h&<z4+UTB!%79be(JDdx?BXEARcBzdlriZ$AKswO*IXTep+
z4v)*tS@MzB(pFjpP1&NeoXg_q-#pI+i~Y|AY<Yc2bZ+XZFkka?oO_;r;c|`N9dl^4
z)>hZAc1wP6Tbh3DO`KP~?11&h=s)Glt13RJ8||t7tyW&kT=Vp(n3SzRkIRoYe}p!+
zo-f>U`Fvi{#PWSJRldwVn_BQIuunekd85+JScUnI*BeXn9JnoX<ob_}_vifuPRl+r
zXWLzQN@LU3jmO077EPV9XM*zPxyxN9=EzmdNItz}<9bz(;^Y~91rvX~;W<C=#j>fs
z)5L@->R-9eGb;^=l@sLAR?u2uwcqaO&)3-^%FR8!H_BO);x~qz>n&h^m^A0+OpfJM
zw=zzw`FQSbZd89uF5~Vgu}P1T=1jSG@Wa$kOD$)<yY@<G<um4<vZ~zN+>3cp_vb!8
zwq<_f;Y6wJVLxvD5nH%#;j7&fci-gMsWheQ_LFW`o7<UnGYk#(=>DkfWvO!i(Y)fr
zl~BW@e`XtgI-xc*UDxh>+5?XD?zz>myV{ObgfW~>O6y!HJ^QNM(mPh>$Cm%B+tB}f
z_w1V|Q%*SkY?R*L?>29V@uf4nxefPSESl1xfBe`Tqv*!NB`j}ECLOekdy%K6e)&dy
zL*KL4e=dFzvcD;PEd0)+cW-Ru+4u}Eq+Nf>?_0a?R%U&`i;n>ek3Qdt%37%ZDBXPP
ziMcHYH=loRe%#*EeaTEw$8+z`=}s1WQloY2?Bw_7jF(1CUe3U@)@Gyi`IsEm_ZJO(
ztv&yxBu;*I;^V7q`=3vEgs;E9Sn{K?PIHF(<df5XR!4LElFD}K;$oTesdnetUbaI!
zSM}cs=L_~TT5&7&XUXHIyNcqo!ycVmrSdnvMf7+4>!KB_uHM?%X`mb|_S&ZDOxdYL
zcd~4+d|F!|@bhYx1MgwgH`=Q=v1V1B_+;ssBOm)a{Hi-^meCBQIo-*jB_%5->h%UQ
zu4`xGRuH|s`EN%<ME}}*R^J6>WzwF1<N5gU`iX~&w?5X;pa14iwB+@&DH9JWT`tcn
zs?_s$_U`D@-+Sidw_~4FFSyLPzki?GMy;|r-Rm7W<u6`bJ%_W}@<RQr|LIoedb_)y
zbU(=Dyl820qVd$<4K8!8`%0y5JZ*B|xVZcJBCD8b#^SRT?e_Wb$uI1ytJ}SQ@2{qv
zlevy=n}6fF%jCp_irK5)e>wSBr_}rO`)(tPIgh`c$<@=HUaz89^T9Rl&Bpl8-zu1G
zF6L}_%KIUr+4a7b=Dw|)jy~VjUJ;d-{W>*;CCT`6%>FscAMjo%ENN+c$F<{W#QeJ6
zmrE4l-za@&{J-#XjHT$Ji?7u+Vp>0Ja2B4he%|!sqQRTb<e3P{+WIi;KKcGL`|9sj
zr>#CE&*;BU(Gc`Y?)&!cC)*$Q>{mN+sc6RM$LbsxPi+3H%yVS<&f>>P9~Vte_@Qu~
z|GUtY3oE9b;&-dKZE0zA;`-zA9hP$Xx6_{p?6(Z~_mRmvU-O>nS4p80Qy6ajl91C8
zn!Wen(+as7MXO(K7FS=IKELJ>G09lK?!<)xegBZmh-{-uOaF_~3qHT#P~Uy}{pL$I
z&P|Vdr!E%#;8(U`*FCX$?<5kI*vHg{C1lq&pG}fG|7dnh%$Afp*S{LY%VymV)?1eq
z-YOIu__M8V`Z@iOk|zSonToetafckS5?u3Uy5m#tsh?`CUr&_eZqRB7<d(78d*xpD
znt&}YRyy2OF8CHwdCT!UlVA2UvA0FDEsDGMMZ^motIYb*VeLIZ|Lv_@S5ecWRa4uZ
zh<HyevRs<)cTMBcmB<-6p;<R=???X6D_ysXJy(lCb9?vKRr{}g^t!fH>1IXNtJGOV
zg{M?QO8pX+OKlII<>$)2&d<?VZvCs}iyn*Q+<8*8IM%=LQFOoG_e*N0o~F4!nsLfv
zYVA8$x!6rhC#}9`y5hRuYt64MJh6NAQaZo<+gDRsGshuhiAr<Rtti(88_qkFuJ_Mh
zZ?&&%)`N>{5_3bYyxuCN5%N2J%HPnUTjeLWe%|`}@W1Pi)_aA7TzYNm^t|wu<!akA
znoO@RIEBw)xM{U+=kt}!=e(ky9v88RI6ig%ls6_{)S{!0*f_{6KJD%0w13i-`^sM@
zW}dF>ITO5W@$2<ks~jG)ebHJT#3~V47nv5Qt|U8`uk^UzGriY)FS##|U!Jf!N<DOU
z%yO<RO1jHkoa4ghMxQE~b8WAYAA5n;%qLqXrG|dJ&Ny>TwWzJEZlsvVSHI-K7uu(v
zu$@VY-yNgsZhQ0j`fq&xzPn{DY_6L1A6a{iYt8@L%sX|KyZ_j4+CRxad8*Hisz{MF
z%VSc1zExOrY17vI>-KKZe%HA2)ACz~lOHQEFF$dT??_T$<gK_xlUME63fkp5#jEgh
zj%-0!=_O|8TjADIoZqgQ%hYnm|7*CNST|3?)csnar?%W-YU%3RqqD1F&7|FN24&0+
zQ+qUSx!l_H=Tpp+2E9)qjdRxR55Cwtv3V)iozjC*$KBs3ub(*i_KJU<Z?(*)yj<nr
z<?6o0eCq7ekB@BJRe565Nt=*u>lZC&epq!aYN`F)ypY78rQtL8+nP*oQRa?1V)v+`
z&^+|?b|$W=%7t=D7fytPhIL=jD;7!(Xl(jXzr4NV%be`Y*GWBdBsy|8T~X>;{aoeM
z8kR|Kv=}Dqx`<|`t_-=RT|G%}*XlHl>n9)RxYx@1^UpFD|NnVPRm0`A_k4Ay7Mm+v
z(4G3mC~0q>du?8-Xy}CEOTBzkT%@cdLrb1iu6kACpm6yTW22Y8R+JxOjQerUC3k*U
zoprq)Ztk}In3Z*qsAz8NY-#(ucaCn{bz$k`qnZl?eoojS_2{rcl7Dv1%CspwHs8E^
z%Q{3HPy91k!E^Xg@j|7BRqrZK6@T@xS!+3k<=3J$tC9|GF4gJV`g)<*n~>c$yUm_%
z{MMlq-!)Y=_+@}-@R7~8zFWPWRJ$p8>eStlTUYJxTh=#^%jE5*zl)omt7}$s{`lIk
zIV*Ec(`=it<A-$>thc^oa5oK)H7H%Qp1Vw|c2P#~*YLlryL+@QhwohL6&C2Xv)=ag
z8@6wGuOG9_@w0iwc+acw_2QyrS$p%DbGrK4yuNEWY<FJZ9vJ^p+g@<hrYi0x7lTdq
zN0hv^?BtZ$zeQb`{Q4++Pe?<XZ<geZD;x9=m3UfAU%BGl>|4i!FDIRRvhi%p+QOUa
zx|Uh@8C@-zv-g~uRWi|g&Qz_W*S}sf_+MS-%yPA2W}DumYp-?$WxcEX7p%GKfzs;J
zx&c?1v$nolqqi!?H8skw^eap8T*)aS$Nm0>y7DC_%{`^^+SjCHlhw=6vJ&+RQ@=*>
zFF3U)ByZK_)~r3kx#qJ28z<=5Pb*!tNq*+JxEzNm?$gfid$%-ewol}}k0;BYy;+bF
zI6Z#G1o^y$w>GO>=@wAAC%NVRUSU<?QicC1b7g|EzaKjn=&HJW1-t*&{-f95?G_VX
zJw0~%R(qcW#swNHHT-qee_QO%DO>4!@6{ugl2v7M`9kL{`;<0y`+L?MM>lFQlrM^w
z`|K}f^K?=0%$hY;*I6@`FXHO(JLndd^)n{D>XpxhSI=3bR{in4>b{&mlws;|=eKiQ
zr5?=`4N8gH%BR^jE$Ziy?z}Jq&6_)>WgV-QIrnryQmf%>rTE<4u8YNd-tgC7X$yKC
zGtGUTc$Zz$T#nFhUv)J5LN27qM^8MX{73Y6N8|Rgx!SsNp3}T)U70?{Oj#5bcadvt
zWmJG>--hPiS^JJ(+w2oqQ{a}$|4rQc&8-RPdVN#ny_kMxhRkeYz5d85V($|N{dJA)
zQQj9~^~7J^)Q$MEIEuTJNn&~B%0(SHt*bWrO}zW={Z^Z~N*f|dj7|t%@q0htreYPt
znor?>)Wu~NTw_iu+RY<pl@R)OZTohv38kNljS^$yRxssP@@3g}`Gs*$OM0+TkMn9=
zfY5iYq=IeM8zjDDrzi1WEqnFpuVHp?*89I5{F7E>T=9zX4!zQJ^>VVcP&e!4vN|K1
z2ov3iY46Y9Ja|v}WWxQ(6$@hS)LPu#yjf*ydx*7fr1@0Ct^E%Zti^-Xv#L5ab=8EF
z#cb-GRC(+A;d|HldN!GCVtZSbeRFZe&TUS<S6tq{i1I4iA6&U?RqQv$jj?P8Z;2N4
zscc#ndhx{D9dQEJzD~X!(%CB`oH8@C_|ny@QLpSPKZtbe&7a`w$hvINtx$)iE9-(+
zb6LEe8todrWWAAP?8UFwch2*&*D`j_5|+QW!8=;I=FOLs2V0#xBo4SdaDBCu`_R;x
zVGRy@!qWn`H_evam6fh_X~VPCm*$;d@7!kUZaL%Br%p!yf7+*$`CrK;=H%WGcZ}M{
zylmH&m7CmG<(4T3m#1%KjBlyg;1I<druBOBuShescUxRmZ}v{C4|Tq_Vvfp<>u%p9
z0^7?L1mB*l+PRhO(W;6i`>hhD{Po_iwe`7`RbH}7Tv4E_n5@R>Y)yCX<(4}eH+r~F
zi@zE^<?70FnvELM<+VRd>E83jiXn96N|nFCy_1hywFf`nbp4-|q?RjxYMI=*1uM-w
z`U^t1EsGvZ{26gBY5x}Wc{d;W@obqo?}o)~#=tqftY>cg>e%A)@6plww`3<sWMm)o
zV{!jkH2doHb-b0VA-ioQ!`953c4w<+%O9gXI?UTXmT^qD?(37GwRO?9wQ-BW*2M17
zD10kx;olpwsXXfQM~zo0b0f0zJcEV)ojN(GG%r3|#cEp3)`L;|xDxugj1o@QE&Uv~
zbN`>~C#yqC!*)HAD}1tV7stxU!R)(|;+LP$I<>HS)hZW;mFu~#lq#&9-5=E_pZ!6k
z+wZTR<s7|!q4S{$T<_8zPPx7!W7o`S8SDJg^4bM0H$>THHC|4BtvK)MyG5t2xI|vr
zE&N;0<!ZcXv7p%-1*fkk_%yeEpQ$q=xOfGt(M)g8NNq2LZ<7x?vw5y|tt*UYRsHrL
zMChOJWsX28m8fgCB5U86Dcx#hube9w<*N5c!<w~!iR$WO`}&2wPpU1p)znN}yZYSj
zx1R%lPncc4GQ+BJyYK<ak0n;&s<B48%RQD&4i~*x^6AB|mrpKzEMNT6B>bw)oiEzV
zTW?#0&cBtyS;zCPa+heV-a;;~RdWJeSDUq1Jde^U7C3%l)5%XO7y|j$eESpqEHhC2
z;Mrv9#K39Ib8G!0Bo&!v)GqthUH56v(bH4H0>l_Y<`lZ}SueQZ=*F`_Og=QpftUaH
zoRm!63meY|U+FT{Uma&BZko}!X{yzYr=K|f>bw$*=$NkH%K5hF#?Oc=Zx+OJ&selJ
z;?}lbH=eJ5q;qJ6m%Gx5+e?MMMhPA3EWYx$%a=3q->u>$#ar30ek=auvr*1<Z<k-{
z(a^Xx+aqdOF1fOQj9_15R4dzY^792(4OxEk1Eo>M>JC@8c6+w^vCV9oUH9hGzZ=cz
zwytKnk)fM3Pc2iv_WIZ2jOm#tO|pw+O+C5~M%`nc+G6$FjxoAkyJxye?Tz=@or*!C
zL0S6KS8lS{U6Qn8db$Q%%5LwgO#3uqb?XHgbS0m9x34nY`hKD-=Ns$X-6>o7wIV~_
z>fc%&c1-!}<eeR_({A=1zm|5rMT*PzR$SQrsJY!A^4OL79ekf8?oU}=)xhd`T&sV>
z>4dr0)oil#r=_o1^x7?$-APL!7*vcntezCedP^%I_+y}}j;um>-*={@RUXTjt0wLj
zUhv8xT2CureXsJbM{KLC{{B(^f9QgJ+C|;=%R9LQLYFN(bvWd}a&GRd%(wF`Cp{04
zHh6m{)S98+L|Jgbn>2Oj?Kbv5ofb#wSu=DsioUtE!Frm^p10)=+0D(hx!Mb(MRP&}
za@fPB7I%K#`n#sEG?igh?BZM1S({{6)J=$9rr0+r{)_l!*5BS={I(oPuYGHsI&s#V
z3oHJ(&+A>IU$}&?B4w{tW9zCHOgmPcxVHXt*xWUKj?wF`f1UU=@at8^H5$!#)4yIk
zn<*P&v|`aBAOEA5H6N`^ncAQII6zl+`PPEPnx_|CYBjyaH}7YtTHH*vz`rGn9V-%g
zF6O<y-LrCLpq_4ibaG9g+j>5sb#v~|f40;-e52iMnFl9Yy=B(d*i6##o*t(>Z__^h
z%o3iDS0Cz0y?(ke-O~HP??s-6LpprV2?;Fuen|D#s-ilT6E7z|(P5v=ZoD|gta1uN
zzvgq}84uO#!!@6;zN>rnK=3r<Y}S>l=BR}SpKHI$@XfL>X2+5BTSA#?T+g{*P0f2D
z@#t1T_}9;&{AqDdFMYZnV9Ivi@m!qkVPmt}eYz(rJ1@Qy`+Vmx`!c)LjaS4|zr4yk
zB)TrNHf+fc8F#&yZEJs<ull8PI`G<a#>Bhly|Tqpzr2zxKHKmoHuxMDfAfa}@&>p5
z?nt`3cIULr1rs*!c{i<gn#S$t|GjKNCtUl>(EDs>te?m?&GpsIEB#-8ew-?GQ;UDq
zuQewsCr`ikXWN4F4DNb8g?rW(%}afGsq&zmx0(H>9B<upPKEuau1fvh@<sDjy6J)+
z`!Y_g{G=S|7rNlGXe`6z|F4+#y^3%R*YR^u{}j-;mG4eyt`e`Py{vp}yr{0IhQig8
zM{~npsHk@(o7WZXzWpx9k16HmoNIipyZzk#wtV@uy>=20*ON`RpR~T0tFCpdIka7d
z`=`!r%Z1KglaEg2v)pvMk|pDa_!s2~3i)+4H<beay(qeCll4UB;a6M56OoH1+!xE3
za^Qx0_x_tp9<KC0cQ>c4zx(M&IUAE1MPbt(xc}^5Wn)vJA?f?$Z+~cWc;q>qpNqB{
z{PwZbmaH_~?`symV3)h`o|<cOR<mn}+Ntf{n|&&hN$MkO^an1sl#`Kx*V9-3`to4m
zg!7ZuUQ9QhzwVu#R#BAoq}qK7XXCQjgH5h4$<lF~yi;wN8JGO*Ut1c^PTCyv>8AW7
z?Wm&ZPycLLy0&K8+dImcXP=ace|;Hv<GDLiZ`YjuixCs|Y;Z37y-;)c8vn?1UAtU<
zhuoZY{fXkK$o29wi!5)YbMCI4ma6}IqSv`id8cgFs2sT4?_#N)z38)YaJ}g-lMk%&
z+kZ~1zR0R^_noV_KxplpTcOrbp>sXl)puWh7dBnuL~Y6}Evu<zbKhkAI`Q{T$&0X8
z7gxVqFYLd)^oIAvw_Sl(Rv)uc&l0Nm7p(PZ(TZFD?2@y3eac@3f8Wqi5x<J*z@y-4
z=hTvxCq92YQDyDYkco$@eD2q+o3(y#uT<q)vEPBU*4#7G_d0sMdAzM|gSmU~+U>!G
zvo`0k2dvN0I&fok+;<~(_5Ul{_uZB{Q9I|r+ItBvL-aqF&t5L=8#-I~hehM0GnaE?
zY+c=dzh^edJK3C9E9Y6g6SfxMHEZ6^E0YhbICh=+h+ik$i%KiTeYJn;7k;;ytM*3l
zRmr(GVh(c}f}d$JyD!aW?Mo5ZI*)Jb_mG)eO7;Do1pU6%aMX9&4Ze+A{adExBtNY#
z5feE5*d<SE=i0iWy}}Y*xnCI;opGLaMc3oX?7dcv&9~#H%J?zHmA|_dA6~Mjlwldy
zuDoou-*fu*3kU36yEb})*wcx>tr&xC7li6JykoTpoKrt(k#|6e!$TGgzpq-m9_@LO
zTsfy=k9h2gW3S&_$&G2<uG4Mf=NhfLUh7-LSKe=Zd4B7;3s$ifaV>cyF?I8fRLiMV
zbI({kz9zXyYlZd680&3J&Sedv-#ecc_g|6M63}5<Ft6YAl;2*lu$7;JZKo*h*ILLF
z_x$JS=ero*n(Uj$uwFV^@_ou?tA@$Ui(ai?=g0a$tEy=Cjb)QPP2-M-%Pd~J_R;E1
zmD?5K`59I*ZNHJOUmSXJDYLHV{HhnPo-Nw!x;;X<d1K6TwSJA}RdMFwp|fp{d4_-5
z`6s-z=aIyfU+c@)hHkPvd(ks)XTPxg%x%&gQMGod>Pm9m3Bl)&*xopP!fnB<8Nvaf
zzfN?k^-umeO{6p_@Z_RZ*Z)p^Dv;>C^}x5|pN`6|{3F%=_l{mY>jSOFURUc@iJL44
zS-hD`bmC?&|5ZP`vLA>z994Q9wEfzu2im99*6;V(FL%#x!TL$A;p&%zSlwj{PHcL`
z6mI+Ls;X2G!%Fs?kbUd9clo^z(C1y=@NAkwN6FlVGnspW<8P)td9c>YE~TI}iaAhC
z-JmSWd1l|MJDGP&KAzD%cDioWtmknIK}$5}y;t40!XeB(xK%K(CbjCD9dDK56Nfnd
zrtmH=i;Zi8mUBz2I-r03bzkW@wbQG)So{v|n)l$nTC?eOu8OHyU)~=%EEOKT=A-KE
zjkjg)G<D>Z1X!ovwL10r65~X@4=<if`Mvs0*wOo)%WUKW<943oba+~6p{lm3O5Nbf
z$19>!>r&<wtyEVGxN3Rw)fK&Moh7NUJCDjw)pe}h6|{D3o@~hH3peL`xU(i$?Y{JL
zx>wrF{^;3v-leeT)uzbh)oFh(-E^{Qvd&cdSI4e5^M3uHKixmlWzK{h^B7dvotG=I
z2hVh~<yxt(@G4`)vF@){&eO#2oIE(UCrEt85wp8Cp>J2M@pAQ6pYP)w9^$ZynL|`z
zRmlqDOI2?IRhy*)R-Y?vbe|S3dSZ^SWc9_D5nJn4{akU(`ew{th1IY1Z|}PkK4q(1
zb<t-1O54(^Yd=@{96o7xWMAI%JgYM1wB<9FFo#d=eSN?o&iH2CldYG2cIDicJ8Cal
zAA0d<<i@+6a@%JxRNb{sY}VU%`tjVF9Whd`m_5~9Em9d*ojldFlIM`7gC#5T%zb_B
zUHhZ&SAAU+tzf?Q#VwavS_^_+9_D?J+AefERAJ4m<_LA`b(d$YdbWsL!KilT^5BB$
z&zEp5S><v>S76uLxtITx{JooDy>?^pg2Gwd>tdIei#-3zu=(8j5|cYQQS1_auNxk%
zKX)#*?yJaD{++4{T6-;SZs}W=)u*-l(%JZF?&9@Yxp^O*LPI`Ty^OiucZDx&?x{~J
zU#xu8;l(HVzUb$ay2cbXD<`eR>r$7@U!wK-0%zRH>6^vw9(p}xF>{(|fEBCc)Hz?z
z_)hUXdYSi62;cHc?J*^M+TvI5l)PRptv&zxV)m;Qk?nbo=Xn3P%-dBK8CRKGQe4Cp
zvFpJ~?l7&p)-Pk1y?&Cv>Yq{l@-o@;r#5<>_xm*^b7fAH>f*e0o6hfkS)uQ+Qft@O
zpsiPf`OkUInw<M0X{DBD;M~_wf_j73?$(MsSwC0EPS(G0P0adN(fK`-4A<2~XRP44
zck^eoIO7~6?ns5m4ON?jW5X5&PwU$@xheGR*C|y^o#$pg4e}Rz_Avh6>G|w7e~$nE
z;VT}c`Z8kr!fVFYR<8K6_R&J`1K$p<m$N<f_tn<ss;32$eouZ8der+_VE;Qi&%(!_
zJu^aHUAVIQWrTV7cDt#IR{j6o^q{`?Xs+y>N1f-^&AGN;ZuZ2=*Vn?I|KDZzf5Xy)
z=NwWr(k1*RyA}3aSZ;KT)8(#_>c)PpY^UJmvu6h%n3Sn-_2sc$jQjlDW=;#9w(K(F
zit9_~?X-LuJ?*Gx+)oML+P$4K`sS~Sx7{_N^13if$d^~12VU{=X#9H=^nS{T7Y%XC
zo-d1@IX&;)qn*(YL@RfmTtE5XNxpwOS9G5W`#x#MmB~7<uKA@mTiq$>vi!Pb^^gC{
zH4jzKOLd$z+rD|T;BL;){@_&(+vc5#Sr`8C%G~RdU%q(pcB{Xw<i22e?TZ@g+h^~|
zOV$5e#(m|A;_<jmH&5;CTNf?#RAsvGj29VQTV8Gb?my|smB&A{e$FXb_&7Fmz4)C8
z$6h{Jd3;;xo~LzrA0OE(I;{GnY96}dso(#Yx;Nb==Y!9c*j~ENb;3?%@3u3i{;p|S
z(lyV+IY)aTKU?+5FRoUr6c!ixi27E}lUvzeqjy^SQd!pZv#!td#l&Z|^1Rm8UX#wX
zqVz3Wz%H|?JX*3Hy9$}*V%xM%FSeSVD*E<B?!8ZXUg`G}wu{f)#(rY9-G_;8*ShRN
zvNcby(6XwZSgLzkUH)~6^5<!_@l%}tsecYUsq*Q%XypD~`}E3QruePOygFHa)tT@)
z%TE0Xka_(o<f(mP-G}o}<u}ZD9l7`U$^XCI|J;+mcXZe1%*c-IuT$6YZVleLqNeHR
zOG&dRJGCoybIfM`n777(#~_bEWlQSxonLNA#U?+0`EfPV;;c1V6Hd)j5O;lWeyzbj
zub!0FxChgB6nHLWziLy$=qi3E#L?C8_!A}b<Z{DB{ueBN@R$lJeiuLEbMM*Rkad5O
zAMbPSiL*_uJGyvY&V60YptG0%?6y0}ecgPO{h{~WeMO}oBC~x$=c~<iSij(WmE+b+
z;oDaiUtWCUJ)`mB{0*gVw3IKZeZBGLyNF%DalVsg;R*#u=B%E)@3p5(iJijl=~>%5
z7wuoMU+HA@dc&QyQ@EAmkMzfQJ-Mc~QzHM#lU7Bm+DAXymxMh!qm#2?XY3J<7R!p9
zhJAYVU)f(3e;4mKt2_D5so*bc9e;A<{~o{narLx-P%W#iJGVO?zYs3@&S+=O{d6<2
z=XpilF(=)#p9}iUeWUn9_wretedn@^XHVkXddd8o)n3QRzD12Uu21u<nZX?2aN_(o
z<AOc1@vhsP+OE!&;J)v<G1MUA=KX^k|4nweEw$Qv!tZ^a$;RycTZJrd9Cw)Sxme5k
z!(x-o`|D?JO?Q*{y|o}Ty!E@<&$TOgyUb!+BzIVOZSRlz&E#;&Rq=3?&9OIoMQ*z`
zPrJs~$2+6w-;C*hUa_p#*;3>uy}otP>Ah#IUT@Ex|3@|M-`zaBz308lQoCMv3Y_Qv
zDqv#s;P0BbE4Ftx7W;mY_^rw~r_3OaAv}L?*7Jp29C^DnB@LcBEaJM7wtIc|!Hov4
zHgDGKJ9?zeCz>z9PjZJ1f2=_1saM_?>Y9od$G2QFST!j&`pMmx8I7NhbC^zTsNHhq
zOVHc2l7mrOyDu;KJ&{qbN0yySC24x(l$XExX8h9GxY_FHk+!Vd(35;Go?brL8M0ox
z$VvU|`RazoVtdd2kNPa~1&<#J=CBv9`+Dk;)Ad5#Ib|0EUTX&(nz`?=&!VY~pW~0L
zzf`Mua;~-HJnPzfEPktX_sb<K%~QK%f5u@)=bd9R=F8O&)OQLiD%hSr@^yDb{lfVZ
z4~9wE-Aj1)tyE2}x9FkEiC;`Td=}cdy=!GED?3)4U-fO<jK$uPV(Vg`ze{$v{JC3}
z<-gw1M{6a7&1-vj%O7exZm6EIk<WOqcFN6;`w1Td#n0DWo8y%?^<{SVlf}y|zXwUX
zrS<;!QmQ7u`@qk63IPhH#s|OrmtFGT{G8y&ryl<z=iHdRJyTA4$zIMIk*Tj<+5Bu~
z?wON$^u#*D>d#h__i@j$m)W8l{A~7Ro%dxQ9~E+2toD9xf23Rgo4^_~i61SM$y<t2
zQaUm=JBf>Uob@%Bo3Xh5hs?ueGMzsqF6ZA{_EWog%l{vb)Bn2OEB8!Xv2a%u@BD|G
z|G!Po$orP~gV#V#{f3x|hS2H#$B$?SKl}dQMnd*H_x*=oCPYg<f73Nx?=ibdk$>Ti
z-JQKtS$1w)+{05Yyo5#M#G0d>XYVO*{mYU6K$7nZZ^5GAGwEL$*Ka6WJEwAHZBY7o
zf#b|3g0+>C4whZc4Awr9_HM((Q;qAVo_HwC^R2Dbzw%_%D&8|Uze*+*uU6SEm$+ri
zrNW$s$rr<<K0e}~X20vnSL>RZl^agJdK-P`=8p+)YdGUqG%sdmF4-P>OytCxf9%Vi
z-&3Ai&C=E%5H8QG&L5U~a{06w`@W{DnAtDum_F?T<1cpqz|iS$tGnc!{)SuJSANgy
zCDQHsp|!K6DQ#NzIrHzi$IjQu{_l=Y+_3i(>jjg|&-EvF#69?WPvKS4^+d(p$70^}
z@0@){slWf)i9|o1Z$jUgdhMDV<pUBfuU@q9(sH&A*+$`_@9CXq@9L(1yT|abxt3?n
z3zKqh)@y3@-8%}W9R4XPHu?4inP(3U2&mtx-5UA(i}#$Fdh*+3_8s`qX?9{gr(M8r
z-Kb!$clt+WMEh-+$sC`}?(WBXLHN_IGoczkMZ7O>kMPNvWFD2#`=uc1z#Yv%rcG<^
z&r++?KUpTn6R$l{dAY<J&WEBeL?;=?%&D24bo}!kyBnExT5IOXRxC}4oaueR%)o29
zzoPntxOu8q3)_m{ZrwM*cd2Gu)r<FhkF^=ye_8CPnwet7t|-6qs_8Z-_nn`#Qw0{A
zp1AN)Wc`_%+5EqpR|GpwJ;n3qpn{|PR?F9AlaAcqR`jGb&Z?Qg(NFGn!rN<XnY%LB
zGd=~!O_O<@e>}3Tq+{arYR=kSi;nY7I>zYs%R2Kj!@sy+i&w|Q_)oHyIdYtj->jTN
zMrPUb&reIVek{!mJFhqK567+fOqV>(Yz6)1cL<p^Tr=y-y_2f6({rJE#?64T)*Fw^
zCQeq~@?Q8^)Xd2bkN%$`IeV&i`UCzMyH;pMuThs5v^4W5-?1m|U}K!wIlT!#1a3K7
zwchr&)YF}G<IKv(lXTCCe`GskTDWgQ<kPY@e9|j(yWF@JG9Q<G@m^?Blg?{n!)Nc*
zZfZ$wY2hoVSulT{SNj#7#gAu~eEI32m$zZ+_e)h9<}VD6y>@lt8>!2|h1bkJn{1bR
z5)tv^UtFvE(SEsEbyuQ4Dm$)!6w8_YT$8z7tJu7I``m-v$xk#V&HC@0<hrC#Rim!&
z@cQ}BcAngPWV3Qluk3?o@Bhf_sP48DWeY0yIcD~<;-8K4@4ZiiHv8P2k@D@%>u2np
zp#}L<k3DDGVQ`K8rl{I_^^QFjK0l=o%k9xkyZ?u6<4MU&6B*suoFs0Frseq=y_HYi
zaa#T2wUn1H?UNoIllr%Kxn%DT%{;v#ZL@=KpRG5z@h{WUebFAVxmWI(CcWfnR&H*Y
zRpzOCH>s*<-nNf*P8AB((_h}Gt@*n+=4D1>Ow-Pj(LVb2u}e38_;&r|8~d|69~#*G
zYukDwH1Ehi)^InzX^sYWj_=&49B?No^A+3dZL-0AS35WRgzqntc|6s4`{}p)^4!+*
z34ANPAY0dd<L+;fTh^!f=IlFutW5iEtUt#VfoE#dc}`Ex-z@kh{fAS_v!q#9Z}=`t
zV%%qR<z)S~6tnH8zVz-ccw+Lrtx3XK`pEJ;q3qk|J2t4Ew7+r0`j6H1TMDMu2Y;Nk
zREn2evUiiVPTr;;&rD_>Ud&Tw!uT{lmFYn*huw!|FPXnhik<oBSJFgh=EXd03E5A@
zHg;y#Bp)u(WR5!P5;1pH!pYm`KSZ$W=4`UEJ$YnHzxLtSipD=tb7p^kaN>jLBF5%F
z&DK8mD!Q$IA3tqvwb`a>$Kkwv9){byokFfpil3kS?;s!V%J7OtF(>=m#~-XO<2snx
z`s0z9^)Z(HTXQZ5S)N(h7<WjmgH<VU*8SLI)2oi}FZ-qluU08zDrxm~6_Iyr4*XY8
zt*Y_2rSW6N^rlyjCe|1(2nzQRl(uv}lbrB_$!QbMkKK}cZ{<qw|82m3kKwmgi5ElV
zB;&_-eyr=?_kZd3IV)!Dk+;=qy6!#M;c&(`r;QQURv-7@p?u)a-q3gD>>1zRPZMUY
zZ+XlZeD3dg!H@Tzy}N62zHIx&36aTP|0+F<=eroed%-d+xj4t}=J8hjA6FJyZa#7J
zpzEpoe!RsS>L)yYYv(P0RAgiLIRR}+iGI&r3wj@~kKg**c)ohSc>LsU!w~OTt=pfU
zcq4D}_>x)nM$Wt=--=UJqWZkATGXHG`CR<XBHlx2e#ghUX!-N=yC0lZozd@WY$^XB
zNRs1(j!)6!dHsu*pTGF<zN+Pav&)k|vmEhWchom%XL3)B>>&?*!>`9oF6Sn??XGp0
zHuYtuS<m7<73-M)=S?~~vsz@M%#v5``f-X<SAI-<_Aa3Lu2JghHDA_<=<iz~F0WcP
zt6|ZdcZ}~J|G05{@iVoWe`-?F(ixdr8~$Dh`Tgtr4L<p&8PyZqyngKJySTSx-qsYc
zTXM^<1#5kpaqaSth)VI~A0Hp-rq8Ymd?u7rH$BDf(8<YxhkE5Qeuwtef0q-^=GQ0*
zZQA+DXd0`{OqZs&2L#=!tUo?(+{XCJc>B#8cNzak#om0`=GXIi+5+i%e{t?|;VF~f
z2|d|<^0HI7O3QurANx*Rs1RxR|M~kVld>{z7G=R(f8q|fpFd$*<#J&CyH_?pdWB}2
zS=N;B#3ZbVP}yv9v^RuZ**Wl3c(K;>+`TS*tq-5Y3jLhF>@xSut)<(dcfb75y=9Kq
zgnQTTFWO%9Zu#=+nNM3qqDyw&kN(lFwNFF&`l6<Yb_<btkIRa<KUU5A_~ziNclKBA
zy1xFTHT(7jxixRN$}_VV@{1c14ruRmKFYqK=D@W0C!TprGXC8R^edUVcm3Ndnnk;{
zpA-k|-MRGEpU@1ENjZD&`&{3tp=ck#b-7yQ(4$@!{xfrf4CgQYG1Fk;26_1huWgPl
z-M&Ke-Z{m6MY#-n;%bGIcRL*2!=?G|j4J0BKEoS-P44x-Gy2<ZKEvSLROUJA=l|}k
z+;sknp-sUAbzAujf3B$r2ge<YdwcAC<FWMLk}r3kJMu&Oj3}eB!xwY6)87TXKcrkQ
zHu1lsxb2qL|3-#mWlcBjZ!Y-pr6JWkX`c4|sf-nCx)0iOOn=Wjt?P}7_|C8AR4(g=
zOZ;ovUe@<hrF>ct%dX!W^S5+8;j(jTl<A&+ev?$~yoteYZ<yV&&i2_Sr(FMqsd>`t
z?SEG%vf0gf@au(<E5F42w+RoX3b$zASN~pC^y{eZy*WEhcpEb4uWg^7Zt`k<+q^qf
zJv&nx7K`ut$o%?x{DWoRUDxq$V}ADRVbFZdcY3q6w|B(OKV)wfb<c%kJL`fI=YDg=
zb{w6YoLe{Z?S;TyCE_!)PU%_i)_622^wMk2ZHJGavEbjgZgGkJ-n3(t_BA{FlGM*^
zJScZcT&IcWOM2(>qA7P(yo-{%r!_l&nWir;AoC*i?HjJnGljRbHc72@sXmmtJxlxd
z@3SFNyKXO>p!V^=g5(|3zil(>Uwkq2T3Czd`R5vD?VUESkB3kC<5Ak~ydryrZ}tJp
zh*P^wB{M>&N3Y#9`~K1$hDZO`JZoDUpWQCensOoJWBCrwPahO3ljYqOn@(T0jP1nR
zPaG`@i@b7A+jRddT9z4-`r%St&5D}N<!L>;L@sIHnKLgvx!C>0uldU&EHhs#-P+~y
z=aKdr7ABUzj83w5OUfe)gl!+BC;ie{%<b6pPmJjybBX*b6aCyBZ#ir${vQ0aG;2TO
z>^i1{3%(XKS(@iRdH%v6ufY7{gmde3vZZggRP9>wJNlgJX0x*;HN7EzH}12%+Qat6
zv%7?!sc21oZr6|b)Adusy1pkIG&}R7(=FSlxJ8*+_vsVYCDEFGT46gGT)Qei*j-aO
zA+ac3BSn7s?xpV*?h&roa`e&r`G)WLXXp0DUVXRE!~EgROuhab0ghjs+qMY3e5bhU
ze)!?V7hhjJ?`bFg<V1abWA(AbI9nmT_a?V@N&dK=J!kJ`r&r;Ag1;(ykGg0dKemf=
zs($kY>w=c8_u~_FFZ<>Te0sfo=8V&Vk`haIUsaeLqfl4ebo2i+nd8pAsRgnf!n;4S
zr6*r_)B1MK^cSaPxAI?nQKBBhb)5O&gUnz1{-@^U?TPoBcJ$v-6Yt5B?^LguU%WS0
z%(r1u|GIeTrK?$5zvxWYKOWK1SDdupVBgBA>((`ke6N03+Y%76@44h}N9n)H&Mh^T
zL8pt4toOTIQ@DXgKz?meZIR@zc8mL>4Qox`ow<{6slM;xJO!IQ=kHi^&f=f{IDl2=
zNx`p|UYla{4hAo;`2WvB`lQWW-EX&<rYJ~Q_{Ik<>^|jJo!4|DzE#5F{@MxwpEugC
z{$?&>kD5{OTW4{-l){f4@m=0YbLMZFn6>s!xZb-@9QwXY^L|_T8(fKu)%fK4;TO;9
z=7&cW{PV(>WF&;_Hc66j`zaR6S@ES~(eVY24<3HyQdjMj|69X<al(1QB!;`kH#}`u
znX_VrUToL@lv%1hed3kbJA}V4+TEfPH%sK{l;10!Etoyo$60m1%-U4TBa_nVUddj1
zct7P$jP*Y^h0O<EiyvLy9re=I-cRLccuv~CSw6pN!<Oq$J`um_694=kw(DFb+uXR5
zr2SX1bE$NUAK$F$?^7y|CO=m>wrue+gNx63)WXb9uo~s$w7+<{;`Ohjohj32%=3F7
zzvsZ}*rz_5|Aa*URe7bg>&~e;Rdu?@&hBP&cVB-o`JK-7<#CUeWu4SM?l$3E#)fNG
z9QLlsTerZ-eu>r32)WmcJz>A}BK)ha#b|tVmz3n6SW`dwOxdh2zd0Y}=S=u{*ITCE
zYm)Q!<l;#iS)w~dD(l5{op!%3w7<9i?$hK26TBuFMOmobOaJow<Mgr<|74%Wo;AO2
zz&G#lm4ikBTesTvPyA(MzHj1#7u<7Arb%(S`5Q{vvd-i2o~~zf|CWFJk=17LS8YC7
zZgOR=FIF`$`xH?ueDsX6TxCnj&IxHR&zjHFmwkA3VqOzpWyRy*xh=J)b5cKTi09bR
z>$uBr4uit)eFh6Y#EONLy_B%?Ew8q;%$C06o>nsFX|LTa{$C#JbtZg~PkghZ(tq9B
z-i43U*8lm)wQ`<ti`n~$H##rezpWN?>}cBO*10;?ZpQzXxozGzbAh;-{Ii3PTiY!+
z^|QoQNL8M>?oxRAitE(8c~{=BOfLWXW&bam*#1E2doFXEH^}w2{MIjcnlOo7K5ygH
zdnzA$rDN*u_jsrM|Mhr}!+q8bIYleJ)#TY}e9r1LDpGYZ()@Ap2iwfz=@$1^N$6kr
zH|3VoQ;$VmI!2~f_12Z8`QB4I@n3i6s~Jo;zp$qieOi;UOUd@CsoKIfx7)YRSgw&{
zQC8laP;oZLQD*U`8A5H>8~z*@S^brNr+syEbhdopZYd*O{wMY+#kakGaH|zOYE0_e
zW1+L(Rcq>T`FAR}YFi#Jk9&CLU|LWod+4m0SK39G-<G)5PrN7Gyywn+#+C0mr>E=Q
zy(V}1(@QVqhx&30EO(xoJC)`3LyhW#enzu%1RotJzUIvTvnKB5)oE)jXNE3~W6$DJ
zzyE8s$<b|myP~vbmd|tN@BS6zo@{6O?BTTCH*fLs=s!97<%hfGv}Ma8Jr|p07w%*5
zjob5P!d=0Nr$$TcPE32xJZ-^;z^;&U-a9sTznk}XPE}@y^8DLsKONV(EpxK-cbqrf
zi%nBJ+dxVq?NSbB?53AIKc|WPQOz*n>1m(6<mmOi_B9U2E<1fNW;psORE&AIw{(Dx
z-KLL+n0J1EHsd}|!4vPmnj#Jj#+@c7*(2Xv7gX49cs5%+z4f{=SIwN;M{isY*|uFM
z;LL`izrN4B+bh35jk_gv^yl-)>en{Y|C#8%SbE}}vVqiTvD+6C9PIjcywrU5>Du30
z?l<D)KQb)+bR$b<)tindpH^hV&eX~?_<Bk5+@D{P=jK=*{`z&%g5^w|GrMEv_)RGd
zV6w4JDLc4({hXX9`>oGruRlL6{<dNH5&8FTk}7;-D^7j(J?m$%@zv7*SD$yXNwrq)
z7U6$za^lYgLer~WyfuG(iJjBTSIXDdcfx(e@VWVoIaaAhD;IaR1<i|9^hvp%He=S_
z_+xF88m~9h9Gp|nsqswn(NXm~-Rri6rV97<vhj4;RArP-eH@f%?V9EOVev!7K9+5s
zb|)fBycTr19y-3E)Y`StNzq+xvf|{QjG&Di$=aWtjb`%fY_f54J?tEvZmqkrGRfQ1
z=qAs}srAQyJpDiS>KvX)Tn<92-+z7B<eH@HYBgDL^2u373~T?}CcghZWB*<+qtDKl
zUKgLq6X`5@JN@177r|>2o-EI}8Kt&ugP+xB=1JPyJN5UUU%V{s$kgntI-ca;zt`OL
zpS|nn3Z3@tQ?E_y_taTC;ncGessAS3{P})U^p=VVf6emaXDMu(r8N8WMBo3c_x;{p
zxRVp>5IILC-Dsbm)o;U{Z<ycRt#;V>vp8g)lm3%Usrz2?+*A_TEE&wlx#F&uhF7?E
zSNZ+BN_RvP^>27Cn9ATeZTjStB1@z9`i9##Ev;}^I`R0dy-(!#9Iv`H<#W5`>w^Ld
zR^DviI5*|3zV<JZ>!FEEMRB4x?zeqRnA+OQvomJel~+36@*-Eo1tz@8St_}o->8!}
zC|c4eT5^+Us#sCVHlvhnm!9rwx7@bvRPo8b90$C2ES@^oetu$_uIn>)&1;Xg&+vZo
z(d+yw(^|I~ufy8TOtTDE_Ho~FV(<F9NxD-NH}5=m=Id!6oh211vtFJ1o+cqbKTUI{
z;_TCtcJ4oQ?7qYg`^zbhC&tfzRNfZ<=(O<arw(enXVy$~y5N8NU|!Vr=`&}=Db74M
zA!>GFR$X_1fBDb4C&qz%Cd+5cpOyHw+2rLFt;_%a#g^5tYF~G}angK`aP8aLhIwn%
zJeLRGiQnh>$F|wSB<cH6dDWf9yB#kd6qc!Tih3^OFzcqaxa9ttnLB<6C3EgMUm~b=
zFIjDyo7QB-tyQyk@;0AfynNqQGEDux!oR}?fA?Q%{AfONRqj(puQ(?~{n_<m>1DRQ
zYLk=RW^c}U;_Tw|G&be&X4#hR?=$8`s?R+;Y3F{2Kj*h+zBQPyl*c99D-zj#KjmrN
ztdbKOl4ily0{pUDZN7ZxZ2pU>c4sbsJE|9DCO&gstol^H$x-nMS$dwu$Hgn89=x=R
zla)?>!+%UdS~@xB4bxx2hnrGYPE6meB++S^w{Nz}-l<7{vyJcE=DjGYcYpSGyUVUG
zF50H$t)2KQvF*xs)z|=qy#@!56isAS|HUzN+v#oJ5A*Eo>V5sqG4%Egp+`Y|cgnh|
z?^il(v<&F=&b60a`1GL7#-}PX`;Aogmo|SqoxeGX@w~cqWm)_r>y4uCmK!hmU(|WS
z`u(J1>Br`MVve|dzi0D?d1{mWHVMTmToqCja;ZLgAkDZp*CnbuM@O%~ezNN1n8do!
z4sX>Po@WgHwLNg}3^m)v`^WC%w(bx97T;^q_x=gGd+r<`!`ZWEQ>N>Eyp^Rc9{1if
zUf=NaFA@Eic;lJffhXKczG&6XEIhZau2K8>?wk9*Y8n3%JojB}rtSay8}D`>3rO$$
zq<rSR!0cG%t+7Wq-aJ3Baq^dP*469xTv<2c)eeWMr}qs_x1S4>ThMw~{N4kX=*VR?
zS*<tLe){WH<L~7^=Vj14ua6A&O1r<6E_=Ub(ydd;TUuVckbRI+KAYvh?KQsf%KN@4
zKD}M5E3?nwT&J1FlKn?}Usejuw(N0eQMP5g_DFM4@^j7ozLV6qnw(vGlx6nLPv<NI
zEDx<b829h^{NIuc`zk+|&*<A9UDqfB9?oR<znr`8!kk^Er<Rs)U#aQF?i??>>{DDx
z+QU-4yprOlHQU7`jJel;zO|=+;cDfQljp@OSmXQ~&uq^({`=K5$TFkynZR+U*+=$C
zZ`$7z!&LP8OpJKlnuF3$pJq2-+xsMF+Sb{VkKDhl^ZIh~%ix{an`XLB`})J=<5iX0
zM?YoT$L=<KwpYLCZHaZoneb3M<3m@26Zd9TD$I{c__Vfi(oLfuVeyPn^B=XIG|iqK
zC>#B)@t{G#sls|aw?BDJYh`{!Da%-zX6##~)OT`|S?;;7f*sqO^-enFv^_ndW?8eP
zOy*(8*HF<@`cLl9dv-3W>n)SSJ%)uD^3Lj3xv!%=?mc>R<nE`{TF!GT?&|e=?*4cO
zG@%q>pKzh@i3oH1+2cQK54gWRb8p_`yrS7P&c<u!9+$9?)P4WPt3lnpNb}sAphbU_
zIdv7S`o3PS->|l-lHccd4A-YWOBJm`x4BQd`g(e&Eyo3WE3fhk_u?iRZ=BiuOhERy
zpTPxLt@GvOQ#+?G^SpA#*5&`y&tJAM%+q-t-);E)x#u>yruDjq9@g7Bynn8n`)ra@
zKf}We`{v`V@)jqSM|K{Mys_fX4~Ld{!pvW6-mZORGJA$<T;<eNmJUA-82;+-UZ37k
z-1gP;bK^o|QT~&YqdE(->kilOY8`qg%>1Q|)$)G4f|&W!FRd>uvR*Z9lA9i9?_D!l
zYIpyfoyR;vg7!V*@_whEKC|w4kGHC^-ds!H^6cc&<FhOE{c_&Pt;`Wr7I<_(pZ`Mr
zfu7HD8h;Mdgg$M~?TY&xI#qw>t`7;nHh)=l%JXxmDF3t7TG2AU@4I!p)9x;-f2F!^
zy5Hw(+|QmqI-_+t|Ln$ZiE{5Rvs+5tQ`#r^=uWD!-d~Nwuj&o{uE_Xx@%%T#FRSOi
zs(yE9r;yG6oqrxrpZ{~FQAOQz>-#J78}@Wwi+vc@%edgc-|hR(^ge2MyRUWM{-){c
zR+xR?rSMKm{akVJE}hk@rl($hleP8FoM%eYtG+CMq`htD$>p=Uy~?i6nNzW%>)oN=
zX#2T)=C^FSu|Me5#OQa=w=A=o9rE$=%Zt79&RqA@*V^~>#9z;hS2cg$C!6OL?fO_g
zt9kPMYsSYs{Z_sU<~#i5$dS`FT8U50Lia{2Use7n-haP*`=ce<JLC5@x-C(cdViRu
zTv*_r6N}}?^?ic+A3OIP+5gCXYE53Yu2t6=_bIoPdnX=0{b}Wo(~nEbR%=_ePtCn@
za-(+9s%yT};_cinuanY0y<qXeOWVEjwH&Ve-0l;ux<2RiSEde~{aP1J7G2$Z&yTZh
zN19*Nl-H?Jeue?xOlSJ-{k%p!>~wM9Pm5V~MHf##72E#$pm1o+#MI!IUdz+B@9Z#1
zv0TA!<87h8=!XCH4XX?n6|azqn^$1_=e6a3ea4d4jIMJ7SN~es<+oldO72Acdp%D7
zmS(~HwRv}&%)6{^K6tu7L+&+G@8yj)>~n)pl-%7E5W3e(KB++Hc=ngoJ{)tN2v%O_
zeq_~f`K0Rn*9T5{`h_+vdi*}^yOmwhhtk)|pTB!NPuk0KW0TEShN`^^K`W<U-#0IL
zW}9%V=!=&rMUyVCT=6HGE&i&^x2*V8Wuboxx>)^co~Rr=JH6!_+s?=5&h_2OOnsP|
zrp0<~bA;8y5R=f_xl>jZ8(lcPa`9W2<#O$pUY>W|cj{?LZoFhq$(NMKl%I!}?=WE#
zDZg>@;W}p7{JA=L*{YWVZcg?IUz)tV&hOjGNxq@_pNcjsi{@@`P(2^N+<L0as*k&Z
z`u|!?^?y|Fx97W2oO-kL`n^Zku13sUKKtFAj8{+YXX{M4{W?<I{IB&{*XzsWY~NqK
z_UdZC$L4tzKRn+$So{w;%TPFhZ{^e0_3REIjxk~(OP-7E2q`I%?CP5C<9#k}iO%6~
z{&LGF9d~{kQ}XG=rkB4~SG*|EIqy2n^;+YqwQ=e}FN0NATZC<so~yh%W5tuQqPp!r
zJBn7m@i-cMt<-i`(ABHlLRwK@8CKiG&0BuQf12;M>WypV95g)ZkAB<Bk|(M=vG3Hk
zP&?g!rJwbeE3Ew#9y;;wO<liL$5ua?^z!;_gOeqtUqWB2{hqa|U-)g+mstOJ(XbT;
zp01~T=jR!EsC=FKwRe(s&~C{u>L;rNUWM*?Wx4M89nZEZp39xfW^a6_y7}T&>zC(!
z?^i!vnti`}-JDx<a*mvBd$o}@cCOdEy|-re@m*Qxx%ctwse#v*MJtO|SpM7=U9d7-
zZsxMtzE^gi`}D(q)4#7L9v@pS_q*g#WdHfAoBi_ky*Re`Qe1w{^y8LaS1;f3b538r
zZJ~$y;>kK%zw)yAYEG3tdbDWeCSJ?a0hWtb^>-~#=RdwkXP45c7i!D>_$E$UwckBs
zb-Li(FS_XgMRWb?wQ9qkO#J$kZJA%qQ=YTFe0L*u?$1eHRV-T{nKxCZ=pt);WWJx#
z>Sya8E!6sYW35Ja#QIH!S8YO!PCb6QF|W{Jiu1DPB2Q9g7j2f@xgsZM>piX67k;ii
z#ee6|;<$#8pK(iHTw63RWnqy{zwqyhfY%HwV@>(5ZuH}u%ey+qNzczt{j%Wm#h*Pb
z!>$@nKebWo+{%>DEv6Pt9bFE4J#@KOEPg#D_r#y?PR^?9qc5I}<G*mCdv&qQ-J~mz
z=j469a`rl>&XY$f&bA867B7AEc#GYx($YsuFZXM#z7c;keyR3UW~+~kC-e$mZnapc
zl<=eD-?LCQ`~2sH^}j^dt)F(k+|=oB&)nCV^$by_?&|aMj7~dxth?`B$P_P|vFh0F
zk6X7cpCKumUb&k?wb|kQ&R5gTV;*;(xUP9_>Vi+2`;P9{`>zx9K-_I-iBgDsMwd-#
z-Lg-~Gq1%RjLuts{J4Fm{po#+4l%8K|LcnPogLHlZ<kjr__L8=VRT+;(`Iwwr{DJ;
z{eEfghh+V2YTHjbta+t;_TbC>x9hLIYzbrR%rgu<=*P~G*Y@;T%C0qjYc8|$#0p&c
zc$Jk;{XvPh%AHNdbA2}XbxU3gpZwvCqt#RMb)}vSF(sWnljoJxhPb8*?^00uKKZ4^
z&31MFUwcD?d}T}O@4cVLvhr0)LkRzlu*|JRKeo5OsJpY^ldG}xUnjxGI~nz4_?sVU
zvy08GeU%gT{K2XR%e*B@zPQ}m)v!8C_;zW{kt$K$K(X_aWu*5ylow9#eOVaB#WgQ)
zUv&6|8kdiPEx+{)KFn$S7||W&HaG9?v(?^7C01*epZHwfB{;QgZrwMhXuI$aonPV~
z9J;7<^Qq^$<=v*WHL}eyH|DpWt-M!Z-T&n(-}B1Qf7gt~)oWM(vUnNv<932>)V!;m
z;Vt?0QWeaKd@|Akb${LcJ+kL45?FOW;aY7@UC)l9e>;_9cGSfD^<4c%XnI`q;?=*h
zZKdiq3Ehzi)3I7`oi$eVEz`^Ld;`<j38(+$?)z|Zb<e*&{^!G&sf%A-q%OWwGWuu-
z+e;aq+rM`*?$&Ew<1Q9kD7~1|?ECV#M{X}G*X_L!ciZ1QZr<&~ET7FE=hT?FueiHK
zKGdMRSSi#@OWr#5fZX9<Df9R^dc~R?|88GU^xn7Vqipl!{pK#ulg0XfU)KNl>~76l
zt6%)Zb$?hCKOVjp`d6Zar*`T?JxiyB*EXM1KeFvjZCd`(oxlI;KGjzgy{2}y|9ZE{
zAs(NeOK%Uq`+Rk$M2XG+(6;>nKY#fy{#m*}W+hwaey@F1Ic{&Xdkt&qn*2TTt*aI0
z$0Y3f#qGS-Wl=4UOuqhqK79wpvspIh4n=jnb!R*4UtaLW#r~q%>u&w4lOi8oI_mo8
ze81t9ms@Yoebc_{NxYqY;J*dGrzflAer1!@zj57mepJG%TQZ%p`my_Kdlet9@_4wH
zv+lLqp?^m``5m-tlh<FCUNK2=d)lq%pan=}H>Ko1Pq#nu);uA28S9(Rf_I)b-&Om-
zVXwC9`jgo3_1@Fw7%WhcJzdhekN1<)k44UVetEBba8q@2Vf*c1;Ro`MLp*-;OcqwM
z=3HwfcHHLL(FaQnjtae5<7fCWmc7a^a@Ooi1s2yXUP^uPNya9~-ha~5oh<j9m18>0
zk}D2;(5zE<Kbc{rhIh67bGOA8)EJiMwJ&6Dt>V3^896EQ^_*CD=kz<9=J*-Cd!6(k
zM%eaPUC#aR>o*s8#Z~St-8JRwnpxe_94~WLO?YyyrtP`k{Ot|F50YJeSzebvsKGc-
z>EurHj_1u!?~Cg)@~)MUlvL9ClQHA^{T1`NXZt<<IgP=;tu_1l&fhlz{r=^#AKdS~
z@yGjQAD`b6((g9a-COfiK%eisK+cK_rW<xTBx}3JnLRamSsg9)_D{%zApZ?hZXc~&
z@y2WWy`7=U)WlE9%OsSn5WS>*=FYxzDW4^t*I(p+5;41K@{O<={}vXv%r5s_dq$u>
zS?XBZ+Vdx;G5Alr`okvrVO?8&6hr2AmGDsg?UfA95#^KTUC)2DIYeP^$z1dO^Ax|>
z%cy-)FTZN`_I1*Sr;A(8%)fT`?u@jWgYEHu7<VO2vMx8W`EEZ~pLw}n-IOI}%Ud?f
z?VnPr`03)!mOa<3<kzdS%}$oe>2)~l|LgS34eU*gc0sGBd;Yn~XY*D+UDZC~;kUP}
zW@g(ptD-w)><&8Q@0eBlR9?rhHhbccw7x~hy}f@h{B2(TB1hBs?4OlCrB|;HtxMio
zW1sx`MyMO#tow_!8^0GGb<YtriVVJY<^3E*zJ}>9PG6VkvCwc@b9#A1*Vzp_<|(!J
zAK1+P(!O@ix2$g=3dP^eE|;5~+JExrPJ?zoo&uYsyy9Tvp1%A`7oRKd+;Q-lv;NwP
zb!}|BPJLgy%1Sp#r;4-A&gZu9Bp&%YkEVW<{iS{Vmv_PcW8N{(P4an5oj5<qbNteo
z`O7Bxm9T>0S#ROhPvv)fb9mt$e(Idghm-aZiemHAm8UYtYfp?9sDEyL{?*m+9h={4
z$jYxT_}(o0Bd0}qznw?^iHGHSt&@IVvq%r$QzDruWSuMX?%Sr1Ygu+K?=$+8^z^cS
zWzhYO(E8)oU-K6}sCc?v@A8>>`%ff&{Vbbbly=sJ=WFrP8vZ(s|Ia>oY1dBFofbCf
zjR_lvyyfA5^*^PT{WMkEXXAS4k7DKHor?Rc?xe<=o?K`2@poZYt+>Qnz4gge4@>p*
z*(?9?x4pQNepYjDMW^|*?VS8`k}Y0^Tki`t(ww)tuk=gHB-m=2d$YdP&gT~V<s+TT
zSbTlg?qe}RO3crmuk)GkiM@$M+wAR>6&9)ntCIOY1Wr2Qr|lm1VyQ7hMbn%=PkFB;
zNiTW1Xs=R!vv_^<g<mW)JWexD@v(e*KB>`a!^@Iomv(DCm}XMScVKpXee>C8%{=p8
zXw^Gd7c@QYtoBiv^rZe`|M$eEt1KnGbC&(Sx#=iteeQ%a-}N`|ny7s1?dngb)*hYd
zz3o!DW>#&+ZB4=H-PuOEYj&@d`(Tr#{rKsN_xt?52lLPPwRv}0ZAHT}hPD2`GIM!_
zzA&Uj?%dkB{j<jTPP<Ju-m5<IJhxl_<HR<d)t7BTPBzxOo3bVBT&U;H9QUGn(cC~Y
z*%{SGPH!`H5;<`%UUA}AA)Xm8-Tv8azduL4Jf(yC@Y)S~-TvJ7GkR*;9H@Er&=;AR
zf1Br2YxeZ#UP}_b)A9ECDUU5Y(-vK@QZ6_VCN*FB!J!EGl<*mQ<|%xdeYnIv?%ku@
ziNCTp&#=kP_cz#n_22<*<}Ff@*Z#dwyT1Ong!TRA{Vc8g&t~lSYM1->yzz%M{h%d&
z>-`@J>kEsUdDhnSOkC|OVIPt7>b{ThU9q$+x7k-l_r%pre|t)1-JC?x1IYq%JA&RR
z>#Z?5u`IHpy3Z$LLb3j=Uwd?48s9m-)7yQ)jKs`WZa*hGY*R^`d*iFc%M%RB%!)m4
zxQs7P_W6BW;@u{@AG<y$Ox`yAxP{=Ir*%1VUgw|PRR2dL@#?M>Om7!6w8zUo+4(xX
zv)<&;jit<Y{>+`NQ@ek5aH7VV<1_wD)?xSGe=1=1!Mvh*+m|hm$g7=uFQMVyM8ic#
zl}`SUK6CN->Ugf?3XS{RB40x8_)WTLf9OVMTG{*KlKcOOl`B1-lfnAURbr2U+dQR}
z*7-u!DkpzbOlkaQs(0-1no^$2Ukf^K{Na<`Z<xjG*KoJL=t*~FQRTzQ9*g+2j+^a1
zlviIgac<!D)eI-r3B=z?IzHpU_G!FPO6``W7rbwr`QW@)xrfW7I9ppq%Btd{<wNTk
zM@2U3&sS_~e8@dz^0Io-ZFO}Qc>`Q$hJ3EtGy7s^-s*iUyZJv~5J{NtQJ+1rJ6&vH
z$^-5;%O6V}`?hn-zg>4C(&*`$nj?<O)9>>6t|`97xbm1K>nWj%-EBL6u?DiU%87M9
zJwI=%fxYK7hv3Bpt$fV+%p%-}mY*nlZ!GSAq2>+K-COJZt<MCSnn%8K>bjwQXjixV
zQH{!%R;Ej~?-nv~^DEeQ*D5``cPf9BMZu!GUM}{RZlrH^3En0hdP(V=Gn@U+6T1SA
z`i43^ogi_wC!BG$l414)_FVngM`wbb-f@5NA@i4gzSNOtwnFnboNXU|dUxu&Z~k+p
z$I_ag+W%D8?tb$`QKIw0wMVQqUwUE|yR)_|QYcCY;*7D(Gugl7-h<=OpQgRnv|YDA
z`|_rXwFlgUtlIp9c+H(w_HGN_{pQT`8=4LK1-JcEI(Y719NVt5)lvuT`09QeNq5TF
zias!o>ipJnTH)IjMLt{O<7e43U*xr4OYZ6W8la=r5kK#^M8(v7%THf-=s8}qwR`=U
zCFM77ntpw0{`Kc4)2bssO@48(o$3EEW4l;R@%=w~Cu>?Jt1oWhUGSFWxcNK7!uO1=
z`XyoZeXswn%v<Dd;<R$&w|N?kyQP<G7FhSDpmb*8(u%)7K73lSlQZ61xVM*gi;3vX
zfB(;<zLt5E)$VZkzH>_6oGWRJO}!P-O%=8ia+xv~zU@p{n`e_?;{L+!!SanPy>IWj
z*cDGddsb%4PX_R^n+=ay%T^Rh{XfX~>$;v$|N05l7U#beFPD6|X74G%e_IRxy<IPo
zkrNd2?26@D59jA4d7a7*ny@t=HLn!>KQW%p_ci)BZTiNGc`r|~Jvh1H*IJRYvBxvl
z*PK0a{pf>;9X0n)1*bg!>zcRM_~e%VT!-TWVzfdU+r8Ybo?9C<-@hnb)Ad1sy`tq!
z)`~5spKZ?*+-=wT|B}XCT`9}Q%jU#h>WjV?+mV~`>cW+mli1V+L|=$pI(;VJr0{|0
z=gV1V6L&f7K6Cb*kmX(P8{tn5PqjEb`>f23_v`aKCT%vnR`*F@@qU4pph?m3^Adi0
z$EPk?eeq`4k)JDHY1PkO8yz2z^8EKQyXZ5e;f(7i>sE28?B94OESvxE)pq|+cmD56
zn7@=iVqfB|=aIjKx0>#`^XH)E!4l@9RW+wq#=h>)vg7^45Pw}jU!Hq|<!`l(e*)Wn
zxB9=cIWzfxMf1n__^sA4M`|Xm`eJf%otWCP^G3gxGd9)PH>UGns9mx7&rHc!fudWr
ztJD^)4wjsr^~wI$(g>4`d+IF59HtypT*FgUF1{yj)+(cE_J?Mj=avuuCL!Urbg$sz
ziwl07$jSfmkpD*mPaIFrG_xlEfaoVam&E4GQ>$9g+BrL2GFITr&*HiN?X%y@-*%gI
zud>c!c~bu>!$pD{1q-*WbiCZXOx*YFEUzW|B8t;lH#BW*+S+)c`$FSW>(jfhz1ccv
zi_P^{mbay&JMT!ZHrG|xecxA;Q5pWF?}mkDgm#3sgl2}Nd69sYpma8yfpj`w+be0U
zjI0YG>%22Bao>{<Rq0-TZ@Y*8C#I$otG?IHd;fXQ`Sn_1d-eB;v)l~f`~P23VpiX?
zb>H%@%}yxqPggCN&U<ie=+A7asFSx&+*lVr^W*LRw^IdXPkeOnjm+tjxjm;YD@!RB
z_BgxpIBY(?M@g5l;-#gj$G*Kgx6KcpaM1hw1BTa+1Cx9c+t!zdl}`{X*j@U)?(eEq
z_0_Axb-FwquEg7&`;=_2p8rKCgOTG>{Wpt`ud|PA-us37cA=<UWa8WWKVM>bZv1#v
zk;}jLN6m8ykJ|R#^7aca+|4|<JJ?A4d05-!x;LkJwBP%0E>t-5G=A$|w@*!>Z>AOg
z(NC}ZbbYeQJc%#gUOd=Tw@Pz<{^kO;c_H1_f|Gy5KK-tBXVYW9&hRUNd2_AnH}sU{
zOgXVS_4ubt);3Ls=I8IOUM-=&Z9)CUX2FgN;s(dXE_I(-dwAl-$t-aJ7sQ`VzBx;)
zkZHl=+|_msPk!%O;4jI$yd_N~^7rZ3rit%f$u78SaoW>fz5e<p|L_U_jE{HzKPUBZ
z{+CPn|0_?e{IK!3Rpdmq%e@hMPL@0_In%d#p_ACo+MRF0=RH+;_3_fX?B#p+cmJN8
zy(a(rHJjL@jf;Esrth8`E*x@)Mfv)UN|mFR{kPvdmoqVD=V5FAwjGrhZ#`QT7aFc#
z(e*sE(Z|%#Pgu22xW6;P)o0TIjmL_YCMK3M?%<p^?S-*vN}jZuF^gz!sOoDIdA}WV
zdHk>Vt~~Jgr{uIx?h?QE2D9)vJl&or`K+xsdime4^Vn8BzqP)#W?GG-v-Xp-ylZp$
zS7|(tYFj(+oflti>hZPjTbFBIiqckp%b)&dj=28rC;$AWoK*OEk!|-uj=OQv{>uLA
zRy?#_5MJ}y!Q1%g+jN`az}ZvYd<iMj-#q`*Mt$QocXl0}^x7hS@6GP>X8S%=_QjTS
z-z!oK$~t(RC%TPM@9vSv3m>XZab9WL9CPR7o2%>W*<-!zyNgck>t0*)Z?nba_s35B
zeZ-NxoN4QisHQLRd;ID-d!F!w=V!|N?Oi-od*j=)D%St(el`E9`%`wO>}SaQ(2DPC
zD!)%zZ=_qBHvg)~Y0)^pvIk9nj;~gkbtvY=rz^M8gSFLj{p%lZeN*hO*uQ3_(1PHD
z%1I@Q?q-|`y*T-)nDn+=v7v98nfHF#n!ov5vq-CvV640TyGj2S-MW8bnP>Xi<2~M$
zn_l{BZY#Y|xupN!34wgKLlgXFZ5Q@lkSQhcRQ68eA@MhF8?Rk?BGdBLsf(%mZ_3}d
z$M5)NL`~eQ&vn(#J~F-R8RJX+v+K`R8B4HLPc3AtWG;za9l9zwR6|YwWAS9a&8H6-
zoI1|)tw*V<_$T`go14q$2Yo5MaPzYJ|IFETp^bOsd}0oCTUA|Lv9s&W@7?JauH;ll
z`7Bfq)LYK*dd8lzoA=BzxWCWn+{{vwd2aWWgw)n{36;>$wLJ4<+ni<{<(E6OF;K7M
zdE~Ez)-@iNrGjs0pLlsf=G4+3Z?1?Oytg(pqdGdJXxr!i?}ImOd6X@9tbSgCDdWS%
z4`;Re_w=XlwAz=jZxcg+)`y?(<Ywi~E}we0W7EkG({4|Xyq0%A>11io_PW*c%g)|g
z@9^nx;W2xUpcNNxsqSXqm1nzdTjs-((BoGg<ftr|`upZry;H3p_TH<x*+2dG`y(?e
z&Ar}z;7Hyd_>VWxXxoH`2Wyyiv041|di(Z9lGU->|3BG0|Npe|9KY|U4SP77&uo8l
zBlV-Rk-S^dwAI&hKl?SF|6Khnf3uc!*emtZzr1EmduL~L_iAC#?>|>Io&R(=(~mRm
z>Gp4G=Zcj%H{bCW?LJZ&-WzV3xNg6a=`NuMpDx~&PAN}rO|jguy<G6pq&xlVCZBtD
z!lv%Pnf<d<{s|uzDx3ZE_GF*>9iD0G{&nhS-Tr90`p^FPV-NS9g$B9S{T;RyK55p6
zpULY^RPgvQVYi#%+4#>3{+hVj%vAh6S?6X>-=FDbiY5G3w^i)@CZ9|@nfLs}^!Rzx
zG*=(%<P)@G={#D!#{T34-~3Gl`ffJMFD9)mxcH4*F>0Qj!ncdbMmKr-!^JAU1lvEn
zZu46<z=Z9$%L%Q=Mf11$HR)!`)$DN7nytE5?s1)$dc}?Wi+9s1t0uj?p*AyS-k<bL
zGqZU?Ihl)>#<0G7b|P(a%Jxl9xB~8+oOOS5WslGUd!G%KCok<S4Z5i_^DL{FkgL;r
z`89v;?L6-ga<n5>Z)V@y=h-EfouX%-`}WJ|qfg%-zqTLpy5aM>wqE|UWlO*vuMIOd
zKKXIyhJSF{desFp)OXKSoqcwO=!S{uztz=bFPCvG5x0M!=x$lB<dLr8RFOXMrhH0n
z#M%EVcN+ftdi4I2V_gM)e{{6vQdoOq*)H-OVGw$=@O5_Pw0CEO{nJk@xju7l^@%ul
z`MYbk{nI<KZvBLBB^SlF{q2in`g=8x>AcyD`Q4N6otqT5|9Fy<@|DsJRaYaA&GZ-U
zw^vK9zPhgH-bKDmYwp)gzfm^f#7cu({+p-$D_-{Y;j@5n4&9w6?)C?z)J;k&uA9fJ
z?6AG`>r(dJoFe8k{`(hRisXKNTx#LF=Buk!LL0S`v?Ws}7e4YYev|EYbitb$ch|)@
z)J>i_d-IZ8eg(g#N1sU7{e9-?$|(`oZrquFJmT+d26Z;8)tuK@bN?>(@$m`yzmEUn
z+l680uibgJ-K<mH=!u{~=O>Qhkc;Ud7oO{fg@#qg!qx&jzk4F}?2K7A4_1U7`H|U{
zW9F?FzvAoWFH+gJbH99J%laC!?fm<jZ$8`Grs${KOt+nTyVmW^a;;|}hT&le9ba5+
z{KVswcyCr@pV@cc=Iwpk*yAta_MFYK@qZr3|3cQ~UXMVpo>8SKziuu|^}U2AD@v0W
ziKINZW0;m)UYUM&!HY{DejIi=C%f8i*}t!KZs(rPh~07cN0Q)P-6J2(*;c=Ij68eS
z@<76Mla03@>xeT(S(fEay8Kp5_OAi+L<?hXbBTV==ie=-YRvZgenI2sPD`=;-pTIE
zbt|Trx2=78(d$87YQx3Nu8aOZ<$HWlX_x+qiS?#AcA2YJb-no`wNt2&y`zVxNPpLf
zEBg)Ol{x?4;%J`gzQ37==jNBrw&i=n=Fh)3|H-jiepA1F(_ObNDE6J#`;-q!EidjU
z1&6N<58Y>aC}8^Wn>${ICL}!w4?VYRL5WM7rJ=F=m$}<DvvOPhRmv;+&)V}q<n3R<
zKD)iA=f37Yo4VJ@c~AMu<-eXRogA!^+;hM0cHFx@!#dFe&gXAb&$%e}^TGKpnaa;9
zjOHJl)F*m$tlqqNP0P9q>A!V1{#2FS`*LRGa>pl+OH7w(O-b<;<6*qxc&=}6qg<?t
z*-ruI?1S=hPtH2NzI&3Z-z1xVd#1HjkHEbLOXb?`pAeqgZ&<0yKab(zWo4c+uJxi*
z6t)|lKhxCy@ViyU`tX~#&(}{>n|CHy<=mUz9dBbAPWXOaSz>E*!b9cMol7E*cR#4K
zJo0g(W7VneM)9u_D~=qhyn5*8Yh@m;qYh8^CmYqD`gDfJzk2;eT`iZ;4+@rX|8kzs
zys5A=_{fb;!^)%AwqK2!vgpqB8!3gFzPCS~es+0_S=>AEy+5+9?DsYfSQ)AHEp<ZF
zj>Bi}F_<5IdyX-7%KEFz&YODA7tFpF%TOsKACqd9`q<q3T&VaKxxI&;-2C+Z8LL_S
zhmN}k7;NpN`Nfyj?)%I3YfkEXU$fs+M6V@168_qK!F|g0l@$X0r-e%Ps_6aJf2{wZ
z=<m~bRj<;{6SK4|PV}r7+~s%BP0hhp%CB~w`VPyle}A)hOsrF$x=}dx;)#^`sU{(x
zRjk)Pdfwtcr#e*l{OUO?COQPYpTo2G@9xVx+$x`i?f6*MW76Qg{Q35K=_?jbJNI~I
z_nlh?;hdNFqOxzBHN~d|uiCjv+qv<0`M$$z=g)cYtm6JZRi@A_(pv>Z*?vc;|K8Bm
zvU8)f&7YMwmw&xss^-7_`Zvbl=gHm`_y5$kS&OXJu>4gr>*w~o4ZD)-vfu7Ll%k?=
zT=&$AC%29MZHT|;_21-kvbjggdV|Qg=<RW90!-Dbw?CeeIDKo?^PDf{>HE&U-SM?L
zP~p(oPq)s7o&H}iY5V(SYqsV(^XxbG+P-et_Wt_4a~4{uzh3@m@hs)(DXoex8D<`u
zvuS5ekIwAw$hf1YIo*Hm;F<hp&x!SM_3Amj3DZ6XT@?Ijt;!R6L6h_U(ep{!DLKlX
z_g5A<|5*3y{gseS-4%gfii_AjZuVMlBp-0Gc4hlRX~oY|8O48J-^SWB@wCsJ4f`_Y
zor>+>WhMUew85zoWnaJDIqBUMOmD9)*L1Dhl<;&(apdOHZA;d#QqW-BbLQkm&R=UR
z*1TN1wN|&MHD^}tS^x9qQXX@H?(X&Ze_QxV)c3@#;-cBNPtEdL=k|PI6QjYVod0Y6
zsy{rv_0Q=4mhEj^f=|knk^+9t3N{iu*Q#`V#*gRMKB~>Gjs9yh*ExoJ%Ka+__tRD!
zRJdHK{7*}Ib(i(mH=-vky5lBa(Qpay<Gj|nbJa?<>nAl*{?9d7(GxaxMarI6k~{xy
zo_z6Iu}-A?@*^6HWBIoSCsoXQqRQR0>e-Yp(gznkQoY=%wcz^Y_BAWJ)I@6~zfJmj
zs^QI?uXo>WT>FnXYiGz>!P&t#t1Dv^ovqj#AODM5^KGBe?^3NPZwj47d*1pUTkp0$
z&n7OubfT#1{kcBV7MZ&^#AvNkd8z;O>9NbN7C#eLQMaz2*R(9|)3)TZX(ukZ{kNYc
z!l)$gno!;&+pFTf{K-R;=i5HN6FaKq{`CE>Qt9Za7v?-#vx56(x+w3=J7qmd@~(eY
z<hAK~clh0(+Y-na_EoUoQdLOQKQvqA#PpvQU;jr6_3gd?StVLjZn?{aj&pO4S;&?b
zsYsqL$`1LyDop=})y?@m(<;too(uiA;1lb|;=Rir{oQ=d+xC{<4%aF_PQG@#uLUcA
zoTzcR8eg_g?!Mcxsprj`PM$QMukL4(Rlh3iyuQ>^)l1nbdaDbpdTZxN+&i(u?Q?^U
z-pXU9i;7p@57%N(nR@UuOMxWw$Is_4g`Cne{SeOI+%s?Qs{%!NZSFOz42^8NHre<q
zDm-4kNcpk4)V#|-s*b(A;(l!NpUAQpoAl=wJswO+oOE{mjre8klJcT$RR=x(<SY-=
z_w4w4G;Mmg+kQE{i`VA<y7kvf%pkN_S8lWU@+FHlG0!~X_a&s$<>~LTIHO%!^(&{Z
z39*`XR7TSOqkn7Q)H8Fsx~fiksBYE?JN3*<j5}nPo5lJ~%pYgG*?s2t8wr=5ud^1M
zUVmlI1k1)%lLYL$*Tzlw9VuMAcY*Hf=<^M4pU-JZ+xuYUERKsW=Vo-&x-d_bY+q#*
zV!1t-VY+3a@=5Py*`mJc&7#k}QnSmR2eI<0AD@`GCjIxfLZkZ3mbO(Z1b%mzyuP_R
zR(w^$dy$@yMz<U-`9dwB(3;c|*V%4A-Y4y!)64d!>hoQXOA~Ld*IL+F60*^64!fk@
z%|9kW%&s+Gh4!8B{uUovbK=p|;5$OK$2t3X_WQg~+EZ|8qRvBW(}U0UDb1A#Z4*~_
z6q9&!AcWzK?;L}h7E>>tFtA7zk@Z`u6FDK@WXFku1wV9(>q46*TF%d?QPK@PH1Xx<
zO5y$!i{loR%~H2E`?xuH!PKwCn|LL^J^!n}nR~fmS=^>4N@nW&S3VCml06|bJ@``Q
zl<=J=nf9L1OYK}H=Nl@s>2l>f%W0~mzsr{=tU0tsE23^%gyQ3ePoj-tl8QHZ7oMAw
zQgA54UjH-a#+6(OGv|EU=V$2U#(y&XcSQ9$!RL`;>svm?2Zpg5DZY|yIrAd)VEmF?
z`(;I3SC?E_U65iC>b7Lj>a0~P3m)kjON15_JX)${mcsT#Wq!~4$^TN_RFeWlUA|7*
z{5HmJ>!CMiU!Sp^)>G&e@b$%Y?yjAt%kq6TZ<x7u-5S+my}-EY&EGRa(q_uNJ?{EO
zE9Ps{UXS3m#S^c21gxLFB(x-yF(9<TreDWz<2lZ5trM$KM1ESR%8I5*`c2gfwac?t
z(_Z3YXY@Pl=iTBTn-{OO=*@Sji_}@~9vr4~a?+OOw{=Gi1y0IrQu$-qxTQZ(b~3B+
zOy?DoTC@UB7o7NT;=@hRAF0#M_FubkhHG{HiDRpnUY$$6Rwtmo`S?H1YPshVSp7qd
zCVZU0YP0*`i4y(GyS=7wDqQt5#5BC|&0)=B%cq^(_Vv@*Pm3gscCGp;V0h}8%TpCy
z$3B^+BXbMy&GetC{nRAs^;e<JAA2WOZhO3?zt~G=QT?em$2327pVeeAjXH4hjrY_a
zuURj;<$9W?YsF8v7<N+aRlt(l9!~40&qy&0%F&81)moC`>3A&o*y=y=V$QEsYeSjD
zH=cgub|m}#@<UPjiKpKzmUClt4`zMR|7?fJ#|e8<Cfxg~_P&1i;;ID`-{><hG7<=7
zn0CoLV*aiZIh(wk|L<gY_|H*k@7rfZ5nqKC@yuUUpEYy$#nLVLzh2m+-@bcE>hq6t
zuI~yOzqea|^Y6H-{yDJc#V5YR^NDV|WaaF|pO$-V`nFH&@6?7fHp!1yznRj%)Ak3y
z{Ns`(^B*uSTz@Ly^rmw+Qc8<V66buGv1-@vk6Ol`qgmSYj4#E;?d0+}U-<HvbMa22
zg)i?;tF@b({-#ZJHFt)PnWesM+Bft3jd5{#m)2hXRW#$@X2Ghz*Roahf4q>9co<MI
z@8n6zMF%<CtV?&wJbk9J_)QJxr<Lq3&%-_Qo*umHwnF{T0|)o7r93n9jyz*Jv7z8?
zY|!2Ok74!IXAj-~`TtwPi$_{3bDJM^=eE>kHk?@5_v&}q(`}oNJ^8_vn;-M=&B9lG
zGEc70*dwAEdN^3Q<{`g!S<H#tO%kywk0;9(FP#}6zx@0+L5=*9<jogrYG$ntY;Jsg
ztt_SN@6Lw#YYLKUB;T_-K5y0e7%`=_*Tnj~NmM*vanT1J+qYtEy_$8!YMIfItJXN%
zGn=oQz5Buwxy=URj{~!2+sOTS_;}9LhesIGXRhnGoVD_%x6e9mu~*jTwsr<jojM!j
z!~OfcJ_ToQU9Zf{Gw;=kbuv?{&p3rNZT{os&UwN<?curDY4e|C+NS9)QRrq|bwlk$
zbn^1AHDNN^(#y5N-uzE}eDt%{n@vg)$DBo9yWUfZUH&9{apYZ|-|};xd~%U@6@PLq
zZO2@mg2WyC@xoWl_k?nZ%-wr0#qw+Rl78>QpU*1Z`!!8oW0JS7VDDX}R~s$o>UgZq
zuulBFTu^WSU1oju?B5-1j}*LrukSM`Tj3FXVwy!N+e$5?fBVkLCOlZHc<5}vpW7zc
z_xp`Xj~_m}z3R!qD3gliM-=6@OV2yymU4W}|CL)qw=t`)>fC(i{nN=Y`!2d~WZBtn
ze5Wqw=5pzbytS7K*(D^5Q&aQ1x4w7ZX}h#IchCKpOB<F5+7<UUIy)G;zjExk5i(_3
zXJWB)4)^Z5f`-QH<~#NZsms4xTYEg<O6Ms>SN1h3OH0%8^^^ZxvefI}vN-p6=iR+$
zOHP}vyK$XEB(uZpdD9(tL%EmCX^*yizZsSA>YMVHeH@FQ|23(dm+<jk?y`Bkg>Op^
zym`&!Rr%;Mzd>K0fTfD2(4D%z{gyGYcAHtMR;M0s71>z+enO7*!I>Kk_FWQt&26~s
zUi0bjUmtF!{!f~GquukCUyQNvB|GcW8|9*ttR)hcY?>kypfw?GPLkP8zbB7Uo8r$-
zj_ES`&Hg>(=XU3kJqZ^-mKcADRzH&}-njQ{q}u-@&D&WOPB*{2ZIfkraHe)*joYlJ
zJ2iqg%c<RavF<Bl^5lp!ha&GSUAFAR`HlY;@-DAkbGqi^|Few@QI#>1+plfXnZMrn
z^F1NA^9qZf|IL_xH1bFPx61RM9&Bs<TqJRSUh8LOeqm)bzsHkVm)(m$`oiMi#REc5
zvpc+m|GueAUL(OiXHx&=tBZcbU-Mt0`1-oXrm3n{%U#w_;y-C9nfp58>#56c5B@GK
zzF53Al=*D;`S**jO_evU{%H1dvEY}pu0r*}F7-=ipV;2MhPBarrsTf%vX{1PO=_{p
zwO!udZ%b5v-?GzDk9E^WiHk>hFIg6!y|FG{`bo+1@U=WELftrL?R$0fx$(uHHO_N<
zVwA+{ofLE4g=W~qDqHP$QOXUis9i2;6?d2OpvQUx>+L>8+Wr@pUY2^JRP;_~Zfbj_
z&FQ1jucwx(Gf$iy^HMuMYj)zpR~Dyl8r_SYbAN-?KB0%tM2jU?o%tj2So>*d`fZDU
zx6Lg=BSY6XWWC$%lRG!zkyrlHtOGY@JbSz1*v@)$pXb~M#52R*o!j`Qg4;R!Zv4$|
zt4U$?R`bl}|8&}P-hGMv!NnPqdRDjdHRv0!`TtzwyKwZI8pe4JGlbLG*RI~k!ySGs
z^4_+SQtLI2P7yuevDwJ_c+sUpH!mK4>B#9f^&r!Pr<u17+!tPzw<7x8?<V&3Uyp6Q
zwyN=V_j~DmuV$ST-C1g5|NiiIrGQU`RUb4v%O9!KUCMvEeAU9r+8;H~D&teyzrMFq
z*vdQi>DK^nhP<Z#Ivr)^M=v|Aw-h(~(|X0`@pkzjp7;m9EVCI43iZC7ZT`7_g4cws
zS4m&Yt<Gu-<=an;k4m?hsB~X_&yx2cEfTYJ*1h2Axtho9#(C*=;WlRV9hIlN`0C^j
zGiT}@tvk`L)Oc!IQ|pylIf+`H`C04lE?d(SZ)`p%Ke1lGbM3~7{Du{4<&FD)SeQ;x
zFD>o;y4LRUHSdPg3R@+VFBbKjcCX!9weiEV$A)6Tb!=)?S=Zl}=5C%@<@Vx<z}{;~
zpY|QB6S`mP@G1BO2gBLiAAjTiq*f~&k1FE+`+<}1^?`KFNxSR%;$JNP{95gtvAXb)
z_o^p$?0UK4MDD{c5f-ZZrt}|=s7ZP_Mb!6f+^yR=ftT&#XNp9(SbTqN%W}72|J=#)
z_DQcM>vGlF-PtK}a!>1J_8mHNE^3|o<6ri1{$95ww+|nyp7ccXakTOLNy(ekc3uin
z3z@j?&74=Kf{q>5)a*8S6`NrZyJY2~32XKrVV|AVu-d4=cbfjDshUPbUu)aECBxG0
zrIzK*y^!H=+R(A(&6jz4Mz#6fANKD$^TBa$P0_@e)|Yi+_MKaqZ^0lY8ojthZPwk8
z?RSmLI`8#OtjwKo@gT#kb5fr-Up`Z%F7fgcgQQ%|29Iy@{DqY&9qqD@zAxKR{9eKQ
z{+2mP76+boKK`I{`qUZOV(+b7%glb=pR?e3<ism~cIy}&h@QA$r)Tlx<(up>ZhtgX
ztLomc``nulrx`Wo>-W@2{0*G*Bu{^@TmzH8S@4HjmQMN%Pa@~fOmgivFcMrgRrlI^
zKV#F^E8jiOob9u6V<%gBO2roq-rVD7pWcX>5I0Bd*JA<ad_KX9d&+x_j=%Z+J+uD1
zNn?=o-|1>EG(|j*s%(l1*Z*B`&d>O3<MBJkL(Qg_&6!$xM>)OWxx?vy`!;2TY%#oO
z7c)b;`gZ2c($Eu=qaxFHKUsZm-sZ$2`HY1-cbvUv?6BkZzc<~n-+Gjep8u|K%fExs
zQAlB)X!nIRmvbh2etr?4Giyu8=gj5KjaQs{p2#h^_s?vjnEk`a&U1b)JKqvj5jJ&i
zjHY>J#!=hPjw^%$PHnK-fAHP9V?RD9Rm~1HVa*9&aQ>2u`*~qk=g(UNt;%LC{HL(%
zbV}eAlUXLxZock^Z+YyE(XrWk{*JPRQB_mf?Q3D8lD)@uj!oJ!W&O9TC;88>eEpu4
zd&|J!!pDf#nY$mGg#TOV>weQB`(@ZJCD~<qaj#O}e6P;Vcq7SHv$glrv-&9uChW`4
z4a+^8c|7V^<tM4V`WyG}RM>BK@~6AQWWU!3_59{`UU<8Co9gf5?VK;aSA2Oc$tRn;
zJk$EzugOXWCtusQ;9lIZd#~3%+_^oy;oh-svAp~G{Ds?CrapZ#S14icYOl~B!P%=S
zf<Nl?Py9Mn?CiFG-_CDx(f$@{8mT0rcR)t}LP&D%@zvS4yQW`SwOV3&+y33hcP+|T
zzFhslqjvwB%i0^(7zxZs7xFBNvpw0#C!Z%?5ohoC{#59rl`=Jl%U1h|NxVItyXTYt
zw1_&MgPYlX(@)m;yy_N6XRGGOI$-WsthMprm3W(_7w&fM-g5k%+>bc!i|?*7^4I3?
z^PfL=`|alQyDoh+3-q1Gpl818dOP2fI2Nz9TYlI4E_v~-;_TCvCF?7t-6tIWd+K$|
z7fqr5&tK{;Gq;LJdveUPPKjd`2~x4kT=@I{3&jVl9GCvD6*yf!$!6*8Jy{~p*Y@21
z_cL<R&557SL>=F<&0wN=U)Z`Zrse8C=lR;aUtjY1!THH4cI^$vd+%kPT*bUD?ACt0
zJ5f4IJeEYg*muYIfhu=;eaF+8D*oO=b2g=krrAuEP2c~q%Sc&9o3T~rb-hgbZq+jj
zxl)>cto=Mif8NEvUwGc$zskO0TbKU3@+U$s<{tiY?|1Wp*T2oDg|X@cuB(~z@}tJF
z&TO8}J*h>v`_tt&ZCF_R<c@)Q{O1Y(EslM8Bl0~;P2yF-=TEQOGiUDd|I%KkbT>C+
zrwX?>XIG=+=dA0jKfk($btft<7UcWC$MIGFvYoc3-FAjf-x<$DFBEpnuDz$Udu8gg
zq|0Zj@{K<2>a!M5JEG(LdG-&#){N5J&4RoAPt{IH{%3TJXZ6MQH>G<It_;6Bq4vPn
z`<@p*?|!yUJ55kPb)9_bn;HBun$PrnHwyoBcH4bt>#kzPC!PO4YFV$Jv*31Ko9J9|
zkF{$y-o1C+<7c9=VPEaUNB^>BZM)Y|YR*%T8UY&d|1Ld;i_0Q@)5Dx?1=DoqEMILA
z|8wj189%0-+?<ipsedoEENc1NxxrhQP0EY%Qf5a7KaQEheBtBw*n~C5#lFA!B&GT8
zzk=`Wiyo!dWv))0|7y<~0pZziw6?~53VzBfsU}&waei=3KrClh<*Cl)bNgb|HysKI
zWAHEt|L!a%dyjF#wV1u0OWFGjf4tV8_5Euqm-vi#wHw_H4G-_Pvk!K@C9ijlY1&q<
zyGqup%`Nr^IX3S9&eZI_CU@ID0|OJ;wK0OsXRCzYyqmdu<!3J2*tI@q_no~_ByG2T
z`nCk|z3$d$?_Wp}-Cw(Cj+WYQi;eq#-2clJD{Hm=v1iXbxmiKdOE`+2&5!tX*VusT
zwod>2^qcGa*G9jyF}lOxd+mM0`D-(0b_rWlH^$B1ZM1B|)?;`1r+L)OTCbDhr|A&r
zlcHr;&30^a?zH;nHmA#KO-fJ8-n^Gmtb5DB_IT0Fe_UY;6Xssqlc*%lzN$6WQ`w|q
z=81zcr!SYEkdaM$QF^=CQ_FoSi+uU#eY3azekvq;wQkK#|MKgCUF@Y={!g!Pvx&{U
za*FF`{4cZRhtn=D+h5n#c%*#C@8_OevU7LvyGqFR2*y@T-@f?5qQmFb`JH#Tv1fD8
zsZIMfxqi4JUGn>GgP;2o9d|SJNbhGa-+gR29X0>@qqo`C#}7<?Uts>R<<RT7J8bXr
z^h&ub{w}dUWx@6rBK5PDzl~NdiJG019==%TsT0rMn~JqF)=!8tS?{Gkcg>%;$csPs
z{bO6%s=3IYnJ4bu-TG|#10I{UZS*#{)H`94&hHZ&imGSv`nR0^`*!N%oANG^zcM=(
zUgRs;7{SD4zp0>ao=U>)rRVgze>c>wO_G1xd|PGxanFBGMBdsdY(Mw*WvGSKnW^v0
ze$2M`o?Jd7Z||8K>wjdWYNkcZ+*a@}>$hFp)P0Z2LobPZv{Lox%;`&Zl@>2tS>x3j
zJoU`m`>9*z{yO<%)hwmRt|Ajp)?y`{Z=cI9d=`4uIYGr)_Yd2B>6drz$4?Vj!gcXO
z3Gc^ep7v3m&h`&X^B=BQ7xe96k+4l|?`&Jmd3C$ae(T@vvF^^px$4f(-UbNv>o8b7
zoD!-NWRuslU&3ksWQEL<hd(Vm4J951Z0=q5Ed9Z+(qFel_DHWZinWrP&mUhbUwbe#
zNnX|RYu3;5T|D0RyC-t)J9uO&-yW&7tG4qB)+xCDoTW3z?%VlH<zxA0S6^#+veJ{&
ze&!xk2X2E8-vl16XUgMWySD19qf~eMy<2_f@1Of<XaCqfLb3GCnxE2BG+rBT-k&@{
zX#eS)h^5`)H6`=ycpdbP)=5rvR6Tw9i{8Ds-|OV__N>(vxm^8*@!cfp`16s+_Em~`
zMTX_|Y`!9wxL{BCo4i?1%8VPsw)f_7zhzh0o6R8iL&^W$%(m@&?zWyj%jj=>^o{Xq
z4p!R>r$2m+(-8GI-(Q@pd}60p(5cD4x^<)a`DV?w^S<>hZIW!g{NHQuXTEC4o$zn}
zvKe(xR6ku~{d_87(d?R}sV!p9oGSN6RnLbkQ4l&_`P%n&d6KxpypWpiYyT@Z?6TbI
zQ2u+p&YVr{s~BQfd(M|>Zmak>MLsF(<AZ|=@g^@*uE|ZvvORZX{|2GzYU{(Tx_Wox
zmG73{()n<zv-p*m_qxY>zDDo8_I}5Tzvne0uX<0~RQxq*g~aoaFEJ~AcKNnle#fpg
zU*P!d!W-v1*9uA{)i?T0p0qKxAXId7e`DJ+NeMSbgSnRscrq?&P2X|0$~fo!r1Hk)
zEIYWK)Pd%m7esAcS#hhtY-`2Y=%q$JyZYixG{hKAPx$_Ao@4Ol&cjpHf0wYoeadHb
z+j;?eA8U8b^SDX6;pUE!p{dt<W&7Xk_`5rpiRsQkJ*RipM<#1VO?GW!UYON-Z_VP}
zWhdV<<zCxySLfxNW2f2oK6`t}?b-56=bf)_H0a(Q-uc}6?ET2^+iu*t$hq%c<Mx`X
ze|7o;^%HOOdLH4NaDLLgjSovMB|oj^j^kG`zJ1~DI=?8b<wc2NT=wr*=UM4!XRR^Z
zw=S-!+c0d>a*i&4zi9_<+)NA4Kf3xx@`eP7XSvZTXAjoRx+C>Q^3Ba(V)o{LU4*sb
zlxHX1eye^Vi~E);?^)j4FL_$yUYFbQY};0LVXyABsi{*_?e?9x6efLq{r3nvc9X`i
zTZz@T8_K*7Buy*f+p{)pnX%oxr>~r}7r&poRn9=`LuDPmZ~ijRE7|W9Ki6;besQMZ
z=Z65-e@eIOjn4hF-}w66w&1PYT`wi_`H$vQUFNu1+TmE0*tOFBdgq?fM!EUXdEeLR
zyw=W)+I8#<`<^$oUEp;OoymK?rqzEnKikE7vmoq?{ECemAN42gskKY9&OiQB^SiqG
z%~$(RMywCjeDe9p#k2GKyk_vHp5R)ael+V~#EDJc-s{fUf7Smt_oRQOJ6g}1R&6$2
z-m=PTl~LWQ|3=mMDxIf=Hk}ABi&?V1YqOGU<m8tN<?K(L+?*Gb^I#A61BG_$l6QCd
z1;2l}80NEa%O+Rv=b4}9?dQH#ujumnmC!}`9}*nfH~hZdT_bS%QteN+<!?gg`+V%x
zIKcXYU%2KYpZE7`l^-h_p1myv&Hp!F%U_hU*~ZrO*$39PU;K{}+n>bSExmEc`)A-(
zC%fb4#9cMgPKqwvF<EuCE|b-~_0?zEOT8X^+!ElUcH>ON$IOOz2cH|}mrBl0J-e#d
z+<l_b?)u4!t1}l=eyCh~JMo=DtYWXVw)YkZN58f&tNy%Gco^P&WS{-<g_~=CY}LuW
zxZ5U6^2xJ~?Z0+4u3-PT`|XU~i~HBD_uceO!#jUJ|E#}1qCX!AzwWWUEmJowV(0vX
z^&9>NEmV3v?Rrh?OIPnO!Svv1TdT#+b;o^9<hU5QwC{!Lm7B*N@n83xpE3RZvBTHm
z!@hcH9g&K?@%F^!qZ<!*--+v;{J-_yt>re}l|tE?Tb#u|bXzbc7q_k6{#eA>*{A2$
zyggG`IT)L*CDbB%Hh%ak&|G_MwN`)G2YLRm$+NkC<g~8*D3Mt{!#uC=LgY^6hpIIy
z2ZD4?$^KVRx3YO+E*|N#weU%iduUjLQ`c{9&RNyREW-9x2QtO+6r1ch@%DxZx9{>7
zAH_WX7EY<SEU2}6+ELhA05|^GW-IpJ@?9X2T=z~Oz5Xcw%TzI8sf7=l553>R_K|=3
zjV$YPTjkdK*74sJSK|;{UD0(@G%anL*8SUk{YDp)f1g}7Bkg6_mQPcx*D=lfZ*}yF
z*Ti)T8JXTpI6G_k7iPO+{u4&imS?ZY-G0$pXU}(!X<uKKcjmH7%J41zYvO&)t4?md
zxGewO!(4O1vVVt4`{h_@mwhyvyHHF{&pk5J*73w-^^fkWbGFMW|0&(<U+r(cwtm~0
zH%{8i<GvqC_k5?nB*W6?l(ruC^ZoVHBf?sR4T@4eyK20hX#OD5&OL3n<l2*B!KXgQ
zFE3bM?eo+<$uR4`&gN>-xm6bP#8=Pwkkabq`9l4-&NoqRVeaV5`_65MkBDqlejR`5
zrH%2S18-zDmam_bpQS1wm-6L$&eUhx%sq4Tg<@x<{W+|3>pc4lDXE7o@;j9r)){=<
zAv^ot$p;=Su!RDB{RSaB%SBQWUPx^ITweKnp`##gzrD|sKO0Z!PV)bMTE$%MUC7VB
zXLZ-DWAaUG`(M!VDT@8=ab=m>s_E8``8AoMGCIDyRbTLqyp|WAY8c!)<KI1t*9?u0
z_jX^(X7hS|O}Bo-xpNN_ot_^5@8xjP`TS48PsN{)sI8x+?^`}E;fv4qpSyc<ic;AE
zK3h7(&!6AE`r2EswR45<%ccBoR#n?C?V8P9_$Ok<wf%nAU+rOe`*+%!>$;KFI*}hQ
z7@Ii#o5!+TtMkOF5b+;<a}@Sewe$Zgp0Kfa?$y;At&HBi_w?3ht>Hf4>mDzzJ2`vJ
z|0UD^t)Ff!nG%-PvGlLZ|F`FEEpOGW@~tvH>nr7Z_UzU2UoLZ3M|tx*D_1W1{JkRG
zl%M?;$G1HPJAU*nzt?tt@y5G%jy3*Y7{-_Xo@4Qm8TAG2<#sxYeml!lCr|lz>b2st
z|8Gv&^v^3Tei*Xho9%^3e$RJqm-uCHs(JTh9dXlJd~y#D-DYMv9d51v)u6`E|I2Sf
zwe?R93M<G+CSKUr(8$f@FCK9t=h=xH8*hcD9jMu`?wH-)jGWM8yH8hJh27FS8{j){
zX>5>mW{;B19LeVk*QRH@sCC;PDHoGa{8VsvBV*MO_Rb!Yk16vOX`g#zT`2vHVd8yb
z`It-bpF*GCOg)@wTE3ZO`RO)c^MfZenm0ziyDzC8b|sTr?%^Si`cU<^%O(EaSJ+n3
zf71S>v$yoYb&77Mi$A;0`tjJt_0gGo9k(l3JMNeirrFPW_DViCG}ZgO!9K=4HV2M;
ztvk6odh6%FOux><>#R3g{+!n}FIZ=~?DS`1to6SQMfoFjHmF~8OPMYr{H$)?x5<A0
zT^$w$tV&Sh&fBz6%W9Q(zNDXM?DF@1MW>Ff`mo~16>Gh3f|;j#77Ipc-Sex;bP?~p
zwBq>o8lQ|~mqnK?PtGxImz0oPc)dMJzxP)9;u+=g#`d+-+h>aP@$?s&>HOTdZeFo@
z)j7`DYfOVG?fvIJf4K6~W4GsFVn^nd1m^cxypxZb-}@!EWm!k8*q_t)Lm$^)v&{Ok
z=LWm$ez($K{kH3~^F?#jrFu_&wE4K=oXwTIwp{ru9gFI&F+2_N{ZkvQeClW9$I}&4
zqxU|EKX0kxxkT~!y7VdMg>&kswd5SX)v->B_m<nVv+l3o?5*mW_vw(3pBZQU{z{$s
zr|q8|Jf+uOx3t}XyU4cl@tl&MHda$v!zS)~v&W~e%1r%I;KjA=|11BztbDUQa91zO
zqpE{@<2Hm}%w2NTd&2q2Yv!w;v|0bw^5dH2%GKE>hMj+<k1qSfebrL5*X>cEtnKc9
zpVkX4ohAHjSy0g41#$YBH#4sZhrGFc!cy|?eAA0JGjATZO01P@&o-&Ndbv=UZQ-Km
zyz{~ar~gWuKHKkKeNQ1lK6rh^MAZpyhAX<->pK=btrU9rSw%D>W_mA+`|_XSnWnGU
zd*|d|QIq=k+l{NO%JZJ)jiwsCIThCr>mGh|<Z|7*i4kibMe9E^k;;}jxO~#%%14fS
zBfjj}cuDPX_!6e6H_mTJ`JJO4rhjwAq}e^wdX}AtU!uyDbzE<<qgj}!PpE{;%@E%!
zi}&u2^;_Oq`YX?Vos_mQpZM?R4=YoGCAXj9n9I~9EFYO9bpGU*mm*Kz_@?=9+Bxaw
zVh{JUW~Hz|_tZF}pRtF2R&@rOUH7X9HR}2$QtM_D{(i=r7~A=QbIZAIX<2DWy4)7{
z8{!r&#+=&ecQjtD`%R5<VVK+MiI26aCqAr~`!Dcv^{i9#P9=wajCqo5AErO;#512a
z`iqr+wY2;X&+<FbV6Ay8uVht%vUGC(B1TKicu|JbMh{p2sSi?*DfJ0I4N;9(-=h_K
z`q&CCwn&Fi)}+u2g;|@H-0!G+yU9{=$K-X=8;@4)cv~XnIZG+u+Wz9rxs!GUJ54<6
zzqr%$+8m*!IvN(N8Px&8hNqrgxi^Q4wOW4WUAzAMtNva0mh&^yk^XFR@~-C3RZUy9
zR<3%(>}jv=<M;RV&1~CUk0e4Lh2Na;ck>xHsm{5p{yaVse?+}+{c~xf`6V~Me=bSN
z;=f?@czR=i@2pdqDaT^Z-w3_hzb1Y!i~eIx?k|3xann?!JY`ljychZ>rD^bH%iJ%I
zOv07IMB@dw`|yP}3G6pFI`3C>TE^Wh{_C3nx63P6GOg1Jv|=rsT5F+t;8SJczL-+G
zZj1THj~#J%_T;}G=bnpA9!HjXJ^7ZleQ#CK$w{+<CzWd%xV%|qDLgw^X4=om9^pNr
z-~Rc{NZAu&w>V2{cW7<-r1Ssw%gKuRE@$!)eVv;8>d5}}8vb2<iu1&q8!KX#gr5K5
zJ*ilUf9k{42B%~e&3oLrWe(H!GcVuFNO22Y?=bOWkZSmEOT&PUlhM;e-adY{wd$n1
ziA&^1g-0T(6J>=fSI=>o5-j>e%9GE}cS-j0m7CZj<0mfb*;XOf{#l7Fbb?6biKcm4
zJ38m5ep*@bxaIE38AYGOmp?X&obxAgnZ6;TJ-=M2y}In`M}1n$4%JnLd^~n?dq`RO
z^~TBmr&5F-w`c{foHRv?(duV^$L+d%nq{XdRy=C<RgVuWDLi-YtAu4E`&XBh2f8Xk
zPHvgl@WRFaS_rGt&;1fR=44oGb!)1!jpGgR{{74R(_PIQr`|YBJrG)>!W#T<vS^z6
zdgJdAm(~ZeuM!t=u~B`n*>u_cnQ4i}-i~I^(l^EmChu)>eeyKL+URzUO6IB!Cy!m_
zo@aFL(a)-b_v`k|>$QG3wRf^8hf$s1mN^+Go&_(>4^33v++JlBB$}+XOH20TBe$Q$
zw$`OybClYuzJxq>wc8Y<ve|s%v@_GB53b)(SovuRYiHHL8!LBBsGZKLJah937P02y
zy-!pQYhS9K_gQPtBE?+|capD#Jxci|Qj%g4a_sGuSE4qHWc-SsTsdFoBPNpC7n}d@
z)bUu>P1(Uc{<@RDg68?pNf^yN@ho<WeWbu-)nA{UPg8J@Yd!Mc@|^W&&0<!`-x5=8
ztu9VA6|I}-uUz~rW%i<VZ%tAhJ!F!fD{Fhq5t?hk-ur^*$**<SQ@*6^c`d5+)KKf*
z*JmM1lqcWL%=x)Fcz@N&dnez&nV-5b>S^+$J-0JYaG6Bz+wl5$=k}g;!NNbg>{eV_
zo|QL;OY!!MS7|rwXFa}j#QBqu+^^U9pZ>M-Sr*T9UL~T`G=<II^S{)r%4_QShO@Z@
zX6|u{*Z%NRYI6R1!Ch&(K6-tHMjD|@m9%05Q*Gz%JRy6XHQ2sOWpbs2@~?#U4bKgf
z?_Ry@Bhx&QXY!hUueMEssm~;(<5QQ{#C(2WU(<7WVqMd>tu3ySH|yVgoZEdzGxovX
zeC?F2$r%%#?K^KDm#VhSHQ|Mk^4)EB{Vo;9>{8t5Fa9Dn|I@z$_oe){`JbwtpUqmo
za;LY?`?(MQ=9fFYG~6tnzcEfP$z*O={fvJHIrhH2w#qV3e(wLI7U%s2=bxOFT-2^6
z@$Smpw?SfiUa=gmdBu3~{rX9FPBky@y)coZdAZfMwce|@xi^1tH+(i-IOna{#d<xD
z>nAyw?_R5$H-EihrKZ;^wtlyYAN;=3I!`0(zYA^lXOUZbe8;DEnZ?{|CbbsdJ5;%#
z_kw<;#nH+iMu!jmus+hf*k=xJ*tC=yo9c<tuaDKu-6Hq+)Y;1{r#@@F&@Fja>sGx+
zwU#UL(MAn!>CCb&skQ$M)Y;EpxEvRI#qNKn?|h|mLLx=8b=<^ndb~~85&dC**zT1z
z-wu|p)4P^q!=Y!-yubQxOr_TTV^1=+Z2H-IGF<u3Tl<tHr+J@5?yu~;>7TPp=k(8a
znM|r0N0$FMJ2U0&zx7J;JVx@aGdqvo)N7NNCAakWzJ+_v<R4LDUARAZ&a|Tmg?mo;
zi*A?doxAGBJ&%P--ThyGttwHN7pxk6^y8~_TK`|DOjrM<!33UMmw9lgVE)#)>}*{{
z>&sPB+h%M{tqtWASs35i*S0Kov)uVh<#)oP6+4sX*j-=!EyQcu-07yP>wkX~JQk;W
z>Doe%Iex;+7iB+xf8~Db&dVom2s}*F_?J6t>rai~a+^Cfr=v9P_+4(Rmd~BZeC_di
zqpX>Wrz&jScB<@wi)rDspL=p{F6S<iKU-ie`QXs@-)BtAzP@^=<U8wF-XlTJ#m#<&
zg+GdzEQ=A-`)f6Hg%6kPi#WP)ztI7Q?`+${A3Zs|_xEI1<-TnFq&K<cb8mj1ZrC^H
z@h1=KC^Nq|_V?0m758e_+U?}!I9??0YrHk%f~aJo!3CdxlT(w*m*2?VcP^k^b;s@V
zAI;leZq)s@pn9$A)sF&p<_BFWZ|}S-(rs+GNmj8q_y45U;#-F*FCMD=Zg!b{UE$Li
z>)qDhw4a+=x_-8~A8Yn?BepHqm16o@*7%<6ULtm1b=&jBNA1>M+xg~j<hx_GEzDO_
zzhCMOKBIQKGiHy^ht-vnyaUtn?=F7&z3oK-^G~Z^I!ikCR<|#C&ys$R?{RYX*H($(
z_XnS9*ZyF*uitMFcu#EO4CRjxWv6l9mHBk*%etSIc2+T)zpwsR{M6Rnw&lFPLEygY
z|F>(3?N5JsIq&_vyf!y~fem7AcYjw*JIOA$M{dEC<l3r9FZ%b$yyf1!J!*~onbW>$
z%}Fv-WmiwHc>5>CcWOoI#^AQ#sUEItdXF8eDtYr<x^w<FwHGUPtv<yqw<q3wt<&eM
z1(hGS{{C>4q4La|6S<$<m0xta3f*@7(tOuNk0<fiF5k3$wft`{Rr9c(Ej+eZQ}1qm
z@|$Ow*^h5B-K^+&@rdnZjNo2fkLxQP{mQ+}T1sa~)Vnv#m0vg6vhLKKJK+Hiikpw^
zt>*VgDbsjW=XBi9_{ZvlS(|R$O{r5mcKD0luhZ@pf_K!u6*inUU(=gy=&{~yX7z*=
z?Rb}b-V3E!6Fj!_n@fu6^>5x2`>d?{b0N30!lAR;wH2`we*Tkqy!zU&9a{?j+~W1C
zU998Wc;!y{%v)9mk4%l*Gi}YWc%RSTY<r9M+xsk+{-JdC6lnXLF3(!gdUyHd=f4P6
z1YVdpdExF7o7`)D%69S-|FQHxo0Rgx(0r9%O2q&3f$!9}-7q{L%u)R4jKbdg7aDoE
z!;eRvo0b{9iAiQl3abIjoP~CN{NDsu+)O-dHa+P1sZS=k5B{fdthYG!_TX#bH<#Zp
zPBV=VU%<|}by>xi>uhsl57o_9J#*;v>%-UC9vl|GnfUiD`;u)7jT7F#QLC_k&*7)a
zIXpZGp2WAQX?*QG_v+k&BWmY(11csdEG;#x+I4x0DPju$`D#7B_*?eZax8_iGoz~X
zi?{9hGwHpI&0oFk@@kf!{dccrS@tmZ^F!-~D|V-(cWs`YmRQ#LCR<#>`gY*WN$V#F
z6>N*LFb{sx|8v#8Dbb)B;=%(B*{4iL4*h;~o}Hs+?cQCHdj!)z3UkbTX_kA>Z2iu!
znMs9nh4c3%>Yd~`U^aVYdW#?5#q8YZXVP!fKi*|mv2X2b7W3QA``p{C_FotOdG+j^
zC(b-^ueX=gd@Rh;@PBnm>h(-Jzpc!>#N&-0oZ9@;vFGZeKsWc_tE<bSwmr_>{OyfM
z^vPxZhcBhSU`lS5y=q!K`}T+J)gQy(m>s{hSNF>Y&NEwoY)*NR`eplX&VMEIj-1+d
zXIYNT{O?&Sjrcs{KW<)Q`Em2*X|WkQCj4@Ky2oSt#U*NHg3T3--)%Z0jwDLoUb2g6
zLaAA+{-&>)6DMlFH}+|pYW?1*I)Cnk*|t|&w01MS`BJy#L`g~aht|_P@>fo(i_e@n
zGwtE0(#su3wG|}U8XU~q>;E)-m7lxl@ADSJW6AICMk&?T%*a-*yU{89oB#5e7uO|T
ze{DLgAh-AQVf|eayY9H(e$F|~?#_Y;u8<$1LV?TPKes4)r`vYh^jna3O@3Kh=>O7R
z`|r8^f5BpVRB7dn-8#G2Dqdf2PD@=|c_t;OY1=>0lztkk{Zs+9Lua+u%e&Q!sLy<F
zx}AOTfyw>B0#@!Pc&B_?bAM*iQp-apdJWbtg-+=kewUpZyY@8C@pbjehZoB)J6L|_
z$jhcLk4!Ggw@XwNcQ|~OdwJC|ZTb7lc9pXjrmbmJTFHMuRnYO8ki)#MGd07$a3~8W
zM#V<2sZV&gCnH)W?#Q<D2fv+=eD+S4H+0>mQ@d9PzxycsJF%%Iod5T%yEFHlnH&|F
ze*5X->t)4DeXiFoXnmG``;G14J9{o2dp~pI>3ia?T|f7}%H2^Fy5;Ei$c-Flt<G*M
zp5@-2G;z_351X`^&eTP1PFwu;+0kWc8e-bjxu0}=zgR!-oMvL;FTHTzWuC9>t7mgD
z>@c#KF)L|nLCeL)bF*S&=ZWT6tTnvFxOZ2p7(?Z?=VCWM@fWPUy_r9MLH!iN+jpKm
z&Q_UyXiwpeZ5vLir_JbDmMLG;z4+<hLop0*=SbDB4^wYz47_yKw#Iv!-Tti0=_i++
z7ZTwLxMDKPWVYYz5|i+aWrxeBJ7(2QvgYJx&i^`_byY1Ncjlt$=Y&f$Gjylf^|QC`
zNPqeHrl6aD>8x@coq6y2F2}sw@KRkm{cWaptYCJuWjOnC_cim6pECXaSxq36Dd=vb
zQ00l55V!mHj=zl9dt|MZT6S-YMu%_f@ywXL63JVa&B_mQ7d<!K<j-B(XQHfczsPWI
z`0+4!+e<}-Z~Ea<+os+0*(7X(K5@UL`f1lhj@TpT%@2Rr```NL0Z+!q*VsJ6J09*^
zP|14vl6U<N#>t%~$MmZ&R(gHnY&q}xBCovp{_z80bDk{Lsx5zR@V+(oNBk@0FYc3<
z*y}c&kG-j@w48a%tf^aL^A5cII4ksj_q|tky=Ikn*6;E2n6LEldSz9A#exY*%A5!P
zf1R-NX|ST}BTw$T)2lhQFtNP+AJ*~I+H>BnU1wLjEngCucYe~DIGgi1mJHikJ9}hI
z-)k{6-k<TLdfUHy$#-okrl@S@ZWQyrCiG+$W4QL)`0rP5otmyGv{G!>`Y!?>nAR!$
zJ+3>a<nqIW2Gbduv!nx7YbDRj<tnn*b}HU6`@kcs&YJMIdh)7g4!z_*C#>Ip`R|uG
z(kA&wJIj_aF0I`kFf&~8VPf6;zm7la=4r_b<yM)W`|=e$bAR*cMAkJ@R(4M7w{HBh
z+%SxfugK)ap?8l}pP83sSj!nSS9+T}@0VV4hwrYhuCe&+v}@IqC+h9(dV1Q%ZL@rR
zV)M%PY8?E%hIgK>ovJLKUUlb?<_qij9h+ukJwCEEZjauLn*X=&T)qF`?`K)lzh|bU
z{#|UM8@v34z?3wJ2fSM*_4a<AyH)sE=={Iis-M=+`ys!6Q}G9uyNA?FOf7QT@3J3m
znUSiwt@C|I$F)ml(i?v-+0rbt`TaAOi8TkE7wDe<WSzgc?g`W4^tJaF+TP{yz47Je
zNu%P=m(Ogwm$KycG&}A}p1b}3Kl3iT=O<uieym{o^xDRKAqrbJ9ox3Qf1(u6BsK4b
zMR}=qix(;PmF_zIaLSukUxO1x`YliX+Y{cEw5DK}K*-<nL#dN@dTIs8KEJvz%2dp@
zpyyzG{lsgZET&Gl_R%)E|Iu;dKd(O<n;!o=_h^(%>Esn|3)FkQvA<sOYjt?fjs|_6
zo|>kU^*iIN%~Jlh1>8BTk+nr;Mb(Dq4FRUonsR4AYwe^L3)!1G_4+J0qme57s;+h2
zgmZ5zgcdJvUv`CUWzYoU|3@ypzb`3qG<VwZ^P6*)FE2g4T6yZbtqjchyn=e`jElAX
z9=u_#IxWqWeDBdd>)kF%+WET|am<+AdHdru`|h^==?ONQ3vT_MR(Oi%=D)phqANCO
zOXiASkXfd_<HV_Be9K+VWVD=%Q7bYy{^^UXk$b!3Ci@vG|H4^0#CMe5X1n$6pWoDt
zbMJ-!Eh(2>C~@JTaI22day`f2D+TpL7VG%Mr%n`$+9F#Pli0RDGgV}I-}l#5scX)c
z_ci+OJAC)7y2vi8)tvY59$a~mufXx$V$WmG#VY@tZ#(-W?AXOO%Xi;CG;`C#8`Wo$
zbUaUQJS`(CJkv$IRb6{c?(dh<oNq4ouTP(`QSN|;p}F1BJ5e)UKVAM`>vQ6Ss5wf%
z{<BEzx#az{ecq<LS-HP_Zl0^$CAlj_VD9eYKUA6bx-Q=_dHLHP9CK&&+R5!Y-*=H$
z#E5&(=lsPsKjy1h$_Bjne6oDU><XuayEpH;dz)K!PSs@{nWF5;J?`R_GIGln*Zkgo
z=e)-zvHPkLFW22!xoYCkfAL`g-Bx*DR(V}Z`RJwdEwyCsj}tXcOBNsE|802U*QyMw
z#Ne-!f9|=Q{w92$)&s4hQ)h2)o;Q7kuTYuQq{3Sd&41iGdM;|0pXcR!Z^Adfwf$1_
zHde0o(f#}DpK2t(pR1}N{XQgd3ImtTy!nYQKP&g#wQ)VbJRz+vXHu@<>QzM>PcQrR
zu1NR|*TVar6aFmX_E!Q;uTQ9Ljz4?;z}MGbwtGI&xEvDdDY_3f!@ho<P_%c^tAORD
z)~1Iq&6SuLem~(+5qq3DXpPLrmR*;o-gKEfzwy)Mb6V<wuNK~Mcg{Yvr!>?4o=4Hq
zZ~s~69(Hd!@~>j<9c^ExeBQlVW#{jo`?$95Sbf6V?5zDlTA%;EXZW^4eWGJniB;&|
zvb#HKOTe@2suP2s?qR5SX=Cg4JX2x+xhwlS7u9DsoSL@PZC;Gy;n$k)_r82~;QB1h
zJp0EpyKk*d^=8Z0aLLv=_f4<lhP-3J?-zY@%!J>lo9RSLt9({e+J7r<sXF&R2G!;#
zhk47I1$Vvu=yYTuJ14t|*|ws9&)wS`s|veby2mN~|J}N3PTAZ&4;KG6_j5jZX*qB6
zKQH~m*Q*+tUj8i1%VDuB-xFJT@j>2ul^<I}w{2$Iv*_@=rRSN=YPUuFV)<;Iw&J5}
zzJ|-|_Gxy}D?iSM&dpDEpUV(X^S|9|hLM%g{NRgaUF=EnS1Xs_P!L&t%0k^*Z}CkJ
zr}9JUM`o>mV_tNHsr%{)yG2s7ZXfuuD8MpZf-OVJS8Q(DUdf)=Pole6i=s0(&DVA~
zt+v(Zn)`S2XwQGHtG1o*wyG+ez9;Z#M#|+So3AN<ey6r&nbP@F);Fi=%n_9=zj;n-
zOX;^6otIff_9f)|FJg`qU7D2?pxbDD!}Y{mrFlLZf9~-3@HOD8`Jwf%Uc8yKdH?*0
z=O_IOJXh1W|4eY0>aG3Z1(h#eaW7U4>zw{IH)rG2%bfrE!yd6{JUi=KC(Zdxb-~R;
zJF{Q^uAEk4wY`2J<IVqE^Tqbao%mZ(ZEwF@=TZ7^nTYv!W!*WR3Lh!o^7rrBXRlwW
z?$~|M>ypE@p7YyoUXA`Z&0ItLhd9q-t@&r{L><?AUQRflaK3EM4D-J(K3Cn$T&>bW
zUhWh~F|63L!(-D=jr9JXT7P=aMy~sJ&gtt_F0Pt?+p9D5&1Ub5@G>laYV~=($f^?F
z=0&T!7M#pIocU3^F7I$8(>&D~J1gdWety2V?uE^E;iG>Ucd$GWUX$naBV)&}1%eZz
zXFoc%*0e}eT6aUZ&Mebz-(z16i3Gp4nz&u>!sE?L|827Se=gztvCT8g7kC<*Yi&R8
z{7&&Re>o>F&kTP4sXo6xT8HoW7;n67pX;}O))~Ifz8<x!-NjY2Z+H7L^UF^*eW|>;
z%wMPWRM+~TX<w(B=-#cp%6>8DlgSj3&^o=}dK>>r#XYtA$`yLGV)>E9Sw=R$bD|G<
zztO(5s<WJlZEF6iF44%OttbD8u59p|d28ZBN51{bCjWUX@o{;i(Mr=K?dUBfC71Fp
zX1(XRI4e$R*CeIik<+f+l2yyEIq*yGlbY~>Wjguc{QvwXEqR;#C$?pa%J;>umu$8)
zI>~<K&u-6W!EL7B6dda(KDlLelW9WznNz=}y`7fIoohGut-PM_{ZkYF>p0gG&P<tD
zEBqicbKwln4Lhf*f(`@N6UdveQ|IPeotyhl1}-`AuB<J`%)9LPv=w(9cg0=ySgSMf
z4)>+Mv);}<B;M4*FM4yveC2<Ob#AWpeYX65;;a43D%CtCey`Hp?Hu9ul<(`stCP}l
zZL_~!1Wk>r)NgRJny$Y8?~K-^EY*|d|I*s@@5ZFp#f!U)BT|&j+->Hn&fZv{w|u2d
zzvAH?=iBzQ9Ljy8a?Mk`rTFWr<c;&imOTF;x6;4tOr_|T1g<MbH*RqI<p20tb(?9#
zXBD|+7vgvyP7hgeEdK0=yZ85;D8CoIzScc(OSq>(fjpOR&9;Mw{;182>3dUO?eOLz
z-@k$lzZyEZPpmaCwL97SG1Bblp|w8tpBs)^l>GnY$+XR34Lf+l{rv99=h8ga-%mDN
zDERAW^R>_<Y4-SA4<FW?nX_3w|I>rR?r;9o%vf;!$<w;4ZJ&*~pU;2);Qf|)QT3?}
z+w01kIy*nzH&t4nd1;a2?tM<TF1y~>zhbBH#P$Z8|Fn*O4-9AKOuO>S_TB%jZU!|Q
zCixhj4)$3q_R`AMVZoN<Ujb&>V#gyay3K0swiQhK8kx!V@rF=z?(xnq6}g|63Rk$M
zzxGekQ87x{ocZW8w@MF#qW8+G4YM5%E;}!OFZp9~Z@_iO&p%miS-iOW@ZtAlQTYmi
z)mPJ9_3fjQb9eXNi@SZ^cgCh?x;Kq>#?ITx^Xc}qHA3|zdy0gFTi0CJHh;2c)u!`C
zJWBP;pRD)lQJPnEGJdMa+#e^n_?ENiFFrmsQlEiAfx*+oF(h+wU~Q<Y>zavN%Y`&b
ztk~TpX3SMKtDL&$n%9Ej2^ZtJLqtEFVo-K=UDSQKr#`|ZoBM*P$)V2w`?r4X&-{Jn
z^PkhUKF81Ltz!#sUfmcxH#j!)%!+dy{e1l*ZsMzWr=ECqBI`^}he(n1F6rm%N<w#e
zZJNGl;l(L;%y#NpPF>@*#6l`YwnuM`nFsgk#><l~AIe=JrFHab>#BgOJzR@t1@Hgz
z#$%s-&g0|!=Reo%-}2joqkjJL&oy@MpMU=R^Vjk36YWjHRTV|IEmt}+&wJuO4~g$4
z!teVh?=e03q4iP!1?P>MRc@V%_xN=2mTdaZxhmrSO*(IjKPf0ye)m84(Zf|sE$_KM
zf1x`mf1lsJZH)!#)(>}GO<E+f!DO$<^AE3l^LWlpX1`<q;_2Ie5^+XnV)vhTVzoOv
zzP5Y<YeTc`p4xqDznnexD0+KLbi(TZ`G?GhesS3)?d9CG{aE)eogW!CS3K+ew|wHY
z-#KB0P|nrT3E#w}Xa4^!dFib>=T)<dKa2RK-}@T=sS+x8p0W6?;4Awm*F0bSqn3X>
zGuP@Ru4R?qc$vv>djBzTtC#kgwaO8qB0}dJ)=WNOf9Jv8+lp*{@~c$ruckTXeCnGV
z<z!#kxa+^=`E7f$?@o>N{@ks5h4=i%37Nw8q_#)QmQ>w(>%>Lxb}f5TfeqLH%wzAr
z?b~}jc+c*Mg{S^$iQU*GvA0v_<j31F^K^fvzm61odcR`Y&kAXdD?4v~F!^w0zf<C4
zU$LOiIjp-q{;c>^DZ~2Ur9^G|W|iZ?Jn?6m^gUGOElB@<e7#-La-o#Tsk19HE7nal
z?(DnUtLK08h3#zBnL!V982o>6u+)TRpAETdIPJDpaj~??pDpWu6q^Q``!209C~Q9c
zJ~}{L<<tA$FFU6c=1u;$JamoCnf=x$_86Go`OWv&{$tbnCFkQc3%GurTI*-9@y)`o
zUzK;qPt$&V=6{lWy4hr(zSy)|O!2`p7S~^Mj{f;JyS`^%apa`^UWPWyFQ!|vt&35K
z{%}b^>t*nlxlVn*>+Ad9Hpd>3O0kbrG_9C>v}j?;!6&oDXCCqW@@DrJ*-2l$ww?|3
zE&rUj%W=~G)xReED%tdOr_sAl*_D^|lgx5lrq+aPntN%{jP^%TJnf0EB|07_-LLD4
z6J>fCm98PGe|O#KP9BDEzSpOZU-_};%^CjBzhY*1=a&c=oV;e)a<cNR8AI6*-#sN}
zm)AvZ=DQlP)BjoGp|q&=nSYyPvP;`0P84~4zw^RW503pmZ?or3l>4^M-F<%TfgdM)
zpV_Zo{MG-L<xl1N|7tFzC|g(GOuYW}rs?h{s`0aH7<~87eVeLN7BRP{R``F>ES2xw
z%wOyj%wpf&$j{rb_`ZLf;LFl~si$~%WeZ>X`#|e+i4cF;w`qp8hh<zH_k1qdl^|OX
z+N!Vd!nZSa+WKsxeD$sykGEKEiq8?<@A-STXj<LouI(=~o<<)w%AeT(C;o_5azU2D
z?r*-`YdEL>xbOM#^2v*Tr$1jM6RCLlcaAmlevab*_nJPveH<&Nwzu2pXyH^omAHM+
zcS~4=|JoDnygA)hsXq9@tRFME{3_Q?ex!1G;>S}ro@P&tdn>ee<;y?L?dPY2`)pB*
z4?8<G^~H<OZzYSwV;v`@p0as*T}!5D{=2ASi*}XGvQNFK^?%~?S2ZzD%U4}bnm>6_
z=BYw09<_Rtqk0d1-TywF`&MUJ&;FA(mFr?Ryv`^&6=J$n_+I*xr>}LMGi;yU_94)3
z-aCaS7e9nahEB`g&UxXZK<bKTtL9t~;mBAw_eIo`@3}AMs>E2wzJ6x?(Rgmp-wQ9z
zL?tr5D_?)P?5JnM?U!d%?rZi2@4fxA@6`PNsyR7bfphCh>$1{?ch^a_UpBO!`?Bj>
zoq<*4^X(rG|9#>SyLt2EGv_`3Sn3{HHYe<r{=VGZ_m?O(n>GI4)?Lu_GJcW7jEYx6
zRzdSEmKA5Hzn+qrdZx^A$>Z#zb$?YD)r%6=_swCOGI!rx5#!~aTWZ#F&B~89nfvOP
z%JbP`dQ<aHobB8<M<spv+u1o*bNb$z`>(9%uKoS9zxle~Ux#D*p9_L!d<$fdc^O%{
z_kP-@{=B_Kn@^V;&5gZt>c*TW42}EPc24Dd+w*qG%8HjiUW=$*e(`ILnq;it-TcDP
zk5hiGeD=Cx#hgPb{?p#3G$(lVlx1%_yke5-x$xN4x9ZHbjCy-+PtgeZb&Ef5_lygw
zmNSn%v0nCM-Q=Z*vMz0x?Ol0OwREz*^~I;#JL3y;m+|&lxIdp?_IH)x#+h7GW#xC*
zsF};IwK*>G*{`ef9Q#|Y>6arypL*<!7oENAM!?C!Rr()qsm^<z$(0v6SzMw2rYg5}
zq|)3U@nPF!mZ-5Cvu>K)P_|LL`_7yX+TTwfb)Whq^t#sb0L$g;9J>GeGVY(xFrjkQ
zoLiYiVoz_fwwz*Hq~9?krAF=d%9NE&aZB6(ibM#m_u7|H962v*pN;?ZlH{_Ds}~u+
zyy7RnYtgdoRlWU_4`rX?T=nDFhg~-Q;_+HH%f2MdkNp(>G2p4HsNC*3uTq>BUYdL2
z@|H67t&Y#upU!9f_GsGQ!=1e;^DjS5T=jB(K&h7as$`YsOS%!u1S?naXqm-+3XNSY
zb9RbL$(~Zz2(uX;tGR1#3MB34jE-zu_2SmW*OMl_h$%A@tvq$(Xm)JTgv`*BCqmXd
zIi%Rvxkc-ymi59H#jl)=(ju2>-Z-+;>VCK?qqWVlmKEA1Ms-vDXFu|pT9Xo|wa>_2
zRBq~=zem<hzHv#lFf?%5^<=GU%jRf)GXJ^Bi~rLM4ez7QSJ!I`JvH3DXVvNRtM;h8
zJ}5HXsDA33zYjK@=G|0x^v<I0)TwVSy;h&n7V>qbOia1%_m@9rHU%FKp4t=gKh;j{
zafk2JBOxbG>Ul0+82Yx%=SK)z=-S9*+SVI1Z-gB6-FJ<3+Zp%p3s0_>eVg!g>ERVz
zF`|A`dFSRNg?Rcu4fpGAi)}RfIo~Eelp%GelD%c;>jH~T(a<+mz71N@vr2Mi#mgDz
zG99U0#iDikf@*lM;APQ}V8O7L2Suz`S?-caIW<+Qu1s2Yu8wTnTss%5V7}{nr=`xQ
z@n3EodS*q*;*B?jZ!O7TcN5=Jwwp0DShZsM(OZvriskddF3;rpEyo<SM)$12_k_!H
zzLcI@%H?2v+_-n8&~~5I+#a!$f>`(It$f|pBHSMQ(n;J$Yi3#90<SlpvL|j|dE@1q
zW!eTsg%c;YpW8o2Bw_0OTMxs}hMHRMo%JT``SoR`CyRWmF08%0?m>5Psa5dFE!r-t
z?xbd|lDP76$)EV;(!qaLJi4L!cjYW$`GQH;pA;^+u4aAm@h*!S{QMiw=P4_iN2ZtU
z42Y~3`K&5;=)H}u*gd=BH@s4tzVCKalC?c@d)6xc-=UJXUmhxZdh^WBtk#tqMNWT>
zY_ivpt;jv@9k*rcp)1v@a%Ycg`}=8LKK1!c%8M5ze9G&5H{W}6c(=;&^vFnkJ4scU
z?#sn{cE0*K-)p(v!wQ44zHIJm_cp$ldw6JSUX$JixqGQO;cm(gudQ3uBh>%pY`EmV
z<2hfY_LWcZe%gF6mg(Gi7P;87Q$Ne^-*MihXi~L&{*-wwB~vEbzGbmxQfoLQCEOhD
zv3<|6Y<<(Ia=B_RKYW(FCo|_*eOkvp`B1s=8FlYN+unEb|I&T9M@Ob(-suf9q*N{U
z_g$5EzV_gwgHINnW7yQK%(LvyoE=w=FI=wjH%;E4@UhzEmpWhF^$cYA!&EJ`Yo~9F
zpZewJlm*?J=G>9uUMW&OJ?!SG-7C4>EX4YSvsbN2?Y|rCy8C|mm#3E|r?Jf5u{gc*
zyU$NUW3lZ0o)h=%KJzQ=qi5{e<5e$zZQQ>oc;`&6Wp~p;`WR=nuj05N8hdv}tj^2|
zu_bj^rBb4-Yfo1Co4PNxS1;S3ZB@4E$=6r2)~$HG;nlU3n<fkIKJm$?Sn$}KUp;H=
z)umM?zYCR6oi*!KXI{<5xH#)u98Yfg_)o0)FXee(pmyS`^q?%!6~!iVg+jb^8Q2$n
zne+WZT=j+^i@6$sN1p3`ERfd`W1Ot~qRFpJXYRwJht>w~(W$R)+&D3F&9&e;{w5Fa
zMW~pT&7HW*J0@fLxeB8P#qE#h{Eyu6h2xdY%lLT3ub~ZA4R4qhD_@RSYs<6e4o7xz
zkNSG!N79d+s-J4;#V?s2zN=~K@rdicZrI9O?LP40s^*#q{=a*BcbJRM+)+7KFrG7A
z@$i`!yzeTlElcgZ7Hl|n=I!j5+UutS>emE?aBZ-h{%GFv?(0^wR!#o1uFfpd!*`=#
z*JO()YvZ<a*XU0vnD#Qe_R4#)y}$45Dw@1>mRR3EmGf6-xz+#IKRef2GR~rOVT1*1
zZPZK7b$w@&TCFW*<|Mg(>(^(k{bqV7y}0MT*2~Ww@-dNO`7z2fIR)*D=S|3OzxuN<
zDEwH0Mxc#($hPXViBneihtK#S?OZbL$-6avpW{9$`s&N9d9Y{xlc=oT0{^Ca&2mQH
zgYU@g?%MtE?4yOBRy|9(to3cSS+|n?-PjqLm0h);mW96*Z`=842H)<>PRi!NHnZPd
zJ7W6c*W0f4u4^GPQhLhv%!%o)_2Zt&HJz*9FKnh;s{7>qmN$=_tP!1^oveNF$_eh3
zAAfMNbe+G!!%}6r?T^;VqwP<W+E+YfOn$y@a&GtI*m)_IlaEXH2-WYLo?&@8YW10(
zyGg$eT20$M?^uELUE8-)n{yk_*2}3|R`!3%|GeY1bZ5!80;MpkYcE#2uG?o7Rl{NZ
zpzq7a>(3V*b%~Bk`Nk;xe(4PV{Dh}>E2N!d-o1NTQT)<##k2#97d-r!I&1g#<1=eF
z_=(9M^ia38%{7@iPj~ju-R2T8JeMS6(!branzp_1#Kt&3*}PScCVTfASJcj{dBT%F
z$13EnPWZ(FF7*?(F=}t~7XE+U-X+aa&;IcmE1SK?<Xrv``|F|4qF-5G5KwuMy-Ma-
zuCCEffkU=|e^@tMI=$w1l;<CtsG4;d3uZso_Kx|h(R=mXdK=~Iuk}9#us&Lzc`Y{4
z@2^gn&92oeJCo(_Jbrb!w8)+5O5XCwxcmnvmh#PFW~ke>J1k<?wlj-s)>Nb^HI&Xj
zDXAaJoO|N9{j}7y|C&crc1>Kj@W#8jg;PJve-P(?JgxK<(>Ajkobw+A{So;2(tO6R
z5JUNh*>e+2i)MYc|MG65x7lXj<nyYJ?7waN@=ZiL<TS{k*SAi3G40FFNyn@n9nW67
z;e(*dZ~u$mVsZ`p{Ju@9teDx#zv;-W8qwY5@>+SX=IPz6-I?<}s)pC~_w#FMJIsDg
za5&FUd+}8AIeFU(m$UuV7J}S?+$>g)*4*2D#;a=bW8bdB(*t9=vnR)Um)$gupS~gV
zXoy_<Ue41~)`Xg@O35k@U;Ie(-1LttkIl_<c(UviyODjN@WR_WZk!Ad<=SX@aJ{yZ
z)l9z+H$>9|Zad0NHuu@(J2|+g%w*N<-9f7Z!+ypJm{#1Gu)fMAYTnnaHl3f}UpOvh
zY`)H*EW5Fwo<~1Y?B3o}XBsU!7jk@ES1NW-`r)e?{o93>w$EJeTkti1+K2LaNe|fT
zKE1wt$1Cn}*<JmYe-m|OI4=J_CJ?50{?+|B<w(0&=YXK9M{1j`b?59gahQBPDL1X>
zwRup>KX3W7{!H@>_WrNr;AZ7-aGKUSTiGXi?H8Ue7f)zi-aaYD`|9V@_nzI|%=uY*
zb&j0(htrcwbM)_}{CFm@`TW##YjhGT|6Db*j(>WxerIqk-%`KjPStbHH(&2|pYixx
zrQ-DUb3Q1s@43MxP_uGAV`F|<W}j$z%jTu!Tzhmm@8t=qKmDOK|M=UFA%9PpSLe^T
z%-wL?`|m-qzWE)(waaGw`Dv~%@a^8SdwWgi<!3Ka+kE2CVVi~aJYuC&PftGH9bQv>
z=<(6u8;?FFdmZ<F>fyg6;-}Q5`j18{@8_!&t(h)t&lz&A>CdW?9YxQVK4RYabb-c{
zf`7@J=^I)f+ZHZ*s=TU6_6uuw)v1nO!e4(Jm09_cciY|YpZ%NjULAI~xOv%eMaXm}
z`?pV17!RzP7oK%bUcJIv>yyZrmrS1~=wErTa^>0w$9lJmecJgb@lC({^X^}QKX%u~
zRm@pGhv6~PzK93EwtAW!PM647X}4kb&nE_l7e(GYc&hn(!|twg+bn%`iWnz8xAy(A
z%Gxco>5{6;?v(Y53`KoIb1XGw%A`3j-<^|{yDKTtUA_OMnY7lOMKY89LS`$@Y@gga
zQ<!I&OxC8&lj~&7tp8v7P;+R@j5mihmxU{cSZc`3d%et1O8cItT!xYu_n}|PW-$(S
zXFnY;b@{L0_90V$-!B1K*~A|et?o;2&YUW`ZD0A6d5haQ%uEHlz6#{?2X5XR8x->L
z!7~TpfA2XCl#9<$-ktm~mqVEA$A_OxCi43a?0!FmE1j{x(<bHUlS?}GC6_N<^)-=D
z5a=m<wAA3*DWmyQuD@q0ubr{2V}4Y)?!OG_#Pe(~LstuZX!sr=zrW_W?7vr6BR+oC
zie=!gNmc&vR7v^obBTGk*Ie3P$iCF1tgZF_nxN~K!fbZNJ>0N!YveM!4;L<p>D{`*
zdcJJ$u?zZbpoIe7%*#8(rb$T8Oj>JmzPKZ}Q#oRC^Bn8iS@wHpr05p4?F*~l+H-vN
z8Q%GiuS$2PxbD<@@VQcL+MX@{3hkZ$f6YB7&;Q}Yx6r)$h<i7mc=)SC>dg1{oE5!(
z-<hjNPyOuJZPD&!5t;O6S3~fW$bda%kv22tBpF|Eebl@E(fa$Zl(!k5y?XId<)l>%
z<{w#$UT^lfEB+-?T&b#{y?U~+&5cbbo^D=qZpn<;)yfqCyOhs(mFd4;)${m&)DG#U
zip%CZe~5?AJk9ZZi)Y;y%kuW6#|8WLJh*MWZkBS~ZB@SAhBN2K$fVlo%{e*c`AOFB
zY1vVmy{mLT-{$92Zw=e(7dvsv^ONgSV_$x1SR+2sExo#M9oO`A9ILygp5rT<EpV01
z&GmW6G_KVruZR9qNV@za@ul&3n`q<wqN-&zZ<lU-%VWFoRYM8)c8Plr1gjpgcg^pQ
z6bs91etGb+PdC@<-giuAqL1!gd-wdBn7CQHe`SQNsqAOsV%Xa9FPCLq{PXjdc}-aU
zu<R3G_Vj4jtiO-);^(RB{K@9#=I6b~<@>gL&yLU5QxErYH{1@l?Bg<jCza@vvGtMe
z^t^QKPonX=8T^$mP7C|wsBa_ktMs6*dgG<nF;#6l@0(qk$Fb^Tj$XmzS0?Y2{~npY
z{>7?m;tB!(-t;s0+DfnC(cARtXW^`Q3oF>aoYRqc_t<F*W8Ll(b3aP={5Ws?VNt=G
z;NIy8Tc(EPE6ZJvnku|3J?+G?xMjZsCf<{_b-d1Af9`Cx_LEus2Vbdd|0lj>Ur?>y
z(j9HLmU~%DEJ*9SEFy4i755>1@tJX%Pj1Z4WqHluR5Hin)T0M7-Sf9!{Md80#xk%@
z@r7|nwAAOzWonI6Wu8Af8mZ$i8<)+kEwS9zW2@}mrn~m*USx$|+x%9A?N*~sw{mmO
z(rF!Ej;}huqQvpr{Np=*z1GpKpOo;uMJINX*!6|CD_393f8PBmwmDOHr8ZaD*(p!v
z<gh$>ls##6=SJI4Dfi0$Jjo6|ROWfzXs_1x6<oW|nJL*%^_}>lWY^TECu~CN(zXX)
zeOPd-#O}qF>%O18|E#{h?P#z5t<&0bdv_E*{`&JHCu`dIM_dlI#v7{=&)oI6zVuS`
z>{YBU8D`CLdHy?4-Z_8mrx%lXr01{OIBVXcUmv9Y?zf2i<Ks6)RoZXs<VjOkXzkN`
z>HqwQ6??!*-Sf3Z4qu+%4QM#q&Skgh;M5wOu)57hz7-cPs%zYKXPcO$q~AtKUxN#w
zRlBz`OgMb&mfHW{bu~||zb~)(v7w9ogIGfDJH3~`7W4cK6tQ;*7Ove{8n@T@_^a-t
z`Cq1)JNf3`J(_P?ul4BkhZmD`|FpkuJs0)o{#xbzyAJnpZ~7j7<5!)vtYW6J(xX2~
zvuozc$KO1r<hL<XDE(dFtk81X<26jNd*$tK=e$dJKY5X?nYiT6pi9p`COn-xlj#BX
z#fcToeBu%EeMKK<%|2{z-xL4rIiJAWcY2$CM@X$c^gvlAv&A|)Cs1pis?JURe8Za0
zitN?;1)tjQ?X7E0@+~t|KX0sBG}nK2*^i>&kJFAHyl1z`=IYiP>mOxn2_)^$lvTUA
zY?0>U;EyJ~udgZO{|aHfmLffI`pN}U;$NHnD{>5a7;rM=rN`9krK~s4>G^%od}gC)
zo$DL>v0J&ZLH<7DmE9(DCs*&SxS3WQEpa|A;&0027|*`juiNJ4JT<n}k@M*(%J%$W
zyL?>*<Bp;f``FaWe`{wgHoWzJ#q519;s<kPu}fc)nd!f?a!<w0gPXKsEl(@Ozh0^0
zIQg>2sdH~5j#`IZ%?nvp9{M8dPTr4ON$wM7o{tK6y{_i<R+s$Rd1+s{SI_F#Fy4LU
z4ZDD)%*vYGTmRH&PrSH&QjVJtPf7bK{!7n{-|Z=#c(M8>*SVZ&I`_OLR?S%-*T4GG
ze0>JfygLyQ@tm*!-AY>iVA(P@jU9!%6O&8V7Nx)66!AZY`~Bt8-S($Xu3uL1_e-YV
ze7mzR{~Mh7GyRd3{o`{5oasAjXR5yb^e9;Fz@F{vuf09Cck{Vh;!e-g`%eV;FYr4M
zH&6SOWMWP6#EaTowWoBqAG`Z~y5g;)8`HDD-->+@pZb04?md->Q+_wqKl?1U<L=S(
zq250>$=^%*ag57%x!wiok8gPk49h|}-If`i)&4%cG(dE6(Ecv_F2l+`9q-mq^Kj90
zkN=@ZgTi@AHl@UTYKu~hUQ)V=apKccHb?$1Yf?(SAX<0x8tcm_^>|h1aGlVi@5akc
zKUHG0j(s(&YraPKxBo$_S1N@F+<153NL_h{hlYRFAF=cEbCz#ZJACKu>^rMpKU~|g
z|Hs+`1v7rFjGR<1{i5r~&7T#suH?*WPWQg4Jze#)H8<DKM|T^hrYcW9$XoH6`A3%g
z<bStUtL(QqGxMI=tUHxv)5LEcaQ}HXwJ6ePw%869x%u2S^K>50k$C>|otaeZ>oa#^
z5B_f6Y_s}OV`6&FUHPYvzPf%oyO(Eg&@OEQRUOCkThF_4JPr2gX@6-M^y}oIy}DA?
zPE+$|G1V9zzIsq(^*fIA`$G3-2}h+Rwq4yN#&%?Wxk$sCTDSJ&9_+hbWUp5KUAgQ>
z<&xXpd+)pJ-hUpjqwnWS72|(?he{)-)!UwSJ1nTQRNu{XtJ})?^V4!R&3mj{cO&NE
zxs+MEJn94E_X#{~6WRR!{!&9Z)d|tb&-Uw2<UeZpLnYvYa3||bDgUCy8{5xq=zsG`
zWir2X#@>LM!}}gCt!qm<q?=MVb!E2an%KWn3-0+E1>g6)F+H`iXj<=kS;e5b-KNu1
zi%%=PZ#tVJS2R1tNb-}O`Mw7Ed<{46y9U9FAOF~uY_j9p%)O@P{fhN3F840le@kWZ
z+2-u_HLU%cXRk@M*>Ts7sZKxVe)^ZShL_HlTrA(wm!syqjp53)FPcY=KHDp@`KH3h
z@Rt0<-3z|`<X9Nf)fwOVGE@A`KlX)-{+pNx{iy0XdAnHV1<%8qe#WMI{bGMu@TTss
zwm5h7|F)Lz_vb!*VJtS&XXPci73u-%H8l&hBtkZX{9Lkb$4WCbt6xU(yR8L8t}io`
zU7NLd?cqJ~vMajU^UkWtzEj`0x<vg`>885ae}XSVXR}_d=P3^PoH~DVwpLYa;q=)j
zr)llKcr$G4%Yd^Jzij?)kh7arx?B`8Pj%cgc4x$|jWz0j)fY{@TN$kWclqa@zx}gg
z=4~nX-R$yceZiugA|K?JO2|a&)D>@Kn2_`#sq_1R+h5xDxYU<*wI^%l@%V}FPkg}-
zx~|20XN8@IVMXo6it^W!D)#&{+k2kVqCMT)KD6_**PfYCH!u3`Ue0s{I{kD!_@_+x
z;x}4#tOvvwf6tlr<VUXF`ILt%*__s<d&&sfxwCvQ6Zo+6<_EJ6A-q?U8CpZ1Ju}Pr
zks1F~_lnWkTSD5iE7z<QIb5&Vb5;J~p#pQqEY739Usl%lSTAl~@+nTrY3&@(5&@0J
z|E?c@`QO;%?=Q2%<=z(2RWI%3v|egE9N%f2lJ8sexYtvs#>CCab574&JC}p^r!Ck&
zA*tpU+w|bdJ-vy2bKWjr{AKo$sQ&p4?h(SbD>Q1KZ)FJZUa@=rypM+O{+v}<Ij2SV
z!Dj22y5fC1EDIQ0dDs1Ysw3j`rH@D8bBl##fmnXgq$^V^*UYk#QnuZ5N%-#G-)GPC
z7ZfJ#WqN#3quKkw_uUdzi<=KD_g<6pbYtE0qzczd&!^^<+2`KddH%`VP^rFo%im_6
zR4X;C5{{g-@^;L>cAYDx0$p=eFUI{^d13O|BmaZvq<qp-7N7jY_A86B?U(;LTcYQf
zzti75Z*#&gspiX~^&htFIb^MGK3jOh3;ShFE4x@jH{aGcWuo=3%r*G<<vgFQX~Fv@
zAAiF&rL$dg<NNmIlU?-9FV9`x<9<9m{6y%cCp9Y%FS~TO&P;Tf+V810%XUpGTwN1p
zyuV1|TU{A<YT_b>xf@H1OCS3^Yl@new>&$`uk5&5`f<j&FSp973HwH_%kwdP=TiUs
zXw<Xx=?=a&KAvZ;tiP4pb@rsy{*zLn$*Z!1=btoxlanC6UM=SL)_&nizZX7*%I9z9
z_ucU4E1D%;;=A;8zOcDgjNj)uecOfqmrc6v!c+F++wD2eysz4b>g~R9@uqLPr>J^U
zkNP*BRSvsM)`xOBv8jI+7SEXeresekr^7wd7qj##EllTl&Feh3F8=A7O?5F`x0;s4
zxB70G>G%K9u9WDR1~a~_-&D9WUar_Fd-@;lkYuCWf|9Z+wXs(s9i=8eU!5}h$LZ`z
zhBLdiuHl{=8zK?9!^N)X%;`TNKOK&xe$t<N&ZW{wZD#+C^`Dq!!|u*l_ww4J%`<J*
zO-g>QzRB-Nq2TmWVG`?n?UYY%{;W8&|D1lvW35Up>6On;|JCwYWoOuz`uB9v(-<ey
zyTV?LtCnfAtU7S%;%Ux<D}`5!X`a7)cIxbN2CG=!x|kOwU6qUvoe{#9=GCVpFOqB(
znPhy^XF7}TY{k&|dYu-L^Y^gL?2kF%61Dq*cxH*C-l<EXiNgPjHhXVdb>xYP<B1!-
ztXD+%msMIxO$_@zRpBuM10xe?Ex=OciT&sHS=E=kir<ws>-`de*IfIudOzJNb#>ax
z81!>;tk3Hbl}DFE3)Br49!kCx`7>&}on`;3W2O6+epdguHLrJ5jBH$Ro|$Q9`q#u8
zyJWl9y_hM~?U)g|Kks_V_6k`uYaXS&D-B+9ZR47s`CWOv|Fq>?J~Q2(=IpAps<kQ<
zh!qME)ttJ2#hdh7A71>JbuHnO<xYiLqWlw=_xSrQ`^}>hT~#>GkKf2{cZ<&DQ$-;k
z*LqtlJG8F5ey)#jyt?6oB^|52to2&7Ymwfkf=!ki53k-l(`R{=?zc|M>w52By;+y-
z$2Ilb|I&YJKc&j9_1bQ=XV<MI*~@;EM)l_y{Hd2yxGK1~#%U%40|SGntDnm{r-UW|
DysBR=

literal 0
HcmV?d00001

diff --git a/rapports/rapport_2.md b/rapports/rapport_2.md
new file mode 100644
index 000000000..cce499e95
--- /dev/null
+++ b/rapports/rapport_2.md
@@ -0,0 +1,70 @@
+# Rapport 26.02.2025
+
+## Structure des fichier
+
+J'ai restructuré les fichiers du projet pour faciliter la navigation. Désormais, il y a trois dossiers principaux : dataSources, testModel et variables.
+
+- dataSources contient les différentes sources de données utilisées, ainsi que le fichier Python permettant de récupérer les données via leurs API. Il inclut également des fichiers Python contenant différents tests effectués sur les sources de données (par exemple, PubMed/data_num.py, qui récupère le nombre d'articles publiés sur PubMed). Pour l’instant, seule la source PubMed est incluse.
+- testModel contient tous les scripts Python de test des modèles, ainsi que les résultats et les datasets utilisés.
+- variables regroupe tous les fichiers Python contenant des variables réutilisées à travers le projet.
+
+Tous les autres dossiers contiennent des fichiers utiles ou utilisés dans le cadre du projet.
+
+## Test des models
+
+### Longeur des textes classifier
+
+Après discussion avec Monsieur Glück, nous avons décidé d'examiner si la longueur du texte influence la performance des modèles. L'objectif est également d'observer si certains modèles sont plus performants sur des textes longs mais moins précis sur des textes courts, et inversement.
+
+J'ai commencé par analyser la longueur des textes dans mon dataset :
+
+```sh
+Longuest: 3863
+Shortest: 31
+Mean: 823.4525
+Median: 538.5
+```
+
+Sur la base de ces résultats, j’ai décidé de séparer les textes en quatre catégories : SHORT, MEDIUM, LONG et VERY LONG: 
+- Short: 0-300 caractères
+- Medium: 301-600 caractères
+- Long: 601-900 caractères
+- Very Long: 901-inf caractères
+
+Cela donne la répartition suivante:
+```sh
+SHORT: 144
+MEDIUM: 300
+LONG: 75
+VERY LONG: 281
+```
+
+Par la suite, il faudra recréer le dataset afin d'obtenir une répartition plus équilibrée des longueurs d'articles.
+
+J'ai également modifié mon modèle de test pour classer les résultats obtenus en fonction des quatre catégories de longueur. Cela permettra d'effectuer des comparaisons et ainsi de faciliter mon choix de modèle.
+
+En parallèle, j’ai réfléchi à l’affichage des résultats. Actuellement, la version que j’ai retenue est la suivante:
+
+![Affichage des résultats de test](../testModel/results/zero_shot/v2/results.png)
+
+Cependant, je trouve que cette représentation manque de lisibilité. Je vais donc poursuivre mes recherches pour trouver un affichage plus clair et pertinent.
+
+Dans l'image ci-dessus, seules les valeurs du modèle facebook/bart-large-mnli sont correctes, car je n’ai pu retrouver l’accès au serveur Baobab de l'UNIGE que ce matin (en raison de problèmes avec mes clés SSH).
+
+Je n’ai pas pu exécuter les tests sur mon PC personnel, car chaque exécution posait des problèmes et prenait plus d’une heure par modèle. J’ai donc préféré attendre l’accès à Baobab.
+
+Toutefois, j’ai tout de même tenté d’obtenir des résultats pour un modèle, afin d’avoir une première idée de la direction que je prenais. Voici les résultats pour facebook/bart-large-mnli:
+
+![Tests sur facebook/bart-large-mnli](./img/facebook_results.png)
+
+L’ordre des résultats, de haut en bas sur l’image, est le suivant : SHORT, MEDIUM, LONG, VERY LONG et ALL. On observe que ce modèle est plus performant sur les textes VERY LONG.
+
+## Suite pour semaine prochaine
+
+Je suis conscient de ne pas avoir avancé autant que prévu, mais voici les tâches que je compte accomplir d’ici vendredi:
+
+- Refaire tourner mes testes sur les serveurs Baobab
+- Afficher tous les résultats d'une façon lisible
+- Regarder ce qu'est Mistral AI (une LLM dont un amis m'a parler)
+- Essayer Ollama
+- Mettre au propre tous les résultats pour les LLM et les modèles de HuggingFace
\ No newline at end of file
diff --git a/testModel/__pycache__/metrics.cpython-313.pyc b/testModel/__pycache__/metrics.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4ad89e5031f2ea7dd65481aec4beb642164c40e1
GIT binary patch
literal 1571
zcmey&%ge>Uz`&qmcOd;VGXuk85C?`Cp^VQ;3=9lY8G;$47>XEz8KoGC7=xLl7>byJ
znWY$tn1flQ7>ZcZSvA>`nV>pA6e|M*12Y2y!)G=|ux`d+Mt!DWFsaX!#}vvC1T!C`
z8j4M!v@nB53IjtPa|AQU7!9asqAmkNgfNPT5CcOfQ!pb)ESS-j$(9MsV$$VhU?^rT
zW>RNhVDME3tAWViQe%nNWF{OYhaj1ZOHCRB12=;LLnxC9!%Akqmmsga1o>Q(@fJ&V
zYGtt|%PqF@#JrN!lv`W{MX4#7$t9WjdAHbd6HAIRD{e7^)UYrxFeoS}DBKFv&&bbB
z)z2(T%+q(tPcF?(%_}L^&r43xO-U?C)J;rJFG@{M1R0>4n3tlPoRe5woSBxH3>MNa
zNi8n%%}+_q(a%jSDauSP)+?yIC6Jt-msVPwnV%OAv9gGVfq?<!!r~?d28ITP8~g$j
z6g$!;6wXkbkamGrw!!TNzi5ATXLVm~2lEYX!G7x-{F43kHw45c6i(!vp*Wdm0pmph
z#i=|GFhz(}_)(NWK=y+K1CLOH?`Keup(HJKSkfv3C(LM&V?l}-f*DPrY+(iuO$LTM
zCLD6&;KT(^5~0kn$c+#JC7w`ll0!*Al8`9$)rQca3@QwoOnxsxsa=!t7Hd&rUV5q~
z3pm_viIn6P#G?o4Eym1Sj9JC7Xe{DpU|_f<mY9-)t};2bxJZP7fkBXgfuYz59Q=29
zg(evGMRYLU5fqzHI8CC%@dl5~MIQMDjF)+oE~r^uRI}ZYcu~#aB9FsW9;MIB3_?;L
znHl)RK5#Jb$XsBNF5+ciU`U1r3pkWO&H(33GjQ;QGQjc=*!$=_a3Dcc=rS-c=yEeK
zs4x_P^si)C$q4pzG01cUh_BewQ%mAY3W|y(7#J8p__HzC8#lP6XE<KumYY#{kz4VC
zs_BNri>eko1TU&uU$FB#QFzfV@Ip}VMZ1uTsv#G-Locv|(!|}G%zi~6UlxJFph%2?
zfuTqo6x0|V$SW$6W?*0d;UY<pG73WxQbK{l5-k+5yMh-Kj0Huh$(f*>StQHAz#s>5
z2HY)vnylck2PYSBV1peDRtYf@<YGviaM<MLr<CTT+7*G!0Qt38k%58X12ZEd<0mFQ
aMxjp%tc)_B_!t?(7(cOr$j@LB90dT^vL&AY

literal 0
HcmV?d00001

diff --git a/testModel/__pycache__/utils.cpython-313.pyc b/testModel/__pycache__/utils.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..837c466c53e3c8b6c28047f35dc3763b6f77caea
GIT binary patch
literal 1038
zcmey&%ge>Uz`(FV??C!zMh1q*APx*OLK&aM7#J9)G6XY7F%&TbGfFWOF$Ob9F%&VS
zGi$OW!&HG3voJ6)Ff%YPd`<%E2xSODmIbL`U|<Ml3}!NAf^e|PGY7N4<w2%Fl)_0<
zC`*MwlhyAQqrxr5_*;xRw-_{;Zm}1o7UU!*r`}@C$uCbW(qz2Fl9!m9S`2c9!YzOO
zjQreG{min&Jbjn^<kH;Kypm%5yyO(!l*E!m-Nf|tqSW-nlFa-(-Nd{U-Q=9a;^NG-
z%w({Teo1O^iEn;NYL0$sNoG#5UP0w8k@VD(c#z)W)ROqL%$!t^WkuW!3=AL(i!~V-
z7#bLEaP#-ublS{do)LVRTk$%#=0$GJ70N4$E^`}Q=eD@WZE=~~>H>?^XOOS32WAB{
zFoPLc85kJy7(*F?nZPWjXplW1jSQiT(a<1eV1Nal23UrHA%%&7A(%Oj5lJ-@LDftV
zLMBWq44N!{w|E?jN-~pkQbRIJa#C+`I3^XB6eT8?6tOWdfC8N>vp6%axFj(zIrSEE
zaY>OT^DXv7h>lyVB@jJ{P(8(<_*76(C<3LrTLPf)gDM4wW05EW0|O`#6+1z~jz@Tc
z-$fqf2G<+>ViT$^@+&oXJmD6dkUA&$I=A9QZp9k{LLICik&GqG*SS?La;w}B7VY48
zz%9^We}P4+h=+lJAsHSpP{ToP_^byGR0D=Qrcg#<1`i$vhCJp714s~CGcYhjD62Ct
zF!=H@FmN*{Foc4Fg30d|cR*2UN@g-BjTEnB&}1nRVqjpn#g>zpl$uj~i>*8{uOv0)
z7Au4g@`wW5vtl66LKMUoAWSKeVPIeoU|?V<2HDrZaD$h>!R@x7cn9kZ3E3607ZuGf
zN|<-Bb@P5?W)PD2z{bEM)Zh#Dm!BpxIIV#L4Qx!21Oo#DSPl}t95%W6DWy57c15zV
gG%3Qs!0>^Yk&*Ee6C<PbCpIod>CY0Zj6z^t0BEM)cK`qY

literal 0
HcmV?d00001

diff --git a/testModel/doc/articles_length.md b/testModel/doc/articles_length.md
new file mode 100644
index 000000000..99f119c8d
--- /dev/null
+++ b/testModel/doc/articles_length.md
@@ -0,0 +1,26 @@
+# Tests
+
+All information was colected using "testModel/test_articles_len.py" python script.
+
+I looked at articles lenght to separate them into categories. I tested the length on my dataset:
+
+```sh
+Longuest: 3863
+Shortest: 31
+Mean: 823.4525
+Median: 538.5
+```
+
+I think I'll do 4 categories:
+- Short: 0-300 caracters
+- Medium: 301-600 caracters
+- Long: 601-900 caracters
+- Very Long: 901-inf caracters
+
+
+If i follow this separation, we have:
+
+- Short: 144 articles
+- Medium: 300 articles
+- Long: 75 articles
+- Very long: 281 articles
\ No newline at end of file
diff --git a/testModel/metrics.py b/testModel/metrics.py
new file mode 100644
index 000000000..eaa5c0065
--- /dev/null
+++ b/testModel/metrics.py
@@ -0,0 +1,31 @@
+def confusion_matrix(wanted, prediction):
+    matrix = [[0, 0], [0, 0]]
+    for key in wanted.keys():
+        if wanted[key]:
+            if prediction[key]:
+                matrix[0][0] += 1
+            else:
+                matrix[1][0] += 1
+        else:
+            if prediction[key]:
+                matrix[0][1] += 1
+            else:
+                matrix[1][1] += 1
+    
+    return matrix
+
+def add_confusion_matrices(confusion_matrix, tmp_confusion_matrix):
+    for i in range(2):
+        for j in range(2):
+            confusion_matrix[i][j] += tmp_confusion_matrix[i][j]
+
+    return confusion_matrix
+
+def get_tpr(confusion_matrix):
+    return confusion_matrix[0][0] / (confusion_matrix[0][0] + confusion_matrix[1][0])
+
+def get_tnr(confusion_matrix):
+    return confusion_matrix[1][1] / (confusion_matrix[1][1] + confusion_matrix[0][1])
+
+def get_precision(confusion_matrix):
+    return confusion_matrix[0][0] / (confusion_matrix[0][0] + confusion_matrix[0][1])
\ No newline at end of file
diff --git a/testModel/results/zero_shot/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/zero_shot/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt
new file mode 100644
index 000000000..04db60855
--- /dev/null
+++ b/testModel/results/zero_shot/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt
@@ -0,0 +1,11509 @@
+---------------------------------
+MODEL: MoritzLaurer/bge-m3-zeroshot-v2.0
+TRESHOLD: 0.7
+---------------------------------
+---------------------------------
+PMID: 39737510
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adult', 'Middle Aged', 'India', 'Male', 'Female', 'Noncommunicable Diseases', 'Risk Factors', 'Aged', 'Poverty Areas', 'Adolescent', 'Prevalence', 'Smoking', 'Alcohol Drinking', 'Obesity', 'Cross-Sectional Studies', 'Young Adult', 'Urban Population']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8450985550880432]
+Labels: ['Diabetes']
+Scores: [0.0013840865576639771]
+Labels: ['Diabetes type 2']
+Scores: [0.002091174479573965]
+Labels: ['Diabetes type 1']
+Scores: [0.0019077617907896638]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010244300588965416]
+Labels: ['Mental Health']
+Scores: [0.016867442056536674]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007222524378448725]
+Labels: ['Cancer']
+Scores: [0.0015850907657295465]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737504
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Stem Cell Transplantation', 'Cell- and Tissue-Based Therapy', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15160030126571655]
+Labels: ['Diabetes']
+Scores: [0.02069271169602871]
+Labels: ['Diabetes type 2']
+Scores: [0.010796676389873028]
+Labels: ['Diabetes type 1']
+Scores: [0.0052400310523808]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01749700866639614]
+Labels: ['Mental Health']
+Scores: [0.005103073548525572]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004628373309969902]
+Labels: ['Cancer']
+Scores: [0.027300190180540085]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736607
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Sex Factors', 'Employment', 'Socioeconomic Factors', 'Poverty', 'Universal Health Insurance', 'Cost of Illness']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9897090196609497]
+Labels: ['Diabetes']
+Scores: [0.030368629842996597]
+Labels: ['Diabetes type 2']
+Scores: [0.006298437248915434]
+Labels: ['Diabetes type 1']
+Scores: [0.005315661430358887]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0963473916053772]
+Labels: ['Mental Health']
+Scores: [0.023809751495718956]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04883641377091408]
+Labels: ['Cancer']
+Scores: [0.055880818516016006]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732655
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Machine Learning', 'Bias', 'Population Health', 'Algorithms']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9109826683998108]
+Labels: ['Diabetes']
+Scores: [0.00856071524322033]
+Labels: ['Diabetes type 2']
+Scores: [0.0036476224195212126]
+Labels: ['Diabetes type 1']
+Scores: [0.002585028065368533]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028334256261587143]
+Labels: ['Mental Health']
+Scores: [0.029635485261678696]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016571376472711563]
+Labels: ['Cancer']
+Scores: [0.007137402892112732]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731009
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Republic of Korea', 'Male', 'Female', 'Middle Aged', 'Longitudinal Studies', 'Noncommunicable Diseases', 'Exercise', 'Employment', 'Aged', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.331926167011261]
+Labels: ['Diabetes']
+Scores: [0.002021988620981574]
+Labels: ['Diabetes type 2']
+Scores: [0.002234822139143944]
+Labels: ['Diabetes type 1']
+Scores: [0.0020395098254084587]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04680617153644562]
+Labels: ['Mental Health']
+Scores: [0.015743592754006386]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02892587147653103]
+Labels: ['Cancer']
+Scores: [0.007085473742336035]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725416
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'New Zealand', 'Cross-Sectional Studies', 'Male', 'Female', 'Middle Aged', 'Aged', 'Noncommunicable Diseases', 'Adult', 'Comorbidity', 'Censuses', 'Adolescent', 'Young Adult', 'Aged, 80 and over', 'Prevalence', 'Child', 'Child, Preschool']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.995003879070282]
+Labels: ['Diabetes']
+Scores: [0.0067575774155557156]
+Labels: ['Diabetes type 2']
+Scores: [0.03581247851252556]
+Labels: ['Diabetes type 1']
+Scores: [0.019169699400663376]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06084594130516052]
+Labels: ['Mental Health']
+Scores: [0.20024549961090088]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009868527762591839]
+Labels: ['Cancer']
+Scores: [0.005294795613735914]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722627
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Sugar-Sweetened Beverages', 'Taxes', 'Tobacco Products', 'Mediterranean Region', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.38315239548683167]
+Labels: ['Diabetes']
+Scores: [0.033538833260536194]
+Labels: ['Diabetes type 2']
+Scores: [0.0743834376335144]
+Labels: ['Diabetes type 1']
+Scores: [0.0015680526848882437]
+Labels: ['Chronic respiratory disease']
+Scores: [0.015134923160076141]
+Labels: ['Mental Health']
+Scores: [0.000568469287827611]
+Labels: ['Cardiovascular diseases']
+Scores: [0.24067947268486023]
+Labels: ['Cancer']
+Scores: [0.006758205126971006]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709790
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['NF-E2-Related Factor 2', 'Humans', 'Animals', 'Noncommunicable Diseases', 'Oxidative Stress', 'Reactive Oxygen Species', 'Oxidation-Reduction', 'Disease Models, Animal', 'Inflammation', 'Gene Expression Regulation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9757157564163208]
+Labels: ['Diabetes']
+Scores: [0.022208943963050842]
+Labels: ['Diabetes type 2']
+Scores: [0.01698378659784794]
+Labels: ['Diabetes type 1']
+Scores: [0.007909323088824749]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3649517297744751]
+Labels: ['Mental Health']
+Scores: [0.02971968613564968]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012472216971218586]
+Labels: ['Cancer']
+Scores: [0.01717020943760872]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702198
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Aged', 'Female', 'Male', 'India', 'Middle Aged', 'Aged, 80 and over', 'Noncommunicable Diseases', 'Cost of Illness', 'Disability-Adjusted Life Years', 'Sex Factors', 'Age Factors', 'Global Burden of Disease', 'Wounds and Injuries']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01783585362136364]
+Labels: ['Diabetes']
+Scores: [0.010848539881408215]
+Labels: ['Diabetes type 2']
+Scores: [0.003267297288402915]
+Labels: ['Diabetes type 1']
+Scores: [0.0033114205580204725]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01087317056953907]
+Labels: ['Mental Health']
+Scores: [0.015529046766459942]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025057487189769745]
+Labels: ['Cancer']
+Scores: [0.013988431543111801]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699459
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Absenteeism', 'Male', 'Female', 'Brazil', 'Cross-Sectional Studies', 'Adult', 'Middle Aged', 'Chronic Disease', 'Noncommunicable Diseases', 'Prevalence', 'Health Surveys', 'Young Adult', 'Adolescent', 'Sex Distribution', 'Socioeconomic Factors', 'Cost of Illness', 'Multimorbidity', 'Sociodemographic Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9745535254478455]
+Labels: ['Diabetes']
+Scores: [0.0016450632829219103]
+Labels: ['Diabetes type 2']
+Scores: [0.0014297518646344543]
+Labels: ['Diabetes type 1']
+Scores: [0.0015574232675135136]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03040478006005287]
+Labels: ['Mental Health']
+Scores: [0.027456719428300858]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011948312632739544]
+Labels: ['Cancer']
+Scores: [0.01215656939893961]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39697299
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Cross-Sectional Studies', 'Multimorbidity', 'Noncommunicable Diseases', 'Health Expenditures', 'Prevalence', 'Aged', 'Adult', 'Surveys and Questionnaires']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.997875988483429]
+Labels: ['Diabetes']
+Scores: [0.002377087716013193]
+Labels: ['Diabetes type 2']
+Scores: [0.0049615162424743176]
+Labels: ['Diabetes type 1']
+Scores: [0.0032470514997839928]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013833881355822086]
+Labels: ['Mental Health']
+Scores: [0.3294263780117035]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00835732463747263]
+Labels: ['Cancer']
+Scores: [0.01064979936927557]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696316
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Thailand', 'Humans', 'Noncommunicable Diseases', 'Stakeholder Participation', 'Health Policy', 'Sustainable Development', 'Intersectoral Collaboration', 'Cooperative Behavior']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8448101282119751]
+Labels: ['Diabetes']
+Scores: [0.004819328431040049]
+Labels: ['Diabetes type 2']
+Scores: [0.01901019550859928]
+Labels: ['Diabetes type 1']
+Scores: [0.010282500647008419]
+Labels: ['Chronic respiratory disease']
+Scores: [0.659791886806488]
+Labels: ['Mental Health']
+Scores: [0.6061654686927795]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07224110513925552]
+Labels: ['Cancer']
+Scores: [0.004087620414793491]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696309
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Middle Aged', 'Adult', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Prevalence', 'Aged', 'Risk Factors', 'Adolescent', 'Young Adult', 'Cabo Verde', 'Prediabetic State', 'Noncommunicable Diseases', 'World Health Organization', 'Cross-Sectional Studies', 'Surveys and Questionnaires']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5935733318328857]
+Labels: ['Diabetes']
+Scores: [0.4957999587059021]
+Labels: ['Diabetes type 2']
+Scores: [0.05047408491373062]
+Labels: ['Diabetes type 1']
+Scores: [0.034808218479156494]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002118784235790372]
+Labels: ['Mental Health']
+Scores: [0.00036854803329333663]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007374200504273176]
+Labels: ['Cancer']
+Scores: [0.0006150464760139585]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39695503
+Predictions: ['Noncommunicable Diseases', 'Mental Health']
+MeshTerm: ['Humans', 'Indonesia', 'Adolescent', 'Male', 'Female', 'Noncommunicable Diseases', 'Cross-Sectional Studies', 'Risk Factors', 'Mental Health', 'Quality of Life', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9927894473075867]
+Labels: ['Diabetes']
+Scores: [0.004146541003137827]
+Labels: ['Diabetes type 2']
+Scores: [0.0022667290177196264]
+Labels: ['Diabetes type 1']
+Scores: [0.0010862568160519004]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007733270991593599]
+Labels: ['Mental Health']
+Scores: [0.8922682404518127]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003587478306144476]
+Labels: ['Cancer']
+Scores: [0.0454547256231308]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': True, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': True, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases', 'Mental Health']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39693027
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Melatonin', 'Humans', 'Animals', 'Antioxidants', 'Noncommunicable Diseases', 'Circadian Rhythm', 'Cytoprotection', 'Inflammation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9754517078399658]
+Labels: ['Diabetes']
+Scores: [0.07723260670900345]
+Labels: ['Diabetes type 2']
+Scores: [0.03370816260576248]
+Labels: ['Diabetes type 1']
+Scores: [0.023520415648818016]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03265054151415825]
+Labels: ['Mental Health']
+Scores: [0.03242887556552887]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11639976501464844]
+Labels: ['Cancer']
+Scores: [0.016894178465008736]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39683555
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adolescent', 'Male', 'Female', 'Italy', 'Exercise', 'Feeding Behavior', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Knowledge, Attitudes, Practice', 'Young Adult', 'Child', 'Adolescent Behavior', 'Surveys and Questionnaires', 'Health Risk Behaviors', 'Risk-Taking', 'Diet']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5659998655319214]
+Labels: ['Diabetes']
+Scores: [0.0026028419379144907]
+Labels: ['Diabetes type 2']
+Scores: [0.0011139707639813423]
+Labels: ['Diabetes type 1']
+Scores: [0.0008066166774369776]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003689201083034277]
+Labels: ['Mental Health']
+Scores: [0.015517090447247028]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005038094706833363]
+Labels: ['Cancer']
+Scores: [0.09683715552091599]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39678524
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Middle Aged', 'Adult', 'Aged', 'Iran', 'Economic Status', 'Cluster Analysis', 'Cohort Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8614539504051208]
+Labels: ['Diabetes']
+Scores: [0.003726756665855646]
+Labels: ['Diabetes type 2']
+Scores: [0.0021506028715521097]
+Labels: ['Diabetes type 1']
+Scores: [0.0017422728706151247]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011966104619204998]
+Labels: ['Mental Health']
+Scores: [0.007838857360184193]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003992523066699505]
+Labels: ['Cancer']
+Scores: [0.0014899680390954018]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39671524
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Exercise', 'Comorbidity', 'Noncommunicable Diseases', 'SARS-CoV-2', 'Self Report', 'Pandemics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9209145307540894]
+Labels: ['Diabetes']
+Scores: [0.0023970261681824923]
+Labels: ['Diabetes type 2']
+Scores: [0.0024528871290385723]
+Labels: ['Diabetes type 1']
+Scores: [0.002428848994895816]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022208482027053833]
+Labels: ['Mental Health']
+Scores: [0.0007749648066237569]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008699570782482624]
+Labels: ['Cancer']
+Scores: [0.008307190611958504]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39662975
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Argentina', 'Noncommunicable Diseases', 'Primary Health Care', 'Male', 'Female', 'Cross-Sectional Studies', 'Middle Aged', 'Delivery of Health Care', 'Focus Groups', 'Adult', 'Aged', 'Disease Management', 'Health Services Accessibility', 'Needs Assessment', 'Diabetes Mellitus, Type 2', 'Delphi Technique']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9614977240562439]
+Labels: ['Diabetes']
+Scores: [0.00761323980987072]
+Labels: ['Diabetes type 2']
+Scores: [0.002104338491335511]
+Labels: ['Diabetes type 1']
+Scores: [0.00148538697976619]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007612253073602915]
+Labels: ['Mental Health']
+Scores: [0.005460187792778015]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00525165069848299]
+Labels: ['Cancer']
+Scores: [0.003995243459939957]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39662129
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Argentina', 'Body Mass Index', 'Male', 'Female', 'Noncommunicable Diseases', 'Adult', 'Middle Aged', 'Obesity', 'Aged', 'Cost of Illness', 'Risk Assessment', 'Overweight']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9975342750549316]
+Labels: ['Diabetes']
+Scores: [0.04914919659495354]
+Labels: ['Diabetes type 2']
+Scores: [0.0208713598549366]
+Labels: ['Diabetes type 1']
+Scores: [0.010466081090271473]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02004123292863369]
+Labels: ['Mental Health']
+Scores: [0.0017688629450276494]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012616841122508049]
+Labels: ['Cancer']
+Scores: [0.003242189297452569]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39658798
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Translational Research, Biomedical', 'Humans', 'Ethiopia', 'Capacity Building', 'Decision Making', 'Research Personnel', 'Public Health', 'Malawi', 'Uganda', 'Noncommunicable Diseases', 'Cooperative Behavior', 'South Africa', 'Delivery of Health Care', 'Africa', 'Rwanda', 'Administrative Personnel', 'Focus Groups', 'Surveys and Questionnaires', 'Evidence-Based Practice', 'Qualitative Research', 'Health Policy']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0024505448527634144]
+Labels: ['Diabetes']
+Scores: [0.0006498590810224414]
+Labels: ['Diabetes type 2']
+Scores: [0.000709754356648773]
+Labels: ['Diabetes type 1']
+Scores: [0.000704584177583456]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0025343643501400948]
+Labels: ['Mental Health']
+Scores: [0.0003401318099349737]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003152003977447748]
+Labels: ['Cancer']
+Scores: [0.0017294676508754492]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39655600
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'White People', 'Female', 'Male', 'Middle Aged', 'Aged', 'Noncommunicable Diseases', 'Risk Factors', 'Black People', 'Africa South of the Sahara', 'Europe', 'Renal Insufficiency, Chronic', 'Cardiovascular Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9456820487976074]
+Labels: ['Diabetes']
+Scores: [0.005904941353946924]
+Labels: ['Diabetes type 2']
+Scores: [0.004306143149733543]
+Labels: ['Diabetes type 1']
+Scores: [0.0036646255757659674]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0267796628177166]
+Labels: ['Mental Health']
+Scores: [0.025901857763528824]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01861274056136608]
+Labels: ['Cancer']
+Scores: [0.02159234508872032]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39653570
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Medication Adherence', 'Thailand', 'Islam', 'Middle Aged', 'Noncommunicable Diseases', 'Rural Population', 'Adult', 'Focus Groups', 'Qualitative Research', 'Aged', 'Health Knowledge, Attitudes, Practice', 'Southeast Asian People', 'Assessment of Medication Adherence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8267014622688293]
+Labels: ['Diabetes']
+Scores: [0.0023357777390629053]
+Labels: ['Diabetes type 2']
+Scores: [0.004671092145144939]
+Labels: ['Diabetes type 1']
+Scores: [0.003769335802644491]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01578943245112896]
+Labels: ['Mental Health']
+Scores: [0.008066893555223942]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00693093566223979]
+Labels: ['Cancer']
+Scores: [0.010130691342055798]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39653567
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Developing Countries', 'Noncommunicable Diseases', 'Research Design', 'Stakeholder Participation', 'Implementation Science', 'Scoping Reviews As Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9900293946266174]
+Labels: ['Diabetes']
+Scores: [0.005508231930434704]
+Labels: ['Diabetes type 2']
+Scores: [0.00142352981492877]
+Labels: ['Diabetes type 1']
+Scores: [0.0009858771227300167]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0059706768952310085]
+Labels: ['Mental Health']
+Scores: [0.001176056102849543]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002633485244587064]
+Labels: ['Cancer']
+Scores: [0.006121205165982246]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39645277
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Chronic Disease', 'Diet, Western', 'Gastrointestinal Microbiome', 'Inflammation', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9240671992301941]
+Labels: ['Diabetes']
+Scores: [0.05260833725333214]
+Labels: ['Diabetes type 2']
+Scores: [0.04909082502126694]
+Labels: ['Diabetes type 1']
+Scores: [0.03677811473608017]
+Labels: ['Chronic respiratory disease']
+Scores: [0.056273315101861954]
+Labels: ['Mental Health']
+Scores: [0.016203802078962326]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009207387454807758]
+Labels: ['Cancer']
+Scores: [0.013645432889461517]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39644320
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Delivery of Health Care', 'Russia', 'Primary Health Care', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6938149929046631]
+Labels: ['Diabetes']
+Scores: [0.0032139078248292208]
+Labels: ['Diabetes type 2']
+Scores: [0.0028685720171779394]
+Labels: ['Diabetes type 1']
+Scores: [0.0025203567929565907]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0245705246925354]
+Labels: ['Mental Health']
+Scores: [0.00445299968123436]
+Labels: ['Cardiovascular diseases']
+Scores: [0.018153809010982513]
+Labels: ['Cancer']
+Scores: [0.03898569941520691]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39644303
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Risk Factors', 'Exercise', 'Cardiovascular Diseases', 'Diabetes Mellitus, Type 2', 'Obesity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8535772562026978]
+Labels: ['Diabetes']
+Scores: [0.3294248878955841]
+Labels: ['Diabetes type 2']
+Scores: [0.1656363308429718]
+Labels: ['Diabetes type 1']
+Scores: [0.01229691132903099]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021829525008797646]
+Labels: ['Mental Health']
+Scores: [0.042478326708078384]
+Labels: ['Cardiovascular diseases']
+Scores: [0.33058762550354004]
+Labels: ['Cancer']
+Scores: [0.1264491230249405]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39632114
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Delphi Technique', 'Precision Medicine', 'Noncommunicable Diseases', 'Consensus', 'Female', 'Australia', 'Pregnancy', 'Adult', 'Male', 'Mass Screening', 'Middle Aged', 'Health Priorities']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.932410717010498]
+Labels: ['Diabetes']
+Scores: [0.002188925165683031]
+Labels: ['Diabetes type 2']
+Scores: [0.0055412002839148045]
+Labels: ['Diabetes type 1']
+Scores: [0.003037270624190569]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02009809948503971]
+Labels: ['Mental Health']
+Scores: [0.0007466424140147865]
+Labels: ['Cardiovascular diseases']
+Scores: [0.027731044217944145]
+Labels: ['Cancer']
+Scores: [0.008771288208663464]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39625743
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Male', 'Female', 'Surveys and Questionnaires', 'Reproducibility of Results', 'Multicenter Studies as Topic', 'Assessment of Medication Adherence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8297152519226074]
+Labels: ['Diabetes']
+Scores: [0.007121145259588957]
+Labels: ['Diabetes type 2']
+Scores: [0.0028416207060217857]
+Labels: ['Diabetes type 1']
+Scores: [0.002353926654905081]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006921906024217606]
+Labels: ['Mental Health']
+Scores: [0.0015009216731414199]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001627340679988265]
+Labels: ['Cancer']
+Scores: [0.0015795236686244607]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39622542
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Kenya', 'Food Insecurity', 'Male', 'Female', 'HIV Infections', 'Adult', 'Health Services Accessibility', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Middle Aged', 'Comorbidity', 'Young Adult', 'Food Supply']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.37770217657089233]
+Labels: ['Diabetes']
+Scores: [0.0004415962321218103]
+Labels: ['Diabetes type 2']
+Scores: [0.0009656171314418316]
+Labels: ['Diabetes type 1']
+Scores: [0.0008388382848352194]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03334702551364899]
+Labels: ['Mental Health']
+Scores: [0.001881093718111515]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001379994209855795]
+Labels: ['Cancer']
+Scores: [0.0006157577154226601]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39613439
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Systematic Reviews as Topic', 'Sedentary Behavior', 'Meta-Analysis as Topic', 'Prevalence', 'Risk Factors', 'Exercise', 'Adult', 'Africa, Eastern', 'Research Design', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010441071353852749]
+Labels: ['Diabetes']
+Scores: [0.001569385756738484]
+Labels: ['Diabetes type 2']
+Scores: [0.0006498225848190486]
+Labels: ['Diabetes type 1']
+Scores: [0.0005055282963439822]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000948264729231596]
+Labels: ['Mental Health']
+Scores: [0.01666286215186119]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005906231701374054]
+Labels: ['Cancer']
+Scores: [0.006054947152733803]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39602608
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Mexico', 'Cost of Illness', 'Noncommunicable Diseases', 'Risk Factors', 'Disability-Adjusted Life Years', 'Healthy Aging', 'Mortality', 'Life Expectancy', 'Prevalence', 'Incidence', 'Humans', 'Male', 'Female', 'Middle Aged', 'Aged', 'Aged, 80 and over', 'Delivery of Health Care', 'Health Services Needs and Demand']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01128579955548048]
+Labels: ['Diabetes']
+Scores: [0.001025477540679276]
+Labels: ['Diabetes type 2']
+Scores: [0.0010644018184393644]
+Labels: ['Diabetes type 1']
+Scores: [0.000898742291610688]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00489122373983264]
+Labels: ['Mental Health']
+Scores: [0.002951368223875761]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0068018133752048016]
+Labels: ['Cancer']
+Scores: [0.0027653444558382034]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39595773
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Tanzania', 'Humans', 'Male', 'Female', 'Noncommunicable Diseases', 'Middle Aged', 'Adult', 'Rural Population', 'Aged', 'Young Adult', 'Politics', 'Adolescent', 'Treatment Adherence and Compliance', 'Patient Compliance']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9424148797988892]
+Labels: ['Diabetes']
+Scores: [0.0032228236086666584]
+Labels: ['Diabetes type 2']
+Scores: [0.0031122961081564426]
+Labels: ['Diabetes type 1']
+Scores: [0.0020783841609954834]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022932054474949837]
+Labels: ['Mental Health']
+Scores: [0.0010541839292272925]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016389306401833892]
+Labels: ['Cancer']
+Scores: [0.001495641889050603]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39595772
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Refugees', 'Male', 'Female', 'Risk Factors', 'Adult', 'Portugal', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Young Adult', 'Prevalence', 'Middle Aged', 'Adolescent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9291736483573914]
+Labels: ['Diabetes']
+Scores: [0.0011193229584023356]
+Labels: ['Diabetes type 2']
+Scores: [0.0012878002598881721]
+Labels: ['Diabetes type 1']
+Scores: [0.0012027196353301406]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009877663105726242]
+Labels: ['Mental Health']
+Scores: [0.32246488332748413]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003878695424646139]
+Labels: ['Cancer']
+Scores: [0.11802565306425095]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39592985
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Pregnancy', 'Noncommunicable Diseases', 'Middle Aged', 'Prospective Studies', 'Adolescent', 'Male', 'Young Adult', 'Aged', 'Multimorbidity', 'Prenatal Exposure Delayed Effects', 'Aged, 80 and over', 'Smoking', 'Chronic Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8597671389579773]
+Labels: ['Diabetes']
+Scores: [0.010902566835284233]
+Labels: ['Diabetes type 2']
+Scores: [0.03839700669050217]
+Labels: ['Diabetes type 1']
+Scores: [0.005636794492602348]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5974361300468445]
+Labels: ['Mental Health']
+Scores: [0.1279817521572113]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10183816403150558]
+Labels: ['Cancer']
+Scores: [0.051101088523864746]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39592160
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Exercise', 'Aged', 'Noncommunicable Diseases', 'Randomized Controlled Trials as Topic', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.20173729956150055]
+Labels: ['Diabetes']
+Scores: [0.1330614686012268]
+Labels: ['Diabetes type 2']
+Scores: [0.03291637450456619]
+Labels: ['Diabetes type 1']
+Scores: [0.015677649527788162]
+Labels: ['Chronic respiratory disease']
+Scores: [0.141753152012825]
+Labels: ['Mental Health']
+Scores: [0.011923548765480518]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06369271129369736]
+Labels: ['Cancer']
+Scores: [0.005397719331085682]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39589015
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Male', 'Female', 'South Africa', 'Longitudinal Studies', 'Adult', 'Middle Aged', 'Depressive Disorder, Major', 'Communicable Diseases', 'Mediation Analysis', 'Comorbidity', 'Causality', 'Aged', 'Monte Carlo Method', 'Neoplasms', 'Cardiovascular Diseases', 'Young Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9905803799629211]
+Labels: ['Diabetes']
+Scores: [0.0019136646296828985]
+Labels: ['Diabetes type 2']
+Scores: [0.004949749913066626]
+Labels: ['Diabetes type 1']
+Scores: [0.00346725364215672]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0022253436036407948]
+Labels: ['Mental Health']
+Scores: [0.28845760226249695]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009666414698585868]
+Labels: ['Cancer']
+Scores: [0.013466511853039265]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39584432
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Noncommunicable Diseases', 'Digital Technology', 'Middle East', 'Telemedicine', 'Mediterranean Region', 'Pandemics', 'SARS-CoV-2', 'Delivery of Health Care']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8756749033927917]
+Labels: ['Diabetes']
+Scores: [0.005631300155073404]
+Labels: ['Diabetes type 2']
+Scores: [0.009101076051592827]
+Labels: ['Diabetes type 1']
+Scores: [0.008103983476758003]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19852899014949799]
+Labels: ['Mental Health']
+Scores: [0.001388039905577898]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015957439318299294]
+Labels: ['Cancer']
+Scores: [0.010534555651247501]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39563350
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'England', 'Adult', 'Male', 'Middle Aged', 'Schools', 'Female', 'Obesity', 'Public Health', 'Fast Foods', 'Body Mass Index', 'Cross-Sectional Studies', 'Health Care Costs', 'Restaurants', 'Noncommunicable Diseases', 'Quality-Adjusted Life Years', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01299854926764965]
+Labels: ['Diabetes']
+Scores: [0.006484585348516703]
+Labels: ['Diabetes type 2']
+Scores: [0.0019934941083192825]
+Labels: ['Diabetes type 1']
+Scores: [0.00103218131698668]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001746741821989417]
+Labels: ['Mental Health']
+Scores: [0.0029385010711848736]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003140176646411419]
+Labels: ['Cancer']
+Scores: [0.008841229602694511]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39552939
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Noncommunicable Diseases', 'HIV Infections', 'Delivery of Health Care, Integrated']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09572941809892654]
+Labels: ['Diabetes']
+Scores: [0.0014578666305169463]
+Labels: ['Diabetes type 2']
+Scores: [0.0025398756843060255]
+Labels: ['Diabetes type 1']
+Scores: [0.002314487472176552]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01485698577016592]
+Labels: ['Mental Health']
+Scores: [0.0008271501865237951]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002710882807150483]
+Labels: ['Cancer']
+Scores: [0.001964626833796501]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39552340
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Noncommunicable Diseases', 'Humans', 'Qualitative Research', 'Health Policy', 'Policy Making', 'Stakeholder Participation', 'Interviews as Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9701482057571411]
+Labels: ['Diabetes']
+Scores: [0.016224006190896034]
+Labels: ['Diabetes type 2']
+Scores: [0.006191558204591274]
+Labels: ['Diabetes type 1']
+Scores: [0.004815532360225916]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03890613466501236]
+Labels: ['Mental Health']
+Scores: [0.010524007491767406]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011682984419167042]
+Labels: ['Cancer']
+Scores: [0.00860538985580206]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39548534
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Ghana', 'Noncommunicable Diseases', 'Health Policy', 'World Health Organization', 'Focus Groups', 'Stakeholder Participation', 'Policy Making', 'Administrative Personnel', 'Qualitative Research', 'Public Health', 'Health Promotion', 'Health Plan Implementation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9726630449295044]
+Labels: ['Diabetes']
+Scores: [0.0029956474900245667]
+Labels: ['Diabetes type 2']
+Scores: [0.012058556079864502]
+Labels: ['Diabetes type 1']
+Scores: [0.007224017754197121]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12416661530733109]
+Labels: ['Mental Health']
+Scores: [0.0015039948048070073]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009113484993577003]
+Labels: ['Cancer']
+Scores: [0.0025603044778108597]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39541160
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Primary Health Care', 'Female', 'Male', 'Hypertension', 'Noncommunicable Diseases', 'Diabetes Mellitus, Type 2', 'Ghana', 'Adult', 'Middle Aged', 'Delivery of Health Care, Integrated', 'Quality Improvement', 'Depression', 'Mental Health Services', 'Anxiety', 'Mental Disorders', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8352813124656677]
+Labels: ['Diabetes']
+Scores: [0.0026601271238178015]
+Labels: ['Diabetes type 2']
+Scores: [0.0018918390851467848]
+Labels: ['Diabetes type 1']
+Scores: [0.0015369990142062306]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01899627596139908]
+Labels: ['Mental Health']
+Scores: [0.9300153851509094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0030464138835668564]
+Labels: ['Cancer']
+Scores: [0.0054659973829984665]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': True, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases', 'Mental Health']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39530940
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Risk Factors', 'Cardiovascular Diseases', 'Secondary Prevention']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9954090714454651]
+Labels: ['Diabetes']
+Scores: [0.06281016767024994]
+Labels: ['Diabetes type 2']
+Scores: [0.022640712559223175]
+Labels: ['Diabetes type 1']
+Scores: [0.011136430315673351]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009193948470056057]
+Labels: ['Mental Health']
+Scores: [0.0007657037349417806]
+Labels: ['Cardiovascular diseases']
+Scores: [0.761349618434906]
+Labels: ['Cancer']
+Scores: [0.012134148739278316]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39522888
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'China', 'Noncommunicable Diseases', 'Aged', 'Middle Aged', 'Male', 'Female', 'Incidence', 'Aged, 80 and over', 'Disability-Adjusted Life Years', 'Health Priorities', 'Global Burden of Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9712528586387634]
+Labels: ['Diabetes']
+Scores: [0.003378905588760972]
+Labels: ['Diabetes type 2']
+Scores: [0.004471293184906244]
+Labels: ['Diabetes type 1']
+Scores: [0.004376207012683153]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12884141504764557]
+Labels: ['Mental Health']
+Scores: [0.1172182485461235]
+Labels: ['Cardiovascular diseases']
+Scores: [0.159398153424263]
+Labels: ['Cancer']
+Scores: [0.007406565360724926]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39515219
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Quality of Life', 'Male', 'Body Mass Index', 'Child', 'Female', 'Pediatric Obesity', 'Victoria', 'COVID-19', 'Health Behavior', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011171984486281872]
+Labels: ['Diabetes']
+Scores: [0.00331275537610054]
+Labels: ['Diabetes type 2']
+Scores: [0.001998542807996273]
+Labels: ['Diabetes type 1']
+Scores: [0.001340546878054738]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0043506198562681675]
+Labels: ['Mental Health']
+Scores: [0.1198924332857132]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0031872750259935856]
+Labels: ['Cancer']
+Scores: [0.010374261066317558]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39514466
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Exercise', 'Noncommunicable Diseases', 'Health Promotion', 'Healthy Lifestyle', 'Perception', 'Life Style']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9845296144485474]
+Labels: ['Diabetes']
+Scores: [0.02880406565964222]
+Labels: ['Diabetes type 2']
+Scores: [0.019967352971434593]
+Labels: ['Diabetes type 1']
+Scores: [0.01504526287317276]
+Labels: ['Chronic respiratory disease']
+Scores: [0.058536939322948456]
+Labels: ['Mental Health']
+Scores: [0.031705815345048904]
+Labels: ['Cardiovascular diseases']
+Scores: [0.029152879491448402]
+Labels: ['Cancer']
+Scores: [0.03666933253407478]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39511525
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Behavior Therapy', 'Health Promotion', 'Life Style', 'Noncommunicable Diseases', 'Systematic Reviews as Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9758844971656799]
+Labels: ['Diabetes']
+Scores: [0.014368269592523575]
+Labels: ['Diabetes type 2']
+Scores: [0.0029383001383394003]
+Labels: ['Diabetes type 1']
+Scores: [0.0018407366005703807]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00862976722419262]
+Labels: ['Mental Health']
+Scores: [0.07803629338741302]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005995652638375759]
+Labels: ['Cancer']
+Scores: [0.006594439968466759]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39496368
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Dyslipidemias', 'Adult', 'Cross-Sectional Studies', 'Aged', 'Prevalence', 'Sex Factors', 'Socioeconomic Factors', 'Noncommunicable Diseases', 'Cohort Studies', 'Age Factors', 'Social Class', 'Health Status Disparities', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9690499901771545]
+Labels: ['Diabetes']
+Scores: [0.20411360263824463]
+Labels: ['Diabetes type 2']
+Scores: [0.030422773212194443]
+Labels: ['Diabetes type 1']
+Scores: [0.013353560119867325]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011642687022686005]
+Labels: ['Mental Health']
+Scores: [0.0013954336754977703]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012239577248692513]
+Labels: ['Cancer']
+Scores: [0.034662555903196335]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494478
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Risk Factors', 'Cardiovascular Diseases', 'Periodontal Diseases', 'Periodontitis', 'Disease Susceptibility', 'Noncommunicable Diseases', 'Comorbidity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9469862580299377]
+Labels: ['Diabetes']
+Scores: [0.025889534503221512]
+Labels: ['Diabetes type 2']
+Scores: [0.011951679363846779]
+Labels: ['Diabetes type 1']
+Scores: [0.00894954428076744]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006681595928966999]
+Labels: ['Mental Health']
+Scores: [0.0021742142271250486]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07105985283851624]
+Labels: ['Cancer']
+Scores: [0.017829114571213722]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39478581
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adult', 'Male', 'Exercise', 'Female', 'Middle Aged', 'Young Adult', 'Africa', 'Adolescent', 'Aged', 'Socioeconomic Factors', 'Noncommunicable Diseases', 'Leisure Activities', 'Sociodemographic Factors', 'Surveys and Questionnaires', 'Sex Factors', 'Educational Status']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005900193005800247]
+Labels: ['Diabetes']
+Scores: [0.00043492228724062443]
+Labels: ['Diabetes type 2']
+Scores: [0.00045609171502292156]
+Labels: ['Diabetes type 1']
+Scores: [0.00045617559226229787]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003202784573659301]
+Labels: ['Mental Health']
+Scores: [0.00348469614982605]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0031324680894613266]
+Labels: ['Cancer']
+Scores: [0.00381110911257565]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39478517
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Prospective Studies', 'Diet', 'Risk Factors', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02870066463947296]
+Labels: ['Diabetes']
+Scores: [0.2212701290845871]
+Labels: ['Diabetes type 2']
+Scores: [0.029068097472190857]
+Labels: ['Diabetes type 1']
+Scores: [0.01612401008605957]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1887890100479126]
+Labels: ['Mental Health']
+Scores: [0.0003870949149131775]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025552067905664444]
+Labels: ['Cancer']
+Scores: [0.004658653400838375]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39460821
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Ukraine', 'Retrospective Studies', 'Aged', 'Persons with Disabilities', 'Male', 'Female', 'Noncommunicable Diseases', 'Middle Aged', 'Aged, 80 and over', 'Cardiovascular Diseases', 'Armed Conflicts', 'Neoplasms', 'Eastern European People']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09749561548233032]
+Labels: ['Diabetes']
+Scores: [0.0009404245647601783]
+Labels: ['Diabetes type 2']
+Scores: [0.002185279503464699]
+Labels: ['Diabetes type 1']
+Scores: [0.0014135496458038688]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016497353091835976]
+Labels: ['Mental Health']
+Scores: [0.0036719434428960085]
+Labels: ['Cardiovascular diseases']
+Scores: [0.033280566334724426]
+Labels: ['Cancer']
+Scores: [0.028407124802470207]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39458499
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Liver Diseases', 'Probiotics', 'Chronic Disease', 'Noncommunicable Diseases', 'Risk Factors', 'Dietary Fiber', 'Polyphenols', 'Food Ingredients', 'Diet', 'Spices', 'Fatty Acids, Omega-3', 'Dietary Supplements']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8013412952423096]
+Labels: ['Diabetes']
+Scores: [0.009346474893391132]
+Labels: ['Diabetes type 2']
+Scores: [0.004906745627522469]
+Labels: ['Diabetes type 1']
+Scores: [0.004741414915770292]
+Labels: ['Chronic respiratory disease']
+Scores: [0.027335908263921738]
+Labels: ['Mental Health']
+Scores: [0.0005879125092178583]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0023296261206269264]
+Labels: ['Cancer']
+Scores: [0.005005205050110817]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39458490
+Predictions: ['Noncommunicable Diseases', 'Cancer']
+MeshTerm: ['Humans', 'Biodiversity', 'One Health', 'Diet, Healthy', 'Interdisciplinary Research', 'Noncommunicable Diseases', 'Diet, Vegetarian', 'Neoplasms', 'Quality of Life']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6279875040054321]
+Labels: ['Diabetes']
+Scores: [0.01028255745768547]
+Labels: ['Diabetes type 2']
+Scores: [0.03902669996023178]
+Labels: ['Diabetes type 1']
+Scores: [0.026736747473478317]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10545700043439865]
+Labels: ['Mental Health']
+Scores: [0.004153126385062933]
+Labels: ['Cardiovascular diseases']
+Scores: [0.035268209874629974]
+Labels: ['Cancer']
+Scores: [0.010195069015026093]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39458487
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Bibliometrics', 'Humans', 'Food Labeling', 'Beverages', 'Global Health', 'Nutrition Policy', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006759314797818661]
+Labels: ['Diabetes']
+Scores: [0.002028884831815958]
+Labels: ['Diabetes type 2']
+Scores: [0.0016319400165230036]
+Labels: ['Diabetes type 1']
+Scores: [0.0013043774524703622]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0031034834682941437]
+Labels: ['Mental Health']
+Scores: [0.0006353853386826813]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004893619101494551]
+Labels: ['Cancer']
+Scores: [0.019011657685041428]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39449123
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Male', 'Life Style', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 2', 'Inflammatory Bowel Diseases', 'Adult', 'Noncommunicable Diseases', 'Risk Factors', 'Aged', 'Inflammation', 'Age of Onset', 'Cohort Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9848441481590271]
+Labels: ['Diabetes']
+Scores: [0.19597318768501282]
+Labels: ['Diabetes type 2']
+Scores: [0.04600130021572113]
+Labels: ['Diabetes type 1']
+Scores: [0.03279636427760124]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023670479655265808]
+Labels: ['Mental Health']
+Scores: [0.0030280128121376038]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016476809978485107]
+Labels: ['Cancer']
+Scores: [0.13475044071674347]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39438053
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Thailand', 'Noncommunicable Diseases', 'Delivery of Health Care', 'SARS-CoV-2', 'Pandemics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9294137954711914]
+Labels: ['Diabetes']
+Scores: [0.004452412948012352]
+Labels: ['Diabetes type 2']
+Scores: [0.005376527085900307]
+Labels: ['Diabetes type 1']
+Scores: [0.004330943804234266]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026255713775753975]
+Labels: ['Mental Health']
+Scores: [0.0011062739649787545]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006481599994003773]
+Labels: ['Cancer']
+Scores: [0.008436760865151882]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39437825
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Germany', 'Communicable Diseases', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019023776054382324]
+Labels: ['Diabetes']
+Scores: [0.0006236676126718521]
+Labels: ['Diabetes type 2']
+Scores: [0.0007211019401438534]
+Labels: ['Diabetes type 1']
+Scores: [0.0005300788325257599]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009858549572527409]
+Labels: ['Mental Health']
+Scores: [0.0005205761990509927]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001459860592149198]
+Labels: ['Cancer']
+Scores: [0.0013081766664981842]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39437462
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Emotions', 'Physician-Patient Relations', 'Communication', 'Decision Making', 'Noncommunicable Diseases', 'Informed Consent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9986681342124939]
+Labels: ['Diabetes']
+Scores: [0.016435088589787483]
+Labels: ['Diabetes type 2']
+Scores: [0.004084447398781776]
+Labels: ['Diabetes type 1']
+Scores: [0.002986231353133917]
+Labels: ['Chronic respiratory disease']
+Scores: [0.030480122193694115]
+Labels: ['Mental Health']
+Scores: [0.2188064157962799]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0252393689006567]
+Labels: ['Cancer']
+Scores: [0.0321723073720932]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39436669
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Health Policy', 'Policy Making', 'Administrative Personnel', 'Noncommunicable Diseases', 'Developing Countries']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6297851800918579]
+Labels: ['Diabetes']
+Scores: [0.006123986095190048]
+Labels: ['Diabetes type 2']
+Scores: [0.0011724024079740047]
+Labels: ['Diabetes type 1']
+Scores: [0.0008640774176456034]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003345619421452284]
+Labels: ['Mental Health']
+Scores: [0.002093137940391898]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019753878004848957]
+Labels: ['Cancer']
+Scores: [0.021918853744864464]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39432502
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Tuberculosis, Pulmonary', 'Noncommunicable Diseases', 'Gene Regulatory Networks', 'Lung Neoplasms', 'Silicosis', 'Protein Interaction Maps', 'Renal Insufficiency, Chronic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17497798800468445]
+Labels: ['Diabetes']
+Scores: [0.0031491632107645273]
+Labels: ['Diabetes type 2']
+Scores: [0.02231026440858841]
+Labels: ['Diabetes type 1']
+Scores: [0.007823886349797249]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7996201515197754]
+Labels: ['Mental Health']
+Scores: [0.007663200609385967]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004431292414665222]
+Labels: ['Cancer']
+Scores: [0.008065798319876194]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39426077
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Brazil', 'Obesity', 'Male', 'Female', 'Adult', 'Middle Aged', 'Noncommunicable Diseases', 'Hospitalization', 'Body Mass Index', 'Sick Leave', 'Prevalence', 'Cost of Illness', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10755313187837601]
+Labels: ['Diabetes']
+Scores: [0.012895520776510239]
+Labels: ['Diabetes type 2']
+Scores: [0.011833444237709045]
+Labels: ['Diabetes type 1']
+Scores: [0.006715196650475264]
+Labels: ['Chronic respiratory disease']
+Scores: [0.030504299327731133]
+Labels: ['Mental Health']
+Scores: [0.0024546494241803885]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03820430859923363]
+Labels: ['Cancer']
+Scores: [0.00593211967498064]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39421825
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Prevalence', 'Incidence', 'Global Health', 'Male', 'Global Burden of Disease', 'Data Analysis', 'World Health Organization', 'Secondary Data Analysis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9974167346954346]
+Labels: ['Diabetes']
+Scores: [0.006511983927339315]
+Labels: ['Diabetes type 2']
+Scores: [0.014409283176064491]
+Labels: ['Diabetes type 1']
+Scores: [0.011913994327187538]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12849745154380798]
+Labels: ['Mental Health']
+Scores: [0.0054381974041461945]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011019397526979446]
+Labels: ['Cancer']
+Scores: [0.020499205216765404]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39418781
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Sedentary Behavior', 'Female', 'Male', 'Case-Control Studies', 'Middle Aged', 'Adult', 'Occupations', 'Databases, Factual', 'Occupational Exposure', 'Risk Factors', 'Noncommunicable Diseases', 'Myocardial Infarction', 'Sitting Position', 'Diabetes Mellitus', 'Aged', 'Workplace']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02310962602496147]
+Labels: ['Diabetes']
+Scores: [0.002676625270396471]
+Labels: ['Diabetes type 2']
+Scores: [0.0021138207521289587]
+Labels: ['Diabetes type 1']
+Scores: [0.0016403391491621733]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006330118048936129]
+Labels: ['Mental Health']
+Scores: [0.19824734330177307]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007264633197337389]
+Labels: ['Cancer']
+Scores: [0.08832240104675293]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39418779
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Europe', 'Female', 'Noncommunicable Diseases', 'Risk Factors', 'Disability-Adjusted Life Years', 'Middle Aged', 'Aged', 'Adult', 'Aged, 80 and over', 'Adolescent', 'Neoplasms', 'Cardiovascular Diseases', 'Young Adult', 'Global Burden of Disease', 'Child', 'Infant', 'Cost of Illness', 'Child, Preschool', 'Infant, Newborn']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9331167936325073]
+Labels: ['Diabetes']
+Scores: [0.0015202455688267946]
+Labels: ['Diabetes type 2']
+Scores: [0.0017446762649342418]
+Labels: ['Diabetes type 1']
+Scores: [0.0012137236772105098]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021329928189516068]
+Labels: ['Mental Health']
+Scores: [0.010663853958249092]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01785377413034439]
+Labels: ['Cancer']
+Scores: [0.25545525550842285]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39418251
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Noncommunicable Diseases', 'Aged', 'Adult', 'Obesity', 'Hypertension', 'Motivation', 'Risk Factors', 'Hyperlipidemias', 'Iran', 'Overweight', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9848434925079346]
+Labels: ['Diabetes']
+Scores: [0.03914043679833412]
+Labels: ['Diabetes type 2']
+Scores: [0.019380733370780945]
+Labels: ['Diabetes type 1']
+Scores: [0.01038527861237526]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001221347600221634]
+Labels: ['Mental Health']
+Scores: [0.0005981822032481432]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003065163502469659]
+Labels: ['Cancer']
+Scores: [0.006691465154290199]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39416942
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Information Dissemination', 'Translational Research, Biomedical']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9913737177848816]
+Labels: ['Diabetes']
+Scores: [0.0042879474349319935]
+Labels: ['Diabetes type 2']
+Scores: [0.0007323722238652408]
+Labels: ['Diabetes type 1']
+Scores: [0.0005951240891590714]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007878190837800503]
+Labels: ['Mental Health']
+Scores: [0.0024544468615204096]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0039861565455794334]
+Labels: ['Cancer']
+Scores: [0.006534455809742212]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39411832
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Inflammation', 'Diet', 'Anti-Inflammatory Agents', 'Obesity', 'Chronic Disease', 'Diabetes Mellitus, Type 2', 'Fruit']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8987160325050354]
+Labels: ['Diabetes']
+Scores: [0.09848292171955109]
+Labels: ['Diabetes type 2']
+Scores: [0.1012251153588295]
+Labels: ['Diabetes type 1']
+Scores: [0.004057389218360186]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009665676392614841]
+Labels: ['Mental Health']
+Scores: [0.005395069252699614]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009012766182422638]
+Labels: ['Cancer']
+Scores: [0.010354065336287022]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39408274
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Malus', 'Noncommunicable Diseases', 'Fruit', 'Nutritive Value', 'Diet', 'Diet, Healthy']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6627183556556702]
+Labels: ['Diabetes']
+Scores: [0.013551650568842888]
+Labels: ['Diabetes type 2']
+Scores: [0.020946357399225235]
+Labels: ['Diabetes type 1']
+Scores: [0.014721998944878578]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014772922731935978]
+Labels: ['Mental Health']
+Scores: [0.0008469102322123945]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07706455886363983]
+Labels: ['Cancer']
+Scores: [0.006471734028309584]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39408232
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Biological Products', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9937293529510498]
+Labels: ['Diabetes']
+Scores: [0.6357042193412781]
+Labels: ['Diabetes type 2']
+Scores: [0.03994536027312279]
+Labels: ['Diabetes type 1']
+Scores: [0.025694655254483223]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01251346804201603]
+Labels: ['Mental Health']
+Scores: [0.0013380703749135137]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2527196705341339]
+Labels: ['Cancer']
+Scores: [0.10858263820409775]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39407160
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Nepal', 'Humans', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Services Accessibility', 'Health Care Surveys', 'Health Facilities', 'Female', 'Male']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9587919116020203]
+Labels: ['Diabetes']
+Scores: [0.013230936601758003]
+Labels: ['Diabetes type 2']
+Scores: [0.002579144202172756]
+Labels: ['Diabetes type 1']
+Scores: [0.0024876620154827833]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02831451967358589]
+Labels: ['Mental Health']
+Scores: [0.003362905001267791]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012641140259802341]
+Labels: ['Cancer']
+Scores: [0.004440549295395613]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39404094
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Fibrinolytic Agents', 'Subtilisins', 'Antioxidants', 'Oxidative Stress', 'Anti-Inflammatory Agents', 'Animals', 'Inflammation', 'Cardiovascular Diseases', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9804829955101013]
+Labels: ['Diabetes']
+Scores: [0.021191637963056564]
+Labels: ['Diabetes type 2']
+Scores: [0.045429475605487823]
+Labels: ['Diabetes type 1']
+Scores: [0.029406825080513954]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14907456934452057]
+Labels: ['Mental Health']
+Scores: [0.028503311797976494]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04651885852217674]
+Labels: ['Cancer']
+Scores: [0.018681421875953674]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39394102
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Communication Barriers', 'Aged', 'Rural Population', 'South Africa', 'Middle Aged', 'Qualitative Research', 'Interviews as Topic', 'Health Knowledge, Attitudes, Practice', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9150916934013367]
+Labels: ['Diabetes']
+Scores: [0.21343769133090973]
+Labels: ['Diabetes type 2']
+Scores: [0.05089445412158966]
+Labels: ['Diabetes type 1']
+Scores: [0.03269359469413757]
+Labels: ['Chronic respiratory disease']
+Scores: [0.018118401989340782]
+Labels: ['Mental Health']
+Scores: [0.01482425443828106]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03659592196345329]
+Labels: ['Cancer']
+Scores: [0.015258255414664745]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39391944
+Predictions: ['Noncommunicable Diseases', 'Cancer']
+MeshTerm: ['Humans', 'Female', 'Male', 'Adult', 'Noncommunicable Diseases', 'Middle Aged', 'Cross-Sectional Studies', 'Prevalence', 'Chronic Disease', 'Beverages', 'Obesity', 'Aged', 'Neoplasms', 'Hypercholesterolemia', 'Young Adult', 'Diet', 'Alcoholic Beverages', 'Feeding Behavior']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9230477809906006]
+Labels: ['Diabetes']
+Scores: [0.30912283062934875]
+Labels: ['Diabetes type 2']
+Scores: [0.037956565618515015]
+Labels: ['Diabetes type 1']
+Scores: [0.024519387632608414]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014587579295039177]
+Labels: ['Mental Health']
+Scores: [0.0034928200766444206]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07468332350254059]
+Labels: ['Cancer']
+Scores: [0.046390749514102936]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39390457
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Satellite Imagery', 'Cardiovascular Diseases', 'Neoplasms']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9592006206512451]
+Labels: ['Diabetes']
+Scores: [0.009649526327848434]
+Labels: ['Diabetes type 2']
+Scores: [0.011149163357913494]
+Labels: ['Diabetes type 1']
+Scores: [0.007379523944109678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12517641484737396]
+Labels: ['Mental Health']
+Scores: [0.14419272541999817]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02741934545338154]
+Labels: ['Cancer']
+Scores: [0.02426048368215561]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39388415
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Alcohol Drinking', 'Exercise', 'Meta-Analysis as Topic', 'Noncommunicable Diseases', 'Prevalence', 'Risk Factors', 'Systematic Reviews as Topic', 'Tobacco Use']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8679553270339966]
+Labels: ['Diabetes']
+Scores: [0.002408397849649191]
+Labels: ['Diabetes type 2']
+Scores: [0.001433416735380888]
+Labels: ['Diabetes type 1']
+Scores: [0.0011957160895690322]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004146947991102934]
+Labels: ['Mental Health']
+Scores: [0.0014388367999345064]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002635442651808262]
+Labels: ['Cancer']
+Scores: [0.010052021592855453]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39386956
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Guyana', 'Humans', 'Noncommunicable Diseases', 'Qualitative Research', 'Health Policy', 'Government', 'Policy Making']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9939459562301636]
+Labels: ['Diabetes']
+Scores: [0.008996629156172276]
+Labels: ['Diabetes type 2']
+Scores: [0.08416254818439484]
+Labels: ['Diabetes type 1']
+Scores: [0.02976069040596485]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1300184428691864]
+Labels: ['Mental Health']
+Scores: [0.006380937062203884]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011119832284748554]
+Labels: ['Cancer']
+Scores: [0.002795217325910926]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39379988
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Aged', 'Body Mass Index', 'Cardiovascular Diseases', 'China', 'Neoplasms', 'Age Factors', 'Cause of Death', 'Cohort Studies', 'Proportional Hazards Models', 'Weight Loss', 'Weight Gain', 'Risk Factors', 'Noncommunicable Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013224237598478794]
+Labels: ['Diabetes']
+Scores: [0.0038042240776121616]
+Labels: ['Diabetes type 2']
+Scores: [0.003221615683287382]
+Labels: ['Diabetes type 1']
+Scores: [0.002821775386109948]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0052483342587947845]
+Labels: ['Mental Health']
+Scores: [0.0072036013007164]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02197621949017048]
+Labels: ['Cancer']
+Scores: [0.0906224325299263]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39374955
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Research', 'Health Priorities', 'Biomedical Research']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9982133507728577]
+Labels: ['Diabetes']
+Scores: [0.002238902961835265]
+Labels: ['Diabetes type 2']
+Scores: [0.0007014998700469732]
+Labels: ['Diabetes type 1']
+Scores: [0.0006226187106221914]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01256648451089859]
+Labels: ['Mental Health']
+Scores: [0.00814098585397005]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012683967128396034]
+Labels: ['Cancer']
+Scores: [0.003110423218458891]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39369417
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Tertiary Care Centers', 'Noncommunicable Diseases', 'Aged', 'Adult', 'Nepal', 'Health Knowledge, Attitudes, Practice', 'Assessment of Medication Adherence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9770578742027283]
+Labels: ['Diabetes']
+Scores: [0.0012621734058484435]
+Labels: ['Diabetes type 2']
+Scores: [0.0017065239371731877]
+Labels: ['Diabetes type 1']
+Scores: [0.001219053054228425]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007367065642029047]
+Labels: ['Mental Health']
+Scores: [0.00966255646198988]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006987165194004774]
+Labels: ['Cancer']
+Scores: [0.0008059025858528912]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39369183
+Predictions: ['Noncommunicable Diseases', 'Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Female', 'Male', 'Aged', 'Asia, Central', 'Adult', 'Europe, Eastern', 'Noncommunicable Diseases', 'Mortality, Premature', 'Global Health', 'Global Burden of Disease', 'Cardiovascular Diseases', 'Neoplasms', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14003966748714447]
+Labels: ['Diabetes']
+Scores: [0.17133773863315582]
+Labels: ['Diabetes type 2']
+Scores: [0.03785618394613266]
+Labels: ['Diabetes type 1']
+Scores: [0.03231121227145195]
+Labels: ['Chronic respiratory disease']
+Scores: [0.576427161693573]
+Labels: ['Mental Health']
+Scores: [0.003519312245771289]
+Labels: ['Cardiovascular diseases']
+Scores: [0.018712526187300682]
+Labels: ['Cancer']
+Scores: [0.15774187445640564]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [4, 4]]
+---------------------------------
+---------------------------------
+PMID: 39368120
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Saudi Arabia', 'Middle Aged', 'Adult', 'Male', 'Female', 'Noncommunicable Diseases', 'Natural Language Processing', 'Prevalence', 'Retrospective Studies', 'Hypertension', 'Aged', 'Adolescent', 'Young Adult', 'Diabetes Mellitus', 'Electronic Health Records', 'Obesity', 'Multimorbidity', 'Dyslipidemias', 'Mental Disorders', 'Logistic Models']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9419611096382141]
+Labels: ['Diabetes']
+Scores: [0.0017447377322241664]
+Labels: ['Diabetes type 2']
+Scores: [0.0006758866365998983]
+Labels: ['Diabetes type 1']
+Scores: [0.0006039784639142454]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00455906568095088]
+Labels: ['Mental Health']
+Scores: [0.0007441279012709856]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001988546224310994]
+Labels: ['Cancer']
+Scores: [0.0010329680517315865]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39367295
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['India', 'Humans', 'Primary Health Care', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Comprehensive Health Care', 'Health Services Needs and Demand']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010207725688815117]
+Labels: ['Diabetes']
+Scores: [0.0005410956218838692]
+Labels: ['Diabetes type 2']
+Scores: [0.0005620936281047761]
+Labels: ['Diabetes type 1']
+Scores: [0.0005452038603834808]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00861089676618576]
+Labels: ['Mental Health']
+Scores: [0.0030624261125922203]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004222370218485594]
+Labels: ['Cancer']
+Scores: [0.0011678755981847644]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39365121
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Dental Research']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9924908876419067]
+Labels: ['Diabetes']
+Scores: [0.009012840688228607]
+Labels: ['Diabetes type 2']
+Scores: [0.0010569682344794273]
+Labels: ['Diabetes type 1']
+Scores: [0.0008693744312040508]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0012194301234558225]
+Labels: ['Mental Health']
+Scores: [0.0074767861515283585]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008202787139452994]
+Labels: ['Cancer']
+Scores: [0.005875352304428816]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39363978
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Sex Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6193937659263611]
+Labels: ['Diabetes']
+Scores: [0.040493302047252655]
+Labels: ['Diabetes type 2']
+Scores: [0.04902998358011246]
+Labels: ['Diabetes type 1']
+Scores: [0.0342085137963295]
+Labels: ['Chronic respiratory disease']
+Scores: [0.42221227288246155]
+Labels: ['Mental Health']
+Scores: [0.1951330304145813]
+Labels: ['Cardiovascular diseases']
+Scores: [0.17548838257789612]
+Labels: ['Cancer']
+Scores: [0.015960007905960083]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39356704
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Nepal', 'Adolescent', 'Middle Aged', 'Risk Factors', 'Young Adult', 'Hypertension', 'Obesity', 'Smoking', 'Prevalence', 'Overweight', 'Cluster Analysis', 'Noncommunicable Diseases', 'Health Surveys']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9475599527359009]
+Labels: ['Diabetes']
+Scores: [0.004335482604801655]
+Labels: ['Diabetes type 2']
+Scores: [0.008613178506493568]
+Labels: ['Diabetes type 1']
+Scores: [0.0033811742905527353]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029257802292704582]
+Labels: ['Mental Health']
+Scores: [0.009858285076916218]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016661131754517555]
+Labels: ['Cancer']
+Scores: [0.022844353690743446]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39352154
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Malaysia', 'Female', 'Male', 'Adult', 'Cross-Sectional Studies', 'Health Knowledge, Attitudes, Practice', 'Noncommunicable Diseases', 'Middle Aged', 'Young Adult', 'Indigenous Peoples', 'Adolescent', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9750575423240662]
+Labels: ['Diabetes']
+Scores: [0.006048256531357765]
+Labels: ['Diabetes type 2']
+Scores: [0.016150958836078644]
+Labels: ['Diabetes type 1']
+Scores: [0.008368426002562046]
+Labels: ['Chronic respiratory disease']
+Scores: [0.17499928176403046]
+Labels: ['Mental Health']
+Scores: [0.053777605295181274]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05793901905417442]
+Labels: ['Cancer']
+Scores: [0.007486947346478701]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39352096
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Noncommunicable Diseases', 'Diet', 'Obesity', 'Dysbiosis', 'Diabetes Mellitus, Type 2', 'Czech Republic', 'Inflammation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9696561694145203]
+Labels: ['Diabetes']
+Scores: [0.012850440107285976]
+Labels: ['Diabetes type 2']
+Scores: [0.004045142326503992]
+Labels: ['Diabetes type 1']
+Scores: [0.0025677508674561977]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00113460305146873]
+Labels: ['Mental Health']
+Scores: [0.00036454852670431137]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000967930187471211]
+Labels: ['Cancer']
+Scores: [0.005376855842769146]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39344941
+Predictions: ['Noncommunicable Diseases', 'Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Mass Screening', 'Cardiovascular Diseases', 'Oral Health', 'Diabetes Mellitus', 'United Kingdom']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9651772379875183]
+Labels: ['Diabetes']
+Scores: [0.5589492321014404]
+Labels: ['Diabetes type 2']
+Scores: [0.029528452083468437]
+Labels: ['Diabetes type 1']
+Scores: [0.018050041049718857]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003909834660589695]
+Labels: ['Mental Health']
+Scores: [0.0006482592434622347]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6251329183578491]
+Labels: ['Cancer']
+Scores: [0.023589706048369408]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39342408
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Mexico', 'Female', 'Male', 'Adult', 'Middle Aged', 'Noncommunicable Diseases', 'Ambulatory Care', 'Cross-Sectional Studies', 'Young Adult', 'Aged', 'Sex Factors', 'Healthcare Disparities']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9453437924385071]
+Labels: ['Diabetes']
+Scores: [0.008177277632057667]
+Labels: ['Diabetes type 2']
+Scores: [0.008947781287133694]
+Labels: ['Diabetes type 1']
+Scores: [0.007305086124688387]
+Labels: ['Chronic respiratory disease']
+Scores: [0.21124395728111267]
+Labels: ['Mental Health']
+Scores: [0.02282506413757801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02944169193506241]
+Labels: ['Cancer']
+Scores: [0.010610776022076607]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39342100
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Female', 'Male', 'Qualitative Research', 'Fisheries', 'Adult', 'Middle Aged', 'Delayed Diagnosis', 'Patient Acceptance of Health Care', 'Interviews as Topic', 'Aged', 'Self Care']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9574354290962219]
+Labels: ['Diabetes']
+Scores: [0.004815543536096811]
+Labels: ['Diabetes type 2']
+Scores: [0.008647279813885689]
+Labels: ['Diabetes type 1']
+Scores: [0.005906205158680677]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05864056944847107]
+Labels: ['Mental Health']
+Scores: [0.010951166041195393]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011872099712491035]
+Labels: ['Cancer']
+Scores: [0.014100340195000172]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39339734
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Noncommunicable Diseases', 'Diet, Mediterranean', 'Dysbiosis', 'Diet, Western', 'Diet, Vegetarian', 'Diet', 'Methylamines', 'Fatty Acids, Volatile']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9802078604698181]
+Labels: ['Diabetes']
+Scores: [0.022793997079133987]
+Labels: ['Diabetes type 2']
+Scores: [0.007890167646110058]
+Labels: ['Diabetes type 1']
+Scores: [0.005382585804909468]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009145557880401611]
+Labels: ['Mental Health']
+Scores: [0.000574616133235395]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004206089768558741]
+Labels: ['Cancer']
+Scores: [0.010877927765250206]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39338107
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Male', 'Female', 'Middle Aged', 'Adult', 'Aged', 'Sex Factors', 'Longitudinal Studies', 'Young Adult', 'Health Surveys', 'Prevalence', 'Socioeconomic Factors', 'Adolescent', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9929100871086121]
+Labels: ['Diabetes']
+Scores: [0.0018243941012769938]
+Labels: ['Diabetes type 2']
+Scores: [0.0008892581681720912]
+Labels: ['Diabetes type 1']
+Scores: [0.0007663461146876216]
+Labels: ['Chronic respiratory disease']
+Scores: [0.018811333924531937]
+Labels: ['Mental Health']
+Scores: [0.009502295404672623]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015372990630567074]
+Labels: ['Cancer']
+Scores: [0.03738249093294144]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39338026
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Noncommunicable Diseases', 'Humans', 'Developing Countries', 'Economic Development']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9319137930870056]
+Labels: ['Diabetes']
+Scores: [0.00136612169444561]
+Labels: ['Diabetes type 2']
+Scores: [0.0016064040828496218]
+Labels: ['Diabetes type 1']
+Scores: [0.001557520474307239]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010756634175777435]
+Labels: ['Mental Health']
+Scores: [0.007113106083124876]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003497882978990674]
+Labels: ['Cancer']
+Scores: [0.008137738332152367]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39334103
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Metabolic Syndrome', 'Female', 'Male', 'Aged', 'Cross-Sectional Studies', 'Thailand', 'Multilevel Analysis', 'Noncommunicable Diseases', 'Middle Aged', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09641134738922119]
+Labels: ['Diabetes']
+Scores: [0.16301508247852325]
+Labels: ['Diabetes type 2']
+Scores: [0.06612955033779144]
+Labels: ['Diabetes type 1']
+Scores: [0.016957005485892296]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1611693799495697]
+Labels: ['Mental Health']
+Scores: [0.11156278103590012]
+Labels: ['Cardiovascular diseases']
+Scores: [0.040585439652204514]
+Labels: ['Cancer']
+Scores: [0.002431274391710758]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39333314
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Wounds and Injuries', 'Female', 'Male', 'Neoplasms', 'Cardiovascular Diseases', 'Cause of Death', 'Global Health']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9615475535392761]
+Labels: ['Diabetes']
+Scores: [0.0010147662833333015]
+Labels: ['Diabetes type 2']
+Scores: [0.0006179140764288604]
+Labels: ['Diabetes type 1']
+Scores: [0.0005721941706724465]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0010672661010175943]
+Labels: ['Mental Health']
+Scores: [0.0005474624922499061]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9777970314025879]
+Labels: ['Cancer']
+Scores: [0.01690569519996643]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39324155
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Ethiopia', 'Male', 'Female', 'Adult', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Belief Model', 'Middle Aged', 'Health Behavior', 'Surveys and Questionnaires', 'Health Promotion', 'Young Adult', 'Health Knowledge, Attitudes, Practice', 'Adolescent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8075855374336243]
+Labels: ['Diabetes']
+Scores: [0.00848444551229477]
+Labels: ['Diabetes type 2']
+Scores: [0.015418927185237408]
+Labels: ['Diabetes type 1']
+Scores: [0.009299621917307377]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06793379038572311]
+Labels: ['Mental Health']
+Scores: [0.018372291699051857]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03803025186061859]
+Labels: ['Cancer']
+Scores: [0.03268799930810928]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39308827
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Thailand', 'Particulate Matter', 'Noncommunicable Diseases', 'Female', 'Male', 'Air Pollutants', 'Environmental Exposure', 'Air Pollution', 'Hypertension', 'Diabetes Mellitus', 'Middle Aged', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9289186596870422]
+Labels: ['Diabetes']
+Scores: [0.0003720239910762757]
+Labels: ['Diabetes type 2']
+Scores: [0.0003550710971467197]
+Labels: ['Diabetes type 1']
+Scores: [0.0003305486752651632]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007273731753230095]
+Labels: ['Mental Health']
+Scores: [0.000574805133510381]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016115724574774504]
+Labels: ['Cancer']
+Scores: [0.0013457690365612507]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39307578
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Pregnancy', 'Female', 'Noncommunicable Diseases', 'Postpartum Period', 'Parturition', 'Pregnancy Complications', 'Australia']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9727535843849182]
+Labels: ['Diabetes']
+Scores: [0.0076797581277787685]
+Labels: ['Diabetes type 2']
+Scores: [0.0012492929818108678]
+Labels: ['Diabetes type 1']
+Scores: [0.0010469999397173524]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014559762552380562]
+Labels: ['Mental Health']
+Scores: [0.004429464694112539]
+Labels: ['Cardiovascular diseases']
+Scores: [0.020512854680418968]
+Labels: ['Cancer']
+Scores: [0.011156412772834301]
+Wanted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738300
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cognitive Dysfunction', 'Self-Management', 'Machine Learning', 'Aged', 'Male', 'Female', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024930154904723167]
+Labels: ['Diabetes']
+Scores: [0.5199151635169983]
+Labels: ['Diabetes type 2']
+Scores: [0.05610480532050133]
+Labels: ['Diabetes type 1']
+Scores: [0.014405445195734501]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0030021476559340954]
+Labels: ['Mental Health']
+Scores: [0.6392576098442078]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006260924506932497]
+Labels: ['Cancer']
+Scores: [0.04850253835320473]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737509
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'India', 'Biological Specimen Banks', 'Adult', 'Female', 'Male', 'Diabetes Mellitus', 'Registries', 'Biomedical Research', 'Young Adult', 'Cohort Studies', 'Age of Onset', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013088362291455269]
+Labels: ['Diabetes']
+Scores: [0.9593170285224915]
+Labels: ['Diabetes type 2']
+Scores: [0.12889449298381805]
+Labels: ['Diabetes type 1']
+Scores: [0.03116677515208721]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002177055925130844]
+Labels: ['Mental Health']
+Scores: [0.0006159979966469109]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0073571475222706795]
+Labels: ['Cancer']
+Scores: [0.000770359649322927]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736942
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Mobile Health Units', 'Middle Aged', 'Adolescent', 'Aged', 'Child', 'Young Adult', 'India', 'Morbidity', 'Hypertension', 'Child, Preschool', 'Obesity', 'Infant', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2357940524816513]
+Labels: ['Diabetes']
+Scores: [0.06929919868707657]
+Labels: ['Diabetes type 2']
+Scores: [0.029313895851373672]
+Labels: ['Diabetes type 1']
+Scores: [0.016734639182686806]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0249733068048954]
+Labels: ['Mental Health']
+Scores: [0.0023083293344825506]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04646971821784973]
+Labels: ['Cancer']
+Scores: [0.0018125214846804738]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736689
+Predictions: ['Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Neoplasms', 'Male', 'Female', 'Middle Aged', 'Adult', 'Longitudinal Studies', 'Aged', 'Proportional Hazards Models', 'Diabetes Mellitus', 'Risk Factors', 'Cardiometabolic Risk Factors', 'Cohort Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013876441866159439]
+Labels: ['Diabetes']
+Scores: [0.0017161397263407707]
+Labels: ['Diabetes type 2']
+Scores: [0.0009697872446849942]
+Labels: ['Diabetes type 1']
+Scores: [0.000942993676289916]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003176573198288679]
+Labels: ['Mental Health']
+Scores: [0.00044899070053361356]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9730994701385498]
+Labels: ['Cancer']
+Scores: [0.0962880477309227]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39735640
+Predictions: ['Diabetes']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Blood Glucose', 'Class Ia Phosphatidylinositol 3-Kinase', 'Diabetes Mellitus', 'Growth Disorders', 'Hypercalcemia', 'Insulin Resistance', 'Nephrocalcinosis', 'Tooth Abnormalities']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05236741527915001]
+Labels: ['Diabetes']
+Scores: [0.9559301137924194]
+Labels: ['Diabetes type 2']
+Scores: [0.03442932665348053]
+Labels: ['Diabetes type 1']
+Scores: [0.2209891378879547]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011053918860852718]
+Labels: ['Mental Health']
+Scores: [0.0005252966657280922]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02916179783642292]
+Labels: ['Cancer']
+Scores: [0.001627779914997518]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735551
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Atherosclerosis', "5'-Nucleotidase", 'Animals', 'Diabetes Mellitus', 'GPI-Linked Proteins', 'Drug Development']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0528469942510128]
+Labels: ['Diabetes']
+Scores: [0.7288557291030884]
+Labels: ['Diabetes type 2']
+Scores: [0.3692941963672638]
+Labels: ['Diabetes type 1']
+Scores: [0.14421984553337097]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1396472007036209]
+Labels: ['Mental Health']
+Scores: [0.005469015333801508]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6749938130378723]
+Labels: ['Cancer']
+Scores: [0.011637993156909943]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735480
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Female', 'Male', 'Heart Failure', 'Comorbidity', 'Middle Aged', 'Aged', 'Adult', 'Turkey', 'Prevalence', 'Young Adult', 'Adolescent', 'Aged, 80 and over', 'Hypertension', 'Diabetes Mellitus', 'Pulmonary Disease, Chronic Obstructive', 'Anemia', 'Dyslipidemias']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02544238604605198]
+Labels: ['Diabetes']
+Scores: [0.04666687175631523]
+Labels: ['Diabetes type 2']
+Scores: [0.08093385398387909]
+Labels: ['Diabetes type 1']
+Scores: [0.020170997828245163]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0890408307313919]
+Labels: ['Mental Health']
+Scores: [0.0007321027223952115]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9954346418380737]
+Labels: ['Cancer']
+Scores: [0.0015884239692240953]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39734205
+Predictions: ['Diabetes']
+MeshTerm: ['Administration, Oral', 'Insulin', 'Humans', 'Animals', 'Nanoparticles', 'Blood Glucose', 'Diabetes Mellitus', 'Particle Size', 'Hypoglycemic Agents', 'Drug Carriers', 'Drug Delivery Systems']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013850247487425804]
+Labels: ['Diabetes']
+Scores: [0.9932830333709717]
+Labels: ['Diabetes type 2']
+Scores: [0.4192461669445038]
+Labels: ['Diabetes type 1']
+Scores: [0.025188090279698372]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002048672642558813]
+Labels: ['Mental Health']
+Scores: [0.0007234507938846946]
+Labels: ['Cardiovascular diseases']
+Scores: [0.026127614080905914]
+Labels: ['Cancer']
+Scores: [0.0005825807456858456]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733376
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hungary', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Blood Glucose', 'Glycated Hemoglobin', 'Aged', 'Clinical Laboratory Techniques', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027685005217790604]
+Labels: ['Diabetes']
+Scores: [0.9131894707679749]
+Labels: ['Diabetes type 2']
+Scores: [0.14846834540367126]
+Labels: ['Diabetes type 1']
+Scores: [0.1300211399793625]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004234156105667353]
+Labels: ['Mental Health']
+Scores: [0.000540437176823616]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008710750378668308]
+Labels: ['Cancer']
+Scores: [0.0010167384753003716]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732905
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Coronary Stenosis', 'Aged', 'Inflammation', 'Coronary Disease', 'Severity of Illness Index', 'Diabetes Mellitus', 'Prognosis', 'Risk Factors', 'Predictive Value of Tests']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020467055961489677]
+Labels: ['Diabetes']
+Scores: [0.6095892190933228]
+Labels: ['Diabetes type 2']
+Scores: [0.04801825433969498]
+Labels: ['Diabetes type 1']
+Scores: [0.02101706713438034]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003206949681043625]
+Labels: ['Mental Health']
+Scores: [0.0013892609858885407]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9983952641487122]
+Labels: ['Cancer']
+Scores: [0.0035314378328621387]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732874
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Sepsis', 'Male', 'Female', 'Aged', 'Middle Aged', 'Calcium', 'Diabetes Mellitus', 'Acid-Base Equilibrium', 'ROC Curve', 'Prognosis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010641677305102348]
+Labels: ['Diabetes']
+Scores: [0.8682485222816467]
+Labels: ['Diabetes type 2']
+Scores: [0.13211876153945923]
+Labels: ['Diabetes type 1']
+Scores: [0.01956791803240776]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1582861691713333]
+Labels: ['Mental Health']
+Scores: [0.0007835173746570945]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6701328754425049]
+Labels: ['Cancer']
+Scores: [0.001726958667859435]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732729
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Animals', 'Humans', 'Adipokines', 'Adipose Tissue', 'Adiposity', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Inflammation Mediators', 'Obesity', 'Signal Transduction']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020395610481500626]
+Labels: ['Diabetes']
+Scores: [0.17900842428207397]
+Labels: ['Diabetes type 2']
+Scores: [0.07452793419361115]
+Labels: ['Diabetes type 1']
+Scores: [0.0297514908015728]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007190684787929058]
+Labels: ['Mental Health']
+Scores: [0.0011019249213859439]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8780829906463623]
+Labels: ['Cancer']
+Scores: [0.004176676739007235]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732433
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Ethiopia', 'Risk Factors', 'Prevalence', 'Diabetic Angiopathies', 'Male', 'Female', 'Middle Aged', 'Adult', 'Risk Assessment', 'Diabetic Retinopathy', 'Aged', 'Diabetic Nephropathies', 'Diabetic Neuropathies', 'Diabetes Mellitus', 'Young Adult', 'Adolescent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030569078400731087]
+Labels: ['Diabetes']
+Scores: [0.889923632144928]
+Labels: ['Diabetes type 2']
+Scores: [0.09475559741258621]
+Labels: ['Diabetes type 1']
+Scores: [0.03041074424982071]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0024771317839622498]
+Labels: ['Mental Health']
+Scores: [0.00031448848312720656]
+Labels: ['Cardiovascular diseases']
+Scores: [0.31129977107048035]
+Labels: ['Cancer']
+Scores: [0.00031463077175430954]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730723
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Kidney Calculi', 'Male', 'Female', 'Cross-Sectional Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Nutrition Surveys', 'Risk Factors', 'Aged', 'Cardiovascular Diseases', 'United States', 'Incidence', 'Logistic Models']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02539258822798729]
+Labels: ['Diabetes']
+Scores: [0.9381160140037537]
+Labels: ['Diabetes type 2']
+Scores: [0.14503511786460876]
+Labels: ['Diabetes type 1']
+Scores: [0.06126095727086067]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005331679247319698]
+Labels: ['Mental Health']
+Scores: [0.0017078877426683903]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9344900846481323]
+Labels: ['Cancer']
+Scores: [0.0046991026028990746]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730510
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Adult', 'Nutrition Surveys', 'Heart Diseases', 'Diabetes Mellitus', 'Waist Circumference', 'Body Mass Index', 'Adiposity', 'Risk Factors', 'Adipose Tissue', 'United States']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014058947563171387]
+Labels: ['Diabetes']
+Scores: [0.5422776341438293]
+Labels: ['Diabetes type 2']
+Scores: [0.0914270281791687]
+Labels: ['Diabetes type 1']
+Scores: [0.03711732476949692]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014726778492331505]
+Labels: ['Mental Health']
+Scores: [0.0018919843714684248]
+Labels: ['Cardiovascular diseases']
+Scores: [0.26313668489456177]
+Labels: ['Cancer']
+Scores: [0.23128916323184967]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729755
+Predictions: ['Diabetes']
+MeshTerm: ['Biosensing Techniques', 'Microwaves', 'Humans', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus', 'Spectrum Analysis, Raman', 'Spectroscopy, Near-Infrared', 'Equipment Design']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.23942525684833527]
+Labels: ['Diabetes']
+Scores: [0.8954972624778748]
+Labels: ['Diabetes type 2']
+Scores: [0.4896189868450165]
+Labels: ['Diabetes type 1']
+Scores: [0.27256929874420166]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07205574214458466]
+Labels: ['Mental Health']
+Scores: [0.0009034291724674404]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1368429809808731]
+Labels: ['Cancer']
+Scores: [0.15560847520828247]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725874
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Uric Acid', 'Nutrition Surveys', 'Cholesterol, HDL', 'Middle Aged', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Biomarkers', 'Risk Assessment', 'Cause of Death', 'United States', 'Time Factors', 'Adult', 'Longitudinal Studies', 'Prognosis', 'Aged', 'Sex Factors', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014941752888262272]
+Labels: ['Diabetes']
+Scores: [0.9911524057388306]
+Labels: ['Diabetes type 2']
+Scores: [0.24544072151184082]
+Labels: ['Diabetes type 1']
+Scores: [0.08083880692720413]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010906320065259933]
+Labels: ['Mental Health']
+Scores: [0.00034777080873027444]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9548333883285522]
+Labels: ['Cancer']
+Scores: [0.01166442595422268]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725454
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Kidney Transplantation', 'Male', 'Female', 'Child', 'Adolescent', 'Graft Survival', 'Graft Rejection', 'Diabetes Mellitus', 'Incidence', 'Retrospective Studies', 'Postoperative Complications', 'Survival Analysis', 'Child, Preschool', 'Transplant Recipients', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04642435908317566]
+Labels: ['Diabetes']
+Scores: [0.9480945467948914]
+Labels: ['Diabetes type 2']
+Scores: [0.38161107897758484]
+Labels: ['Diabetes type 1']
+Scores: [0.0458281934261322]
+Labels: ['Chronic respiratory disease']
+Scores: [0.017372718080878258]
+Labels: ['Mental Health']
+Scores: [0.0007866700179874897]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11752189695835114]
+Labels: ['Cancer']
+Scores: [0.0025022756308317184]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39723173
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Wound Healing', 'Hypoxia-Inducible Factor 1, alpha Subunit', 'Animals', 'Deferoxamine', 'Diabetes Mellitus', 'Glycine', 'Nanoparticles', 'Isoquinolines']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018913747742772102]
+Labels: ['Diabetes']
+Scores: [0.9412683248519897]
+Labels: ['Diabetes type 2']
+Scores: [0.1463116705417633]
+Labels: ['Diabetes type 1']
+Scores: [0.3750145137310028]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01270351093262434]
+Labels: ['Mental Health']
+Scores: [0.000930225127376616]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09770508855581284]
+Labels: ['Cancer']
+Scores: [0.0012633017031475902]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39721299
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Elasticity Imaging Techniques', 'Pilot Projects', 'Male', 'Female', 'Pancreas', 'Middle Aged', 'Adult', 'Case-Control Studies', 'Aged', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.044520508497953415]
+Labels: ['Diabetes']
+Scores: [0.9853197336196899]
+Labels: ['Diabetes type 2']
+Scores: [0.38132405281066895]
+Labels: ['Diabetes type 1']
+Scores: [0.09370287507772446]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010201236233115196]
+Labels: ['Mental Health']
+Scores: [0.0004030062700621784]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006297459825873375]
+Labels: ['Cancer']
+Scores: [0.0026865818072110415]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720256
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Extracellular Vesicles', 'Osteoporosis', 'Animals', 'Diabetes Complications', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0149928517639637]
+Labels: ['Diabetes']
+Scores: [0.6448172926902771]
+Labels: ['Diabetes type 2']
+Scores: [0.1844249963760376]
+Labels: ['Diabetes type 1']
+Scores: [0.040967635810375214]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0012374930083751678]
+Labels: ['Mental Health']
+Scores: [0.0008768400293774903]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0015219944762066007]
+Labels: ['Cancer']
+Scores: [0.002014843048527837]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720248
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin Resistance', 'Male', 'Cross-Sectional Studies', 'Female', 'Diabetic Nephropathies', 'Middle Aged', 'Nutrition Surveys', 'United States', 'Adult', 'Aged', 'Risk Factors', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Body Mass Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10219930857419968]
+Labels: ['Diabetes']
+Scores: [0.9822842478752136]
+Labels: ['Diabetes type 2']
+Scores: [0.4311836361885071]
+Labels: ['Diabetes type 1']
+Scores: [0.08384285122156143]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14430755376815796]
+Labels: ['Mental Health']
+Scores: [0.0006583595531992614]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8886743783950806]
+Labels: ['Cancer']
+Scores: [0.001381288398988545]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719762
+Predictions: ['Diabetes']
+MeshTerm: ['Particulate Matter', 'Hypertension', 'Diabetes Mellitus', 'Middle Aged', 'Air Pollutants', 'Humans', 'Male', 'Prospective Studies', 'Air Pollution', 'Environmental Exposure', 'China', 'Aged', 'Female']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01640009693801403]
+Labels: ['Diabetes']
+Scores: [0.001551338704302907]
+Labels: ['Diabetes type 2']
+Scores: [0.0018535190029069781]
+Labels: ['Diabetes type 1']
+Scores: [0.0013229023898020387]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013472610153257847]
+Labels: ['Mental Health']
+Scores: [0.23703372478485107]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004485644865781069]
+Labels: ['Cancer']
+Scores: [0.01544223167002201]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719335
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'China', 'Male', 'Female', 'Adult', 'Multimorbidity', 'Middle Aged', 'Chronic Disease', 'Prevalence', 'Aged', 'Hypertension', 'Obesity', 'Hyperuricemia', 'Dyslipidemias', 'Surveys and Questionnaires', 'Diabetes Mellitus', 'Adolescent', 'Rural Population', 'Young Adult', 'Urban Population']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026817549020051956]
+Labels: ['Diabetes']
+Scores: [0.024079158902168274]
+Labels: ['Diabetes type 2']
+Scores: [0.006137617398053408]
+Labels: ['Diabetes type 1']
+Scores: [0.005023864097893238]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08139285445213318]
+Labels: ['Mental Health']
+Scores: [0.12265292555093765]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015989309176802635]
+Labels: ['Cancer']
+Scores: [0.02220473624765873]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719334
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'China', 'Female', 'Male', 'Adult', 'Middle Aged', 'Prevalence', 'Hyperuricemia', 'Chronic Disease', 'Hypertension', 'Metabolic Diseases', 'Dyslipidemias', 'Aged', 'Diabetes Mellitus', 'Young Adult', 'Rural Population', 'Adolescent', 'Urban Population', 'Nutrition Surveys']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010909002274274826]
+Labels: ['Diabetes']
+Scores: [0.05786159634590149]
+Labels: ['Diabetes type 2']
+Scores: [0.019603515043854713]
+Labels: ['Diabetes type 1']
+Scores: [0.012698904611170292]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0013165186392143369]
+Labels: ['Mental Health']
+Scores: [0.0025073550641536713]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0070486185140907764]
+Labels: ['Cancer']
+Scores: [0.02033992111682892]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719258
+Predictions: ['Diabetes']
+MeshTerm: ['MicroRNAs', 'Humans', 'Wound Healing', 'Animals', 'Signal Transduction', 'Diabetes Complications', 'Diabetes Mellitus', 'Drug Delivery Systems']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029193473979830742]
+Labels: ['Diabetes']
+Scores: [0.9967300891876221]
+Labels: ['Diabetes type 2']
+Scores: [0.8469738364219666]
+Labels: ['Diabetes type 1']
+Scores: [0.45417073369026184]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00751526327803731]
+Labels: ['Mental Health']
+Scores: [0.001870198524557054]
+Labels: ['Cardiovascular diseases']
+Scores: [0.717045783996582]
+Labels: ['Cancer']
+Scores: [0.0016006993828341365]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39718458
+Predictions: ['Diabetes']
+MeshTerm: ['Titanium', 'Insulin', 'Animals', 'Hypoglycemic Agents', 'Particle Size', 'Glucose', 'Materials Testing', 'Nanoparticles', 'Surface Properties', 'Biocompatible Materials', 'Diabetes Mellitus', 'Drug Delivery Systems', 'Mice', 'Diabetes Mellitus, Experimental', 'Humans', 'Boronic Acids']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04480431228876114]
+Labels: ['Diabetes']
+Scores: [0.621289074420929]
+Labels: ['Diabetes type 2']
+Scores: [0.10844296216964722]
+Labels: ['Diabetes type 1']
+Scores: [0.016055256128311157]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005869683343917131]
+Labels: ['Mental Health']
+Scores: [0.0006202053627930582]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013863091357052326]
+Labels: ['Cancer']
+Scores: [0.0035678427666425705]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39717102
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Female', 'Postmenopause', 'Middle Aged', 'Coronary Disease', 'Cholesterol', 'Aged', 'Diabetes Mellitus', 'Nutrition Surveys', 'Risk Factors', 'Prevalence', 'United States', 'Cross-Sectional Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015598094090819359]
+Labels: ['Diabetes']
+Scores: [0.30970677733421326]
+Labels: ['Diabetes type 2']
+Scores: [0.06513792276382446]
+Labels: ['Diabetes type 1']
+Scores: [0.029922477900981903]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009556066244840622]
+Labels: ['Mental Health']
+Scores: [0.0004110260051675141]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9981103539466858]
+Labels: ['Cancer']
+Scores: [0.010249798186123371]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717099
+Predictions: ['Diabetes']
+MeshTerm: ['Bibliometrics', 'Humans', 'NLR Family, Pyrin Domain-Containing 3 Protein', 'Inflammasomes', 'Diabetes Mellitus', 'Animals']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.034189168363809586]
+Labels: ['Diabetes']
+Scores: [0.9767100214958191]
+Labels: ['Diabetes type 2']
+Scores: [0.3731342852115631]
+Labels: ['Diabetes type 1']
+Scores: [0.12706255912780762]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1336725950241089]
+Labels: ['Mental Health']
+Scores: [0.0011423290707170963]
+Labels: ['Cardiovascular diseases']
+Scores: [0.25144779682159424]
+Labels: ['Cancer']
+Scores: [0.0011471163015812635]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39716287
+Predictions: ['Diabetes']
+MeshTerm: ['Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Administration, Oral', 'Blood Glucose', 'Cholecalciferol', 'Creatine', 'Diabetes Mellitus', 'Dietary Supplements', 'Iran', 'Muscle Strength', 'Muscle, Skeletal', 'Oxidative Stress', 'Randomized Controlled Trials as Topic', 'Sarcopenia', 'Treatment Outcome', 'Valerates', 'Whey Proteins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03825264796614647]
+Labels: ['Diabetes']
+Scores: [0.9520988464355469]
+Labels: ['Diabetes type 2']
+Scores: [0.041634250432252884]
+Labels: ['Diabetes type 1']
+Scores: [0.12784788012504578]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012734847143292427]
+Labels: ['Mental Health']
+Scores: [0.0010511749424040318]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09583744406700134]
+Labels: ['Cancer']
+Scores: [0.0011106799356639385]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39716100
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Gastrointestinal Microbiome', 'Kidney Transplantation', 'Postoperative Complications']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04383266717195511]
+Labels: ['Diabetes']
+Scores: [0.943751335144043]
+Labels: ['Diabetes type 2']
+Scores: [0.4763883352279663]
+Labels: ['Diabetes type 1']
+Scores: [0.1519666612148285]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01582900807261467]
+Labels: ['Mental Health']
+Scores: [0.009406444616615772]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02216274105012417]
+Labels: ['Cancer']
+Scores: [0.02420036308467388]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715819
+Predictions: ['Diabetes']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Diabetes Mellitus', 'Egypt', 'Health Knowledge, Attitudes, Practice', 'Patient Education as Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03882713243365288]
+Labels: ['Diabetes']
+Scores: [0.821412205696106]
+Labels: ['Diabetes type 2']
+Scores: [0.2124256193637848]
+Labels: ['Diabetes type 1']
+Scores: [0.07073672115802765]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010127503424882889]
+Labels: ['Mental Health']
+Scores: [0.0014716911828145385]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007494984194636345]
+Labels: ['Cancer']
+Scores: [0.0006453162641264498]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715497
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'COVID-19 Vaccines', 'Antibodies, Neutralizing', 'COVID-19', 'Female', 'HIV Infections', 'Middle Aged', 'Antibodies, Viral', 'Immunoglobulin G', 'SARS-CoV-2', 'Immunity, Humoral', 'Adult', 'Diabetes Mellitus', 'Vaccination', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026169318705797195]
+Labels: ['Diabetes']
+Scores: [0.13060757517814636]
+Labels: ['Diabetes type 2']
+Scores: [0.168101504445076]
+Labels: ['Diabetes type 1']
+Scores: [0.05180302634835243]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07347174733877182]
+Labels: ['Mental Health']
+Scores: [0.023732861503958702]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004904437344521284]
+Labels: ['Cancer']
+Scores: [0.002493130974471569]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39714194
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Aged', 'Male', 'Female', 'Middle Aged', 'Ischemic Stroke', 'Aged, 80 and over', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Age Factors', 'Blood Glucose', 'Prospective Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06201907992362976]
+Labels: ['Diabetes']
+Scores: [0.2544380724430084]
+Labels: ['Diabetes type 2']
+Scores: [0.08244217187166214]
+Labels: ['Diabetes type 1']
+Scores: [0.0784260481595993]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07520708441734314]
+Labels: ['Mental Health']
+Scores: [0.0023217250127345324]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9948365688323975]
+Labels: ['Cancer']
+Scores: [0.0012416268000379205]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714134
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Saliva', 'Metal-Organic Frameworks', 'Transistors, Electronic', 'Glucose', 'Electrodes', 'Biosensing Techniques', 'Electrochemical Techniques', 'Nickel', 'Particle Size']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1084858775138855]
+Labels: ['Diabetes']
+Scores: [0.9533431529998779]
+Labels: ['Diabetes type 2']
+Scores: [0.3258783221244812]
+Labels: ['Diabetes type 1']
+Scores: [0.10841362178325653]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07911862432956696]
+Labels: ['Mental Health']
+Scores: [0.00047290168004110456]
+Labels: ['Cardiovascular diseases']
+Scores: [0.058230042457580566]
+Labels: ['Cancer']
+Scores: [0.0064377980306744576]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710070
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucosephosphate Dehydrogenase Deficiency', 'Female', 'Male', 'Middle Aged', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Adult', 'Aged', 'Blood Glucose', 'Cohort Studies', 'Healthcare Disparities', 'Diabetes Complications', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028283363208174706]
+Labels: ['Diabetes']
+Scores: [0.9984373450279236]
+Labels: ['Diabetes type 2']
+Scores: [0.6471953392028809]
+Labels: ['Diabetes type 1']
+Scores: [0.10256187617778778]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014600413851439953]
+Labels: ['Mental Health']
+Scores: [0.0014283380005508661]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030001582577824593]
+Labels: ['Cancer']
+Scores: [0.000812770624179393]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709946
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Transcription Factor 7-Like 2 Protein', 'beta Catenin', 'Wnt3A Protein', 'Wnt Signaling Pathway', 'Diabetic Nephropathies', 'Animals', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027502717450261116]
+Labels: ['Diabetes']
+Scores: [0.9620540142059326]
+Labels: ['Diabetes type 2']
+Scores: [0.4014742970466614]
+Labels: ['Diabetes type 1']
+Scores: [0.06181555613875389]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0036269105039536953]
+Labels: ['Mental Health']
+Scores: [0.0002921156701631844]
+Labels: ['Cardiovascular diseases']
+Scores: [0.577177107334137]
+Labels: ['Cancer']
+Scores: [0.0007480105268768966]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709804
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Vaccination Coverage', 'Cross-Sectional Studies', 'Influenza, Human', 'Male', 'Influenza Vaccines', 'Female', 'Europe', 'Middle Aged', 'Aged', 'Diabetes Mellitus', 'Seasons', 'Vaccination', 'Social Determinants of Health', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018422042950987816]
+Labels: ['Diabetes']
+Scores: [0.5086657404899597]
+Labels: ['Diabetes type 2']
+Scores: [0.0625251904129982]
+Labels: ['Diabetes type 1']
+Scores: [0.054681744426488876]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4828445017337799]
+Labels: ['Mental Health']
+Scores: [0.0004774474655278027]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007849235087633133]
+Labels: ['Cancer']
+Scores: [0.0034428099170327187]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709395
+Predictions: ['Diabetes']
+MeshTerm: ['Bayes Theorem', 'Humans', 'Software', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03958449512720108]
+Labels: ['Diabetes']
+Scores: [0.01220600213855505]
+Labels: ['Diabetes type 2']
+Scores: [0.006061602849513292]
+Labels: ['Diabetes type 1']
+Scores: [0.006788181606680155]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02062167413532734]
+Labels: ['Mental Health']
+Scores: [0.0044938791543245316]
+Labels: ['Cardiovascular diseases']
+Scores: [0.024096814915537834]
+Labels: ['Cancer']
+Scores: [0.042937006801366806]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709343
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'COVID-19', 'Middle Aged', 'Retrospective Studies', 'Male', 'Adult', 'Female', 'Aged', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Aged, 80 and over', 'Oman', 'Body Mass Index', 'Blood Pressure', 'Young Adult', 'SARS-CoV-2', 'Hypertension', 'Pandemics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9313213229179382]
+Labels: ['Diabetes']
+Scores: [0.9196654558181763]
+Labels: ['Diabetes type 2']
+Scores: [0.5378878116607666]
+Labels: ['Diabetes type 1']
+Scores: [0.13707278668880463]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02074972167611122]
+Labels: ['Mental Health']
+Scores: [0.0010172155452892184]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013230212032794952]
+Labels: ['Cancer']
+Scores: [0.0008693856070749462]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': True, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Noncommunicable Diseases', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707324
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Triglycerides', 'Longitudinal Studies', 'Male', 'Middle Aged', 'Female', 'Blood Glucose', 'China', 'Aged', 'Obesity', 'Risk Factors', 'Insulin Resistance', 'Diabetes Mellitus', 'Proportional Hazards Models']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.062064118683338165]
+Labels: ['Diabetes']
+Scores: [0.33258575201034546]
+Labels: ['Diabetes type 2']
+Scores: [0.04719929397106171]
+Labels: ['Diabetes type 1']
+Scores: [0.027730828151106834]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019988996908068657]
+Labels: ['Mental Health']
+Scores: [0.0015580086037516594]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07513070851564407]
+Labels: ['Cancer']
+Scores: [0.007369875442236662]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707271
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Erectile Dysfunction', 'Ethiopia', 'Cross-Sectional Studies', 'Adult', 'Middle Aged', 'Hospitals, Public', 'Prevalence', 'Risk Factors', 'Diabetes Mellitus', 'Poisson Distribution', 'Young Adult', 'Diabetes Complications', 'Surveys and Questionnaires']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05668635666370392]
+Labels: ['Diabetes']
+Scores: [0.8673781752586365]
+Labels: ['Diabetes type 2']
+Scores: [0.221786230802536]
+Labels: ['Diabetes type 1']
+Scores: [0.1059708520770073]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006098557263612747]
+Labels: ['Mental Health']
+Scores: [0.017511209473013878]
+Labels: ['Cardiovascular diseases']
+Scores: [0.017645832151174545]
+Labels: ['Cancer']
+Scores: [0.005945164710283279]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707185
+Predictions: ['Diabetes']
+MeshTerm: ['Gastrointestinal Microbiome', 'Humans', 'Diabetes Mellitus', 'Protein Interaction Maps', 'Network Pharmacology', 'Proto-Oncogene Proteins c-akt', 'Metabolome', 'PPAR gamma', 'Signal Transduction', 'Metabolomics', 'Computational Biology']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05060300603508949]
+Labels: ['Diabetes']
+Scores: [0.9912108182907104]
+Labels: ['Diabetes type 2']
+Scores: [0.8241458535194397]
+Labels: ['Diabetes type 1']
+Scores: [0.6608843207359314]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010863063856959343]
+Labels: ['Mental Health']
+Scores: [0.0022052358835935593]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025212524458765984]
+Labels: ['Cancer']
+Scores: [0.0006202130462042987]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39706370
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Glucose Tolerance Test', 'Adult', 'Blood Glucose', 'Hyperglycemia', 'Glycated Hemoglobin', 'Insulin Resistance', 'China', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Aged', 'Insulin', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042767226696014404]
+Labels: ['Diabetes']
+Scores: [0.4636210501194]
+Labels: ['Diabetes type 2']
+Scores: [0.33393394947052]
+Labels: ['Diabetes type 1']
+Scores: [0.20245826244354248]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006706425454467535]
+Labels: ['Mental Health']
+Scores: [0.0005893821362406015]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01287064328789711]
+Labels: ['Cancer']
+Scores: [0.002407848834991455]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39705195
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cardio-Renal Syndrome', 'Diabetes Mellitus', 'Metabolic Diseases', 'Practice Guidelines as Topic', 'Renal Insufficiency, Chronic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028927240520715714]
+Labels: ['Diabetes']
+Scores: [0.7845973372459412]
+Labels: ['Diabetes type 2']
+Scores: [0.1221964880824089]
+Labels: ['Diabetes type 1']
+Scores: [0.029742056503891945]
+Labels: ['Chronic respiratory disease']
+Scores: [0.031598590314388275]
+Labels: ['Mental Health']
+Scores: [0.0011233738623559475]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8918642997741699]
+Labels: ['Cancer']
+Scores: [0.016900982707738876]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703865
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Prediabetic State', 'Uric Acid', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Cholesterol, HDL', 'Prospective Studies', 'Adult', 'Biomarkers', 'Diabetes Mellitus', 'Prognosis', 'Aged', 'Nutrition Surveys', 'Cohort Studies', 'Follow-Up Studies', 'Cause of Death', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.031800854951143265]
+Labels: ['Diabetes']
+Scores: [0.8781846761703491]
+Labels: ['Diabetes type 2']
+Scores: [0.1372375786304474]
+Labels: ['Diabetes type 1']
+Scores: [0.07277426868677139]
+Labels: ['Chronic respiratory disease']
+Scores: [0.027114784345030785]
+Labels: ['Mental Health']
+Scores: [0.0007028933614492416]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9935571551322937]
+Labels: ['Cancer']
+Scores: [0.010378205217421055]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703057
+Predictions: ['Diabetes']
+MeshTerm: ['Strongyloides stercoralis', 'Strongyloidiasis', 'Animals', 'Humans', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04665324464440346]
+Labels: ['Diabetes']
+Scores: [0.9731395840644836]
+Labels: ['Diabetes type 2']
+Scores: [0.35504910349845886]
+Labels: ['Diabetes type 1']
+Scores: [0.041976653039455414]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10819639265537262]
+Labels: ['Mental Health']
+Scores: [0.00571924215182662]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010418849997222424]
+Labels: ['Cancer']
+Scores: [0.0009199968772009015]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702258
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Nasopharynx', 'Male', 'Female', 'Case-Control Studies', 'Adult', 'Middle Aged', 'Ghana', 'Diabetes Mellitus', 'Aged', 'Bacteria', 'Young Adult', 'Respiratory Tract Infections']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07037461549043655]
+Labels: ['Diabetes']
+Scores: [0.9003471732139587]
+Labels: ['Diabetes type 2']
+Scores: [0.4220273196697235]
+Labels: ['Diabetes type 1']
+Scores: [0.265520304441452]
+Labels: ['Chronic respiratory disease']
+Scores: [0.23074550926685333]
+Labels: ['Mental Health']
+Scores: [0.003175829304382205]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008398807607591152]
+Labels: ['Cancer']
+Scores: [0.005422553978860378]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702047
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Malaysia', 'Male', 'Mobile Applications', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Telemedicine', 'Self-Management', 'Surveys and Questionnaires', 'Diabetes Mellitus', 'Aged', 'Diabetes Mellitus, Type 2', 'Young Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03712081164121628]
+Labels: ['Diabetes']
+Scores: [0.9766563773155212]
+Labels: ['Diabetes type 2']
+Scores: [0.47474199533462524]
+Labels: ['Diabetes type 1']
+Scores: [0.22564145922660828]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05580846220254898]
+Labels: ['Mental Health']
+Scores: [0.0013733005616813898]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07995066046714783]
+Labels: ['Cancer']
+Scores: [0.0009676865884102881]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39700129
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'COVID-19', 'Male', 'Female', 'Bangladesh', 'Hyperglycemia', 'Middle Aged', 'Tertiary Care Centers', 'Diabetes Mellitus', 'Prospective Studies', 'Adult', 'Follow-Up Studies', 'Aged', 'SARS-CoV-2', 'Hospitalization', 'Patient Discharge', 'Risk Factors', 'Socioeconomic Factors', 'Hospital Mortality']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023857861757278442]
+Labels: ['Diabetes']
+Scores: [0.5087332129478455]
+Labels: ['Diabetes type 2']
+Scores: [0.14591090381145477]
+Labels: ['Diabetes type 1']
+Scores: [0.07228035479784012]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019343122839927673]
+Labels: ['Mental Health']
+Scores: [0.0015843246364966035]
+Labels: ['Cardiovascular diseases']
+Scores: [0.20501397550106049]
+Labels: ['Cancer']
+Scores: [0.004367934539914131]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699704
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hydroxymethylglutaryl-CoA Reductase Inhibitors', 'Hyperglycemia', 'Diabetes Mellitus', 'Risk Factors', 'Atherosclerosis', 'Blood Glucose']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0780668780207634]
+Labels: ['Diabetes']
+Scores: [0.8725355267524719]
+Labels: ['Diabetes type 2']
+Scores: [0.13342927396297455]
+Labels: ['Diabetes type 1']
+Scores: [0.08087621629238129]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0059715197421610355]
+Labels: ['Mental Health']
+Scores: [0.002530360361561179]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06568879634141922]
+Labels: ['Cancer']
+Scores: [0.000690598099026829]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699431
+Predictions: ['Diabetes']
+MeshTerm: ['Quality of Life', 'Humans', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus', 'Patient Education as Topic', 'Educational Technology', 'Adult', 'Aged', 'Surveys and Questionnaires', 'Controlled Before-After Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03059409186244011]
+Labels: ['Diabetes']
+Scores: [0.9649562239646912]
+Labels: ['Diabetes type 2']
+Scores: [0.7763938903808594]
+Labels: ['Diabetes type 1']
+Scores: [0.37925806641578674]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05592869967222214]
+Labels: ['Mental Health']
+Scores: [0.028607744723558426]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4922226071357727]
+Labels: ['Cancer']
+Scores: [0.000520838366355747]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39698032
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Middle Aged', 'Intra-Abdominal Fat', 'Japan', 'Cohort Studies', 'Obesity, Abdominal', 'Adiposity', 'Diabetes Mellitus', 'Risk Factors', 'Blood Glucose', 'Longitudinal Studies', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04463823139667511]
+Labels: ['Diabetes']
+Scores: [0.8986050486564636]
+Labels: ['Diabetes type 2']
+Scores: [0.259236216545105]
+Labels: ['Diabetes type 1']
+Scores: [0.11942237615585327]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029644425958395004]
+Labels: ['Mental Health']
+Scores: [0.0013912965077906847]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8798456192016602]
+Labels: ['Cancer']
+Scores: [0.05115914344787598]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39696515
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Uric Acid', 'C-Reactive Protein', 'Male', 'Female', 'Insulin Resistance', 'Triglycerides', 'Cholesterol, HDL', 'Adult', 'Middle Aged', 'Risk Factors', 'Sex Factors', 'Diabetes Mellitus', 'Mediation Analysis', 'Biomarkers', 'Sex Characteristics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06318242102861404]
+Labels: ['Diabetes']
+Scores: [0.841575562953949]
+Labels: ['Diabetes type 2']
+Scores: [0.23398122191429138]
+Labels: ['Diabetes type 1']
+Scores: [0.13175247609615326]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11446405947208405]
+Labels: ['Mental Health']
+Scores: [0.0006387991015799344]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7784513831138611]
+Labels: ['Cancer']
+Scores: [0.007906303741037846]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696157
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cross-Sectional Studies', 'China', 'Male', 'Female', 'Middle Aged', 'Adult', 'Aged', 'Health Services Needs and Demand', 'Diabetes Mellitus', 'Young Adult', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Mass Screening', 'Adolescent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.016434449702501297]
+Labels: ['Diabetes']
+Scores: [0.9781500697135925]
+Labels: ['Diabetes type 2']
+Scores: [0.2537292242050171]
+Labels: ['Diabetes type 1']
+Scores: [0.07682164013385773]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00303273880854249]
+Labels: ['Mental Health']
+Scores: [0.0003251976449973881]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010041791945695877]
+Labels: ['Cancer']
+Scores: [0.0007026249077171087]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696101
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Bangladesh', 'Adult', 'Prevalence', 'Diabetes Mellitus', 'Middle Aged', 'Health Surveys', 'Young Adult', 'Risk Factors', 'Sex Factors', 'Undiagnosed Diseases', 'Adolescent', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0480121374130249]
+Labels: ['Diabetes']
+Scores: [0.9599356055259705]
+Labels: ['Diabetes type 2']
+Scores: [0.15445056557655334]
+Labels: ['Diabetes type 1']
+Scores: [0.10390784591436386]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02459751069545746]
+Labels: ['Mental Health']
+Scores: [0.0010289046913385391]
+Labels: ['Cardiovascular diseases']
+Scores: [0.029890285804867744]
+Labels: ['Cancer']
+Scores: [0.026710014790296555]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695649
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Artificial Intelligence', 'Diabetes Mellitus', 'Neural Networks, Computer', 'Middle Aged', 'Female', 'Male', 'Models, Statistical', 'Support Vector Machine', 'Adult', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03749261051416397]
+Labels: ['Diabetes']
+Scores: [0.9966421127319336]
+Labels: ['Diabetes type 2']
+Scores: [0.4495770037174225]
+Labels: ['Diabetes type 1']
+Scores: [0.029786335304379463]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0331144779920578]
+Labels: ['Mental Health']
+Scores: [0.0034360489808022976]
+Labels: ['Cardiovascular diseases']
+Scores: [0.039836809039115906]
+Labels: ['Cancer']
+Scores: [0.0006273032049648464]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695632
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Malawi', 'Qualitative Research', 'Female', 'Diabetes Mellitus', 'Focus Groups', 'Health Knowledge, Attitudes, Practice', 'Adult', 'Male', 'Nursing Staff, Hospital', 'Tertiary Care Centers', 'Clinical Competence', 'Middle Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07548459619283676]
+Labels: ['Diabetes']
+Scores: [0.7937727570533752]
+Labels: ['Diabetes type 2']
+Scores: [0.3840630054473877]
+Labels: ['Diabetes type 1']
+Scores: [0.18835188448429108]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12259259819984436]
+Labels: ['Mental Health']
+Scores: [0.0004611504264175892]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04754791408777237]
+Labels: ['Cancer']
+Scores: [0.0010184578131884336]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695379
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cluster Analysis', 'Regression Analysis', 'Models, Statistical', 'Algorithms', 'Diabetes Mellitus', 'Data Interpretation, Statistical']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007899364456534386]
+Labels: ['Diabetes']
+Scores: [0.008474326692521572]
+Labels: ['Diabetes type 2']
+Scores: [0.002809978788718581]
+Labels: ['Diabetes type 1']
+Scores: [0.0024326450657099485]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00482696108520031]
+Labels: ['Mental Health']
+Scores: [0.005198262166231871]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007334819529205561]
+Labels: ['Cancer']
+Scores: [0.0597541518509388]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39693799
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Prediabetic State', 'Incidence', 'Middle Aged', 'Depression', 'Triglycerides', 'United States', 'Adult', 'Blood Glucose', 'Nutrition Surveys', 'Diabetes Mellitus', 'Aged', 'Insulin Resistance']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030824121087789536]
+Labels: ['Diabetes']
+Scores: [0.3134167492389679]
+Labels: ['Diabetes type 2']
+Scores: [0.03758832439780235]
+Labels: ['Diabetes type 1']
+Scores: [0.026207461953163147]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00775972381234169]
+Labels: ['Mental Health']
+Scores: [0.4770231544971466]
+Labels: ['Cardiovascular diseases']
+Scores: [0.040788620710372925]
+Labels: ['Cancer']
+Scores: [0.0018880721181631088]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39693267
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Renal Dialysis', 'Kidney Failure, Chronic', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Blood Glucose', 'Precision Medicine', 'Hypoglycemic Agents', 'Glycemic Control']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024171654134988785]
+Labels: ['Diabetes']
+Scores: [0.983300507068634]
+Labels: ['Diabetes type 2']
+Scores: [0.18838879466056824]
+Labels: ['Diabetes type 1']
+Scores: [0.028902333229780197]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005543743260204792]
+Labels: ['Mental Health']
+Scores: [0.0015366013394668698]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8047654628753662]
+Labels: ['Cancer']
+Scores: [0.0022738187108188868]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39692388
+Predictions: ['Diabetes']
+MeshTerm: ['Adolescent', 'Adult', 'Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Young Adult', 'Arabs', 'Chronic Disease', 'Diabetes Mellitus', 'Health Status Disparities', 'Israel', 'Jews', 'Obesity', 'Prevalence', 'Retrospective Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014530323445796967]
+Labels: ['Diabetes']
+Scores: [0.0009702512761577964]
+Labels: ['Diabetes type 2']
+Scores: [0.0009387477766722441]
+Labels: ['Diabetes type 1']
+Scores: [0.0008407431887462735]
+Labels: ['Chronic respiratory disease']
+Scores: [0.049147360026836395]
+Labels: ['Mental Health']
+Scores: [0.014531571418046951]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011199850589036942]
+Labels: ['Cancer']
+Scores: [0.0014494525967165828]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39686708
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Glycated Hemoglobin', 'Time Factors', 'Biometry', 'Models, Statistical', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01196838729083538]
+Labels: ['Diabetes']
+Scores: [0.13641339540481567]
+Labels: ['Diabetes type 2']
+Scores: [0.035708945244550705]
+Labels: ['Diabetes type 1']
+Scores: [0.01749817281961441]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007571610156446695]
+Labels: ['Mental Health']
+Scores: [0.001832487410865724]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004818325862288475]
+Labels: ['Cancer']
+Scores: [0.0055271899327635765]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39686687
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Colorectal Neoplasms', 'Metabolic Syndrome', 'Middle Aged', 'Early Detection of Cancer', 'Male', 'Europe', 'Female', 'Adult', 'Diabetes Mellitus', 'North America', 'Age Factors', 'Risk Factors', 'Mass Screening', 'Risk Assessment']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027312809601426125]
+Labels: ['Diabetes']
+Scores: [0.7219699621200562]
+Labels: ['Diabetes type 2']
+Scores: [0.04361637309193611]
+Labels: ['Diabetes type 1']
+Scores: [0.027317645028233528]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016163948457688093]
+Labels: ['Mental Health']
+Scores: [0.00042245269287377596]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016644153743982315]
+Labels: ['Cancer']
+Scores: [0.7880745530128479]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Selected labels: ['Diabetes', 'Cancer']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39684919
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cyclin-Dependent Kinase Inhibitor p21', 'Diabetes Mellitus', 'Animals', 'Metabolic Diseases', 'Insulin Resistance', 'DNA Damage']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015001433901488781]
+Labels: ['Diabetes']
+Scores: [0.882764458656311]
+Labels: ['Diabetes type 2']
+Scores: [0.10268187522888184]
+Labels: ['Diabetes type 1']
+Scores: [0.038704488426446915]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0010079604107886553]
+Labels: ['Mental Health']
+Scores: [0.000497551984153688]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014859938528388739]
+Labels: ['Cancer']
+Scores: [0.004682772792875767]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684905
+Predictions: ['Diabetes']
+MeshTerm: ['Animals', 'Cats', 'Insulin', 'Signal Transduction', 'Muscle, Skeletal', 'Biomarkers', 'Liver', 'Cat Diseases', 'Male', 'Pancreas', 'Diabetes Mellitus', 'Receptor, Insulin', 'Female', 'Insulin Resistance', 'Insulin Receptor Substrate Proteins', 'Glucagon-Like Peptide 1', 'Incretins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05697663500905037]
+Labels: ['Diabetes']
+Scores: [0.1993422508239746]
+Labels: ['Diabetes type 2']
+Scores: [0.014129088260233402]
+Labels: ['Diabetes type 1']
+Scores: [0.015577616170048714]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004102218896150589]
+Labels: ['Mental Health']
+Scores: [0.0003822085272986442]
+Labels: ['Cardiovascular diseases']
+Scores: [0.028859391808509827]
+Labels: ['Cancer']
+Scores: [0.005102452822029591]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684868
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Nanostructures', 'Pancreatic Diseases', 'Animals', 'Drug Delivery Systems', 'Pancreatic Neoplasms', 'Diabetes Mellitus', 'Drug Carriers', 'Pancreas']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028414912521839142]
+Labels: ['Diabetes']
+Scores: [0.034380290657281876]
+Labels: ['Diabetes type 2']
+Scores: [0.04771551117300987]
+Labels: ['Diabetes type 1']
+Scores: [0.02652466855943203]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009522839449346066]
+Labels: ['Mental Health']
+Scores: [0.00913244765251875]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0015731204766780138]
+Labels: ['Cancer']
+Scores: [0.23289647698402405]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684468
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Apolipoprotein C-III', 'Cardiovascular Diseases', 'Animals', 'Diabetes Mellitus', 'Metabolic Diseases', 'Lipoproteins', 'Triglycerides', 'Biomarkers']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017044752836227417]
+Labels: ['Diabetes']
+Scores: [0.9548331499099731]
+Labels: ['Diabetes type 2']
+Scores: [0.15135589241981506]
+Labels: ['Diabetes type 1']
+Scores: [0.03916788846254349]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008161900332197547]
+Labels: ['Mental Health']
+Scores: [0.0005767908878624439]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9117066860198975]
+Labels: ['Cancer']
+Scores: [0.0005134824314154685]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39684379
+Predictions: ['Diabetes']
+MeshTerm: ['Leptin', 'Humans', 'Obesity', 'Metabolic Diseases', 'Diabetes Mellitus', 'Female', 'Male', 'Biomarkers']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03061019815504551]
+Labels: ['Diabetes']
+Scores: [0.2948014736175537]
+Labels: ['Diabetes type 2']
+Scores: [0.11404530704021454]
+Labels: ['Diabetes type 1']
+Scores: [0.04048413783311844]
+Labels: ['Chronic respiratory disease']
+Scores: [0.032199934124946594]
+Labels: ['Mental Health']
+Scores: [0.0008269958198070526]
+Labels: ['Cardiovascular diseases']
+Scores: [0.324245810508728]
+Labels: ['Cancer']
+Scores: [0.006009127479046583]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684343
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Acetamides', 'Diabetes Mellitus', 'Depression', 'Antidepressive Agents', 'Depressive Disorder, Major', 'Blood Glucose', 'Glycated Hemoglobin', 'Treatment Outcome', 'Naphthalenes']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021107356995344162]
+Labels: ['Diabetes']
+Scores: [0.9376107454299927]
+Labels: ['Diabetes type 2']
+Scores: [0.1853347271680832]
+Labels: ['Diabetes type 1']
+Scores: [0.06673765182495117]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0024078721180558205]
+Labels: ['Mental Health']
+Scores: [0.07330320030450821]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0036623934283852577]
+Labels: ['Cancer']
+Scores: [0.0007681530551053584]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39683638
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Ferritins', 'Male', 'Middle Aged', 'Female', 'Mongolia', 'Cross-Sectional Studies', 'Cardiovascular Diseases', 'Meat', 'Diet', 'Heart Disease Risk Factors', 'Adult', 'Biomarkers', 'Aged', 'Diabetes Mellitus', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023752178996801376]
+Labels: ['Diabetes']
+Scores: [0.9898780584335327]
+Labels: ['Diabetes type 2']
+Scores: [0.09893962740898132]
+Labels: ['Diabetes type 1']
+Scores: [0.07510640472173691]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007465848233550787]
+Labels: ['Mental Health']
+Scores: [0.00044763259938918054]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9420991539955139]
+Labels: ['Cancer']
+Scores: [0.0010455475421622396]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683480
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Aged', 'Male', 'Female', 'Cross-Sectional Studies', 'Blood Glucose', 'Independent Living', 'Italy', 'Fatty Acids, Unsaturated', 'Diabetes Mellitus', 'Aged, 80 and over', 'Diet', 'Blood Pressure', 'Cardiometabolic Risk Factors', 'Fatty Acids, Omega-3', 'Body Mass Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029538121074438095]
+Labels: ['Diabetes']
+Scores: [0.6186798214912415]
+Labels: ['Diabetes type 2']
+Scores: [0.11453928053379059]
+Labels: ['Diabetes type 1']
+Scores: [0.06058211624622345]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01102181151509285]
+Labels: ['Mental Health']
+Scores: [0.0022376710548996925]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11255253106355667]
+Labels: ['Cancer']
+Scores: [0.05403437465429306]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39683416
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Dietary Supplements', 'Female', 'Nutrition Surveys', 'Male', 'Middle Aged', 'Adult', 'United States', 'Diabetes Mellitus', 'Motivation', 'Aged', 'Young Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04147179797291756]
+Labels: ['Diabetes']
+Scores: [0.9916054606437683]
+Labels: ['Diabetes type 2']
+Scores: [0.4447135627269745]
+Labels: ['Diabetes type 1']
+Scores: [0.1608397513628006]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006340379361063242]
+Labels: ['Mental Health']
+Scores: [0.00032453093444928527]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0684763491153717]
+Labels: ['Cancer']
+Scores: [0.009581743739545345]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681993
+Predictions: ['Diabetes']
+MeshTerm: ['Animals', 'Dogs', 'Dog Diseases', 'Fatty Liver', 'Tomography, X-Ray Computed', 'Male', 'Liver', 'Female', 'Diabetic Ketoacidosis', 'Diabetes Mellitus', 'Retrospective Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024736402556300163]
+Labels: ['Diabetes']
+Scores: [0.9196499586105347]
+Labels: ['Diabetes type 2']
+Scores: [0.2769331634044647]
+Labels: ['Diabetes type 1']
+Scores: [0.044360287487506866]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016184158623218536]
+Labels: ['Mental Health']
+Scores: [0.0015777063090354204]
+Labels: ['Cardiovascular diseases']
+Scores: [0.3729756474494934]
+Labels: ['Cancer']
+Scores: [0.0012344318674877286]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681831
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Fear', 'Feeding Behavior', 'Diabetes Mellitus', 'Cognitive Behavioral Therapy', 'Feeding and Eating Disorders']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0811515748500824]
+Labels: ['Diabetes']
+Scores: [0.9879842400550842]
+Labels: ['Diabetes type 2']
+Scores: [0.2807023525238037]
+Labels: ['Diabetes type 1']
+Scores: [0.14643314480781555]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019282467663288116]
+Labels: ['Mental Health']
+Scores: [0.3165951073169708]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007063158322125673]
+Labels: ['Cancer']
+Scores: [0.015089732594788074]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681614
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Polyradiculoneuropathy, Chronic Inflammatory Demyelinating', 'Male', 'Diabetic Neuropathies', 'Female', 'Middle Aged', 'Ultrasonography', 'Diagnosis, Differential', 'Aged', 'Neural Conduction', 'ROC Curve', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027990102767944336]
+Labels: ['Diabetes']
+Scores: [0.6670165657997131]
+Labels: ['Diabetes type 2']
+Scores: [0.32468554377555847]
+Labels: ['Diabetes type 1']
+Scores: [0.1034659594297409]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016770130023360252]
+Labels: ['Mental Health']
+Scores: [0.006894365884363651]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2036695033311844]
+Labels: ['Cancer']
+Scores: [0.003951161168515682]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681186
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Risk Factors', 'Nutrition Surveys', 'United States', 'Dementia', 'Adult', 'Prevalence', 'Diabetes Mellitus', 'Obesity', 'Smoking', 'Hypertension', 'Alcohol Drinking']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019968917593359947]
+Labels: ['Diabetes']
+Scores: [0.16354061663150787]
+Labels: ['Diabetes type 2']
+Scores: [0.012521110475063324]
+Labels: ['Diabetes type 1']
+Scores: [0.007693401537835598]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003587147453799844]
+Labels: ['Mental Health']
+Scores: [0.024657292291522026]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0032352248672395945]
+Labels: ['Cancer']
+Scores: [0.009388881735503674]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680279
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Recurrence', 'Computer Simulation', 'Models, Statistical', 'Proportional Hazards Models', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.051167916506528854]
+Labels: ['Diabetes']
+Scores: [0.13081702589988708]
+Labels: ['Diabetes type 2']
+Scores: [0.08515904098749161]
+Labels: ['Diabetes type 1']
+Scores: [0.04257524013519287]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019718920812010765]
+Labels: ['Mental Health']
+Scores: [0.002143032383173704]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03166758269071579]
+Labels: ['Cancer']
+Scores: [0.024530593305826187]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680083
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Bursitis', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Aged', 'Dilatation', 'Range of Motion, Articular', 'Shoulder Joint', 'Treatment Outcome', 'Pain Measurement', 'Adult', 'Diabetes Mellitus', 'Diabetes Complications']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08841438591480255]
+Labels: ['Diabetes']
+Scores: [0.9701305627822876]
+Labels: ['Diabetes type 2']
+Scores: [0.4036799967288971]
+Labels: ['Diabetes type 1']
+Scores: [0.15379247069358826]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05046873167157173]
+Labels: ['Mental Health']
+Scores: [0.002872818149626255]
+Labels: ['Cardiovascular diseases']
+Scores: [0.17891977727413177]
+Labels: ['Cancer']
+Scores: [0.01067435834556818]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39678201
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hypertension', 'Food Insecurity', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Diabetes Mellitus', 'Adult', 'Social Class', 'Family Characteristics', 'Aged', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02815338596701622]
+Labels: ['Diabetes']
+Scores: [0.2707861363887787]
+Labels: ['Diabetes type 2']
+Scores: [0.08050224184989929]
+Labels: ['Diabetes type 1']
+Scores: [0.061413463205099106]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008167818188667297]
+Labels: ['Mental Health']
+Scores: [0.005261085461825132]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04315497726202011]
+Labels: ['Cancer']
+Scores: [0.0008315163431689143]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39676179
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Holistic Health', 'Mind-Body Therapies', 'Diabetes Mellitus', 'Neurosecretory Systems']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09288285672664642]
+Labels: ['Diabetes']
+Scores: [0.9665091633796692]
+Labels: ['Diabetes type 2']
+Scores: [0.43877872824668884]
+Labels: ['Diabetes type 1']
+Scores: [0.21422889828681946]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010548349469900131]
+Labels: ['Mental Health']
+Scores: [0.0023833299055695534]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005161765497177839]
+Labels: ['Cancer']
+Scores: [0.015469475649297237]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39675484
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Prediabetic State', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Diabetes Mellitus', 'Nutrition Surveys', 'Adult', 'Aged', 'Body Mass Index', 'Cause of Death', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01856456696987152]
+Labels: ['Diabetes']
+Scores: [0.8150539994239807]
+Labels: ['Diabetes type 2']
+Scores: [0.07537714391946793]
+Labels: ['Diabetes type 1']
+Scores: [0.04260152205824852]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02945258468389511]
+Labels: ['Mental Health']
+Scores: [0.0009296167409047484]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9953193068504333]
+Labels: ['Cancer']
+Scores: [0.18279409408569336]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39674445
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Arsenic', 'Homeostasis', 'Animals', 'Glucose', 'Diabetes Mellitus', 'Microbiota', 'Gastrointestinal Microbiome']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.033520784229040146]
+Labels: ['Diabetes']
+Scores: [0.7742459177970886]
+Labels: ['Diabetes type 2']
+Scores: [0.15737885236740112]
+Labels: ['Diabetes type 1']
+Scores: [0.10132365673780441]
+Labels: ['Chronic respiratory disease']
+Scores: [0.040729813277721405]
+Labels: ['Mental Health']
+Scores: [0.004327579867094755]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011942482553422451]
+Labels: ['Cancer']
+Scores: [0.03979440778493881]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39673957
+Predictions: ['Diabetes']
+MeshTerm: ['Acetone', 'Zinc Oxide', 'Biosensing Techniques', 'Humans', 'Optical Fibers', 'Diabetes Mellitus', 'Biomarkers', 'Limit of Detection', 'Breath Tests', 'Equipment Design', 'Volatile Organic Compounds', 'Fiber Optic Technology']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06998208910226822]
+Labels: ['Diabetes']
+Scores: [0.8985863924026489]
+Labels: ['Diabetes type 2']
+Scores: [0.24264401197433472]
+Labels: ['Diabetes type 1']
+Scores: [0.0956537052989006]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10635953396558762]
+Labels: ['Mental Health']
+Scores: [0.002270302502438426]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01698814518749714]
+Labels: ['Cancer']
+Scores: [0.0026434233877807856]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39673919
+Predictions: ['Diabetes', 'Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Female', 'Male', 'Middle Aged', 'Incidence', 'Adult', 'Aged', 'Diabetes Mellitus', 'New Zealand', 'Young Adult', 'Registries', 'Cohort Studies', 'Adolescent', 'Aged, 80 and over', 'Child']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022727137431502342]
+Labels: ['Diabetes']
+Scores: [0.47595417499542236]
+Labels: ['Diabetes type 2']
+Scores: [0.013988307677209377]
+Labels: ['Diabetes type 1']
+Scores: [0.010408815927803516]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003893191460520029]
+Labels: ['Mental Health']
+Scores: [0.00047614105278626084]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06849413365125656]
+Labels: ['Cancer']
+Scores: [0.07883556187152863]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39673498
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Quality of Life', 'Male', 'Female', 'Self Care', 'Primary Health Care', 'Middle Aged', 'Aged', 'Follow-Up Studies', 'Longitudinal Studies', 'Hypertension', 'Coronary Artery Disease', 'Diabetes Mellitus', 'Adult', 'Surveys and Questionnaires']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0026053322944790125]
+Labels: ['Diabetes']
+Scores: [0.0020542254205793142]
+Labels: ['Diabetes type 2']
+Scores: [0.002796232933178544]
+Labels: ['Diabetes type 1']
+Scores: [0.0017186268232762814]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006539442110806704]
+Labels: ['Mental Health']
+Scores: [0.018237469717860222]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004814993590116501]
+Labels: ['Cancer']
+Scores: [0.007051491178572178]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39672014
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Artificial Intelligence', 'Machine Learning', 'Deep Learning', 'Telemedicine']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.040101151913404465]
+Labels: ['Diabetes']
+Scores: [0.9054837226867676]
+Labels: ['Diabetes type 2']
+Scores: [0.28329044580459595]
+Labels: ['Diabetes type 1']
+Scores: [0.07840640097856522]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04776173457503319]
+Labels: ['Mental Health']
+Scores: [0.0017061521066352725]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03068464994430542]
+Labels: ['Cancer']
+Scores: [0.05158780515193939]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39671511
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Sedentary Behavior', 'Male', 'Female', 'Cross-Sectional Studies', 'Hypertension', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Exercise', 'Coronary Artery Disease', 'Prospective Studies', 'Young Adult', 'Cardiometabolic Risk Factors', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02137857675552368]
+Labels: ['Diabetes']
+Scores: [0.001971848076209426]
+Labels: ['Diabetes type 2']
+Scores: [0.004974793642759323]
+Labels: ['Diabetes type 1']
+Scores: [0.0042386786080896854]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07894441485404968]
+Labels: ['Mental Health']
+Scores: [0.0017984415171667933]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9970970749855042]
+Labels: ['Cancer']
+Scores: [0.008534712716937065]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39671417
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hypertension', 'Female', 'Male', 'COVID-19', 'Adult', 'Diabetes Mellitus', 'Middle Aged', 'Puerto Rico', 'COVID-19 Vaccines', 'Aged', 'Surveys and Questionnaires', 'Young Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005636326037347317]
+Labels: ['Diabetes']
+Scores: [0.16623948514461517]
+Labels: ['Diabetes type 2']
+Scores: [0.026615748181939125]
+Labels: ['Diabetes type 1']
+Scores: [0.018057461827993393]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04990266263484955]
+Labels: ['Mental Health']
+Scores: [0.0005544272717088461]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014927061274647713]
+Labels: ['Cancer']
+Scores: [0.0005741786444559693]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39670874
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Liver Diseases', 'Aged', 'Analgesics, Opioid', 'United States', 'Liver Cirrhosis', 'Chronic Disease', 'Cohort Studies', 'Liver Neoplasms', 'Diabetes Mellitus', 'Logistic Models', 'Arthritis', 'Health Surveys', 'Chronic Pain', 'Hepatitis, Viral, Human', 'Renal Insufficiency, Chronic', 'Severity of Illness Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01760069839656353]
+Labels: ['Diabetes']
+Scores: [0.004650169052183628]
+Labels: ['Diabetes type 2']
+Scores: [0.010256214067339897]
+Labels: ['Diabetes type 1']
+Scores: [0.0029039192013442516]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011818971252068877]
+Labels: ['Mental Health']
+Scores: [0.0008755383896641433]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0017030976014211774]
+Labels: ['Cancer']
+Scores: [0.005507614929229021]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39670442
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Animals', 'Lipocalin-2', 'Diabetic Neuropathies', 'Oxidative Stress', 'Molecular Targeted Therapy', 'Quality of Life', 'Cognitive Dysfunction', 'Drug Development', 'Blood-Brain Barrier', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03872903063893318]
+Labels: ['Diabetes']
+Scores: [0.9330878853797913]
+Labels: ['Diabetes type 2']
+Scores: [0.4177582263946533]
+Labels: ['Diabetes type 1']
+Scores: [0.022052278742194176]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004825594834983349]
+Labels: ['Mental Health']
+Scores: [0.0016454949509352446]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0027735792100429535]
+Labels: ['Cancer']
+Scores: [0.0020714919082820415]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39670363
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Computational Biology', 'Diabetes Mellitus', 'Benchmarking', 'Blood Glucose', 'Wearable Electronic Devices', 'Smartphone', 'Mobile Applications', 'Language', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011606879532337189]
+Labels: ['Diabetes']
+Scores: [0.8992835283279419]
+Labels: ['Diabetes type 2']
+Scores: [0.20412583649158478]
+Labels: ['Diabetes type 1']
+Scores: [0.0370975062251091]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011155475862324238]
+Labels: ['Mental Health']
+Scores: [0.0005973496590740979]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8922601342201233]
+Labels: ['Cancer']
+Scores: [0.0016633572522550821]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39667764
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Anti-Bacterial Agents', 'Diabetic Foot', 'Osteomyelitis', 'Diabetes Mellitus', 'Anti-Infective Agents, Local']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.039651546627283096]
+Labels: ['Diabetes']
+Scores: [0.8948919773101807]
+Labels: ['Diabetes type 2']
+Scores: [0.19903506338596344]
+Labels: ['Diabetes type 1']
+Scores: [0.0849316194653511]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006861566565930843]
+Labels: ['Mental Health']
+Scores: [0.000995864626020193]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002113877097144723]
+Labels: ['Cancer']
+Scores: [0.0032597659155726433]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666834
+Predictions: ['Diabetes', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Aged', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02973249740898609]
+Labels: ['Diabetes']
+Scores: [0.9869382977485657]
+Labels: ['Diabetes type 2']
+Scores: [0.251865416765213]
+Labels: ['Diabetes type 1']
+Scores: [0.10988138616085052]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004440179094672203]
+Labels: ['Mental Health']
+Scores: [0.0048364680260419846]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9916830658912659]
+Labels: ['Cancer']
+Scores: [0.016405338421463966]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39666732
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Insulin', 'Aged', 'Diabetes Mellitus', 'Hospitalization', 'Frail Elderly', 'Hypoglycemic Agents', 'Female', 'Male', 'Hospitals']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02978927455842495]
+Labels: ['Diabetes']
+Scores: [0.9123023748397827]
+Labels: ['Diabetes type 2']
+Scores: [0.5499235391616821]
+Labels: ['Diabetes type 1']
+Scores: [0.18151827156543732]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014229689724743366]
+Labels: ['Mental Health']
+Scores: [0.0013968788553029299]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04753824695944786]
+Labels: ['Cancer']
+Scores: [0.015153497457504272]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666445
+Predictions: ['Diabetes']
+MeshTerm: ['Bone Regeneration', 'Humans', 'Drug Delivery Systems', 'Animals', 'Diabetes Mellitus', 'Neovascularization, Physiologic', 'Osteogenesis', 'Biocompatible Materials']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01877470687031746]
+Labels: ['Diabetes']
+Scores: [0.9734159111976624]
+Labels: ['Diabetes type 2']
+Scores: [0.21923764050006866]
+Labels: ['Diabetes type 1']
+Scores: [0.009648105129599571]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0036968535277992487]
+Labels: ['Mental Health']
+Scores: [0.001476868405006826]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014569398947060108]
+Labels: ['Cancer']
+Scores: [0.0018108534859493375]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666416
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Diabetes Mellitus', 'Quality of Life', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01888580247759819]
+Labels: ['Diabetes']
+Scores: [0.995924711227417]
+Labels: ['Diabetes type 2']
+Scores: [0.756426990032196]
+Labels: ['Diabetes type 1']
+Scores: [0.022629529237747192]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0028942269273102283]
+Labels: ['Mental Health']
+Scores: [0.0005937920068390667]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06139292195439339]
+Labels: ['Cancer']
+Scores: [0.00044659822015091777]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39666397
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Risk Factors', 'COVID-19', 'Invasive Pulmonary Aspergillosis', 'Retrospective Studies', 'Case-Control Studies', 'Aged', 'Severity of Illness Index', 'SARS-CoV-2', 'Smoking', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010362707078456879]
+Labels: ['Diabetes']
+Scores: [0.4395574629306793]
+Labels: ['Diabetes type 2']
+Scores: [0.04697040840983391]
+Labels: ['Diabetes type 1']
+Scores: [0.0377030186355114]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7907636761665344]
+Labels: ['Mental Health']
+Scores: [0.0003023080062121153]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4754919111728668]
+Labels: ['Cancer']
+Scores: [0.010618257336318493]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39665943
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Vascular Stiffness', 'Male', 'Renal Insufficiency, Chronic', 'Female', 'Middle Aged', 'Hypertension', 'Glomerular Filtration Rate', 'Aged', 'Biomarkers', 'Albuminuria', 'Kidney', 'Cross-Sectional Studies', 'Diabetes Mellitus']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024276988580822945]
+Labels: ['Diabetes']
+Scores: [0.7280771136283875]
+Labels: ['Diabetes type 2']
+Scores: [0.13189037144184113]
+Labels: ['Diabetes type 1']
+Scores: [0.028815731406211853]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01232103630900383]
+Labels: ['Mental Health']
+Scores: [0.0006910020019859076]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9969651103019714]
+Labels: ['Cancer']
+Scores: [0.0037398929707705975]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39665157
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Protein Glutamine gamma Glutamyltransferase 2', 'Transglutaminases', 'Male', 'Female', 'Aged', 'Vasodilation', 'Endothelium, Vascular', 'GTP-Binding Proteins', 'Arteries', 'Vascular Resistance', 'Sex Factors', 'Diabetes Mellitus', 'Vasodilator Agents', 'Enzyme Inhibitors', 'Middle Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06206511706113815]
+Labels: ['Diabetes']
+Scores: [0.9597148895263672]
+Labels: ['Diabetes type 2']
+Scores: [0.4783065915107727]
+Labels: ['Diabetes type 1']
+Scores: [0.0370367169380188]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1346713900566101]
+Labels: ['Mental Health']
+Scores: [0.001809211797080934]
+Labels: ['Cardiovascular diseases']
+Scores: [0.962644100189209]
+Labels: ['Cancer']
+Scores: [0.001658409251831472]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738226
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Ethiopia', 'Male', 'Female', 'Middle Aged', 'Disorders of Excessive Somnolence', 'Cross-Sectional Studies', 'Adult', 'Prevalence', 'Risk Factors', 'Aged', 'Hypertension', 'Surveys and Questionnaires', 'Comorbidity', 'Obesity', 'Snoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022642584517598152]
+Labels: ['Diabetes']
+Scores: [0.9372517466545105]
+Labels: ['Diabetes type 2']
+Scores: [0.8845697045326233]
+Labels: ['Diabetes type 1']
+Scores: [0.004400013014674187]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10911491513252258]
+Labels: ['Mental Health']
+Scores: [0.013759502209722996]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4643181562423706]
+Labels: ['Cancer']
+Scores: [0.0017693042755126953]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39737893
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Male', 'Female', 'Nutrition Surveys', 'Middle Aged', 'Genome-Wide Association Study', 'Arthritis, Rheumatoid', 'Adult', 'Arthritis', 'Prevalence', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Aged', 'Genetic Predisposition to Disease', 'Logistic Models', 'Polymorphism, Single Nucleotide']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05924351513385773]
+Labels: ['Diabetes']
+Scores: [0.7753501534461975]
+Labels: ['Diabetes type 2']
+Scores: [0.0020066131837666035]
+Labels: ['Diabetes type 1']
+Scores: [0.8239789009094238]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7016099095344543]
+Labels: ['Mental Health']
+Scores: [0.005279374774545431]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8923247456550598]
+Labels: ['Cancer']
+Scores: [0.008910901844501495]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 3], [1, 3]]
+---------------------------------
+---------------------------------
+PMID: 39737509
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'India', 'Biological Specimen Banks', 'Adult', 'Female', 'Male', 'Diabetes Mellitus', 'Registries', 'Biomedical Research', 'Young Adult', 'Cohort Studies', 'Age of Onset', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013088362291455269]
+Labels: ['Diabetes']
+Scores: [0.9593170285224915]
+Labels: ['Diabetes type 2']
+Scores: [0.12889449298381805]
+Labels: ['Diabetes type 1']
+Scores: [0.03116677515208721]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002177055925130844]
+Labels: ['Mental Health']
+Scores: [0.0006159979966469109]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0073571475222706795]
+Labels: ['Cancer']
+Scores: [0.000770359649322927]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736941
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Male', 'Rats, Wistar', 'Receptors, N-Methyl-D-Aspartate', 'Diabetes Mellitus, Experimental', 'Insulin', 'Rats', 'Magnesium', 'Diabetes Mellitus, Type 2', 'Nitric Oxide Synthase Type I', 'Dietary Supplements', 'Random Allocation', 'Streptozocin']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04541559889912605]
+Labels: ['Diabetes']
+Scores: [0.9567461609840393]
+Labels: ['Diabetes type 2']
+Scores: [0.5784647464752197]
+Labels: ['Diabetes type 1']
+Scores: [0.020994063466787338]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004658411722630262]
+Labels: ['Mental Health']
+Scores: [0.001386378426104784]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003163072746247053]
+Labels: ['Cancer']
+Scores: [0.001583989942446351]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736870
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Nomograms', 'Diabetic Neuropathies', 'Female', 'Male', 'Middle Aged', 'Aged', 'Risk Factors', 'ROC Curve', 'Diabetes Mellitus, Type 2', 'Prognosis', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09924853593111038]
+Labels: ['Diabetes']
+Scores: [0.9697659015655518]
+Labels: ['Diabetes type 2']
+Scores: [0.27310019731521606]
+Labels: ['Diabetes type 1']
+Scores: [0.06508900970220566]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03196549043059349]
+Labels: ['Mental Health']
+Scores: [0.006683109328150749]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4747239053249359]
+Labels: ['Cancer']
+Scores: [0.0015578236198052764]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736865
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Ultrasonography', 'Aged', 'Middle Aged', 'Bone Density', 'Diabetes Mellitus, Type 2', 'Tibia', 'Absorptiometry, Photon', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Cortical Bone', 'Elasticity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02572569064795971]
+Labels: ['Diabetes']
+Scores: [0.9394576549530029]
+Labels: ['Diabetes type 2']
+Scores: [0.3734446167945862]
+Labels: ['Diabetes type 1']
+Scores: [0.06655598431825638]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008114153519272804]
+Labels: ['Mental Health']
+Scores: [0.0008937150123529136]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9807366728782654]
+Labels: ['Cancer']
+Scores: [0.003808402456343174]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39736861
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Middle Aged', 'Hyperparathyroidism, Primary', 'Adrenal Glands', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022687621414661407]
+Labels: ['Diabetes']
+Scores: [0.9660415649414062]
+Labels: ['Diabetes type 2']
+Scores: [0.08970747888088226]
+Labels: ['Diabetes type 1']
+Scores: [0.019861547276377678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007702956907451153]
+Labels: ['Mental Health']
+Scores: [0.0029894921462982893]
+Labels: ['Cardiovascular diseases']
+Scores: [0.17831715941429138]
+Labels: ['Cancer']
+Scores: [0.006299145519733429]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736858
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Male', 'Female', 'Middle Aged', 'Nutrition Surveys', 'Adult', 'Oxidative Stress', 'United States', 'Aged', 'Life Style', 'Diet', 'Risk Factors', 'Follow-Up Studies', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019311003386974335]
+Labels: ['Diabetes']
+Scores: [0.9155856370925903]
+Labels: ['Diabetes type 2']
+Scores: [0.9600154161453247]
+Labels: ['Diabetes type 1']
+Scores: [0.0019975139293819666]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001842064899392426]
+Labels: ['Mental Health']
+Scores: [0.00038166012382134795]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9942085146903992]
+Labels: ['Cancer']
+Scores: [0.007245582062751055]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736551
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Health Literacy', 'Physician-Patient Relations', 'Middle Aged', 'Cross-Sectional Studies', 'Self Care', 'Information Seeking Behavior', 'Medication Adherence', 'Communication', 'Aged', 'Adult', 'Internet', 'Assessment of Medication Adherence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.047722239047288895]
+Labels: ['Diabetes']
+Scores: [0.9624304175376892]
+Labels: ['Diabetes type 2']
+Scores: [0.9789544343948364]
+Labels: ['Diabetes type 1']
+Scores: [0.0006290856399573386]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010460451245307922]
+Labels: ['Mental Health']
+Scores: [0.0008672788389958441]
+Labels: ['Cardiovascular diseases']
+Scores: [0.024257250130176544]
+Labels: ['Cancer']
+Scores: [0.023067399859428406]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736518
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sodium-Glucose Transporter 2 Inhibitors', 'Male', 'Atrial Fibrillation', 'Retrospective Studies', 'Female', 'Aged', 'Treatment Outcome', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Time Factors', 'Risk Factors', 'Risk Assessment', 'Hemorrhage', 'Aged, 80 and over', 'Cause of Death', 'Myocardial Infarction']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022001130506396294]
+Labels: ['Diabetes']
+Scores: [0.9897008538246155]
+Labels: ['Diabetes type 2']
+Scores: [0.6967871189117432]
+Labels: ['Diabetes type 1']
+Scores: [0.015760131180286407]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1458835005760193]
+Labels: ['Mental Health']
+Scores: [0.0007113623432815075]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9963577389717102]
+Labels: ['Cancer']
+Scores: [0.0022570311557501554]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736351
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Fibroblast Growth Factors', 'Diabetes Mellitus, Type 2', 'Mice', 'Dependovirus', 'Humans', 'Gene Transfer Techniques', 'Genetic Therapy', 'Male', 'Diabetes Mellitus, Experimental', 'HEK293 Cells', 'Mice, Inbred C57BL', 'Blood Glucose', 'Genetic Vectors', 'Liver', 'Hypoglycemic Agents']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02399258129298687]
+Labels: ['Diabetes']
+Scores: [0.9743733406066895]
+Labels: ['Diabetes type 2']
+Scores: [0.9559478759765625]
+Labels: ['Diabetes type 1']
+Scores: [0.000957353797275573]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002425910672172904]
+Labels: ['Mental Health']
+Scores: [0.0003775659133680165]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0025842126924544573]
+Labels: ['Cancer']
+Scores: [0.0012307825963944197]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736334
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cross-Sectional Studies', 'Diet, Vegetarian', 'Male', 'Female', 'Middle Aged', 'Adult', 'Prospective Studies', 'Aged', 'Risk Factors', 'United Kingdom', 'Proteomics', 'Diet, Healthy', 'Diet, Plant-Based']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0429338663816452]
+Labels: ['Diabetes']
+Scores: [0.9052988886833191]
+Labels: ['Diabetes type 2']
+Scores: [0.8073412775993347]
+Labels: ['Diabetes type 1']
+Scores: [0.010893547907471657]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013980692252516747]
+Labels: ['Mental Health']
+Scores: [0.0014269683742895722]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07349912822246552]
+Labels: ['Cancer']
+Scores: [0.018650079146027565]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736162
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Quality of Life', 'Nigeria', 'Male', 'Female', 'Middle Aged', 'Self-Management', 'Patient Education as Topic', 'Adult', 'Surveys and Questionnaires', 'Health Knowledge, Attitudes, Practice', 'Aged', 'Self Care']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01832832768559456]
+Labels: ['Diabetes']
+Scores: [0.9956255555152893]
+Labels: ['Diabetes type 2']
+Scores: [0.9846571087837219]
+Labels: ['Diabetes type 1']
+Scores: [0.0014561294810846448]
+Labels: ['Chronic respiratory disease']
+Scores: [0.024093549698591232]
+Labels: ['Mental Health']
+Scores: [0.001479684142395854]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01919306255877018]
+Labels: ['Cancer']
+Scores: [0.00045857473742216825]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735994
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Receptor, ErbB-4', 'Neuregulins', 'Liver', 'Middle Aged', 'Female', 'Non-alcoholic Fatty Liver Disease', 'Male', 'Adult', 'Lipogenesis', 'Obesity', 'Diabetes Mellitus, Type 2', 'RNA, Messenger', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06398241221904755]
+Labels: ['Diabetes']
+Scores: [0.010288568213582039]
+Labels: ['Diabetes type 2']
+Scores: [0.00855528935790062]
+Labels: ['Diabetes type 1']
+Scores: [0.005240784492343664]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13852477073669434]
+Labels: ['Mental Health']
+Scores: [0.001005232916213572]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01596318557858467]
+Labels: ['Cancer']
+Scores: [0.012385803274810314]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735781
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Hip Fractures', 'Male', 'Female', 'Albuminuria', 'Aged', 'Middle Aged', 'Creatinine', 'Risk Factors', 'Bone Density', 'Postmenopause']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042821940034627914]
+Labels: ['Diabetes']
+Scores: [0.9901825785636902]
+Labels: ['Diabetes type 2']
+Scores: [0.9729064702987671]
+Labels: ['Diabetes type 1']
+Scores: [0.006321051623672247]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0372336283326149]
+Labels: ['Mental Health']
+Scores: [0.006787620019167662]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9897110462188721]
+Labels: ['Cancer']
+Scores: [0.011925461702048779]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39735651
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Iran', 'Middle Aged', 'Follow-Up Studies', 'Incidence', 'Adult', 'Thyrotropin', 'Thyroxine', 'Longitudinal Studies', 'Thyroid Hormones', 'Risk Factors', 'Thyroid Function Tests', 'Thyroid Gland', 'Thyroid Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.033142272382974625]
+Labels: ['Diabetes']
+Scores: [0.9168868660926819]
+Labels: ['Diabetes type 2']
+Scores: [0.9580855369567871]
+Labels: ['Diabetes type 1']
+Scores: [0.0008850963786244392]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0748056098818779]
+Labels: ['Mental Health']
+Scores: [0.0018660718342289329]
+Labels: ['Cardiovascular diseases']
+Scores: [0.12010330706834793]
+Labels: ['Cancer']
+Scores: [0.04475658759474754]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735647
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Fecal Microbiota Transplantation', 'Humans', 'Diabetes Mellitus, Type 2', 'Gastrointestinal Microbiome', 'Animals']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030977217480540276]
+Labels: ['Diabetes']
+Scores: [0.9579991698265076]
+Labels: ['Diabetes type 2']
+Scores: [0.9582968950271606]
+Labels: ['Diabetes type 1']
+Scores: [0.0026441782247275114]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01443290151655674]
+Labels: ['Mental Health']
+Scores: [0.0030398268718272448]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011441591195762157]
+Labels: ['Cancer']
+Scores: [0.025961298495531082]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735646
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Somatostatin', 'Acromegaly', 'Pituitary ACTH Hypersecretion', 'Hyperglycemia', 'Algorithms', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024519044905900955]
+Labels: ['Diabetes']
+Scores: [0.7926516532897949]
+Labels: ['Diabetes type 2']
+Scores: [0.9374022483825684]
+Labels: ['Diabetes type 1']
+Scores: [0.0077810995280742645]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003658873727545142]
+Labels: ['Mental Health']
+Scores: [0.0009789937175810337]
+Labels: ['Cardiovascular diseases']
+Scores: [0.20825046300888062]
+Labels: ['Cancer']
+Scores: [0.002508575329557061]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735639
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Adiponectin', 'Leptin', 'Diabetic Neuropathies', 'Male', 'Female', 'Middle Aged', 'Case-Control Studies', 'Diabetes Mellitus, Type 2', 'Aged', 'Biomarkers', 'Risk Factors', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04175915569067001]
+Labels: ['Diabetes']
+Scores: [0.9942313432693481]
+Labels: ['Diabetes type 2']
+Scores: [0.37509119510650635]
+Labels: ['Diabetes type 1']
+Scores: [0.15184587240219116]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019462332129478455]
+Labels: ['Mental Health']
+Scores: [0.0017681054305285215]
+Labels: ['Cardiovascular diseases']
+Scores: [0.3873898386955261]
+Labels: ['Cancer']
+Scores: [0.001606592326425016]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735416
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Foot', 'Amputation, Surgical', 'Male', 'Middle Aged', 'Female', 'Risk Factors', 'Aged', 'Diabetes Mellitus, Type 2', 'Retrospective Studies', 'Lower Extremity', 'Age Factors', 'China', 'Adult', 'Prevalence', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.032852694392204285]
+Labels: ['Diabetes']
+Scores: [0.889511227607727]
+Labels: ['Diabetes type 2']
+Scores: [0.959553599357605]
+Labels: ['Diabetes type 1']
+Scores: [0.0006018528365530074]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009588249959051609]
+Labels: ['Mental Health']
+Scores: [0.00048098593833856285]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08387703448534012]
+Labels: ['Cancer']
+Scores: [0.0037328917533159256]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735415
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Metabolomics', 'Middle Aged', 'Coronary Disease', 'Biomarkers', 'Diabetes Mellitus, Type 2', 'Comorbidity', 'Depression', 'Hypertension', 'Aged', 'Gas Chromatography-Mass Spectrometry', 'Metabolome', 'Adult', 'Case-Control Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006519803777337074]
+Labels: ['Diabetes']
+Scores: [0.0015958144795149565]
+Labels: ['Diabetes type 2']
+Scores: [0.002533464692533016]
+Labels: ['Diabetes type 1']
+Scores: [0.0012630155542865396]
+Labels: ['Chronic respiratory disease']
+Scores: [0.024481341242790222]
+Labels: ['Mental Health']
+Scores: [0.00028680815012194216]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9986434578895569]
+Labels: ['Cancer']
+Scores: [0.0003524242201820016]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735414
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cognitive Dysfunction', 'Olfaction Disorders', 'Early Diagnosis', 'Biomarkers', 'Smell', 'Magnetic Resonance Imaging', 'Brain']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.034753743559122086]
+Labels: ['Diabetes']
+Scores: [0.9423981308937073]
+Labels: ['Diabetes type 2']
+Scores: [0.9897684454917908]
+Labels: ['Diabetes type 1']
+Scores: [0.0005597861600108445]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006429559551179409]
+Labels: ['Mental Health']
+Scores: [0.36171770095825195]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005661138333380222]
+Labels: ['Cancer']
+Scores: [0.0008409026195295155]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39734182
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Foot', 'Female', 'Male', 'Middle Aged', 'Aged', 'Aged, 80 and over', 'Tibia', 'Periosteum', 'Microcirculation', 'Treatment Outcome', 'Follow-Up Studies', 'Wound Healing', 'Diabetes Mellitus, Type 2', 'Severity of Illness Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03697328642010689]
+Labels: ['Diabetes']
+Scores: [0.969265341758728]
+Labels: ['Diabetes type 2']
+Scores: [0.2191186398267746]
+Labels: ['Diabetes type 1']
+Scores: [0.036725178360939026]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005586547777056694]
+Labels: ['Mental Health']
+Scores: [0.0003726869181264192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.945594072341919]
+Labels: ['Cancer']
+Scores: [0.0015563421184197068]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39733376
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hungary', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Blood Glucose', 'Glycated Hemoglobin', 'Aged', 'Clinical Laboratory Techniques', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027685005217790604]
+Labels: ['Diabetes']
+Scores: [0.9131894707679749]
+Labels: ['Diabetes type 2']
+Scores: [0.14846834540367126]
+Labels: ['Diabetes type 1']
+Scores: [0.1300211399793625]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004234156105667353]
+Labels: ['Mental Health']
+Scores: [0.000540437176823616]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008710750378668308]
+Labels: ['Cancer']
+Scores: [0.0010167384753003716]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733138
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Diabetes Mellitus, Type 2', 'Humans', 'Osteoarthritis', 'Animals', 'Rats', 'Chondrocytes', 'Cartilage, Articular', 'Up-Regulation', 'Lipopolysaccharide Receptors', 'Male', 'Monocytes', 'Gene Expression Profiling', 'Biomarkers', 'Cell Adhesion Molecules']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01535329595208168]
+Labels: ['Diabetes']
+Scores: [0.9204106330871582]
+Labels: ['Diabetes type 2']
+Scores: [0.9703189134597778]
+Labels: ['Diabetes type 1']
+Scores: [0.0034532484132796526]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0030103297904133797]
+Labels: ['Mental Health']
+Scores: [0.0011359507916495204]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008415068499743938]
+Labels: ['Cancer']
+Scores: [0.0011703091440722346]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733115
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin', 'Glucocorticoids', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Glucose', 'Blood Glucose', 'Models, Biological']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05471254885196686]
+Labels: ['Diabetes']
+Scores: [0.9696492552757263]
+Labels: ['Diabetes type 2']
+Scores: [0.3120260536670685]
+Labels: ['Diabetes type 1']
+Scores: [0.4604431688785553]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009449039585888386]
+Labels: ['Mental Health']
+Scores: [0.0012434057425707579]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04193322733044624]
+Labels: ['Cancer']
+Scores: [0.00451012933626771]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39733102
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Monocytes', 'Male', 'Female', 'Middle Aged', 'Apolipoprotein A-I', 'Biomarkers', 'Aged', 'ROC Curve', 'Non-alcoholic Fatty Liver Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012723328545689583]
+Labels: ['Diabetes']
+Scores: [0.970603883266449]
+Labels: ['Diabetes type 2']
+Scores: [0.9506745934486389]
+Labels: ['Diabetes type 1']
+Scores: [0.07678667455911636]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002783051459118724]
+Labels: ['Mental Health']
+Scores: [0.014612305909395218]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009745662100613117]
+Labels: ['Cancer']
+Scores: [0.003157394239678979]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732300
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Ferroptosis', 'NF-E2-Related Factor 2', 'Diabetes Mellitus, Type 2', 'Male', 'Drugs, Chinese Herbal', 'Mice', 'Diabetes Mellitus, Experimental', 'Mice, Inbred C57BL', 'Oxidative Stress', 'Liver', 'Diet, High-Fat', 'Lipid Peroxidation', 'Berberine', 'Cell Line', 'Glucosides', 'Flavanones', 'Streptozocin', 'Isoflavones', 'Flavonoids']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015211453661322594]
+Labels: ['Diabetes']
+Scores: [0.9971415996551514]
+Labels: ['Diabetes type 2']
+Scores: [0.9970253109931946]
+Labels: ['Diabetes type 1']
+Scores: [0.0004462825891096145]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0044214921072125435]
+Labels: ['Mental Health']
+Scores: [0.00035787789965979755]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002458703238517046]
+Labels: ['Cancer']
+Scores: [0.0010156804928556085]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731787
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Insulin Resistance', 'Animals', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Mice', 'Triterpenes', 'Male', 'Diabetes Mellitus, Experimental', 'Molecular Structure', 'Structure-Activity Relationship', 'Humans', 'Dose-Response Relationship, Drug', 'Mice, Inbred C57BL']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01250462420284748]
+Labels: ['Diabetes']
+Scores: [0.8006950616836548]
+Labels: ['Diabetes type 2']
+Scores: [0.47493863105773926]
+Labels: ['Diabetes type 1']
+Scores: [0.007132925093173981]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03424069285392761]
+Labels: ['Mental Health']
+Scores: [0.0014667591312900186]
+Labels: ['Cardiovascular diseases']
+Scores: [0.23285360634326935]
+Labels: ['Cancer']
+Scores: [0.010756080970168114]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731761
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Anti-Bacterial Agents', 'Coagulase', 'Comorbidity', 'Diabetes Mellitus, Type 2', 'Staphylococcal Infections', 'Staphylococcus', 'Systemic Inflammatory Response Syndrome']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.053109101951122284]
+Labels: ['Diabetes']
+Scores: [0.1973591297864914]
+Labels: ['Diabetes type 2']
+Scores: [0.274919331073761]
+Labels: ['Diabetes type 1']
+Scores: [0.00636767502874136]
+Labels: ['Chronic respiratory disease']
+Scores: [0.21988673508167267]
+Labels: ['Mental Health']
+Scores: [0.004476164001971483]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0060708350501954556]
+Labels: ['Cancer']
+Scores: [0.009585214778780937]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730990
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'COVID-19', 'Diabetes Mellitus, Type 2', 'Ethnic and Racial Minorities', 'Primary Health Care', 'Prospective Studies', 'Telemedicine']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05521851405501366]
+Labels: ['Diabetes']
+Scores: [0.9807525277137756]
+Labels: ['Diabetes type 2']
+Scores: [0.6208481788635254]
+Labels: ['Diabetes type 1']
+Scores: [0.0063605159521102905]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06939230859279633]
+Labels: ['Mental Health']
+Scores: [0.001299806870520115]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009424406103789806]
+Labels: ['Cancer']
+Scores: [0.004416069947183132]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730877
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Non-alcoholic Fatty Liver Disease', 'Triglycerides', 'Middle Aged', 'Male', 'Female', 'Cholesterol, HDL', 'Retrospective Studies', 'Adult', 'Risk Factors', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09428905695676804]
+Labels: ['Diabetes']
+Scores: [0.8870782852172852]
+Labels: ['Diabetes type 2']
+Scores: [0.791288435459137]
+Labels: ['Diabetes type 1']
+Scores: [0.0014628111384809017]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013957343995571136]
+Labels: ['Mental Health']
+Scores: [0.0060788909904658794]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04324597492814064]
+Labels: ['Cancer']
+Scores: [0.0027110755909234285]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730670
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Thyroid Hormones', 'Aged', 'Diabetic Nephropathies', 'Diabetic Retinopathy', 'Diabetic Neuropathies', 'Thyrotropin', 'Thyroid Gland', 'Risk Factors', 'Thyroxine']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015286952257156372]
+Labels: ['Diabetes']
+Scores: [0.9362917542457581]
+Labels: ['Diabetes type 2']
+Scores: [0.9529950022697449]
+Labels: ['Diabetes type 1']
+Scores: [0.0026025862898677588]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012654862366616726]
+Labels: ['Mental Health']
+Scores: [0.0035324101336300373]
+Labels: ['Cardiovascular diseases']
+Scores: [0.26748356223106384]
+Labels: ['Cancer']
+Scores: [0.002027719747275114]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730430
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Periodontitis', 'Male', 'Female', 'Aged', 'Saliva', 'Biomarkers', 'Gingivitis', 'Adult', 'Microbiota', 'Aged, 80 and over', 'RNA, Ribosomal, 16S']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.031141109764575958]
+Labels: ['Diabetes']
+Scores: [0.982006311416626]
+Labels: ['Diabetes type 2']
+Scores: [0.9805494546890259]
+Labels: ['Diabetes type 1']
+Scores: [0.0007055131136439741]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03906199336051941]
+Labels: ['Mental Health']
+Scores: [0.001450236071832478]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006142086815088987]
+Labels: ['Cancer']
+Scores: [0.0006804929580539465]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730335
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sodium-Glucose Transporter 2 Inhibitors', 'Female', 'Male', 'Heart Failure', 'Middle Aged', 'Aged', 'Retrospective Studies', 'Diabetes Mellitus, Type 2', 'Republic of Korea']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02233649045228958]
+Labels: ['Diabetes']
+Scores: [0.01682196371257305]
+Labels: ['Diabetes type 2']
+Scores: [0.024030158296227455]
+Labels: ['Diabetes type 1']
+Scores: [0.005797700025141239]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3064329922199249]
+Labels: ['Mental Health']
+Scores: [0.0007883207290433347]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9764871597290039]
+Labels: ['Cancer']
+Scores: [0.0014057254884392023]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730078
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sleep Initiation and Maintenance Disorders', 'Prediabetic State', 'Glycated Hemoglobin', 'Cognitive Behavioral Therapy', 'Blood Glucose', 'Male', 'Female', 'Insulin Resistance', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Blood Glucose Self-Monitoring', 'Adult', 'Patient Education as Topic', 'Aged', 'Sleep']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021741650998592377]
+Labels: ['Diabetes']
+Scores: [0.6729342341423035]
+Labels: ['Diabetes type 2']
+Scores: [0.127125546336174]
+Labels: ['Diabetes type 1']
+Scores: [0.058644626289606094]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005314808804541826]
+Labels: ['Mental Health']
+Scores: [0.023366093635559082]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007961666211485863]
+Labels: ['Cancer']
+Scores: [0.002112559275701642]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729922
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Periodontitis', 'Male', 'Rats, Wistar', 'Macrophages', 'Diabetes Mellitus, Experimental', 'Rats', 'Alveolar Bone Loss', 'Vitamin D', 'Phagocytosis', 'Diabetes Mellitus, Type 2', 'Calcium', 'Efferocytosis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01894075609743595]
+Labels: ['Diabetes']
+Scores: [0.9755483269691467]
+Labels: ['Diabetes type 2']
+Scores: [0.8633261322975159]
+Labels: ['Diabetes type 1']
+Scores: [0.006337690632790327]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02789420634508133]
+Labels: ['Mental Health']
+Scores: [0.0023632696829736233]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2777412533760071]
+Labels: ['Cancer']
+Scores: [0.0025559719651937485]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729784
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Melanoma', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Denmark', 'Middle Aged', 'Cross-Sectional Studies', 'Aged', 'Neoplasm Staging', 'Adult', 'Sex Factors', 'Skin Neoplasms', 'Registries', 'Lymphatic Metastasis', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0861203595995903]
+Labels: ['Diabetes']
+Scores: [0.9939010739326477]
+Labels: ['Diabetes type 2']
+Scores: [0.9963201284408569]
+Labels: ['Diabetes type 1']
+Scores: [0.00039545659092254937]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00858504418283701]
+Labels: ['Mental Health']
+Scores: [0.001584949903190136]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0030072592198848724]
+Labels: ['Cancer']
+Scores: [0.011854957789182663]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729310
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Lectins', 'Male', 'Female', 'GPI-Linked Proteins', 'Middle Aged', 'Periodontitis', 'Cytokines', 'Tumor Necrosis Factor-alpha', 'Adult', 'Biomarkers', 'Cytokine TWEAK', 'Glycated Hemoglobin']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03828725591301918]
+Labels: ['Diabetes']
+Scores: [0.799115777015686]
+Labels: ['Diabetes type 2']
+Scores: [0.9207628965377808]
+Labels: ['Diabetes type 1']
+Scores: [0.0007372545078396797]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006136501207947731]
+Labels: ['Mental Health']
+Scores: [0.0005659881280735135]
+Labels: ['Cardiovascular diseases']
+Scores: [0.19010087847709656]
+Labels: ['Cancer']
+Scores: [0.0224812813103199]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729235
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Antioxidants', 'Plant Extracts', 'Animals', 'Hypoglycemic Agents', 'Adipogenesis', 'Mice', 'Adipocytes', 'Apoptosis', 'Asteraceae', '3T3-L1 Cells', 'alpha-Amylases', 'Cell Movement', 'Phenols', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.025563087314367294]
+Labels: ['Diabetes']
+Scores: [0.3799269199371338]
+Labels: ['Diabetes type 2']
+Scores: [0.44426167011260986]
+Labels: ['Diabetes type 1']
+Scores: [0.0037780823186039925]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01889226771891117]
+Labels: ['Mental Health']
+Scores: [0.0011433112667873502]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01859702169895172]
+Labels: ['Cancer']
+Scores: [0.0028242601547390223]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39728692
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Docosahexaenoic Acids', 'Animals', 'Diabetic Retinopathy', 'Mice', 'Humans', 'Electroretinography', 'Retina', 'Tomography, Optical Coherence', 'Male', 'Middle Aged', 'Mice, Inbred C57BL', 'Female', 'Diabetes Mellitus, Experimental', 'Gas Chromatography-Mass Spectrometry', 'Real-Time Polymerase Chain Reaction', 'Diabetes Mellitus, Type 2', 'Aged', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.032707564532756805]
+Labels: ['Diabetes']
+Scores: [0.965857744216919]
+Labels: ['Diabetes type 2']
+Scores: [0.1714049130678177]
+Labels: ['Diabetes type 1']
+Scores: [0.08068018406629562]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012969537638127804]
+Labels: ['Mental Health']
+Scores: [0.001116711413487792]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007992666214704514]
+Labels: ['Cancer']
+Scores: [0.003199118422344327]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39726656
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Israel', 'Female', 'Adolescent', 'Arabs', 'Cross-Sectional Studies', 'Jews', 'Polycystic Ovary Syndrome', 'Hypertension', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Pediatric Obesity', 'Prevalence', 'Male', 'Comorbidity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013491303659975529]
+Labels: ['Diabetes']
+Scores: [0.07173474878072739]
+Labels: ['Diabetes type 2']
+Scores: [0.02036198414862156]
+Labels: ['Diabetes type 1']
+Scores: [0.0100999865680933]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018781374674290419]
+Labels: ['Mental Health']
+Scores: [0.0015474621905013919]
+Labels: ['Cardiovascular diseases']
+Scores: [0.25772592425346375]
+Labels: ['Cancer']
+Scores: [0.005488964729011059]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725431
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Prediabetic State', 'China', 'Diabetes Mellitus, Type 2', 'Randomized Controlled Trials as Topic', 'Prospective Studies', 'Single-Blind Method', 'Telemedicine', 'Multicenter Studies as Topic', 'Cost-Benefit Analysis', 'Male', 'Group Dynamics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028537604957818985]
+Labels: ['Diabetes']
+Scores: [0.11544081568717957]
+Labels: ['Diabetes type 2']
+Scores: [0.013954623602330685]
+Labels: ['Diabetes type 1']
+Scores: [0.04920847341418266]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006504163146018982]
+Labels: ['Mental Health']
+Scores: [0.004712273366749287]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01880383864045143]
+Labels: ['Cancer']
+Scores: [0.0017231183592230082]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725366
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Diabetes Mellitus, Type 2', 'Drugs, Chinese Herbal', 'Male', 'Cognitive Dysfunction', 'Rats', 'Gastrointestinal Microbiome', 'Diabetes Mellitus, Experimental', 'Rats, Sprague-Dawley', 'Bile Acids and Salts', 'Hypoglycemic Agents', 'Insulin Resistance', 'Hippocampus', 'Maze Learning']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04703327268362045]
+Labels: ['Diabetes']
+Scores: [0.9778621196746826]
+Labels: ['Diabetes type 2']
+Scores: [0.9753437638282776]
+Labels: ['Diabetes type 1']
+Scores: [0.001482940511777997]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016677144914865494]
+Labels: ['Mental Health']
+Scores: [0.1466154158115387]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005441043060272932]
+Labels: ['Cancer']
+Scores: [0.0029611706268042326]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39724976
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Early Detection of Cancer', 'Colorectal Neoplasms', 'Mass Screening', 'Prostate-Specific Antigen', 'Chronic Disease', 'Male', 'Guideline Adherence', 'Prostatic Neoplasms', 'Diabetes Mellitus, Type 2', 'HIV Infections', 'Dyslipidemias']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017170531675219536]
+Labels: ['Diabetes']
+Scores: [0.0007150850724428892]
+Labels: ['Diabetes type 2']
+Scores: [0.0007678326219320297]
+Labels: ['Diabetes type 1']
+Scores: [0.0007509372662752867]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0021613852586597204]
+Labels: ['Mental Health']
+Scores: [0.0005337159964255989]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0039718118496239185]
+Labels: ['Cancer']
+Scores: [0.9140713810920715]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Selected labels: ['Cancer']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39723533
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Cognitive Dysfunction', 'Mice', 'Network Pharmacology', 'Molecular Docking Simulation', 'Diabetes Mellitus, Type 2', 'Drugs, Chinese Herbal', 'Male', 'Diabetes Mellitus, Experimental', 'Protein Interaction Maps', 'Hippocampus', 'Signal Transduction', 'Disease Models, Animal', 'Morris Water Maze Test']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023352108895778656]
+Labels: ['Diabetes']
+Scores: [0.9815270304679871]
+Labels: ['Diabetes type 2']
+Scores: [0.559167742729187]
+Labels: ['Diabetes type 1']
+Scores: [0.03831375390291214]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008254652842879295]
+Labels: ['Mental Health']
+Scores: [0.5970519185066223]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04345288127660751]
+Labels: ['Cancer']
+Scores: [0.004769632592797279]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39722814
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Homocysteine', 'Male', 'Female', 'Middle Aged', 'Neural Conduction', 'Diabetic Nephropathies', 'Diabetic Neuropathies', 'Aged', 'Risk Factors', 'China']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01416690368205309]
+Labels: ['Diabetes']
+Scores: [0.997624397277832]
+Labels: ['Diabetes type 2']
+Scores: [0.9845648407936096]
+Labels: ['Diabetes type 1']
+Scores: [0.0010338943684473634]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018013566732406616]
+Labels: ['Mental Health']
+Scores: [0.00038521672831848264]
+Labels: ['Cardiovascular diseases']
+Scores: [0.024069897830486298]
+Labels: ['Cancer']
+Scores: [0.0033419837709516287]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39722811
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'COVID-19', 'Female', 'Male', 'Middle Aged', 'Risk Factors', 'Post-Acute COVID-19 Syndrome', 'Aged', 'Adult', 'Ukraine', 'SARS-CoV-2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01141108013689518]
+Labels: ['Diabetes']
+Scores: [0.9889339804649353]
+Labels: ['Diabetes type 2']
+Scores: [0.9924424886703491]
+Labels: ['Diabetes type 1']
+Scores: [0.0007612804765813053]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4927273392677307]
+Labels: ['Mental Health']
+Scores: [0.0006650431314483285]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5936769843101501]
+Labels: ['Cancer']
+Scores: [0.001991990488022566]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39721796
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Gestational Weight Gain', 'White People', 'Adult', 'Retrospective Studies', 'Pregnancy Outcome', 'Obesity', 'COVID-19', 'Pregnancy Complications', 'Black or African American', 'Health Status Disparities', 'Louisiana', 'Diabetes, Gestational', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007293242495507002]
+Labels: ['Diabetes']
+Scores: [0.003583411453291774]
+Labels: ['Diabetes type 2']
+Scores: [0.0011791151482611895]
+Labels: ['Diabetes type 1']
+Scores: [0.0008310163393616676]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009005291503854096]
+Labels: ['Mental Health']
+Scores: [0.004449538420885801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004445478320121765]
+Labels: ['Cancer']
+Scores: [0.1763695925474167]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720906
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Testosterone', 'Middle Aged', 'Aged', 'Australia', 'Risk Factors', 'Glucose Tolerance Test', 'Glycated Hemoglobin', 'Prognosis', 'Blood Glucose', 'Glucose Intolerance', 'Life Style', 'Risk Assessment']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03031480684876442]
+Labels: ['Diabetes']
+Scores: [0.9570448398590088]
+Labels: ['Diabetes type 2']
+Scores: [0.8803667426109314]
+Labels: ['Diabetes type 1']
+Scores: [0.0022491272538900375]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006219628732651472]
+Labels: ['Mental Health']
+Scores: [0.0004644808068405837]
+Labels: ['Cardiovascular diseases']
+Scores: [0.15301178395748138]
+Labels: ['Cancer']
+Scores: [0.006920493673533201]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720308
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Sri Lanka', 'Female', 'Male', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Age of Onset', 'Retrospective Studies', 'Prevalence', 'Developing Countries', 'Child', 'Adult', 'Glycated Hemoglobin', 'Diabetic Ketoacidosis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04866134375333786]
+Labels: ['Diabetes']
+Scores: [0.9661880135536194]
+Labels: ['Diabetes type 2']
+Scores: [0.1207936480641365]
+Labels: ['Diabetes type 1']
+Scores: [0.07722771912813187]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001752649899572134]
+Labels: ['Mental Health']
+Scores: [0.0022720596753060818]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00667481729760766]
+Labels: ['Cancer']
+Scores: [0.0003123580536339432]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720253
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Osteoporosis', 'Adaptor Proteins, Signal Transducing', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Animals', 'Genetic Markers', 'Wnt Signaling Pathway', 'Bone Morphogenetic Proteins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030227579176425934]
+Labels: ['Diabetes']
+Scores: [0.1698308140039444]
+Labels: ['Diabetes type 2']
+Scores: [0.02871069125831127]
+Labels: ['Diabetes type 1']
+Scores: [0.021052023395895958]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005469880416058004]
+Labels: ['Mental Health']
+Scores: [0.000370245921658352]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012056862469762564]
+Labels: ['Cancer']
+Scores: [0.0010869267862290144]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720249
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Blood Glucose', 'Glycemic Control', 'Cohort Studies', 'Aged', 'Follow-Up Studies', 'Risk Factors', 'Hypoglycemic Agents', 'Adult', 'Cause of Death', 'China']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01910415105521679]
+Labels: ['Diabetes']
+Scores: [0.9913293123245239]
+Labels: ['Diabetes type 2']
+Scores: [0.9969369173049927]
+Labels: ['Diabetes type 1']
+Scores: [0.000664675491861999]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0017040936509147286]
+Labels: ['Mental Health']
+Scores: [0.00033737614285200834]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9965300559997559]
+Labels: ['Cancer']
+Scores: [0.008768144994974136]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720248
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin Resistance', 'Male', 'Cross-Sectional Studies', 'Female', 'Diabetic Nephropathies', 'Middle Aged', 'Nutrition Surveys', 'United States', 'Adult', 'Aged', 'Risk Factors', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Body Mass Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10219930857419968]
+Labels: ['Diabetes']
+Scores: [0.9822842478752136]
+Labels: ['Diabetes type 2']
+Scores: [0.4311836361885071]
+Labels: ['Diabetes type 1']
+Scores: [0.08384285122156143]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14430755376815796]
+Labels: ['Mental Health']
+Scores: [0.0006583595531992614]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8886743783950806]
+Labels: ['Cancer']
+Scores: [0.001381288398988545]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720247
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Gastrointestinal Microbiome', 'Insulin Resistance', 'Bile Acids and Salts', 'Medicine, Chinese Traditional', 'Precision Medicine', 'Animals']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02683536522090435]
+Labels: ['Diabetes']
+Scores: [0.989854633808136]
+Labels: ['Diabetes type 2']
+Scores: [0.9873389005661011]
+Labels: ['Diabetes type 1']
+Scores: [0.0027825559955090284]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0042121862061321735]
+Labels: ['Mental Health']
+Scores: [0.003151609795168042]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05432101711630821]
+Labels: ['Cancer']
+Scores: [0.009524603374302387]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720175
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Glycemic Control', 'Diabetes Mellitus, Type 2', 'Health Education', 'Glycated Hemoglobin', 'Blood Glucose', 'Patient Education as Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013618103228509426]
+Labels: ['Diabetes']
+Scores: [0.9895106554031372]
+Labels: ['Diabetes type 2']
+Scores: [0.8785656690597534]
+Labels: ['Diabetes type 1']
+Scores: [0.001185175497084856]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015274406177923083]
+Labels: ['Mental Health']
+Scores: [0.0005287505919113755]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03041638806462288]
+Labels: ['Cancer']
+Scores: [0.0012985143112018704]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720174
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Periapical Periodontitis', 'Diabetes Mellitus, Type 2', 'Prevalence', 'Male', 'Female', 'Middle Aged', 'Root Canal Therapy', 'Adult', 'Romania', 'Tooth, Nonvital', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03014444373548031]
+Labels: ['Diabetes']
+Scores: [0.8000348210334778]
+Labels: ['Diabetes type 2']
+Scores: [0.9551646709442139]
+Labels: ['Diabetes type 1']
+Scores: [0.0009665636462159455]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011477891821414232]
+Labels: ['Mental Health']
+Scores: [0.0004929766873829067]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014551643980666995]
+Labels: ['Cancer']
+Scores: [0.0017487291479483247]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719839
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'TNF-Related Apoptosis-Inducing Ligand', 'Diabetes Mellitus, Type 2', 'Periodontitis', 'Genetic Predisposition to Disease', 'Polymorphism, Single Nucleotide', 'Gene Frequency', 'Genotype', 'Blood Glucose', 'Polymorphism, Genetic', 'Glycated Hemoglobin']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026464762166142464]
+Labels: ['Diabetes']
+Scores: [0.9056099057197571]
+Labels: ['Diabetes type 2']
+Scores: [0.9241031408309937]
+Labels: ['Diabetes type 1']
+Scores: [0.001544555532746017]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03915110230445862]
+Labels: ['Mental Health']
+Scores: [0.0004512069281190634]
+Labels: ['Cardiovascular diseases']
+Scores: [0.788494884967804]
+Labels: ['Cancer']
+Scores: [0.00419715978205204]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719724
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Synbiotics', 'Double-Blind Method', 'Male', 'Middle Aged', 'Female', 'Probiotics', 'Blood Glucose', 'Gastrointestinal Microbiome', 'Glycated Hemoglobin', 'Bifidobacterium animalis', 'Insulin Resistance', 'Treatment Outcome', 'Insulin']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014821979217231274]
+Labels: ['Diabetes']
+Scores: [0.9929255843162537]
+Labels: ['Diabetes type 2']
+Scores: [0.9552859663963318]
+Labels: ['Diabetes type 1']
+Scores: [0.0008794296882115304]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004192176274955273]
+Labels: ['Mental Health']
+Scores: [0.0003098626038990915]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006305631250143051]
+Labels: ['Cancer']
+Scores: [0.0012962007895112038]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719658
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Acute Kidney Injury', 'Sodium-Glucose Transporter 2 Inhibitors', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Contrast Media', 'Aged', 'Coronary Angiography', 'Propensity Score', 'Percutaneous Coronary Intervention', 'Creatinine', 'China', 'Incidence', 'Retrospective Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03788457438349724]
+Labels: ['Diabetes']
+Scores: [0.9878546595573425]
+Labels: ['Diabetes type 2']
+Scores: [0.9909034371376038]
+Labels: ['Diabetes type 1']
+Scores: [0.0007776074926368892]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01390604954212904]
+Labels: ['Mental Health']
+Scores: [0.0003290276799816638]
+Labels: ['Cardiovascular diseases']
+Scores: [0.25689932703971863]
+Labels: ['Cancer']
+Scores: [0.01541698444634676]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719583
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Liraglutide', 'Sodium-Glucose Transporter 2 Inhibitors', 'Network Meta-Analysis', 'Hypoglycemic Agents', 'Randomized Controlled Trials as Topic', 'Treatment Outcome', 'Glucosides', 'Glycated Hemoglobin', 'Blood Glucose', 'Glucagon-Like Peptide-2 Receptor', 'Gastric Inhibitory Polypeptide', 'Tirzepatide']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0347251258790493]
+Labels: ['Diabetes']
+Scores: [0.982110857963562]
+Labels: ['Diabetes type 2']
+Scores: [0.9847632646560669]
+Labels: ['Diabetes type 1']
+Scores: [0.0011825369438156486]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003053599502891302]
+Labels: ['Mental Health']
+Scores: [0.0004138325166422874]
+Labels: ['Cardiovascular diseases']
+Scores: [0.029836835339665413]
+Labels: ['Cancer']
+Scores: [0.0011671822285279632]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719404
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Dipeptidyl-Peptidase IV Inhibitors', 'Male', 'Diabetes Mellitus, Type 2', 'Female', 'Middle Aged', 'Sodium-Glucose Transporter 2 Inhibitors', 'Retrospective Studies', 'Aged', 'Hong Kong', 'Treatment Outcome', 'Risk Factors', 'Risk Assessment', 'Myocardial Infarction', 'Thrombosis', 'Time Factors', 'Stroke']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.052096039056777954]
+Labels: ['Diabetes']
+Scores: [0.9836235046386719]
+Labels: ['Diabetes type 2']
+Scores: [0.9853192567825317]
+Labels: ['Diabetes type 1']
+Scores: [0.0009441434522159398]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0747147724032402]
+Labels: ['Mental Health']
+Scores: [0.0005003971746191382]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9989287257194519]
+Labels: ['Cancer']
+Scores: [0.0008321011555381119]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719391
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Blood Glucose', 'Life Style', 'Exercise', 'Aged', 'Sleep', 'Hypoglycemic Agents', 'Follow-Up Studies', 'Precision Medicine', 'Adult', 'Biomarkers', 'Prognosis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03616911545395851]
+Labels: ['Diabetes']
+Scores: [0.9935912489891052]
+Labels: ['Diabetes type 2']
+Scores: [0.9913146495819092]
+Labels: ['Diabetes type 1']
+Scores: [0.0018170534167438745]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00470863888040185]
+Labels: ['Mental Health']
+Scores: [0.0011648531071841717]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05376080051064491]
+Labels: ['Cancer']
+Scores: [0.057940077036619186]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719314
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Biomarkers', 'Black or African American', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Follow-Up Studies', 'Glucose Clamp Technique', 'Glucose Tolerance Test', 'Incidence', 'Insulin', 'Insulin Resistance', 'Insulin Secretion', 'Parents', 'Prediabetic State', 'Prognosis', 'Prospective Studies', 'White']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06810017675161362]
+Labels: ['Diabetes']
+Scores: [0.9557034969329834]
+Labels: ['Diabetes type 2']
+Scores: [0.8730424046516418]
+Labels: ['Diabetes type 1']
+Scores: [0.011304103769361973]
+Labels: ['Chronic respiratory disease']
+Scores: [0.29286351799964905]
+Labels: ['Mental Health']
+Scores: [0.005257517099380493]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10927277058362961]
+Labels: ['Cancer']
+Scores: [0.0220697782933712]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719282
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Qualitative Research', 'Singapore', 'Telemedicine', 'Adult', 'Self Efficacy', 'Aged', 'Health Behavior', 'Asian People', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Blood Pressure']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04511578753590584]
+Labels: ['Diabetes']
+Scores: [0.9662595987319946]
+Labels: ['Diabetes type 2']
+Scores: [0.9415031671524048]
+Labels: ['Diabetes type 1']
+Scores: [0.00038090848829597235]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01131033431738615]
+Labels: ['Mental Health']
+Scores: [0.007252778857946396]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02059931866824627]
+Labels: ['Cancer']
+Scores: [0.0012006782926619053]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719183
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Non-alcoholic Fatty Liver Disease', 'Blood Glucose', 'Retrospective Studies', 'Glucose Tolerance Test', 'Adult', 'Aged', 'Cardiovascular Diseases', 'Risk Factors', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04305456206202507]
+Labels: ['Diabetes']
+Scores: [0.19209381937980652]
+Labels: ['Diabetes type 2']
+Scores: [0.05041182041168213]
+Labels: ['Diabetes type 1']
+Scores: [0.04315057396888733]
+Labels: ['Chronic respiratory disease']
+Scores: [0.027472956106066704]
+Labels: ['Mental Health']
+Scores: [0.005076050292700529]
+Labels: ['Cardiovascular diseases']
+Scores: [0.035670652985572815]
+Labels: ['Cancer']
+Scores: [0.0030780688393861055]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719182
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Chitinase-3-Like Protein 1', 'Male', 'Female', 'Middle Aged', 'Aged', 'Denmark', 'Cardiovascular Diseases', 'Biomarkers', 'Cohort Studies', 'C-Reactive Protein']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0388973243534565]
+Labels: ['Diabetes']
+Scores: [0.9560791850090027]
+Labels: ['Diabetes type 2']
+Scores: [0.9761685132980347]
+Labels: ['Diabetes type 1']
+Scores: [0.000630146183539182]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0013193711638450623]
+Labels: ['Mental Health']
+Scores: [0.00028676222427748144]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9873269200325012]
+Labels: ['Cancer']
+Scores: [0.058167714625597]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719170
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Glucagon-Like Peptide-1 Receptor', 'Body Composition', 'Network Meta-Analysis as Topic', 'Obesity', 'Hypoglycemic Agents', 'Randomized Controlled Trials as Topic', 'Receptors, Gastrointestinal Hormone', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01829068548977375]
+Labels: ['Diabetes']
+Scores: [0.008902076631784439]
+Labels: ['Diabetes type 2']
+Scores: [0.007616003043949604]
+Labels: ['Diabetes type 1']
+Scores: [0.0059906491078436375]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01380888931453228]
+Labels: ['Mental Health']
+Scores: [0.0005361716030165553]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003654923988506198]
+Labels: ['Cancer']
+Scores: [0.02452554740011692]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719165
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Insulin-Secreting Cells', 'Male', 'Glucagon-Like Peptides', 'Mice', 'Gastrointestinal Microbiome', 'Mice, Inbred C57BL', 'Diabetes Mellitus, Type 2', 'Signal Transduction', 'Diabetes Mellitus, Experimental', 'Methyltransferases', 'Diet, High-Fat', 'Hypoglycemic Agents']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02089586667716503]
+Labels: ['Diabetes']
+Scores: [0.9593588709831238]
+Labels: ['Diabetes type 2']
+Scores: [0.9951459765434265]
+Labels: ['Diabetes type 1']
+Scores: [0.00050589710008353]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0038069032598286867]
+Labels: ['Mental Health']
+Scores: [0.0003946065262425691]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001584836863912642]
+Labels: ['Cancer']
+Scores: [0.0007964767282828689]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718468
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptides', 'Immunoglobulin Fc Fragments', 'Liver', 'Recombinant Fusion Proteins', 'Hypoglycemic Agents', 'Adult', 'Non-alcoholic Fatty Liver Disease', 'Aged', 'Glycated Hemoglobin', 'Blood Glucose', 'Cohort Studies', 'Treatment Outcome']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01354550663381815]
+Labels: ['Diabetes']
+Scores: [0.9934207797050476]
+Labels: ['Diabetes type 2']
+Scores: [0.09397474676370621]
+Labels: ['Diabetes type 1']
+Scores: [0.018972625955939293]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0012583269271999598]
+Labels: ['Mental Health']
+Scores: [0.00034325337037444115]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0021818499080836773]
+Labels: ['Cancer']
+Scores: [0.0018845819868147373]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718016
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Intra-Abdominal Fat', 'Subcutaneous Fat', 'Transcriptome', 'Gene Expression Profiling', 'Macrophages', 'Protein Interaction Maps']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0174248069524765]
+Labels: ['Diabetes']
+Scores: [0.9596907496452332]
+Labels: ['Diabetes type 2']
+Scores: [0.9056415557861328]
+Labels: ['Diabetes type 1']
+Scores: [0.0015091286040842533]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007332141045480967]
+Labels: ['Mental Health']
+Scores: [0.0016718202969059348]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0036262674257159233]
+Labels: ['Cancer']
+Scores: [0.0016275121597573161]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717954
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hyperuricemia', 'Uric Acid', 'Renal Insufficiency, Chronic', 'Kidney', 'Animals', 'Obesity', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Gout']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030994705855846405]
+Labels: ['Diabetes']
+Scores: [0.09037604928016663]
+Labels: ['Diabetes type 2']
+Scores: [0.2999722361564636]
+Labels: ['Diabetes type 1']
+Scores: [0.0035159888211637735]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009180407971143723]
+Labels: ['Mental Health']
+Scores: [0.0005937780370004475]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2093942016363144]
+Labels: ['Cancer']
+Scores: [0.0013646238949149847]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717105
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Risk Factors', 'Gastrointestinal Diseases', 'Nomograms', 'Aged', 'Hypoglycemic Agents', 'Adult', 'Prognosis', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04955192655324936]
+Labels: ['Diabetes']
+Scores: [0.054529156535863876]
+Labels: ['Diabetes type 2']
+Scores: [0.4888126254081726]
+Labels: ['Diabetes type 1']
+Scores: [0.04225519672036171]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22824247181415558]
+Labels: ['Mental Health']
+Scores: [0.0003063121694140136]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028816412668675184]
+Labels: ['Cancer']
+Scores: [0.0028617195785045624]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39716666
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Glycated Hemoglobin', 'Male', 'Female', 'Middle Aged', 'Latent Class Analysis', 'Prospective Studies', 'Aged', 'Exercise', 'Adult', 'Motivation', 'Singapore', 'Educational Status', 'Life Style', 'Biomarkers']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04821428656578064]
+Labels: ['Diabetes']
+Scores: [0.993869423866272]
+Labels: ['Diabetes type 2']
+Scores: [0.9685693383216858]
+Labels: ['Diabetes type 1']
+Scores: [0.0014793933369219303]
+Labels: ['Chronic respiratory disease']
+Scores: [0.033363886177539825]
+Labels: ['Mental Health']
+Scores: [0.0009277163189835846]
+Labels: ['Cardiovascular diseases']
+Scores: [0.18097904324531555]
+Labels: ['Cancer']
+Scores: [0.0019907515961676836]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716481
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Insulin Resistance', 'Heat-Shock Response', 'Male', 'Diet, High-Fat', 'Mice, Inbred C57BL', 'HSP70 Heat-Shock Proteins', 'Disease Progression', 'Blood Glucose', 'Mice', 'Hot Temperature', 'Early Diagnosis', 'Diabetes Mellitus, Type 2', 'Obesity', 'Inflammation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01702871359884739]
+Labels: ['Diabetes']
+Scores: [0.5783871412277222]
+Labels: ['Diabetes type 2']
+Scores: [0.2328505665063858]
+Labels: ['Diabetes type 1']
+Scores: [0.021681245416402817]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014567572623491287]
+Labels: ['Mental Health']
+Scores: [0.0013131145387887955]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7360915541648865]
+Labels: ['Cancer']
+Scores: [0.002327106660231948]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716335
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Mice', 'T-Lymphocytes, Regulatory', 'Diabetes Mellitus, Type 2', 'Retinal Degeneration', 'Mice, Inbred C57BL', 'Male', 'Diabetic Retinopathy', 'Retina']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020780639722943306]
+Labels: ['Diabetes']
+Scores: [0.9952870607376099]
+Labels: ['Diabetes type 2']
+Scores: [0.9898941516876221]
+Labels: ['Diabetes type 1']
+Scores: [0.001161074498668313]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026566775515675545]
+Labels: ['Mental Health']
+Scores: [0.0016111821169033647]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04738464951515198]
+Labels: ['Cancer']
+Scores: [0.003242549719288945]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716328
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Dementia', 'Diabetes Mellitus, Type 2', 'Hypoglycemic Agents', 'Network Meta-Analysis', 'Observational Studies as Topic', 'Randomized Controlled Trials as Topic', 'Sodium-Glucose Transporter 2 Inhibitors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.036581650376319885]
+Labels: ['Diabetes']
+Scores: [0.9015960097312927]
+Labels: ['Diabetes type 2']
+Scores: [0.9571999907493591]
+Labels: ['Diabetes type 1']
+Scores: [0.003588835010305047]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023347988724708557]
+Labels: ['Mental Health']
+Scores: [0.10643172264099121]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014945747330784798]
+Labels: ['Cancer']
+Scores: [0.008251165971159935]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Randomized Controlled Trials as Topic', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Exercise', 'Health Behavior', 'Diabetes Mellitus, Type 1', 'Female', 'Adult', 'Glycated Hemoglobin', 'Pregnancy', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030719248577952385]
+Labels: ['Diabetes']
+Scores: [0.12941865622997284]
+Labels: ['Diabetes type 2']
+Scores: [0.042886149138212204]
+Labels: ['Diabetes type 1']
+Scores: [0.03422033041715622]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004544008523225784]
+Labels: ['Mental Health']
+Scores: [0.000563687935937196]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02976047806441784]
+Labels: ['Cancer']
+Scores: [0.0006071923999115825]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716258
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Biomarkers', 'Blood Glucose', 'Cardiovascular Diseases', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 2', 'Insulin Resistance', 'Metabolic Syndrome', 'Triglycerides']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029465707018971443]
+Labels: ['Diabetes']
+Scores: [0.0797048807144165]
+Labels: ['Diabetes type 2']
+Scores: [0.030505793169140816]
+Labels: ['Diabetes type 1']
+Scores: [0.017951037734746933]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007982717826962471]
+Labels: ['Mental Health']
+Scores: [0.0003556514566298574]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9979925751686096]
+Labels: ['Cancer']
+Scores: [0.0020536489319056273]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716230
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Gangrene', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Acupuncture, Ear', 'Wound Healing', 'Treatment Outcome', 'Amputation, Surgical', 'Acupuncture Points', 'Magnetic Field Therapy']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1145174577832222]
+Labels: ['Diabetes']
+Scores: [0.9806272387504578]
+Labels: ['Diabetes type 2']
+Scores: [0.4796254336833954]
+Labels: ['Diabetes type 1']
+Scores: [0.257538378238678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.049012426286935806]
+Labels: ['Mental Health']
+Scores: [0.0032584290020167828]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8943191766738892]
+Labels: ['Cancer']
+Scores: [0.02077365294098854]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39716081
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Ferroptosis', 'Gene Regulatory Networks', 'Genetic Predisposition to Disease', 'Genomics', 'Male', 'Diabetes Complications', 'Female', 'Gene Expression Profiling', 'Polymorphism, Single Nucleotide', 'Computational Biology', 'Genetic Association Studies', 'Multiomics']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04544060304760933]
+Labels: ['Diabetes']
+Scores: [0.9970940947532654]
+Labels: ['Diabetes type 2']
+Scores: [0.9975826144218445]
+Labels: ['Diabetes type 1']
+Scores: [0.002634725533425808]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03716539964079857]
+Labels: ['Mental Health']
+Scores: [0.0009519036975689232]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04058403521776199]
+Labels: ['Cancer']
+Scores: [0.0036514552775770426]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716056
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Bayes Theorem', 'Diabetes Mellitus, Type 2', 'Humans', 'Linear Models', 'Linkage Disequilibrium', 'Quantitative Trait Loci', 'Phenotype', 'Computer Simulation', 'Models, Genetic', 'Genome-Wide Association Study']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0352310873568058]
+Labels: ['Diabetes']
+Scores: [0.010122501291334629]
+Labels: ['Diabetes type 2']
+Scores: [0.007005932275205851]
+Labels: ['Diabetes type 1']
+Scores: [0.005398668348789215]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019849708303809166]
+Labels: ['Mental Health']
+Scores: [0.006114282179623842]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011831591837108135]
+Labels: ['Cancer']
+Scores: [0.03958446905016899]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715944
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Bariatric Surgery', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Follow-Up Studies', 'Glycated Hemoglobin', 'Glycemic Control', 'Hypoglycemic Agents', 'Obesity, Morbid', 'Recurrence', 'Remission Induction', 'Retrospective Studies', 'Treatment Outcome', 'Weight Loss']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02001936174929142]
+Labels: ['Diabetes']
+Scores: [0.9963601231575012]
+Labels: ['Diabetes type 2']
+Scores: [0.9578822255134583]
+Labels: ['Diabetes type 1']
+Scores: [0.05887705832719803]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028481831774115562]
+Labels: ['Mental Health']
+Scores: [0.0010341414017602801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9825702905654907]
+Labels: ['Cancer']
+Scores: [0.0006495214765891433]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39715341
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucagon-Like Peptide 1', 'Animals', 'Female', 'Male', 'Sex Characteristics', 'Obesity', 'Glucagon-Like Peptides', 'Hypoglycemic Agents', 'Sex Factors', 'Cardiovascular Diseases', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02385551854968071]
+Labels: ['Diabetes']
+Scores: [0.061569251120090485]
+Labels: ['Diabetes type 2']
+Scores: [0.024392716586589813]
+Labels: ['Diabetes type 1']
+Scores: [0.022383827716112137]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006730296183377504]
+Labels: ['Mental Health']
+Scores: [0.01904987171292305]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025465652346611023]
+Labels: ['Cancer']
+Scores: [0.008776786737143993]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715135
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Sulfonylurea Compounds', 'Iraq', 'Sulfonylurea Receptors', 'Case-Control Studies', 'Polymorphism, Single Nucleotide', 'Middle Aged', 'Hypoglycemic Agents', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01515925582498312]
+Labels: ['Diabetes']
+Scores: [0.969448447227478]
+Labels: ['Diabetes type 2']
+Scores: [0.971917450428009]
+Labels: ['Diabetes type 1']
+Scores: [0.0003707078576553613]
+Labels: ['Chronic respiratory disease']
+Scores: [0.018523694947361946]
+Labels: ['Mental Health']
+Scores: [0.00035871253930963576]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04445784166455269]
+Labels: ['Cancer']
+Scores: [0.002347339875996113]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39713052
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Fatty Acids, Nonesterified', 'Coronary Disease', 'Insulin Resistance']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.041626352816820145]
+Labels: ['Diabetes']
+Scores: [0.9918650984764099]
+Labels: ['Diabetes type 2']
+Scores: [0.971578061580658]
+Labels: ['Diabetes type 1']
+Scores: [0.0016752133378759027]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00240192748606205]
+Labels: ['Mental Health']
+Scores: [0.003033416112884879]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9962848424911499]
+Labels: ['Cancer']
+Scores: [0.003684148658066988]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39710901
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Retinopathy', 'Glucagon-Like Peptides', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.034585461020469666]
+Labels: ['Diabetes']
+Scores: [0.95652836561203]
+Labels: ['Diabetes type 2']
+Scores: [0.8332374691963196]
+Labels: ['Diabetes type 1']
+Scores: [0.08075368404388428]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02519257552921772]
+Labels: ['Mental Health']
+Scores: [0.0004563738766591996]
+Labels: ['Cardiovascular diseases']
+Scores: [0.803716778755188]
+Labels: ['Cancer']
+Scores: [0.0010555967455729842]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39710882
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Bone Density', 'Glucagon-Like Peptide-1 Receptor', 'Absorptiometry, Photon', 'Randomized Controlled Trials as Topic', 'Body Composition', 'Diabetes Mellitus, Type 2', 'Bayes Theorem', 'Female', 'Hypoglycemic Agents', 'Male', 'Middle Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06399993598461151]
+Labels: ['Diabetes']
+Scores: [0.001984203699976206]
+Labels: ['Diabetes type 2']
+Scores: [0.007998520508408546]
+Labels: ['Diabetes type 1']
+Scores: [0.006416947580873966]
+Labels: ['Chronic respiratory disease']
+Scores: [0.024997059255838394]
+Labels: ['Mental Health']
+Scores: [0.0008128930348902941]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0260431170463562]
+Labels: ['Cancer']
+Scores: [0.01753505878150463]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710722
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Male', 'Middle Aged', 'Seasons', 'Aged', 'Metabolic Diseases', 'Calcifediol', 'Prospective Studies', 'Adult', 'Renal Insufficiency, Chronic', 'Biomarkers']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024516448378562927]
+Labels: ['Diabetes']
+Scores: [0.9816195368766785]
+Labels: ['Diabetes type 2']
+Scores: [0.9865464568138123]
+Labels: ['Diabetes type 1']
+Scores: [0.006191569846123457]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01211514137685299]
+Labels: ['Mental Health']
+Scores: [0.0014131623320281506]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015280656516551971]
+Labels: ['Cancer']
+Scores: [0.008472619578242302]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710638
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Retinopathy', 'Risk Factors', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Young Adult', 'Diabetes Mellitus, Type 2', 'China']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03352533280849457]
+Labels: ['Diabetes']
+Scores: [0.9874171614646912]
+Labels: ['Diabetes type 2']
+Scores: [0.287594199180603]
+Labels: ['Diabetes type 1']
+Scores: [0.11538856476545334]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002097488846629858]
+Labels: ['Mental Health']
+Scores: [0.0007673727814108133]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004182381089776754]
+Labels: ['Cancer']
+Scores: [0.0016866943333297968]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710070
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucosephosphate Dehydrogenase Deficiency', 'Female', 'Male', 'Middle Aged', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Adult', 'Aged', 'Blood Glucose', 'Cohort Studies', 'Healthcare Disparities', 'Diabetes Complications', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028283363208174706]
+Labels: ['Diabetes']
+Scores: [0.9984373450279236]
+Labels: ['Diabetes type 2']
+Scores: [0.6471953392028809]
+Labels: ['Diabetes type 1']
+Scores: [0.10256187617778778]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014600413851439953]
+Labels: ['Mental Health']
+Scores: [0.0014283380005508661]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030001582577824593]
+Labels: ['Cancer']
+Scores: [0.000812770624179393]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710013
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Case-Control Studies', 'Female', 'Male', 'Adolescent', 'Pediatric Obesity', 'Feces', 'Diabetes Mellitus, Type 2', 'Birth Cohort', 'Bacteroides']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024860145524144173]
+Labels: ['Diabetes']
+Scores: [0.007930004969239235]
+Labels: ['Diabetes type 2']
+Scores: [0.007640285883098841]
+Labels: ['Diabetes type 1']
+Scores: [0.00398688530549407]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0033984407782554626]
+Labels: ['Mental Health']
+Scores: [0.0025335727259516716]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012098580598831177]
+Labels: ['Cancer']
+Scores: [0.009406642988324165]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710002
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Genome-Wide Association Study', 'Frailty', 'Genetic Pleiotropy', 'Muscle, Skeletal', 'Comorbidity', 'Polymorphism, Single Nucleotide', 'Female', 'Male', 'Phenotype', 'Aged', 'Genetic Predisposition to Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03569389879703522]
+Labels: ['Diabetes']
+Scores: [0.9892560243606567]
+Labels: ['Diabetes type 2']
+Scores: [0.9960642457008362]
+Labels: ['Diabetes type 1']
+Scores: [0.0008584472816437483]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009935333393514156]
+Labels: ['Mental Health']
+Scores: [0.019039107486605644]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06771598756313324]
+Labels: ['Cancer']
+Scores: [0.024230819195508957]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709941
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Cognition', 'Cognitive Dysfunction', 'Diabetes Mellitus, Type 2', 'Dipeptidyl-Peptidase IV Inhibitors', 'Drug Therapy, Combination', 'Hypoglycemic Agents', 'Metabolomics', 'Metformin', 'Prospective Studies', 'Sodium-Glucose Transporter 2 Inhibitors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018855009227991104]
+Labels: ['Diabetes']
+Scores: [0.977573573589325]
+Labels: ['Diabetes type 2']
+Scores: [0.9737619757652283]
+Labels: ['Diabetes type 1']
+Scores: [0.002045127796009183]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005246475804597139]
+Labels: ['Mental Health']
+Scores: [0.12285231053829193]
+Labels: ['Cardiovascular diseases']
+Scores: [0.031041473150253296]
+Labels: ['Cancer']
+Scores: [0.0008401195518672466]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709924
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Mice', 'Diet, High-Fat', 'Male', 'Kidney', 'Diabetic Nephropathies', 'Gastrointestinal Microbiome', 'Dysbiosis', 'Isothiocyanates', 'Humans', 'Mice, Inbred C57BL', 'Protective Agents', 'Blood Glucose', 'Streptozocin', 'Sulfoxides', 'Diabetes Mellitus, Type 2', 'Raphanus', 'Oxidative Stress', 'Bacteria', 'Superoxide Dismutase']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027665894478559494]
+Labels: ['Diabetes']
+Scores: [0.8820236921310425]
+Labels: ['Diabetes type 2']
+Scores: [0.8295055031776428]
+Labels: ['Diabetes type 1']
+Scores: [0.02573157101869583]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005318560637533665]
+Labels: ['Mental Health']
+Scores: [0.0007323038298636675]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0027928249910473824]
+Labels: ['Cancer']
+Scores: [0.0005655212444253266]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709670
+Predictions: ['Cancer', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Immune Checkpoint Inhibitors', 'Retrospective Studies', 'Neoplasms', 'Aged', 'Middle Aged', 'Cardiovascular Diseases', 'Glucagon-Like Peptide 1', 'Diabetes Mellitus, Type 2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0178067684173584]
+Labels: ['Diabetes']
+Scores: [0.0003251680755056441]
+Labels: ['Diabetes type 2']
+Scores: [0.0004165679565630853]
+Labels: ['Diabetes type 1']
+Scores: [0.00030797848012298346]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006482562748715281]
+Labels: ['Mental Health']
+Scores: [0.0003098066954407841]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9962550401687622]
+Labels: ['Cancer']
+Scores: [0.9980584979057312]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709519
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Polycystic Ovary Syndrome', 'Female', 'MicroRNAs', 'Biomarkers', 'Metabolic Diseases', 'Insulin Resistance', 'Non-alcoholic Fatty Liver Disease', 'Diabetes Mellitus, Type 2', 'Obesity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07753886282444]
+Labels: ['Diabetes']
+Scores: [0.8088127970695496]
+Labels: ['Diabetes type 2']
+Scores: [0.5087626576423645]
+Labels: ['Diabetes type 1']
+Scores: [0.014787893742322922]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009570053778588772]
+Labels: ['Mental Health']
+Scores: [0.03851731866598129]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08009179681539536]
+Labels: ['Cancer']
+Scores: [0.5299287438392639]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709437
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Male', 'Prospective Studies', 'Middle Aged', 'Risk Assessment', 'Aged', 'Time Factors', 'Potassium, Dietary', 'Cardiovascular Diseases', 'Reproducibility of Results', 'Prognosis', 'Biomarkers', 'Risk Factors', 'Protective Factors', 'Albuminuria', 'Urinalysis', 'Recommended Dietary Allowances']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02783762849867344]
+Labels: ['Diabetes']
+Scores: [0.9854785203933716]
+Labels: ['Diabetes type 2']
+Scores: [0.9849167466163635]
+Labels: ['Diabetes type 1']
+Scores: [0.0014502736739814281]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00483083538711071]
+Labels: ['Mental Health']
+Scores: [0.001896536792628467]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9959151744842529]
+Labels: ['Cancer']
+Scores: [0.05272991955280304]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709342
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Aged', 'Blood Glucose', 'Chronic Pain', 'Middle Aged', 'Pain Measurement', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018246730789542198]
+Labels: ['Diabetes']
+Scores: [0.9901593327522278]
+Labels: ['Diabetes type 2']
+Scores: [0.9864987134933472]
+Labels: ['Diabetes type 1']
+Scores: [0.0005125361494719982]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03432110324501991]
+Labels: ['Mental Health']
+Scores: [0.0003778487734962255]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04311826825141907]
+Labels: ['Cancer']
+Scores: [0.0016011249972507358]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39708996
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'United Kingdom', 'Female', 'Male', 'Exercise', 'Middle Aged', 'Prospective Studies', 'Multimorbidity', 'Diabetes Mellitus, Type 2', 'Aged', 'Cardiovascular Diseases', 'Biological Specimen Banks', 'Coronary Disease', 'Genetic Predisposition to Disease', 'Stroke', 'Adult', 'UK Biobank']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01297643780708313]
+Labels: ['Diabetes']
+Scores: [0.03244873136281967]
+Labels: ['Diabetes type 2']
+Scores: [0.019992679357528687]
+Labels: ['Diabetes type 1']
+Scores: [0.012863106094300747]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026944100856781006]
+Labels: ['Mental Health']
+Scores: [0.0014563504373654723]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9750838279724121]
+Labels: ['Cancer']
+Scores: [0.021930934861302376]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39737893
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Male', 'Female', 'Nutrition Surveys', 'Middle Aged', 'Genome-Wide Association Study', 'Arthritis, Rheumatoid', 'Adult', 'Arthritis', 'Prevalence', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Aged', 'Genetic Predisposition to Disease', 'Logistic Models', 'Polymorphism, Single Nucleotide']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05924351513385773]
+Labels: ['Diabetes']
+Scores: [0.7753501534461975]
+Labels: ['Diabetes type 2']
+Scores: [0.0020066131837666035]
+Labels: ['Diabetes type 1']
+Scores: [0.8239789009094238]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7016099095344543]
+Labels: ['Mental Health']
+Scores: [0.005279374774545431]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8923247456550598]
+Labels: ['Cancer']
+Scores: [0.008910901844501495]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 3], [1, 3]]
+---------------------------------
+---------------------------------
+PMID: 39737643
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Tilapia', 'Rats', 'Skin', 'Wound Healing', 'Diabetes Mellitus, Experimental', 'Diabetes Mellitus, Type 1', 'Male']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02894241362810135]
+Labels: ['Diabetes']
+Scores: [0.9494507908821106]
+Labels: ['Diabetes type 2']
+Scores: [0.0017360624624416232]
+Labels: ['Diabetes type 1']
+Scores: [0.9556418061256409]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004135145805776119]
+Labels: ['Mental Health']
+Scores: [0.0005843385006301105]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007977389730513096]
+Labels: ['Cancer']
+Scores: [0.003318064147606492]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736868
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Hypoglycemia', 'Child', 'Female', 'Parents', 'Adolescent', 'Fear', 'Cross-Over Studies', 'Adult', 'Sleep', 'Middle Aged', 'Insulin Infusion Systems', 'Blood Glucose Self-Monitoring', 'Insulin', 'Blood Glucose', 'Hypoglycemic Agents']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05331195145845413]
+Labels: ['Diabetes']
+Scores: [0.9789280295372009]
+Labels: ['Diabetes type 2']
+Scores: [0.0004706930194515735]
+Labels: ['Diabetes type 1']
+Scores: [0.9746087193489075]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0014945734292268753]
+Labels: ['Mental Health']
+Scores: [0.00447902362793684]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004276876803487539]
+Labels: ['Cancer']
+Scores: [0.0026713809929788113]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736865
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Ultrasonography', 'Aged', 'Middle Aged', 'Bone Density', 'Diabetes Mellitus, Type 2', 'Tibia', 'Absorptiometry, Photon', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Cortical Bone', 'Elasticity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02572569064795971]
+Labels: ['Diabetes']
+Scores: [0.9394576549530029]
+Labels: ['Diabetes type 2']
+Scores: [0.3734446167945862]
+Labels: ['Diabetes type 1']
+Scores: [0.06655598431825638]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008114153519272804]
+Labels: ['Mental Health']
+Scores: [0.0008937150123529136]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9807366728782654]
+Labels: ['Cancer']
+Scores: [0.003808402456343174]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39735417
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Islets of Langerhans Transplantation', 'Immunomodulating Agents', 'Immunologic Factors', 'Animals', 'Antibodies, Monoclonal, Humanized']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05347580835223198]
+Labels: ['Diabetes']
+Scores: [0.9961219429969788]
+Labels: ['Diabetes type 2']
+Scores: [0.016665026545524597]
+Labels: ['Diabetes type 1']
+Scores: [0.9882599115371704]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005710724741220474]
+Labels: ['Mental Health']
+Scores: [0.0022671499755233526]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013590588234364986]
+Labels: ['Cancer']
+Scores: [0.0020114483777433634]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733989
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Hypoglycemia', 'Male', 'Adult', 'Female', 'Blood Glucose', 'Hyperglycemia', 'Exercise', 'Child', 'Young Adult', 'Cohort Studies', 'Hypoglycemic Agents', 'Middle Aged', 'Time Factors', 'Insulin', 'Blood Glucose Self-Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02638521045446396]
+Labels: ['Diabetes']
+Scores: [0.9866357445716858]
+Labels: ['Diabetes type 2']
+Scores: [0.0026162839494645596]
+Labels: ['Diabetes type 1']
+Scores: [0.9233134388923645]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04847931116819382]
+Labels: ['Mental Health']
+Scores: [0.0003106239892076701]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03659994527697563]
+Labels: ['Cancer']
+Scores: [0.00033103994792327285]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733115
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin', 'Glucocorticoids', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Glucose', 'Blood Glucose', 'Models, Biological']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05471254885196686]
+Labels: ['Diabetes']
+Scores: [0.9696492552757263]
+Labels: ['Diabetes type 2']
+Scores: [0.3120260536670685]
+Labels: ['Diabetes type 1']
+Scores: [0.4604431688785553]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009449039585888386]
+Labels: ['Mental Health']
+Scores: [0.0012434057425707579]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04193322733044624]
+Labels: ['Cancer']
+Scores: [0.00451012933626771]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39732907
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Hypoglycemia', 'Diabetes Mellitus, Type 1', 'Child', 'Blood Glucose', 'Forecasting', 'Algorithms', 'Reinforcement, Psychology']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013612031005322933]
+Labels: ['Diabetes']
+Scores: [0.9665336608886719]
+Labels: ['Diabetes type 2']
+Scores: [0.005561480764299631]
+Labels: ['Diabetes type 1']
+Scores: [0.02604714408516884]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0010079354979097843]
+Labels: ['Mental Health']
+Scores: [0.0005078474059700966]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02537529543042183]
+Labels: ['Cancer']
+Scores: [0.00046972648124210536]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732545
+Predictions: ['Mental Health', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Male', 'Female', 'Patient Education as Topic', 'Glycemic Control', 'Transition to Adult Care', 'Self Care', 'Emotions', 'Mental Health', 'Feeding and Eating Disorders']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024398162961006165]
+Labels: ['Diabetes']
+Scores: [0.9774527549743652]
+Labels: ['Diabetes type 2']
+Scores: [0.0012218962656334043]
+Labels: ['Diabetes type 1']
+Scores: [0.9753512144088745]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011761275120079517]
+Labels: ['Mental Health']
+Scores: [0.0060423268005251884]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01077811885625124]
+Labels: ['Cancer']
+Scores: [0.00040632940363138914]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': True, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39731141
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Adolescent', 'Male', 'Child', 'Female', 'Cross-Sectional Studies', 'Ethiopia', 'Diabetes Mellitus, Type 1', 'Prevalence', 'Mental Disorders', 'Risk Factors', 'Follow-Up Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020893631502985954]
+Labels: ['Diabetes']
+Scores: [0.8504846692085266]
+Labels: ['Diabetes type 2']
+Scores: [0.0009610028937458992]
+Labels: ['Diabetes type 1']
+Scores: [0.9622730016708374]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0029087408911436796]
+Labels: ['Mental Health']
+Scores: [0.5013346672058105]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009921840392053127]
+Labels: ['Cancer']
+Scores: [0.10657001286745071]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730838
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Diabetes Mellitus, Type 1', 'Genetic Predisposition to Disease', 'Genetic Risk Score', 'Genome, Human', 'Genome-Wide Association Study', 'Genotype', 'Polymorphism, Single Nucleotide', 'Whole Genome Sequencing', 'Racial Groups']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021016329526901245]
+Labels: ['Diabetes']
+Scores: [0.941155731678009]
+Labels: ['Diabetes type 2']
+Scores: [0.001695543760433793]
+Labels: ['Diabetes type 1']
+Scores: [0.8826285004615784]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022233594208955765]
+Labels: ['Mental Health']
+Scores: [0.0031403156463056803]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009346658363938332]
+Labels: ['Cancer']
+Scores: [0.0025886523071676493]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39728423
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Lupus Erythematosus, Systemic', 'Diabetes Mellitus, Type 1', 'Proteinuria', 'Nephrotic Syndrome', 'Podocytes']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05657213553786278]
+Labels: ['Diabetes']
+Scores: [0.9298559427261353]
+Labels: ['Diabetes type 2']
+Scores: [0.0017986752791330218]
+Labels: ['Diabetes type 1']
+Scores: [0.9247766733169556]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13500811159610748]
+Labels: ['Mental Health']
+Scores: [0.015460274182260036]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018587184604257345]
+Labels: ['Cancer']
+Scores: [0.005158338695764542]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39727851
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Erythrocytes', 'Male', 'Female', 'Adult', 'Case-Control Studies', 'Biomechanical Phenomena', 'Biomarkers', 'Middle Aged', 'Microscopy, Atomic Force']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027913030236959457]
+Labels: ['Diabetes']
+Scores: [0.9780040383338928]
+Labels: ['Diabetes type 2']
+Scores: [0.003256160067394376]
+Labels: ['Diabetes type 1']
+Scores: [0.8942151069641113]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02090827189385891]
+Labels: ['Mental Health']
+Scores: [0.0006522267358377576]
+Labels: ['Cardiovascular diseases']
+Scores: [0.655120849609375]
+Labels: ['Cancer']
+Scores: [0.0010686605237424374]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39727210
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Autonomic Nervous System', 'Autonomic Nervous System Diseases', 'Biomarkers', 'Cardiovascular Diseases', 'Cardiovascular System', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 1', 'Diabetic Neuropathies', 'Heart Rate', 'Inflammation', 'Inflammation Mediators', 'Receptors, Urokinase Plasminogen Activator']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026249738410115242]
+Labels: ['Diabetes']
+Scores: [0.9964026808738708]
+Labels: ['Diabetes type 2']
+Scores: [0.000387349515222013]
+Labels: ['Diabetes type 1']
+Scores: [0.9950025081634521]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0144485579803586]
+Labels: ['Mental Health']
+Scores: [0.00033453895593993366]
+Labels: ['Cardiovascular diseases']
+Scores: [0.994053304195404]
+Labels: ['Cancer']
+Scores: [0.0005744043155573308]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39726058
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Aged', 'Immune Checkpoint Inhibitors', 'Nivolumab', 'Diabetes Mellitus, Type 1', 'Insulin', 'Adenocarcinoma', 'Hypoglycemic Agents', 'Antineoplastic Agents, Immunological']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06612968444824219]
+Labels: ['Diabetes']
+Scores: [0.761797308921814]
+Labels: ['Diabetes type 2']
+Scores: [0.171422079205513]
+Labels: ['Diabetes type 1']
+Scores: [0.0642600730061531]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01098376139998436]
+Labels: ['Mental Health']
+Scores: [0.0011490520555526018]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10739920288324356]
+Labels: ['Cancer']
+Scores: [0.0022572437301278114]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725378
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice', 'Male', 'Schistosomiasis mansoni', 'Diabetes Mellitus, Type 1', 'Pancreas', 'Diabetes Mellitus, Experimental', 'Blood Glucose', 'Schistosoma mansoni', 'Islets of Langerhans', 'Acute Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.016479307785630226]
+Labels: ['Diabetes']
+Scores: [0.9424952268600464]
+Labels: ['Diabetes type 2']
+Scores: [0.007196113932877779]
+Labels: ['Diabetes type 1']
+Scores: [0.8693068027496338]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03686019033193588]
+Labels: ['Mental Health']
+Scores: [0.0026279219891875982]
+Labels: ['Cardiovascular diseases']
+Scores: [0.026102406904101372]
+Labels: ['Cancer']
+Scores: [0.003673451952636242]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39724143
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Receptors, KIR', 'Genetic Predisposition to Disease', 'Histocompatibility Antigens Class II', 'Killer Cells, Natural', 'Case-Control Studies', 'Autoimmunity', 'T-Lymphocytes', 'Male', 'Female']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009936229325830936]
+Labels: ['Diabetes']
+Scores: [0.9910882711410522]
+Labels: ['Diabetes type 2']
+Scores: [0.0009482605964876711]
+Labels: ['Diabetes type 1']
+Scores: [0.9939264059066772]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005458884872496128]
+Labels: ['Mental Health']
+Scores: [0.0008478444069623947]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006119553581811488]
+Labels: ['Cancer']
+Scores: [0.000971264555118978]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720308
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Sri Lanka', 'Female', 'Male', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Age of Onset', 'Retrospective Studies', 'Prevalence', 'Developing Countries', 'Child', 'Adult', 'Glycated Hemoglobin', 'Diabetic Ketoacidosis']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04866134375333786]
+Labels: ['Diabetes']
+Scores: [0.9661880135536194]
+Labels: ['Diabetes type 2']
+Scores: [0.1207936480641365]
+Labels: ['Diabetes type 1']
+Scores: [0.07722771912813187]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001752649899572134]
+Labels: ['Mental Health']
+Scores: [0.0022720596753060818]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00667481729760766]
+Labels: ['Cancer']
+Scores: [0.0003123580536339432]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720253
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Osteoporosis', 'Adaptor Proteins, Signal Transducing', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Animals', 'Genetic Markers', 'Wnt Signaling Pathway', 'Bone Morphogenetic Proteins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030227579176425934]
+Labels: ['Diabetes']
+Scores: [0.1698308140039444]
+Labels: ['Diabetes type 2']
+Scores: [0.02871069125831127]
+Labels: ['Diabetes type 1']
+Scores: [0.021052023395895958]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005469880416058004]
+Labels: ['Mental Health']
+Scores: [0.000370245921658352]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012056862469762564]
+Labels: ['Cancer']
+Scores: [0.0010869267862290144]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719890
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Glucagon', 'Animals', 'Glucose', 'Peptides', 'Hydrogels', 'Diabetes Mellitus, Experimental', 'Blood Glucose', 'Mice', 'Boronic Acids', 'Diabetes Mellitus, Type 1', 'Male', 'Drug Delivery Systems']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013908945955336094]
+Labels: ['Diabetes']
+Scores: [0.9369082450866699]
+Labels: ['Diabetes type 2']
+Scores: [0.0035514528863132]
+Labels: ['Diabetes type 1']
+Scores: [0.6429948210716248]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009248183108866215]
+Labels: ['Mental Health']
+Scores: [0.0008078735554590821]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10310562700033188]
+Labels: ['Cancer']
+Scores: [0.0006892585079185665]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718005
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Retrospective Studies', 'Hypoglycemia', 'Adult', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Middle Aged', 'Risk Assessment', 'Glycemic Control', 'Glycated Hemoglobin', 'Adolescent', 'Young Adult', 'Time Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03308636322617531]
+Labels: ['Diabetes']
+Scores: [0.9975287318229675]
+Labels: ['Diabetes type 2']
+Scores: [0.0010883776703849435]
+Labels: ['Diabetes type 1']
+Scores: [0.9961252212524414]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02079920843243599]
+Labels: ['Mental Health']
+Scores: [0.00042534247040748596]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11594614386558533]
+Labels: ['Cancer']
+Scores: [0.00036128118517808616]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Randomized Controlled Trials as Topic', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Exercise', 'Health Behavior', 'Diabetes Mellitus, Type 1', 'Female', 'Adult', 'Glycated Hemoglobin', 'Pregnancy', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030719248577952385]
+Labels: ['Diabetes']
+Scores: [0.12941865622997284]
+Labels: ['Diabetes type 2']
+Scores: [0.042886149138212204]
+Labels: ['Diabetes type 1']
+Scores: [0.03422033041715622]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004544008523225784]
+Labels: ['Mental Health']
+Scores: [0.000563687935937196]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02976047806441784]
+Labels: ['Cancer']
+Scores: [0.0006071923999115825]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715178
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Telemedicine', 'Child', 'Quality of Life', 'Rural Population', 'Child, Preschool', 'Parents', 'Mentoring', 'Occupational Therapy', 'Double-Blind Method', 'Pilot Projects', 'Glycated Hemoglobin', 'Self Efficacy', 'Adult', 'Parenting']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.035753555595874786]
+Labels: ['Diabetes']
+Scores: [0.7443914413452148]
+Labels: ['Diabetes type 2']
+Scores: [0.008493599481880665]
+Labels: ['Diabetes type 1']
+Scores: [0.6902241706848145]
+Labels: ['Chronic respiratory disease']
+Scores: [0.033280372619628906]
+Labels: ['Mental Health']
+Scores: [0.0005645192577503622]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006231056060642004]
+Labels: ['Cancer']
+Scores: [0.001977976644411683]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714936
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Aged', 'Male', 'Insulin Infusion Systems', 'Insulin', 'Cross-Over Studies', 'Aged, 80 and over', 'Hypoglycemic Agents', 'Blood Glucose', 'Hypoglycemia', 'Glycated Hemoglobin', 'Blood Glucose Self-Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04271935299038887]
+Labels: ['Diabetes']
+Scores: [0.9964851140975952]
+Labels: ['Diabetes type 2']
+Scores: [0.00047458879998885095]
+Labels: ['Diabetes type 1']
+Scores: [0.9913028478622437]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001002900185994804]
+Labels: ['Mental Health']
+Scores: [0.0003244852414354682]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010907084681093693]
+Labels: ['Cancer']
+Scores: [0.0003805659944191575]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710861
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Adolescent', 'Female', 'Diabetes Mellitus, Type 1', 'Male', 'Cross-Sectional Studies', 'Child', 'Lipase', 'India', 'Amylases', 'Biomarkers', 'Young Adult', 'Follow-Up Studies', 'Glycated Hemoglobin', 'Prognosis', 'Adult', 'Exocrine Pancreatic Insufficiency']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09297661483287811]
+Labels: ['Diabetes']
+Scores: [0.9018895030021667]
+Labels: ['Diabetes type 2']
+Scores: [0.002608128823339939]
+Labels: ['Diabetes type 1']
+Scores: [0.9490414261817932]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08530903607606888]
+Labels: ['Mental Health']
+Scores: [0.0016110420692712069]
+Labels: ['Cardiovascular diseases']
+Scores: [0.022554419934749603]
+Labels: ['Cancer']
+Scores: [0.01664027012884617]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709470
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Genetic Predisposition to Disease', 'Diabetic Nephropathies', 'Diabetes Mellitus, Type 1', 'Peptidyl-Dipeptidase A', 'Cardiovascular Diseases', 'Phenotype', 'Genome-Wide Association Study', 'Risk Factors', 'Polymorphism, Genetic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06748407334089279]
+Labels: ['Diabetes']
+Scores: [0.9766190052032471]
+Labels: ['Diabetes type 2']
+Scores: [0.030462639406323433]
+Labels: ['Diabetes type 1']
+Scores: [0.9758126735687256]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029448101297020912]
+Labels: ['Mental Health']
+Scores: [0.01753741316497326]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9852249026298523]
+Labels: ['Cancer']
+Scores: [0.03345339745283127]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39708266
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Rats', 'Muscle, Skeletal', 'Drugs, Chinese Herbal', 'Insulin-Secreting Cells', 'Male', 'Adipose Tissue', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Experimental', 'Rats, Sprague-Dawley']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03979818522930145]
+Labels: ['Diabetes']
+Scores: [0.9891465902328491]
+Labels: ['Diabetes type 2']
+Scores: [0.0008745464729145169]
+Labels: ['Diabetes type 1']
+Scores: [0.9935798048973083]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022711675614118576]
+Labels: ['Mental Health']
+Scores: [0.00044510618317872286]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003938802983611822]
+Labels: ['Cancer']
+Scores: [0.00260334275662899]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707866
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Pilot Projects', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Middle Aged', 'Cognitive Dysfunction', 'Adult', 'Early Diagnosis', 'Aged', 'Retina', 'Visual Field Tests', 'Diabetic Retinopathy', 'Fixation, Ocular', 'Neuropsychological Tests']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024863772094249725]
+Labels: ['Diabetes']
+Scores: [0.9920523762702942]
+Labels: ['Diabetes type 2']
+Scores: [0.0058470419608056545]
+Labels: ['Diabetes type 1']
+Scores: [0.9856829047203064]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0900392234325409]
+Labels: ['Mental Health']
+Scores: [0.15981318056583405]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030201002955436707]
+Labels: ['Cancer']
+Scores: [0.004875966813415289]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707182
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Female', 'Child', 'Metabolomics', 'Adolescent', 'Metabolome', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Biomarkers', 'Metabolic Networks and Pathways', 'Machine Learning']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027043696492910385]
+Labels: ['Diabetes']
+Scores: [0.9960164427757263]
+Labels: ['Diabetes type 2']
+Scores: [0.7067728042602539]
+Labels: ['Diabetes type 1']
+Scores: [0.07636584341526031]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011729572899639606]
+Labels: ['Mental Health']
+Scores: [0.0006284703849814832]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1813541203737259]
+Labels: ['Cancer']
+Scores: [0.0006981201004236937]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39706675
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Retrospective Studies', 'Female', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Adult', 'Aged', 'Diabetes Mellitus, Type 1', 'Blood Glucose', 'Hypoglycemic Agents', 'Risk Factors', 'Assessment of Medication Adherence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02601044438779354]
+Labels: ['Diabetes']
+Scores: [0.9831405282020569]
+Labels: ['Diabetes type 2']
+Scores: [0.9913478493690491]
+Labels: ['Diabetes type 1']
+Scores: [0.0011946926824748516]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001798603916540742]
+Labels: ['Mental Health']
+Scores: [0.0003203884407412261]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01504224818199873]
+Labels: ['Cancer']
+Scores: [0.0003377910179551691]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39706641
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Rats, Wistar', 'Diabetic Neuropathies', 'NF-kappa B', 'Male', 'Diabetes Mellitus, Experimental', 'NF-E2-Related Factor 2', 'Diabetes Mellitus, Type 1', 'Streptozocin', 'Gabapentin', 'Glycation End Products, Advanced', 'Signal Transduction', 'Rats', 'Oxidative Stress', 'Disease Models, Animal']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02144576609134674]
+Labels: ['Diabetes']
+Scores: [0.9889679551124573]
+Labels: ['Diabetes type 2']
+Scores: [0.0019167609279975295]
+Labels: ['Diabetes type 1']
+Scores: [0.9931458830833435]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006122151389718056]
+Labels: ['Mental Health']
+Scores: [0.0014368389965966344]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007400232832878828]
+Labels: ['Cancer']
+Scores: [0.0005142074078321457]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39706517
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Magnetic Resonance Imaging', 'Adult', 'Neuralgia', 'Diabetic Neuropathies', 'Middle Aged', 'Brain', 'Cerebral Cortex']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0220668762922287]
+Labels: ['Diabetes']
+Scores: [0.9946498870849609]
+Labels: ['Diabetes type 2']
+Scores: [0.002632475458085537]
+Labels: ['Diabetes type 1']
+Scores: [0.9923925995826721]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00640034070238471]
+Labels: ['Mental Health']
+Scores: [0.02061714418232441]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011555491015315056]
+Labels: ['Cancer']
+Scores: [0.005202422849833965]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704278
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Female', 'Male', 'Cytokines', 'Diabetes Mellitus, Type 1', 'Child', 'Chemokines', 'Adolescent', 'Sex Factors', 'Disease Progression', 'Child, Preschool', 'Intercellular Signaling Peptides and Proteins', 'Pilot Projects', 'Biomarkers', 'Sex Characteristics', 'Case-Control Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02991940639913082]
+Labels: ['Diabetes']
+Scores: [0.9739071726799011]
+Labels: ['Diabetes type 2']
+Scores: [0.011114178225398064]
+Labels: ['Diabetes type 1']
+Scores: [0.9787866473197937]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023470556363463402]
+Labels: ['Mental Health']
+Scores: [0.0016838707961142063]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07440072298049927]
+Labels: ['Cancer']
+Scores: [0.0035506661515682936]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704171
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'T-Lymphocytes, Regulatory', 'Diabetes Mellitus, Type 1', 'Mice', 'Interleukin-2', 'Disease Models, Animal', 'Interleukin-2 Receptor alpha Subunit', 'Interleukin-1 Receptor-Like 1 Protein', 'Interleukin-33', 'Mice, Inbred NOD', 'Female', 'Signal Transduction', 'CD8-Positive T-Lymphocytes', 'Islets of Langerhans', 'Th1 Cells', 'Interleukin-10', 'Autoimmunity', 'Recombinant Proteins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0180595051497221]
+Labels: ['Diabetes']
+Scores: [0.8756949305534363]
+Labels: ['Diabetes type 2']
+Scores: [0.09071827679872513]
+Labels: ['Diabetes type 1']
+Scores: [0.8289746046066284]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02226213365793228]
+Labels: ['Mental Health']
+Scores: [0.001823858474381268]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003954154904931784]
+Labels: ['Cancer']
+Scores: [0.0024054243694990873]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704022
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Bioengineering', 'Animals', 'Genomics', 'Insulin-Secreting Cells', 'Proteomics', 'Insulin', 'Islets of Langerhans']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04640262946486473]
+Labels: ['Diabetes']
+Scores: [0.988338053226471]
+Labels: ['Diabetes type 2']
+Scores: [0.003699834458529949]
+Labels: ['Diabetes type 1']
+Scores: [0.9822162389755249]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03986923024058342]
+Labels: ['Mental Health']
+Scores: [0.002801258582621813]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00491993548348546]
+Labels: ['Cancer']
+Scores: [0.008288497105240822]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703896
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Receptors, Calcitriol', 'South Africa', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Black People', 'Adult', 'Case-Control Studies', 'Vitamin D', 'Genotype', 'Young Adult', 'Polymorphism, Restriction Fragment Length', 'Polymorphism, Single Nucleotide', 'Genetic Predisposition to Disease', 'Middle Aged', 'Adolescent']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014527875930070877]
+Labels: ['Diabetes']
+Scores: [0.692340612411499]
+Labels: ['Diabetes type 2']
+Scores: [0.1131543517112732]
+Labels: ['Diabetes type 1']
+Scores: [0.8527107834815979]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028496120125055313]
+Labels: ['Mental Health']
+Scores: [0.0026786583475768566]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012074309401214123]
+Labels: ['Cancer']
+Scores: [0.002226707525551319]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39703609
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'COVID-19', 'SARS-CoV-2', 'Acute Kidney Injury', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004951701033860445]
+Labels: ['Diabetes']
+Scores: [0.27300363779067993]
+Labels: ['Diabetes type 2']
+Scores: [0.16237010061740875]
+Labels: ['Diabetes type 1']
+Scores: [0.0442415215075016]
+Labels: ['Chronic respiratory disease']
+Scores: [0.155787855386734]
+Labels: ['Mental Health']
+Scores: [0.0019096683245152235]
+Labels: ['Cardiovascular diseases']
+Scores: [0.018101274967193604]
+Labels: ['Cancer']
+Scores: [0.0038998133968561888]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39702941
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Dendritic Cells', 'Humans', 'Macrophages', 'Immune Tolerance', 'Receptors, Cytoplasmic and Nuclear', 'Mitochondria', 'Male', 'Female', 'Phenotype']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03185577690601349]
+Labels: ['Diabetes']
+Scores: [0.9878380298614502]
+Labels: ['Diabetes type 2']
+Scores: [0.002245495794340968]
+Labels: ['Diabetes type 1']
+Scores: [0.9715413451194763]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026209689676761627]
+Labels: ['Mental Health']
+Scores: [0.0007232228526845574]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006658772937953472]
+Labels: ['Cancer']
+Scores: [0.0019453270360827446]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39701114
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Diabetic Ketoacidosis', 'Adolescent', 'Female', 'Male', 'Child', 'Hypoglycemia', 'Young Adult', 'Insulin', 'Hypoglycemic Agents', 'Insulin Infusion Systems', 'Child, Preschool', 'Blood Glucose', 'Prospective Studies', 'Cohort Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027432212606072426]
+Labels: ['Diabetes']
+Scores: [0.948205292224884]
+Labels: ['Diabetes type 2']
+Scores: [0.00041770123061724007]
+Labels: ['Diabetes type 1']
+Scores: [0.9499257802963257]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015034348471090198]
+Labels: ['Mental Health']
+Scores: [0.0003090796817559749]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05754200369119644]
+Labels: ['Cancer']
+Scores: [0.00035857449984177947]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39699995
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemia', 'Adult', 'Female', 'Male', 'Insulin', 'Middle Aged', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Insulin Infusion Systems', 'Hypoglycemic Agents', 'Retrospective Studies', 'Glycemic Control']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029972996562719345]
+Labels: ['Diabetes']
+Scores: [0.9969981908798218]
+Labels: ['Diabetes type 2']
+Scores: [0.0014578552218154073]
+Labels: ['Diabetes type 1']
+Scores: [0.9866586327552795]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003807581029832363]
+Labels: ['Mental Health']
+Scores: [0.0010174361523240805]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02822086587548256]
+Labels: ['Cancer']
+Scores: [0.0003753222699742764]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39697323
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'MicroRNAs', 'Insulin-Secreting Cells', 'Enterovirus B, Human', 'Coxsackievirus Infections', 'Diabetes Mellitus, Type 1', 'Cell Line', 'Insulin', 'Trophoblasts']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019364487379789352]
+Labels: ['Diabetes']
+Scores: [0.9675519466400146]
+Labels: ['Diabetes type 2']
+Scores: [0.004320557229220867]
+Labels: ['Diabetes type 1']
+Scores: [0.9086182117462158]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08720944821834564]
+Labels: ['Mental Health']
+Scores: [0.004268897231668234]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030405081808567047]
+Labels: ['Cancer']
+Scores: [0.002550908364355564]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696373
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemia', 'Deep Learning']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03402568772435188]
+Labels: ['Diabetes']
+Scores: [0.9904501438140869]
+Labels: ['Diabetes type 2']
+Scores: [0.0012355002108961344]
+Labels: ['Diabetes type 1']
+Scores: [0.9822949767112732]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018842559074983]
+Labels: ['Mental Health']
+Scores: [0.0017574424855411053]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07291841506958008]
+Labels: ['Cancer']
+Scores: [0.033774808049201965]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696094
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Sirolimus', 'Genetic Diseases, X-Linked', 'Diarrhea', 'Immunosuppressive Agents', 'Forkhead Transcription Factors', 'Immune System Diseases', 'Infant', 'Mutation', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16563984751701355]
+Labels: ['Diabetes']
+Scores: [0.027943776920437813]
+Labels: ['Diabetes type 2']
+Scores: [0.008692520670592785]
+Labels: ['Diabetes type 1']
+Scores: [0.005153569858521223]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9268413782119751]
+Labels: ['Mental Health']
+Scores: [0.022388407960534096]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08163151890039444]
+Labels: ['Cancer']
+Scores: [0.032341815531253815]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39692076
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Histamine', 'Female', 'Adult', 'Hot Temperature', 'Middle Aged', 'Diabetic Neuropathies', 'Axons', 'Neural Conduction', 'Reflex', 'Sural Nerve', 'Young Adult', 'ROC Curve', 'Neurologic Examination']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0690518319606781]
+Labels: ['Diabetes']
+Scores: [0.9967319369316101]
+Labels: ['Diabetes type 2']
+Scores: [0.0006314399652183056]
+Labels: ['Diabetes type 1']
+Scores: [0.992911159992218]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03731395676732063]
+Labels: ['Mental Health']
+Scores: [0.0010073838056996465]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01310422271490097]
+Labels: ['Cancer']
+Scores: [0.000408994616009295]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39691822
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'New Zealand', 'Cross-Sectional Studies', 'Adolescent', 'Child', 'Diabetes Mellitus, Type 1', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Hypoglycemic Agents', 'Prevalence', 'Child, Preschool', 'Adult', 'Glycated Hemoglobin', 'Primary Health Care']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03603968024253845]
+Labels: ['Diabetes']
+Scores: [0.9026204347610474]
+Labels: ['Diabetes type 2']
+Scores: [0.11831745505332947]
+Labels: ['Diabetes type 1']
+Scores: [0.07673119008541107]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011614388786256313]
+Labels: ['Mental Health']
+Scores: [0.024010678753256798]
+Labels: ['Cardiovascular diseases']
+Scores: [0.27523231506347656]
+Labels: ['Cancer']
+Scores: [0.0006477528950199485]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39689816
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Diabetes Mellitus, Type 1', 'Female', 'Middle Aged', 'Depression', 'Adult', 'Glycated Hemoglobin', 'Prevalence', 'Sex Factors', 'Surveys and Questionnaires', 'Self-Management']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019675539806485176]
+Labels: ['Diabetes']
+Scores: [0.9883727431297302]
+Labels: ['Diabetes type 2']
+Scores: [0.000910696922801435]
+Labels: ['Diabetes type 1']
+Scores: [0.9958117008209229]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006949314381927252]
+Labels: ['Mental Health']
+Scores: [0.07560636103153229]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010890803299844265]
+Labels: ['Cancer']
+Scores: [0.0022936405148357153]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39689633
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Parents', 'Qualitative Research', 'Child', 'Adolescent', 'Child, Preschool', 'Interviews as Topic', 'Infant', 'Hospitalization', 'Adult', 'Self Care', 'Self-Management', 'Perception', 'Social Support']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027571886777877808]
+Labels: ['Diabetes']
+Scores: [0.9673984050750732]
+Labels: ['Diabetes type 2']
+Scores: [0.0004935986362397671]
+Labels: ['Diabetes type 1']
+Scores: [0.9720089435577393]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028755690902471542]
+Labels: ['Mental Health']
+Scores: [0.0007992915343493223]
+Labels: ['Cardiovascular diseases']
+Scores: [0.16407714784145355]
+Labels: ['Cancer']
+Scores: [0.03561212867498398]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39688288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Middle Aged', 'Male', 'Adult', 'Diabetes Mellitus, Type 2', 'Glycated Hemoglobin', 'Diabetes Mellitus, Type 1', 'Medically Underserved Area', 'California', 'Florida']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02419736608862877]
+Labels: ['Diabetes']
+Scores: [0.9744753837585449]
+Labels: ['Diabetes type 2']
+Scores: [0.22751958668231964]
+Labels: ['Diabetes type 1']
+Scores: [0.06669601052999496]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004191186279058456]
+Labels: ['Mental Health']
+Scores: [0.0003599668270908296]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003747072769328952]
+Labels: ['Cancer']
+Scores: [0.0003786950255744159]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39686350
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Female', 'Spectroscopy, Near-Infrared', 'Blood Glucose', 'Male', 'Middle Aged', 'Prospective Studies', 'Diabetes Mellitus, Type 2', 'Adult', 'Aged', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019454820081591606]
+Labels: ['Diabetes']
+Scores: [0.8035821318626404]
+Labels: ['Diabetes type 2']
+Scores: [0.10899238288402557]
+Labels: ['Diabetes type 1']
+Scores: [0.05577588826417923]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0059827337972819805]
+Labels: ['Mental Health']
+Scores: [0.0002822637907229364]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04017263650894165]
+Labels: ['Cancer']
+Scores: [0.0017526570009067655]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39686207
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Neural Networks, Computer', 'Blood Glucose', 'Internet of Things', 'Deep Learning', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Forecasting']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02165379747748375]
+Labels: ['Diabetes']
+Scores: [0.9851619601249695]
+Labels: ['Diabetes type 2']
+Scores: [0.003797017503529787]
+Labels: ['Diabetes type 1']
+Scores: [0.9793404340744019]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0029666991904377937]
+Labels: ['Mental Health']
+Scores: [0.0007905397797003388]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4526212513446808]
+Labels: ['Cancer']
+Scores: [0.015142945572733879]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683492
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Isomaltose', 'Female', 'Diabetes Mellitus, Type 1', 'Male', 'Middle Aged', 'Cross-Over Studies', 'Adult', 'Exercise', 'Insulin', 'Blood Glucose', 'Insulin Infusion Systems', 'Glucagon', 'Glucagon-Like Peptide 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.035433847457170486]
+Labels: ['Diabetes']
+Scores: [0.9700579047203064]
+Labels: ['Diabetes type 2']
+Scores: [0.0005952315987087786]
+Labels: ['Diabetes type 1']
+Scores: [0.9415885210037231]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007034774404019117]
+Labels: ['Mental Health']
+Scores: [0.00034912454430013895]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015527690760791302]
+Labels: ['Cancer']
+Scores: [0.0010863333009183407]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683465
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Female', 'Humans', 'Diabetes Mellitus, Type 1', 'Dietary Supplements', 'Dipeptidyl-Peptidase IV Inhibitors', 'Insulin-Secreting Cells', 'Latent Autoimmune Diabetes in Adults', 'Vitamin D', 'Vitamin D Deficiency']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021773630753159523]
+Labels: ['Diabetes']
+Scores: [0.9313148260116577]
+Labels: ['Diabetes type 2']
+Scores: [0.055105648934841156]
+Labels: ['Diabetes type 1']
+Scores: [0.011865743435919285]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004801691044121981]
+Labels: ['Mental Health']
+Scores: [0.0025326996110379696]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009120023809373379]
+Labels: ['Cancer']
+Scores: [0.0017089807661250234]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39682744
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Extracellular Vesicles', 'Humans', 'Insulin-Secreting Cells', 'Cell Communication', 'Animals', 'Islets of Langerhans', 'Cellular Microenvironment']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011214242316782475]
+Labels: ['Diabetes']
+Scores: [0.9885354042053223]
+Labels: ['Diabetes type 2']
+Scores: [0.0010217576054856181]
+Labels: ['Diabetes type 1']
+Scores: [0.9837154746055603]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007188557647168636]
+Labels: ['Mental Health']
+Scores: [0.007451892830431461]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004869798664003611]
+Labels: ['Cancer']
+Scores: [0.002610456198453903]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39682729
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Intestinal Mucosa', 'Inflammatory Bowel Diseases', 'Celiac Disease', 'Protein Tyrosine Phosphatases', 'Animals', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02703811414539814]
+Labels: ['Diabetes']
+Scores: [0.05552537739276886]
+Labels: ['Diabetes type 2']
+Scores: [0.06045178696513176]
+Labels: ['Diabetes type 1']
+Scores: [0.07904233783483505]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005868369247764349]
+Labels: ['Mental Health']
+Scores: [0.0012487038038671017]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018449603812769055]
+Labels: ['Cancer']
+Scores: [0.010330275632441044]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39682726
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Organoids', 'Alzheimer Disease', 'Herpesvirus 1, Human', 'Brain', 'Herpes Simplex', 'Islets of Langerhans', 'Autoimmune Diseases', 'Stem Cells', 'Transcriptome', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01376128476113081]
+Labels: ['Diabetes']
+Scores: [0.06633874773979187]
+Labels: ['Diabetes type 2']
+Scores: [0.00807996653020382]
+Labels: ['Diabetes type 1']
+Scores: [0.21023570001125336]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023834483698010445]
+Labels: ['Mental Health']
+Scores: [0.004726302810013294]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006766673177480698]
+Labels: ['Cancer']
+Scores: [0.0030172383412718773]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680874
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Aged', 'Diabetes Mellitus, Type 1', 'Caregivers', 'Male', 'Pilot Projects', 'Female', 'Feasibility Studies', 'Quality of Life', 'Middle Aged', 'Self-Management', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.038118768483400345]
+Labels: ['Diabetes']
+Scores: [0.8153576254844666]
+Labels: ['Diabetes type 2']
+Scores: [0.047578632831573486]
+Labels: ['Diabetes type 1']
+Scores: [0.047876447439193726]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012186292558908463]
+Labels: ['Mental Health']
+Scores: [0.0032198072876781225]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013146677054464817]
+Labels: ['Cancer']
+Scores: [0.001302050077356398]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39680256
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Glycemic Control', 'Child', 'Diabetes Mellitus, Type 1', 'Parents', 'Child, Preschool', 'Hypoglycemia', 'Stress, Psychological', 'Infant', 'Blood Glucose', 'Parent-Child Relations', 'Fear']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02542053908109665]
+Labels: ['Diabetes']
+Scores: [0.8129949569702148]
+Labels: ['Diabetes type 2']
+Scores: [0.006038882303982973]
+Labels: ['Diabetes type 1']
+Scores: [0.644519567489624]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00832474697381258]
+Labels: ['Mental Health']
+Scores: [0.01545677799731493]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014835376292467117]
+Labels: ['Cancer']
+Scores: [0.044164374470710754]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39679900
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Adult', 'Obesity', 'Diabetes Complications', 'Insulin Resistance', 'Young Adult', 'Cardiovascular Diseases', 'Obesity, Metabolically Benign', 'Body Mass Index', 'Follow-Up Studies', 'Adolescent', 'Diabetic Neuropathies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029098287224769592]
+Labels: ['Diabetes']
+Scores: [0.9739562273025513]
+Labels: ['Diabetes type 2']
+Scores: [0.000544940703548491]
+Labels: ['Diabetes type 1']
+Scores: [0.9787317514419556]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0026260504964739084]
+Labels: ['Mental Health']
+Scores: [0.000463780335849151]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8144494295120239]
+Labels: ['Cancer']
+Scores: [0.004490195773541927]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39678192
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Biomarkers', 'Female', 'Lipase', 'Adult', 'Amylases', 'Immunotherapy', 'Trypsin', 'Young Adult', 'Pancreas, Exocrine', 'Adolescent', 'Granulocyte Colony-Stimulating Factor', 'Treatment Outcome', 'Middle Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07568292319774628]
+Labels: ['Diabetes']
+Scores: [0.9942391514778137]
+Labels: ['Diabetes type 2']
+Scores: [0.005824111867696047]
+Labels: ['Diabetes type 1']
+Scores: [0.9966601133346558]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05102769657969475]
+Labels: ['Mental Health']
+Scores: [0.0006189874256961048]
+Labels: ['Cardiovascular diseases']
+Scores: [0.033895231783390045]
+Labels: ['Cancer']
+Scores: [0.006992288399487734]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39676645
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Prospective Studies', 'Adult', 'Systole', 'Diastole', 'Ultrasonography, Prenatal', 'Fetal Heart', 'Diabetes Mellitus, Type 1', 'Echocardiography, Doppler', 'Young Adult', 'Ventricular Function, Left', 'Myocardial Contraction', 'Pregnancy in Diabetics', 'Stroke Volume', 'Diabetes Mellitus, Type 2', 'Heart Ventricles']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07615470141172409]
+Labels: ['Diabetes']
+Scores: [0.9843582510948181]
+Labels: ['Diabetes type 2']
+Scores: [0.47527897357940674]
+Labels: ['Diabetes type 1']
+Scores: [0.2307058572769165]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11446168273687363]
+Labels: ['Mental Health']
+Scores: [0.0056265112943947315]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9975849986076355]
+Labels: ['Cancer']
+Scores: [0.07376192510128021]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39676515
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Health Knowledge, Attitudes, Practice', 'Female', 'Male', 'School Teachers', 'Morocco', 'Adult', 'Surveys and Questionnaires', 'Child', 'Schools', 'Health Education', 'School Health Services']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011135505512356758]
+Labels: ['Diabetes']
+Scores: [0.9089953899383545]
+Labels: ['Diabetes type 2']
+Scores: [0.001535040675662458]
+Labels: ['Diabetes type 1']
+Scores: [0.9064497351646423]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06557586789131165]
+Labels: ['Mental Health']
+Scores: [0.004709989298135042]
+Labels: ['Cardiovascular diseases']
+Scores: [0.099408358335495]
+Labels: ['Cancer']
+Scores: [0.01732136309146881]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39675543
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Pyroptosis', 'Diabetes Mellitus, Type 1', 'Mice', 'Arsenic', 'Caspase 1', 'NLR Family, Pyrin Domain-Containing 3 Protein', 'Diabetes Mellitus, Experimental', 'Male', 'Insulin', 'Reactive Oxygen Species', 'Blood Glucose', 'Streptozocin', 'Phosphate-Binding Proteins', 'Disease Progression', 'Interleukin-18', 'Interleukin-1beta', 'Pancreas', 'Signal Transduction', 'Mice, Inbred C57BL', 'Insulin Resistance', 'Gasdermins']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026442106813192368]
+Labels: ['Diabetes']
+Scores: [0.9890461564064026]
+Labels: ['Diabetes type 2']
+Scores: [0.011776423081755638]
+Labels: ['Diabetes type 1']
+Scores: [0.9826632738113403]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0980726107954979]
+Labels: ['Mental Health']
+Scores: [0.0021229074336588383]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5755722522735596]
+Labels: ['Cancer']
+Scores: [0.001729051349684596]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39675483
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Insulin Infusion Systems', 'Adolescent', 'Parents', 'Insulin', 'Blood Glucose Self-Monitoring', 'Child', 'Hypoglycemic Agents', 'Patient Acceptance of Health Care', 'Surveys and Questionnaires', 'Blood Glucose', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024473322555422783]
+Labels: ['Diabetes']
+Scores: [0.9798974990844727]
+Labels: ['Diabetes type 2']
+Scores: [0.0006857807748019695]
+Labels: ['Diabetes type 1']
+Scores: [0.9199234843254089]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00457342155277729]
+Labels: ['Mental Health']
+Scores: [0.00039500746061094105]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08588238805532455]
+Labels: ['Cancer']
+Scores: [0.0003599590854719281]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39675356
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Methylenetetrahydrofolate Reductase (NADPH2)', 'Female', 'Male', 'Adolescent', 'Child', 'Interleukin-4', 'Polymorphism, Genetic', 'Diabetic Neuropathies', 'Diabetes Mellitus, Type 1', 'Genotype', 'Genetic Predisposition to Disease', 'Neural Conduction']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03701041266322136]
+Labels: ['Diabetes']
+Scores: [0.9665998220443726]
+Labels: ['Diabetes type 2']
+Scores: [0.20104578137397766]
+Labels: ['Diabetes type 1']
+Scores: [0.08302154392004013]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0516839437186718]
+Labels: ['Mental Health']
+Scores: [0.005876242183148861]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025401758030056953]
+Labels: ['Cancer']
+Scores: [0.003914259374141693]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39673446
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Cost-Benefit Analysis', 'Insulin Infusion Systems', 'Blood Glucose Self-Monitoring', 'Insulin', 'Blood Glucose', 'Hypoglycemic Agents', 'Models, Economic', 'Glycated Hemoglobin', 'Quality-Adjusted Life Years', 'Randomized Controlled Trials as Topic', 'Algorithms']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02614571899175644]
+Labels: ['Diabetes']
+Scores: [0.9779395461082458]
+Labels: ['Diabetes type 2']
+Scores: [0.0003968204546254128]
+Labels: ['Diabetes type 1']
+Scores: [0.9897487759590149]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016704672016203403]
+Labels: ['Mental Health']
+Scores: [0.00029465433908626437]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013631160371005535]
+Labels: ['Cancer']
+Scores: [0.00044973695185035467]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39673230
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Cardiovascular Diseases', 'Australia', 'Risk Assessment', 'Male', 'Female', 'Adult', 'Middle Aged', 'Heart Disease Risk Factors', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02556419000029564]
+Labels: ['Diabetes']
+Scores: [0.9708986282348633]
+Labels: ['Diabetes type 2']
+Scores: [0.0014094290090724826]
+Labels: ['Diabetes type 1']
+Scores: [0.9726595282554626]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009967358782887459]
+Labels: ['Mental Health']
+Scores: [0.00044587755110114813]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9987202882766724]
+Labels: ['Cancer']
+Scores: [0.005324221216142178]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39670552
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Feasibility Studies', 'Insulin', 'Child', 'Female', 'Male', 'Needlestick Injuries', 'Injections, Subcutaneous', 'Needles', 'Adolescent', 'Diabetes Mellitus, Type 1', 'Child, Preschool', 'Hypoglycemic Agents', 'Young Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.052590008825063705]
+Labels: ['Diabetes']
+Scores: [0.06811442226171494]
+Labels: ['Diabetes type 2']
+Scores: [0.0567130520939827]
+Labels: ['Diabetes type 1']
+Scores: [0.05227445065975189]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4916655421257019]
+Labels: ['Mental Health']
+Scores: [0.0005684433854185045]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05056888237595558]
+Labels: ['Cancer']
+Scores: [0.006212642416357994]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39667114
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Child', 'Prospective Studies', 'Pneumococcal Vaccines', 'Seroconversion', 'Pilot Projects', 'Antibodies, Bacterial', 'Child, Preschool', 'Immunoglobulin G', 'Adolescent', 'Vaccination', 'Pneumococcal Infections', 'Glycated Hemoglobin', 'Streptococcus pneumoniae']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022831669077277184]
+Labels: ['Diabetes']
+Scores: [0.9931774735450745]
+Labels: ['Diabetes type 2']
+Scores: [0.012429800815880299]
+Labels: ['Diabetes type 1']
+Scores: [0.989069938659668]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2970879077911377]
+Labels: ['Mental Health']
+Scores: [0.0006865026662126184]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002313291886821389]
+Labels: ['Cancer']
+Scores: [0.0031096781603991985]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39666416
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Diabetes Mellitus', 'Quality of Life', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01888580247759819]
+Labels: ['Diabetes']
+Scores: [0.995924711227417]
+Labels: ['Diabetes type 2']
+Scores: [0.756426990032196]
+Labels: ['Diabetes type 1']
+Scores: [0.022629529237747192]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0028942269273102283]
+Labels: ['Mental Health']
+Scores: [0.0005937920068390667]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06139292195439339]
+Labels: ['Cancer']
+Scores: [0.00044659822015091777]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39665438
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice', 'Insulin-Secreting Cells', 'Diabetes Mellitus, Experimental', 'Cell Survival', 'Anti-Inflammatory Agents', 'Polytetrafluoroethylene', 'Diabetes Mellitus, Type 1', 'Male', 'Macrophages', 'Membranes, Artificial', 'Mice, Inbred C57BL', 'Cell Encapsulation', 'Islets of Langerhans Transplantation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02016150951385498]
+Labels: ['Diabetes']
+Scores: [0.949675440788269]
+Labels: ['Diabetes type 2']
+Scores: [0.23503687977790833]
+Labels: ['Diabetes type 1']
+Scores: [0.840049147605896]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002626276109367609]
+Labels: ['Mental Health']
+Scores: [0.0007341234013438225]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005352273117750883]
+Labels: ['Cancer']
+Scores: [0.0008463964331895113]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39664107
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Diabetes Mellitus, Type 1', 'Adult', 'Middle Aged', 'Diabetic Neuropathies', 'Female', 'Magnetic Resonance Imaging', 'Olfactory Bulb', 'Aged', 'Young Adult', 'Adolescent', 'Case-Control Studies', 'Smell']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.053397759795188904]
+Labels: ['Diabetes']
+Scores: [0.9646106362342834]
+Labels: ['Diabetes type 2']
+Scores: [0.00038214665255509317]
+Labels: ['Diabetes type 1']
+Scores: [0.9684973359107971]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6635859608650208]
+Labels: ['Mental Health']
+Scores: [0.022608395665884018]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08263961225748062]
+Labels: ['Cancer']
+Scores: [0.0003847567713819444]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39663236
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Quality of Life', 'Psychometrics', 'Sweden', 'Child', 'Male', 'Female', 'Surveys and Questionnaires', 'Chronic Disease', 'Adolescent', 'Reproducibility of Results', 'Diabetes Mellitus, Type 1', 'Translations', 'Asthma', 'Parents', 'Factor Analysis, Statistical', 'Child, Preschool']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04004594683647156]
+Labels: ['Diabetes']
+Scores: [0.038695335388183594]
+Labels: ['Diabetes type 2']
+Scores: [0.00612835306674242]
+Labels: ['Diabetes type 1']
+Scores: [0.005132978782057762]
+Labels: ['Chronic respiratory disease']
+Scores: [0.043468594551086426]
+Labels: ['Mental Health']
+Scores: [0.12527307868003845]
+Labels: ['Cardiovascular diseases']
+Scores: [0.027532830834388733]
+Labels: ['Cancer']
+Scores: [0.014150402508676052]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661959
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Adolescent', 'Male', 'Belgium', 'Longitudinal Studies', 'Young Adult', 'Adult', 'Self Concept']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03229164332151413]
+Labels: ['Diabetes']
+Scores: [0.9919341206550598]
+Labels: ['Diabetes type 2']
+Scores: [0.015259172767400742]
+Labels: ['Diabetes type 1']
+Scores: [0.9910749197006226]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021730341017246246]
+Labels: ['Mental Health']
+Scores: [0.013559127226471901]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004678360186517239]
+Labels: ['Cancer']
+Scores: [0.0008994042291305959]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39658973
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'COVID-19', 'Male', 'Female', 'Middle Aged', 'Retrospective Studies', 'Pakistan', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Adult', 'SARS-CoV-2', 'Survival Rate', 'Incidence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013454769738018513]
+Labels: ['Diabetes']
+Scores: [0.9972618222236633]
+Labels: ['Diabetes type 2']
+Scores: [0.7341802716255188]
+Labels: ['Diabetes type 1']
+Scores: [0.3780011534690857]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0513446070253849]
+Labels: ['Mental Health']
+Scores: [0.0011770067503675818]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03602512180805206]
+Labels: ['Cancer']
+Scores: [0.001188674126751721]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39658119
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Diabetes Mellitus, Type 1', 'Child', 'Male', 'Female', 'Retrospective Studies', 'Adolescent', 'Saudi Arabia', 'Child, Preschool', 'Incidence', 'Polyuria', 'Abdominal Pain', 'Polydipsia', 'Vomiting', 'Age Factors', 'Severity of Illness Index']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02705240249633789]
+Labels: ['Diabetes']
+Scores: [0.9945701360702515]
+Labels: ['Diabetes type 2']
+Scores: [0.013135217130184174]
+Labels: ['Diabetes type 1']
+Scores: [0.965629518032074]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010594465769827366]
+Labels: ['Mental Health']
+Scores: [0.0007334162946790457]
+Labels: ['Cardiovascular diseases']
+Scores: [0.15301357209682465]
+Labels: ['Cancer']
+Scores: [0.0018829097971320152]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39658013
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Female', 'Male', 'Self Efficacy', 'Quality of Life', 'Jordan', 'Glycemic Control', 'Empowerment', 'Glycated Hemoglobin', 'Child']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03538712486624718]
+Labels: ['Diabetes']
+Scores: [0.9295526742935181]
+Labels: ['Diabetes type 2']
+Scores: [0.0008200114825740457]
+Labels: ['Diabetes type 1']
+Scores: [0.6671222448348999]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005923561984673142]
+Labels: ['Mental Health']
+Scores: [0.009291775524616241]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003281374927610159]
+Labels: ['Cancer']
+Scores: [0.004714065231382847]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39653802
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Exercise', 'Insulin Infusion Systems', 'Insulin', 'Adolescent', 'Child', 'Hypoglycemic Agents', 'Europe', 'Blood Glucose', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03390658646821976]
+Labels: ['Diabetes']
+Scores: [0.9815114736557007]
+Labels: ['Diabetes type 2']
+Scores: [0.0030684745870530605]
+Labels: ['Diabetes type 1']
+Scores: [0.9627530574798584]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011485561728477478]
+Labels: ['Mental Health']
+Scores: [0.00045766873518005013]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09099416434764862]
+Labels: ['Cancer']
+Scores: [0.05899402126669884]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39652325
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'COVID-19', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Male', 'Republic of Korea', 'Adolescent', 'Female', 'Child', 'Incidence', 'Child, Preschool', 'Young Adult', 'Cohort Studies', 'Pandemics', 'SARS-CoV-2']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009712266735732555]
+Labels: ['Diabetes']
+Scores: [0.9875868558883667]
+Labels: ['Diabetes type 2']
+Scores: [0.6525212526321411]
+Labels: ['Diabetes type 1']
+Scores: [0.4226498305797577]
+Labels: ['Chronic respiratory disease']
+Scores: [0.056446775794029236]
+Labels: ['Mental Health']
+Scores: [0.0010516020702198148]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01063840463757515]
+Labels: ['Cancer']
+Scores: [0.0007120989030227065]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39652177
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Dermatitis, Atopic', 'Comorbidity', 'Risk Factors', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus', 'Child', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.037983912974596024]
+Labels: ['Diabetes']
+Scores: [0.4194902181625366]
+Labels: ['Diabetes type 2']
+Scores: [0.10521189123392105]
+Labels: ['Diabetes type 1']
+Scores: [0.06332652270793915]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016634467989206314]
+Labels: ['Mental Health']
+Scores: [0.0007575948839075863]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005089169833809137]
+Labels: ['Cancer']
+Scores: [0.015529373660683632]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39649224
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Genetic Predisposition to Disease', 'Genome-Wide Association Study', 'Glycated Hemoglobin', 'Mendelian Randomization Analysis', 'Polymorphism, Single Nucleotide', 'Spondylitis, Ankylosing']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.033386196941137314]
+Labels: ['Diabetes']
+Scores: [0.99165940284729]
+Labels: ['Diabetes type 2']
+Scores: [0.24562759697437286]
+Labels: ['Diabetes type 1']
+Scores: [0.05844453349709511]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07960556447505951]
+Labels: ['Mental Health']
+Scores: [0.00040343202999792993]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030166923999786377]
+Labels: ['Cancer']
+Scores: [0.005796287674456835]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39648458
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Fatty Acids, Omega-3', 'Chemokine CXCL9', 'Insulin-Secreting Cells', 'Animals', 'Mice', 'Diabetes Mellitus, Type 1', 'Cell Line', 'Signal Transduction']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03794224187731743]
+Labels: ['Diabetes']
+Scores: [0.9937388300895691]
+Labels: ['Diabetes type 2']
+Scores: [0.00571846030652523]
+Labels: ['Diabetes type 1']
+Scores: [0.9573361277580261]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02570057101547718]
+Labels: ['Mental Health']
+Scores: [0.004580814857035875]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07532626390457153]
+Labels: ['Cancer']
+Scores: [0.003954251762479544]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39645243
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Insulin-Secreting Cells', 'Animals', 'Drug Development', 'Insulin Secretion', 'Insulin', 'Disease Progression', 'Glycemic Control']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042860355228185654]
+Labels: ['Diabetes']
+Scores: [0.9888853430747986]
+Labels: ['Diabetes type 2']
+Scores: [0.005631508771330118]
+Labels: ['Diabetes type 1']
+Scores: [0.9699748754501343]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09957510232925415]
+Labels: ['Mental Health']
+Scores: [0.0005613008979707956]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8111559152603149]
+Labels: ['Cancer']
+Scores: [0.0010169068118557334]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39644976
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Diving', 'Adult', 'Hypoglycemia', 'Male', 'Female', 'Blood Glucose', 'Young Adult', 'Blood Glucose Self-Monitoring', 'Glycated Hemoglobin', 'Adolescent', 'Middle Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03969940170645714]
+Labels: ['Diabetes']
+Scores: [0.945445716381073]
+Labels: ['Diabetes type 2']
+Scores: [0.0005569708300754428]
+Labels: ['Diabetes type 1']
+Scores: [0.9474531412124634]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006479108706116676]
+Labels: ['Mental Health']
+Scores: [0.0003457074926700443]
+Labels: ['Cardiovascular diseases']
+Scores: [0.044141557067632675]
+Labels: ['Cancer']
+Scores: [0.0032658232375979424]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39642862
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Humans', 'Islets of Langerhans Transplantation', 'Induced Pluripotent Stem Cells', 'Islets of Langerhans', 'Animals']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.031819697469472885]
+Labels: ['Diabetes']
+Scores: [0.994571328163147]
+Labels: ['Diabetes type 2']
+Scores: [0.0005707640666514635]
+Labels: ['Diabetes type 1']
+Scores: [0.9928295016288757]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0061622061766684055]
+Labels: ['Mental Health']
+Scores: [0.0005261367186903954]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07122024148702621]
+Labels: ['Cancer']
+Scores: [0.0029344470240175724]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39639901
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cost-Benefit Analysis', 'Diabetes Mellitus, Type 2', 'Patient Education as Topic', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.038249120116233826]
+Labels: ['Diabetes']
+Scores: [0.9962702393531799]
+Labels: ['Diabetes type 2']
+Scores: [0.9869178533554077]
+Labels: ['Diabetes type 1']
+Scores: [0.003501072758808732]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009571004658937454]
+Labels: ['Mental Health']
+Scores: [0.0003982665075454861]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03356458991765976]
+Labels: ['Cancer']
+Scores: [0.009472904726862907]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': True, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 2']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39636437
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'T-Lymphocytes, Regulatory', 'Mice, Inbred NOD', 'Mice', 'Female', 'Diabetes Mellitus, Type 1', 'Antigens, Differentiation, T-Lymphocyte', 'Antibodies, Monoclonal']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11922941356897354]
+Labels: ['Diabetes']
+Scores: [0.9877445101737976]
+Labels: ['Diabetes type 2']
+Scores: [0.0006770042236894369]
+Labels: ['Diabetes type 1']
+Scores: [0.9963608384132385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005779709666967392]
+Labels: ['Mental Health']
+Scores: [0.0004307104100007564]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003670803038403392]
+Labels: ['Cancer']
+Scores: [0.000476881570648402]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39632776
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Glycemic Control', 'Blood Glucose Self-Monitoring', 'Hypoglycemia', 'Glycated Hemoglobin', 'Diabetes Mellitus, Type 2', 'Diabetic Angiopathies', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Postprandial Period', 'Clinical Relevance']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02219950221478939]
+Labels: ['Diabetes']
+Scores: [0.9730775356292725]
+Labels: ['Diabetes type 2']
+Scores: [0.29047107696533203]
+Labels: ['Diabetes type 1']
+Scores: [0.0568188838660717]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002436138689517975]
+Labels: ['Mental Health']
+Scores: [0.0006860469002276659]
+Labels: ['Cardiovascular diseases']
+Scores: [0.759748637676239]
+Labels: ['Cancer']
+Scores: [0.0006139265606179833]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39632164
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Female', 'Male', 'Child, Preschool', 'Surveys and Questionnaires', 'Infant', 'Parents', 'Insulin Infusion Systems', 'Patient Satisfaction', 'Blood Glucose', 'Child', 'Caregivers', 'Continuous Glucose Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02840062417089939]
+Labels: ['Diabetes']
+Scores: [0.9925174713134766]
+Labels: ['Diabetes type 2']
+Scores: [0.0007007648819126189]
+Labels: ['Diabetes type 1']
+Scores: [0.9908847808837891]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03655560687184334]
+Labels: ['Mental Health']
+Scores: [0.00040043381159193814]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07921182364225388]
+Labels: ['Cancer']
+Scores: [0.0012030249927192926]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39629047
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Drug Administration Schedule', 'Glycated Hemoglobin', 'Hypoglycemia', 'Hypoglycemic Agents', 'Insulin', 'Insulin, Long-Acting', 'Randomized Controlled Trials as Topic', 'Treatment Outcome']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023211073130369186]
+Labels: ['Diabetes']
+Scores: [0.9917475581169128]
+Labels: ['Diabetes type 2']
+Scores: [0.30235204100608826]
+Labels: ['Diabetes type 1']
+Scores: [0.5012046694755554]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011636651121079922]
+Labels: ['Mental Health']
+Scores: [0.00029499977244995534]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06588529795408249]
+Labels: ['Cancer']
+Scores: [0.0005218655569478869]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39627081
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Retrospective Studies', 'Child', 'Female', 'Male', 'Adolescent', 'Child, Preschool', 'Infant', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 1', 'Insulin, Long-Acting', 'Insulin', 'Infant, Newborn', 'Infusions, Intravenous']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01941981352865696]
+Labels: ['Diabetes']
+Scores: [0.9957987070083618]
+Labels: ['Diabetes type 2']
+Scores: [0.13813640177249908]
+Labels: ['Diabetes type 1']
+Scores: [0.09875205904245377]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021393027156591415]
+Labels: ['Mental Health']
+Scores: [0.0003070271632168442]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03258166089653969]
+Labels: ['Cancer']
+Scores: [0.00048478826647624373]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39626097
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'HLA-DR3 Antigen', 'Haplotypes', 'HLA-DR4 Antigen', 'Genetic Predisposition to Disease', 'Male', 'Female', 'Genome-Wide Association Study', 'Adult']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02627415768802166]
+Labels: ['Diabetes']
+Scores: [0.9979230165481567]
+Labels: ['Diabetes type 2']
+Scores: [0.0005882233963347971]
+Labels: ['Diabetes type 1']
+Scores: [0.9966570734977722]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016453415155410767]
+Labels: ['Mental Health']
+Scores: [0.0007313701789826155]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028737117536365986]
+Labels: ['Cancer']
+Scores: [0.0009374991059303284]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39625868
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Pregnancy', 'Female', 'Diabetes, Gestational', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Wearable Electronic Devices']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.031059084460139275]
+Labels: ['Diabetes']
+Scores: [0.9531757831573486]
+Labels: ['Diabetes type 2']
+Scores: [0.5520367622375488]
+Labels: ['Diabetes type 1']
+Scores: [0.5745130181312561]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013906695879995823]
+Labels: ['Mental Health']
+Scores: [0.000956956238951534]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2330627590417862]
+Labels: ['Cancer']
+Scores: [0.03997103124856949]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': True, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39625848
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Insulin', 'Administration, Cutaneous', 'Needles', 'Drug Delivery Systems', 'Animals', 'Skin', 'Swine', 'Skin Absorption', 'Microinjections', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Humans']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08657356351613998]
+Labels: ['Diabetes']
+Scores: [0.8219418525695801]
+Labels: ['Diabetes type 2']
+Scores: [0.002344607375562191]
+Labels: ['Diabetes type 1']
+Scores: [0.6180460453033447]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03575947880744934]
+Labels: ['Mental Health']
+Scores: [0.0012535188579931855]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05533553287386894]
+Labels: ['Cancer']
+Scores: [0.006713413633406162]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39625039
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Receptors, Glucagon', 'Hypoglycemic Agents', 'Blood Glucose', 'Insulin', 'Randomized Controlled Trials as Topic', 'Hypoglycemia', 'Treatment Outcome', 'Antibodies, Monoclonal, Humanized']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021803710609674454]
+Labels: ['Diabetes']
+Scores: [0.9820030331611633]
+Labels: ['Diabetes type 2']
+Scores: [0.013909934088587761]
+Labels: ['Diabetes type 1']
+Scores: [0.888809323310852]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005518135614693165]
+Labels: ['Mental Health']
+Scores: [0.0004592251207213849]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07594282925128937]
+Labels: ['Cancer']
+Scores: [0.0005223015323281288]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39622650
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Child', 'Blood Glucose Self-Monitoring', 'Insulin Infusion Systems', 'Adolescent', 'Insulin', 'Skin Diseases', 'Hypoglycemic Agents', 'Child, Preschool', 'Lipodystrophy', 'Dermatitis, Contact']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04636478051543236]
+Labels: ['Diabetes']
+Scores: [0.9930652976036072]
+Labels: ['Diabetes type 2']
+Scores: [0.018354181200265884]
+Labels: ['Diabetes type 1']
+Scores: [0.9666122198104858]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0037788040935993195]
+Labels: ['Mental Health']
+Scores: [0.0003914866247214377]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009119599126279354]
+Labels: ['Cancer']
+Scores: [0.0015144713688641787]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39622257
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Registries', 'Child', 'Female', 'Male', 'Longitudinal Studies', 'Adolescent', 'Child, Preschool', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Blood Glucose', 'Hypoglycemia', 'Treatment Outcome', 'Infant', 'Glycemic Control']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.031631406396627426]
+Labels: ['Diabetes']
+Scores: [0.9695535898208618]
+Labels: ['Diabetes type 2']
+Scores: [0.0008514763321727514]
+Labels: ['Diabetes type 1']
+Scores: [0.9665117263793945]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003206688677892089]
+Labels: ['Mental Health']
+Scores: [0.0002842138637788594]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010105244815349579]
+Labels: ['Cancer']
+Scores: [0.0010125093394890428]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39622163
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Humans', 'Animals', 'Blood Glucose', 'Tissue Engineering', 'Porosity', 'Human Umbilical Vein Endothelial Cells', 'Tissue Scaffolds', 'Induced Pluripotent Stem Cells', 'Insulin', 'Diabetes Mellitus, Experimental', 'Printing, Three-Dimensional', 'Bioprinting', 'Male', 'Cell Survival', 'Insulin-Secreting Cells', 'Extracellular Matrix']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0171973779797554]
+Labels: ['Diabetes']
+Scores: [0.9878163933753967]
+Labels: ['Diabetes type 2']
+Scores: [0.0009164266521111131]
+Labels: ['Diabetes type 1']
+Scores: [0.9856195449829102]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01166145596653223]
+Labels: ['Mental Health']
+Scores: [0.0005715707666240633]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5071641802787781]
+Labels: ['Cancer']
+Scores: [0.0009410005295649171]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39621933
+Predictions: ['Diabetes', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Child', 'Adolescent', 'Child, Preschool', 'Retrospective Studies', 'Female', 'Blood Glucose', 'Male', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus', 'Hospitalization', 'Diabetes Mellitus, Type 1']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019334295764565468]
+Labels: ['Diabetes']
+Scores: [0.9756947159767151]
+Labels: ['Diabetes type 2']
+Scores: [0.29420000314712524]
+Labels: ['Diabetes type 1']
+Scores: [0.1620803326368332]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009875712916254997]
+Labels: ['Mental Health']
+Scores: [0.0003316180664114654]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05573557689785957]
+Labels: ['Cancer']
+Scores: [0.00031180266523733735]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39621313
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice, Inbred NOD', 'Interleukin-4', 'Mice', 'Thymus Gland', 'Diabetes Mellitus, Type 1', 'Receptors, Antigen, T-Cell', 'Dendritic Cells', 'Natural Killer T-Cells']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06571044027805328]
+Labels: ['Diabetes']
+Scores: [0.883465588092804]
+Labels: ['Diabetes type 2']
+Scores: [0.002934585325419903]
+Labels: ['Diabetes type 1']
+Scores: [0.9421831965446472]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0839901864528656]
+Labels: ['Mental Health']
+Scores: [0.000989445368759334]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0032685338519513607]
+Labels: ['Cancer']
+Scores: [0.0005390604492276907]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes', 'Diabetes type 1']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39620918
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Aged', 'Automobile Driving', 'Insulin Infusion Systems', 'Male', 'Female', 'Insulin', 'Cross-Over Studies', 'Hypoglycemic Agents', 'Middle Aged', 'Blood Glucose', 'Blood Glucose Self-Monitoring']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03322414681315422]
+Labels: ['Diabetes']
+Scores: [0.9438093900680542]
+Labels: ['Diabetes type 2']
+Scores: [0.0015501439338549972]
+Labels: ['Diabetes type 1']
+Scores: [0.2055216282606125]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02342941239476204]
+Labels: ['Mental Health']
+Scores: [0.002268933691084385]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09511498361825943]
+Labels: ['Cancer']
+Scores: [0.0019615679048001766]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': True, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': True, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738021
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Dust', 'Humans', 'Hospitalization', 'Free Radicals', 'Air Pollutants', 'Oxidative Stress', 'Particulate Matter', 'China', 'Environmental Exposure', 'Beijing', 'Sand', 'Respiratory Tract Diseases', 'Oxidation-Reduction', 'Cardiovascular Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029088545590639114]
+Labels: ['Diabetes']
+Scores: [0.0005851013120263815]
+Labels: ['Diabetes type 2']
+Scores: [0.0007489343988709152]
+Labels: ['Diabetes type 1']
+Scores: [0.000564191082958132]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012194341979920864]
+Labels: ['Mental Health']
+Scores: [0.0015692919259890914]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011678389273583889]
+Labels: ['Cancer']
+Scores: [0.003921580035239458]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729927
+Predictions: ['Cancer', 'Chronic respiratory disease']
+MeshTerm: ['Humans', 'CD4-Positive T-Lymphocytes', 'Neoplasms', 'Machine Learning', 'Digestive System Diseases', 'Metabolic Diseases', 'Respiratory Tract Diseases', 'Gene Expression Profiling', 'Respiration Disorders']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0199869517236948]
+Labels: ['Diabetes']
+Scores: [0.0013387822546064854]
+Labels: ['Diabetes type 2']
+Scores: [0.0009641138603910804]
+Labels: ['Diabetes type 1']
+Scores: [0.0006649834685958922]
+Labels: ['Chronic respiratory disease']
+Scores: [0.027296695858240128]
+Labels: ['Mental Health']
+Scores: [0.00032061105594038963]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0025081653147935867]
+Labels: ['Cancer']
+Scores: [0.3183118402957916]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729438
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Digital Technology', 'Respiratory Tract Diseases', 'Telemedicine', 'Scoping Reviews As Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007863654755055904]
+Labels: ['Diabetes']
+Scores: [0.0007821712642908096]
+Labels: ['Diabetes type 2']
+Scores: [0.0021730863954871893]
+Labels: ['Diabetes type 1']
+Scores: [0.0020693044643849134]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3632870018482208]
+Labels: ['Mental Health']
+Scores: [0.0006658043130300939]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004699095617979765]
+Labels: ['Cancer']
+Scores: [0.0007860746700316668]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724617
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Chernobyl Nuclear Accident', 'Male', 'Adult', 'Occupational Exposure', 'Middle Aged', 'Ukraine', 'Radiation Exposure', 'Radiation Dosage', 'Occupational Diseases', 'Cardiovascular Diseases', 'Aged', 'Gamma Rays', 'Radiation Injuries', 'Risk Assessment', 'Cerebrovascular Disorders', 'Myocardial Infarction', 'Respiratory Tract Diseases', 'Digestive System Diseases', 'Emergency Responders', 'Adolescent', 'Cardiomyopathies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08715783804655075]
+Labels: ['Diabetes']
+Scores: [0.00041919946670532227]
+Labels: ['Diabetes type 2']
+Scores: [0.0004912760923616588]
+Labels: ['Diabetes type 1']
+Scores: [0.00042870885226875544]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03558018431067467]
+Labels: ['Mental Health']
+Scores: [0.0004818563465960324]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014794922433793545]
+Labels: ['Cancer']
+Scores: [0.06496825069189072]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710468
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Allergens', 'Adult', 'Adolescent', 'Child', 'China', 'Middle Aged', 'Child, Preschool', 'Cross-Sectional Studies', 'Young Adult', 'Infant', 'Aged', 'Immunoglobulin E', 'Aged, 80 and over', 'Animals', 'Skin Diseases', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007195330690592527]
+Labels: ['Diabetes']
+Scores: [0.0005422416143119335]
+Labels: ['Diabetes type 2']
+Scores: [0.0010607868898659945]
+Labels: ['Diabetes type 1']
+Scores: [0.0008221738389693201]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012996944598853588]
+Labels: ['Mental Health']
+Scores: [0.0009651443106122315]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007427711971104145]
+Labels: ['Cancer']
+Scores: [0.0017927715089172125]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707265
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Quality of Life', 'China', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Incineration', 'Adult', 'Surveys and Questionnaires', 'Residence Characteristics', 'Aged', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022981345653533936]
+Labels: ['Diabetes']
+Scores: [0.00034593106829561293]
+Labels: ['Diabetes type 2']
+Scores: [0.00037670735036954284]
+Labels: ['Diabetes type 1']
+Scores: [0.0003585685626603663]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01275570411235094]
+Labels: ['Mental Health']
+Scores: [0.00045729411067441106]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001773994299583137]
+Labels: ['Cancer']
+Scores: [0.0015948499785736203]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696118
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nitrogen Dioxide', 'Republic of Korea', 'Cross-Over Studies', 'Male', 'Female', 'Middle Aged', 'Aged', 'Adult', 'Aged, 80 and over', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Air Pollutants', 'Young Adult', 'Adolescent', 'Child, Preschool', 'Child', 'Air Pollution', 'Infant', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042726919054985046]
+Labels: ['Diabetes']
+Scores: [0.00048043468268588185]
+Labels: ['Diabetes type 2']
+Scores: [0.0007901168428361416]
+Labels: ['Diabetes type 1']
+Scores: [0.0007251095958054066]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05304544419050217]
+Labels: ['Mental Health']
+Scores: [0.00033016028464771807]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019168361322954297]
+Labels: ['Cancer']
+Scores: [0.003564446698874235]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39694698
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Scotland', 'Male', 'Female', 'Air Pollution', 'Prospective Studies', 'Middle Aged', 'Particulate Matter', 'Hospitalization', 'Environmental Exposure', 'Adult', 'Nitrogen Dioxide', 'Aged', 'Air Pollutants', 'Sulfur Dioxide', 'Cardiovascular Diseases', 'Longitudinal Studies', 'Young Adult', 'Adolescent', 'Respiratory Tract Diseases', 'Mental Disorders']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02705402486026287]
+Labels: ['Diabetes']
+Scores: [0.0012586443917825818]
+Labels: ['Diabetes type 2']
+Scores: [0.0005201195017434657]
+Labels: ['Diabetes type 1']
+Scores: [0.0005181582528166473]
+Labels: ['Chronic respiratory disease']
+Scores: [0.024397049099206924]
+Labels: ['Mental Health']
+Scores: [0.09704581648111343]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008776487782597542]
+Labels: ['Cancer']
+Scores: [0.016573045402765274]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39694558
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nebulizers and Vaporizers', 'Child', 'Administration, Inhalation', 'Respiratory Tract Diseases', 'Asthma', 'Home Care Services', 'Practice Guidelines as Topic', 'Respiratory Therapy']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013121040537953377]
+Labels: ['Diabetes']
+Scores: [0.0014322181232273579]
+Labels: ['Diabetes type 2']
+Scores: [0.0019170694286003709]
+Labels: ['Diabetes type 1']
+Scores: [0.0017669870285317302]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2712183892726898]
+Labels: ['Mental Health']
+Scores: [0.00030128128128126264]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00036781124072149396]
+Labels: ['Cancer']
+Scores: [0.02469644881784916]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684326
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Animals', 'Humans', 'Mast Cells', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028218986466526985]
+Labels: ['Diabetes']
+Scores: [0.0006428060587495565]
+Labels: ['Diabetes type 2']
+Scores: [0.0017837429186329246]
+Labels: ['Diabetes type 1']
+Scores: [0.001761636114679277]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021704254671931267]
+Labels: ['Mental Health']
+Scores: [0.002087119733914733]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008351700962521136]
+Labels: ['Cancer']
+Scores: [0.001410569529980421]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684250
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Endocrine Disruptors', 'Humans', 'Respiratory System', 'Animals', 'Oxidative Stress', 'Respiratory Tract Diseases', 'Environmental Exposure']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018574928864836693]
+Labels: ['Diabetes']
+Scores: [0.0017037560464814305]
+Labels: ['Diabetes type 2']
+Scores: [0.002609282499179244]
+Labels: ['Diabetes type 1']
+Scores: [0.002613233868032694]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028259864076972008]
+Labels: ['Mental Health']
+Scores: [0.0007691215141676366]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006888789124786854]
+Labels: ['Cancer']
+Scores: [0.031243016943335533]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661886
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Child', 'Male', 'Homeostasis', 'Minerals', 'Vitamins', 'Ascorbic Acid', 'Respiratory Tract Diseases', 'Vitamin D', 'Recurrence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02157563716173172]
+Labels: ['Diabetes']
+Scores: [0.012219499796628952]
+Labels: ['Diabetes type 2']
+Scores: [0.004508758895099163]
+Labels: ['Diabetes type 1']
+Scores: [0.004418436903506517]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3041060268878937]
+Labels: ['Mental Health']
+Scores: [0.0007750079967081547]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0010067083640024066]
+Labels: ['Cancer']
+Scores: [0.01711263135075569]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661885
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'Adolescent', 'Male', 'Antioxidants', 'Female', 'Ascorbic Acid', 'Interleukin-6', 'Glutathione Peroxidase', 'Hydrocortisone', 'Ferritins', 'Tumor Necrosis Factor-alpha', 'Respiratory Tract Diseases', 'Acute Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.044310860335826874]
+Labels: ['Diabetes']
+Scores: [0.01972525380551815]
+Labels: ['Diabetes type 2']
+Scores: [0.01112014427781105]
+Labels: ['Diabetes type 1']
+Scores: [0.007733821403235197]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0021027536131441593]
+Labels: ['Mental Health']
+Scores: [0.0004843611968681216]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001926296390593052]
+Labels: ['Cancer']
+Scores: [0.007346879690885544]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39659714
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Workplace', 'Occupational Diseases', 'Respiratory Tract Diseases', 'Prevalence']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013181759975850582]
+Labels: ['Diabetes']
+Scores: [0.00037676014471799135]
+Labels: ['Diabetes type 2']
+Scores: [0.0010536074405536056]
+Labels: ['Diabetes type 1']
+Scores: [0.0009279811638407409]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07314568758010864]
+Labels: ['Mental Health']
+Scores: [0.0003991717821918428]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001164903398603201]
+Labels: ['Cancer']
+Scores: [0.008633746765553951]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39643329
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Adult', 'Prospective Studies', 'Nitrogen Dioxide', 'China', 'Aged', 'Environmental Exposure', 'Incidence', 'Musculoskeletal Diseases', 'Cardiovascular Diseases', 'Respiratory Tract Diseases', 'Air Pollutants', 'East Asian People']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028717659413814545]
+Labels: ['Diabetes']
+Scores: [0.0023609695490449667]
+Labels: ['Diabetes type 2']
+Scores: [0.001087348791770637]
+Labels: ['Diabetes type 1']
+Scores: [0.0009156241430900991]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010310893878340721]
+Labels: ['Mental Health']
+Scores: [0.0033243808429688215]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014519101940095425]
+Labels: ['Cancer']
+Scores: [0.03834160417318344]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39642570
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mustard Gas', 'Male', 'Biomarkers', 'Cross-Sectional Studies', 'Adult', 'Chemical Warfare Agents', 'Veterans', 'Middle Aged', 'Respiratory Tract Diseases', 'Iran']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05874723568558693]
+Labels: ['Diabetes']
+Scores: [0.0020612033549696207]
+Labels: ['Diabetes type 2']
+Scores: [0.004143684171140194]
+Labels: ['Diabetes type 1']
+Scores: [0.0027894845698028803]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9693607687950134]
+Labels: ['Mental Health']
+Scores: [0.000791591068264097]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000856491329614073]
+Labels: ['Cancer']
+Scores: [0.007508987095206976]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39640901
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Plants, Medicinal', 'Humans', 'Tanzania', 'Male', 'Female', 'Respiratory Tract Diseases', 'Adult', 'Middle Aged', 'Health Knowledge, Attitudes, Practice', 'Medicine, African Traditional', 'Aged', 'Phytotherapy']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020566003397107124]
+Labels: ['Diabetes']
+Scores: [0.0025503593496978283]
+Labels: ['Diabetes type 2']
+Scores: [0.003708687610924244]
+Labels: ['Diabetes type 1']
+Scores: [0.002619463950395584]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0449456162750721]
+Labels: ['Mental Health']
+Scores: [0.011277259327471256]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006308890413492918]
+Labels: ['Cancer']
+Scores: [0.09583596885204315]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39633457
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Respiratory Tract Diseases', 'Nanoparticles', 'Microplastics', 'Inhalation Exposure', 'Air Pollutants', 'Animals', 'Respiratory System']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03389471024274826]
+Labels: ['Diabetes']
+Scores: [0.005175947677344084]
+Labels: ['Diabetes type 2']
+Scores: [0.013839195482432842]
+Labels: ['Diabetes type 1']
+Scores: [0.01160866767168045]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05242941156029701]
+Labels: ['Mental Health']
+Scores: [0.003054168773815036]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1715802550315857]
+Labels: ['Cancer']
+Scores: [0.034882768988609314]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39633418
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'China', 'Hospitalization', 'Child', 'Male', 'Female', 'Air Pollutants', 'Cross-Over Studies', 'Child, Preschool', 'COVID-19', 'Respiratory Tract Diseases', 'Air Pollution', 'Environmental Exposure', 'Particulate Matter', 'Infant', 'Sulfur Dioxide', 'SARS-CoV-2', 'Adolescent', 'Nitrogen Dioxide', 'Time Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026761556044220924]
+Labels: ['Diabetes']
+Scores: [0.0007032326539047062]
+Labels: ['Diabetes type 2']
+Scores: [0.0004807156219612807]
+Labels: ['Diabetes type 1']
+Scores: [0.0004028222756460309]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0052350847981870174]
+Labels: ['Mental Health']
+Scores: [0.004070088732987642]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003600197669584304]
+Labels: ['Cancer']
+Scores: [0.0031694676727056503]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39632975
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Lung Neoplasms', 'Genome-Wide Association Study', 'Ketone Bodies', 'Polymorphism, Single Nucleotide', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015054065734148026]
+Labels: ['Diabetes']
+Scores: [0.0012087821960449219]
+Labels: ['Diabetes type 2']
+Scores: [0.002716981340199709]
+Labels: ['Diabetes type 1']
+Scores: [0.0019901390187442303]
+Labels: ['Chronic respiratory disease']
+Scores: [0.035594549030065536]
+Labels: ['Mental Health']
+Scores: [0.0006458392017520964]
+Labels: ['Cardiovascular diseases']
+Scores: [0.024994060397148132]
+Labels: ['Cancer']
+Scores: [0.01851756125688553]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39620702
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Climate Change', 'Air Pollution', 'Particulate Matter', 'Environmental Exposure', 'Ozone', 'Respiratory Tract Diseases', 'Air Pollutants']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002294866368174553]
+Labels: ['Diabetes']
+Scores: [0.001316525973379612]
+Labels: ['Diabetes type 2']
+Scores: [0.002259212778881192]
+Labels: ['Diabetes type 1']
+Scores: [0.002228393452242017]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06735784560441971]
+Labels: ['Mental Health']
+Scores: [0.0012945657363161445]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016542206285521388]
+Labels: ['Cancer']
+Scores: [0.03980312868952751]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39617287
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Infant', 'Female', 'Hypersensitivity', 'Male', 'France', 'Dietary Exposure', 'Child', 'Cohort Studies', 'Child, Preschool', 'Pesticides', 'Respiratory Tract Diseases', 'Environmental Pollutants']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017811771482229233]
+Labels: ['Diabetes']
+Scores: [0.0038464090321213007]
+Labels: ['Diabetes type 2']
+Scores: [0.005437104031443596]
+Labels: ['Diabetes type 1']
+Scores: [0.005081252194941044]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008536328561604023]
+Labels: ['Mental Health']
+Scores: [0.002751458203420043]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0035170321352779865]
+Labels: ['Cancer']
+Scores: [0.0084054134786129]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39615506
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Air Pollutants', 'Air Pollution', 'Cardiovascular Diseases', 'Environmental Exposure', 'Fires', 'Global Burden of Disease', 'Global Health', 'Health Impact Assessment', 'Mortality', 'Ozone', 'Particulate Matter', 'Respiratory Tract Diseases', 'Wildfires']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.016804154962301254]
+Labels: ['Diabetes']
+Scores: [0.0004524950636550784]
+Labels: ['Diabetes type 2']
+Scores: [0.0004838980094064027]
+Labels: ['Diabetes type 1']
+Scores: [0.0004393800627440214]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002794759115204215]
+Labels: ['Mental Health']
+Scores: [0.0029589084442704916]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004374555312097073]
+Labels: ['Cancer']
+Scores: [0.003736053593456745]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39608993
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Australia', 'Adult', 'Adolescent', 'Hospitalization', 'Aged', 'Young Adult', 'Child', 'Respiratory Tract Diseases', 'Infant', 'Child, Preschool', 'Infant, Newborn', 'Aged, 80 and over', 'Sex Distribution', 'Age Distribution']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023549985140562057]
+Labels: ['Diabetes']
+Scores: [0.0006140209152363241]
+Labels: ['Diabetes type 2']
+Scores: [0.0010236272355541587]
+Labels: ['Diabetes type 1']
+Scores: [0.00100489123724401]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10142683982849121]
+Labels: ['Mental Health']
+Scores: [0.0006005369941703975]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003026113146916032]
+Labels: ['Cancer']
+Scores: [0.017357459291815758]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39607106
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Brazil', 'Hospitalization', 'Adolescent', 'Spatio-Temporal Analysis', 'Child', 'Respiratory Tract Diseases', 'Young Adult', 'Adult', 'Socioeconomic Factors', 'Child, Preschool', 'Female', 'Male', 'Middle Aged', 'Aged', 'Cluster Analysis', 'Infant', 'Urban Population', 'Space-Time Clustering', 'Cities']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017689872533082962]
+Labels: ['Diabetes']
+Scores: [0.001088501769118011]
+Labels: ['Diabetes type 2']
+Scores: [0.0016156148631125689]
+Labels: ['Diabetes type 1']
+Scores: [0.00138249306473881]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07251458615064621]
+Labels: ['Mental Health']
+Scores: [0.0023708625230938196]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002849999815225601]
+Labels: ['Cancer']
+Scores: [0.07228445261716843]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39603392
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Asia', 'Chronic Disease', 'Quality of Life', 'Qigong', 'Yoga', 'Tai Ji', 'Resistance Training', 'Respiratory Tract Diseases', 'Exercise Therapy', 'Exercise Tolerance', 'Practice Guidelines as Topic']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02066793292760849]
+Labels: ['Diabetes']
+Scores: [0.0008550056954845786]
+Labels: ['Diabetes type 2']
+Scores: [0.001641690731048584]
+Labels: ['Diabetes type 1']
+Scores: [0.0014777368633076549]
+Labels: ['Chronic respiratory disease']
+Scores: [0.781344473361969]
+Labels: ['Mental Health']
+Scores: [0.0005929043400101364]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6194519996643066]
+Labels: ['Cancer']
+Scores: [0.008341624401509762]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39578996
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Prospective Studies', 'Adult', 'Aged', 'China', 'Aged, 80 and over', 'Hand Strength', 'Respiratory Tract Diseases', 'Muscle, Skeletal', 'Muscle Strength', 'East Asian People']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04469864442944527]
+Labels: ['Diabetes']
+Scores: [0.0028130956925451756]
+Labels: ['Diabetes type 2']
+Scores: [0.0014817370101809502]
+Labels: ['Diabetes type 1']
+Scores: [0.0013128210557624698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08809638023376465]
+Labels: ['Mental Health']
+Scores: [0.0009083615150302649]
+Labels: ['Cardiovascular diseases']
+Scores: [0.29885563254356384]
+Labels: ['Cancer']
+Scores: [0.0061116451397538185]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39578779
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Signal Transduction', 'Animals', 'Smad5 Protein', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05048731341958046]
+Labels: ['Diabetes']
+Scores: [0.01485432218760252]
+Labels: ['Diabetes type 2']
+Scores: [0.02425098419189453]
+Labels: ['Diabetes type 1']
+Scores: [0.0256714578717947]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8228206634521484]
+Labels: ['Mental Health']
+Scores: [0.01760716550052166]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0746854841709137]
+Labels: ['Cancer']
+Scores: [0.011175070889294147]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39570415
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nutrition Surveys', 'Middle Aged', 'Male', 'Female', 'Adult', 'Aged', 'Antioxidants', 'Adolescent', 'Child, Preschool', 'Young Adult', 'Aged, 80 and over', 'Infant', 'Chronic Disease', 'Child', 'Diet', 'United States', 'Respiratory Tract Diseases', 'Risk Factors', 'Mortality', 'Respiration Disorders']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018394505605101585]
+Labels: ['Diabetes']
+Scores: [0.004596620332449675]
+Labels: ['Diabetes type 2']
+Scores: [0.0028226024005562067]
+Labels: ['Diabetes type 1']
+Scores: [0.003604197409003973]
+Labels: ['Chronic respiratory disease']
+Scores: [0.40385884046554565]
+Labels: ['Mental Health']
+Scores: [0.00044136500218883157]
+Labels: ['Cardiovascular diseases']
+Scores: [0.020572423934936523]
+Labels: ['Cancer']
+Scores: [0.015203660354018211]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39570333
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Vietnam', 'Humans', 'Hospitalization', 'Male', 'Female', 'Middle Aged', 'Temperature', 'Aged', 'Adult', 'Adolescent', 'Respiratory Tract Diseases', 'Young Adult', 'Infant', 'Cardiovascular Diseases', 'Child, Preschool', 'Child', 'Poverty', 'Infant, Newborn', 'Aged, 80 and over', 'Risk']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01566784828901291]
+Labels: ['Diabetes']
+Scores: [0.0012981871841475368]
+Labels: ['Diabetes type 2']
+Scores: [0.0010184490820392966]
+Labels: ['Diabetes type 1']
+Scores: [0.0010402288753539324]
+Labels: ['Chronic respiratory disease']
+Scores: [0.015013768337666988]
+Labels: ['Mental Health']
+Scores: [0.003042806638404727]
+Labels: ['Cardiovascular diseases']
+Scores: [0.22446148097515106]
+Labels: ['Cancer']
+Scores: [0.0023759850300848484]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39566943
+Predictions: ['Cancer', 'Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Fukushima Nuclear Accident', 'Japan', 'Retrospective Studies', 'Male', 'Female', 'Aged', 'Middle Aged', 'Adult', 'Cause of Death', 'Young Adult', 'Adolescent', 'Child', 'Aged, 80 and over', 'Child, Preschool', 'Infant', 'Disasters', 'Earthquakes', 'Respiratory Tract Diseases', 'Cardiovascular Diseases', 'Suicide', 'Infant, Newborn', 'Neoplasms']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005445413291454315]
+Labels: ['Diabetes']
+Scores: [0.0003454693651292473]
+Labels: ['Diabetes type 2']
+Scores: [0.00043589441338554025]
+Labels: ['Diabetes type 1']
+Scores: [0.00039580336306244135]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015761898830533028]
+Labels: ['Mental Health']
+Scores: [0.004958743695169687]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005619393661618233]
+Labels: ['Cancer']
+Scores: [0.014571469277143478]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39566532
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Exosomes', 'Humans', 'Respiratory Tract Diseases', 'Animals', 'Biomarkers']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03246760368347168]
+Labels: ['Diabetes']
+Scores: [0.003850573441013694]
+Labels: ['Diabetes type 2']
+Scores: [0.009367535822093487]
+Labels: ['Diabetes type 1']
+Scores: [0.006366036832332611]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16814614832401276]
+Labels: ['Mental Health']
+Scores: [0.0011183192254975438]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0013522137887775898]
+Labels: ['Cancer']
+Scores: [0.0028403440956026316]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39550655
+Predictions: ['Cancer', 'Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Particulate Matter', 'Middle Aged', 'Aged', 'Adult', 'Cohort Studies', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Neoplasms', 'Air Pollution', 'Air Pollutants', 'Cardiovascular Diseases', 'Italy', 'Rivers', 'Young Adult', 'Proportional Hazards Models', 'Manufacturing and Industrial Facilities', 'Adolescent', 'Cause of Death', 'Industry', 'Nitrogen Oxides', 'Child, Preschool', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02072860673069954]
+Labels: ['Diabetes']
+Scores: [0.0005463568377308547]
+Labels: ['Diabetes type 2']
+Scores: [0.000601150852162391]
+Labels: ['Diabetes type 1']
+Scores: [0.0005347416736185551]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029983649030327797]
+Labels: ['Mental Health']
+Scores: [0.0005549158086068928]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0420161634683609]
+Labels: ['Cancer']
+Scores: [0.0016791948582977057]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': True}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39544058
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Volatile Organic Compounds', 'Air Pollution, Indoor', 'Pulmonary Disease, Chronic Obstructive', 'Respiratory Tract Diseases', 'Asthma', 'Sick Building Syndrome']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06809283047914505]
+Labels: ['Diabetes']
+Scores: [0.002010645577684045]
+Labels: ['Diabetes type 2']
+Scores: [0.00579737639054656]
+Labels: ['Diabetes type 1']
+Scores: [0.005207662470638752]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09315647184848785]
+Labels: ['Mental Health']
+Scores: [0.002447867998853326]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004701928235590458]
+Labels: ['Cancer']
+Scores: [0.12564027309417725]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39543369
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Bipolar Disorder', 'Pulmonary Disease, Chronic Obstructive', 'Asthma', 'Prevalence', 'Female', 'Respiratory Tract Diseases', 'Lung Neoplasms', 'Male', 'Pneumonia', 'Odds Ratio', 'Respiration Disorders', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004915220662951469]
+Labels: ['Diabetes']
+Scores: [0.00109376001637429]
+Labels: ['Diabetes type 2']
+Scores: [0.005564175546169281]
+Labels: ['Diabetes type 1']
+Scores: [0.002446625614538789]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2938902676105499]
+Labels: ['Mental Health']
+Scores: [0.0031370038632303476]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003018180141225457]
+Labels: ['Cancer']
+Scores: [0.0011701314942911267]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39537245
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Cell Communication', 'Extracellular Vesicles', 'Animals', 'Lung', 'Lung Diseases', 'Signal Transduction', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00807099137455225]
+Labels: ['Diabetes']
+Scores: [0.0014356555184349418]
+Labels: ['Diabetes type 2']
+Scores: [0.0030366340652108192]
+Labels: ['Diabetes type 1']
+Scores: [0.0023093142081052065]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10430768132209778]
+Labels: ['Mental Health']
+Scores: [0.0005114005180075765]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02492883987724781]
+Labels: ['Cancer']
+Scores: [0.009710574522614479]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39530346
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Air Pollution', 'Environmental Exposure', 'Cardiovascular Diseases', 'Respiratory Tract Diseases', 'Environmental Monitoring', 'Air Filters', 'Child', 'Exercise', 'Aged', 'Air Pollutants', 'Masks']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015461329370737076]
+Labels: ['Diabetes']
+Scores: [0.005246079992502928]
+Labels: ['Diabetes type 2']
+Scores: [0.0020810915157198906]
+Labels: ['Diabetes type 1']
+Scores: [0.001924672513268888]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009107111021876335]
+Labels: ['Mental Health']
+Scores: [0.0013068342814221978]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004438536707311869]
+Labels: ['Cancer']
+Scores: [0.017816293984651566]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39521464
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nepal', 'Child', 'Risk Factors', 'Female', 'Research Design', 'Male', 'Longitudinal Studies', 'Adult', 'Adolescent', 'Parents', 'Child, Preschool', 'Air Pollution', 'Respiratory Tract Diseases', 'Cohort Studies', 'Life Style', 'Environmental Exposure']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01049264520406723]
+Labels: ['Diabetes']
+Scores: [0.0004660477570723742]
+Labels: ['Diabetes type 2']
+Scores: [0.0005438905209302902]
+Labels: ['Diabetes type 1']
+Scores: [0.0005056623485870659]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003245066851377487]
+Labels: ['Mental Health']
+Scores: [0.0007829160313121974]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006629403214901686]
+Labels: ['Cancer']
+Scores: [0.023545408621430397]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39515807
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'RNA, Untranslated', 'RNA, Long Noncoding', 'Epigenesis, Genetic', 'MicroRNAs', 'Respiratory Tract Diseases', 'RNA, Circular']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13192902505397797]
+Labels: ['Diabetes']
+Scores: [0.0064684017561376095]
+Labels: ['Diabetes type 2']
+Scores: [0.014490382745862007]
+Labels: ['Diabetes type 1']
+Scores: [0.014051852747797966]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014090319164097309]
+Labels: ['Mental Health']
+Scores: [0.0014320667833089828]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04225185140967369]
+Labels: ['Cancer']
+Scores: [0.005102294031530619]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39513278
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Biomarkers', 'Female', 'Air Pollutants', 'Respiratory Tract Diseases', 'Chronic Disease', 'Environmental Exposure', 'Air Pollution', 'Acute Disease']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.039213113486766815]
+Labels: ['Diabetes']
+Scores: [0.022253893315792084]
+Labels: ['Diabetes type 2']
+Scores: [0.00496820081025362]
+Labels: ['Diabetes type 1']
+Scores: [0.0029994389042258263]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6103817224502563]
+Labels: ['Mental Health']
+Scores: [0.0002971545036416501]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013967050239443779]
+Labels: ['Cancer']
+Scores: [0.006374932359904051]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39505076
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Particulate Matter', 'Republic of Korea', 'Cardiovascular Diseases', 'Humans', 'Air Pollutants', 'Air Pollution', 'Hospitalization', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Aged']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00039916703826747835]
+Labels: ['Diabetes']
+Scores: [0.0003497001016512513]
+Labels: ['Diabetes type 2']
+Scores: [0.0003514442651066929]
+Labels: ['Diabetes type 1']
+Scores: [0.00035108145675621927]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00034515050356276333]
+Labels: ['Mental Health']
+Scores: [0.00032337429001927376]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008059989777393639]
+Labels: ['Cancer']
+Scores: [0.003973262384533882]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39503908
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Occupational Injuries', "Workers' Compensation", 'Seasons', 'Middle Aged', 'Occupational Diseases', 'Emergency Responders', 'Mental Disorders', 'Firefighters', 'Victoria', 'Musculoskeletal Diseases', 'Wildfires', 'Respiratory Tract Diseases', 'Young Adult', 'Police']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010394090786576271]
+Labels: ['Diabetes']
+Scores: [0.00032449947320856154]
+Labels: ['Diabetes type 2']
+Scores: [0.000355925178155303]
+Labels: ['Diabetes type 1']
+Scores: [0.00032941263634711504]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0042229085229337215]
+Labels: ['Mental Health']
+Scores: [0.17169798910617828]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0015546017093583941]
+Labels: ['Cancer']
+Scores: [0.010671132244169712]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39502059
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'Respiratory Sounds', 'Respiratory Tract Diseases', 'Auscultation']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04886549338698387]
+Labels: ['Diabetes']
+Scores: [0.004805528558790684]
+Labels: ['Diabetes type 2']
+Scores: [0.010619007982313633]
+Labels: ['Diabetes type 1']
+Scores: [0.010540408082306385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08923893421888351]
+Labels: ['Mental Health']
+Scores: [0.004678461700677872]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0027266915421932936]
+Labels: ['Cancer']
+Scores: [0.0990048348903656]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494780
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Antioxidants', 'Diet', 'Hypersensitivity', 'Child, Preschool', 'Inflammation', 'Male', 'Birth Cohort', 'Multimorbidity', 'Adult', 'Maternal Nutritional Physiological Phenomena', 'Infant', 'Respiratory Tract Diseases', 'Asthma', 'Prenatal Exposure Delayed Effects', 'Cohort Studies']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018229695037007332]
+Labels: ['Diabetes']
+Scores: [0.004276393912732601]
+Labels: ['Diabetes type 2']
+Scores: [0.0029753735288977623]
+Labels: ['Diabetes type 1']
+Scores: [0.003008604282513261]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02134254202246666]
+Labels: ['Mental Health']
+Scores: [0.0040527284145355225]
+Labels: ['Cardiovascular diseases']
+Scores: [0.019518129527568817]
+Labels: ['Cancer']
+Scores: [0.025508200749754906]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494537
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Caregivers', 'Chronic Disease', 'Patient Education as Topic', 'Health Literacy', 'Palliative Care', 'Advance Care Planning', 'Decision Making, Shared', 'Learning', 'Respiratory Tract Diseases', 'Health Knowledge, Attitudes, Practice', 'Adaptation, Psychological', 'Decision Making']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.008235988207161427]
+Labels: ['Diabetes']
+Scores: [0.002640077844262123]
+Labels: ['Diabetes type 2']
+Scores: [0.004870720207691193]
+Labels: ['Diabetes type 1']
+Scores: [0.0035603202413767576]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9862118363380432]
+Labels: ['Mental Health']
+Scores: [0.049954816699028015]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010258585214614868]
+Labels: ['Cancer']
+Scores: [0.011818811297416687]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494092
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Air Pollutants', 'Air Pollution', 'Environmental Exposure', 'Europe', 'Nitrogen Dioxide', 'Ozone', 'Respiratory Tract Diseases', 'World Health Organization']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005504291504621506]
+Labels: ['Diabetes']
+Scores: [0.00034359333221800625]
+Labels: ['Diabetes type 2']
+Scores: [0.000427806779043749]
+Labels: ['Diabetes type 1']
+Scores: [0.0003951577527914196]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01848781295120716]
+Labels: ['Mental Health']
+Scores: [0.0002914386859629303]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002411782741546631]
+Labels: ['Cancer']
+Scores: [0.0008184390026144683]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39493756
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Computational Biology', 'User-Computer Interface', 'Databases, Factual', 'Respiratory Tract Diseases', 'Software']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00961232092231512]
+Labels: ['Diabetes']
+Scores: [0.011038214899599552]
+Labels: ['Diabetes type 2']
+Scores: [0.011550459079444408]
+Labels: ['Diabetes type 1']
+Scores: [0.009303097613155842]
+Labels: ['Chronic respiratory disease']
+Scores: [0.38190796971321106]
+Labels: ['Mental Health']
+Scores: [0.000733913155272603]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011687863618135452]
+Labels: ['Cancer']
+Scores: [0.012369876727461815]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39489274
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Republic of Korea', 'Humans', 'Female', 'Male', 'Temperature', 'Middle Aged', 'Seasons', 'Aged', 'Cardiovascular Diseases', 'Mortality', 'Adult', 'Child', 'Adolescent', 'Child, Preschool', 'Young Adult', 'Infant', 'Aged, 80 and over', 'Respiratory Tract Diseases', 'Infant, Newborn']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013676182366907597]
+Labels: ['Diabetes']
+Scores: [0.0012661712244153023]
+Labels: ['Diabetes type 2']
+Scores: [0.00122363050468266]
+Labels: ['Diabetes type 1']
+Scores: [0.0011195279657840729]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021943623200058937]
+Labels: ['Mental Health']
+Scores: [0.0045882174745202065]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030033256858587265]
+Labels: ['Cancer']
+Scores: [0.10283594578504562]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39477760
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Spain', 'COVID-19', 'Male', 'Female', 'Middle Aged', 'Aged', 'Adult', 'Adolescent', 'Young Adult', 'Cause of Death', 'Aged, 80 and over', 'Child', 'Child, Preschool', 'Infant', 'Respiratory Tract Diseases', 'Mortality', 'Pandemics', 'Infant, Newborn']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013680011965334415]
+Labels: ['Diabetes']
+Scores: [0.0006202689255587757]
+Labels: ['Diabetes type 2']
+Scores: [0.0012755952775478363]
+Labels: ['Diabetes type 1']
+Scores: [0.0012000600108876824]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6599288582801819]
+Labels: ['Mental Health']
+Scores: [0.0006224312819540501]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0017280555330216885]
+Labels: ['Cancer']
+Scores: [0.015501290559768677]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39472952
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'South Africa', 'Quality of Life', 'Child, Preschool', 'Infant', 'Male', 'Female', 'Delphi Technique', 'Surveys and Questionnaires', 'Respiratory Tract Diseases', 'Infant, Newborn', 'Psychometrics', 'Respiratory Tract Infections']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03842609375715256]
+Labels: ['Diabetes']
+Scores: [0.002390817506238818]
+Labels: ['Diabetes type 2']
+Scores: [0.0059002782218158245]
+Labels: ['Diabetes type 1']
+Scores: [0.002905242145061493]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05752409249544144]
+Labels: ['Mental Health']
+Scores: [0.0020640213042497635]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004278544336557388]
+Labels: ['Cancer']
+Scores: [0.013972962275147438]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39468133
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Infant', 'South Africa', 'Female', 'Male', 'Eggs', 'Gastrointestinal Diseases', 'Infant Nutritional Physiological Phenomena', 'Respiratory Tract Diseases', 'Incidence', 'Morbidity']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01615414023399353]
+Labels: ['Diabetes']
+Scores: [0.0020028166472911835]
+Labels: ['Diabetes type 2']
+Scores: [0.0018773734336718917]
+Labels: ['Diabetes type 1']
+Scores: [0.0014899997040629387]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023257989436388016]
+Labels: ['Mental Health']
+Scores: [0.0012776402290910482]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008239015005528927]
+Labels: ['Cancer']
+Scores: [0.003262015525251627]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39466470
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Bone Morphogenetic Protein 2', 'Signal Transduction', 'Animals', 'Respiratory Tract Diseases', 'Lung Neoplasms', 'Hypertension, Pulmonary']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007753693964332342]
+Labels: ['Diabetes']
+Scores: [0.001169120892882347]
+Labels: ['Diabetes type 2']
+Scores: [0.0014771008864045143]
+Labels: ['Diabetes type 1']
+Scores: [0.0012580037582665682]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3028261363506317]
+Labels: ['Mental Health']
+Scores: [0.0006179666379466653]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009915546514093876]
+Labels: ['Cancer']
+Scores: [0.048257581889629364]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39465586
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Pulmonary Disease, Chronic Obstructive', 'Male', 'Female', 'Aged', 'Comorbidity', 'Patient Readmission', 'Length of Stay', 'Middle Aged', 'Retrospective Studies', 'Heart Failure', 'Prospective Studies', 'Hypertension', 'Myocardial Ischemia', 'Pulmonary Heart Disease', 'Aged, 80 and over', 'Prevalence', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01583760790526867]
+Labels: ['Diabetes']
+Scores: [0.0006068779621273279]
+Labels: ['Diabetes type 2']
+Scores: [0.015953727066516876]
+Labels: ['Diabetes type 1']
+Scores: [0.003320594783872366]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7460649013519287]
+Labels: ['Mental Health']
+Scores: [0.0008269647369161248]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9176328182220459]
+Labels: ['Cancer']
+Scores: [0.003937901463359594]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39462582
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Ozone', 'Japan', 'Particulate Matter', 'Humans', 'Air Pollutants', 'Cities', 'Aged', 'Female', 'Mortality', 'Male', 'Cardiovascular Diseases', 'Middle Aged', 'Adult', 'Air Pollution', 'Hot Temperature', 'Temperature', 'Respiratory Tract Diseases', 'Environmental Exposure', 'Young Adult', 'Aged, 80 and over']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018645400181412697]
+Labels: ['Diabetes']
+Scores: [0.00980033352971077]
+Labels: ['Diabetes type 2']
+Scores: [0.01302001066505909]
+Labels: ['Diabetes type 1']
+Scores: [0.007548166438937187]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10587690025568008]
+Labels: ['Mental Health']
+Scores: [0.051090698689222336]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016555430367588997]
+Labels: ['Cancer']
+Scores: [0.01653609797358513]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': True, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39462039
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Gastrointestinal Microbiome', 'Genome-Wide Association Study', 'Lung', 'Respiratory Tract Diseases', 'Risk Factors']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011872785165905952]
+Labels: ['Diabetes']
+Scores: [0.0010230642510578036]
+Labels: ['Diabetes type 2']
+Scores: [0.0019857315346598625]
+Labels: ['Diabetes type 1']
+Scores: [0.0017104251310229301]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08712625503540039]
+Labels: ['Mental Health']
+Scores: [0.0013186257565394044]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01283920556306839]
+Labels: ['Cancer']
+Scores: [0.0019288003677502275]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39457304
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Cross-Sectional Studies', 'Dust', 'Adult', 'Male', 'Occupational Exposure', 'Ethiopia', 'Female', 'Paper', 'Middle Aged', 'Cough', 'Prevalence', 'Young Adult', 'Respiratory Tract Diseases', 'Respiratory Sounds', 'Surveys and Questionnaires', 'Occupational Diseases', 'Industry', 'Dyspnea', 'Air Pollutants, Occupational']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010144091211259365]
+Labels: ['Diabetes']
+Scores: [0.0007086474797688425]
+Labels: ['Diabetes type 2']
+Scores: [0.001426782924681902]
+Labels: ['Diabetes type 1']
+Scores: [0.0013696097303181887]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6367648243904114]
+Labels: ['Mental Health']
+Scores: [0.0011379268253222108]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012393273646011949]
+Labels: ['Cancer']
+Scores: [0.0048251827247440815]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39453518
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Particulate Matter', 'Aged', 'Female', 'Male', 'Cross-Over Studies', 'Altitude', 'Air Pollutants', 'Respiratory Tract Diseases', 'China', 'Extreme Weather', 'Aged, 80 and over', 'Middle Aged', 'Cities', 'Air Pollution']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0018578621093183756]
+Labels: ['Diabetes']
+Scores: [0.0005026384606026113]
+Labels: ['Diabetes type 2']
+Scores: [0.0007112952880561352]
+Labels: ['Diabetes type 1']
+Scores: [0.0006285588606260717]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011712873820215464]
+Labels: ['Mental Health']
+Scores: [0.002422518562525511]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009058627183549106]
+Labels: ['Cancer']
+Scores: [0.04963775351643562]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39444957
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Adolescent', 'Adult', 'Child', 'Humans', 'Air Pollutants', 'Air Pollution', 'Environmental Exposure', 'Particulate Matter', 'Respiratory Tract Diseases']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.050852954387664795]
+Labels: ['Diabetes']
+Scores: [0.0013525622198358178]
+Labels: ['Diabetes type 2']
+Scores: [0.0022922682110220194]
+Labels: ['Diabetes type 1']
+Scores: [0.0018484366592019796]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11728537827730179]
+Labels: ['Mental Health']
+Scores: [0.0006404604064300656]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003908015321940184]
+Labels: ['Cancer']
+Scores: [0.02123093232512474]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39444118
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Middle Aged', 'Heating', 'Prospective Studies', 'Female', 'Male', 'Respiratory Tract Diseases', 'Proportional Hazards Models', 'China', 'Smoking', 'Risk Factors', 'Adult', 'Air Pollution, Indoor']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004823687952011824]
+Labels: ['Diabetes']
+Scores: [0.0038359302561730146]
+Labels: ['Diabetes type 2']
+Scores: [0.0011745848460122943]
+Labels: ['Diabetes type 1']
+Scores: [0.0009013909148052335]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11798933893442154]
+Labels: ['Mental Health']
+Scores: [0.0003917363937944174]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007546289125457406]
+Labels: ['Cancer']
+Scores: [0.01361022237688303]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39443904
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Netherlands', 'Female', 'Male', 'Adult', 'Middle Aged', 'Smoke', 'Wood', 'Air Pollutants', 'Environmental Exposure', 'Aged', 'Particulate Matter', 'Respiratory Tract Diseases', 'Glucose']
+Labels: ['Noncommunicable Diseases']
+Scores: [0.048572707921266556]
+Labels: ['Diabetes']
+Scores: [0.0004090479342266917]
+Labels: ['Diabetes type 2']
+Scores: [0.0007796917343512177]
+Labels: ['Diabetes type 1']
+Scores: [0.0005473678465932608]
+Labels: ['Chronic respiratory disease']
+Scores: [0.020970603451132774]
+Labels: ['Mental Health']
+Scores: [0.001618733978830278]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016788773238658905]
+Labels: ['Cancer']
+Scores: [0.002471850486472249]
+Wanted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': True, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Predicted: {'Noncommunicable Diseases': False, 'Diabetes': False, 'Diabetes type 2': False, 'Diabetes type 1': False, 'Chronic respiratory disease': False, 'Mental Health': False, 'Cardiovascular diseases': False, 'Cancer': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39439241
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Switzerland', 'Humans', 'History, 20th Century', 'History, 21st Century', 'History, 17th Century', 'History, 16th Century', 'Respiratory Tract Diseases', 'Male', 'Female', 'History, 18th Century', 'History, 19th Century', 'Adult', 'Middle Aged', 'Respiration Disorders', 'Aged', 'Child', 'Adolescent', 'Air Pollution']
+Labels: ['Noncommunicable Diseases']
\ No newline at end of file
diff --git a/testModel/results/zero_shot/v2/facebook-bart_large_mnli.txt b/testModel/results/zero_shot/v2/facebook-bart_large_mnli.txt
new file mode 100644
index 000000000..63eb76848
--- /dev/null
+++ b/testModel/results/zero_shot/v2/facebook-bart_large_mnli.txt
@@ -0,0 +1,20029 @@
+---------------------------------
+MODEL: facebook/bart-large-mnli
+TRESHOLD: 0.7
+---------------------------------
+---------------------------------
+PMID: 39738226
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Ethiopia', 'Male', 'Female', 'Middle Aged', 'Disorders of Excessive Somnolence', 'Cross-Sectional Studies', 'Adult', 'Prevalence', 'Risk Factors', 'Aged', 'Hypertension', 'Surveys and Questionnaires', 'Comorbidity', 'Obesity', 'Snoring']
+Labels: ['Diabetes type 2']
+Scores: [0.8772953748703003]
+Labels: ['Chronic respiratory disease']
+Scores: [0.41252750158309937]
+Labels: ['Diabetes type 1']
+Scores: [0.40238818526268005]
+Labels: ['Diabetes']
+Scores: [0.8891658782958984]
+Labels: ['Cardiovascular diseases']
+Scores: [0.18494044244289398]
+Labels: ['Mental Health']
+Scores: [0.17897330224514008]
+Labels: ['Cancer']
+Scores: [0.03367524594068527]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.40789660811424255]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39737893
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Male', 'Female', 'Nutrition Surveys', 'Middle Aged', 'Genome-Wide Association Study', 'Arthritis, Rheumatoid', 'Adult', 'Arthritis', 'Prevalence', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Aged', 'Genetic Predisposition to Disease', 'Logistic Models', 'Polymorphism, Single Nucleotide']
+Labels: ['Diabetes type 2']
+Scores: [0.009314559400081635]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009696221677586436]
+Labels: ['Diabetes type 1']
+Scores: [0.9891573190689087]
+Labels: ['Diabetes']
+Scores: [0.985927402973175]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00022995025210548192]
+Labels: ['Mental Health']
+Scores: [0.0021717422641813755]
+Labels: ['Cancer']
+Scores: [0.000341850973200053]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4639992117881775]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39737509
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'India', 'Biological Specimen Banks', 'Adult', 'Female', 'Male', 'Diabetes Mellitus', 'Registries', 'Biomedical Research', 'Young Adult', 'Cohort Studies', 'Age of Onset', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.607638418674469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006618833635002375]
+Labels: ['Diabetes type 1']
+Scores: [0.564437747001648]
+Labels: ['Diabetes']
+Scores: [0.9902006983757019]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004532578866928816]
+Labels: ['Mental Health']
+Scores: [0.002291615353897214]
+Labels: ['Cancer']
+Scores: [0.0010103234089910984]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019248567521572113]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736941
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Male', 'Rats, Wistar', 'Receptors, N-Methyl-D-Aspartate', 'Diabetes Mellitus, Experimental', 'Insulin', 'Rats', 'Magnesium', 'Diabetes Mellitus, Type 2', 'Nitric Oxide Synthase Type I', 'Dietary Supplements', 'Random Allocation', 'Streptozocin']
+Labels: ['Diabetes type 2']
+Scores: [0.9690902233123779]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006386847235262394]
+Labels: ['Diabetes type 1']
+Scores: [0.028204232454299927]
+Labels: ['Diabetes']
+Scores: [0.9486139416694641]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0035381612833589315]
+Labels: ['Mental Health']
+Scores: [0.06260345131158829]
+Labels: ['Cancer']
+Scores: [0.005565842147916555]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17132654786109924]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736870
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Nomograms', 'Diabetic Neuropathies', 'Female', 'Male', 'Middle Aged', 'Aged', 'Risk Factors', 'ROC Curve', 'Diabetes Mellitus, Type 2', 'Prognosis', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.15813131630420685]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00019411284301895648]
+Labels: ['Diabetes type 1']
+Scores: [0.0873318463563919]
+Labels: ['Diabetes']
+Scores: [0.9752547144889832]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00017546681920066476]
+Labels: ['Mental Health']
+Scores: [0.0009393908549100161]
+Labels: ['Cancer']
+Scores: [0.0001821790647227317]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11933296173810959]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736865
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Ultrasonography', 'Aged', 'Middle Aged', 'Bone Density', 'Diabetes Mellitus, Type 2', 'Tibia', 'Absorptiometry, Photon', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Cortical Bone', 'Elasticity']
+Labels: ['Diabetes type 2']
+Scores: [0.6237707138061523]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0037781258579343557]
+Labels: ['Diabetes type 1']
+Scores: [0.7214159369468689]
+Labels: ['Diabetes']
+Scores: [0.9125509262084961]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016867149388417602]
+Labels: ['Mental Health']
+Scores: [0.026750585064291954]
+Labels: ['Cancer']
+Scores: [0.00551133556291461]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12679439783096313]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736861
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Middle Aged', 'Hyperparathyroidism, Primary', 'Adrenal Glands', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.3819863498210907]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018421565182507038]
+Labels: ['Diabetes type 1']
+Scores: [0.14527925848960876]
+Labels: ['Diabetes']
+Scores: [0.9946532249450684]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04110582545399666]
+Labels: ['Mental Health']
+Scores: [0.21962201595306396]
+Labels: ['Cancer']
+Scores: [0.0009106539073400199]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4979383051395416]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736858
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Male', 'Female', 'Middle Aged', 'Nutrition Surveys', 'Adult', 'Oxidative Stress', 'United States', 'Aged', 'Life Style', 'Diet', 'Risk Factors', 'Follow-Up Studies', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.9962843060493469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007923890836536884]
+Labels: ['Diabetes type 1']
+Scores: [0.0004085342516191304]
+Labels: ['Diabetes']
+Scores: [0.9690529704093933]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9921032786369324]
+Labels: ['Mental Health']
+Scores: [0.006075339857488871]
+Labels: ['Cancer']
+Scores: [0.00373245170339942]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05794346705079079]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736551
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Health Literacy', 'Physician-Patient Relations', 'Middle Aged', 'Cross-Sectional Studies', 'Self Care', 'Information Seeking Behavior', 'Medication Adherence', 'Communication', 'Aged', 'Adult', 'Internet', 'Assessment of Medication Adherence']
+Labels: ['Diabetes type 2']
+Scores: [0.9986691474914551]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009405017481185496]
+Labels: ['Diabetes type 1']
+Scores: [0.00032373954309150577]
+Labels: ['Diabetes']
+Scores: [0.9807448387145996]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003534980060067028]
+Labels: ['Mental Health']
+Scores: [0.0010389753151685]
+Labels: ['Cancer']
+Scores: [0.0013098242925480008]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014925142750144005]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736518
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sodium-Glucose Transporter 2 Inhibitors', 'Male', 'Atrial Fibrillation', 'Retrospective Studies', 'Female', 'Aged', 'Treatment Outcome', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Time Factors', 'Risk Factors', 'Risk Assessment', 'Hemorrhage', 'Aged, 80 and over', 'Cause of Death', 'Myocardial Infarction']
+Labels: ['Diabetes type 2']
+Scores: [0.5775060057640076]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013163002207875252]
+Labels: ['Diabetes type 1']
+Scores: [0.17885856330394745]
+Labels: ['Diabetes']
+Scores: [0.9584567546844482]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9106268882751465]
+Labels: ['Mental Health']
+Scores: [0.06535910069942474]
+Labels: ['Cancer']
+Scores: [0.009308879263699055]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.47967931628227234]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736351
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Fibroblast Growth Factors', 'Diabetes Mellitus, Type 2', 'Mice', 'Dependovirus', 'Humans', 'Gene Transfer Techniques', 'Genetic Therapy', 'Male', 'Diabetes Mellitus, Experimental', 'HEK293 Cells', 'Mice, Inbred C57BL', 'Blood Glucose', 'Genetic Vectors', 'Liver', 'Hypoglycemic Agents']
+Labels: ['Diabetes type 2']
+Scores: [0.995156466960907]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000468710670247674]
+Labels: ['Diabetes type 1']
+Scores: [0.00028768909396603703]
+Labels: ['Diabetes']
+Scores: [0.9673820734024048]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003295361530035734]
+Labels: ['Mental Health']
+Scores: [0.00968968402594328]
+Labels: ['Cancer']
+Scores: [0.0005706946831196547]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2729572057723999]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736334
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cross-Sectional Studies', 'Diet, Vegetarian', 'Male', 'Female', 'Middle Aged', 'Adult', 'Prospective Studies', 'Aged', 'Risk Factors', 'United Kingdom', 'Proteomics', 'Diet, Healthy', 'Diet, Plant-Based']
+Labels: ['Diabetes type 2']
+Scores: [0.9914994835853577]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04904932528734207]
+Labels: ['Diabetes type 1']
+Scores: [0.0013385459315031767]
+Labels: ['Diabetes']
+Scores: [0.9839138388633728]
+Labels: ['Cardiovascular diseases']
+Scores: [0.026127690449357033]
+Labels: ['Mental Health']
+Scores: [0.06489917635917664]
+Labels: ['Cancer']
+Scores: [0.0033927790354937315]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5867033004760742]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736162
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Quality of Life', 'Nigeria', 'Male', 'Female', 'Middle Aged', 'Self-Management', 'Patient Education as Topic', 'Adult', 'Surveys and Questionnaires', 'Health Knowledge, Attitudes, Practice', 'Aged', 'Self Care']
+Labels: ['Diabetes type 2']
+Scores: [0.9946262836456299]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006147893727757037]
+Labels: ['Diabetes type 1']
+Scores: [0.00023018097272142768]
+Labels: ['Diabetes']
+Scores: [0.9243098497390747]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000441757874796167]
+Labels: ['Mental Health']
+Scores: [0.00028175124316476285]
+Labels: ['Cancer']
+Scores: [0.0004491313302423805]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03273339197039604]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735994
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Receptor, ErbB-4', 'Neuregulins', 'Liver', 'Middle Aged', 'Female', 'Non-alcoholic Fatty Liver Disease', 'Male', 'Adult', 'Lipogenesis', 'Obesity', 'Diabetes Mellitus, Type 2', 'RNA, Messenger', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.10674107819795609]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004731630906462669]
+Labels: ['Diabetes type 1']
+Scores: [0.10055713355541229]
+Labels: ['Diabetes']
+Scores: [0.021208202466368675]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009264012798666954]
+Labels: ['Mental Health']
+Scores: [0.0005512729403562844]
+Labels: ['Cancer']
+Scores: [0.04619336500763893]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0705089420080185]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735781
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Hip Fractures', 'Male', 'Female', 'Albuminuria', 'Aged', 'Middle Aged', 'Creatinine', 'Risk Factors', 'Bone Density', 'Postmenopause']
+Labels: ['Diabetes type 2']
+Scores: [0.9171372056007385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04260283336043358]
+Labels: ['Diabetes type 1']
+Scores: [0.0893581435084343]
+Labels: ['Diabetes']
+Scores: [0.9095638990402222]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07903429865837097]
+Labels: ['Mental Health']
+Scores: [0.15170860290527344]
+Labels: ['Cancer']
+Scores: [0.03905690088868141]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6258280277252197]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735651
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Iran', 'Middle Aged', 'Follow-Up Studies', 'Incidence', 'Adult', 'Thyrotropin', 'Thyroxine', 'Longitudinal Studies', 'Thyroid Hormones', 'Risk Factors', 'Thyroid Function Tests', 'Thyroid Gland', 'Thyroid Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.9913642406463623]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00213112635537982]
+Labels: ['Diabetes type 1']
+Scores: [0.0002654438139870763]
+Labels: ['Diabetes']
+Scores: [0.9720920324325562]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003585978876799345]
+Labels: ['Mental Health']
+Scores: [0.030428115278482437]
+Labels: ['Cancer']
+Scores: [0.0022092561703175306]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21257483959197998]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735647
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Fecal Microbiota Transplantation', 'Humans', 'Diabetes Mellitus, Type 2', 'Gastrointestinal Microbiome', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.9868212938308716]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016850048676133156]
+Labels: ['Diabetes type 1']
+Scores: [0.027661027386784554]
+Labels: ['Diabetes']
+Scores: [0.9743332266807556]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011414964683353901]
+Labels: ['Mental Health']
+Scores: [0.020126093178987503]
+Labels: ['Cancer']
+Scores: [0.007459972985088825]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17840413749217987]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735646
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Somatostatin', 'Acromegaly', 'Pituitary ACTH Hypersecretion', 'Hyperglycemia', 'Algorithms', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.8869357109069824]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09211228042840958]
+Labels: ['Diabetes type 1']
+Scores: [0.03788179159164429]
+Labels: ['Diabetes']
+Scores: [0.7794046401977539]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7640639543533325]
+Labels: ['Mental Health']
+Scores: [0.17903964221477509]
+Labels: ['Cancer']
+Scores: [0.19381095468997955]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.32503145933151245]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39735639
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Adiponectin', 'Leptin', 'Diabetic Neuropathies', 'Male', 'Female', 'Middle Aged', 'Case-Control Studies', 'Diabetes Mellitus, Type 2', 'Aged', 'Biomarkers', 'Risk Factors', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.2621864676475525]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006612685974687338]
+Labels: ['Diabetes type 1']
+Scores: [0.17569580674171448]
+Labels: ['Diabetes']
+Scores: [0.989005982875824]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00047703555901534855]
+Labels: ['Mental Health']
+Scores: [0.005012118723243475]
+Labels: ['Cancer']
+Scores: [0.0005570387002080679]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.061537858098745346]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735416
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Foot', 'Amputation, Surgical', 'Male', 'Middle Aged', 'Female', 'Risk Factors', 'Aged', 'Diabetes Mellitus, Type 2', 'Retrospective Studies', 'Lower Extremity', 'Age Factors', 'China', 'Adult', 'Prevalence', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.9654297232627869]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015579591854475439]
+Labels: ['Diabetes type 1']
+Scores: [0.00028996466426178813]
+Labels: ['Diabetes']
+Scores: [0.9510445594787598]
+Labels: ['Cardiovascular diseases']
+Scores: [9.59371609496884e-05]
+Labels: ['Mental Health']
+Scores: [0.00013589639274869114]
+Labels: ['Cancer']
+Scores: [0.00011177043052157387]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0020645931363105774]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735415
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Metabolomics', 'Middle Aged', 'Coronary Disease', 'Biomarkers', 'Diabetes Mellitus, Type 2', 'Comorbidity', 'Depression', 'Hypertension', 'Aged', 'Gas Chromatography-Mass Spectrometry', 'Metabolome', 'Adult', 'Case-Control Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.0009705980191938579]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00010334004764445126]
+Labels: ['Diabetes type 1']
+Scores: [0.000727110484149307]
+Labels: ['Diabetes']
+Scores: [0.0001996840292122215]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9948429465293884]
+Labels: ['Mental Health']
+Scores: [4.2629581002984196e-05]
+Labels: ['Cancer']
+Scores: [0.00014362283400259912]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00012123386841267347]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39735414
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cognitive Dysfunction', 'Olfaction Disorders', 'Early Diagnosis', 'Biomarkers', 'Smell', 'Magnetic Resonance Imaging', 'Brain']
+Labels: ['Diabetes type 2']
+Scores: [0.9774485230445862]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000290163850877434]
+Labels: ['Diabetes type 1']
+Scores: [0.00012223141675349325]
+Labels: ['Diabetes']
+Scores: [0.9159121513366699]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00010388615191914141]
+Labels: ['Mental Health']
+Scores: [0.00816238485276699]
+Labels: ['Cancer']
+Scores: [0.00011302502389298752]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0018136572325602174]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39734182
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Foot', 'Female', 'Male', 'Middle Aged', 'Aged', 'Aged, 80 and over', 'Tibia', 'Periosteum', 'Microcirculation', 'Treatment Outcome', 'Follow-Up Studies', 'Wound Healing', 'Diabetes Mellitus, Type 2', 'Severity of Illness Index']
+Labels: ['Diabetes type 2']
+Scores: [0.19687773287296295]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0017909513553604484]
+Labels: ['Diabetes type 1']
+Scores: [0.025735365226864815]
+Labels: ['Diabetes']
+Scores: [0.9738592505455017]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007326864870265126]
+Labels: ['Mental Health']
+Scores: [0.002403662772849202]
+Labels: ['Cancer']
+Scores: [0.0005847887950949371]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1350061595439911]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733376
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hungary', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Blood Glucose', 'Glycated Hemoglobin', 'Aged', 'Clinical Laboratory Techniques', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.7575762867927551]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002339253987884149]
+Labels: ['Diabetes type 1']
+Scores: [0.5962243676185608]
+Labels: ['Diabetes']
+Scores: [0.9777984619140625]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00015128585800994188]
+Labels: ['Mental Health']
+Scores: [0.00016139856597874314]
+Labels: ['Cancer']
+Scores: [9.03891195775941e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13756854832172394]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733138
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Diabetes Mellitus, Type 2', 'Humans', 'Osteoarthritis', 'Animals', 'Rats', 'Chondrocytes', 'Cartilage, Articular', 'Up-Regulation', 'Lipopolysaccharide Receptors', 'Male', 'Monocytes', 'Gene Expression Profiling', 'Biomarkers', 'Cell Adhesion Molecules']
+Labels: ['Diabetes type 2']
+Scores: [0.9163209795951843]
+Labels: ['Chronic respiratory disease']
+Scores: [0.032824959605932236]
+Labels: ['Diabetes type 1']
+Scores: [0.00968590285629034]
+Labels: ['Diabetes']
+Scores: [0.9249271154403687]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01288564596325159]
+Labels: ['Mental Health']
+Scores: [0.048749566078186035]
+Labels: ['Cancer']
+Scores: [0.023425159975886345]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.31311050057411194]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733115
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin', 'Glucocorticoids', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Glucose', 'Blood Glucose', 'Models, Biological']
+Labels: ['Diabetes type 2']
+Scores: [0.5997809767723083]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016204796265810728]
+Labels: ['Diabetes type 1']
+Scores: [0.9961452484130859]
+Labels: ['Diabetes']
+Scores: [0.8661187887191772]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019113562302663922]
+Labels: ['Mental Health']
+Scores: [0.011547856964170933]
+Labels: ['Cancer']
+Scores: [0.0011337080504745245]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009721140377223492]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39733102
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Monocytes', 'Male', 'Female', 'Middle Aged', 'Apolipoprotein A-I', 'Biomarkers', 'Aged', 'ROC Curve', 'Non-alcoholic Fatty Liver Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.9614728689193726]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06076051667332649]
+Labels: ['Diabetes type 1']
+Scores: [0.10920070111751556]
+Labels: ['Diabetes']
+Scores: [0.8712493181228638]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09086541831493378]
+Labels: ['Mental Health']
+Scores: [0.23764322698116302]
+Labels: ['Cancer']
+Scores: [0.029952935874462128]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5285854339599609]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732300
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Ferroptosis', 'NF-E2-Related Factor 2', 'Diabetes Mellitus, Type 2', 'Male', 'Drugs, Chinese Herbal', 'Mice', 'Diabetes Mellitus, Experimental', 'Mice, Inbred C57BL', 'Oxidative Stress', 'Liver', 'Diet, High-Fat', 'Lipid Peroxidation', 'Berberine', 'Cell Line', 'Glucosides', 'Flavanones', 'Streptozocin', 'Isoflavones', 'Flavonoids']
+Labels: ['Diabetes type 2']
+Scores: [0.9985575079917908]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000864594301674515]
+Labels: ['Diabetes type 1']
+Scores: [0.0003740056126844138]
+Labels: ['Diabetes']
+Scores: [0.9928115606307983]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003013981331605464]
+Labels: ['Mental Health']
+Scores: [0.004778262693434954]
+Labels: ['Cancer']
+Scores: [0.0005748876137658954]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.046658363193273544]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731787
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Insulin Resistance', 'Animals', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Mice', 'Triterpenes', 'Male', 'Diabetes Mellitus, Experimental', 'Molecular Structure', 'Structure-Activity Relationship', 'Humans', 'Dose-Response Relationship, Drug', 'Mice, Inbred C57BL']
+Labels: ['Diabetes type 2']
+Scores: [0.9654596447944641]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06286973506212234]
+Labels: ['Diabetes type 1']
+Scores: [0.14646707475185394]
+Labels: ['Diabetes']
+Scores: [0.9295766949653625]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08965348452329636]
+Labels: ['Mental Health']
+Scores: [0.2142106145620346]
+Labels: ['Cancer']
+Scores: [0.027002880349755287]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5212558507919312]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731761
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Anti-Bacterial Agents', 'Coagulase', 'Comorbidity', 'Diabetes Mellitus, Type 2', 'Staphylococcal Infections', 'Staphylococcus', 'Systemic Inflammatory Response Syndrome']
+Labels: ['Diabetes type 2']
+Scores: [0.7755073308944702]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010036108084022999]
+Labels: ['Diabetes type 1']
+Scores: [0.09174863249063492]
+Labels: ['Diabetes']
+Scores: [0.8146899938583374]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8955158591270447]
+Labels: ['Mental Health']
+Scores: [0.02043810859322548]
+Labels: ['Cancer']
+Scores: [0.0022285727318376303]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08040796965360641]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39730990
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'COVID-19', 'Diabetes Mellitus, Type 2', 'Ethnic and Racial Minorities', 'Primary Health Care', 'Prospective Studies', 'Telemedicine']
+Labels: ['Diabetes type 2']
+Scores: [0.9921603798866272]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009348059538751841]
+Labels: ['Diabetes type 1']
+Scores: [0.017633432522416115]
+Labels: ['Diabetes']
+Scores: [0.9331060647964478]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000683650083374232]
+Labels: ['Mental Health']
+Scores: [0.00048835389316082]
+Labels: ['Cancer']
+Scores: [0.0002001805551117286]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01139245368540287]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730877
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Non-alcoholic Fatty Liver Disease', 'Triglycerides', 'Middle Aged', 'Male', 'Female', 'Cholesterol, HDL', 'Retrospective Studies', 'Adult', 'Risk Factors', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.9109355807304382]
+Labels: ['Chronic respiratory disease']
+Scores: [0.043035317212343216]
+Labels: ['Diabetes type 1']
+Scores: [0.057252611964941025]
+Labels: ['Diabetes']
+Scores: [0.8027514815330505]
+Labels: ['Cardiovascular diseases']
+Scores: [0.14182023704051971]
+Labels: ['Mental Health']
+Scores: [0.07010377943515778]
+Labels: ['Cancer']
+Scores: [0.01859552413225174]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8782781362533569]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39730670
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Thyroid Hormones', 'Aged', 'Diabetic Nephropathies', 'Diabetic Retinopathy', 'Diabetic Neuropathies', 'Thyrotropin', 'Thyroid Gland', 'Risk Factors', 'Thyroxine']
+Labels: ['Diabetes type 2']
+Scores: [0.6337450742721558]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04293088614940643]
+Labels: ['Diabetes type 1']
+Scores: [0.04716511443257332]
+Labels: ['Diabetes']
+Scores: [0.6500934362411499]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09900276362895966]
+Labels: ['Mental Health']
+Scores: [0.14881107211112976]
+Labels: ['Cancer']
+Scores: [0.0287378691136837]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22155757248401642]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730430
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Periodontitis', 'Male', 'Female', 'Aged', 'Saliva', 'Biomarkers', 'Gingivitis', 'Adult', 'Microbiota', 'Aged, 80 and over', 'RNA, Ribosomal, 16S']
+Labels: ['Diabetes type 2']
+Scores: [0.9919999837875366]
+Labels: ['Chronic respiratory disease']
+Scores: [0.037975531071424484]
+Labels: ['Diabetes type 1']
+Scores: [0.0021723262034356594]
+Labels: ['Diabetes']
+Scores: [0.9825147986412048]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01665726862847805]
+Labels: ['Mental Health']
+Scores: [0.11219564825296402]
+Labels: ['Cancer']
+Scores: [0.025349466130137444]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18571533262729645]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730335
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sodium-Glucose Transporter 2 Inhibitors', 'Female', 'Male', 'Heart Failure', 'Middle Aged', 'Aged', 'Retrospective Studies', 'Diabetes Mellitus, Type 2', 'Republic of Korea']
+Labels: ['Diabetes type 2']
+Scores: [0.20614206790924072]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3523120582103729]
+Labels: ['Diabetes type 1']
+Scores: [0.17238399386405945]
+Labels: ['Diabetes']
+Scores: [0.07338147610425949]
+Labels: ['Cardiovascular diseases']
+Scores: [0.870755136013031]
+Labels: ['Mental Health']
+Scores: [0.12662114202976227]
+Labels: ['Cancer']
+Scores: [0.026325451210141182]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2247355878353119]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730078
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Sleep Initiation and Maintenance Disorders', 'Prediabetic State', 'Glycated Hemoglobin', 'Cognitive Behavioral Therapy', 'Blood Glucose', 'Male', 'Female', 'Insulin Resistance', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Blood Glucose Self-Monitoring', 'Adult', 'Patient Education as Topic', 'Aged', 'Sleep']
+Labels: ['Diabetes type 2']
+Scores: [0.18794794380664825]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00027757571660913527]
+Labels: ['Diabetes type 1']
+Scores: [0.02807615138590336]
+Labels: ['Diabetes']
+Scores: [0.5604224801063538]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003245660336688161]
+Labels: ['Mental Health']
+Scores: [0.0008908772142603993]
+Labels: ['Cancer']
+Scores: [0.00013457801833283156]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.33027374744415283]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729922
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Periodontitis', 'Male', 'Rats, Wistar', 'Macrophages', 'Diabetes Mellitus, Experimental', 'Rats', 'Alveolar Bone Loss', 'Vitamin D', 'Phagocytosis', 'Diabetes Mellitus, Type 2', 'Calcium', 'Efferocytosis']
+Labels: ['Diabetes type 2']
+Scores: [0.9857687950134277]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02917874976992607]
+Labels: ['Diabetes type 1']
+Scores: [0.1113336980342865]
+Labels: ['Diabetes']
+Scores: [0.9935828447341919]
+Labels: ['Cardiovascular diseases']
+Scores: [0.019766509532928467]
+Labels: ['Mental Health']
+Scores: [0.11700469255447388]
+Labels: ['Cancer']
+Scores: [0.016261957585811615]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.32537785172462463]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729784
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Melanoma', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Denmark', 'Middle Aged', 'Cross-Sectional Studies', 'Aged', 'Neoplasm Staging', 'Adult', 'Sex Factors', 'Skin Neoplasms', 'Registries', 'Lymphatic Metastasis', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.9900899529457092]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005488290917128325]
+Labels: ['Diabetes type 1']
+Scores: [0.0001662446156842634]
+Labels: ['Diabetes']
+Scores: [0.9731845259666443]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00032529773307032883]
+Labels: ['Mental Health']
+Scores: [0.0033805386628955603]
+Labels: ['Cancer']
+Scores: [0.7241500020027161]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16013801097869873]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cancer']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39729310
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Lectins', 'Male', 'Female', 'GPI-Linked Proteins', 'Middle Aged', 'Periodontitis', 'Cytokines', 'Tumor Necrosis Factor-alpha', 'Adult', 'Biomarkers', 'Cytokine TWEAK', 'Glycated Hemoglobin']
+Labels: ['Diabetes type 2']
+Scores: [0.7451748847961426]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007837010198272765]
+Labels: ['Diabetes type 1']
+Scores: [0.0005773925222456455]
+Labels: ['Diabetes']
+Scores: [0.1568359136581421]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00015147744852583855]
+Labels: ['Mental Health']
+Scores: [0.00026313422131352127]
+Labels: ['Cancer']
+Scores: [0.0005981185822747648]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5019701719284058]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729235
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Antioxidants', 'Plant Extracts', 'Animals', 'Hypoglycemic Agents', 'Adipogenesis', 'Mice', 'Adipocytes', 'Apoptosis', 'Asteraceae', '3T3-L1 Cells', 'alpha-Amylases', 'Cell Movement', 'Phenols', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.9041120409965515]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02497740462422371]
+Labels: ['Diabetes type 1']
+Scores: [0.004563418682664633]
+Labels: ['Diabetes']
+Scores: [0.8478857278823853]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02542877569794655]
+Labels: ['Mental Health']
+Scores: [0.1021939292550087]
+Labels: ['Cancer']
+Scores: [0.013269321992993355]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17912548780441284]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39728692
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Docosahexaenoic Acids', 'Animals', 'Diabetic Retinopathy', 'Mice', 'Humans', 'Electroretinography', 'Retina', 'Tomography, Optical Coherence', 'Male', 'Middle Aged', 'Mice, Inbred C57BL', 'Female', 'Diabetes Mellitus, Experimental', 'Gas Chromatography-Mass Spectrometry', 'Real-Time Polymerase Chain Reaction', 'Diabetes Mellitus, Type 2', 'Aged', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.2173801213502884]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005463920067995787]
+Labels: ['Diabetes type 1']
+Scores: [0.1928090900182724]
+Labels: ['Diabetes']
+Scores: [0.9316774010658264]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004041253123432398]
+Labels: ['Mental Health']
+Scores: [0.022088756784796715]
+Labels: ['Cancer']
+Scores: [0.002255008090287447]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0722050666809082]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39726656
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Israel', 'Female', 'Adolescent', 'Arabs', 'Cross-Sectional Studies', 'Jews', 'Polycystic Ovary Syndrome', 'Hypertension', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Pediatric Obesity', 'Prevalence', 'Male', 'Comorbidity']
+Labels: ['Diabetes type 2']
+Scores: [0.092430479824543]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008054699283093214]
+Labels: ['Diabetes type 1']
+Scores: [0.05586279183626175]
+Labels: ['Diabetes']
+Scores: [0.6040709614753723]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9944047927856445]
+Labels: ['Mental Health']
+Scores: [0.00390904676169157]
+Labels: ['Cancer']
+Scores: [0.0014174513053148985]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3722894489765167]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725431
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Prediabetic State', 'China', 'Diabetes Mellitus, Type 2', 'Randomized Controlled Trials as Topic', 'Prospective Studies', 'Single-Blind Method', 'Telemedicine', 'Multicenter Studies as Topic', 'Cost-Benefit Analysis', 'Male', 'Group Dynamics']
+Labels: ['Diabetes type 2']
+Scores: [0.0009705399279482663]
+Labels: ['Chronic respiratory disease']
+Scores: [8.858603541739285e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.0008700818871147931]
+Labels: ['Diabetes']
+Scores: [0.7961797714233398]
+Labels: ['Cardiovascular diseases']
+Scores: [9.585730003891513e-05]
+Labels: ['Mental Health']
+Scores: [0.0002532350190449506]
+Labels: ['Cancer']
+Scores: [6.571094854734838e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5862666964530945]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725366
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Diabetes Mellitus, Type 2', 'Drugs, Chinese Herbal', 'Male', 'Cognitive Dysfunction', 'Rats', 'Gastrointestinal Microbiome', 'Diabetes Mellitus, Experimental', 'Rats, Sprague-Dawley', 'Bile Acids and Salts', 'Hypoglycemic Agents', 'Insulin Resistance', 'Hippocampus', 'Maze Learning']
+Labels: ['Diabetes type 2']
+Scores: [0.9953629374504089]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015493507962673903]
+Labels: ['Diabetes type 1']
+Scores: [0.00020618962298613042]
+Labels: ['Diabetes']
+Scores: [0.9900885224342346]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0010905888630077243]
+Labels: ['Mental Health']
+Scores: [0.7499153017997742]
+Labels: ['Cancer']
+Scores: [0.0008683131309226155]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.40004658699035645]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Mental Health']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39724976
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Early Detection of Cancer', 'Colorectal Neoplasms', 'Mass Screening', 'Prostate-Specific Antigen', 'Chronic Disease', 'Male', 'Guideline Adherence', 'Prostatic Neoplasms', 'Diabetes Mellitus, Type 2', 'HIV Infections', 'Dyslipidemias']
+Labels: ['Diabetes type 2']
+Scores: [0.01298375241458416]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03777989372611046]
+Labels: ['Diabetes type 1']
+Scores: [0.015272922813892365]
+Labels: ['Diabetes']
+Scores: [0.0017219420988112688]
+Labels: ['Cardiovascular diseases']
+Scores: [0.050505656749010086]
+Labels: ['Mental Health']
+Scores: [0.0003775021177716553]
+Labels: ['Cancer']
+Scores: [0.7805927991867065]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13440187275409698]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39723533
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Cognitive Dysfunction', 'Mice', 'Network Pharmacology', 'Molecular Docking Simulation', 'Diabetes Mellitus, Type 2', 'Drugs, Chinese Herbal', 'Male', 'Diabetes Mellitus, Experimental', 'Protein Interaction Maps', 'Hippocampus', 'Signal Transduction', 'Disease Models, Animal', 'Morris Water Maze Test']
+Labels: ['Diabetes type 2']
+Scores: [0.689527690410614]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005358859896659851]
+Labels: ['Diabetes type 1']
+Scores: [0.3751055896282196]
+Labels: ['Diabetes']
+Scores: [0.9958661198616028]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016192366601899266]
+Labels: ['Mental Health']
+Scores: [0.38280969858169556]
+Labels: ['Cancer']
+Scores: [0.003889404935762286]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4733048975467682]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39722814
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Homocysteine', 'Male', 'Female', 'Middle Aged', 'Neural Conduction', 'Diabetic Nephropathies', 'Diabetic Neuropathies', 'Aged', 'Risk Factors', 'China']
+Labels: ['Diabetes type 2']
+Scores: [0.9952279329299927]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004319366067647934]
+Labels: ['Diabetes type 1']
+Scores: [0.000574604666326195]
+Labels: ['Diabetes']
+Scores: [0.9794625043869019]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012243055738508701]
+Labels: ['Mental Health']
+Scores: [0.017165349796414375]
+Labels: ['Cancer']
+Scores: [0.00473424419760704]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05735798552632332]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39722811
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'COVID-19', 'Female', 'Male', 'Middle Aged', 'Risk Factors', 'Post-Acute COVID-19 Syndrome', 'Aged', 'Adult', 'Ukraine', 'SARS-CoV-2']
+Labels: ['Diabetes type 2']
+Scores: [0.9927867650985718]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2941037714481354]
+Labels: ['Diabetes type 1']
+Scores: [0.00010533769091125578]
+Labels: ['Diabetes']
+Scores: [0.9853094220161438]
+Labels: ['Cardiovascular diseases']
+Scores: [0.3666864335536957]
+Labels: ['Mental Health']
+Scores: [0.0009053625981323421]
+Labels: ['Cancer']
+Scores: [0.00015045203326735646]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0267783273011446]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39721796
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Gestational Weight Gain', 'White People', 'Adult', 'Retrospective Studies', 'Pregnancy Outcome', 'Obesity', 'COVID-19', 'Pregnancy Complications', 'Black or African American', 'Health Status Disparities', 'Louisiana', 'Diabetes, Gestational', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.19347715377807617]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2633240222930908]
+Labels: ['Diabetes type 1']
+Scores: [0.16488301753997803]
+Labels: ['Diabetes']
+Scores: [0.1937188059091568]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09355168789625168]
+Labels: ['Mental Health']
+Scores: [0.04576508328318596]
+Labels: ['Cancer']
+Scores: [0.015882141888141632]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10130000114440918]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720906
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Testosterone', 'Middle Aged', 'Aged', 'Australia', 'Risk Factors', 'Glucose Tolerance Test', 'Glycated Hemoglobin', 'Prognosis', 'Blood Glucose', 'Glucose Intolerance', 'Life Style', 'Risk Assessment']
+Labels: ['Diabetes type 2']
+Scores: [0.9399593472480774]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001195302465930581]
+Labels: ['Diabetes type 1']
+Scores: [0.0013884048676118255]
+Labels: ['Diabetes']
+Scores: [0.8655366897583008]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028866855427622795]
+Labels: ['Mental Health']
+Scores: [0.011384113691747189]
+Labels: ['Cancer']
+Scores: [0.0007554727490060031]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5000340342521667]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720308
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Sri Lanka', 'Female', 'Male', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Age of Onset', 'Retrospective Studies', 'Prevalence', 'Developing Countries', 'Child', 'Adult', 'Glycated Hemoglobin', 'Diabetic Ketoacidosis']
+Labels: ['Diabetes type 2']
+Scores: [0.7229871153831482]
+Labels: ['Chronic respiratory disease']
+Scores: [8.66467016749084e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.6873677968978882]
+Labels: ['Diabetes']
+Scores: [0.9877461791038513]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00018069331417791545]
+Labels: ['Mental Health']
+Scores: [8.046201401157305e-05]
+Labels: ['Cancer']
+Scores: [6.318846135400236e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012122991494834423]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720253
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Osteoporosis', 'Adaptor Proteins, Signal Transducing', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Animals', 'Genetic Markers', 'Wnt Signaling Pathway', 'Bone Morphogenetic Proteins']
+Labels: ['Diabetes type 2']
+Scores: [0.06178886070847511]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00012244140089023858]
+Labels: ['Diabetes type 1']
+Scores: [0.031132789328694344]
+Labels: ['Diabetes']
+Scores: [0.8509349226951599]
+Labels: ['Cardiovascular diseases']
+Scores: [9.036971459863707e-05]
+Labels: ['Mental Health']
+Scores: [0.00027762993704527617]
+Labels: ['Cancer']
+Scores: [7.105607801349834e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0045290724374353886]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720249
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Blood Glucose', 'Glycemic Control', 'Cohort Studies', 'Aged', 'Follow-Up Studies', 'Risk Factors', 'Hypoglycemic Agents', 'Adult', 'Cause of Death', 'China']
+Labels: ['Diabetes type 2']
+Scores: [0.9973321557044983]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007688171463087201]
+Labels: ['Diabetes type 1']
+Scores: [0.0001669859339017421]
+Labels: ['Diabetes']
+Scores: [0.9637406468391418]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8617773056030273]
+Labels: ['Mental Health']
+Scores: [0.0006277533830143511]
+Labels: ['Cancer']
+Scores: [0.0004974283510819077]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01961068995296955]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720248
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin Resistance', 'Male', 'Cross-Sectional Studies', 'Female', 'Diabetic Nephropathies', 'Middle Aged', 'Nutrition Surveys', 'United States', 'Adult', 'Aged', 'Risk Factors', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Body Mass Index']
+Labels: ['Diabetes type 2']
+Scores: [0.33203381299972534]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002824333030730486]
+Labels: ['Diabetes type 1']
+Scores: [0.15433456003665924]
+Labels: ['Diabetes']
+Scores: [0.9348660111427307]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004034295678138733]
+Labels: ['Mental Health']
+Scores: [0.00805627927184105]
+Labels: ['Cancer']
+Scores: [0.0016257166862487793]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6776546239852905]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720247
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Gastrointestinal Microbiome', 'Insulin Resistance', 'Bile Acids and Salts', 'Medicine, Chinese Traditional', 'Precision Medicine', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.9710361957550049]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07906179875135422]
+Labels: ['Diabetes type 1']
+Scores: [0.051806967705488205]
+Labels: ['Diabetes']
+Scores: [0.9303241968154907]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05067397654056549]
+Labels: ['Mental Health']
+Scores: [0.09095218777656555]
+Labels: ['Cancer']
+Scores: [0.012999393977224827]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19798795878887177]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720175
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Glycemic Control', 'Diabetes Mellitus, Type 2', 'Health Education', 'Glycated Hemoglobin', 'Blood Glucose', 'Patient Education as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.9852142333984375]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10121537744998932]
+Labels: ['Diabetes type 1']
+Scores: [0.0007880171178840101]
+Labels: ['Diabetes']
+Scores: [0.8639758229255676]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06064251437783241]
+Labels: ['Mental Health']
+Scores: [0.09283077716827393]
+Labels: ['Cancer']
+Scores: [0.016142386943101883]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.36626356840133667]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720174
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Periapical Periodontitis', 'Diabetes Mellitus, Type 2', 'Prevalence', 'Male', 'Female', 'Middle Aged', 'Root Canal Therapy', 'Adult', 'Romania', 'Tooth, Nonvital', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.8987124562263489]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0243961401283741]
+Labels: ['Diabetes type 1']
+Scores: [0.027424536645412445]
+Labels: ['Diabetes']
+Scores: [0.808596134185791]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04479789361357689]
+Labels: ['Mental Health']
+Scores: [0.19073250889778137]
+Labels: ['Cancer']
+Scores: [0.014857787638902664]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5863579511642456]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719839
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'TNF-Related Apoptosis-Inducing Ligand', 'Diabetes Mellitus, Type 2', 'Periodontitis', 'Genetic Predisposition to Disease', 'Polymorphism, Single Nucleotide', 'Gene Frequency', 'Genotype', 'Blood Glucose', 'Polymorphism, Genetic', 'Glycated Hemoglobin']
+Labels: ['Diabetes type 2']
+Scores: [0.9923529028892517]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0010304268216714263]
+Labels: ['Diabetes type 1']
+Scores: [0.001014174078591168]
+Labels: ['Diabetes']
+Scores: [0.9964763522148132]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004346159112174064]
+Labels: ['Mental Health']
+Scores: [0.0019580477382987738]
+Labels: ['Cancer']
+Scores: [0.007894973270595074]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3928113877773285]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719724
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Synbiotics', 'Double-Blind Method', 'Male', 'Middle Aged', 'Female', 'Probiotics', 'Blood Glucose', 'Gastrointestinal Microbiome', 'Glycated Hemoglobin', 'Bifidobacterium animalis', 'Insulin Resistance', 'Treatment Outcome', 'Insulin']
+Labels: ['Diabetes type 2']
+Scores: [0.997584342956543]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002139475109288469]
+Labels: ['Diabetes type 1']
+Scores: [0.00012272153981029987]
+Labels: ['Diabetes']
+Scores: [0.9580070972442627]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00015887651534285396]
+Labels: ['Mental Health']
+Scores: [0.001261778874322772]
+Labels: ['Cancer']
+Scores: [0.0005767035181634128]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.590339720249176]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719658
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Acute Kidney Injury', 'Sodium-Glucose Transporter 2 Inhibitors', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Contrast Media', 'Aged', 'Coronary Angiography', 'Propensity Score', 'Percutaneous Coronary Intervention', 'Creatinine', 'China', 'Incidence', 'Retrospective Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.9917842745780945]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001383321825414896]
+Labels: ['Diabetes type 1']
+Scores: [0.00033703577355481684]
+Labels: ['Diabetes']
+Scores: [0.8442910313606262]
+Labels: ['Cardiovascular diseases']
+Scores: [0.851363480091095]
+Labels: ['Mental Health']
+Scores: [0.005741951987147331]
+Labels: ['Cancer']
+Scores: [0.0013973385794088244]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.044543515890836716]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719583
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Liraglutide', 'Sodium-Glucose Transporter 2 Inhibitors', 'Network Meta-Analysis', 'Hypoglycemic Agents', 'Randomized Controlled Trials as Topic', 'Treatment Outcome', 'Glucosides', 'Glycated Hemoglobin', 'Blood Glucose', 'Glucagon-Like Peptide-2 Receptor', 'Gastric Inhibitory Polypeptide', 'Tirzepatide']
+Labels: ['Diabetes type 2']
+Scores: [0.9476185441017151]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010635944083333015]
+Labels: ['Diabetes type 1']
+Scores: [0.00042896863305941224]
+Labels: ['Diabetes']
+Scores: [0.7434107065200806]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0072442409582436085]
+Labels: ['Mental Health']
+Scores: [0.02475440874695778]
+Labels: ['Cancer']
+Scores: [0.004563588183373213]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18301352858543396]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719404
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Dipeptidyl-Peptidase IV Inhibitors', 'Male', 'Diabetes Mellitus, Type 2', 'Female', 'Middle Aged', 'Sodium-Glucose Transporter 2 Inhibitors', 'Retrospective Studies', 'Aged', 'Hong Kong', 'Treatment Outcome', 'Risk Factors', 'Risk Assessment', 'Myocardial Infarction', 'Thrombosis', 'Time Factors', 'Stroke']
+Labels: ['Diabetes type 2']
+Scores: [0.9985591769218445]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005169257987290621]
+Labels: ['Diabetes type 1']
+Scores: [0.0002838709042407572]
+Labels: ['Diabetes']
+Scores: [0.992146372795105]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9937417507171631]
+Labels: ['Mental Health']
+Scores: [0.0014111589407548308]
+Labels: ['Cancer']
+Scores: [0.0008604114409536123]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010046040639281273]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719391
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Blood Glucose', 'Life Style', 'Exercise', 'Aged', 'Sleep', 'Hypoglycemic Agents', 'Follow-Up Studies', 'Precision Medicine', 'Adult', 'Biomarkers', 'Prognosis']
+Labels: ['Diabetes type 2']
+Scores: [0.9869071841239929]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005385866388678551]
+Labels: ['Diabetes type 1']
+Scores: [0.006177537143230438]
+Labels: ['Diabetes']
+Scores: [0.936008870601654]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006366536021232605]
+Labels: ['Mental Health']
+Scores: [0.020107954740524292]
+Labels: ['Cancer']
+Scores: [0.005143280606716871]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2869069576263428]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719314
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Biomarkers', 'Black or African American', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Follow-Up Studies', 'Glucose Clamp Technique', 'Glucose Tolerance Test', 'Incidence', 'Insulin', 'Insulin Resistance', 'Insulin Secretion', 'Parents', 'Prediabetic State', 'Prognosis', 'Prospective Studies', 'White']
+Labels: ['Diabetes type 2']
+Scores: [0.9612422585487366]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016750333830714226]
+Labels: ['Diabetes type 1']
+Scores: [0.0004150234453845769]
+Labels: ['Diabetes']
+Scores: [0.8860065937042236]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01969160884618759]
+Labels: ['Mental Health']
+Scores: [0.06523115932941437]
+Labels: ['Cancer']
+Scores: [0.005153170321136713]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17183087766170502]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719282
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Middle Aged', 'Qualitative Research', 'Singapore', 'Telemedicine', 'Adult', 'Self Efficacy', 'Aged', 'Health Behavior', 'Asian People', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Blood Pressure']
+Labels: ['Diabetes type 2']
+Scores: [0.9864609241485596]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015255606558639556]
+Labels: ['Diabetes type 1']
+Scores: [0.00023125653387978673]
+Labels: ['Diabetes']
+Scores: [0.9037039875984192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00012811695341952145]
+Labels: ['Mental Health']
+Scores: [0.0008305998635478318]
+Labels: ['Cancer']
+Scores: [0.00013115060573909432]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4177238643169403]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719183
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Non-alcoholic Fatty Liver Disease', 'Blood Glucose', 'Retrospective Studies', 'Glucose Tolerance Test', 'Adult', 'Aged', 'Cardiovascular Diseases', 'Risk Factors', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.05628310516476631]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009971522726118565]
+Labels: ['Diabetes type 1']
+Scores: [0.025717299431562424]
+Labels: ['Diabetes']
+Scores: [0.12993451952934265]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01756203919649124]
+Labels: ['Mental Health']
+Scores: [0.013938619755208492]
+Labels: ['Cancer']
+Scores: [0.0015546911163255572]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8929505944252014]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719182
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Chitinase-3-Like Protein 1', 'Male', 'Female', 'Middle Aged', 'Aged', 'Denmark', 'Cardiovascular Diseases', 'Biomarkers', 'Cohort Studies', 'C-Reactive Protein']
+Labels: ['Diabetes type 2']
+Scores: [0.6554471850395203]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015152264677453786]
+Labels: ['Diabetes type 1']
+Scores: [5.466681977850385e-05]
+Labels: ['Diabetes']
+Scores: [0.3084595799446106]
+Labels: ['Cardiovascular diseases']
+Scores: [0.37044891715049744]
+Labels: ['Mental Health']
+Scores: [4.925681059830822e-05]
+Labels: ['Cancer']
+Scores: [0.0006687098648399115]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.047671519219875336]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719170
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Glucagon-Like Peptide-1 Receptor', 'Body Composition', 'Network Meta-Analysis as Topic', 'Obesity', 'Hypoglycemic Agents', 'Randomized Controlled Trials as Topic', 'Receptors, Gastrointestinal Hormone', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Diabetes type 2']
+Scores: [0.08997635543346405]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10198426246643066]
+Labels: ['Diabetes type 1']
+Scores: [0.07596457004547119]
+Labels: ['Diabetes']
+Scores: [0.11515501141548157]
+Labels: ['Cardiovascular diseases']
+Scores: [0.022647645324468613]
+Labels: ['Mental Health']
+Scores: [0.010728723369538784]
+Labels: ['Cancer']
+Scores: [0.012187985703349113]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10916473716497421]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719165
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Insulin-Secreting Cells', 'Male', 'Glucagon-Like Peptides', 'Mice', 'Gastrointestinal Microbiome', 'Mice, Inbred C57BL', 'Diabetes Mellitus, Type 2', 'Signal Transduction', 'Diabetes Mellitus, Experimental', 'Methyltransferases', 'Diet, High-Fat', 'Hypoglycemic Agents']
+Labels: ['Diabetes type 2']
+Scores: [0.998272180557251]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00022189205628819764]
+Labels: ['Diabetes type 1']
+Scores: [0.0008579635177738965]
+Labels: ['Diabetes']
+Scores: [0.9953776597976685]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002947351604234427]
+Labels: ['Mental Health']
+Scores: [0.011260956525802612]
+Labels: ['Cancer']
+Scores: [0.00043980361078865826]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01096969936043024]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718468
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptides', 'Immunoglobulin Fc Fragments', 'Liver', 'Recombinant Fusion Proteins', 'Hypoglycemic Agents', 'Adult', 'Non-alcoholic Fatty Liver Disease', 'Aged', 'Glycated Hemoglobin', 'Blood Glucose', 'Cohort Studies', 'Treatment Outcome']
+Labels: ['Diabetes type 2']
+Scores: [0.5866418480873108]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003054917324334383]
+Labels: ['Diabetes type 1']
+Scores: [0.2760296165943146]
+Labels: ['Diabetes']
+Scores: [0.9820218682289124]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00028828007634729147]
+Labels: ['Mental Health']
+Scores: [0.0016790620284155011]
+Labels: ['Cancer']
+Scores: [0.0006687068962492049]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014607014134526253]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718016
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Intra-Abdominal Fat', 'Subcutaneous Fat', 'Transcriptome', 'Gene Expression Profiling', 'Macrophages', 'Protein Interaction Maps']
+Labels: ['Diabetes type 2']
+Scores: [0.9408605098724365]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01962907426059246]
+Labels: ['Diabetes type 1']
+Scores: [0.0021788363810628653]
+Labels: ['Diabetes']
+Scores: [0.9053223133087158]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08988983184099197]
+Labels: ['Mental Health']
+Scores: [0.06850861012935638]
+Labels: ['Cancer']
+Scores: [0.009951312094926834]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16618098318576813]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717954
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hyperuricemia', 'Uric Acid', 'Renal Insufficiency, Chronic', 'Kidney', 'Animals', 'Obesity', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Gout']
+Labels: ['Diabetes type 2']
+Scores: [0.47801151871681213]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013218249194324017]
+Labels: ['Diabetes type 1']
+Scores: [0.03595952317118645]
+Labels: ['Diabetes']
+Scores: [0.3071269989013672]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6336542963981628]
+Labels: ['Mental Health']
+Scores: [0.03004346787929535]
+Labels: ['Cancer']
+Scores: [0.004971632268279791]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.42974853515625]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717105
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Risk Factors', 'Gastrointestinal Diseases', 'Nomograms', 'Aged', 'Hypoglycemic Agents', 'Adult', 'Prognosis', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Diabetes type 2']
+Scores: [0.9927390813827515]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00030023884028196335]
+Labels: ['Diabetes type 1']
+Scores: [0.9639065265655518]
+Labels: ['Diabetes']
+Scores: [0.9743119478225708]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001160255415015854]
+Labels: ['Mental Health']
+Scores: [0.023563211783766747]
+Labels: ['Cancer']
+Scores: [0.0002606817870400846]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011094699613749981]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39716666
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Glycated Hemoglobin', 'Male', 'Female', 'Middle Aged', 'Latent Class Analysis', 'Prospective Studies', 'Aged', 'Exercise', 'Adult', 'Motivation', 'Singapore', 'Educational Status', 'Life Style', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.9972789287567139]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011569575872272253]
+Labels: ['Diabetes type 1']
+Scores: [0.0003693322360049933]
+Labels: ['Diabetes']
+Scores: [0.978415310382843]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008475116919726133]
+Labels: ['Mental Health']
+Scores: [0.042026087641716]
+Labels: ['Cancer']
+Scores: [0.0010378453880548477]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0020772148855030537]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716481
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Insulin Resistance', 'Heat-Shock Response', 'Male', 'Diet, High-Fat', 'Mice, Inbred C57BL', 'HSP70 Heat-Shock Proteins', 'Disease Progression', 'Blood Glucose', 'Mice', 'Hot Temperature', 'Early Diagnosis', 'Diabetes Mellitus, Type 2', 'Obesity', 'Inflammation']
+Labels: ['Diabetes type 2']
+Scores: [0.8243677020072937]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02579263038933277]
+Labels: ['Diabetes type 1']
+Scores: [0.14364127814769745]
+Labels: ['Diabetes']
+Scores: [0.7959163188934326]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7463441491127014]
+Labels: ['Mental Health']
+Scores: [0.10396572202444077]
+Labels: ['Cancer']
+Scores: [0.011953776702284813]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.27915483713150024]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39716335
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Mice', 'T-Lymphocytes, Regulatory', 'Diabetes Mellitus, Type 2', 'Retinal Degeneration', 'Mice, Inbred C57BL', 'Male', 'Diabetic Retinopathy', 'Retina']
+Labels: ['Diabetes type 2']
+Scores: [0.9858925342559814]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00020287916413508356]
+Labels: ['Diabetes type 1']
+Scores: [0.000198718422325328]
+Labels: ['Diabetes']
+Scores: [0.9786978363990784]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005130672943778336]
+Labels: ['Mental Health']
+Scores: [0.0009554296266287565]
+Labels: ['Cancer']
+Scores: [0.00016088978736661375]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0448651984333992]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716328
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Dementia', 'Diabetes Mellitus, Type 2', 'Hypoglycemic Agents', 'Network Meta-Analysis', 'Observational Studies as Topic', 'Randomized Controlled Trials as Topic', 'Sodium-Glucose Transporter 2 Inhibitors']
+Labels: ['Diabetes type 2']
+Scores: [0.9910167455673218]
+Labels: ['Chronic respiratory disease']
+Scores: [0.015402264893054962]
+Labels: ['Diabetes type 1']
+Scores: [0.0005504967994056642]
+Labels: ['Diabetes']
+Scores: [0.8443799614906311]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004347219131886959]
+Labels: ['Mental Health']
+Scores: [0.42595091462135315]
+Labels: ['Cancer']
+Scores: [0.003173823468387127]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3012459874153137]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Randomized Controlled Trials as Topic', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Exercise', 'Health Behavior', 'Diabetes Mellitus, Type 1', 'Female', 'Adult', 'Glycated Hemoglobin', 'Pregnancy', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.12513777613639832]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003159911138936877]
+Labels: ['Diabetes type 1']
+Scores: [0.04915320873260498]
+Labels: ['Diabetes']
+Scores: [0.5767285823822021]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003728008596226573]
+Labels: ['Mental Health']
+Scores: [0.0006597531028091908]
+Labels: ['Cancer']
+Scores: [0.0003163157671224326]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042491134256124496]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716258
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Biomarkers', 'Blood Glucose', 'Cardiovascular Diseases', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 2', 'Insulin Resistance', 'Metabolic Syndrome', 'Triglycerides']
+Labels: ['Diabetes type 2']
+Scores: [0.13128900527954102]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0020623819436877966]
+Labels: ['Diabetes type 1']
+Scores: [0.004957082215696573]
+Labels: ['Diabetes']
+Scores: [0.0035754579585045576]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9944515228271484]
+Labels: ['Mental Health']
+Scores: [0.00042847180156968534]
+Labels: ['Cancer']
+Scores: [0.00037789405905641615]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.000684463360812515]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716230
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Gangrene', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Acupuncture, Ear', 'Wound Healing', 'Treatment Outcome', 'Amputation, Surgical', 'Acupuncture Points', 'Magnetic Field Therapy']
+Labels: ['Diabetes type 2']
+Scores: [0.6232454180717468]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009709429577924311]
+Labels: ['Diabetes type 1']
+Scores: [0.4813900291919708]
+Labels: ['Diabetes']
+Scores: [0.9923534989356995]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008267025696113706]
+Labels: ['Mental Health']
+Scores: [0.002429643180221319]
+Labels: ['Cancer']
+Scores: [0.00036336827906779945]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2958751618862152]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716081
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Ferroptosis', 'Gene Regulatory Networks', 'Genetic Predisposition to Disease', 'Genomics', 'Male', 'Diabetes Complications', 'Female', 'Gene Expression Profiling', 'Polymorphism, Single Nucleotide', 'Computational Biology', 'Genetic Association Studies', 'Multiomics']
+Labels: ['Diabetes type 2']
+Scores: [0.9982192516326904]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0017492467304691672]
+Labels: ['Diabetes type 1']
+Scores: [0.00016829931701067835]
+Labels: ['Diabetes']
+Scores: [0.9936840534210205]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001678331638686359]
+Labels: ['Mental Health']
+Scores: [0.0024427210446447134]
+Labels: ['Cancer']
+Scores: [0.0003588513645809144]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.37886643409729004]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716056
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Bayes Theorem', 'Diabetes Mellitus, Type 2', 'Humans', 'Linear Models', 'Linkage Disequilibrium', 'Quantitative Trait Loci', 'Phenotype', 'Computer Simulation', 'Models, Genetic', 'Genome-Wide Association Study']
+Labels: ['Diabetes type 2']
+Scores: [0.3364142179489136]
+Labels: ['Chronic respiratory disease']
+Scores: [0.28871628642082214]
+Labels: ['Diabetes type 1']
+Scores: [0.33190256357192993]
+Labels: ['Diabetes']
+Scores: [0.32425007224082947]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2905579209327698]
+Labels: ['Mental Health']
+Scores: [0.28188589215278625]
+Labels: ['Cancer']
+Scores: [0.3020572066307068]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.40752673149108887]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715944
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Bariatric Surgery', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Follow-Up Studies', 'Glycated Hemoglobin', 'Glycemic Control', 'Hypoglycemic Agents', 'Obesity, Morbid', 'Recurrence', 'Remission Induction', 'Retrospective Studies', 'Treatment Outcome', 'Weight Loss']
+Labels: ['Diabetes type 2']
+Scores: [0.988816499710083]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008016921347007155]
+Labels: ['Diabetes type 1']
+Scores: [0.17481490969657898]
+Labels: ['Diabetes']
+Scores: [0.9817412495613098]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09050997346639633]
+Labels: ['Mental Health']
+Scores: [0.0005321479984559119]
+Labels: ['Cancer']
+Scores: [0.00045136286644265056]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00525007164105773]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715341
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucagon-Like Peptide 1', 'Animals', 'Female', 'Male', 'Sex Characteristics', 'Obesity', 'Glucagon-Like Peptides', 'Hypoglycemic Agents', 'Sex Factors', 'Cardiovascular Diseases', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.4590761065483093]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06427460163831711]
+Labels: ['Diabetes type 1']
+Scores: [0.5685520172119141]
+Labels: ['Diabetes']
+Scores: [0.8348962068557739]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6537151336669922]
+Labels: ['Mental Health']
+Scores: [0.2539387047290802]
+Labels: ['Cancer']
+Scores: [0.011929684318602085]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1536187082529068]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39715135
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Sulfonylurea Compounds', 'Iraq', 'Sulfonylurea Receptors', 'Case-Control Studies', 'Polymorphism, Single Nucleotide', 'Middle Aged', 'Hypoglycemic Agents', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.9961488246917725]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007005163002759218]
+Labels: ['Diabetes type 1']
+Scores: [0.00038022189983166754]
+Labels: ['Diabetes']
+Scores: [0.984904944896698]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000976516050286591]
+Labels: ['Mental Health']
+Scores: [0.010721413418650627]
+Labels: ['Cancer']
+Scores: [0.0016220405232161283]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13818462193012238]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39713052
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Fatty Acids, Nonesterified', 'Coronary Disease', 'Insulin Resistance']
+Labels: ['Diabetes type 2']
+Scores: [0.9662911295890808]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01979333721101284]
+Labels: ['Diabetes type 1']
+Scores: [0.006161563564091921]
+Labels: ['Diabetes']
+Scores: [0.9400603771209717]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9668749570846558]
+Labels: ['Mental Health']
+Scores: [0.05093596503138542]
+Labels: ['Cancer']
+Scores: [0.005772831849753857]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2110423594713211]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39710901
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Retinopathy', 'Glucagon-Like Peptides', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Glucagon-Like Peptide-1 Receptor Agonists']
+Labels: ['Diabetes type 2']
+Scores: [0.8174659609794617]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005962855648249388]
+Labels: ['Diabetes type 1']
+Scores: [0.010901426896452904]
+Labels: ['Diabetes']
+Scores: [0.9464616775512695]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03139311820268631]
+Labels: ['Mental Health']
+Scores: [0.006244872231036425]
+Labels: ['Cancer']
+Scores: [0.0034020233433693647]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03399904817342758]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710882
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Bone Density', 'Glucagon-Like Peptide-1 Receptor', 'Absorptiometry, Photon', 'Randomized Controlled Trials as Topic', 'Body Composition', 'Diabetes Mellitus, Type 2', 'Bayes Theorem', 'Female', 'Hypoglycemic Agents', 'Male', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.0077553922310471535]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0031319381669163704]
+Labels: ['Diabetes type 1']
+Scores: [0.006220315117388964]
+Labels: ['Diabetes']
+Scores: [0.0015344220446422696]
+Labels: ['Cardiovascular diseases']
+Scores: [6.229246355360374e-05]
+Labels: ['Mental Health']
+Scores: [0.00011890274618053809]
+Labels: ['Cancer']
+Scores: [0.00043329159962013364]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019890621304512024]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710722
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Male', 'Middle Aged', 'Seasons', 'Aged', 'Metabolic Diseases', 'Calcifediol', 'Prospective Studies', 'Adult', 'Renal Insufficiency, Chronic', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.9856561422348022]
+Labels: ['Chronic respiratory disease']
+Scores: [0.045928455889225006]
+Labels: ['Diabetes type 1']
+Scores: [0.0008775046444498003]
+Labels: ['Diabetes']
+Scores: [0.928005576133728]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03845180198550224]
+Labels: ['Mental Health']
+Scores: [0.006429029628634453]
+Labels: ['Cancer']
+Scores: [0.0035273649264127016]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0668942853808403]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710638
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Retinopathy', 'Risk Factors', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Young Adult', 'Diabetes Mellitus, Type 2', 'China']
+Labels: ['Diabetes type 2']
+Scores: [0.1574515700340271]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002668944944161922]
+Labels: ['Diabetes type 1']
+Scores: [0.04434758424758911]
+Labels: ['Diabetes']
+Scores: [0.9081244468688965]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002545522293075919]
+Labels: ['Mental Health']
+Scores: [0.002102839993312955]
+Labels: ['Cancer']
+Scores: [0.0003033620596397668]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10119982808828354]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710070
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucosephosphate Dehydrogenase Deficiency', 'Female', 'Male', 'Middle Aged', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Adult', 'Aged', 'Blood Glucose', 'Cohort Studies', 'Healthcare Disparities', 'Diabetes Complications', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.4745529890060425]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002356379060074687]
+Labels: ['Diabetes type 1']
+Scores: [0.42112284898757935]
+Labels: ['Diabetes']
+Scores: [0.9900153875350952]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0010945460526272655]
+Labels: ['Mental Health']
+Scores: [0.0005819619982503355]
+Labels: ['Cancer']
+Scores: [0.0005594593239948153]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15297986567020416]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710013
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Case-Control Studies', 'Female', 'Male', 'Adolescent', 'Pediatric Obesity', 'Feces', 'Diabetes Mellitus, Type 2', 'Birth Cohort', 'Bacteroides']
+Labels: ['Diabetes type 2']
+Scores: [0.008735722862184048]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0035587106831371784]
+Labels: ['Diabetes type 1']
+Scores: [0.00580165209248662]
+Labels: ['Diabetes']
+Scores: [0.006847100798040628]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001409705844707787]
+Labels: ['Mental Health']
+Scores: [0.0034691235050559044]
+Labels: ['Cancer']
+Scores: [0.001256441348232329]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12490247935056686]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710002
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Genome-Wide Association Study', 'Frailty', 'Genetic Pleiotropy', 'Muscle, Skeletal', 'Comorbidity', 'Polymorphism, Single Nucleotide', 'Female', 'Male', 'Phenotype', 'Aged', 'Genetic Predisposition to Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.9982978701591492]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02498737722635269]
+Labels: ['Diabetes type 1']
+Scores: [0.0006831976934336126]
+Labels: ['Diabetes']
+Scores: [0.9969089031219482]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011786356568336487]
+Labels: ['Mental Health']
+Scores: [0.041143886744976044]
+Labels: ['Cancer']
+Scores: [0.006745807360857725]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18131250143051147]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709941
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Cognition', 'Cognitive Dysfunction', 'Diabetes Mellitus, Type 2', 'Dipeptidyl-Peptidase IV Inhibitors', 'Drug Therapy, Combination', 'Hypoglycemic Agents', 'Metabolomics', 'Metformin', 'Prospective Studies', 'Sodium-Glucose Transporter 2 Inhibitors']
+Labels: ['Diabetes type 2']
+Scores: [0.9767290353775024]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0674518570303917]
+Labels: ['Diabetes type 1']
+Scores: [0.029517080634832382]
+Labels: ['Diabetes']
+Scores: [0.9235931634902954]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03484648838639259]
+Labels: ['Mental Health']
+Scores: [0.5641605854034424]
+Labels: ['Cancer']
+Scores: [0.015338480472564697]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14842700958251953]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709924
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Animals', 'Mice', 'Diet, High-Fat', 'Male', 'Kidney', 'Diabetic Nephropathies', 'Gastrointestinal Microbiome', 'Dysbiosis', 'Isothiocyanates', 'Humans', 'Mice, Inbred C57BL', 'Protective Agents', 'Blood Glucose', 'Streptozocin', 'Sulfoxides', 'Diabetes Mellitus, Type 2', 'Raphanus', 'Oxidative Stress', 'Bacteria', 'Superoxide Dismutase']
+Labels: ['Diabetes type 2']
+Scores: [0.7487422823905945]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028037551790475845]
+Labels: ['Diabetes type 1']
+Scores: [0.046323880553245544]
+Labels: ['Diabetes']
+Scores: [0.9857475757598877]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01646452210843563]
+Labels: ['Mental Health']
+Scores: [0.30628564953804016]
+Labels: ['Cancer']
+Scores: [0.03933785855770111]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.7322831749916077]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709670
+Predictions: ['Cancer', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Immune Checkpoint Inhibitors', 'Retrospective Studies', 'Neoplasms', 'Aged', 'Middle Aged', 'Cardiovascular Diseases', 'Glucagon-Like Peptide 1', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.8249608874320984]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007538790814578533]
+Labels: ['Diabetes type 1']
+Scores: [0.7571285963058472]
+Labels: ['Diabetes']
+Scores: [0.4753637909889221]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9959877729415894]
+Labels: ['Mental Health']
+Scores: [0.00044567041913978755]
+Labels: ['Cancer']
+Scores: [0.9914880394935608]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011091380380094051]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[3, 1], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39709519
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Polycystic Ovary Syndrome', 'Female', 'MicroRNAs', 'Biomarkers', 'Metabolic Diseases', 'Insulin Resistance', 'Non-alcoholic Fatty Liver Disease', 'Diabetes Mellitus, Type 2', 'Obesity']
+Labels: ['Diabetes type 2']
+Scores: [0.743137776851654]
+Labels: ['Chronic respiratory disease']
+Scores: [0.034855861216783524]
+Labels: ['Diabetes type 1']
+Scores: [0.055069830268621445]
+Labels: ['Diabetes']
+Scores: [0.4336474537849426]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4078610837459564]
+Labels: ['Mental Health']
+Scores: [0.08474918454885483]
+Labels: ['Cancer']
+Scores: [0.009963390417397022]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.528871476650238]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709437
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Male', 'Prospective Studies', 'Middle Aged', 'Risk Assessment', 'Aged', 'Time Factors', 'Potassium, Dietary', 'Cardiovascular Diseases', 'Reproducibility of Results', 'Prognosis', 'Biomarkers', 'Risk Factors', 'Protective Factors', 'Albuminuria', 'Urinalysis', 'Recommended Dietary Allowances']
+Labels: ['Diabetes type 2']
+Scores: [0.9937928915023804]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0020843225065618753]
+Labels: ['Diabetes type 1']
+Scores: [0.00034686282742768526]
+Labels: ['Diabetes']
+Scores: [0.9743339419364929]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9855194687843323]
+Labels: ['Mental Health']
+Scores: [0.015307363122701645]
+Labels: ['Cancer']
+Scores: [0.003574568312615156]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11329168826341629]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709342
+Predictions: ['Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Male', 'Female', 'Aged', 'Blood Glucose', 'Chronic Pain', 'Middle Aged', 'Pain Measurement', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.9878833293914795]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00035743246553465724]
+Labels: ['Diabetes type 1']
+Scores: [0.0002893831115216017]
+Labels: ['Diabetes']
+Scores: [0.8804757595062256]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00023456242342945188]
+Labels: ['Mental Health']
+Scores: [0.00035196030512452126]
+Labels: ['Cancer']
+Scores: [0.0011679880553856492]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.036776717752218246]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39708996
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'United Kingdom', 'Female', 'Male', 'Exercise', 'Middle Aged', 'Prospective Studies', 'Multimorbidity', 'Diabetes Mellitus, Type 2', 'Aged', 'Cardiovascular Diseases', 'Biological Specimen Banks', 'Coronary Disease', 'Genetic Predisposition to Disease', 'Stroke', 'Adult', 'UK Biobank']
+Labels: ['Diabetes type 2']
+Scores: [0.05883471295237541]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0022865827195346355]
+Labels: ['Diabetes type 1']
+Scores: [0.03300819545984268]
+Labels: ['Diabetes']
+Scores: [0.026660926640033722]
+Labels: ['Cardiovascular diseases']
+Scores: [0.957390308380127]
+Labels: ['Mental Health']
+Scores: [0.00012409125338308513]
+Labels: ['Cancer']
+Scores: [0.00029212975641712546]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00040334169170819223]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738021
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Dust', 'Humans', 'Hospitalization', 'Free Radicals', 'Air Pollutants', 'Oxidative Stress', 'Particulate Matter', 'China', 'Environmental Exposure', 'Beijing', 'Sand', 'Respiratory Tract Diseases', 'Oxidation-Reduction', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.09061402827501297]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7071179151535034]
+Labels: ['Diabetes type 1']
+Scores: [0.08864306658506393]
+Labels: ['Diabetes']
+Scores: [0.01316304411739111]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01244979165494442]
+Labels: ['Mental Health']
+Scores: [0.014318821020424366]
+Labels: ['Cancer']
+Scores: [0.005177612416446209]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18148744106292725]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729927
+Predictions: ['Cancer', 'Chronic respiratory disease']
+MeshTerm: ['Humans', 'CD4-Positive T-Lymphocytes', 'Neoplasms', 'Machine Learning', 'Digestive System Diseases', 'Metabolic Diseases', 'Respiratory Tract Diseases', 'Gene Expression Profiling', 'Respiration Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.029085589572787285]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1744055300951004]
+Labels: ['Diabetes type 1']
+Scores: [0.023278798907995224]
+Labels: ['Diabetes']
+Scores: [0.013081480748951435]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000938767334446311]
+Labels: ['Mental Health']
+Scores: [0.0006342012784443796]
+Labels: ['Cancer']
+Scores: [0.761882483959198]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.212141752243042]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729438
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Digital Technology', 'Respiratory Tract Diseases', 'Telemedicine', 'Scoping Reviews As Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.0007256158860400319]
+Labels: ['Chronic respiratory disease']
+Scores: [0.36209800839424133]
+Labels: ['Diabetes type 1']
+Scores: [0.0007166465511545539]
+Labels: ['Diabetes']
+Scores: [0.00023235415574163198]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00034742587013170123]
+Labels: ['Mental Health']
+Scores: [0.0001687350741121918]
+Labels: ['Cancer']
+Scores: [0.00016721294377930462]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0017107416642829776]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724617
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Chernobyl Nuclear Accident', 'Male', 'Adult', 'Occupational Exposure', 'Middle Aged', 'Ukraine', 'Radiation Exposure', 'Radiation Dosage', 'Occupational Diseases', 'Cardiovascular Diseases', 'Aged', 'Gamma Rays', 'Radiation Injuries', 'Risk Assessment', 'Cerebrovascular Disorders', 'Myocardial Infarction', 'Respiratory Tract Diseases', 'Digestive System Diseases', 'Emergency Responders', 'Adolescent', 'Cardiomyopathies']
+Labels: ['Diabetes type 2']
+Scores: [0.06226746365427971]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07220125198364258]
+Labels: ['Diabetes type 1']
+Scores: [0.06519652158021927]
+Labels: ['Diabetes']
+Scores: [0.029009971767663956]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010377990081906319]
+Labels: ['Mental Health']
+Scores: [0.14388413727283478]
+Labels: ['Cancer']
+Scores: [0.04222578555345535]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8484790325164795]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39710468
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Allergens', 'Adult', 'Adolescent', 'Child', 'China', 'Middle Aged', 'Child, Preschool', 'Cross-Sectional Studies', 'Young Adult', 'Infant', 'Aged', 'Immunoglobulin E', 'Aged, 80 and over', 'Animals', 'Skin Diseases', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.028243111446499825]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7660776972770691]
+Labels: ['Diabetes type 1']
+Scores: [0.021655021235346794]
+Labels: ['Diabetes']
+Scores: [0.010640474036335945]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007246650755405426]
+Labels: ['Mental Health']
+Scores: [0.024326367303729057]
+Labels: ['Cancer']
+Scores: [0.006173851899802685]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1261417120695114]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707265
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Quality of Life', 'China', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Incineration', 'Adult', 'Surveys and Questionnaires', 'Residence Characteristics', 'Aged', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.024923712015151978]
+Labels: ['Chronic respiratory disease']
+Scores: [0.29668715596199036]
+Labels: ['Diabetes type 1']
+Scores: [0.0224614255130291]
+Labels: ['Diabetes']
+Scores: [0.006108840461820364]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002139997435733676]
+Labels: ['Mental Health']
+Scores: [0.018090125173330307]
+Labels: ['Cancer']
+Scores: [0.0147934565320611]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.26319822669029236]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696118
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nitrogen Dioxide', 'Republic of Korea', 'Cross-Over Studies', 'Male', 'Female', 'Middle Aged', 'Aged', 'Adult', 'Aged, 80 and over', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Air Pollutants', 'Young Adult', 'Adolescent', 'Child, Preschool', 'Child', 'Air Pollution', 'Infant', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.002608143026009202]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00789869949221611]
+Labels: ['Diabetes type 1']
+Scores: [0.0025887349620461464]
+Labels: ['Diabetes']
+Scores: [0.0011394747998565435]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003532107803039253]
+Labels: ['Mental Health']
+Scores: [0.0018711761804297566]
+Labels: ['Cancer']
+Scores: [0.0021848599426448345]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01884482055902481]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39694698
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Scotland', 'Male', 'Female', 'Air Pollution', 'Prospective Studies', 'Middle Aged', 'Particulate Matter', 'Hospitalization', 'Environmental Exposure', 'Adult', 'Nitrogen Dioxide', 'Aged', 'Air Pollutants', 'Sulfur Dioxide', 'Cardiovascular Diseases', 'Longitudinal Studies', 'Young Adult', 'Adolescent', 'Respiratory Tract Diseases', 'Mental Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.051012344658374786]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13999120891094208]
+Labels: ['Diabetes type 1']
+Scores: [0.05384209007024765]
+Labels: ['Diabetes']
+Scores: [0.04040992632508278]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03034406155347824]
+Labels: ['Mental Health']
+Scores: [0.663675844669342]
+Labels: ['Cancer']
+Scores: [0.07364131510257721]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.48859095573425293]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39694558
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nebulizers and Vaporizers', 'Child', 'Administration, Inhalation', 'Respiratory Tract Diseases', 'Asthma', 'Home Care Services', 'Practice Guidelines as Topic', 'Respiratory Therapy']
+Labels: ['Diabetes type 2']
+Scores: [0.0010035373270511627]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6197560429573059]
+Labels: ['Diabetes type 1']
+Scores: [0.0008498108363710344]
+Labels: ['Diabetes']
+Scores: [0.00015451670333277434]
+Labels: ['Cardiovascular diseases']
+Scores: [3.8415786548284814e-05]
+Labels: ['Mental Health']
+Scores: [0.00011656810966087505]
+Labels: ['Cancer']
+Scores: [7.701897266088054e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02842465043067932]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684326
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Animals', 'Humans', 'Mast Cells', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.004259099252521992]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3390946388244629]
+Labels: ['Diabetes type 1']
+Scores: [0.0036428801249712706]
+Labels: ['Diabetes']
+Scores: [0.0010495753958821297]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006271182792261243]
+Labels: ['Mental Health']
+Scores: [0.0018108667572960258]
+Labels: ['Cancer']
+Scores: [0.0017866254784166813]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005085625220090151]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684250
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Endocrine Disruptors', 'Humans', 'Respiratory System', 'Animals', 'Oxidative Stress', 'Respiratory Tract Diseases', 'Environmental Exposure']
+Labels: ['Diabetes type 2']
+Scores: [0.05850188434123993]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7145169377326965]
+Labels: ['Diabetes type 1']
+Scores: [0.06188945472240448]
+Labels: ['Diabetes']
+Scores: [0.024009739980101585]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01493188925087452]
+Labels: ['Mental Health']
+Scores: [0.01341029442846775]
+Labels: ['Cancer']
+Scores: [0.013054337352514267]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.23382297158241272]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661886
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Child', 'Male', 'Homeostasis', 'Minerals', 'Vitamins', 'Ascorbic Acid', 'Respiratory Tract Diseases', 'Vitamin D', 'Recurrence']
+Labels: ['Diabetes type 2']
+Scores: [0.010891743935644627]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5575302243232727]
+Labels: ['Diabetes type 1']
+Scores: [0.010496510192751884]
+Labels: ['Diabetes']
+Scores: [0.001669155084528029]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0017659179866313934]
+Labels: ['Mental Health']
+Scores: [0.004416639916598797]
+Labels: ['Cancer']
+Scores: [0.0007655094377696514]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10168524086475372]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661885
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'Adolescent', 'Male', 'Antioxidants', 'Female', 'Ascorbic Acid', 'Interleukin-6', 'Glutathione Peroxidase', 'Hydrocortisone', 'Ferritins', 'Tumor Necrosis Factor-alpha', 'Respiratory Tract Diseases', 'Acute Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.0045324405655264854]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00268050329759717]
+Labels: ['Diabetes type 1']
+Scores: [0.003171781310811639]
+Labels: ['Diabetes']
+Scores: [0.0012433636002242565]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005450748722068965]
+Labels: ['Mental Health']
+Scores: [0.00125672179274261]
+Labels: ['Cancer']
+Scores: [0.0008238002774305642]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024745378643274307]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39659714
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Workplace', 'Occupational Diseases', 'Respiratory Tract Diseases', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.005142220761626959]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6002069711685181]
+Labels: ['Diabetes type 1']
+Scores: [0.00597112812101841]
+Labels: ['Diabetes']
+Scores: [0.0016884829383343458]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00044997246004641056]
+Labels: ['Mental Health']
+Scores: [0.001119506428949535]
+Labels: ['Cancer']
+Scores: [0.001206063898280263]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21664683520793915]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39643329
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Adult', 'Prospective Studies', 'Nitrogen Dioxide', 'China', 'Aged', 'Environmental Exposure', 'Incidence', 'Musculoskeletal Diseases', 'Cardiovascular Diseases', 'Respiratory Tract Diseases', 'Air Pollutants', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.008733839727938175]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2266109138727188]
+Labels: ['Diabetes type 1']
+Scores: [0.006008501164615154]
+Labels: ['Diabetes']
+Scores: [0.0034431018866598606]
+Labels: ['Cardiovascular diseases']
+Scores: [0.24511146545410156]
+Labels: ['Mental Health']
+Scores: [0.0020375296007841825]
+Labels: ['Cancer']
+Scores: [0.011930068954825401]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11316537857055664]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39642570
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mustard Gas', 'Male', 'Biomarkers', 'Cross-Sectional Studies', 'Adult', 'Chemical Warfare Agents', 'Veterans', 'Middle Aged', 'Respiratory Tract Diseases', 'Iran']
+Labels: ['Diabetes type 2']
+Scores: [0.0013877658639103174]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9629170894622803]
+Labels: ['Diabetes type 1']
+Scores: [0.001008136780001223]
+Labels: ['Diabetes']
+Scores: [0.0005806343979202211]
+Labels: ['Cardiovascular diseases']
+Scores: [9.492763638263568e-05]
+Labels: ['Mental Health']
+Scores: [0.0002050595503533259]
+Labels: ['Cancer']
+Scores: [0.00020174175733700395]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014672012999653816]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39640901
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Plants, Medicinal', 'Humans', 'Tanzania', 'Male', 'Female', 'Respiratory Tract Diseases', 'Adult', 'Middle Aged', 'Health Knowledge, Attitudes, Practice', 'Medicine, African Traditional', 'Aged', 'Phytotherapy']
+Labels: ['Diabetes type 2']
+Scores: [0.0936780571937561]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6094421744346619]
+Labels: ['Diabetes type 1']
+Scores: [0.08980024605989456]
+Labels: ['Diabetes']
+Scores: [0.07291916757822037]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013253393582999706]
+Labels: ['Mental Health']
+Scores: [0.05677873641252518]
+Labels: ['Cancer']
+Scores: [0.07695527374744415]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2876683473587036]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39633457
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Respiratory Tract Diseases', 'Nanoparticles', 'Microplastics', 'Inhalation Exposure', 'Air Pollutants', 'Animals', 'Respiratory System']
+Labels: ['Diabetes type 2']
+Scores: [0.029263338074088097]
+Labels: ['Chronic respiratory disease']
+Scores: [0.30767345428466797]
+Labels: ['Diabetes type 1']
+Scores: [0.03043689765036106]
+Labels: ['Diabetes']
+Scores: [0.005792325362563133]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01349344290792942]
+Labels: ['Mental Health']
+Scores: [0.013970655389130116]
+Labels: ['Cancer']
+Scores: [0.0042916531674563885]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09940590709447861]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39633418
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'China', 'Hospitalization', 'Child', 'Male', 'Female', 'Air Pollutants', 'Cross-Over Studies', 'Child, Preschool', 'COVID-19', 'Respiratory Tract Diseases', 'Air Pollution', 'Environmental Exposure', 'Particulate Matter', 'Infant', 'Sulfur Dioxide', 'SARS-CoV-2', 'Adolescent', 'Nitrogen Dioxide', 'Time Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.00129584816750139]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007847689557820559]
+Labels: ['Diabetes type 1']
+Scores: [0.0011858148500323296]
+Labels: ['Diabetes']
+Scores: [0.0002663425693754107]
+Labels: ['Cardiovascular diseases']
+Scores: [4.9139343900606036e-05]
+Labels: ['Mental Health']
+Scores: [0.00023588848125655204]
+Labels: ['Cancer']
+Scores: [0.0001875189773272723]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0355856828391552]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39632975
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Lung Neoplasms', 'Genome-Wide Association Study', 'Ketone Bodies', 'Polymorphism, Single Nucleotide', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.010774401016533375]
+Labels: ['Chronic respiratory disease']
+Scores: [0.967108428478241]
+Labels: ['Diabetes type 1']
+Scores: [0.01026887632906437]
+Labels: ['Diabetes']
+Scores: [0.004181382246315479]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009140848414972425]
+Labels: ['Mental Health']
+Scores: [0.009619482792913914]
+Labels: ['Cancer']
+Scores: [0.668685257434845]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03267757222056389]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39620702
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Climate Change', 'Air Pollution', 'Particulate Matter', 'Environmental Exposure', 'Ozone', 'Respiratory Tract Diseases', 'Air Pollutants']
+Labels: ['Diabetes type 2']
+Scores: [0.0028760270215570927]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5132959485054016]
+Labels: ['Diabetes type 1']
+Scores: [0.004711738787591457]
+Labels: ['Diabetes']
+Scores: [0.0005397711065597832]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000145704485476017]
+Labels: ['Mental Health']
+Scores: [0.0001673320512054488]
+Labels: ['Cancer']
+Scores: [0.0005077107925899327]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06301138550043106]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39617287
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Infant', 'Female', 'Hypersensitivity', 'Male', 'France', 'Dietary Exposure', 'Child', 'Cohort Studies', 'Child, Preschool', 'Pesticides', 'Respiratory Tract Diseases', 'Environmental Pollutants']
+Labels: ['Diabetes type 2']
+Scores: [0.07869457453489304]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5409199595451355]
+Labels: ['Diabetes type 1']
+Scores: [0.07510702311992645]
+Labels: ['Diabetes']
+Scores: [0.06405320763587952]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025043636560440063]
+Labels: ['Mental Health']
+Scores: [0.1330651044845581]
+Labels: ['Cancer']
+Scores: [0.047855403274297714]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2387196272611618]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39615506
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Air Pollutants', 'Air Pollution', 'Cardiovascular Diseases', 'Environmental Exposure', 'Fires', 'Global Burden of Disease', 'Global Health', 'Health Impact Assessment', 'Mortality', 'Ozone', 'Particulate Matter', 'Respiratory Tract Diseases', 'Wildfires']
+Labels: ['Diabetes type 2']
+Scores: [0.0035370143596082926]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03808577358722687]
+Labels: ['Diabetes type 1']
+Scores: [0.004283479880541563]
+Labels: ['Diabetes']
+Scores: [0.0004814334097318351]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006084047490730882]
+Labels: ['Mental Health']
+Scores: [0.0005159050924703479]
+Labels: ['Cancer']
+Scores: [0.0008674456039443612]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024264223873615265]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39608993
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Australia', 'Adult', 'Adolescent', 'Hospitalization', 'Aged', 'Young Adult', 'Child', 'Respiratory Tract Diseases', 'Infant', 'Child, Preschool', 'Infant, Newborn', 'Aged, 80 and over', 'Sex Distribution', 'Age Distribution']
+Labels: ['Diabetes type 2']
+Scores: [0.014135608449578285]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5071015954017639]
+Labels: ['Diabetes type 1']
+Scores: [0.016140403226017952]
+Labels: ['Diabetes']
+Scores: [0.0038170290645211935]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00035561801632866263]
+Labels: ['Mental Health']
+Scores: [0.0006893405225127935]
+Labels: ['Cancer']
+Scores: [0.0025486538652330637]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0681302547454834]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39607106
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Brazil', 'Hospitalization', 'Adolescent', 'Spatio-Temporal Analysis', 'Child', 'Respiratory Tract Diseases', 'Young Adult', 'Adult', 'Socioeconomic Factors', 'Child, Preschool', 'Female', 'Male', 'Middle Aged', 'Aged', 'Cluster Analysis', 'Infant', 'Urban Population', 'Space-Time Clustering', 'Cities']
+Labels: ['Diabetes type 2']
+Scores: [0.17500779032707214]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6865604519844055]
+Labels: ['Diabetes type 1']
+Scores: [0.17075450718402863]
+Labels: ['Diabetes']
+Scores: [0.06527417153120041]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05609966814517975]
+Labels: ['Mental Health']
+Scores: [0.09425736963748932]
+Labels: ['Cancer']
+Scores: [0.04249696806073189]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.33178502321243286]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39603392
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Asia', 'Chronic Disease', 'Quality of Life', 'Qigong', 'Yoga', 'Tai Ji', 'Resistance Training', 'Respiratory Tract Diseases', 'Exercise Therapy', 'Exercise Tolerance', 'Practice Guidelines as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.03159407898783684]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9872807264328003]
+Labels: ['Diabetes type 1']
+Scores: [0.03254764899611473]
+Labels: ['Diabetes']
+Scores: [0.011813611723482609]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0044578746892511845]
+Labels: ['Mental Health']
+Scores: [0.06325948238372803]
+Labels: ['Cancer']
+Scores: [0.01107562892138958]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042736638337373734]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39578996
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Prospective Studies', 'Adult', 'Aged', 'China', 'Aged, 80 and over', 'Hand Strength', 'Respiratory Tract Diseases', 'Muscle, Skeletal', 'Muscle Strength', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.00550555344671011]
+Labels: ['Chronic respiratory disease']
+Scores: [0.38035064935684204]
+Labels: ['Diabetes type 1']
+Scores: [0.006031714845448732]
+Labels: ['Diabetes']
+Scores: [0.0012371845077723265]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00029517069924622774]
+Labels: ['Mental Health']
+Scores: [0.0003806169261224568]
+Labels: ['Cancer']
+Scores: [0.0009653512970544398]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004635403398424387]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39578779
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Signal Transduction', 'Animals', 'Smad5 Protein', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.027204783633351326]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9495739340782166]
+Labels: ['Diabetes type 1']
+Scores: [0.033676255494356155]
+Labels: ['Diabetes']
+Scores: [0.014417479746043682]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00805106945335865]
+Labels: ['Mental Health']
+Scores: [0.02814004197716713]
+Labels: ['Cancer']
+Scores: [0.088457390666008]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05814769119024277]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39570415
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nutrition Surveys', 'Middle Aged', 'Male', 'Female', 'Adult', 'Aged', 'Antioxidants', 'Adolescent', 'Child, Preschool', 'Young Adult', 'Aged, 80 and over', 'Infant', 'Chronic Disease', 'Child', 'Diet', 'United States', 'Respiratory Tract Diseases', 'Risk Factors', 'Mortality', 'Respiration Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.006829438265413046]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9707777500152588]
+Labels: ['Diabetes type 1']
+Scores: [0.00657586008310318]
+Labels: ['Diabetes']
+Scores: [0.0017120590200647712]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007094586035236716]
+Labels: ['Mental Health']
+Scores: [0.0036452338099479675]
+Labels: ['Cancer']
+Scores: [0.001701893052086234]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.035312578082084656]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39570333
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Vietnam', 'Humans', 'Hospitalization', 'Male', 'Female', 'Middle Aged', 'Temperature', 'Aged', 'Adult', 'Adolescent', 'Respiratory Tract Diseases', 'Young Adult', 'Infant', 'Cardiovascular Diseases', 'Child, Preschool', 'Child', 'Poverty', 'Infant, Newborn', 'Aged, 80 and over', 'Risk']
+Labels: ['Diabetes type 2']
+Scores: [0.22520379722118378]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9286539554595947]
+Labels: ['Diabetes type 1']
+Scores: [0.21644659340381622]
+Labels: ['Diabetes']
+Scores: [0.14956261217594147]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8705752491950989]
+Labels: ['Mental Health']
+Scores: [0.17060615122318268]
+Labels: ['Cancer']
+Scores: [0.07625050097703934]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3711288571357727]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39566943
+Predictions: ['Cancer', 'Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Fukushima Nuclear Accident', 'Japan', 'Retrospective Studies', 'Male', 'Female', 'Aged', 'Middle Aged', 'Adult', 'Cause of Death', 'Young Adult', 'Adolescent', 'Child', 'Aged, 80 and over', 'Child, Preschool', 'Infant', 'Disasters', 'Earthquakes', 'Respiratory Tract Diseases', 'Cardiovascular Diseases', 'Suicide', 'Infant, Newborn', 'Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.005460900720208883]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005500926170498133]
+Labels: ['Diabetes type 1']
+Scores: [0.006147956941276789]
+Labels: ['Diabetes']
+Scores: [0.0005172736127860844]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006705252453684807]
+Labels: ['Mental Health']
+Scores: [0.03573785349726677]
+Labels: ['Cancer']
+Scores: [0.28344303369522095]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05432023108005524]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39566532
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Exosomes', 'Humans', 'Respiratory Tract Diseases', 'Animals', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.010467845015227795]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3639830946922302]
+Labels: ['Diabetes type 1']
+Scores: [0.009375588037073612]
+Labels: ['Diabetes']
+Scores: [0.0020619682036340237]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001086521428078413]
+Labels: ['Mental Health']
+Scores: [0.002167559927329421]
+Labels: ['Cancer']
+Scores: [0.007453386206179857]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021523967385292053]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39550655
+Predictions: ['Cancer', 'Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Particulate Matter', 'Middle Aged', 'Aged', 'Adult', 'Cohort Studies', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Neoplasms', 'Air Pollution', 'Air Pollutants', 'Cardiovascular Diseases', 'Italy', 'Rivers', 'Young Adult', 'Proportional Hazards Models', 'Manufacturing and Industrial Facilities', 'Adolescent', 'Cause of Death', 'Industry', 'Nitrogen Oxides', 'Child, Preschool', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.022982601076364517]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7359259128570557]
+Labels: ['Diabetes type 1']
+Scores: [0.02489410899579525]
+Labels: ['Diabetes']
+Scores: [0.008580136112868786]
+Labels: ['Cardiovascular diseases']
+Scores: [0.34047994017601013]
+Labels: ['Mental Health']
+Scores: [0.048496540635824203]
+Labels: ['Cancer']
+Scores: [0.7216801047325134]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5584211945533752]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cancer']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39544058
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Volatile Organic Compounds', 'Air Pollution, Indoor', 'Pulmonary Disease, Chronic Obstructive', 'Respiratory Tract Diseases', 'Asthma', 'Sick Building Syndrome']
+Labels: ['Diabetes type 2']
+Scores: [0.03277396038174629]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7757883667945862]
+Labels: ['Diabetes type 1']
+Scores: [0.03438108041882515]
+Labels: ['Diabetes']
+Scores: [0.007781277876347303]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012261110823601484]
+Labels: ['Mental Health']
+Scores: [0.012978545390069485]
+Labels: ['Cancer']
+Scores: [0.004205642268061638]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.089492067694664]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39543369
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Bipolar Disorder', 'Pulmonary Disease, Chronic Obstructive', 'Asthma', 'Prevalence', 'Female', 'Respiratory Tract Diseases', 'Lung Neoplasms', 'Male', 'Pneumonia', 'Odds Ratio', 'Respiration Disorders', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.06186521053314209]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9913151860237122]
+Labels: ['Diabetes type 1']
+Scores: [0.05442266911268234]
+Labels: ['Diabetes']
+Scores: [0.008733727969229221]
+Labels: ['Cardiovascular diseases']
+Scores: [0.028657319024205208]
+Labels: ['Mental Health']
+Scores: [0.4937823712825775]
+Labels: ['Cancer']
+Scores: [0.036779213696718216]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2956106960773468]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39537245
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Cell Communication', 'Extracellular Vesicles', 'Animals', 'Lung', 'Lung Diseases', 'Signal Transduction', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.03485389053821564]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4031825661659241]
+Labels: ['Diabetes type 1']
+Scores: [0.03887276351451874]
+Labels: ['Diabetes']
+Scores: [0.012575002387166023]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004841265734285116]
+Labels: ['Mental Health']
+Scores: [0.03474707156419754]
+Labels: ['Cancer']
+Scores: [0.1850735992193222]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05429685860872269]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39530346
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Air Pollution', 'Environmental Exposure', 'Cardiovascular Diseases', 'Respiratory Tract Diseases', 'Environmental Monitoring', 'Air Filters', 'Child', 'Exercise', 'Aged', 'Air Pollutants', 'Masks']
+Labels: ['Diabetes type 2']
+Scores: [0.022616062313318253]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3168734312057495]
+Labels: ['Diabetes type 1']
+Scores: [0.02540929801762104]
+Labels: ['Diabetes']
+Scores: [0.004499875009059906]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005259339231997728]
+Labels: ['Mental Health']
+Scores: [0.0021939086727797985]
+Labels: ['Cancer']
+Scores: [0.003307673614472151]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021120844408869743]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39521464
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Nepal', 'Child', 'Risk Factors', 'Female', 'Research Design', 'Male', 'Longitudinal Studies', 'Adult', 'Adolescent', 'Parents', 'Child, Preschool', 'Air Pollution', 'Respiratory Tract Diseases', 'Cohort Studies', 'Life Style', 'Environmental Exposure']
+Labels: ['Diabetes type 2']
+Scores: [0.07752391695976257]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11868773400783539]
+Labels: ['Diabetes type 1']
+Scores: [0.0620427168905735]
+Labels: ['Diabetes']
+Scores: [0.02563493698835373]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08375146985054016]
+Labels: ['Mental Health']
+Scores: [0.12312861531972885]
+Labels: ['Cancer']
+Scores: [0.014734240248799324]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21344555914402008]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39515807
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'RNA, Untranslated', 'RNA, Long Noncoding', 'Epigenesis, Genetic', 'MicroRNAs', 'Respiratory Tract Diseases', 'RNA, Circular']
+Labels: ['Diabetes type 2']
+Scores: [0.011230524629354477]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1181090846657753]
+Labels: ['Diabetes type 1']
+Scores: [0.010791663080453873]
+Labels: ['Diabetes']
+Scores: [0.0021979412995278835]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0013102323282510042]
+Labels: ['Mental Health']
+Scores: [0.00982767716050148]
+Labels: ['Cancer']
+Scores: [0.001140691339969635]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09716371446847916]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39513278
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Biomarkers', 'Female', 'Air Pollutants', 'Respiratory Tract Diseases', 'Chronic Disease', 'Environmental Exposure', 'Air Pollution', 'Acute Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.005451492499560118]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5908224582672119]
+Labels: ['Diabetes type 1']
+Scores: [0.0040058535523712635]
+Labels: ['Diabetes']
+Scores: [0.0006668259738944471]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00010897374886553735]
+Labels: ['Mental Health']
+Scores: [0.00030092927045188844]
+Labels: ['Cancer']
+Scores: [0.00039609416853636503]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0052845655009150505]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39505076
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Particulate Matter', 'Republic of Korea', 'Cardiovascular Diseases', 'Humans', 'Air Pollutants', 'Air Pollution', 'Hospitalization', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.008809785358607769]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03033980168402195]
+Labels: ['Diabetes type 1']
+Scores: [0.00766800856217742]
+Labels: ['Diabetes']
+Scores: [0.0032580788247287273]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014426535926759243]
+Labels: ['Mental Health']
+Scores: [0.002010855358093977]
+Labels: ['Cancer']
+Scores: [0.00444199051707983]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009927060455083847]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39503908
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Occupational Injuries', "Workers' Compensation", 'Seasons', 'Middle Aged', 'Occupational Diseases', 'Emergency Responders', 'Mental Disorders', 'Firefighters', 'Victoria', 'Musculoskeletal Diseases', 'Wildfires', 'Respiratory Tract Diseases', 'Young Adult', 'Police']
+Labels: ['Diabetes type 2']
+Scores: [0.00640623364597559]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01056721806526184]
+Labels: ['Diabetes type 1']
+Scores: [0.006249991245567799]
+Labels: ['Diabetes']
+Scores: [0.0014126483583822846]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002012935874518007]
+Labels: ['Mental Health']
+Scores: [0.792074978351593]
+Labels: ['Cancer']
+Scores: [0.00501802284270525]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005350103136152029]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39502059
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'Respiratory Sounds', 'Respiratory Tract Diseases', 'Auscultation']
+Labels: ['Diabetes type 2']
+Scores: [0.03422969952225685]
+Labels: ['Chronic respiratory disease']
+Scores: [0.20539943873882294]
+Labels: ['Diabetes type 1']
+Scores: [0.03350929170846939]
+Labels: ['Diabetes']
+Scores: [0.01709871180355549]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0022281173150986433]
+Labels: ['Mental Health']
+Scores: [0.021349254995584488]
+Labels: ['Cancer']
+Scores: [0.005915085319429636]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011970603838562965]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494780
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Antioxidants', 'Diet', 'Hypersensitivity', 'Child, Preschool', 'Inflammation', 'Male', 'Birth Cohort', 'Multimorbidity', 'Adult', 'Maternal Nutritional Physiological Phenomena', 'Infant', 'Respiratory Tract Diseases', 'Asthma', 'Prenatal Exposure Delayed Effects', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.1189812645316124]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7838208079338074]
+Labels: ['Diabetes type 1']
+Scores: [0.11001553386449814]
+Labels: ['Diabetes']
+Scores: [0.058191075921058655]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08571596443653107]
+Labels: ['Mental Health']
+Scores: [0.21965298056602478]
+Labels: ['Cancer']
+Scores: [0.05399443954229355]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3907068967819214]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494537
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Caregivers', 'Chronic Disease', 'Patient Education as Topic', 'Health Literacy', 'Palliative Care', 'Advance Care Planning', 'Decision Making, Shared', 'Learning', 'Respiratory Tract Diseases', 'Health Knowledge, Attitudes, Practice', 'Adaptation, Psychological', 'Decision Making']
+Labels: ['Diabetes type 2']
+Scores: [0.001867854269221425]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9952328205108643]
+Labels: ['Diabetes type 1']
+Scores: [0.0014010528102517128]
+Labels: ['Diabetes']
+Scores: [0.0006210340070538223]
+Labels: ['Cardiovascular diseases']
+Scores: [6.8189314333722e-05]
+Labels: ['Mental Health']
+Scores: [0.00048636167775839567]
+Labels: ['Cancer']
+Scores: [0.0031360723078250885]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05888739600777626]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494092
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Air Pollutants', 'Air Pollution', 'Environmental Exposure', 'Europe', 'Nitrogen Dioxide', 'Ozone', 'Respiratory Tract Diseases', 'World Health Organization']
+Labels: ['Diabetes type 2']
+Scores: [0.00615003053098917]
+Labels: ['Chronic respiratory disease']
+Scores: [0.23274442553520203]
+Labels: ['Diabetes type 1']
+Scores: [0.006599966436624527]
+Labels: ['Diabetes']
+Scores: [0.0012509120861068368]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002386261709034443]
+Labels: ['Mental Health']
+Scores: [0.0005915920482948422]
+Labels: ['Cancer']
+Scores: [0.0032607403118163347]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.001333787920884788]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39493756
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Computational Biology', 'User-Computer Interface', 'Databases, Factual', 'Respiratory Tract Diseases', 'Software']
+Labels: ['Diabetes type 2']
+Scores: [0.18929989635944366]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7151581048965454]
+Labels: ['Diabetes type 1']
+Scores: [0.19430992007255554]
+Labels: ['Diabetes']
+Scores: [0.008061451837420464]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0022919464390724897]
+Labels: ['Mental Health']
+Scores: [0.002578730694949627]
+Labels: ['Cancer']
+Scores: [0.009326986037194729]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01586637832224369]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39489274
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Republic of Korea', 'Humans', 'Female', 'Male', 'Temperature', 'Middle Aged', 'Seasons', 'Aged', 'Cardiovascular Diseases', 'Mortality', 'Adult', 'Child', 'Adolescent', 'Child, Preschool', 'Young Adult', 'Infant', 'Aged, 80 and over', 'Respiratory Tract Diseases', 'Infant, Newborn']
+Labels: ['Diabetes type 2']
+Scores: [0.028791509568691254]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07741303741931915]
+Labels: ['Diabetes type 1']
+Scores: [0.028552047908306122]
+Labels: ['Diabetes']
+Scores: [0.015366612002253532]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06539550423622131]
+Labels: ['Mental Health']
+Scores: [0.010794010013341904]
+Labels: ['Cancer']
+Scores: [0.051251500844955444]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16626574099063873]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39477760
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Spain', 'COVID-19', 'Male', 'Female', 'Middle Aged', 'Aged', 'Adult', 'Adolescent', 'Young Adult', 'Cause of Death', 'Aged, 80 and over', 'Child', 'Child, Preschool', 'Infant', 'Respiratory Tract Diseases', 'Mortality', 'Pandemics', 'Infant, Newborn']
+Labels: ['Diabetes type 2']
+Scores: [0.0032162179704755545]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9744377136230469]
+Labels: ['Diabetes type 1']
+Scores: [0.0031056730076670647]
+Labels: ['Diabetes']
+Scores: [0.0002418570511508733]
+Labels: ['Cardiovascular diseases']
+Scores: [4.312752207624726e-05]
+Labels: ['Mental Health']
+Scores: [0.00040677166543900967]
+Labels: ['Cancer']
+Scores: [0.0001833119458751753]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.060537006705999374]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39472952
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'South Africa', 'Quality of Life', 'Child, Preschool', 'Infant', 'Male', 'Female', 'Delphi Technique', 'Surveys and Questionnaires', 'Respiratory Tract Diseases', 'Infant, Newborn', 'Psychometrics', 'Respiratory Tract Infections']
+Labels: ['Diabetes type 2']
+Scores: [0.009623786434531212]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3001604378223419]
+Labels: ['Diabetes type 1']
+Scores: [0.007451158948242664]
+Labels: ['Diabetes']
+Scores: [0.0022085821256041527]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00018898547568824142]
+Labels: ['Mental Health']
+Scores: [0.0012280956143513322]
+Labels: ['Cancer']
+Scores: [0.0018345406278967857]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009874052368104458]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39468133
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Infant', 'South Africa', 'Female', 'Male', 'Eggs', 'Gastrointestinal Diseases', 'Infant Nutritional Physiological Phenomena', 'Respiratory Tract Diseases', 'Incidence', 'Morbidity']
+Labels: ['Diabetes type 2']
+Scores: [0.04527592286467552]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11675186455249786]
+Labels: ['Diabetes type 1']
+Scores: [0.04413165897130966]
+Labels: ['Diabetes']
+Scores: [0.017337502911686897]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008809907361865044]
+Labels: ['Mental Health']
+Scores: [0.014479842968285084]
+Labels: ['Cancer']
+Scores: [0.0067347087897360325]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.29237040877342224]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39466470
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Bone Morphogenetic Protein 2', 'Signal Transduction', 'Animals', 'Respiratory Tract Diseases', 'Lung Neoplasms', 'Hypertension, Pulmonary']
+Labels: ['Diabetes type 2']
+Scores: [0.008721301332116127]
+Labels: ['Chronic respiratory disease']
+Scores: [0.987818717956543]
+Labels: ['Diabetes type 1']
+Scores: [0.0068671866320073605]
+Labels: ['Diabetes']
+Scores: [0.003072537248954177]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009324925020337105]
+Labels: ['Mental Health']
+Scores: [0.007941721007227898]
+Labels: ['Cancer']
+Scores: [0.7250287532806396]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005445585586130619]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cancer']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39465586
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Pulmonary Disease, Chronic Obstructive', 'Male', 'Female', 'Aged', 'Comorbidity', 'Patient Readmission', 'Length of Stay', 'Middle Aged', 'Retrospective Studies', 'Heart Failure', 'Prospective Studies', 'Hypertension', 'Myocardial Ischemia', 'Pulmonary Heart Disease', 'Aged, 80 and over', 'Prevalence', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0008984326268546283]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9990218877792358]
+Labels: ['Diabetes type 1']
+Scores: [0.0008671599207445979]
+Labels: ['Diabetes']
+Scores: [0.00035925384145230055]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002321656938875094]
+Labels: ['Mental Health']
+Scores: [0.00026387666002847254]
+Labels: ['Cancer']
+Scores: [0.00044191599590703845]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00046836945693939924]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39462582
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Ozone', 'Japan', 'Particulate Matter', 'Humans', 'Air Pollutants', 'Cities', 'Aged', 'Female', 'Mortality', 'Male', 'Cardiovascular Diseases', 'Middle Aged', 'Adult', 'Air Pollution', 'Hot Temperature', 'Temperature', 'Respiratory Tract Diseases', 'Environmental Exposure', 'Young Adult', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.008706171065568924]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04712973162531853]
+Labels: ['Diabetes type 1']
+Scores: [0.006861367728561163]
+Labels: ['Diabetes']
+Scores: [0.003927722107619047]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04594806954264641]
+Labels: ['Mental Health']
+Scores: [0.04916046932339668]
+Labels: ['Cancer']
+Scores: [0.0038855501916259527]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04973446950316429]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39462039
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Gastrointestinal Microbiome', 'Genome-Wide Association Study', 'Lung', 'Respiratory Tract Diseases', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.0317404679954052]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9826126098632812]
+Labels: ['Diabetes type 1']
+Scores: [0.02160372957587242]
+Labels: ['Diabetes']
+Scores: [0.02171546220779419]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008697357960045338]
+Labels: ['Mental Health']
+Scores: [0.03946607559919357]
+Labels: ['Cancer']
+Scores: [0.015937495976686478]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15281321108341217]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39457304
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Cross-Sectional Studies', 'Dust', 'Adult', 'Male', 'Occupational Exposure', 'Ethiopia', 'Female', 'Paper', 'Middle Aged', 'Cough', 'Prevalence', 'Young Adult', 'Respiratory Tract Diseases', 'Respiratory Sounds', 'Surveys and Questionnaires', 'Occupational Diseases', 'Industry', 'Dyspnea', 'Air Pollutants, Occupational']
+Labels: ['Diabetes type 2']
+Scores: [0.0886048972606659]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8051564693450928]
+Labels: ['Diabetes type 1']
+Scores: [0.06321243941783905]
+Labels: ['Diabetes']
+Scores: [0.02306012623012066]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03266789764165878]
+Labels: ['Mental Health']
+Scores: [0.04528556391596794]
+Labels: ['Cancer']
+Scores: [0.025695068761706352]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24908098578453064]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39453518
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Particulate Matter', 'Aged', 'Female', 'Male', 'Cross-Over Studies', 'Altitude', 'Air Pollutants', 'Respiratory Tract Diseases', 'China', 'Extreme Weather', 'Aged, 80 and over', 'Middle Aged', 'Cities', 'Air Pollution']
+Labels: ['Diabetes type 2']
+Scores: [0.0030932710506021976]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00043185026152059436]
+Labels: ['Diabetes type 1']
+Scores: [0.002865314017981291]
+Labels: ['Diabetes']
+Scores: [0.001070875208824873]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000608495029155165]
+Labels: ['Mental Health']
+Scores: [0.001109663164243102]
+Labels: ['Cancer']
+Scores: [0.025660226121544838]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.000440520525444299]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39444957
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Adolescent', 'Adult', 'Child', 'Humans', 'Air Pollutants', 'Air Pollution', 'Environmental Exposure', 'Particulate Matter', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.004190248437225819]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6558530330657959]
+Labels: ['Diabetes type 1']
+Scores: [0.006453366484493017]
+Labels: ['Diabetes']
+Scores: [0.00092626444529742]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002947495086118579]
+Labels: ['Mental Health']
+Scores: [0.0008065709262154996]
+Labels: ['Cancer']
+Scores: [0.0003842467558570206]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13866041600704193]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39444118
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Middle Aged', 'Heating', 'Prospective Studies', 'Female', 'Male', 'Respiratory Tract Diseases', 'Proportional Hazards Models', 'China', 'Smoking', 'Risk Factors', 'Adult', 'Air Pollution, Indoor']
+Labels: ['Diabetes type 2']
+Scores: [0.0010741626610979438]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8129146099090576]
+Labels: ['Diabetes type 1']
+Scores: [0.0009562983177602291]
+Labels: ['Diabetes']
+Scores: [0.00013595708878710866]
+Labels: ['Cardiovascular diseases']
+Scores: [5.857061842107214e-05]
+Labels: ['Mental Health']
+Scores: [9.874549141386524e-05]
+Labels: ['Cancer']
+Scores: [0.0002135869872290641]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07326807826757431]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39443904
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Netherlands', 'Female', 'Male', 'Adult', 'Middle Aged', 'Smoke', 'Wood', 'Air Pollutants', 'Environmental Exposure', 'Aged', 'Particulate Matter', 'Respiratory Tract Diseases', 'Glucose']
+Labels: ['Diabetes type 2']
+Scores: [0.0012467262567952275]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007420630194246769]
+Labels: ['Diabetes type 1']
+Scores: [0.001203151186928153]
+Labels: ['Diabetes']
+Scores: [0.00022167694987729192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00013352713722269982]
+Labels: ['Mental Health']
+Scores: [0.000288362440187484]
+Labels: ['Cancer']
+Scores: [0.0003717787330970168]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01806723326444626]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39439241
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Switzerland', 'Humans', 'History, 20th Century', 'History, 21st Century', 'History, 17th Century', 'History, 16th Century', 'Respiratory Tract Diseases', 'Male', 'Female', 'History, 18th Century', 'History, 19th Century', 'Adult', 'Middle Aged', 'Respiration Disorders', 'Aged', 'Child', 'Adolescent', 'Air Pollution']
+Labels: ['Diabetes type 2']
+Scores: [0.00333480816334486]
+Labels: ['Chronic respiratory disease']
+Scores: [0.45317935943603516]
+Labels: ['Diabetes type 1']
+Scores: [0.003363977652043104]
+Labels: ['Diabetes']
+Scores: [0.0007309726788662374]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00013534727622754872]
+Labels: ['Mental Health']
+Scores: [0.00016219262033700943]
+Labels: ['Cancer']
+Scores: [0.0005164857720956206]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009183968417346478]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39436432
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Prospective Studies', 'Child', 'Respiratory Tract Diseases', 'Male', 'Female', 'Air Pollutants', 'Particulate Matter', 'Air Pollution', 'Child Health', 'Environmental Exposure', 'Air Pollution, Indoor', 'Adolescent', 'Environmental Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.007463135290890932]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2148096263408661]
+Labels: ['Diabetes type 1']
+Scores: [0.007841240614652634]
+Labels: ['Diabetes']
+Scores: [0.0016306772595271468]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001685676514171064]
+Labels: ['Mental Health']
+Scores: [0.0005701011978089809]
+Labels: ['Cancer']
+Scores: [0.002498510992154479]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019748130813241005]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39435892
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'United Kingdom', 'Particulate Matter', 'Male', 'Female', 'Middle Aged', 'Aged', 'Proportional Hazards Models', 'Environmental Exposure', 'Cardiovascular Diseases', 'Biological Specimen Banks', 'Mortality', 'Time Factors', 'Air Pollution', 'Air Pollutants', 'Adult', 'Cohort Studies', 'Machine Learning', 'Respiratory Tract Diseases', 'UK Biobank']
+Labels: ['Diabetes type 2']
+Scores: [0.02861122041940689]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7409955859184265]
+Labels: ['Diabetes type 1']
+Scores: [0.021917756646871567]
+Labels: ['Diabetes']
+Scores: [0.009789476171135902]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5538554787635803]
+Labels: ['Mental Health']
+Scores: [0.03821688890457153]
+Labels: ['Cancer']
+Scores: [0.6322019100189209]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19665950536727905]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39434079
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'China', 'Air Pollution', 'Respiratory Tract Diseases', 'Risk Assessment', 'Air Pollutants', 'Reproducibility of Results']
+Labels: ['Diabetes type 2']
+Scores: [0.010781638324260712]
+Labels: ['Chronic respiratory disease']
+Scores: [0.47484755516052246]
+Labels: ['Diabetes type 1']
+Scores: [0.012751572765409946]
+Labels: ['Diabetes']
+Scores: [0.0022472701966762543]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002465653233230114]
+Labels: ['Mental Health']
+Scores: [0.0003058268630411476]
+Labels: ['Cancer']
+Scores: [0.001975696999579668]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02745181880891323]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39424664
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Air Pollution', 'Particulate Matter', 'Air Pollutants', 'Meteorological Concepts', 'Respiratory Tract Diseases', 'Iran', 'Sulfur Dioxide', 'Nitrogen Dioxide', 'Random Forest']
+Labels: ['Diabetes type 2']
+Scores: [0.022433510050177574]
+Labels: ['Chronic respiratory disease']
+Scores: [0.30536484718322754]
+Labels: ['Diabetes type 1']
+Scores: [0.02354038879275322]
+Labels: ['Diabetes']
+Scores: [0.006620070431381464]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018695094622671604]
+Labels: ['Mental Health']
+Scores: [0.020303912460803986]
+Labels: ['Cancer']
+Scores: [0.018222909420728683]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05097290128469467]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39424373
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Surveys and Questionnaires', 'Child', 'Quality Improvement', 'Documentation', 'Preoperative Care', 'Pediatrics', 'Respiration Disorders', 'Respiratory Tract Diseases', 'Preoperative Period']
+Labels: ['Diabetes type 2']
+Scores: [0.13122569024562836]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12561984360218048]
+Labels: ['Diabetes type 1']
+Scores: [0.12248596549034119]
+Labels: ['Diabetes']
+Scores: [0.039161283522844315]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05306442826986313]
+Labels: ['Mental Health']
+Scores: [0.02942667342722416]
+Labels: ['Cancer']
+Scores: [0.06367949396371841]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17554818093776703]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39423508
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Phthalic Acids', 'Male', 'Female', 'Child', 'China', 'Cardiovascular Diseases', 'Air Pollution, Indoor', 'Environmental Exposure', 'Respiratory Tract Diseases', 'Anthropometry', 'Dust', 'Schools', 'Endocrine Disruptors', 'Risk Assessment', 'Body Mass Index']
+Labels: ['Diabetes type 2']
+Scores: [0.2405550330877304]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6681000590324402]
+Labels: ['Diabetes type 1']
+Scores: [0.21375562250614166]
+Labels: ['Diabetes']
+Scores: [0.14117293059825897]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8640664219856262]
+Labels: ['Mental Health']
+Scores: [0.05244031175971031]
+Labels: ['Cancer']
+Scores: [0.12215163558721542]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.46491554379463196]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39421822
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Ambulances', 'China', 'Middle Aged', 'Cardiovascular Diseases', 'Temperature', 'Aged', 'Adult', 'Emergency Medical Services', 'Respiratory Tract Diseases', 'Seasons']
+Labels: ['Diabetes type 2']
+Scores: [0.01089741475880146]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5286864638328552]
+Labels: ['Diabetes type 1']
+Scores: [0.009627444669604301]
+Labels: ['Diabetes']
+Scores: [0.003345022676512599]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9127967953681946]
+Labels: ['Mental Health']
+Scores: [0.0038675321266055107]
+Labels: ['Cancer']
+Scores: [0.0007582709658890963]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1693943440914154]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39419650
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Omalizumab', 'Anti-Inflammatory Agents, Non-Steroidal', 'Antibodies, Anti-Idiotypic', 'Asthma, Aspirin-Induced', 'Anti-Allergic Agents', 'Drug Hypersensitivity', 'Respiratory Tract Diseases', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.033311184495687485]
+Labels: ['Chronic respiratory disease']
+Scores: [0.945125162601471]
+Labels: ['Diabetes type 1']
+Scores: [0.014195147901773453]
+Labels: ['Diabetes']
+Scores: [0.011674396693706512]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0835147276520729]
+Labels: ['Mental Health']
+Scores: [0.025225980207324028]
+Labels: ['Cancer']
+Scores: [0.011626525782048702]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4168972671031952]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39419227
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Microbiota', 'Air Microbiology', 'Middle Aged', 'Cross-Sectional Studies', 'China', 'Prevalence', 'Adult', 'Female', 'Aged', 'Air Pollution, Indoor', 'Respiratory Tract Diseases', 'Male', 'Plants', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.054973162710666656]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4670126438140869]
+Labels: ['Diabetes type 1']
+Scores: [0.05403362214565277]
+Labels: ['Diabetes']
+Scores: [0.02469090186059475]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01694481633603573]
+Labels: ['Mental Health']
+Scores: [0.049427468329668045]
+Labels: ['Cancer']
+Scores: [0.021513530984520912]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.37325477600097656]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39410863
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Africa', 'Air Pollution, Indoor', 'Environmental Exposure', 'Respiratory Tract Infections', 'Respiratory Tract Diseases', 'Female', 'Risk Factors', 'Family Characteristics', 'Child', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.009731910191476345]
+Labels: ['Chronic respiratory disease']
+Scores: [0.95730060338974]
+Labels: ['Diabetes type 1']
+Scores: [0.010310419835150242]
+Labels: ['Diabetes']
+Scores: [0.0019831524696201086]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005954446387477219]
+Labels: ['Mental Health']
+Scores: [0.0003946848737541586]
+Labels: ['Cancer']
+Scores: [0.000962579739280045]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015095970593392849]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39408565
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'TRPV Cation Channels', 'Receptors, Adrenergic, beta-2', 'Animals', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.018871648237109184]
+Labels: ['Chronic respiratory disease']
+Scores: [0.92970210313797]
+Labels: ['Diabetes type 1']
+Scores: [0.016751842573285103]
+Labels: ['Diabetes']
+Scores: [0.007384431082755327]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007123189978301525]
+Labels: ['Mental Health']
+Scores: [0.014724040403962135]
+Labels: ['Cancer']
+Scores: [0.006588585674762726]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013598782010376453]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39406209
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Male', 'Northern Territory', 'Animals', 'Smoke', 'Turtles', 'Environmental Exposure', 'Adult', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0025052912533283234]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9936152100563049]
+Labels: ['Diabetes type 1']
+Scores: [0.0025968088302761316]
+Labels: ['Diabetes']
+Scores: [0.002233816310763359]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009004214662127197]
+Labels: ['Mental Health']
+Scores: [0.002320846077054739]
+Labels: ['Cancer']
+Scores: [0.0028235544450581074]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1336657851934433]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39395132
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Sarcopenia', 'Genome-Wide Association Study', 'Body Mass Index', 'Respiratory Tract Diseases', 'Male', 'Pulmonary Disease, Chronic Obstructive', 'Female', 'Smoking', 'Pneumoconiosis']
+Labels: ['Diabetes type 2']
+Scores: [0.0025739180855453014]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7051670551300049]
+Labels: ['Diabetes type 1']
+Scores: [0.0027312804013490677]
+Labels: ['Diabetes']
+Scores: [0.0006548466626554728]
+Labels: ['Cardiovascular diseases']
+Scores: [6.96797069394961e-05]
+Labels: ['Mental Health']
+Scores: [0.0007180449902079999]
+Labels: ['Cancer']
+Scores: [0.0004398243618197739]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014686240814626217]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39394579
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Japan', 'Cross-Sectional Studies', 'Male', 'Female', 'Adult', 'Middle Aged', 'Tobacco Products', 'Surveys and Questionnaires', 'Internet', 'Smoking', 'Hot Temperature', 'Aged', 'Young Adult', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.035974353551864624]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5034251809120178]
+Labels: ['Diabetes type 1']
+Scores: [0.03661471605300903]
+Labels: ['Diabetes']
+Scores: [0.02258271351456642]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05329060181975365]
+Labels: ['Mental Health']
+Scores: [0.06532758474349976]
+Labels: ['Cancer']
+Scores: [0.07513440400362015]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.38966044783592224]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39391315
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Animals', 'Respiratory Tract Diseases', 'Liquid-Liquid Extraction', 'Signal Transduction', 'Phase Separation']
+Labels: ['Diabetes type 2']
+Scores: [0.023490626364946365]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3312326967716217]
+Labels: ['Diabetes type 1']
+Scores: [0.02683188021183014]
+Labels: ['Diabetes']
+Scores: [0.009703482501208782]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004023359215352684]
+Labels: ['Mental Health']
+Scores: [0.004592354409396648]
+Labels: ['Cancer']
+Scores: [0.004712110850960016]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.046414151787757874]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39389134
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Particulate Matter', 'Aged', 'Humans', 'Air Pollutants', 'Risk Assessment', 'China', 'Air Pollution', 'Environmental Exposure', 'Fossil Fuels', 'Aged, 80 and over', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0024427101016044617]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12910082936286926]
+Labels: ['Diabetes type 1']
+Scores: [0.0020922671537846327]
+Labels: ['Diabetes']
+Scores: [0.0006162244244478643]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004817091685254127]
+Labels: ['Mental Health']
+Scores: [0.0007232162752188742]
+Labels: ['Cancer']
+Scores: [0.0009848198387771845]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0019539950881153345]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39384295
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Rain', 'Cardiovascular Diseases', 'Respiratory Tract Diseases', 'Global Health', 'Cause of Death', 'Mortality', 'Time Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.022244958207011223]
+Labels: ['Chronic respiratory disease']
+Scores: [0.28367340564727783]
+Labels: ['Diabetes type 1']
+Scores: [0.02222636714577675]
+Labels: ['Diabetes']
+Scores: [0.0045757112093269825]
+Labels: ['Cardiovascular diseases']
+Scores: [0.650324285030365]
+Labels: ['Mental Health']
+Scores: [0.0016081855865195394]
+Labels: ['Cancer']
+Scores: [0.0023917024955153465]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013920784927904606]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39384238
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Observational Studies as Topic', 'Respiratory Tract Diseases', 'Systematic Reviews as Topic', 'Walking']
+Labels: ['Diabetes type 2']
+Scores: [0.03648325428366661]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022105427458882332]
+Labels: ['Diabetes type 1']
+Scores: [0.03138411417603493]
+Labels: ['Diabetes']
+Scores: [0.017234409227967262]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010770966298878193]
+Labels: ['Mental Health']
+Scores: [0.005047386512160301]
+Labels: ['Cancer']
+Scores: [0.0021453744266182184]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.216903954744339]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39374569
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Biosensing Techniques', 'Biomarkers', 'Saliva', 'Breath Tests', 'Respiratory Tract Diseases', 'Exhalation', 'Electrochemical Techniques', 'Equipment Design']
+Labels: ['Diabetes type 2']
+Scores: [0.180761456489563]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4624917209148407]
+Labels: ['Diabetes type 1']
+Scores: [0.17736022174358368]
+Labels: ['Diabetes']
+Scores: [0.10000237077474594]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11731051653623581]
+Labels: ['Mental Health']
+Scores: [0.14887680113315582]
+Labels: ['Cancer']
+Scores: [0.12519922852516174]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.42464199662208557]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39370174
+Predictions: ['Chronic respiratory disease', 'Mental Health']
+MeshTerm: ['Humans', 'Comorbidity', 'Mental Disorders', 'Respiratory Tract Diseases', 'Quality of Life', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.01737137883901596]
+Labels: ['Chronic respiratory disease']
+Scores: [0.36873582005500793]
+Labels: ['Diabetes type 1']
+Scores: [0.014797419309616089]
+Labels: ['Diabetes']
+Scores: [0.008927347138524055]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008389196591451764]
+Labels: ['Mental Health']
+Scores: [0.9626293778419495]
+Labels: ['Cancer']
+Scores: [0.002205420285463333]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0059691742062568665]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39370173
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mental Disorders', 'Tuberculosis, Pulmonary', 'Tuberculosis', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0010107692796736956]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8364412188529968]
+Labels: ['Diabetes type 1']
+Scores: [0.0009143433417193592]
+Labels: ['Diabetes']
+Scores: [0.00015243371308315545]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001232154027093202]
+Labels: ['Mental Health']
+Scores: [0.1401885598897934]
+Labels: ['Cancer']
+Scores: [0.00033928226912394166]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01159418374300003]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39366894
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Pregnancy', 'Female', 'Prenatal Exposure Delayed Effects', 'Smoking', 'Child', 'Infant, Newborn', 'Respiratory Tract Diseases', 'Adolescent', 'Maternal Exposure']
+Labels: ['Diabetes type 2']
+Scores: [0.014606960117816925]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6080424189567566]
+Labels: ['Diabetes type 1']
+Scores: [0.015609168447554111]
+Labels: ['Diabetes']
+Scores: [0.004705125465989113]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003677823580801487]
+Labels: ['Mental Health']
+Scores: [0.00891578197479248]
+Labels: ['Cancer']
+Scores: [0.004369041416794062]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.28766271471977234]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39364938
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Animals', 'Humans', 'United Kingdom', 'Veterinary Medicine', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.000343019375577569]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6564646363258362]
+Labels: ['Diabetes type 1']
+Scores: [0.00035204560845158994]
+Labels: ['Diabetes']
+Scores: [0.00010275062959408388]
+Labels: ['Cardiovascular diseases']
+Scores: [7.86663731560111e-05]
+Labels: ['Mental Health']
+Scores: [9.294215124100447e-05]
+Labels: ['Cancer']
+Scores: [0.00013892505376134068]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14931628108024597]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39362458
+Predictions: ['Cancer', 'Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Residence Characteristics', 'Aged', 'Mortality', 'Cities', 'Middle Aged', 'Aging', 'Cardiovascular Diseases', 'Male', 'Female', 'Neoplasms', 'Respiratory Tract Diseases', 'Adult', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.2602957487106323]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8647699356079102]
+Labels: ['Diabetes type 1']
+Scores: [0.25071150064468384]
+Labels: ['Diabetes']
+Scores: [0.08605408668518066]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8950391411781311]
+Labels: ['Mental Health']
+Scores: [0.1347610503435135]
+Labels: ['Cancer']
+Scores: [0.7590789198875427]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.39967840909957886]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[3, 0], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39362179
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Feasibility Studies', 'Pilot Projects', 'Aged', 'Male', 'Chronic Disease', 'Female', 'Exercise Therapy', 'Prospective Studies', 'Problem Solving', 'Physical Functional Performance', 'Aged, 80 and over', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0007451750570908189]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9663050174713135]
+Labels: ['Diabetes type 1']
+Scores: [0.0006130346446298063]
+Labels: ['Diabetes']
+Scores: [0.00021140067838132381]
+Labels: ['Cardiovascular diseases']
+Scores: [6.272183236433193e-05]
+Labels: ['Mental Health']
+Scores: [0.0002534787345211953]
+Labels: ['Cancer']
+Scores: [0.00018019815615843982]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0027386685833334923]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39353528
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Taiwan', 'Humans', 'Cardiovascular Diseases', 'Climate Change', 'Temperature', 'Middle Aged', 'Aged', 'Adult', 'Respiratory Tract Diseases', 'Male', 'Female', 'Seasons', 'Vulnerable Populations', 'Young Adult', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.09347893297672272]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9594478011131287]
+Labels: ['Diabetes type 1']
+Scores: [0.09060882776975632]
+Labels: ['Diabetes']
+Scores: [0.023713694885373116]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9697588682174683]
+Labels: ['Mental Health']
+Scores: [0.01908334158360958]
+Labels: ['Cancer']
+Scores: [0.01099343877285719]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21145039796829224]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39354585
+Predictions: ['Cancer', 'Chronic respiratory disease']
+MeshTerm: ['Humans', 'Immune Checkpoint Inhibitors', 'Neoplasms', 'Chemoradiotherapy', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.002625297987833619]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3937007188796997]
+Labels: ['Diabetes type 1']
+Scores: [0.002111698966473341]
+Labels: ['Diabetes']
+Scores: [0.0007498817867599428]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004594010242726654]
+Labels: ['Mental Health']
+Scores: [0.0022527528926730156]
+Labels: ['Cancer']
+Scores: [0.9753915667533875]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0061292946338653564]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39352090
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Slovakia', 'Occupational Diseases', 'Adult', 'Male', 'Female', 'Prevalence', 'Middle Aged', 'Agriculture', 'Occupational Exposure', 'Manufacturing Industry', 'Asthma, Occupational', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0009261081577278674]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5988669991493225]
+Labels: ['Diabetes type 1']
+Scores: [0.0009154018480330706]
+Labels: ['Diabetes']
+Scores: [0.00021496367116924375]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000133123408886604]
+Labels: ['Mental Health']
+Scores: [0.00014082119741942734]
+Labels: ['Cancer']
+Scores: [0.000132479501189664]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08827616274356842]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39348213
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['China', 'Air Pollutants', 'Humans', 'Bayes Theorem', 'Particulate Matter', 'Air Pollution', 'Respiratory Tract Diseases', 'Sulfur Dioxide', 'Environmental Exposure']
+Labels: ['Diabetes type 2']
+Scores: [0.03457295149564743]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5180739164352417]
+Labels: ['Diabetes type 1']
+Scores: [0.036410730332136154]
+Labels: ['Diabetes']
+Scores: [0.02198607847094536]
+Labels: ['Cardiovascular diseases']
+Scores: [0.022007517516613007]
+Labels: ['Mental Health']
+Scores: [0.07081564515829086]
+Labels: ['Cancer']
+Scores: [0.048957474529743195]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2557385563850403]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39338131
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Brazil', 'Humans', 'Male', 'Female', 'Mortality', 'Middle Aged', 'Adult', 'Adolescent', 'Aged', 'Child', 'Young Adult', 'Respiratory Tract Diseases', 'Infant', 'Child, Preschool', 'Cardiovascular Diseases', 'Temperature', 'Hot Temperature', 'Aged, 80 and over', 'Infant, Newborn']
+Labels: ['Diabetes type 2']
+Scores: [0.08546508103609085]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9287872314453125]
+Labels: ['Diabetes type 1']
+Scores: [0.141972154378891]
+Labels: ['Diabetes']
+Scores: [0.031073132529854774]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06254542618989944]
+Labels: ['Mental Health']
+Scores: [0.018665794283151627]
+Labels: ['Cancer']
+Scores: [0.027368009090423584]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11402776837348938]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39334540
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Italy', 'Child', 'Pesticides', 'Female', 'Male', 'Adolescent', 'Environmental Exposure', 'Surveys and Questionnaires', 'Risk Factors', 'Health Status', 'Logistic Models', 'Agriculture', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.25096359848976135]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6548482179641724]
+Labels: ['Diabetes type 1']
+Scores: [0.21515056490898132]
+Labels: ['Diabetes']
+Scores: [0.10273056477308273]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1119961366057396]
+Labels: ['Mental Health']
+Scores: [0.17605729401111603]
+Labels: ['Cancer']
+Scores: [0.07901965826749802]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.20972763001918793]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39332351
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Wildfires', 'Smoke', 'Occupational Exposure', 'Firefighters', 'Respiratory Tract Diseases', 'Respiratory Function Tests']
+Labels: ['Diabetes type 2']
+Scores: [0.007745406590402126]
+Labels: ['Chronic respiratory disease']
+Scores: [0.33286941051483154]
+Labels: ['Diabetes type 1']
+Scores: [0.009319610893726349]
+Labels: ['Diabetes']
+Scores: [0.003663363168016076]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00034171435981988907]
+Labels: ['Mental Health']
+Scores: [0.0007548495195806026]
+Labels: ['Cancer']
+Scores: [0.0105271702632308]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16765668988227844]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39331188
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'COVID-19', 'Glioma', 'Male', 'Middle Aged', 'Female', 'Risk Factors', 'Adult', 'Aged', 'Brain Neoplasms', 'SEER Program', 'Young Adult', 'Pandemics', 'Respiratory Tract Diseases', 'SARS-CoV-2']
+Labels: ['Diabetes type 2']
+Scores: [0.005658761132508516]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8306846022605896]
+Labels: ['Diabetes type 1']
+Scores: [0.004960924852639437]
+Labels: ['Diabetes']
+Scores: [0.001424618298187852]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004964092513546348]
+Labels: ['Mental Health']
+Scores: [0.007464958354830742]
+Labels: ['Cancer']
+Scores: [0.22555500268936157]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0710626095533371]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39323116
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Vietnam', 'Male', 'Female', 'Prospective Studies', 'Infant', 'Infant, Newborn', 'Intensive Care Units, Pediatric', 'Infant, Premature', 'Critical Illness', 'Respiration, Artificial', 'Length of Stay', 'Child, Preschool', 'Respiratory Tract Diseases', 'Infant, Premature, Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.003654791973531246]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08362028002738953]
+Labels: ['Diabetes type 1']
+Scores: [0.0033763949759304523]
+Labels: ['Diabetes']
+Scores: [0.0003573274298105389]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001200028564198874]
+Labels: ['Mental Health']
+Scores: [0.0003945317293982953]
+Labels: ['Cancer']
+Scores: [0.00023653432435821742]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.027130482718348503]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39316790
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Particulate Matter', 'China', 'Male', 'Female', 'Middle Aged', 'Cohort Studies', 'Environmental Exposure', 'Adult', 'Respiratory Tract Diseases', 'Aged', 'Air Pollutants', 'Air Pollution']
+Labels: ['Diabetes type 2']
+Scores: [0.0017549856565892696]
+Labels: ['Chronic respiratory disease']
+Scores: [0.26229044795036316]
+Labels: ['Diabetes type 1']
+Scores: [0.0021296096965670586]
+Labels: ['Diabetes']
+Scores: [0.0004263960581738502]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00010531063162488863]
+Labels: ['Mental Health']
+Scores: [0.00014286386431194842]
+Labels: ['Cancer']
+Scores: [0.00018555200949776918]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006493215914815664]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39316681
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Animals', 'Respiratory Tract Diseases', 'Mechanotransduction, Cellular', 'Stress, Mechanical', 'Extracellular Matrix', 'Respiratory Mechanics']
+Labels: ['Diabetes type 2']
+Scores: [0.04422738030552864]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1619175374507904]
+Labels: ['Diabetes type 1']
+Scores: [0.04943745955824852]
+Labels: ['Diabetes']
+Scores: [0.012315327301621437]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0035017933696508408]
+Labels: ['Mental Health']
+Scores: [0.02687656506896019]
+Labels: ['Cancer']
+Scores: [0.051984693855047226]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0902785062789917]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39314792
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Air Pollutants', 'Particulate Matter', 'Respiratory Function Tests', 'Air Pollution', 'Nitrogen Dioxide', 'Environmental Exposure', 'Chronic Disease', 'Male', 'Forced Expiratory Volume', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.002754499902948737]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9008440971374512]
+Labels: ['Diabetes type 1']
+Scores: [0.003644498297944665]
+Labels: ['Diabetes']
+Scores: [0.0005918166134506464]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00018729102157521993]
+Labels: ['Mental Health']
+Scores: [0.0006869963253848255]
+Labels: ['Cancer']
+Scores: [0.0004089836438652128]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0008342009386979043]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39304964
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Bronchoscopy', 'Infant, Newborn', 'Retrospective Studies', 'Male', 'Female', 'Fiber Optic Technology', 'Respiratory Tract Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.004635431803762913]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007017825846560299]
+Labels: ['Diabetes type 1']
+Scores: [0.003691653488203883]
+Labels: ['Diabetes']
+Scores: [0.001041861018165946]
+Labels: ['Cardiovascular diseases']
+Scores: [8.43175730551593e-05]
+Labels: ['Mental Health']
+Scores: [0.00027305271942168474]
+Labels: ['Cancer']
+Scores: [0.0013024926884099841]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007140772882848978]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39293035
+Predictions: ['Chronic respiratory disease']
+MeshTerm: ['Humans', 'Child', 'Respiratory Tract Diseases', 'Pediatrics']
+Labels: ['Diabetes type 2']
+Scores: [0.0016582452226430178]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023214910179376602]
+Labels: ['Diabetes type 1']
+Scores: [0.001350080012343824]
+Labels: ['Diabetes']
+Scores: [0.00013858621241524816]
+Labels: ['Cardiovascular diseases']
+Scores: [3.9028076571412385e-05]
+Labels: ['Mental Health']
+Scores: [5.207928188610822e-05]
+Labels: ['Cancer']
+Scores: [6.673995812889189e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0012079821899533272]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737893
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Male', 'Female', 'Nutrition Surveys', 'Middle Aged', 'Genome-Wide Association Study', 'Arthritis, Rheumatoid', 'Adult', 'Arthritis', 'Prevalence', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Aged', 'Genetic Predisposition to Disease', 'Logistic Models', 'Polymorphism, Single Nucleotide']
+Labels: ['Diabetes type 2']
+Scores: [0.009314559400081635]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009696221677586436]
+Labels: ['Diabetes type 1']
+Scores: [0.9891573190689087]
+Labels: ['Diabetes']
+Scores: [0.985927402973175]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00022995025210548192]
+Labels: ['Mental Health']
+Scores: [0.0021717422641813755]
+Labels: ['Cancer']
+Scores: [0.000341850973200053]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4639992117881775]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39737643
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Tilapia', 'Rats', 'Skin', 'Wound Healing', 'Diabetes Mellitus, Experimental', 'Diabetes Mellitus, Type 1', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.0016687280731275678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013764777220785618]
+Labels: ['Diabetes type 1']
+Scores: [0.9962686896324158]
+Labels: ['Diabetes']
+Scores: [0.9688987135887146]
+Labels: ['Cardiovascular diseases']
+Scores: [0.031193889677524567]
+Labels: ['Mental Health']
+Scores: [0.15475018322467804]
+Labels: ['Cancer']
+Scores: [0.010735630057752132]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22881142795085907]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736868
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Hypoglycemia', 'Child', 'Female', 'Parents', 'Adolescent', 'Fear', 'Cross-Over Studies', 'Adult', 'Sleep', 'Middle Aged', 'Insulin Infusion Systems', 'Blood Glucose Self-Monitoring', 'Insulin', 'Blood Glucose', 'Hypoglycemic Agents']
+Labels: ['Diabetes type 2']
+Scores: [0.00014373098383657634]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003136319573968649]
+Labels: ['Diabetes type 1']
+Scores: [0.98919677734375]
+Labels: ['Diabetes']
+Scores: [0.9314503073692322]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00019143152167089283]
+Labels: ['Mental Health']
+Scores: [0.001128867850638926]
+Labels: ['Cancer']
+Scores: [0.0001202740750159137]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08731728792190552]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736865
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Ultrasonography', 'Aged', 'Middle Aged', 'Bone Density', 'Diabetes Mellitus, Type 2', 'Tibia', 'Absorptiometry, Photon', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Cortical Bone', 'Elasticity']
+Labels: ['Diabetes type 2']
+Scores: [0.6237707138061523]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0037781258579343557]
+Labels: ['Diabetes type 1']
+Scores: [0.7214159369468689]
+Labels: ['Diabetes']
+Scores: [0.9125509262084961]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016867149388417602]
+Labels: ['Mental Health']
+Scores: [0.026750585064291954]
+Labels: ['Cancer']
+Scores: [0.00551133556291461]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12679439783096313]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39735417
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Islets of Langerhans Transplantation', 'Immunomodulating Agents', 'Immunologic Factors', 'Animals', 'Antibodies, Monoclonal, Humanized']
+Labels: ['Diabetes type 2']
+Scores: [0.14700745046138763]
+Labels: ['Chronic respiratory disease']
+Scores: [0.043650854378938675]
+Labels: ['Diabetes type 1']
+Scores: [0.9782201051712036]
+Labels: ['Diabetes']
+Scores: [0.9654572606086731]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016531668603420258]
+Labels: ['Mental Health']
+Scores: [0.016017135232686996]
+Labels: ['Cancer']
+Scores: [0.009724709205329418]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19868536293506622]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733989
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Hypoglycemia', 'Male', 'Adult', 'Female', 'Blood Glucose', 'Hyperglycemia', 'Exercise', 'Child', 'Young Adult', 'Cohort Studies', 'Hypoglycemic Agents', 'Middle Aged', 'Time Factors', 'Insulin', 'Blood Glucose Self-Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.0004050730785820633]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009195974562317133]
+Labels: ['Diabetes type 1']
+Scores: [0.9900493621826172]
+Labels: ['Diabetes']
+Scores: [0.862675666809082]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000569283904042095]
+Labels: ['Mental Health']
+Scores: [0.0009927961509674788]
+Labels: ['Cancer']
+Scores: [0.0011499554384499788]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005155188497155905]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39733115
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin', 'Glucocorticoids', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Glucose', 'Blood Glucose', 'Models, Biological']
+Labels: ['Diabetes type 2']
+Scores: [0.5997809767723083]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016204796265810728]
+Labels: ['Diabetes type 1']
+Scores: [0.9961452484130859]
+Labels: ['Diabetes']
+Scores: [0.8661187887191772]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019113562302663922]
+Labels: ['Mental Health']
+Scores: [0.011547856964170933]
+Labels: ['Cancer']
+Scores: [0.0011337080504745245]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009721140377223492]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39732907
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Hypoglycemia', 'Diabetes Mellitus, Type 1', 'Child', 'Blood Glucose', 'Forecasting', 'Algorithms', 'Reinforcement, Psychology']
+Labels: ['Diabetes type 2']
+Scores: [0.018780507147312164]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002634575590491295]
+Labels: ['Diabetes type 1']
+Scores: [0.2996297776699066]
+Labels: ['Diabetes']
+Scores: [0.8936875462532043]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0025306602474302053]
+Labels: ['Mental Health']
+Scores: [0.015102704055607319]
+Labels: ['Cancer']
+Scores: [0.001584309502504766]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02512626349925995]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732545
+Predictions: ['Mental Health', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Male', 'Female', 'Patient Education as Topic', 'Glycemic Control', 'Transition to Adult Care', 'Self Care', 'Emotions', 'Mental Health', 'Feeding and Eating Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.0004454136360436678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005248500499874353]
+Labels: ['Diabetes type 1']
+Scores: [0.990707516670227]
+Labels: ['Diabetes']
+Scores: [0.9226664304733276]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0039262291975319386]
+Labels: ['Mental Health']
+Scores: [0.0287537332624197]
+Labels: ['Cancer']
+Scores: [0.0036038346588611603]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10160235315561295]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39731141
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Adolescent', 'Male', 'Child', 'Female', 'Cross-Sectional Studies', 'Ethiopia', 'Diabetes Mellitus, Type 1', 'Prevalence', 'Mental Disorders', 'Risk Factors', 'Follow-Up Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.0001531135058030486]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004773066844791174]
+Labels: ['Diabetes type 1']
+Scores: [0.994297206401825]
+Labels: ['Diabetes']
+Scores: [0.9333338141441345]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018744348781183362]
+Labels: ['Mental Health']
+Scores: [0.805143415927887]
+Labels: ['Cancer']
+Scores: [0.0020819222554564476]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.47368448972702026]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Mental Health']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39730838
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Diabetes Mellitus, Type 1', 'Genetic Predisposition to Disease', 'Genetic Risk Score', 'Genome, Human', 'Genome-Wide Association Study', 'Genotype', 'Polymorphism, Single Nucleotide', 'Whole Genome Sequencing', 'Racial Groups']
+Labels: ['Diabetes type 2']
+Scores: [0.003680625231936574]
+Labels: ['Chronic respiratory disease']
+Scores: [0.027923274785280228]
+Labels: ['Diabetes type 1']
+Scores: [0.9945487976074219]
+Labels: ['Diabetes']
+Scores: [0.9806864261627197]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03228377550840378]
+Labels: ['Mental Health']
+Scores: [0.04939071089029312]
+Labels: ['Cancer']
+Scores: [0.016549836844205856]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.32844895124435425]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39728423
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Lupus Erythematosus, Systemic', 'Diabetes Mellitus, Type 1', 'Proteinuria', 'Nephrotic Syndrome', 'Podocytes']
+Labels: ['Diabetes type 2']
+Scores: [0.0001040705174091272]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007446291856467724]
+Labels: ['Diabetes type 1']
+Scores: [0.9838032126426697]
+Labels: ['Diabetes']
+Scores: [0.30315959453582764]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001676608226262033]
+Labels: ['Mental Health']
+Scores: [0.0006524384953081608]
+Labels: ['Cancer']
+Scores: [0.000150999563629739]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.26161882281303406]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727851
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Erythrocytes', 'Male', 'Female', 'Adult', 'Case-Control Studies', 'Biomechanical Phenomena', 'Biomarkers', 'Middle Aged', 'Microscopy, Atomic Force']
+Labels: ['Diabetes type 2']
+Scores: [0.0018174995202571154]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0029893782921135426]
+Labels: ['Diabetes type 1']
+Scores: [0.9403907060623169]
+Labels: ['Diabetes']
+Scores: [0.8730753064155579]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0405489057302475]
+Labels: ['Mental Health']
+Scores: [0.04729582741856575]
+Labels: ['Cancer']
+Scores: [0.006172151304781437]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.047566093504428864]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39727210
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Autonomic Nervous System', 'Autonomic Nervous System Diseases', 'Biomarkers', 'Cardiovascular Diseases', 'Cardiovascular System', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 1', 'Diabetic Neuropathies', 'Heart Rate', 'Inflammation', 'Inflammation Mediators', 'Receptors, Urokinase Plasminogen Activator']
+Labels: ['Diabetes type 2']
+Scores: [0.00016677705571055412]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00023477656941395253]
+Labels: ['Diabetes type 1']
+Scores: [0.9970738887786865]
+Labels: ['Diabetes']
+Scores: [0.9745821952819824]
+Labels: ['Cardiovascular diseases']
+Scores: [0.891711950302124]
+Labels: ['Mental Health']
+Scores: [0.00019887876987922937]
+Labels: ['Cancer']
+Scores: [0.00017574001685716212]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009888377040624619]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39726058
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Aged', 'Immune Checkpoint Inhibitors', 'Nivolumab', 'Diabetes Mellitus, Type 1', 'Insulin', 'Adenocarcinoma', 'Hypoglycemic Agents', 'Antineoplastic Agents, Immunological']
+Labels: ['Diabetes type 2']
+Scores: [0.166596457362175]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000720339419785887]
+Labels: ['Diabetes type 1']
+Scores: [0.07873958349227905]
+Labels: ['Diabetes']
+Scores: [0.8887991905212402]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008376527111977339]
+Labels: ['Mental Health']
+Scores: [0.0022936647292226553]
+Labels: ['Cancer']
+Scores: [0.043635688722133636]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22067280113697052]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725378
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice', 'Male', 'Schistosomiasis mansoni', 'Diabetes Mellitus, Type 1', 'Pancreas', 'Diabetes Mellitus, Experimental', 'Blood Glucose', 'Schistosoma mansoni', 'Islets of Langerhans', 'Acute Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.0026473570615053177]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009968713857233524]
+Labels: ['Diabetes type 1']
+Scores: [0.8365359902381897]
+Labels: ['Diabetes']
+Scores: [0.8497079014778137]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008191890083253384]
+Labels: ['Mental Health']
+Scores: [0.05201664939522743]
+Labels: ['Cancer']
+Scores: [0.013052231632173061]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19532784819602966]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39724143
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Receptors, KIR', 'Genetic Predisposition to Disease', 'Histocompatibility Antigens Class II', 'Killer Cells, Natural', 'Case-Control Studies', 'Autoimmunity', 'T-Lymphocytes', 'Male', 'Female']
+Labels: ['Diabetes type 2']
+Scores: [0.0009112457628361881]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001276324619539082]
+Labels: ['Diabetes type 1']
+Scores: [0.9951412677764893]
+Labels: ['Diabetes']
+Scores: [0.9926709532737732]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005125942989252508]
+Labels: ['Mental Health']
+Scores: [0.0012283375253900886]
+Labels: ['Cancer']
+Scores: [0.0005163275054655969]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02657061442732811]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39720308
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Sri Lanka', 'Female', 'Male', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Age of Onset', 'Retrospective Studies', 'Prevalence', 'Developing Countries', 'Child', 'Adult', 'Glycated Hemoglobin', 'Diabetic Ketoacidosis']
+Labels: ['Diabetes type 2']
+Scores: [0.7229871153831482]
+Labels: ['Chronic respiratory disease']
+Scores: [8.66467016749084e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.6873677968978882]
+Labels: ['Diabetes']
+Scores: [0.9877461791038513]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00018069331417791545]
+Labels: ['Mental Health']
+Scores: [8.046201401157305e-05]
+Labels: ['Cancer']
+Scores: [6.318846135400236e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012122991494834423]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39720253
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Osteoporosis', 'Adaptor Proteins, Signal Transducing', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Animals', 'Genetic Markers', 'Wnt Signaling Pathway', 'Bone Morphogenetic Proteins']
+Labels: ['Diabetes type 2']
+Scores: [0.06178886070847511]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00012244140089023858]
+Labels: ['Diabetes type 1']
+Scores: [0.031132789328694344]
+Labels: ['Diabetes']
+Scores: [0.8509349226951599]
+Labels: ['Cardiovascular diseases']
+Scores: [9.036971459863707e-05]
+Labels: ['Mental Health']
+Scores: [0.00027762993704527617]
+Labels: ['Cancer']
+Scores: [7.105607801349834e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0045290724374353886]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719890
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Glucagon', 'Animals', 'Glucose', 'Peptides', 'Hydrogels', 'Diabetes Mellitus, Experimental', 'Blood Glucose', 'Mice', 'Boronic Acids', 'Diabetes Mellitus, Type 1', 'Male', 'Drug Delivery Systems']
+Labels: ['Diabetes type 2']
+Scores: [0.004461667500436306]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01135392114520073]
+Labels: ['Diabetes type 1']
+Scores: [0.9755266904830933]
+Labels: ['Diabetes']
+Scores: [0.8994569778442383]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016817854717373848]
+Labels: ['Mental Health']
+Scores: [0.14435988664627075]
+Labels: ['Cancer']
+Scores: [0.008266468532383442]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4821357727050781]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718005
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Retrospective Studies', 'Hypoglycemia', 'Adult', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Middle Aged', 'Risk Assessment', 'Glycemic Control', 'Glycated Hemoglobin', 'Adolescent', 'Young Adult', 'Time Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.00012492873065639287]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003496487159281969]
+Labels: ['Diabetes type 1']
+Scores: [0.9970236420631409]
+Labels: ['Diabetes']
+Scores: [0.9689328074455261]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005963181611150503]
+Labels: ['Mental Health']
+Scores: [0.0013534593163058162]
+Labels: ['Cancer']
+Scores: [0.0013541416265070438]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0015664523234590888]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Randomized Controlled Trials as Topic', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus, Type 2', 'Blood Glucose', 'Exercise', 'Health Behavior', 'Diabetes Mellitus, Type 1', 'Female', 'Adult', 'Glycated Hemoglobin', 'Pregnancy', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.12513777613639832]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003159911138936877]
+Labels: ['Diabetes type 1']
+Scores: [0.04915320873260498]
+Labels: ['Diabetes']
+Scores: [0.5767285823822021]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003728008596226573]
+Labels: ['Mental Health']
+Scores: [0.0006597531028091908]
+Labels: ['Cancer']
+Scores: [0.0003163157671224326]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.042491134256124496]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715178
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Telemedicine', 'Child', 'Quality of Life', 'Rural Population', 'Child, Preschool', 'Parents', 'Mentoring', 'Occupational Therapy', 'Double-Blind Method', 'Pilot Projects', 'Glycated Hemoglobin', 'Self Efficacy', 'Adult', 'Parenting']
+Labels: ['Diabetes type 2']
+Scores: [0.001878386246971786]
+Labels: ['Chronic respiratory disease']
+Scores: [0.031253915280103683]
+Labels: ['Diabetes type 1']
+Scores: [0.962009608745575]
+Labels: ['Diabetes']
+Scores: [0.864924967288971]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007944805547595024]
+Labels: ['Mental Health']
+Scores: [0.011602426879107952]
+Labels: ['Cancer']
+Scores: [0.0108156967908144]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2600633502006531]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714936
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Aged', 'Male', 'Insulin Infusion Systems', 'Insulin', 'Cross-Over Studies', 'Aged, 80 and over', 'Hypoglycemic Agents', 'Blood Glucose', 'Hypoglycemia', 'Glycated Hemoglobin', 'Blood Glucose Self-Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.0001082718517864123]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00040546475793235004]
+Labels: ['Diabetes type 1']
+Scores: [0.9986873269081116]
+Labels: ['Diabetes']
+Scores: [0.9350749850273132]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002565968898124993]
+Labels: ['Mental Health']
+Scores: [0.0007273623486980796]
+Labels: ['Cancer']
+Scores: [0.00021331856260076165]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01858743280172348]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710861
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Adolescent', 'Female', 'Diabetes Mellitus, Type 1', 'Male', 'Cross-Sectional Studies', 'Child', 'Lipase', 'India', 'Amylases', 'Biomarkers', 'Young Adult', 'Follow-Up Studies', 'Glycated Hemoglobin', 'Prognosis', 'Adult', 'Exocrine Pancreatic Insufficiency']
+Labels: ['Diabetes type 2']
+Scores: [0.0004303643654566258]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007449513301253319]
+Labels: ['Diabetes type 1']
+Scores: [0.9714989066123962]
+Labels: ['Diabetes']
+Scores: [0.8872950673103333]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012555486522614956]
+Labels: ['Mental Health']
+Scores: [0.10467712581157684]
+Labels: ['Cancer']
+Scores: [0.0037757237441837788]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10849622637033463]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709470
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Genetic Predisposition to Disease', 'Diabetic Nephropathies', 'Diabetes Mellitus, Type 1', 'Peptidyl-Dipeptidase A', 'Cardiovascular Diseases', 'Phenotype', 'Genome-Wide Association Study', 'Risk Factors', 'Polymorphism, Genetic']
+Labels: ['Diabetes type 2']
+Scores: [0.020667970180511475]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09505603462457657]
+Labels: ['Diabetes type 1']
+Scores: [0.9513075351715088]
+Labels: ['Diabetes']
+Scores: [0.8729259967803955]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9573359489440918]
+Labels: ['Mental Health']
+Scores: [0.05262095108628273]
+Labels: ['Cancer']
+Scores: [0.012610968202352524]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18759320676326752]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39708266
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Rats', 'Muscle, Skeletal', 'Drugs, Chinese Herbal', 'Insulin-Secreting Cells', 'Male', 'Adipose Tissue', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Experimental', 'Rats, Sprague-Dawley']
+Labels: ['Diabetes type 2']
+Scores: [0.0002183935430366546]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0026240621227771044]
+Labels: ['Diabetes type 1']
+Scores: [0.9988034963607788]
+Labels: ['Diabetes']
+Scores: [0.9904056787490845]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0024954169057309628]
+Labels: ['Mental Health']
+Scores: [0.02691647782921791]
+Labels: ['Cancer']
+Scores: [0.0014849676517769694]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.26144012808799744]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707866
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Pilot Projects', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Middle Aged', 'Cognitive Dysfunction', 'Adult', 'Early Diagnosis', 'Aged', 'Retina', 'Visual Field Tests', 'Diabetic Retinopathy', 'Fixation, Ocular', 'Neuropsychological Tests']
+Labels: ['Diabetes type 2']
+Scores: [0.00019156163034494966]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007486362010240555]
+Labels: ['Diabetes type 1']
+Scores: [0.9956803917884827]
+Labels: ['Diabetes']
+Scores: [0.9772824645042419]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004171825712546706]
+Labels: ['Mental Health']
+Scores: [0.2558627724647522]
+Labels: ['Cancer']
+Scores: [0.0006874242099002004]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03496364504098892]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707182
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Female', 'Child', 'Metabolomics', 'Adolescent', 'Metabolome', 'Case-Control Studies', 'Diabetes Mellitus, Type 1', 'Biomarkers', 'Metabolic Networks and Pathways', 'Machine Learning']
+Labels: ['Diabetes type 2']
+Scores: [0.019655194133520126]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004107485990971327]
+Labels: ['Diabetes type 1']
+Scores: [0.010382289998233318]
+Labels: ['Diabetes']
+Scores: [0.8370142579078674]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006763567682355642]
+Labels: ['Mental Health']
+Scores: [0.006922814063727856]
+Labels: ['Cancer']
+Scores: [0.0009913303656503558]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06540372967720032]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39706675
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Male', 'Retrospective Studies', 'Female', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Adult', 'Aged', 'Diabetes Mellitus, Type 1', 'Blood Glucose', 'Hypoglycemic Agents', 'Risk Factors', 'Assessment of Medication Adherence']
+Labels: ['Diabetes type 2']
+Scores: [0.9882614016532898]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006269474979490042]
+Labels: ['Diabetes type 1']
+Scores: [8.983789302874357e-05]
+Labels: ['Diabetes']
+Scores: [0.8766124248504639]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009804866276681423]
+Labels: ['Mental Health']
+Scores: [0.001888406346552074]
+Labels: ['Cancer']
+Scores: [0.0005020259413868189]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.036996640264987946]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39706641
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Rats, Wistar', 'Diabetic Neuropathies', 'NF-kappa B', 'Male', 'Diabetes Mellitus, Experimental', 'NF-E2-Related Factor 2', 'Diabetes Mellitus, Type 1', 'Streptozocin', 'Gabapentin', 'Glycation End Products, Advanced', 'Signal Transduction', 'Rats', 'Oxidative Stress', 'Disease Models, Animal']
+Labels: ['Diabetes type 2']
+Scores: [0.0027681495994329453]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01639401912689209]
+Labels: ['Diabetes type 1']
+Scores: [0.9989217519760132]
+Labels: ['Diabetes']
+Scores: [0.9879987835884094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010931123048067093]
+Labels: ['Mental Health']
+Scores: [0.08874142169952393]
+Labels: ['Cancer']
+Scores: [0.0061525944620370865]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.418548047542572]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39706517
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Magnetic Resonance Imaging', 'Adult', 'Neuralgia', 'Diabetic Neuropathies', 'Middle Aged', 'Brain', 'Cerebral Cortex']
+Labels: ['Diabetes type 2']
+Scores: [0.0006740055978298187]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01023145392537117]
+Labels: ['Diabetes type 1']
+Scores: [0.9900933504104614]
+Labels: ['Diabetes']
+Scores: [0.9701069593429565]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014017985202372074]
+Labels: ['Mental Health']
+Scores: [0.30335733294487]
+Labels: ['Cancer']
+Scores: [0.010795625858008862]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.23777547478675842]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704278
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Female', 'Male', 'Cytokines', 'Diabetes Mellitus, Type 1', 'Child', 'Chemokines', 'Adolescent', 'Sex Factors', 'Disease Progression', 'Child, Preschool', 'Intercellular Signaling Peptides and Proteins', 'Pilot Projects', 'Biomarkers', 'Sex Characteristics', 'Case-Control Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.08887304365634918]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10083142668008804]
+Labels: ['Diabetes type 1']
+Scores: [0.982662558555603]
+Labels: ['Diabetes']
+Scores: [0.9761838912963867]
+Labels: ['Cardiovascular diseases']
+Scores: [0.031659871339797974]
+Labels: ['Mental Health']
+Scores: [0.1658519208431244]
+Labels: ['Cancer']
+Scores: [0.06571406126022339]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4730989336967468]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704171
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'T-Lymphocytes, Regulatory', 'Diabetes Mellitus, Type 1', 'Mice', 'Interleukin-2', 'Disease Models, Animal', 'Interleukin-2 Receptor alpha Subunit', 'Interleukin-1 Receptor-Like 1 Protein', 'Interleukin-33', 'Mice, Inbred NOD', 'Female', 'Signal Transduction', 'CD8-Positive T-Lymphocytes', 'Islets of Langerhans', 'Th1 Cells', 'Interleukin-10', 'Autoimmunity', 'Recombinant Proteins']
+Labels: ['Diabetes type 2']
+Scores: [0.0009288250003010035]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005858870223164558]
+Labels: ['Diabetes type 1']
+Scores: [0.9980718493461609]
+Labels: ['Diabetes']
+Scores: [0.9894337058067322]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008459287695586681]
+Labels: ['Mental Health']
+Scores: [0.11611928045749664]
+Labels: ['Cancer']
+Scores: [0.006657356396317482]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6757733225822449]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39704022
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Bioengineering', 'Animals', 'Genomics', 'Insulin-Secreting Cells', 'Proteomics', 'Insulin', 'Islets of Langerhans']
+Labels: ['Diabetes type 2']
+Scores: [0.0016409428790211678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.020610075443983078]
+Labels: ['Diabetes type 1']
+Scores: [0.9879149794578552]
+Labels: ['Diabetes']
+Scores: [0.9726699590682983]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011005813255906105]
+Labels: ['Mental Health']
+Scores: [0.007132343947887421]
+Labels: ['Cancer']
+Scores: [0.005250243470072746]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17270876467227936]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703896
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Receptors, Calcitriol', 'South Africa', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Black People', 'Adult', 'Case-Control Studies', 'Vitamin D', 'Genotype', 'Young Adult', 'Polymorphism, Restriction Fragment Length', 'Polymorphism, Single Nucleotide', 'Genetic Predisposition to Disease', 'Middle Aged', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.00783379003405571]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11860977113246918]
+Labels: ['Diabetes type 1']
+Scores: [0.9464401006698608]
+Labels: ['Diabetes']
+Scores: [0.9468039274215698]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08907836675643921]
+Labels: ['Mental Health']
+Scores: [0.37405163049697876]
+Labels: ['Cancer']
+Scores: [0.05416252836585045]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6254662871360779]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703609
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'COVID-19', 'SARS-CoV-2', 'Acute Kidney Injury', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.9081538915634155]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7661029696464539]
+Labels: ['Diabetes type 1']
+Scores: [0.8963466882705688]
+Labels: ['Diabetes']
+Scores: [0.9753038287162781]
+Labels: ['Cardiovascular diseases']
+Scores: [0.057417355477809906]
+Labels: ['Mental Health']
+Scores: [0.3226933777332306]
+Labels: ['Cancer']
+Scores: [0.021673742681741714]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4328293204307556]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': True, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Chronic respiratory disease', 'Diabetes type 1', 'Diabetes']
+Confusion matrix: [[2, 2], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39702941
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Dendritic Cells', 'Humans', 'Macrophages', 'Immune Tolerance', 'Receptors, Cytoplasmic and Nuclear', 'Mitochondria', 'Male', 'Female', 'Phenotype']
+Labels: ['Diabetes type 2']
+Scores: [0.0007915596943348646]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001390462159179151]
+Labels: ['Diabetes type 1']
+Scores: [0.9841439723968506]
+Labels: ['Diabetes']
+Scores: [0.9840519428253174]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001566632417961955]
+Labels: ['Mental Health']
+Scores: [0.006741712335497141]
+Labels: ['Cancer']
+Scores: [0.0007459844928234816]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.008623909205198288]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39701114
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Diabetic Ketoacidosis', 'Adolescent', 'Female', 'Male', 'Child', 'Hypoglycemia', 'Young Adult', 'Insulin', 'Hypoglycemic Agents', 'Insulin Infusion Systems', 'Child, Preschool', 'Blood Glucose', 'Prospective Studies', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.00014337743050418794]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00020624962053261697]
+Labels: ['Diabetes type 1']
+Scores: [0.9887319207191467]
+Labels: ['Diabetes']
+Scores: [0.873664140701294]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00019944268569815904]
+Labels: ['Mental Health']
+Scores: [0.000269729905994609]
+Labels: ['Cancer']
+Scores: [8.694112329976633e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012790034525096416]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39699995
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemia', 'Adult', 'Female', 'Male', 'Insulin', 'Middle Aged', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Insulin Infusion Systems', 'Hypoglycemic Agents', 'Retrospective Studies', 'Glycemic Control']
+Labels: ['Diabetes type 2']
+Scores: [0.0002168732462450862]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008689303649589419]
+Labels: ['Diabetes type 1']
+Scores: [0.9970274567604065]
+Labels: ['Diabetes']
+Scores: [0.9821704030036926]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001234434312209487]
+Labels: ['Mental Health']
+Scores: [0.001190749928355217]
+Labels: ['Cancer']
+Scores: [0.0007163378177210689]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004815086256712675]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39697323
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'MicroRNAs', 'Insulin-Secreting Cells', 'Enterovirus B, Human', 'Coxsackievirus Infections', 'Diabetes Mellitus, Type 1', 'Cell Line', 'Insulin', 'Trophoblasts']
+Labels: ['Diabetes type 2']
+Scores: [0.04367956519126892]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11648571491241455]
+Labels: ['Diabetes type 1']
+Scores: [0.9502377510070801]
+Labels: ['Diabetes']
+Scores: [0.9439432621002197]
+Labels: ['Cardiovascular diseases']
+Scores: [0.122773177921772]
+Labels: ['Mental Health']
+Scores: [0.1984710544347763]
+Labels: ['Cancer']
+Scores: [0.08166623115539551]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.39597204327583313]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696373
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemia', 'Deep Learning']
+Labels: ['Diabetes type 2']
+Scores: [0.0012905942276120186]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022610651329159737]
+Labels: ['Diabetes type 1']
+Scores: [0.9983624219894409]
+Labels: ['Diabetes']
+Scores: [0.9120978116989136]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004053672309964895]
+Labels: ['Mental Health']
+Scores: [0.0810060128569603]
+Labels: ['Cancer']
+Scores: [0.013677145354449749]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08388398587703705]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696094
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Sirolimus', 'Genetic Diseases, X-Linked', 'Diarrhea', 'Immunosuppressive Agents', 'Forkhead Transcription Factors', 'Immune System Diseases', 'Infant', 'Mutation', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.00058653176529333]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00041386421071365476]
+Labels: ['Diabetes type 1']
+Scores: [0.0004583009867928922]
+Labels: ['Diabetes']
+Scores: [0.0008705724030733109]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014754508156329393]
+Labels: ['Mental Health']
+Scores: [0.0468376986682415]
+Labels: ['Cancer']
+Scores: [0.0007768752402625978]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.407309889793396]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39692076
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Histamine', 'Female', 'Adult', 'Hot Temperature', 'Middle Aged', 'Diabetic Neuropathies', 'Axons', 'Neural Conduction', 'Reflex', 'Sural Nerve', 'Young Adult', 'ROC Curve', 'Neurologic Examination']
+Labels: ['Diabetes type 2']
+Scores: [9.23800325836055e-05]
+Labels: ['Chronic respiratory disease']
+Scores: [9.740140376379713e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.8693496584892273]
+Labels: ['Diabetes']
+Scores: [0.42966604232788086]
+Labels: ['Cardiovascular diseases']
+Scores: [8.786873513599858e-05]
+Labels: ['Mental Health']
+Scores: [0.00030433153733611107]
+Labels: ['Cancer']
+Scores: [4.176827860646881e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0003068711084779352]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39691822
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'New Zealand', 'Cross-Sectional Studies', 'Adolescent', 'Child', 'Diabetes Mellitus, Type 1', 'Young Adult', 'Diabetes Mellitus, Type 2', 'Hypoglycemic Agents', 'Prevalence', 'Child, Preschool', 'Adult', 'Glycated Hemoglobin', 'Primary Health Care']
+Labels: ['Diabetes type 2']
+Scores: [0.15192753076553345]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00011362509394530207]
+Labels: ['Diabetes type 1']
+Scores: [0.10053195059299469]
+Labels: ['Diabetes']
+Scores: [0.9508469700813293]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00011914999049622566]
+Labels: ['Mental Health']
+Scores: [9.464486356591806e-05]
+Labels: ['Cancer']
+Scores: [9.247894195141271e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006183374207466841]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39689816
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Diabetes Mellitus, Type 1', 'Female', 'Middle Aged', 'Depression', 'Adult', 'Glycated Hemoglobin', 'Prevalence', 'Sex Factors', 'Surveys and Questionnaires', 'Self-Management']
+Labels: ['Diabetes type 2']
+Scores: [0.00019891011470463127]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0035663496237248182]
+Labels: ['Diabetes type 1']
+Scores: [0.995267927646637]
+Labels: ['Diabetes']
+Scores: [0.9722587466239929]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012825911398977041]
+Labels: ['Mental Health']
+Scores: [0.5091720819473267]
+Labels: ['Cancer']
+Scores: [0.0007096380577422678]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09486575424671173]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39689633
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Male', 'Parents', 'Qualitative Research', 'Child', 'Adolescent', 'Child, Preschool', 'Interviews as Topic', 'Infant', 'Hospitalization', 'Adult', 'Self Care', 'Self-Management', 'Perception', 'Social Support']
+Labels: ['Diabetes type 2']
+Scores: [0.00011344076483510435]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0022006009239703417]
+Labels: ['Diabetes type 1']
+Scores: [0.9966981410980225]
+Labels: ['Diabetes']
+Scores: [0.9284194111824036]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005149864591658115]
+Labels: ['Mental Health']
+Scores: [0.002354940166696906]
+Labels: ['Cancer']
+Scores: [0.00043003293103538454]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.23233626782894135]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39688288
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Middle Aged', 'Male', 'Adult', 'Diabetes Mellitus, Type 2', 'Glycated Hemoglobin', 'Diabetes Mellitus, Type 1', 'Medically Underserved Area', 'California', 'Florida']
+Labels: ['Diabetes type 2']
+Scores: [0.5953051447868347]
+Labels: ['Chronic respiratory disease']
+Scores: [8.462135883746669e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.2564049959182739]
+Labels: ['Diabetes']
+Scores: [0.9977632164955139]
+Labels: ['Cardiovascular diseases']
+Scores: [5.5180444178404287e-05]
+Labels: ['Mental Health']
+Scores: [7.095580076565966e-05]
+Labels: ['Cancer']
+Scores: [5.6784039770718664e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.003012671833857894]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39686350
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Female', 'Spectroscopy, Near-Infrared', 'Blood Glucose', 'Male', 'Middle Aged', 'Prospective Studies', 'Diabetes Mellitus, Type 2', 'Adult', 'Aged', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.1831757128238678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00042649864917621017]
+Labels: ['Diabetes type 1']
+Scores: [0.1631399691104889]
+Labels: ['Diabetes']
+Scores: [0.3531281054019928]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04680313915014267]
+Labels: ['Mental Health']
+Scores: [4.8693560529500246e-05]
+Labels: ['Cancer']
+Scores: [6.25281099928543e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05391610786318779]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39686207
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Neural Networks, Computer', 'Blood Glucose', 'Internet of Things', 'Deep Learning', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Forecasting']
+Labels: ['Diabetes type 2']
+Scores: [0.001197841833345592]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008932854048907757]
+Labels: ['Diabetes type 1']
+Scores: [0.9945674538612366]
+Labels: ['Diabetes']
+Scores: [0.9737299084663391]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00714567955583334]
+Labels: ['Mental Health']
+Scores: [0.05483061820268631]
+Labels: ['Cancer']
+Scores: [0.007924598641693592]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.083733469247818]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683492
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Isomaltose', 'Female', 'Diabetes Mellitus, Type 1', 'Male', 'Middle Aged', 'Cross-Over Studies', 'Adult', 'Exercise', 'Insulin', 'Blood Glucose', 'Insulin Infusion Systems', 'Glucagon', 'Glucagon-Like Peptide 1']
+Labels: ['Diabetes type 2']
+Scores: [0.00014957872917875648]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002744970377534628]
+Labels: ['Diabetes type 1']
+Scores: [0.9954137802124023]
+Labels: ['Diabetes']
+Scores: [0.9676793813705444]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019392092945054173]
+Labels: ['Mental Health']
+Scores: [0.004091821610927582]
+Labels: ['Cancer']
+Scores: [0.003223299514502287]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0007388583035208285]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683465
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Female', 'Humans', 'Diabetes Mellitus, Type 1', 'Dietary Supplements', 'Dipeptidyl-Peptidase IV Inhibitors', 'Insulin-Secreting Cells', 'Latent Autoimmune Diabetes in Adults', 'Vitamin D', 'Vitamin D Deficiency']
+Labels: ['Diabetes type 2']
+Scores: [0.06657060980796814]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012977393344044685]
+Labels: ['Diabetes type 1']
+Scores: [0.034740980714559555]
+Labels: ['Diabetes']
+Scores: [0.7610334157943726]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01021984126418829]
+Labels: ['Mental Health']
+Scores: [0.07482973486185074]
+Labels: ['Cancer']
+Scores: [0.004311217926442623]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17117324471473694]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39682744
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Extracellular Vesicles', 'Humans', 'Insulin-Secreting Cells', 'Cell Communication', 'Animals', 'Islets of Langerhans', 'Cellular Microenvironment']
+Labels: ['Diabetes type 2']
+Scores: [0.0004951356677338481]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004667954053729773]
+Labels: ['Diabetes type 1']
+Scores: [0.9881538152694702]
+Labels: ['Diabetes']
+Scores: [0.9622340798377991]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003192739561200142]
+Labels: ['Mental Health']
+Scores: [0.01074666902422905]
+Labels: ['Cancer']
+Scores: [0.0014720264589414]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.059115491807460785]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39682729
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Intestinal Mucosa', 'Inflammatory Bowel Diseases', 'Celiac Disease', 'Protein Tyrosine Phosphatases', 'Animals', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.021924825385212898]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0036968884523957968]
+Labels: ['Diabetes type 1']
+Scores: [0.5038666129112244]
+Labels: ['Diabetes']
+Scores: [0.5302636027336121]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018795072101056576]
+Labels: ['Mental Health']
+Scores: [0.009877669624984264]
+Labels: ['Cancer']
+Scores: [0.01000506803393364]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0633845180273056]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39682726
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Organoids', 'Alzheimer Disease', 'Herpesvirus 1, Human', 'Brain', 'Herpes Simplex', 'Islets of Langerhans', 'Autoimmune Diseases', 'Stem Cells', 'Transcriptome', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.025014208629727364]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011038552969694138]
+Labels: ['Diabetes type 1']
+Scores: [0.8763115406036377]
+Labels: ['Diabetes']
+Scores: [0.5643852949142456]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009373527951538563]
+Labels: ['Mental Health']
+Scores: [0.3084765672683716]
+Labels: ['Cancer']
+Scores: [0.0062519581988453865]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13112366199493408]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680874
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Aged', 'Diabetes Mellitus, Type 1', 'Caregivers', 'Male', 'Pilot Projects', 'Female', 'Feasibility Studies', 'Quality of Life', 'Middle Aged', 'Self-Management', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.19568298757076263]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05413781479001045]
+Labels: ['Diabetes type 1']
+Scores: [0.0982334092259407]
+Labels: ['Diabetes']
+Scores: [0.6106926202774048]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007580776698887348]
+Labels: ['Mental Health']
+Scores: [0.0004273378581274301]
+Labels: ['Cancer']
+Scores: [0.00035249427310191095]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08091765642166138]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680256
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Glycemic Control', 'Child', 'Diabetes Mellitus, Type 1', 'Parents', 'Child, Preschool', 'Hypoglycemia', 'Stress, Psychological', 'Infant', 'Blood Glucose', 'Parent-Child Relations', 'Fear']
+Labels: ['Diabetes type 2']
+Scores: [0.0004691252252086997]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008369232527911663]
+Labels: ['Diabetes type 1']
+Scores: [0.987166166305542]
+Labels: ['Diabetes']
+Scores: [0.9311087131500244]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004001586697995663]
+Labels: ['Mental Health']
+Scores: [0.16472265124320984]
+Labels: ['Cancer']
+Scores: [0.0027347784489393234]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029054708778858185]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39679900
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Adult', 'Obesity', 'Diabetes Complications', 'Insulin Resistance', 'Young Adult', 'Cardiovascular Diseases', 'Obesity, Metabolically Benign', 'Body Mass Index', 'Follow-Up Studies', 'Adolescent', 'Diabetic Neuropathies']
+Labels: ['Diabetes type 2']
+Scores: [0.00015378558600787073]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003415711398702115]
+Labels: ['Diabetes type 1']
+Scores: [0.9867236614227295]
+Labels: ['Diabetes']
+Scores: [0.8801186084747314]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9007783532142639]
+Labels: ['Mental Health']
+Scores: [0.00010458470933372155]
+Labels: ['Cancer']
+Scores: [0.0002193265245296061]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05310388281941414]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39678192
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Biomarkers', 'Female', 'Lipase', 'Adult', 'Amylases', 'Immunotherapy', 'Trypsin', 'Young Adult', 'Pancreas, Exocrine', 'Adolescent', 'Granulocyte Colony-Stimulating Factor', 'Treatment Outcome', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.00031984157976694405]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003234479809179902]
+Labels: ['Diabetes type 1']
+Scores: [0.9968897700309753]
+Labels: ['Diabetes']
+Scores: [0.9431541562080383]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009265296394005418]
+Labels: ['Mental Health']
+Scores: [0.020592765882611275]
+Labels: ['Cancer']
+Scores: [0.0022456091828644276]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17908503115177155]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39676645
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Pregnancy', 'Prospective Studies', 'Adult', 'Systole', 'Diastole', 'Ultrasonography, Prenatal', 'Fetal Heart', 'Diabetes Mellitus, Type 1', 'Echocardiography, Doppler', 'Young Adult', 'Ventricular Function, Left', 'Myocardial Contraction', 'Pregnancy in Diabetics', 'Stroke Volume', 'Diabetes Mellitus, Type 2', 'Heart Ventricles']
+Labels: ['Diabetes type 2']
+Scores: [0.38247019052505493]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04829040542244911]
+Labels: ['Diabetes type 1']
+Scores: [0.24891771376132965]
+Labels: ['Diabetes']
+Scores: [0.753771960735321]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9661110639572144]
+Labels: ['Mental Health']
+Scores: [0.01983492635190487]
+Labels: ['Cancer']
+Scores: [0.006955781485885382]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1263704001903534]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39676515
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Health Knowledge, Attitudes, Practice', 'Female', 'Male', 'School Teachers', 'Morocco', 'Adult', 'Surveys and Questionnaires', 'Child', 'Schools', 'Health Education', 'School Health Services']
+Labels: ['Diabetes type 2']
+Scores: [0.00029530515894293785]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00074237328954041]
+Labels: ['Diabetes type 1']
+Scores: [0.941832423210144]
+Labels: ['Diabetes']
+Scores: [0.8610441088676453]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00025209627347067]
+Labels: ['Mental Health']
+Scores: [0.0021884373854845762]
+Labels: ['Cancer']
+Scores: [0.0006712866597808897]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16419216990470886]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39675543
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Pyroptosis', 'Diabetes Mellitus, Type 1', 'Mice', 'Arsenic', 'Caspase 1', 'NLR Family, Pyrin Domain-Containing 3 Protein', 'Diabetes Mellitus, Experimental', 'Male', 'Insulin', 'Reactive Oxygen Species', 'Blood Glucose', 'Streptozocin', 'Phosphate-Binding Proteins', 'Disease Progression', 'Interleukin-18', 'Interleukin-1beta', 'Pancreas', 'Signal Transduction', 'Mice, Inbred C57BL', 'Insulin Resistance', 'Gasdermins']
+Labels: ['Diabetes type 2']
+Scores: [0.002041664905846119]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01282839197665453]
+Labels: ['Diabetes type 1']
+Scores: [0.9952894449234009]
+Labels: ['Diabetes']
+Scores: [0.9666785597801208]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01057482697069645]
+Labels: ['Mental Health']
+Scores: [0.14201343059539795]
+Labels: ['Cancer']
+Scores: [0.011171264573931694]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6559715867042542]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39675483
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Insulin Infusion Systems', 'Adolescent', 'Parents', 'Insulin', 'Blood Glucose Self-Monitoring', 'Child', 'Hypoglycemic Agents', 'Patient Acceptance of Health Care', 'Surveys and Questionnaires', 'Blood Glucose', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.0003241267695557326]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007253196090459824]
+Labels: ['Diabetes type 1']
+Scores: [0.9313722252845764]
+Labels: ['Diabetes']
+Scores: [0.6693289875984192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002576771948952228]
+Labels: ['Mental Health']
+Scores: [0.004355942830443382]
+Labels: ['Cancer']
+Scores: [0.00028682677657343447]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05416819453239441]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39675356
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Methylenetetrahydrofolate Reductase (NADPH2)', 'Female', 'Male', 'Adolescent', 'Child', 'Interleukin-4', 'Polymorphism, Genetic', 'Diabetic Neuropathies', 'Diabetes Mellitus, Type 1', 'Genotype', 'Genetic Predisposition to Disease', 'Neural Conduction']
+Labels: ['Diabetes type 2']
+Scores: [0.00015271035954356194]
+Labels: ['Chronic respiratory disease']
+Scores: [7.09598753019236e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.0001645474840188399]
+Labels: ['Diabetes']
+Scores: [0.0034815145190805197]
+Labels: ['Cardiovascular diseases']
+Scores: [6.67849017190747e-05]
+Labels: ['Mental Health']
+Scores: [7.630771142430604e-05]
+Labels: ['Cancer']
+Scores: [3.41563209076412e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0001289371430175379]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39673446
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Cost-Benefit Analysis', 'Insulin Infusion Systems', 'Blood Glucose Self-Monitoring', 'Insulin', 'Blood Glucose', 'Hypoglycemic Agents', 'Models, Economic', 'Glycated Hemoglobin', 'Quality-Adjusted Life Years', 'Randomized Controlled Trials as Topic', 'Algorithms']
+Labels: ['Diabetes type 2']
+Scores: [4.471739157452248e-05]
+Labels: ['Chronic respiratory disease']
+Scores: [8.355308818863705e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.9893577098846436]
+Labels: ['Diabetes']
+Scores: [0.8184956908226013]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001354230917058885]
+Labels: ['Mental Health']
+Scores: [0.00016150285955518484]
+Labels: ['Cancer']
+Scores: [9.477137064095587e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22292602062225342]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39673230
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Cardiovascular Diseases', 'Australia', 'Risk Assessment', 'Male', 'Female', 'Adult', 'Middle Aged', 'Heart Disease Risk Factors', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.00035560494870878756]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0017280576284974813]
+Labels: ['Diabetes type 1']
+Scores: [0.9779505729675293]
+Labels: ['Diabetes']
+Scores: [0.6374642252922058]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9955481886863708]
+Labels: ['Mental Health']
+Scores: [0.0005905118305236101]
+Labels: ['Cancer']
+Scores: [0.0006692670867778361]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015808161348104477]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39670552
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Feasibility Studies', 'Insulin', 'Child', 'Female', 'Male', 'Needlestick Injuries', 'Injections, Subcutaneous', 'Needles', 'Adolescent', 'Diabetes Mellitus, Type 1', 'Child, Preschool', 'Hypoglycemic Agents', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.7113971710205078]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10953925549983978]
+Labels: ['Diabetes type 1']
+Scores: [0.6465662717819214]
+Labels: ['Diabetes']
+Scores: [0.9054988026618958]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028934699948877096]
+Labels: ['Mental Health']
+Scores: [0.005546968895941973]
+Labels: ['Cancer']
+Scores: [0.004014246631413698]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.39632582664489746]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39667114
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Male', 'Female', 'Child', 'Prospective Studies', 'Pneumococcal Vaccines', 'Seroconversion', 'Pilot Projects', 'Antibodies, Bacterial', 'Child, Preschool', 'Immunoglobulin G', 'Adolescent', 'Vaccination', 'Pneumococcal Infections', 'Glycated Hemoglobin', 'Streptococcus pneumoniae']
+Labels: ['Diabetes type 2']
+Scores: [0.0006031811935827136]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3707908093929291]
+Labels: ['Diabetes type 1']
+Scores: [0.9954192638397217]
+Labels: ['Diabetes']
+Scores: [0.971804678440094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002489284845069051]
+Labels: ['Mental Health']
+Scores: [0.043432798236608505]
+Labels: ['Cancer']
+Scores: [0.003173497272655368]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3206895887851715]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39666416
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Diabetes Mellitus', 'Quality of Life', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.9339839816093445]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03097640722990036]
+Labels: ['Diabetes type 1']
+Scores: [0.5481659173965454]
+Labels: ['Diabetes']
+Scores: [0.9320911765098572]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01727925054728985]
+Labels: ['Mental Health']
+Scores: [0.06832915544509888]
+Labels: ['Cancer']
+Scores: [0.010063058696687222]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.36576566100120544]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39665438
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice', 'Insulin-Secreting Cells', 'Diabetes Mellitus, Experimental', 'Cell Survival', 'Anti-Inflammatory Agents', 'Polytetrafluoroethylene', 'Diabetes Mellitus, Type 1', 'Male', 'Macrophages', 'Membranes, Artificial', 'Mice, Inbred C57BL', 'Cell Encapsulation', 'Islets of Langerhans Transplantation']
+Labels: ['Diabetes type 2']
+Scores: [0.0005210743402130902]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00954377930611372]
+Labels: ['Diabetes type 1']
+Scores: [0.9969035387039185]
+Labels: ['Diabetes']
+Scores: [0.9729503393173218]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0055600120685994625]
+Labels: ['Mental Health']
+Scores: [0.0829259604215622]
+Labels: ['Cancer']
+Scores: [0.0045150150544941425]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.20452284812927246]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39664107
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Male', 'Diabetes Mellitus, Type 1', 'Adult', 'Middle Aged', 'Diabetic Neuropathies', 'Female', 'Magnetic Resonance Imaging', 'Olfactory Bulb', 'Aged', 'Young Adult', 'Adolescent', 'Case-Control Studies', 'Smell']
+Labels: ['Diabetes type 2']
+Scores: [0.00043551874114200473]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00042716035386547446]
+Labels: ['Diabetes type 1']
+Scores: [0.979752242565155]
+Labels: ['Diabetes']
+Scores: [0.9604145884513855]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00014481118705589324]
+Labels: ['Mental Health']
+Scores: [0.00021302183449734002]
+Labels: ['Cancer']
+Scores: [7.492407166864723e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.001816653530113399]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39663236
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Quality of Life', 'Psychometrics', 'Sweden', 'Child', 'Male', 'Female', 'Surveys and Questionnaires', 'Chronic Disease', 'Adolescent', 'Reproducibility of Results', 'Diabetes Mellitus, Type 1', 'Translations', 'Asthma', 'Parents', 'Factor Analysis, Statistical', 'Child, Preschool']
+Labels: ['Diabetes type 2']
+Scores: [0.1505662351846695]
+Labels: ['Chronic respiratory disease']
+Scores: [0.26104187965393066]
+Labels: ['Diabetes type 1']
+Scores: [0.1584978699684143]
+Labels: ['Diabetes']
+Scores: [0.12026077508926392]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08313366025686264]
+Labels: ['Mental Health']
+Scores: [0.11872535198926926]
+Labels: ['Cancer']
+Scores: [0.10593132674694061]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006712413392961025]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39661959
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Female', 'Adolescent', 'Male', 'Belgium', 'Longitudinal Studies', 'Young Adult', 'Adult', 'Self Concept']
+Labels: ['Diabetes type 2']
+Scores: [0.00016729164053685963]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01124371774494648]
+Labels: ['Diabetes type 1']
+Scores: [0.9960136413574219]
+Labels: ['Diabetes']
+Scores: [0.9101300239562988]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002766032237559557]
+Labels: ['Mental Health']
+Scores: [0.2008800208568573]
+Labels: ['Cancer']
+Scores: [0.0072160023264586926]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05278080329298973]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39658973
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'COVID-19', 'Male', 'Female', 'Middle Aged', 'Retrospective Studies', 'Pakistan', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Adult', 'SARS-CoV-2', 'Survival Rate', 'Incidence']
+Labels: ['Diabetes type 2']
+Scores: [0.9184903502464294]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08041142672300339]
+Labels: ['Diabetes type 1']
+Scores: [0.955165684223175]
+Labels: ['Diabetes']
+Scores: [0.9787936210632324]
+Labels: ['Cardiovascular diseases']
+Scores: [0.018695740029215813]
+Labels: ['Mental Health']
+Scores: [0.015482566319406033]
+Labels: ['Cancer']
+Scores: [0.0030977120622992516]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.270516574382782]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Diabetes']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39658119
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Diabetes Mellitus, Type 1', 'Child', 'Male', 'Female', 'Retrospective Studies', 'Adolescent', 'Saudi Arabia', 'Child, Preschool', 'Incidence', 'Polyuria', 'Abdominal Pain', 'Polydipsia', 'Vomiting', 'Age Factors', 'Severity of Illness Index']
+Labels: ['Diabetes type 2']
+Scores: [0.004382587969303131]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0031307630706578493]
+Labels: ['Diabetes type 1']
+Scores: [0.9730401039123535]
+Labels: ['Diabetes']
+Scores: [0.9451076984405518]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0035675899125635624]
+Labels: ['Mental Health']
+Scores: [0.004834031220525503]
+Labels: ['Cancer']
+Scores: [0.0009979520691558719]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15308073163032532]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39658013
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Female', 'Male', 'Self Efficacy', 'Quality of Life', 'Jordan', 'Glycemic Control', 'Empowerment', 'Glycated Hemoglobin', 'Child']
+Labels: ['Diabetes type 2']
+Scores: [8.965383312897757e-05]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00041346062789671123]
+Labels: ['Diabetes type 1']
+Scores: [0.9976615905761719]
+Labels: ['Diabetes']
+Scores: [0.9820399880409241]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004191578191239387]
+Labels: ['Mental Health']
+Scores: [0.00043244913103990257]
+Labels: ['Cancer']
+Scores: [0.000409786676755175]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00154113897588104]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39653802
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Exercise', 'Insulin Infusion Systems', 'Insulin', 'Adolescent', 'Child', 'Hypoglycemic Agents', 'Europe', 'Blood Glucose', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.004185891710221767]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0423840694129467]
+Labels: ['Diabetes type 1']
+Scores: [0.9799320101737976]
+Labels: ['Diabetes']
+Scores: [0.7393248677253723]
+Labels: ['Cardiovascular diseases']
+Scores: [0.028419213369488716]
+Labels: ['Mental Health']
+Scores: [0.0594530925154686]
+Labels: ['Cancer']
+Scores: [0.005223124288022518]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1440916359424591]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39652325
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'COVID-19', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Male', 'Republic of Korea', 'Adolescent', 'Female', 'Child', 'Incidence', 'Child, Preschool', 'Young Adult', 'Cohort Studies', 'Pandemics', 'SARS-CoV-2']
+Labels: ['Diabetes type 2']
+Scores: [0.7810960412025452]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6538701057434082]
+Labels: ['Diabetes type 1']
+Scores: [0.8641178011894226]
+Labels: ['Diabetes']
+Scores: [0.9692096710205078]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012898091226816177]
+Labels: ['Mental Health']
+Scores: [0.011375004425644875]
+Labels: ['Cancer']
+Scores: [0.0005861177342012525]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09540104120969772]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Diabetes']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39652177
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Dermatitis, Atopic', 'Comorbidity', 'Risk Factors', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus', 'Child', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.02878946252167225]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005547644686885178]
+Labels: ['Diabetes type 1']
+Scores: [0.016828229650855064]
+Labels: ['Diabetes']
+Scores: [0.7547199726104736]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00026892812456935644]
+Labels: ['Mental Health']
+Scores: [0.00306080374866724]
+Labels: ['Cancer']
+Scores: [0.0002646271314006299]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04710161313414574]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39649224
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Genetic Predisposition to Disease', 'Genome-Wide Association Study', 'Glycated Hemoglobin', 'Mendelian Randomization Analysis', 'Polymorphism, Single Nucleotide', 'Spondylitis, Ankylosing']
+Labels: ['Diabetes type 2']
+Scores: [0.27538105845451355]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003372647915966809]
+Labels: ['Diabetes type 1']
+Scores: [0.19762645661830902]
+Labels: ['Diabetes']
+Scores: [0.9810276627540588]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006382380379363894]
+Labels: ['Mental Health']
+Scores: [0.0005023276316933334]
+Labels: ['Cancer']
+Scores: [0.0002489298058208078]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09470771998167038]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39648458
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Fatty Acids, Omega-3', 'Chemokine CXCL9', 'Insulin-Secreting Cells', 'Animals', 'Mice', 'Diabetes Mellitus, Type 1', 'Cell Line', 'Signal Transduction']
+Labels: ['Diabetes type 2']
+Scores: [0.0026962864212691784]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06736713647842407]
+Labels: ['Diabetes type 1']
+Scores: [0.9965447783470154]
+Labels: ['Diabetes']
+Scores: [0.9937562346458435]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05458551272749901]
+Labels: ['Mental Health']
+Scores: [0.3750828206539154]
+Labels: ['Cancer']
+Scores: [0.1883702129125595]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.38412418961524963]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39645243
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Insulin-Secreting Cells', 'Animals', 'Drug Development', 'Insulin Secretion', 'Insulin', 'Disease Progression', 'Glycemic Control']
+Labels: ['Diabetes type 2']
+Scores: [0.00040595661266706884]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003181577194482088]
+Labels: ['Diabetes type 1']
+Scores: [0.9808904528617859]
+Labels: ['Diabetes']
+Scores: [0.9065155386924744]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0022336419206112623]
+Labels: ['Mental Health']
+Scores: [0.011204692535102367]
+Labels: ['Cancer']
+Scores: [0.002192472806200385]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17815907299518585]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39644976
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Diving', 'Adult', 'Hypoglycemia', 'Male', 'Female', 'Blood Glucose', 'Young Adult', 'Blood Glucose Self-Monitoring', 'Glycated Hemoglobin', 'Adolescent', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.00010541641677264124]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005246102227829397]
+Labels: ['Diabetes type 1']
+Scores: [0.9933752417564392]
+Labels: ['Diabetes']
+Scores: [0.8005362153053284]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002535565581638366]
+Labels: ['Mental Health']
+Scores: [0.001246777712367475]
+Labels: ['Cancer']
+Scores: [0.00012493533722590655]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002595706144347787]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39642862
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Humans', 'Islets of Langerhans Transplantation', 'Induced Pluripotent Stem Cells', 'Islets of Langerhans', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [7.179080421337858e-05]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00013146553828846663]
+Labels: ['Diabetes type 1']
+Scores: [0.9979205131530762]
+Labels: ['Diabetes']
+Scores: [0.9737616777420044]
+Labels: ['Cardiovascular diseases']
+Scores: [8.686602086527273e-05]
+Labels: ['Mental Health']
+Scores: [7.667206227779388e-05]
+Labels: ['Cancer']
+Scores: [7.2307295340579e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.032122958451509476]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39639901
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cost-Benefit Analysis', 'Diabetes Mellitus, Type 2', 'Patient Education as Topic', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.976036548614502]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002052040072157979]
+Labels: ['Diabetes type 1']
+Scores: [0.0005016514332965016]
+Labels: ['Diabetes']
+Scores: [0.7506625652313232]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007433785940520465]
+Labels: ['Mental Health']
+Scores: [0.00160674424842]
+Labels: ['Cancer']
+Scores: [0.0014123681467026472]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0734146386384964]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39636437
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'T-Lymphocytes, Regulatory', 'Mice, Inbred NOD', 'Mice', 'Female', 'Diabetes Mellitus, Type 1', 'Antigens, Differentiation, T-Lymphocyte', 'Antibodies, Monoclonal']
+Labels: ['Diabetes type 2']
+Scores: [0.00043929691310040653]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001624862663447857]
+Labels: ['Diabetes type 1']
+Scores: [0.9930114150047302]
+Labels: ['Diabetes']
+Scores: [0.9883208870887756]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001569361542351544]
+Labels: ['Mental Health']
+Scores: [0.004323072265833616]
+Labels: ['Cancer']
+Scores: [0.001309530925936997]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9245674014091492]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39632776
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Glycemic Control', 'Blood Glucose Self-Monitoring', 'Hypoglycemia', 'Glycated Hemoglobin', 'Diabetes Mellitus, Type 2', 'Diabetic Angiopathies', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Postprandial Period', 'Clinical Relevance']
+Labels: ['Diabetes type 2']
+Scores: [0.3925659954547882]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06275910884141922]
+Labels: ['Diabetes type 1']
+Scores: [0.20746482908725739]
+Labels: ['Diabetes']
+Scores: [0.6156749725341797]
+Labels: ['Cardiovascular diseases']
+Scores: [0.41790834069252014]
+Labels: ['Mental Health']
+Scores: [0.045926306396722794]
+Labels: ['Cancer']
+Scores: [0.013487368822097778]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11713985353708267]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39632164
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Female', 'Male', 'Child, Preschool', 'Surveys and Questionnaires', 'Infant', 'Parents', 'Insulin Infusion Systems', 'Patient Satisfaction', 'Blood Glucose', 'Child', 'Caregivers', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.00010053251753561199]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015492984093725681]
+Labels: ['Diabetes type 1']
+Scores: [0.9957448244094849]
+Labels: ['Diabetes']
+Scores: [0.8658372759819031]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000921656668651849]
+Labels: ['Mental Health']
+Scores: [0.04831700399518013]
+Labels: ['Cancer']
+Scores: [0.0015903005842119455]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05991693213582039]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39629047
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose', 'Diabetes Mellitus, Type 1', 'Diabetes Mellitus, Type 2', 'Drug Administration Schedule', 'Glycated Hemoglobin', 'Hypoglycemia', 'Hypoglycemic Agents', 'Insulin', 'Insulin, Long-Acting', 'Randomized Controlled Trials as Topic', 'Treatment Outcome']
+Labels: ['Diabetes type 2']
+Scores: [0.5142406225204468]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0012216183822602034]
+Labels: ['Diabetes type 1']
+Scores: [0.27558302879333496]
+Labels: ['Diabetes']
+Scores: [0.9032891392707825]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008753481670282781]
+Labels: ['Mental Health']
+Scores: [0.0012901355512440205]
+Labels: ['Cancer']
+Scores: [0.0009576166630722582]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.050539106130599976]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39627081
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetic Ketoacidosis', 'Retrospective Studies', 'Child', 'Female', 'Male', 'Adolescent', 'Child, Preschool', 'Infant', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 1', 'Insulin, Long-Acting', 'Insulin', 'Infant, Newborn', 'Infusions, Intravenous']
+Labels: ['Diabetes type 2']
+Scores: [0.17679467797279358]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001463825348764658]
+Labels: ['Diabetes type 1']
+Scores: [0.11025875061750412]
+Labels: ['Diabetes']
+Scores: [0.9344724416732788]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001498878002166748]
+Labels: ['Mental Health']
+Scores: [0.04746796190738678]
+Labels: ['Cancer']
+Scores: [0.0005700065521523356]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14301900565624237]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39626097
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'HLA-DR3 Antigen', 'Haplotypes', 'HLA-DR4 Antigen', 'Genetic Predisposition to Disease', 'Male', 'Female', 'Genome-Wide Association Study', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.00018826706218533218]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015764402924105525]
+Labels: ['Diabetes type 1']
+Scores: [0.8662113547325134]
+Labels: ['Diabetes']
+Scores: [0.6987323760986328]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008132556104101241]
+Labels: ['Mental Health']
+Scores: [0.0005605360493063927]
+Labels: ['Cancer']
+Scores: [0.00017986181774176657]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017501745373010635]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39625868
+Predictions: ['Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Pregnancy', 'Female', 'Diabetes, Gestational', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Blood Glucose Self-Monitoring', 'Wearable Electronic Devices']
+Labels: ['Diabetes type 2']
+Scores: [0.7843090295791626]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001049392856657505]
+Labels: ['Diabetes type 1']
+Scores: [0.7377681732177734]
+Labels: ['Diabetes']
+Scores: [0.8619118928909302]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009895002003759146]
+Labels: ['Mental Health']
+Scores: [0.001575906528159976]
+Labels: ['Cancer']
+Scores: [0.0005004554404877126]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04666580259799957]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Diabetes']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39625848
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Insulin', 'Administration, Cutaneous', 'Needles', 'Drug Delivery Systems', 'Animals', 'Skin', 'Swine', 'Skin Absorption', 'Microinjections', 'Diabetes Mellitus, Type 1', 'Hypoglycemic Agents', 'Humans']
+Labels: ['Diabetes type 2']
+Scores: [0.0004930318682454526]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008515165536664426]
+Labels: ['Diabetes type 1']
+Scores: [0.98764568567276]
+Labels: ['Diabetes']
+Scores: [0.9574311971664429]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001375766471028328]
+Labels: ['Mental Health']
+Scores: [0.04153994470834732]
+Labels: ['Cancer']
+Scores: [0.0030709749553352594]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.30649271607398987]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39625039
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Receptors, Glucagon', 'Hypoglycemic Agents', 'Blood Glucose', 'Insulin', 'Randomized Controlled Trials as Topic', 'Hypoglycemia', 'Treatment Outcome', 'Antibodies, Monoclonal, Humanized']
+Labels: ['Diabetes type 2']
+Scores: [0.005482341628521681]
+Labels: ['Chronic respiratory disease']
+Scores: [0.020678384229540825]
+Labels: ['Diabetes type 1']
+Scores: [0.9859790205955505]
+Labels: ['Diabetes']
+Scores: [0.7619245648384094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025855066254734993]
+Labels: ['Mental Health']
+Scores: [0.10984273254871368]
+Labels: ['Cancer']
+Scores: [0.010892880149185658]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3571217656135559]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39622650
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Child', 'Blood Glucose Self-Monitoring', 'Insulin Infusion Systems', 'Adolescent', 'Insulin', 'Skin Diseases', 'Hypoglycemic Agents', 'Child, Preschool', 'Lipodystrophy', 'Dermatitis, Contact']
+Labels: ['Diabetes type 2']
+Scores: [0.00029372412245720625]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00032630577334202826]
+Labels: ['Diabetes type 1']
+Scores: [0.9849911332130432]
+Labels: ['Diabetes']
+Scores: [0.9450957179069519]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003869892389047891]
+Labels: ['Mental Health']
+Scores: [0.0006596461171284318]
+Labels: ['Cancer']
+Scores: [0.001276752445846796]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007368364371359348]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39622257
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Registries', 'Child', 'Female', 'Male', 'Longitudinal Studies', 'Adolescent', 'Child, Preschool', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Blood Glucose', 'Hypoglycemia', 'Treatment Outcome', 'Infant', 'Glycemic Control']
+Labels: ['Diabetes type 2']
+Scores: [0.00018405115406494588]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015797076048329473]
+Labels: ['Diabetes type 1']
+Scores: [0.9744113683700562]
+Labels: ['Diabetes']
+Scores: [0.6773514747619629]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0015700880903750658]
+Labels: ['Mental Health']
+Scores: [0.0041181473061442375]
+Labels: ['Cancer']
+Scores: [0.0010126762790605426]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10223042219877243]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39622163
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Diabetes Mellitus, Type 1', 'Humans', 'Animals', 'Blood Glucose', 'Tissue Engineering', 'Porosity', 'Human Umbilical Vein Endothelial Cells', 'Tissue Scaffolds', 'Induced Pluripotent Stem Cells', 'Insulin', 'Diabetes Mellitus, Experimental', 'Printing, Three-Dimensional', 'Bioprinting', 'Male', 'Cell Survival', 'Insulin-Secreting Cells', 'Extracellular Matrix']
+Labels: ['Diabetes type 2']
+Scores: [0.0026356324087828398]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022780677303671837]
+Labels: ['Diabetes type 1']
+Scores: [0.9882384538650513]
+Labels: ['Diabetes']
+Scores: [0.9673720002174377]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1300545632839203]
+Labels: ['Mental Health']
+Scores: [0.06370444595813751]
+Labels: ['Cancer']
+Scores: [0.011777385137975216]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.47664520144462585]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39621933
+Predictions: ['Diabetes', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Child', 'Adolescent', 'Child, Preschool', 'Retrospective Studies', 'Female', 'Blood Glucose', 'Male', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus', 'Hospitalization', 'Diabetes Mellitus, Type 1']
+Labels: ['Diabetes type 2']
+Scores: [0.37770357728004456]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0004491392755880952]
+Labels: ['Diabetes type 1']
+Scores: [0.23346273601055145]
+Labels: ['Diabetes']
+Scores: [0.9885292053222656]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002489674079697579]
+Labels: ['Mental Health']
+Scores: [0.0006308215088211]
+Labels: ['Cancer']
+Scores: [0.00028889800887554884]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007198304403573275]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39621313
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Animals', 'Mice, Inbred NOD', 'Interleukin-4', 'Mice', 'Thymus Gland', 'Diabetes Mellitus, Type 1', 'Receptors, Antigen, T-Cell', 'Dendritic Cells', 'Natural Killer T-Cells']
+Labels: ['Diabetes type 2']
+Scores: [0.0015214885352179408]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009254069067537785]
+Labels: ['Diabetes type 1']
+Scores: [0.9869505167007446]
+Labels: ['Diabetes']
+Scores: [0.9467183351516724]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008059401996433735]
+Labels: ['Mental Health']
+Scores: [0.09000714123249054]
+Labels: ['Cancer']
+Scores: [0.004181802738457918]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3736422657966614]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39620918
+Predictions: ['Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Aged', 'Automobile Driving', 'Insulin Infusion Systems', 'Male', 'Female', 'Insulin', 'Cross-Over Studies', 'Hypoglycemic Agents', 'Middle Aged', 'Blood Glucose', 'Blood Glucose Self-Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.0010568622965365648]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005277634598314762]
+Labels: ['Diabetes type 1']
+Scores: [0.9776567220687866]
+Labels: ['Diabetes']
+Scores: [0.8424472212791443]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012467249296605587]
+Labels: ['Mental Health']
+Scores: [0.02466430887579918]
+Labels: ['Cancer']
+Scores: [0.003520259400829673]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16410985589027405]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738300
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cognitive Dysfunction', 'Self-Management', 'Machine Learning', 'Aged', 'Male', 'Female', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.24051377177238464]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0094230305403471]
+Labels: ['Diabetes type 1']
+Scores: [0.10918460041284561]
+Labels: ['Diabetes']
+Scores: [0.9446612596511841]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008792596869170666]
+Labels: ['Mental Health']
+Scores: [0.44044288992881775]
+Labels: ['Cancer']
+Scores: [0.00306117394939065]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09499429911375046]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737509
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'India', 'Biological Specimen Banks', 'Adult', 'Female', 'Male', 'Diabetes Mellitus', 'Registries', 'Biomedical Research', 'Young Adult', 'Cohort Studies', 'Age of Onset', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.607638418674469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006618833635002375]
+Labels: ['Diabetes type 1']
+Scores: [0.564437747001648]
+Labels: ['Diabetes']
+Scores: [0.9902006983757019]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004532578866928816]
+Labels: ['Mental Health']
+Scores: [0.002291615353897214]
+Labels: ['Cancer']
+Scores: [0.0010103234089910984]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019248567521572113]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39736942
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Mobile Health Units', 'Middle Aged', 'Adolescent', 'Aged', 'Child', 'Young Adult', 'India', 'Morbidity', 'Hypertension', 'Child, Preschool', 'Obesity', 'Infant', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.37150728702545166]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9040946364402771]
+Labels: ['Diabetes type 1']
+Scores: [0.34670189023017883]
+Labels: ['Diabetes']
+Scores: [0.7004575133323669]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2617018520832062]
+Labels: ['Mental Health']
+Scores: [0.038414523005485535]
+Labels: ['Cancer']
+Scores: [0.025936918333172798]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9849037528038025]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Chronic respiratory disease', 'Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736689
+Predictions: ['Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Neoplasms', 'Male', 'Female', 'Middle Aged', 'Adult', 'Longitudinal Studies', 'Aged', 'Proportional Hazards Models', 'Diabetes Mellitus', 'Risk Factors', 'Cardiometabolic Risk Factors', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.003595756134018302]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016912327846512198]
+Labels: ['Diabetes type 1']
+Scores: [0.003273831680417061]
+Labels: ['Diabetes']
+Scores: [0.0013767826603725553]
+Labels: ['Cardiovascular diseases']
+Scores: [0.961646318435669]
+Labels: ['Mental Health']
+Scores: [0.0009968432132154703]
+Labels: ['Cancer']
+Scores: [0.9326162338256836]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03587875887751579]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39735640
+Predictions: ['Diabetes']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Blood Glucose', 'Class Ia Phosphatidylinositol 3-Kinase', 'Diabetes Mellitus', 'Growth Disorders', 'Hypercalcemia', 'Insulin Resistance', 'Nephrocalcinosis', 'Tooth Abnormalities']
+Labels: ['Diabetes type 2']
+Scores: [0.08417397737503052]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003380170091986656]
+Labels: ['Diabetes type 1']
+Scores: [0.06046281382441521]
+Labels: ['Diabetes']
+Scores: [0.9257636666297913]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007581022102385759]
+Labels: ['Mental Health']
+Scores: [0.0453115738928318]
+Labels: ['Cancer']
+Scores: [0.001579423202201724]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4201691746711731]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735551
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Atherosclerosis', "5'-Nucleotidase", 'Animals', 'Diabetes Mellitus', 'GPI-Linked Proteins', 'Drug Development']
+Labels: ['Diabetes type 2']
+Scores: [0.17455187439918518]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0704454630613327]
+Labels: ['Diabetes type 1']
+Scores: [0.10401255637407303]
+Labels: ['Diabetes']
+Scores: [0.938658595085144]
+Labels: ['Cardiovascular diseases']
+Scores: [0.664103090763092]
+Labels: ['Mental Health']
+Scores: [0.03306310623884201]
+Labels: ['Cancer']
+Scores: [0.009010042063891888]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3059440553188324]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735480
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Female', 'Male', 'Heart Failure', 'Comorbidity', 'Middle Aged', 'Aged', 'Adult', 'Turkey', 'Prevalence', 'Young Adult', 'Adolescent', 'Aged, 80 and over', 'Hypertension', 'Diabetes Mellitus', 'Pulmonary Disease, Chronic Obstructive', 'Anemia', 'Dyslipidemias']
+Labels: ['Diabetes type 2']
+Scores: [0.011748796328902245]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9496886134147644]
+Labels: ['Diabetes type 1']
+Scores: [0.007049634121358395]
+Labels: ['Diabetes']
+Scores: [0.02538762427866459]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9677107930183411]
+Labels: ['Mental Health']
+Scores: [0.0225482527166605]
+Labels: ['Cancer']
+Scores: [0.0013618580996990204]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024420643225312233]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39734205
+Predictions: ['Diabetes']
+MeshTerm: ['Administration, Oral', 'Insulin', 'Humans', 'Animals', 'Nanoparticles', 'Blood Glucose', 'Diabetes Mellitus', 'Particle Size', 'Hypoglycemic Agents', 'Drug Carriers', 'Drug Delivery Systems']
+Labels: ['Diabetes type 2']
+Scores: [0.3915982246398926]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16099071502685547]
+Labels: ['Diabetes type 1']
+Scores: [0.33376362919807434]
+Labels: ['Diabetes']
+Scores: [0.954740583896637]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07001062482595444]
+Labels: ['Mental Health']
+Scores: [0.16952906548976898]
+Labels: ['Cancer']
+Scores: [0.02861153893172741]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.30399930477142334]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733376
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hungary', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Blood Glucose', 'Glycated Hemoglobin', 'Aged', 'Clinical Laboratory Techniques', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.7575762867927551]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002339253987884149]
+Labels: ['Diabetes type 1']
+Scores: [0.5962243676185608]
+Labels: ['Diabetes']
+Scores: [0.9777984619140625]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00015128585800994188]
+Labels: ['Mental Health']
+Scores: [0.00016139856597874314]
+Labels: ['Cancer']
+Scores: [9.03891195775941e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13756854832172394]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732905
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Coronary Stenosis', 'Aged', 'Inflammation', 'Coronary Disease', 'Severity of Illness Index', 'Diabetes Mellitus', 'Prognosis', 'Risk Factors', 'Predictive Value of Tests']
+Labels: ['Diabetes type 2']
+Scores: [0.20269675552845]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06622835248708725]
+Labels: ['Diabetes type 1']
+Scores: [0.18493522703647614]
+Labels: ['Diabetes']
+Scores: [0.9407894611358643]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9928926229476929]
+Labels: ['Mental Health']
+Scores: [0.09666875749826431]
+Labels: ['Cancer']
+Scores: [0.037175875157117844]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.33865290880203247]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732874
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Sepsis', 'Male', 'Female', 'Aged', 'Middle Aged', 'Calcium', 'Diabetes Mellitus', 'Acid-Base Equilibrium', 'ROC Curve', 'Prognosis']
+Labels: ['Diabetes type 2']
+Scores: [0.06616919487714767]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05584380030632019]
+Labels: ['Diabetes type 1']
+Scores: [0.045595601201057434]
+Labels: ['Diabetes']
+Scores: [0.8893476128578186]
+Labels: ['Cardiovascular diseases']
+Scores: [0.022390708327293396]
+Labels: ['Mental Health']
+Scores: [0.11234425753355026]
+Labels: ['Cancer']
+Scores: [0.015526842325925827]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19308170676231384]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732729
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Animals', 'Humans', 'Adipokines', 'Adipose Tissue', 'Adiposity', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Inflammation Mediators', 'Obesity', 'Signal Transduction']
+Labels: ['Diabetes type 2']
+Scores: [0.22069044411182404]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028800657019019127]
+Labels: ['Diabetes type 1']
+Scores: [0.1820470243692398]
+Labels: ['Diabetes']
+Scores: [0.5129277110099792]
+Labels: ['Cardiovascular diseases']
+Scores: [0.875665545463562]
+Labels: ['Mental Health']
+Scores: [0.01383256632834673]
+Labels: ['Cancer']
+Scores: [0.006933057680726051]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030846191570162773]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732433
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Ethiopia', 'Risk Factors', 'Prevalence', 'Diabetic Angiopathies', 'Male', 'Female', 'Middle Aged', 'Adult', 'Risk Assessment', 'Diabetic Retinopathy', 'Aged', 'Diabetic Nephropathies', 'Diabetic Neuropathies', 'Diabetes Mellitus', 'Young Adult', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.36082756519317627]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015748967416584492]
+Labels: ['Diabetes type 1']
+Scores: [0.0665932223200798]
+Labels: ['Diabetes']
+Scores: [0.8204498887062073]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013902387581765652]
+Labels: ['Mental Health']
+Scores: [0.0002255585277453065]
+Labels: ['Cancer']
+Scores: [0.00010159160592593253]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03268132358789444]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730723
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Kidney Calculi', 'Male', 'Female', 'Cross-Sectional Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Nutrition Surveys', 'Risk Factors', 'Aged', 'Cardiovascular Diseases', 'United States', 'Incidence', 'Logistic Models']
+Labels: ['Diabetes type 2']
+Scores: [0.43469375371932983]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10568473488092422]
+Labels: ['Diabetes type 1']
+Scores: [0.3903636336326599]
+Labels: ['Diabetes']
+Scores: [0.9724104404449463]
+Labels: ['Cardiovascular diseases']
+Scores: [0.807472288608551]
+Labels: ['Mental Health']
+Scores: [0.14489372074604034]
+Labels: ['Cancer']
+Scores: [0.039001572877168655]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5498730540275574]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730510
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Adult', 'Nutrition Surveys', 'Heart Diseases', 'Diabetes Mellitus', 'Waist Circumference', 'Body Mass Index', 'Adiposity', 'Risk Factors', 'Adipose Tissue', 'United States']
+Labels: ['Diabetes type 2']
+Scores: [0.6086481809616089]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13060793280601501]
+Labels: ['Diabetes type 1']
+Scores: [0.5600890517234802]
+Labels: ['Diabetes']
+Scores: [0.8462081551551819]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8093762397766113]
+Labels: ['Mental Health']
+Scores: [0.14289389550685883]
+Labels: ['Cancer']
+Scores: [0.061307862401008606]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6809572577476501]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729755
+Predictions: ['Diabetes']
+MeshTerm: ['Biosensing Techniques', 'Microwaves', 'Humans', 'Blood Glucose', 'Blood Glucose Self-Monitoring', 'Diabetes Mellitus', 'Spectrum Analysis, Raman', 'Spectroscopy, Near-Infrared', 'Equipment Design']
+Labels: ['Diabetes type 2']
+Scores: [0.5753656029701233]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10021339356899261]
+Labels: ['Diabetes type 1']
+Scores: [0.4035019278526306]
+Labels: ['Diabetes']
+Scores: [0.8545317053794861]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06388016045093536]
+Labels: ['Mental Health']
+Scores: [0.1572084277868271]
+Labels: ['Cancer']
+Scores: [0.03169390186667442]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3205495774745941]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725874
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Uric Acid', 'Nutrition Surveys', 'Cholesterol, HDL', 'Middle Aged', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Biomarkers', 'Risk Assessment', 'Cause of Death', 'United States', 'Time Factors', 'Adult', 'Longitudinal Studies', 'Prognosis', 'Aged', 'Sex Factors', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.56340491771698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011550470255315304]
+Labels: ['Diabetes type 1']
+Scores: [0.518042266368866]
+Labels: ['Diabetes']
+Scores: [0.9924060702323914]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9340090155601501]
+Labels: ['Mental Health']
+Scores: [0.022039899602532387]
+Labels: ['Cancer']
+Scores: [0.004830945283174515]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6259181499481201]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725454
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Kidney Transplantation', 'Male', 'Female', 'Child', 'Adolescent', 'Graft Survival', 'Graft Rejection', 'Diabetes Mellitus', 'Incidence', 'Retrospective Studies', 'Postoperative Complications', 'Survival Analysis', 'Child, Preschool', 'Transplant Recipients', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.28412309288978577]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008175743743777275]
+Labels: ['Diabetes type 1']
+Scores: [0.1703360676765442]
+Labels: ['Diabetes']
+Scores: [0.8617107272148132]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016710225492715836]
+Labels: ['Mental Health']
+Scores: [0.07125009596347809]
+Labels: ['Cancer']
+Scores: [0.009438347071409225]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.49447575211524963]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39723173
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Wound Healing', 'Hypoxia-Inducible Factor 1, alpha Subunit', 'Animals', 'Deferoxamine', 'Diabetes Mellitus', 'Glycine', 'Nanoparticles', 'Isoquinolines']
+Labels: ['Diabetes type 2']
+Scores: [0.28975746035575867]
+Labels: ['Chronic respiratory disease']
+Scores: [0.060370560735464096]
+Labels: ['Diabetes type 1']
+Scores: [0.6635029911994934]
+Labels: ['Diabetes']
+Scores: [0.9594569206237793]
+Labels: ['Cardiovascular diseases']
+Scores: [0.045291006565093994]
+Labels: ['Mental Health']
+Scores: [0.01823677308857441]
+Labels: ['Cancer']
+Scores: [0.0046661789529025555]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1745707094669342]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39721299
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Elasticity Imaging Techniques', 'Pilot Projects', 'Male', 'Female', 'Pancreas', 'Middle Aged', 'Adult', 'Case-Control Studies', 'Aged', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.37589001655578613]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006839217967353761]
+Labels: ['Diabetes type 1']
+Scores: [0.25635743141174316]
+Labels: ['Diabetes']
+Scores: [0.9441027045249939]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00040276945219375193]
+Labels: ['Mental Health']
+Scores: [0.002029610564932227]
+Labels: ['Cancer']
+Scores: [0.0014366884715855122]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1703234165906906]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720256
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Extracellular Vesicles', 'Osteoporosis', 'Animals', 'Diabetes Complications', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.2350073754787445]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02782352827489376]
+Labels: ['Diabetes type 1']
+Scores: [0.17759329080581665]
+Labels: ['Diabetes']
+Scores: [0.9419798851013184]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04673662409186363]
+Labels: ['Mental Health']
+Scores: [0.086375892162323]
+Labels: ['Cancer']
+Scores: [0.00855387095361948]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3404890298843384]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720248
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Insulin Resistance', 'Male', 'Cross-Sectional Studies', 'Female', 'Diabetic Nephropathies', 'Middle Aged', 'Nutrition Surveys', 'United States', 'Adult', 'Aged', 'Risk Factors', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Body Mass Index']
+Labels: ['Diabetes type 2']
+Scores: [0.33203381299972534]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002824333030730486]
+Labels: ['Diabetes type 1']
+Scores: [0.15433456003665924]
+Labels: ['Diabetes']
+Scores: [0.9348660111427307]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004034295678138733]
+Labels: ['Mental Health']
+Scores: [0.00805627927184105]
+Labels: ['Cancer']
+Scores: [0.0016257166862487793]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6776546239852905]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719762
+Predictions: ['Diabetes']
+MeshTerm: ['Particulate Matter', 'Hypertension', 'Diabetes Mellitus', 'Middle Aged', 'Air Pollutants', 'Humans', 'Male', 'Prospective Studies', 'Air Pollution', 'Environmental Exposure', 'China', 'Aged', 'Female']
+Labels: ['Diabetes type 2']
+Scores: [0.0336885079741478]
+Labels: ['Chronic respiratory disease']
+Scores: [0.29626166820526123]
+Labels: ['Diabetes type 1']
+Scores: [0.031576842069625854]
+Labels: ['Diabetes']
+Scores: [0.03361433744430542]
+Labels: ['Cardiovascular diseases']
+Scores: [0.15401460230350494]
+Labels: ['Mental Health']
+Scores: [0.30778107047080994]
+Labels: ['Cancer']
+Scores: [0.12354403734207153]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07886291295289993]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719335
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'China', 'Male', 'Female', 'Adult', 'Multimorbidity', 'Middle Aged', 'Chronic Disease', 'Prevalence', 'Aged', 'Hypertension', 'Obesity', 'Hyperuricemia', 'Dyslipidemias', 'Surveys and Questionnaires', 'Diabetes Mellitus', 'Adolescent', 'Rural Population', 'Young Adult', 'Urban Population']
+Labels: ['Diabetes type 2']
+Scores: [0.17732931673526764]
+Labels: ['Chronic respiratory disease']
+Scores: [0.21271099150180817]
+Labels: ['Diabetes type 1']
+Scores: [0.14911071956157684]
+Labels: ['Diabetes']
+Scores: [0.14828088879585266]
+Labels: ['Cardiovascular diseases']
+Scores: [0.13461893796920776]
+Labels: ['Mental Health']
+Scores: [0.038983602076768875]
+Labels: ['Cancer']
+Scores: [0.10186918824911118]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03474171832203865]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719334
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'China', 'Female', 'Male', 'Adult', 'Middle Aged', 'Prevalence', 'Hyperuricemia', 'Chronic Disease', 'Hypertension', 'Metabolic Diseases', 'Dyslipidemias', 'Aged', 'Diabetes Mellitus', 'Young Adult', 'Rural Population', 'Adolescent', 'Urban Population', 'Nutrition Surveys']
+Labels: ['Diabetes type 2']
+Scores: [0.3325650691986084]
+Labels: ['Chronic respiratory disease']
+Scores: [0.30961698293685913]
+Labels: ['Diabetes type 1']
+Scores: [0.2882097661495209]
+Labels: ['Diabetes']
+Scores: [0.34995436668395996]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11682958155870438]
+Labels: ['Mental Health']
+Scores: [0.000916145509108901]
+Labels: ['Cancer']
+Scores: [0.005012503359466791]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019759977236390114]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719258
+Predictions: ['Diabetes']
+MeshTerm: ['MicroRNAs', 'Humans', 'Wound Healing', 'Animals', 'Signal Transduction', 'Diabetes Complications', 'Diabetes Mellitus', 'Drug Delivery Systems']
+Labels: ['Diabetes type 2']
+Scores: [0.4481515884399414]
+Labels: ['Chronic respiratory disease']
+Scores: [0.038296911865472794]
+Labels: ['Diabetes type 1']
+Scores: [0.4800117611885071]
+Labels: ['Diabetes']
+Scores: [0.9267811179161072]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04007035121321678]
+Labels: ['Mental Health']
+Scores: [0.029560573399066925]
+Labels: ['Cancer']
+Scores: [0.017549552023410797]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16266828775405884]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39718458
+Predictions: ['Diabetes']
+MeshTerm: ['Titanium', 'Insulin', 'Animals', 'Hypoglycemic Agents', 'Particle Size', 'Glucose', 'Materials Testing', 'Nanoparticles', 'Surface Properties', 'Biocompatible Materials', 'Diabetes Mellitus', 'Drug Delivery Systems', 'Mice', 'Diabetes Mellitus, Experimental', 'Humans', 'Boronic Acids']
+Labels: ['Diabetes type 2']
+Scores: [0.022469537332654]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002072536590276286]
+Labels: ['Diabetes type 1']
+Scores: [0.026265475898981094]
+Labels: ['Diabetes']
+Scores: [0.9178564548492432]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00032012592419050634]
+Labels: ['Mental Health']
+Scores: [0.0033736892510205507]
+Labels: ['Cancer']
+Scores: [0.00013651337940245867]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009704122319817543]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39717102
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Female', 'Postmenopause', 'Middle Aged', 'Coronary Disease', 'Cholesterol', 'Aged', 'Diabetes Mellitus', 'Nutrition Surveys', 'Risk Factors', 'Prevalence', 'United States', 'Cross-Sectional Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.15868067741394043]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018114164704456925]
+Labels: ['Diabetes type 1']
+Scores: [0.09072291851043701]
+Labels: ['Diabetes']
+Scores: [0.6659435033798218]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9957168698310852]
+Labels: ['Mental Health']
+Scores: [0.0048491470515728]
+Labels: ['Cancer']
+Scores: [0.0026276700664311647]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015571451745927334]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717099
+Predictions: ['Diabetes']
+MeshTerm: ['Bibliometrics', 'Humans', 'NLR Family, Pyrin Domain-Containing 3 Protein', 'Inflammasomes', 'Diabetes Mellitus', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.3644982874393463]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0032160463742911816]
+Labels: ['Diabetes type 1']
+Scores: [0.3226814866065979]
+Labels: ['Diabetes']
+Scores: [0.9520871639251709]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003131213306915015]
+Labels: ['Mental Health']
+Scores: [0.003998863976448774]
+Labels: ['Cancer']
+Scores: [0.00029554610955528915]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.7622115612030029]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716287
+Predictions: ['Diabetes']
+MeshTerm: ['Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Administration, Oral', 'Blood Glucose', 'Cholecalciferol', 'Creatine', 'Diabetes Mellitus', 'Dietary Supplements', 'Iran', 'Muscle Strength', 'Muscle, Skeletal', 'Oxidative Stress', 'Randomized Controlled Trials as Topic', 'Sarcopenia', 'Treatment Outcome', 'Valerates', 'Whey Proteins']
+Labels: ['Diabetes type 2']
+Scores: [0.04534551128745079]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004509270191192627]
+Labels: ['Diabetes type 1']
+Scores: [0.01132742129266262]
+Labels: ['Diabetes']
+Scores: [0.735016942024231]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008138441480696201]
+Labels: ['Mental Health']
+Scores: [0.0008608808275312185]
+Labels: ['Cancer']
+Scores: [0.0003026532067451626]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05970612168312073]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39716100
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Gastrointestinal Microbiome', 'Kidney Transplantation', 'Postoperative Complications']
+Labels: ['Diabetes type 2']
+Scores: [0.2056174874305725]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009887494146823883]
+Labels: ['Diabetes type 1']
+Scores: [0.12360617518424988]
+Labels: ['Diabetes']
+Scores: [0.9621632695198059]
+Labels: ['Cardiovascular diseases']
+Scores: [0.011761282570660114]
+Labels: ['Mental Health']
+Scores: [0.04056301340460777]
+Labels: ['Cancer']
+Scores: [0.003394387662410736]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.49654075503349304]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715819
+Predictions: ['Diabetes']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Diabetes Mellitus', 'Egypt', 'Health Knowledge, Attitudes, Practice', 'Patient Education as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.6476373076438904]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3522901237010956]
+Labels: ['Diabetes type 1']
+Scores: [0.5791799426078796]
+Labels: ['Diabetes']
+Scores: [0.937285304069519]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1073649600148201]
+Labels: ['Mental Health']
+Scores: [0.09832293540239334]
+Labels: ['Cancer']
+Scores: [0.041468262672424316]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6386138796806335]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715497
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'COVID-19 Vaccines', 'Antibodies, Neutralizing', 'COVID-19', 'Female', 'HIV Infections', 'Middle Aged', 'Antibodies, Viral', 'Immunoglobulin G', 'SARS-CoV-2', 'Immunity, Humoral', 'Adult', 'Diabetes Mellitus', 'Vaccination', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.19912466406822205]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09502187371253967]
+Labels: ['Diabetes type 1']
+Scores: [0.054079506546258926]
+Labels: ['Diabetes']
+Scores: [0.7215122580528259]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04295209422707558]
+Labels: ['Mental Health']
+Scores: [0.8082486987113953]
+Labels: ['Cancer']
+Scores: [0.02687222510576248]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24833300709724426]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714194
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Aged', 'Male', 'Female', 'Middle Aged', 'Ischemic Stroke', 'Aged, 80 and over', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Age Factors', 'Blood Glucose', 'Prospective Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.2953595519065857]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009163874201476574]
+Labels: ['Diabetes type 1']
+Scores: [0.15232141315937042]
+Labels: ['Diabetes']
+Scores: [0.9094461798667908]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9641361236572266]
+Labels: ['Mental Health']
+Scores: [0.05601590499281883]
+Labels: ['Cancer']
+Scores: [0.009818528778851032]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1574099361896515]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714134
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Saliva', 'Metal-Organic Frameworks', 'Transistors, Electronic', 'Glucose', 'Electrodes', 'Biosensing Techniques', 'Electrochemical Techniques', 'Nickel', 'Particle Size']
+Labels: ['Diabetes type 2']
+Scores: [0.18115556240081787]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00034009385854005814]
+Labels: ['Diabetes type 1']
+Scores: [0.1320631057024002]
+Labels: ['Diabetes']
+Scores: [0.9419379234313965]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003493439871817827]
+Labels: ['Mental Health']
+Scores: [0.0004485952958930284]
+Labels: ['Cancer']
+Scores: [0.00013226940063759685]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03327363356947899]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710070
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucosephosphate Dehydrogenase Deficiency', 'Female', 'Male', 'Middle Aged', 'Glycated Hemoglobin', 'Hypoglycemic Agents', 'Adult', 'Aged', 'Blood Glucose', 'Cohort Studies', 'Healthcare Disparities', 'Diabetes Complications', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.4745529890060425]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002356379060074687]
+Labels: ['Diabetes type 1']
+Scores: [0.42112284898757935]
+Labels: ['Diabetes']
+Scores: [0.9900153875350952]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0010945460526272655]
+Labels: ['Mental Health']
+Scores: [0.0005819619982503355]
+Labels: ['Cancer']
+Scores: [0.0005594593239948153]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15297986567020416]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709946
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Transcription Factor 7-Like 2 Protein', 'beta Catenin', 'Wnt3A Protein', 'Wnt Signaling Pathway', 'Diabetic Nephropathies', 'Animals', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.30380839109420776]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00013932214642409235]
+Labels: ['Diabetes type 1']
+Scores: [0.13229119777679443]
+Labels: ['Diabetes']
+Scores: [0.940096378326416]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5138753652572632]
+Labels: ['Mental Health']
+Scores: [6.857228436274454e-05]
+Labels: ['Cancer']
+Scores: [6.205800309544429e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0006950987735763192]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709804
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Vaccination Coverage', 'Cross-Sectional Studies', 'Influenza, Human', 'Male', 'Influenza Vaccines', 'Female', 'Europe', 'Middle Aged', 'Aged', 'Diabetes Mellitus', 'Seasons', 'Vaccination', 'Social Determinants of Health', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.4183915853500366]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03916928544640541]
+Labels: ['Diabetes type 1']
+Scores: [0.24883981049060822]
+Labels: ['Diabetes']
+Scores: [0.8197463154792786]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0025159369688481092]
+Labels: ['Mental Health']
+Scores: [0.024011610075831413]
+Labels: ['Cancer']
+Scores: [0.005996727850288153]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.20503322780132294]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709395
+Predictions: ['Diabetes']
+MeshTerm: ['Bayes Theorem', 'Humans', 'Software', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.19397173821926117]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16080792248249054]
+Labels: ['Diabetes type 1']
+Scores: [0.19388240575790405]
+Labels: ['Diabetes']
+Scores: [0.20580874383449554]
+Labels: ['Cardiovascular diseases']
+Scores: [0.14106278121471405]
+Labels: ['Mental Health']
+Scores: [0.137754425406456]
+Labels: ['Cancer']
+Scores: [0.277874231338501]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24678802490234375]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709343
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'COVID-19', 'Middle Aged', 'Retrospective Studies', 'Male', 'Adult', 'Female', 'Aged', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Aged, 80 and over', 'Oman', 'Body Mass Index', 'Blood Pressure', 'Young Adult', 'SARS-CoV-2', 'Hypertension', 'Pandemics']
+Labels: ['Diabetes type 2']
+Scores: [0.9079461693763733]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005674443091265857]
+Labels: ['Diabetes type 1']
+Scores: [0.8637287020683289]
+Labels: ['Diabetes']
+Scores: [0.996617317199707]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000641935330349952]
+Labels: ['Mental Health']
+Scores: [0.0005388099234551191]
+Labels: ['Cancer']
+Scores: [0.00029165862360969186]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9983274340629578]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 3], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39707324
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Triglycerides', 'Longitudinal Studies', 'Male', 'Middle Aged', 'Female', 'Blood Glucose', 'China', 'Aged', 'Obesity', 'Risk Factors', 'Insulin Resistance', 'Diabetes Mellitus', 'Proportional Hazards Models']
+Labels: ['Diabetes type 2']
+Scores: [0.3862081468105316]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13134300708770752]
+Labels: ['Diabetes type 1']
+Scores: [0.21089671552181244]
+Labels: ['Diabetes']
+Scores: [0.9335222840309143]
+Labels: ['Cardiovascular diseases']
+Scores: [0.47337180376052856]
+Labels: ['Mental Health']
+Scores: [0.009457082487642765]
+Labels: ['Cancer']
+Scores: [0.0004964108811691403]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.600820004940033]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707271
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Erectile Dysfunction', 'Ethiopia', 'Cross-Sectional Studies', 'Adult', 'Middle Aged', 'Hospitals, Public', 'Prevalence', 'Risk Factors', 'Diabetes Mellitus', 'Poisson Distribution', 'Young Adult', 'Diabetes Complications', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.32286831736564636]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00047631614143028855]
+Labels: ['Diabetes type 1']
+Scores: [0.18865185976028442]
+Labels: ['Diabetes']
+Scores: [0.9902305006980896]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005926883313804865]
+Labels: ['Mental Health']
+Scores: [0.07231523841619492]
+Labels: ['Cancer']
+Scores: [0.0005607143975794315]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3951728940010071]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707185
+Predictions: ['Diabetes']
+MeshTerm: ['Gastrointestinal Microbiome', 'Humans', 'Diabetes Mellitus', 'Protein Interaction Maps', 'Network Pharmacology', 'Proto-Oncogene Proteins c-akt', 'Metabolome', 'PPAR gamma', 'Signal Transduction', 'Metabolomics', 'Computational Biology']
+Labels: ['Diabetes type 2']
+Scores: [0.003792655887082219]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003236440534237772]
+Labels: ['Diabetes type 1']
+Scores: [0.0030944121535867453]
+Labels: ['Diabetes']
+Scores: [0.688697338104248]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00039996684063225985]
+Labels: ['Mental Health']
+Scores: [0.0007523977546952665]
+Labels: ['Cancer']
+Scores: [0.0001408757671015337]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007491013966500759]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39706370
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Glucose Tolerance Test', 'Adult', 'Blood Glucose', 'Hyperglycemia', 'Glycated Hemoglobin', 'Insulin Resistance', 'China', 'Diabetes Mellitus', 'Diabetes Mellitus, Type 2', 'Aged', 'Insulin', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.13785049319267273]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006328342715278268]
+Labels: ['Diabetes type 1']
+Scores: [0.02811437100172043]
+Labels: ['Diabetes']
+Scores: [0.9036068916320801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0013061786303296685]
+Labels: ['Mental Health']
+Scores: [0.0015302140964195132]
+Labels: ['Cancer']
+Scores: [0.000351158989360556]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011856264434754848]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39705195
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cardio-Renal Syndrome', 'Diabetes Mellitus', 'Metabolic Diseases', 'Practice Guidelines as Topic', 'Renal Insufficiency, Chronic']
+Labels: ['Diabetes type 2']
+Scores: [0.35039496421813965]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12695708870887756]
+Labels: ['Diabetes type 1']
+Scores: [0.1656830906867981]
+Labels: ['Diabetes']
+Scores: [0.9380143284797668]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7774646878242493]
+Labels: ['Mental Health']
+Scores: [0.01696266606450081]
+Labels: ['Cancer']
+Scores: [0.006590281147509813]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15880341827869415]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703865
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Prediabetic State', 'Uric Acid', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Cholesterol, HDL', 'Prospective Studies', 'Adult', 'Biomarkers', 'Diabetes Mellitus', 'Prognosis', 'Aged', 'Nutrition Surveys', 'Cohort Studies', 'Follow-Up Studies', 'Cause of Death', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.48285534977912903]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021755507215857506]
+Labels: ['Diabetes type 1']
+Scores: [0.30257290601730347]
+Labels: ['Diabetes']
+Scores: [0.9629831910133362]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9876127243041992]
+Labels: ['Mental Health']
+Scores: [0.010827464051544666]
+Labels: ['Cancer']
+Scores: [0.003899470902979374]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.35264208912849426]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39703057
+Predictions: ['Diabetes']
+MeshTerm: ['Strongyloides stercoralis', 'Strongyloidiasis', 'Animals', 'Humans', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.08162745833396912]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009061684249900281]
+Labels: ['Diabetes type 1']
+Scores: [0.0658237636089325]
+Labels: ['Diabetes']
+Scores: [0.8965588212013245]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00020681205205619335]
+Labels: ['Mental Health']
+Scores: [0.00018430488125886768]
+Labels: ['Cancer']
+Scores: [6.71735469950363e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.016227954998612404]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702258
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Nasopharynx', 'Male', 'Female', 'Case-Control Studies', 'Adult', 'Middle Aged', 'Ghana', 'Diabetes Mellitus', 'Aged', 'Bacteria', 'Young Adult', 'Respiratory Tract Infections']
+Labels: ['Diabetes type 2']
+Scores: [0.4469652473926544]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7329965233802795]
+Labels: ['Diabetes type 1']
+Scores: [0.29403701424598694]
+Labels: ['Diabetes']
+Scores: [0.9017508029937744]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0020391580183058977]
+Labels: ['Mental Health']
+Scores: [0.009701707400381565]
+Labels: ['Cancer']
+Scores: [0.001908247359097004]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06017761677503586]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39702047
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Malaysia', 'Male', 'Mobile Applications', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Telemedicine', 'Self-Management', 'Surveys and Questionnaires', 'Diabetes Mellitus', 'Aged', 'Diabetes Mellitus, Type 2', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.4972590208053589]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009358349489048123]
+Labels: ['Diabetes type 1']
+Scores: [0.44066956639289856]
+Labels: ['Diabetes']
+Scores: [0.9702157974243164]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005347310798242688]
+Labels: ['Mental Health']
+Scores: [0.00129846076015383]
+Labels: ['Cancer']
+Scores: [0.0014947314048185945]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15781255066394806]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39700129
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'COVID-19', 'Male', 'Female', 'Bangladesh', 'Hyperglycemia', 'Middle Aged', 'Tertiary Care Centers', 'Diabetes Mellitus', 'Prospective Studies', 'Adult', 'Follow-Up Studies', 'Aged', 'SARS-CoV-2', 'Hospitalization', 'Patient Discharge', 'Risk Factors', 'Socioeconomic Factors', 'Hospital Mortality']
+Labels: ['Diabetes type 2']
+Scores: [0.3092915415763855]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013521626591682434]
+Labels: ['Diabetes type 1']
+Scores: [0.10634616017341614]
+Labels: ['Diabetes']
+Scores: [0.8121910095214844]
+Labels: ['Cardiovascular diseases']
+Scores: [0.048876117914915085]
+Labels: ['Mental Health']
+Scores: [0.09248673915863037]
+Labels: ['Cancer']
+Scores: [0.0036317079793661833]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.7145627737045288]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39699704
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hydroxymethylglutaryl-CoA Reductase Inhibitors', 'Hyperglycemia', 'Diabetes Mellitus', 'Risk Factors', 'Atherosclerosis', 'Blood Glucose']
+Labels: ['Diabetes type 2']
+Scores: [0.16986623406410217]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016036085784435272]
+Labels: ['Diabetes type 1']
+Scores: [0.09203299880027771]
+Labels: ['Diabetes']
+Scores: [0.9616528153419495]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5841414928436279]
+Labels: ['Mental Health']
+Scores: [0.03214374557137489]
+Labels: ['Cancer']
+Scores: [0.00404938030987978]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.39808201789855957]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699431
+Predictions: ['Diabetes']
+MeshTerm: ['Quality of Life', 'Humans', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus', 'Patient Education as Topic', 'Educational Technology', 'Adult', 'Aged', 'Surveys and Questionnaires', 'Controlled Before-After Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.706719160079956]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002994668029714376]
+Labels: ['Diabetes type 1']
+Scores: [0.45876380801200867]
+Labels: ['Diabetes']
+Scores: [0.9909292459487915]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001219019977725111]
+Labels: ['Mental Health']
+Scores: [0.0011332781286910176]
+Labels: ['Cancer']
+Scores: [0.00012684059038292617]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.138818621635437]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39698032
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Middle Aged', 'Intra-Abdominal Fat', 'Japan', 'Cohort Studies', 'Obesity, Abdominal', 'Adiposity', 'Diabetes Mellitus', 'Risk Factors', 'Blood Glucose', 'Longitudinal Studies', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.2948411703109741]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006669286172837019]
+Labels: ['Diabetes type 1']
+Scores: [0.11931630223989487]
+Labels: ['Diabetes']
+Scores: [0.9462150931358337]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08898015320301056]
+Labels: ['Mental Health']
+Scores: [0.04347857087850571]
+Labels: ['Cancer']
+Scores: [0.004766661208122969]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.486520379781723]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696515
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Uric Acid', 'C-Reactive Protein', 'Male', 'Female', 'Insulin Resistance', 'Triglycerides', 'Cholesterol, HDL', 'Adult', 'Middle Aged', 'Risk Factors', 'Sex Factors', 'Diabetes Mellitus', 'Mediation Analysis', 'Biomarkers', 'Sex Characteristics']
+Labels: ['Diabetes type 2']
+Scores: [0.15310196578502655]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00695337587967515]
+Labels: ['Diabetes type 1']
+Scores: [0.10282699018716812]
+Labels: ['Diabetes']
+Scores: [0.959051787853241]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6190958619117737]
+Labels: ['Mental Health']
+Scores: [0.009951668791472912]
+Labels: ['Cancer']
+Scores: [0.0018278354546055198]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5581401586532593]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696157
+Predictions: ['Diabetes', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cross-Sectional Studies', 'China', 'Male', 'Female', 'Middle Aged', 'Adult', 'Aged', 'Health Services Needs and Demand', 'Diabetes Mellitus', 'Young Adult', 'Blood Glucose', 'Diabetes Mellitus, Type 2', 'Mass Screening', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.8304458856582642]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011919698445126414]
+Labels: ['Diabetes type 1']
+Scores: [0.484162300825119]
+Labels: ['Diabetes']
+Scores: [0.9838312864303589]
+Labels: ['Cardiovascular diseases']
+Scores: [0.12860119342803955]
+Labels: ['Mental Health']
+Scores: [0.0002738233015406877]
+Labels: ['Cancer']
+Scores: [0.0002754472952801734]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15560506284236908]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39696101
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Bangladesh', 'Adult', 'Prevalence', 'Diabetes Mellitus', 'Middle Aged', 'Health Surveys', 'Young Adult', 'Risk Factors', 'Sex Factors', 'Undiagnosed Diseases', 'Adolescent', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.6663085222244263]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006178881507366896]
+Labels: ['Diabetes type 1']
+Scores: [0.41155749559402466]
+Labels: ['Diabetes']
+Scores: [0.962573230266571]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005780316423624754]
+Labels: ['Mental Health']
+Scores: [0.09949985146522522]
+Labels: ['Cancer']
+Scores: [0.003852595342323184]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.7812392711639404]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39695649
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Artificial Intelligence', 'Diabetes Mellitus', 'Neural Networks, Computer', 'Middle Aged', 'Female', 'Male', 'Models, Statistical', 'Support Vector Machine', 'Adult', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.381974458694458]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0002937435929197818]
+Labels: ['Diabetes type 1']
+Scores: [0.21391744911670685]
+Labels: ['Diabetes']
+Scores: [0.9550922513008118]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00047520414227619767]
+Labels: ['Mental Health']
+Scores: [0.0005183389293961227]
+Labels: ['Cancer']
+Scores: [0.00010751024092314765]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.036621175706386566]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695632
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Malawi', 'Qualitative Research', 'Female', 'Diabetes Mellitus', 'Focus Groups', 'Health Knowledge, Attitudes, Practice', 'Adult', 'Male', 'Nursing Staff, Hospital', 'Tertiary Care Centers', 'Clinical Competence', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.458929181098938]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008251472376286983]
+Labels: ['Diabetes type 1']
+Scores: [0.3912777006626129]
+Labels: ['Diabetes']
+Scores: [0.9372794032096863]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0026552919298410416]
+Labels: ['Mental Health']
+Scores: [0.03648408502340317]
+Labels: ['Cancer']
+Scores: [0.009926105849444866]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5654991865158081]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695379
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cluster Analysis', 'Regression Analysis', 'Models, Statistical', 'Algorithms', 'Diabetes Mellitus', 'Data Interpretation, Statistical']
+Labels: ['Diabetes type 2']
+Scores: [0.05280790850520134]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03805111348628998]
+Labels: ['Diabetes type 1']
+Scores: [0.05156201496720314]
+Labels: ['Diabetes']
+Scores: [0.041294701397418976]
+Labels: ['Cardiovascular diseases']
+Scores: [0.036616239696741104]
+Labels: ['Mental Health']
+Scores: [0.0478854775428772]
+Labels: ['Cancer']
+Scores: [0.01987512782216072]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09486702084541321]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39693799
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Prediabetic State', 'Incidence', 'Middle Aged', 'Depression', 'Triglycerides', 'United States', 'Adult', 'Blood Glucose', 'Nutrition Surveys', 'Diabetes Mellitus', 'Aged', 'Insulin Resistance']
+Labels: ['Diabetes type 2']
+Scores: [0.4135635495185852]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01236952468752861]
+Labels: ['Diabetes type 1']
+Scores: [0.3247026801109314]
+Labels: ['Diabetes']
+Scores: [0.9800205230712891]
+Labels: ['Cardiovascular diseases']
+Scores: [0.027961041778326035]
+Labels: ['Mental Health']
+Scores: [0.8265624642372131]
+Labels: ['Cancer']
+Scores: [0.0015737374778836966]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07291556149721146]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39693267
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Renal Dialysis', 'Kidney Failure, Chronic', 'Glycated Hemoglobin', 'Diabetes Mellitus', 'Blood Glucose', 'Precision Medicine', 'Hypoglycemic Agents', 'Glycemic Control']
+Labels: ['Diabetes type 2']
+Scores: [0.33652329444885254]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05149783939123154]
+Labels: ['Diabetes type 1']
+Scores: [0.1294463723897934]
+Labels: ['Diabetes']
+Scores: [0.9571985006332397]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5579150915145874]
+Labels: ['Mental Health']
+Scores: [0.030587442219257355]
+Labels: ['Cancer']
+Scores: [0.02586677297949791]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17701992392539978]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39692388
+Predictions: ['Diabetes']
+MeshTerm: ['Adolescent', 'Adult', 'Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'Young Adult', 'Arabs', 'Chronic Disease', 'Diabetes Mellitus', 'Health Status Disparities', 'Israel', 'Jews', 'Obesity', 'Prevalence', 'Retrospective Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.44608059525489807]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4895516037940979]
+Labels: ['Diabetes type 1']
+Scores: [0.41465526819229126]
+Labels: ['Diabetes']
+Scores: [0.4651051461696625]
+Labels: ['Cardiovascular diseases']
+Scores: [0.3179885149002075]
+Labels: ['Mental Health']
+Scores: [0.003997982479631901]
+Labels: ['Cancer']
+Scores: [0.32878708839416504]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006036115810275078]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39686708
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Glycated Hemoglobin', 'Time Factors', 'Biometry', 'Models, Statistical', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.4980643391609192]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07074789702892303]
+Labels: ['Diabetes type 1']
+Scores: [0.5329343676567078]
+Labels: ['Diabetes']
+Scores: [0.8576014041900635]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1302461326122284]
+Labels: ['Mental Health']
+Scores: [0.12303666025400162]
+Labels: ['Cancer']
+Scores: [0.015000472776591778]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2612478733062744]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39686687
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Colorectal Neoplasms', 'Metabolic Syndrome', 'Middle Aged', 'Early Detection of Cancer', 'Male', 'Europe', 'Female', 'Adult', 'Diabetes Mellitus', 'North America', 'Age Factors', 'Risk Factors', 'Mass Screening', 'Risk Assessment']
+Labels: ['Diabetes type 2']
+Scores: [0.6035394072532654]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006097558652982116]
+Labels: ['Diabetes type 1']
+Scores: [0.31052523851394653]
+Labels: ['Diabetes']
+Scores: [0.9854501485824585]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00038736959686502814]
+Labels: ['Mental Health']
+Scores: [0.00029712327523157]
+Labels: ['Cancer']
+Scores: [0.9827707409858704]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011751443147659302]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cancer']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39684919
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Cyclin-Dependent Kinase Inhibitor p21', 'Diabetes Mellitus', 'Animals', 'Metabolic Diseases', 'Insulin Resistance', 'DNA Damage']
+Labels: ['Diabetes type 2']
+Scores: [0.12152538448572159]
+Labels: ['Chronic respiratory disease']
+Scores: [0.017357487231492996]
+Labels: ['Diabetes type 1']
+Scores: [0.07894705981016159]
+Labels: ['Diabetes']
+Scores: [0.9295610189437866]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005677486769855022]
+Labels: ['Mental Health']
+Scores: [0.006214908789843321]
+Labels: ['Cancer']
+Scores: [0.6022576093673706]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028646638616919518]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684905
+Predictions: ['Diabetes']
+MeshTerm: ['Animals', 'Cats', 'Insulin', 'Signal Transduction', 'Muscle, Skeletal', 'Biomarkers', 'Liver', 'Cat Diseases', 'Male', 'Pancreas', 'Diabetes Mellitus', 'Receptor, Insulin', 'Female', 'Insulin Resistance', 'Insulin Receptor Substrate Proteins', 'Glucagon-Like Peptide 1', 'Incretins']
+Labels: ['Diabetes type 2']
+Scores: [0.0415940098464489]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015395288355648518]
+Labels: ['Diabetes type 1']
+Scores: [0.02650858461856842]
+Labels: ['Diabetes']
+Scores: [0.7671453356742859]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002324118744581938]
+Labels: ['Mental Health']
+Scores: [0.00970547180622816]
+Labels: ['Cancer']
+Scores: [0.0006502719479613006]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07647957652807236]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684868
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Nanostructures', 'Pancreatic Diseases', 'Animals', 'Drug Delivery Systems', 'Pancreatic Neoplasms', 'Diabetes Mellitus', 'Drug Carriers', 'Pancreas']
+Labels: ['Diabetes type 2']
+Scores: [0.1577599048614502]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005033667199313641]
+Labels: ['Diabetes type 1']
+Scores: [0.18426565825939178]
+Labels: ['Diabetes']
+Scores: [0.34846583008766174]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0013507814146578312]
+Labels: ['Mental Health']
+Scores: [0.004246859345585108]
+Labels: ['Cancer']
+Scores: [0.7191126942634583]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.047599419951438904]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39684468
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Apolipoprotein C-III', 'Cardiovascular Diseases', 'Animals', 'Diabetes Mellitus', 'Metabolic Diseases', 'Lipoproteins', 'Triglycerides', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.49241042137145996]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03940868377685547]
+Labels: ['Diabetes type 1']
+Scores: [0.3744301497936249]
+Labels: ['Diabetes']
+Scores: [0.9568436741828918]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9260271191596985]
+Labels: ['Mental Health']
+Scores: [0.033526711165905]
+Labels: ['Cancer']
+Scores: [0.009107445366680622]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08593803644180298]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39684379
+Predictions: ['Diabetes']
+MeshTerm: ['Leptin', 'Humans', 'Obesity', 'Metabolic Diseases', 'Diabetes Mellitus', 'Female', 'Male', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.489968866109848]
+Labels: ['Chronic respiratory disease']
+Scores: [0.020264245569705963]
+Labels: ['Diabetes type 1']
+Scores: [0.36835798621177673]
+Labels: ['Diabetes']
+Scores: [0.8925845623016357]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013455480337142944]
+Labels: ['Mental Health']
+Scores: [0.05114695429801941]
+Labels: ['Cancer']
+Scores: [0.008099247701466084]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00995145458728075]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39684343
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Acetamides', 'Diabetes Mellitus', 'Depression', 'Antidepressive Agents', 'Depressive Disorder, Major', 'Blood Glucose', 'Glycated Hemoglobin', 'Treatment Outcome', 'Naphthalenes']
+Labels: ['Diabetes type 2']
+Scores: [0.2739955186843872]
+Labels: ['Chronic respiratory disease']
+Scores: [0.045918963849544525]
+Labels: ['Diabetes type 1']
+Scores: [0.17475098371505737]
+Labels: ['Diabetes']
+Scores: [0.9924445152282715]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012146999128162861]
+Labels: ['Mental Health']
+Scores: [0.7737579941749573]
+Labels: ['Cancer']
+Scores: [0.008406738750636578]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14076584577560425]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683638
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Ferritins', 'Male', 'Middle Aged', 'Female', 'Mongolia', 'Cross-Sectional Studies', 'Cardiovascular Diseases', 'Meat', 'Diet', 'Heart Disease Risk Factors', 'Adult', 'Biomarkers', 'Aged', 'Diabetes Mellitus', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.3684212267398834]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00013648264575749636]
+Labels: ['Diabetes type 1']
+Scores: [0.20989133417606354]
+Labels: ['Diabetes']
+Scores: [0.9625475406646729]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9866538643836975]
+Labels: ['Mental Health']
+Scores: [9.949334344128147e-05]
+Labels: ['Cancer']
+Scores: [0.000229212615522556]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0006310634198598564]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39683480
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Aged', 'Male', 'Female', 'Cross-Sectional Studies', 'Blood Glucose', 'Independent Living', 'Italy', 'Fatty Acids, Unsaturated', 'Diabetes Mellitus', 'Aged, 80 and over', 'Diet', 'Blood Pressure', 'Cardiometabolic Risk Factors', 'Fatty Acids, Omega-3', 'Body Mass Index']
+Labels: ['Diabetes type 2']
+Scores: [0.32442107796669006]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01674172841012478]
+Labels: ['Diabetes type 1']
+Scores: [0.2725349962711334]
+Labels: ['Diabetes']
+Scores: [0.9686521291732788]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025861596688628197]
+Labels: ['Mental Health']
+Scores: [0.015400425530970097]
+Labels: ['Cancer']
+Scores: [0.00827192422002554]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.33097100257873535]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39683416
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Dietary Supplements', 'Female', 'Nutrition Surveys', 'Male', 'Middle Aged', 'Adult', 'United States', 'Diabetes Mellitus', 'Motivation', 'Aged', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.28188031911849976]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00998779945075512]
+Labels: ['Diabetes type 1']
+Scores: [0.14683908224105835]
+Labels: ['Diabetes']
+Scores: [0.9558435678482056]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002911199815571308]
+Labels: ['Mental Health']
+Scores: [0.03080032393336296]
+Labels: ['Cancer']
+Scores: [0.00383365573361516]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08391415327787399]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681993
+Predictions: ['Diabetes']
+MeshTerm: ['Animals', 'Dogs', 'Dog Diseases', 'Fatty Liver', 'Tomography, X-Ray Computed', 'Male', 'Liver', 'Female', 'Diabetic Ketoacidosis', 'Diabetes Mellitus', 'Retrospective Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.2988343834877014]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14428037405014038]
+Labels: ['Diabetes type 1']
+Scores: [0.2926056385040283]
+Labels: ['Diabetes']
+Scores: [0.9743494391441345]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4341115653514862]
+Labels: ['Mental Health']
+Scores: [0.16091233491897583]
+Labels: ['Cancer']
+Scores: [0.02224782109260559]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3932916820049286]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681831
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Fear', 'Feeding Behavior', 'Diabetes Mellitus', 'Cognitive Behavioral Therapy', 'Feeding and Eating Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.33135199546813965]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0013990190345793962]
+Labels: ['Diabetes type 1']
+Scores: [0.2087354063987732]
+Labels: ['Diabetes']
+Scores: [0.9829686880111694]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012337513035163283]
+Labels: ['Mental Health']
+Scores: [0.8052627444267273]
+Labels: ['Cancer']
+Scores: [0.001485146931372583]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012270798906683922]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39681614
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Polyradiculoneuropathy, Chronic Inflammatory Demyelinating', 'Male', 'Diabetic Neuropathies', 'Female', 'Middle Aged', 'Ultrasonography', 'Diagnosis, Differential', 'Aged', 'Neural Conduction', 'ROC Curve', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.4388870894908905]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07909467816352844]
+Labels: ['Diabetes type 1']
+Scores: [0.3102846145629883]
+Labels: ['Diabetes']
+Scores: [0.9074481129646301]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03784739971160889]
+Labels: ['Mental Health']
+Scores: [0.2237018346786499]
+Labels: ['Cancer']
+Scores: [0.02107212506234646]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4255886971950531]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39681186
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Risk Factors', 'Nutrition Surveys', 'United States', 'Dementia', 'Adult', 'Prevalence', 'Diabetes Mellitus', 'Obesity', 'Smoking', 'Hypertension', 'Alcohol Drinking']
+Labels: ['Diabetes type 2']
+Scores: [0.5912192463874817]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005997931584715843]
+Labels: ['Diabetes type 1']
+Scores: [0.4510379433631897]
+Labels: ['Diabetes']
+Scores: [0.8219248056411743]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019609208684414625]
+Labels: ['Mental Health']
+Scores: [0.016314221546053886]
+Labels: ['Cancer']
+Scores: [0.0013910933630540967]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17283853888511658]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680279
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Recurrence', 'Computer Simulation', 'Models, Statistical', 'Proportional Hazards Models', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.42680636048316956]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07975535839796066]
+Labels: ['Diabetes type 1']
+Scores: [0.3916546404361725]
+Labels: ['Diabetes']
+Scores: [0.8847100734710693]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028611638117581606]
+Labels: ['Mental Health']
+Scores: [0.04355110973119736]
+Labels: ['Cancer']
+Scores: [0.02542601153254509]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11414410173892975]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39680083
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Bursitis', 'Male', 'Female', 'Retrospective Studies', 'Middle Aged', 'Aged', 'Dilatation', 'Range of Motion, Articular', 'Shoulder Joint', 'Treatment Outcome', 'Pain Measurement', 'Adult', 'Diabetes Mellitus', 'Diabetes Complications']
+Labels: ['Diabetes type 2']
+Scores: [0.004948010668158531]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0004371471586637199]
+Labels: ['Diabetes type 1']
+Scores: [0.0030816488433629274]
+Labels: ['Diabetes']
+Scores: [0.0346795991063118]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00016032779240049422]
+Labels: ['Mental Health']
+Scores: [0.00047600152902305126]
+Labels: ['Cancer']
+Scores: [5.484751454787329e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004105662927031517]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39678201
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hypertension', 'Food Insecurity', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Diabetes Mellitus', 'Adult', 'Social Class', 'Family Characteristics', 'Aged', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.3113084137439728]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006644369568675756]
+Labels: ['Diabetes type 1']
+Scores: [0.19485138356685638]
+Labels: ['Diabetes']
+Scores: [0.7516211271286011]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8267391920089722]
+Labels: ['Mental Health']
+Scores: [9.215922909788787e-05]
+Labels: ['Cancer']
+Scores: [0.00014749635010957718]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19173085689544678]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39676179
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Holistic Health', 'Mind-Body Therapies', 'Diabetes Mellitus', 'Neurosecretory Systems']
+Labels: ['Diabetes type 2']
+Scores: [0.15527796745300293]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00727211544290185]
+Labels: ['Diabetes type 1']
+Scores: [0.15597715973854065]
+Labels: ['Diabetes']
+Scores: [0.8188413977622986]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0013079717755317688]
+Labels: ['Mental Health']
+Scores: [0.006687824614346027]
+Labels: ['Cancer']
+Scores: [0.0003245875413995236]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0023450294975191355]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39675484
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Prediabetic State', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Diabetes Mellitus', 'Nutrition Surveys', 'Adult', 'Aged', 'Body Mass Index', 'Cause of Death', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.30534765124320984]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023000577464699745]
+Labels: ['Diabetes type 1']
+Scores: [0.21053768694400787]
+Labels: ['Diabetes']
+Scores: [0.9637765884399414]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9646169543266296]
+Labels: ['Mental Health']
+Scores: [0.006953197531402111]
+Labels: ['Cancer']
+Scores: [0.002945517422631383]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13560253381729126]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39674445
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Arsenic', 'Homeostasis', 'Animals', 'Glucose', 'Diabetes Mellitus', 'Microbiota', 'Gastrointestinal Microbiome']
+Labels: ['Diabetes type 2']
+Scores: [0.5833725929260254]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08247760683298111]
+Labels: ['Diabetes type 1']
+Scores: [0.6086136102676392]
+Labels: ['Diabetes']
+Scores: [0.9178197383880615]
+Labels: ['Cardiovascular diseases']
+Scores: [0.029516957700252533]
+Labels: ['Mental Health']
+Scores: [0.07920091599225998]
+Labels: ['Cancer']
+Scores: [0.0373421274125576]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19880247116088867]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39673957
+Predictions: ['Diabetes']
+MeshTerm: ['Acetone', 'Zinc Oxide', 'Biosensing Techniques', 'Humans', 'Optical Fibers', 'Diabetes Mellitus', 'Biomarkers', 'Limit of Detection', 'Breath Tests', 'Equipment Design', 'Volatile Organic Compounds', 'Fiber Optic Technology']
+Labels: ['Diabetes type 2']
+Scores: [0.46122437715530396]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3408234715461731]
+Labels: ['Diabetes type 1']
+Scores: [0.2605334520339966]
+Labels: ['Diabetes']
+Scores: [0.9527018666267395]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008335691876709461]
+Labels: ['Mental Health']
+Scores: [0.12164835631847382]
+Labels: ['Cancer']
+Scores: [0.0029467791318893433]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6687626838684082]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39673919
+Predictions: ['Diabetes', 'Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Female', 'Male', 'Middle Aged', 'Incidence', 'Adult', 'Aged', 'Diabetes Mellitus', 'New Zealand', 'Young Adult', 'Registries', 'Cohort Studies', 'Adolescent', 'Aged, 80 and over', 'Child']
+Labels: ['Diabetes type 2']
+Scores: [0.46990683674812317]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006828834302723408]
+Labels: ['Diabetes type 1']
+Scores: [0.29992741346359253]
+Labels: ['Diabetes']
+Scores: [0.8996710181236267]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005166017799638212]
+Labels: ['Mental Health']
+Scores: [0.0024320855736732483]
+Labels: ['Cancer']
+Scores: [0.9470075368881226]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8477239608764648]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Cancer', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39673498
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Quality of Life', 'Male', 'Female', 'Self Care', 'Primary Health Care', 'Middle Aged', 'Aged', 'Follow-Up Studies', 'Longitudinal Studies', 'Hypertension', 'Coronary Artery Disease', 'Diabetes Mellitus', 'Adult', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.21766072511672974]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19581618905067444]
+Labels: ['Diabetes type 1']
+Scores: [0.18257836997509003]
+Labels: ['Diabetes']
+Scores: [0.028428198769688606]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006607880932278931]
+Labels: ['Mental Health']
+Scores: [0.000320394552545622]
+Labels: ['Cancer']
+Scores: [0.0010733760427683592]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0031989424023777246]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39672014
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Diabetes Mellitus', 'Artificial Intelligence', 'Machine Learning', 'Deep Learning', 'Telemedicine']
+Labels: ['Diabetes type 2']
+Scores: [0.5675318241119385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007641206495463848]
+Labels: ['Diabetes type 1']
+Scores: [0.46117570996284485]
+Labels: ['Diabetes']
+Scores: [0.9918737411499023]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0038125431165099144]
+Labels: ['Mental Health']
+Scores: [0.004382076673209667]
+Labels: ['Cancer']
+Scores: [0.001490095746703446]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1741844117641449]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39671511
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Sedentary Behavior', 'Male', 'Female', 'Cross-Sectional Studies', 'Hypertension', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Exercise', 'Coronary Artery Disease', 'Prospective Studies', 'Young Adult', 'Cardiometabolic Risk Factors', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.0019610931631177664]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00029484761762432754]
+Labels: ['Diabetes type 1']
+Scores: [0.0012138806050643325]
+Labels: ['Diabetes']
+Scores: [0.0006119529716670513]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9253526329994202]
+Labels: ['Mental Health']
+Scores: [0.0008336548926308751]
+Labels: ['Cancer']
+Scores: [0.0005540708662010729]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01313550304621458]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39671417
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Hypertension', 'Female', 'Male', 'COVID-19', 'Adult', 'Diabetes Mellitus', 'Middle Aged', 'Puerto Rico', 'COVID-19 Vaccines', 'Aged', 'Surveys and Questionnaires', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.15890611708164215]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000326499342918396]
+Labels: ['Diabetes type 1']
+Scores: [0.08698802441358566]
+Labels: ['Diabetes']
+Scores: [0.4775787591934204]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6887134313583374]
+Labels: ['Mental Health']
+Scores: [0.00017850934818852693]
+Labels: ['Cancer']
+Scores: [0.00010066109098261222]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6444078087806702]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39670874
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Liver Diseases', 'Aged', 'Analgesics, Opioid', 'United States', 'Liver Cirrhosis', 'Chronic Disease', 'Cohort Studies', 'Liver Neoplasms', 'Diabetes Mellitus', 'Logistic Models', 'Arthritis', 'Health Surveys', 'Chronic Pain', 'Hepatitis, Viral, Human', 'Renal Insufficiency, Chronic', 'Severity of Illness Index']
+Labels: ['Diabetes type 2']
+Scores: [0.0031431280076503754]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007728463970124722]
+Labels: ['Diabetes type 1']
+Scores: [0.003012207103893161]
+Labels: ['Diabetes']
+Scores: [0.001613068743608892]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004986795247532427]
+Labels: ['Mental Health']
+Scores: [0.0007962913950905204]
+Labels: ['Cancer']
+Scores: [0.0011343947844579816]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01744161546230316]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39670442
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Animals', 'Lipocalin-2', 'Diabetic Neuropathies', 'Oxidative Stress', 'Molecular Targeted Therapy', 'Quality of Life', 'Cognitive Dysfunction', 'Drug Development', 'Blood-Brain Barrier', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.9311938285827637]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010043791495263577]
+Labels: ['Diabetes type 1']
+Scores: [0.26959747076034546]
+Labels: ['Diabetes']
+Scores: [0.9901753664016724]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00557488389313221]
+Labels: ['Mental Health']
+Scores: [0.029884368181228638]
+Labels: ['Cancer']
+Scores: [0.00414707837626338]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4097963273525238]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39670363
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Computational Biology', 'Diabetes Mellitus', 'Benchmarking', 'Blood Glucose', 'Wearable Electronic Devices', 'Smartphone', 'Mobile Applications', 'Language', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.6619600653648376]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006467750761657953]
+Labels: ['Diabetes type 1']
+Scores: [0.4412512183189392]
+Labels: ['Diabetes']
+Scores: [0.9433475136756897]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0048421695828437805]
+Labels: ['Mental Health']
+Scores: [0.008598233573138714]
+Labels: ['Cancer']
+Scores: [0.004181255120784044]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0050086984410882]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39667764
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Anti-Bacterial Agents', 'Diabetic Foot', 'Osteomyelitis', 'Diabetes Mellitus', 'Anti-Infective Agents, Local']
+Labels: ['Diabetes type 2']
+Scores: [0.23677366971969604]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0034994876477867365]
+Labels: ['Diabetes type 1']
+Scores: [0.1879633367061615]
+Labels: ['Diabetes']
+Scores: [0.9822243452072144]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0046689473092556]
+Labels: ['Mental Health']
+Scores: [0.02673916704952717]
+Labels: ['Cancer']
+Scores: [0.00218206481076777]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18464352190494537]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666834
+Predictions: ['Diabetes', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Aged', 'Hypoglycemic Agents', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.394311785697937]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06786267459392548]
+Labels: ['Diabetes type 1']
+Scores: [0.2266983687877655]
+Labels: ['Diabetes']
+Scores: [0.9479338526725769]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8936399817466736]
+Labels: ['Mental Health']
+Scores: [0.10647918283939362]
+Labels: ['Cancer']
+Scores: [0.012540461495518684]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24889390170574188]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39666732
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Insulin', 'Aged', 'Diabetes Mellitus', 'Hospitalization', 'Frail Elderly', 'Hypoglycemic Agents', 'Female', 'Male', 'Hospitals']
+Labels: ['Diabetes type 2']
+Scores: [0.6744167804718018]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015820354456081986]
+Labels: ['Diabetes type 1']
+Scores: [0.4306339919567108]
+Labels: ['Diabetes']
+Scores: [0.9439482688903809]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014910758472979069]
+Labels: ['Mental Health']
+Scores: [0.009685768745839596]
+Labels: ['Cancer']
+Scores: [0.0016195824136957526]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14153194427490234]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666445
+Predictions: ['Diabetes']
+MeshTerm: ['Bone Regeneration', 'Humans', 'Drug Delivery Systems', 'Animals', 'Diabetes Mellitus', 'Neovascularization, Physiologic', 'Osteogenesis', 'Biocompatible Materials']
+Labels: ['Diabetes type 2']
+Scores: [0.3145052492618561]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04072357341647148]
+Labels: ['Diabetes type 1']
+Scores: [0.21878021955490112]
+Labels: ['Diabetes']
+Scores: [0.9665911793708801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07804198563098907]
+Labels: ['Mental Health']
+Scores: [0.1599121242761612]
+Labels: ['Cancer']
+Scores: [0.011715064756572247]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16563285887241364]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39666416
+Predictions: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Blood Glucose Self-Monitoring', 'Blood Glucose', 'Diabetes Mellitus', 'Quality of Life', 'Diabetes Mellitus, Type 2', 'Diabetes Mellitus, Type 1', 'Continuous Glucose Monitoring']
+Labels: ['Diabetes type 2']
+Scores: [0.9339839816093445]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03097640722990036]
+Labels: ['Diabetes type 1']
+Scores: [0.5481659173965454]
+Labels: ['Diabetes']
+Scores: [0.9320911765098572]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01727925054728985]
+Labels: ['Mental Health']
+Scores: [0.06832915544509888]
+Labels: ['Cancer']
+Scores: [0.010063058696687222]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.36576566100120544]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39666397
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Risk Factors', 'COVID-19', 'Invasive Pulmonary Aspergillosis', 'Retrospective Studies', 'Case-Control Studies', 'Aged', 'Severity of Illness Index', 'SARS-CoV-2', 'Smoking', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.27800166606903076]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9043673276901245]
+Labels: ['Diabetes type 1']
+Scores: [0.11289846897125244]
+Labels: ['Diabetes']
+Scores: [0.6343588829040527]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8995994329452515]
+Labels: ['Mental Health']
+Scores: [0.0007740127039141953]
+Labels: ['Cancer']
+Scores: [0.000523812253959477]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0034731747582554817]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[0, 2], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39665943
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Vascular Stiffness', 'Male', 'Renal Insufficiency, Chronic', 'Female', 'Middle Aged', 'Hypertension', 'Glomerular Filtration Rate', 'Aged', 'Biomarkers', 'Albuminuria', 'Kidney', 'Cross-Sectional Studies', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.24543428421020508]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1101619228720665]
+Labels: ['Diabetes type 1']
+Scores: [0.14240100979804993]
+Labels: ['Diabetes']
+Scores: [0.4925587475299835]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8862832188606262]
+Labels: ['Mental Health']
+Scores: [0.022873910143971443]
+Labels: ['Cancer']
+Scores: [0.014814769849181175]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08136393129825592]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39665157
+Predictions: ['Diabetes']
+MeshTerm: ['Humans', 'Protein Glutamine gamma Glutamyltransferase 2', 'Transglutaminases', 'Male', 'Female', 'Aged', 'Vasodilation', 'Endothelium, Vascular', 'GTP-Binding Proteins', 'Arteries', 'Vascular Resistance', 'Sex Factors', 'Diabetes Mellitus', 'Vasodilator Agents', 'Enzyme Inhibitors', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.7913134098052979]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4022292196750641]
+Labels: ['Diabetes type 1']
+Scores: [0.46836283802986145]
+Labels: ['Diabetes']
+Scores: [0.9439805746078491]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9205167293548584]
+Labels: ['Mental Health']
+Scores: [0.27697381377220154]
+Labels: ['Cancer']
+Scores: [0.028888078406453133]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6293087005615234]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[1, 2], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39738181
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Hypertension', 'Machine Learning', 'Male', 'Adult', 'Middle Aged', 'Female', 'Iran', 'Risk Assessment', 'Internet', 'Occupational Health', 'Miners', 'Mining', 'Risk Factors', 'Occupational Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.036061082035303116]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029992002993822098]
+Labels: ['Diabetes type 1']
+Scores: [0.04876602441072464]
+Labels: ['Diabetes']
+Scores: [0.011685976758599281]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9832668304443359]
+Labels: ['Mental Health']
+Scores: [0.016839366406202316]
+Labels: ['Cancer']
+Scores: [0.005216359626501799]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4741523861885071]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738021
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Dust', 'Humans', 'Hospitalization', 'Free Radicals', 'Air Pollutants', 'Oxidative Stress', 'Particulate Matter', 'China', 'Environmental Exposure', 'Beijing', 'Sand', 'Respiratory Tract Diseases', 'Oxidation-Reduction', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.09061402827501297]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7071179151535034]
+Labels: ['Diabetes type 1']
+Scores: [0.08864306658506393]
+Labels: ['Diabetes']
+Scores: [0.01316304411739111]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01244979165494442]
+Labels: ['Mental Health']
+Scores: [0.014318821020424366]
+Labels: ['Cancer']
+Scores: [0.005177612416446209]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18148744106292725]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738016
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Animals', 'Gastrointestinal Microbiome', 'Male', 'Glutamine', 'Cardiovascular Diseases', 'Mice', 'Humans', 'Mice, Inbred C57BL', 'Myocytes, Cardiac', 'Ethanol', 'Oxidative Stress', 'Fecal Microbiota Transplantation', 'Alcoholism', 'Disease Models, Animal', 'Female', 'Glutamates', 'Endothelial Cells', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.00947264488786459]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0033367681317031384]
+Labels: ['Diabetes type 1']
+Scores: [0.006256731227040291]
+Labels: ['Diabetes']
+Scores: [0.0025460051838308573]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9883850812911987]
+Labels: ['Mental Health']
+Scores: [0.018178684636950493]
+Labels: ['Cancer']
+Scores: [0.0023811182472854853]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.049788523465394974]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736858
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Male', 'Female', 'Middle Aged', 'Nutrition Surveys', 'Adult', 'Oxidative Stress', 'United States', 'Aged', 'Life Style', 'Diet', 'Risk Factors', 'Follow-Up Studies', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.9962843060493469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007923890836536884]
+Labels: ['Diabetes type 1']
+Scores: [0.0004085342516191304]
+Labels: ['Diabetes']
+Scores: [0.9690529704093933]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9921032786369324]
+Labels: ['Mental Health']
+Scores: [0.006075339857488871]
+Labels: ['Cancer']
+Scores: [0.00373245170339942]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05794346705079079]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736721
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Sarcopenia', 'Female', 'Male', 'Middle Aged', 'Prospective Studies', 'Cardiovascular Diseases', 'Incidence', 'Aged', 'China', 'Longitudinal Studies', 'Risk Factors', 'Proportional Hazards Models']
+Labels: ['Diabetes type 2']
+Scores: [0.132621631026268]
+Labels: ['Chronic respiratory disease']
+Scores: [0.030700430274009705]
+Labels: ['Diabetes type 1']
+Scores: [0.11166718602180481]
+Labels: ['Diabetes']
+Scores: [0.05922922119498253]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9915000200271606]
+Labels: ['Mental Health']
+Scores: [0.014728005044162273]
+Labels: ['Cancer']
+Scores: [0.031569670885801315]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05094042792916298]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736689
+Predictions: ['Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Neoplasms', 'Male', 'Female', 'Middle Aged', 'Adult', 'Longitudinal Studies', 'Aged', 'Proportional Hazards Models', 'Diabetes Mellitus', 'Risk Factors', 'Cardiometabolic Risk Factors', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.003595756134018302]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016912327846512198]
+Labels: ['Diabetes type 1']
+Scores: [0.003273831680417061]
+Labels: ['Diabetes']
+Scores: [0.0013767826603725553]
+Labels: ['Cardiovascular diseases']
+Scores: [0.961646318435669]
+Labels: ['Mental Health']
+Scores: [0.0009968432132154703]
+Labels: ['Cancer']
+Scores: [0.9326162338256836]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03587875887751579]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736563
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Cholesterol, HDL', 'Retrospective Studies', 'C-Reactive Protein', 'Biomarkers', 'Cardiovascular Diseases', 'Risk Assessment', 'Adult', 'Predictive Value of Tests', 'Time Factors', 'Nutrition Surveys', 'Cause of Death', 'Prognosis', 'United States', 'Risk Factors', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.09659264236688614]
+Labels: ['Chronic respiratory disease']
+Scores: [0.4128410816192627]
+Labels: ['Diabetes type 1']
+Scores: [0.10375239700078964]
+Labels: ['Diabetes']
+Scores: [0.10915933549404144]
+Labels: ['Cardiovascular diseases']
+Scores: [0.16862927377223969]
+Labels: ['Mental Health']
+Scores: [0.060179147869348526]
+Labels: ['Cancer']
+Scores: [0.1821351945400238]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24295242130756378]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736401
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'Male', 'Cardiovascular Diseases', 'Middle Aged', 'Aged', 'Depression', 'Longitudinal Studies', 'Social Support', 'Cognition', 'Risk Factors', 'Anxiety']
+Labels: ['Diabetes type 2']
+Scores: [0.0005209936643950641]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00035582264536060393]
+Labels: ['Diabetes type 1']
+Scores: [0.0004036162863485515]
+Labels: ['Diabetes']
+Scores: [0.00023926343419589102]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9946579933166504]
+Labels: ['Mental Health']
+Scores: [0.058475740253925323]
+Labels: ['Cancer']
+Scores: [0.0005470924079418182]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0002489883918315172]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736180
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Food, Fortified', 'Fatty Acids, Omega-3', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.06942456215620041]
+Labels: ['Chronic respiratory disease']
+Scores: [0.047594036906957626]
+Labels: ['Diabetes type 1']
+Scores: [0.077097088098526]
+Labels: ['Diabetes']
+Scores: [0.030299248173832893]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9917681217193604]
+Labels: ['Mental Health']
+Scores: [0.01372345071285963]
+Labels: ['Cancer']
+Scores: [0.016143590211868286]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09601060301065445]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736025
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Animals', 'Rabbits', 'Male', 'Hypothyroidism', 'Female', 'Retrospective Studies', 'Thyroxine', 'Cardiovascular Diseases', 'Echocardiography']
+Labels: ['Diabetes type 2']
+Scores: [0.04658824950456619]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01686251349747181]
+Labels: ['Diabetes type 1']
+Scores: [0.024456294253468513]
+Labels: ['Diabetes']
+Scores: [0.025418007746338844]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9932966828346252]
+Labels: ['Mental Health']
+Scores: [0.015000056475400925]
+Labels: ['Cancer']
+Scores: [0.014697694219648838]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24002109467983246]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735642
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Leukocytes', 'Liver Diseases, Alcoholic', 'Telomere', 'Adult', 'Nutrition Surveys', 'Prognosis', 'Telomere Homeostasis', 'Aged', 'Risk Factors', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.003273485926911235]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004095300100743771]
+Labels: ['Diabetes type 1']
+Scores: [0.002813309896737337]
+Labels: ['Diabetes']
+Scores: [0.0013800382148474455]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5582469701766968]
+Labels: ['Mental Health']
+Scores: [0.01219615712761879]
+Labels: ['Cancer']
+Scores: [0.2743723690509796]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1385170817375183]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735545
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Single-Chain Antibodies', 'Animals', 'Theranostic Nanomedicine', 'Precision Medicine']
+Labels: ['Diabetes type 2']
+Scores: [0.04650511592626572]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007408033590763807]
+Labels: ['Diabetes type 1']
+Scores: [0.05838094279170036]
+Labels: ['Diabetes']
+Scores: [0.007820097729563713]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9971811771392822]
+Labels: ['Mental Health']
+Scores: [0.004923525732010603]
+Labels: ['Cancer']
+Scores: [0.0034346352331340313]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01019382942467928]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735488
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Hypothyroidism', 'Hyperthyroidism', 'Thyroid Diseases', 'Thyroid Gland', 'Thyroid Hormones']
+Labels: ['Diabetes type 2']
+Scores: [0.07061327993869781]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03417264670133591]
+Labels: ['Diabetes type 1']
+Scores: [0.06798462569713593]
+Labels: ['Diabetes']
+Scores: [0.02927711047232151]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9785475134849548]
+Labels: ['Mental Health']
+Scores: [0.021588899195194244]
+Labels: ['Cancer']
+Scores: [0.017005277797579765]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024099238216876984]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735485
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Comorbidity', 'Nervous System Diseases', 'Cardiovascular Diseases', 'Parkinson Disease', 'Risk Factors', 'Multiple Sclerosis']
+Labels: ['Diabetes type 2']
+Scores: [0.05896974354982376]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06842027604579926]
+Labels: ['Diabetes type 1']
+Scores: [0.057413116097450256]
+Labels: ['Diabetes']
+Scores: [0.04374184086918831]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9600880742073059]
+Labels: ['Mental Health']
+Scores: [0.1344381421804428]
+Labels: ['Cancer']
+Scores: [0.019708240404725075]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.189437597990036]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733208
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Adolescent', 'Child', 'Female', 'Male', 'Cross-Sectional Studies', 'Apolipoproteins B', 'Cholesterol', 'Brazil', 'Genetic Predisposition to Disease', 'Risk Factors', 'Cardiovascular Diseases', 'Dyslipidemias', 'Apolipoprotein B-100', 'Polymorphism, Genetic', 'Alleles', 'Polymorphism, Single Nucleotide']
+Labels: ['Diabetes type 2']
+Scores: [0.04204021394252777]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03449350968003273]
+Labels: ['Diabetes type 1']
+Scores: [0.037639182060956955]
+Labels: ['Diabetes']
+Scores: [0.017357781529426575]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9608299136161804]
+Labels: ['Mental Health']
+Scores: [0.03532326966524124]
+Labels: ['Cancer']
+Scores: [0.009583509527146816]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19351357221603394]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733181
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Air Pollution', 'Air Pollutants', 'Iran', 'Meteorological Concepts', 'Particulate Matter', 'Seasons', 'Sulfur Dioxide', 'Climate Change', 'Weather', 'Random Forest']
+Labels: ['Diabetes type 2']
+Scores: [0.008293276652693748]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012329818680882454]
+Labels: ['Diabetes type 1']
+Scores: [0.008633768185973167]
+Labels: ['Diabetes']
+Scores: [0.004994969815015793]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9820857644081116]
+Labels: ['Mental Health']
+Scores: [0.003024091012775898]
+Labels: ['Cancer']
+Scores: [0.015463790856301785]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12156406044960022]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733164
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Cardiovascular Diseases', 'Male', 'Female', 'Middle Aged', 'Aged', 'Incidence', 'SARS-CoV-2', 'Urban Population', 'Adult', 'New York City', 'Risk Factors', 'Hospitalization', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.13396131992340088]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3164311945438385]
+Labels: ['Diabetes type 1']
+Scores: [0.07966727018356323]
+Labels: ['Diabetes']
+Scores: [0.06266116350889206]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9942414164543152]
+Labels: ['Mental Health']
+Scores: [0.10992498695850372]
+Labels: ['Cancer']
+Scores: [0.07265336811542511]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.411374032497406]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733154
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Triglycerides', 'Arthritis', 'Blood Glucose', 'Nutrition Surveys', 'Risk Factors', 'Adult', 'Aged', 'Proportional Hazards Models']
+Labels: ['Diabetes type 2']
+Scores: [0.19969147443771362]
+Labels: ['Chronic respiratory disease']
+Scores: [0.26462340354919434]
+Labels: ['Diabetes type 1']
+Scores: [0.18272262811660767]
+Labels: ['Diabetes']
+Scores: [0.1252221018075943]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8812070488929749]
+Labels: ['Mental Health']
+Scores: [0.2733427882194519]
+Labels: ['Cancer']
+Scores: [0.08246251195669174]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6538522839546204]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733150
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Ethiopia', 'Humans', 'Cardiovascular Diseases', 'Drugs, Essential', 'Cross-Sectional Studies', 'Health Services Accessibility', 'Drugs, Generic', 'Drug Costs']
+Labels: ['Diabetes type 2']
+Scores: [0.10619610548019409]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01678995043039322]
+Labels: ['Diabetes type 1']
+Scores: [0.10201597213745117]
+Labels: ['Diabetes']
+Scores: [0.03988102078437805]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9817920327186584]
+Labels: ['Mental Health']
+Scores: [0.009855097159743309]
+Labels: ['Cancer']
+Scores: [0.06299248337745667]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.008728056214749813]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733137
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Manganese', 'Cardiovascular Diseases', 'Adult', 'Male', 'Female', 'Middle Aged', 'United States', 'Cross-Sectional Studies', 'Nutrition Surveys', 'Aged', 'Young Adult', 'Risk Factors', 'Bayes Theorem']
+Labels: ['Diabetes type 2']
+Scores: [0.14054237306118011]
+Labels: ['Chronic respiratory disease']
+Scores: [0.23563656210899353]
+Labels: ['Diabetes type 1']
+Scores: [0.14062361419200897]
+Labels: ['Diabetes']
+Scores: [0.06490064412355423]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9891554117202759]
+Labels: ['Mental Health']
+Scores: [0.19201335310935974]
+Labels: ['Cancer']
+Scores: [0.05722247064113617]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.23662526905536652]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732966
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Dyslipidemias', 'Humans', 'Turkey', 'Delphi Technique', 'Hydroxymethylglutaryl-CoA Reductase Inhibitors', 'Cholesterol, LDL', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'PCSK9 Inhibitors']
+Labels: ['Diabetes type 2']
+Scores: [0.027499549090862274]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023436173796653748]
+Labels: ['Diabetes type 1']
+Scores: [0.02737143263220787]
+Labels: ['Diabetes']
+Scores: [0.015481684356927872]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9468774199485779]
+Labels: ['Mental Health']
+Scores: [0.01625428907573223]
+Labels: ['Cancer']
+Scores: [0.007926315069198608]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2767096161842346]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732729
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Animals', 'Humans', 'Adipokines', 'Adipose Tissue', 'Adiposity', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Inflammation Mediators', 'Obesity', 'Signal Transduction']
+Labels: ['Diabetes type 2']
+Scores: [0.22069044411182404]
+Labels: ['Chronic respiratory disease']
+Scores: [0.028800657019019127]
+Labels: ['Diabetes type 1']
+Scores: [0.1820470243692398]
+Labels: ['Diabetes']
+Scores: [0.5129277110099792]
+Labels: ['Cardiovascular diseases']
+Scores: [0.875665545463562]
+Labels: ['Mental Health']
+Scores: [0.01383256632834673]
+Labels: ['Cancer']
+Scores: [0.006933057680726051]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.030846191570162773]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732498
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Sedentary Behavior', 'Young Adult', 'Longitudinal Studies', 'Male', 'Adolescent', 'Female', 'Cardiovascular Diseases', 'Universities', 'Cardiometabolic Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.030522102490067482]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007823506370186806]
+Labels: ['Diabetes type 1']
+Scores: [0.00929251592606306]
+Labels: ['Diabetes']
+Scores: [0.005291455425322056]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9411627054214478]
+Labels: ['Mental Health']
+Scores: [0.016649382188916206]
+Labels: ['Cancer']
+Scores: [0.005017385818064213]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0398014597594738]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732415
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Troponin T', 'Aged', 'Male', 'Female', 'Follow-Up Studies', 'Natriuretic Peptide, Brain', 'Cardiovascular Diseases', 'Aged, 80 and over', 'Biomarkers', 'Peptide Fragments']
+Labels: ['Diabetes type 2']
+Scores: [0.014302883297204971]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3331810534000397]
+Labels: ['Diabetes type 1']
+Scores: [0.011462178081274033]
+Labels: ['Diabetes']
+Scores: [0.008351561613380909]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9946449398994446]
+Labels: ['Mental Health']
+Scores: [0.009977429173886776]
+Labels: ['Cancer']
+Scores: [0.01405295915901661]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0785999670624733]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732216
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Antioxidants', 'Flavonoids', 'Nanoparticles', 'Animals', 'Neuroprotective Agents', 'Cosmeceuticals', 'Neoplasms', 'Biological Availability', 'Nanoparticle Drug Delivery System', 'Antineoplastic Agents', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0625477060675621]
+Labels: ['Chronic respiratory disease']
+Scores: [0.051503654569387436]
+Labels: ['Diabetes type 1']
+Scores: [0.05722085013985634]
+Labels: ['Diabetes']
+Scores: [0.017069468274712563]
+Labels: ['Cardiovascular diseases']
+Scores: [0.26421260833740234]
+Labels: ['Mental Health']
+Scores: [0.010879682376980782]
+Labels: ['Cancer']
+Scores: [0.25420066714286804]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09183720499277115]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731858
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Myocardial Ischemia', 'Wearable Electronic Devices', 'Randomized Controlled Trials as Topic', 'Myocardial Infarction', 'Hospitalization', 'Cardiovascular Diseases', 'Stroke']
+Labels: ['Diabetes type 2']
+Scores: [0.007880616001784801]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0014353657606989145]
+Labels: ['Diabetes type 1']
+Scores: [0.0074202995747327805]
+Labels: ['Diabetes']
+Scores: [0.0010088145500048995]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9139367938041687]
+Labels: ['Mental Health']
+Scores: [0.00013352936366572976]
+Labels: ['Cancer']
+Scores: [0.0003885551996063441]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004184009972959757]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731821
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Biosensing Techniques', 'Biomarkers', 'Cardiovascular Diseases', 'Saliva', 'Lab-On-A-Chip Devices', 'Immunoassay', 'Interleukin-6', 'C-Reactive Protein', 'Equipment Design', 'Procalcitonin', 'Limit of Detection']
+Labels: ['Diabetes type 2']
+Scores: [0.026716750115156174]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002508242381736636]
+Labels: ['Diabetes type 1']
+Scores: [0.03217791020870209]
+Labels: ['Diabetes']
+Scores: [0.00273368158377707]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9978440999984741]
+Labels: ['Mental Health']
+Scores: [0.009201710112392902]
+Labels: ['Cancer']
+Scores: [0.0041961572133004665]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0016991484444588423]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731110
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Bacteria', 'Biomarkers', 'Blood Glucose', 'Cardiometabolic Risk Factors', 'Cardiovascular Diseases', 'China', 'Cholesterol, HDL', 'Cholesterol, LDL', 'Cohort Studies', 'East Asian People', 'Feces', 'Gastrointestinal Microbiome', 'Indoleacetic Acids', 'Indoles', 'Propionates', 'Triglycerides']
+Labels: ['Diabetes type 2']
+Scores: [0.06108244135975838]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07412705570459366]
+Labels: ['Diabetes type 1']
+Scores: [0.043784819543361664]
+Labels: ['Diabetes']
+Scores: [0.04724638909101486]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7907202243804932]
+Labels: ['Mental Health']
+Scores: [0.005959435366094112]
+Labels: ['Cancer']
+Scores: [0.00393243134021759]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1808781623840332]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731068
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Nutrition Surveys', 'Neoplasms', 'Adult', 'Aged', 'Triglycerides', 'Cause of Death', 'Waist Circumference', 'Cholesterol, HDL', 'Proportional Hazards Models', 'Kaplan-Meier Estimate', 'Body Mass Index', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.07265758514404297]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03867340087890625]
+Labels: ['Diabetes type 1']
+Scores: [0.06516285240650177]
+Labels: ['Diabetes']
+Scores: [0.007936539128422737]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9271019697189331]
+Labels: ['Mental Health']
+Scores: [0.004229276441037655]
+Labels: ['Cancer']
+Scores: [0.2374640852212906]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019918005913496017]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731058
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'Male', 'United States', 'Middle Aged', 'Depression', 'Adult', 'Nutrition Surveys', 'Cardiovascular Diseases', 'Aged', 'Severity of Illness Index']
+Labels: ['Diabetes type 2']
+Scores: [0.0008095516823232174]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003599072515498847]
+Labels: ['Diabetes type 1']
+Scores: [0.0009605564991943538]
+Labels: ['Diabetes']
+Scores: [0.00031110632698982954]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8182165622711182]
+Labels: ['Mental Health']
+Scores: [0.3415723741054535]
+Labels: ['Cancer']
+Scores: [0.00031082876375876367]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05351484566926956]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730958
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Triglycerides', 'Female', 'Middle Aged', 'Cardiovascular Diseases', 'Blood Glucose', 'Aged', 'Retrospective Studies', 'Cross-Sectional Studies', 'Atherosclerosis', 'China', 'Risk Factors', 'Longitudinal Studies', 'Biomarkers']
+Labels: ['Diabetes type 2']
+Scores: [0.154795840382576]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14673388004302979]
+Labels: ['Diabetes type 1']
+Scores: [0.15790824592113495]
+Labels: ['Diabetes']
+Scores: [0.03255770355463028]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9740877747535706]
+Labels: ['Mental Health']
+Scores: [0.053604573011398315]
+Labels: ['Cancer']
+Scores: [0.013991901651024818]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4359080195426941]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730871
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cerebrovascular Disorders', 'Cardiovascular Diseases', 'Cardiometabolic Risk Factors', 'Genome-Wide Association Study', 'Genetic Predisposition to Disease', 'Polymorphism, Single Nucleotide', 'Carotid Intima-Media Thickness', 'Genetic Pleiotropy']
+Labels: ['Diabetes type 2']
+Scores: [0.3411261737346649]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012730933725833893]
+Labels: ['Diabetes type 1']
+Scores: [0.006198152434080839]
+Labels: ['Diabetes']
+Scores: [0.013787918724119663]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9918018579483032]
+Labels: ['Mental Health']
+Scores: [0.004840525332838297]
+Labels: ['Cancer']
+Scores: [0.003446559887379408]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007584688253700733]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730843
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Electrocardiography', 'Male', 'Female', 'Middle Aged', 'Smoking', 'Adult', 'Cotinine', 'Arrhythmias, Cardiac', 'Nutrition Surveys', 'Risk Factors', 'Aged', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.05258846655488014]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2617836594581604]
+Labels: ['Diabetes type 1']
+Scores: [0.04541532322764397]
+Labels: ['Diabetes']
+Scores: [0.018450342118740082]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9755645394325256]
+Labels: ['Mental Health']
+Scores: [0.07553602755069733]
+Labels: ['Cancer']
+Scores: [0.028971515595912933]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.29512277245521545]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730815
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Chile', 'Male', 'Female', 'Exercise', 'Adult', 'Middle Aged', 'Depression', 'Cardiometabolic Risk Factors', 'Obesity', 'Prevalence', 'Overweight', 'Risk Factors', 'Aged', 'Young Adult', 'Cardiovascular Diseases', 'Waist Circumference', 'Cross-Sectional Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.10352161526679993]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0719093605875969]
+Labels: ['Diabetes type 1']
+Scores: [0.07596172392368317]
+Labels: ['Diabetes']
+Scores: [0.09461943060159683]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6700632572174072]
+Labels: ['Mental Health']
+Scores: [0.2144038826227188]
+Labels: ['Cancer']
+Scores: [0.018114788457751274]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3274194300174713]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730723
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Kidney Calculi', 'Male', 'Female', 'Cross-Sectional Studies', 'Middle Aged', 'Adult', 'Diabetes Mellitus', 'Nutrition Surveys', 'Risk Factors', 'Aged', 'Cardiovascular Diseases', 'United States', 'Incidence', 'Logistic Models']
+Labels: ['Diabetes type 2']
+Scores: [0.43469375371932983]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10568473488092422]
+Labels: ['Diabetes type 1']
+Scores: [0.3903636336326599]
+Labels: ['Diabetes']
+Scores: [0.9724104404449463]
+Labels: ['Cardiovascular diseases']
+Scores: [0.807472288608551]
+Labels: ['Mental Health']
+Scores: [0.14489372074604034]
+Labels: ['Cancer']
+Scores: [0.039001572877168655]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5498730540275574]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39730493
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Male', 'Heart Rate', 'Female', 'Middle Aged', 'Autonomic Nervous System', 'Aged', 'Adult', 'Cardiovascular Diseases', 'Electrocardiography', 'SARS-CoV-2', 'Body Mass Index']
+Labels: ['Diabetes type 2']
+Scores: [0.314577579498291]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6886540651321411]
+Labels: ['Diabetes type 1']
+Scores: [0.24088485538959503]
+Labels: ['Diabetes']
+Scores: [0.15119685232639313]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9553496837615967]
+Labels: ['Mental Health']
+Scores: [0.46695753931999207]
+Labels: ['Cancer']
+Scores: [0.11303222924470901]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6623407602310181]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730152
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Bangladesh', 'Cross-Sectional Studies', 'Dyslipidemias', 'Middle Aged', 'Cardiovascular Diseases', 'Aged', 'Adult', 'Diet', 'Aged, 80 and over', 'Logistic Models', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.008382798172533512]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008472081390209496]
+Labels: ['Diabetes type 1']
+Scores: [0.0063962629064917564]
+Labels: ['Diabetes']
+Scores: [0.003127208212390542]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9959859848022461]
+Labels: ['Mental Health']
+Scores: [0.0046606725081801414]
+Labels: ['Cancer']
+Scores: [0.001500354497693479]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06755207479000092]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729514
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Tobacco Smoke Pollution', 'Global Burden of Disease', 'Male', 'Female', 'Disability-Adjusted Life Years', 'Middle Aged', 'Global Health', 'Adult', 'Aged', 'Quality-Adjusted Life Years']
+Labels: ['Diabetes type 2']
+Scores: [0.0054412949830293655]
+Labels: ['Chronic respiratory disease']
+Scores: [0.043775539845228195]
+Labels: ['Diabetes type 1']
+Scores: [0.0068166968412697315]
+Labels: ['Diabetes']
+Scores: [0.0011139034759253263]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9920714497566223]
+Labels: ['Mental Health']
+Scores: [0.0007178796222433448]
+Labels: ['Cancer']
+Scores: [0.0012339726090431213]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.003999998327344656]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729492
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Adult', 'United States', 'Nutrition Surveys', 'Bayes Theorem', 'Environmental Exposure', 'Metals', 'Aged', 'Proportional Hazards Models', 'Cause of Death', 'Lead']
+Labels: ['Diabetes type 2']
+Scores: [0.0032859728671610355]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004267929121851921]
+Labels: ['Diabetes type 1']
+Scores: [0.00288438331335783]
+Labels: ['Diabetes']
+Scores: [0.0015164684737101197]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9021226167678833]
+Labels: ['Mental Health']
+Scores: [0.0024261248763650656]
+Labels: ['Cancer']
+Scores: [0.0015049015637487173]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009340770542621613]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729424
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Polymorphism, Single Nucleotide', 'Genome-Wide Association Study', 'Male', 'Female', 'Phenotype', 'Norway', 'Genetic Predisposition to Disease', 'Cardiovascular Diseases', 'Phenomics', 'Middle Aged', 'Linkage Disequilibrium', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.19631636142730713]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1958003044128418]
+Labels: ['Diabetes type 1']
+Scores: [0.18926821649074554]
+Labels: ['Diabetes']
+Scores: [0.11471101641654968]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9902634620666504]
+Labels: ['Mental Health']
+Scores: [0.0377495177090168]
+Labels: ['Cancer']
+Scores: [0.10921163111925125]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10043807327747345]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727377
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'Male', 'Retrospective Studies', 'Middle Aged', 'Blood Pressure', 'Renal Dialysis', 'Crystalloid Solutions', 'Osmotic Pressure', 'Aged', 'Kidney Failure, Chronic', 'Cardiovascular Diseases', 'Risk Factors', 'Adult', 'ROC Curve']
+Labels: ['Diabetes type 2']
+Scores: [0.0032955158967524767]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016681136330589652]
+Labels: ['Diabetes type 1']
+Scores: [0.0016470726113766432]
+Labels: ['Diabetes']
+Scores: [0.000534469319973141]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9388227462768555]
+Labels: ['Mental Health']
+Scores: [0.0010982262901961803]
+Labels: ['Cancer']
+Scores: [0.0005823869723826647]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.001365410746075213]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727210
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Adult', 'Female', 'Humans', 'Male', 'Middle Aged', 'Autonomic Nervous System', 'Autonomic Nervous System Diseases', 'Biomarkers', 'Cardiovascular Diseases', 'Cardiovascular System', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 1', 'Diabetic Neuropathies', 'Heart Rate', 'Inflammation', 'Inflammation Mediators', 'Receptors, Urokinase Plasminogen Activator']
+Labels: ['Diabetes type 2']
+Scores: [0.00016677705571055412]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00023477656941395253]
+Labels: ['Diabetes type 1']
+Scores: [0.9970738887786865]
+Labels: ['Diabetes']
+Scores: [0.9745821952819824]
+Labels: ['Cardiovascular diseases']
+Scores: [0.891711950302124]
+Labels: ['Mental Health']
+Scores: [0.00019887876987922937]
+Labels: ['Cancer']
+Scores: [0.00017574001685716212]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009888377040624619]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39726401
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Glycogen Synthase Kinase 3 beta', 'Cardiovascular Diseases', 'Wnt Signaling Pathway', 'Animals', 'Adipose Tissue', 'beta Catenin', 'Metabolic Syndrome', 'Metabolic Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.11130732297897339]
+Labels: ['Chronic respiratory disease']
+Scores: [0.058497194200754166]
+Labels: ['Diabetes type 1']
+Scores: [0.08814889937639236]
+Labels: ['Diabetes']
+Scores: [0.07422832399606705]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9574214816093445]
+Labels: ['Mental Health']
+Scores: [0.06112624332308769]
+Labels: ['Cancer']
+Scores: [0.030131742358207703]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11305162310600281]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725874
+Predictions: ['Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Uric Acid', 'Nutrition Surveys', 'Cholesterol, HDL', 'Middle Aged', 'Cardiovascular Diseases', 'Diabetes Mellitus', 'Biomarkers', 'Risk Assessment', 'Cause of Death', 'United States', 'Time Factors', 'Adult', 'Longitudinal Studies', 'Prognosis', 'Aged', 'Sex Factors', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.56340491771698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011550470255315304]
+Labels: ['Diabetes type 1']
+Scores: [0.518042266368866]
+Labels: ['Diabetes']
+Scores: [0.9924060702323914]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9340090155601501]
+Labels: ['Mental Health']
+Scores: [0.022039899602532387]
+Labels: ['Cancer']
+Scores: [0.004830945283174515]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.6259181499481201]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39725697
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Klotho Proteins', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'United States', 'Prospective Studies', 'Adult', 'Nutrition Surveys', 'Aged', 'Cause of Death', 'Depression', 'Proportional Hazards Models', 'Mortality', 'Depressive Disorder']
+Labels: ['Diabetes type 2']
+Scores: [0.18763139843940735]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19007861614227295]
+Labels: ['Diabetes type 1']
+Scores: [0.1538388729095459]
+Labels: ['Diabetes']
+Scores: [0.1019858792424202]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9840824007987976]
+Labels: ['Mental Health']
+Scores: [0.6620539426803589]
+Labels: ['Cancer']
+Scores: [0.09847693890333176]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4261339604854584]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725339
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Animals', 'Humans', 'beta Catenin', 'Cardiovascular Diseases', 'Receptors, Notch', 'Wnt Signaling Pathway']
+Labels: ['Diabetes type 2']
+Scores: [0.038596153259277344]
+Labels: ['Chronic respiratory disease']
+Scores: [0.039648767560720444]
+Labels: ['Diabetes type 1']
+Scores: [0.04247868061065674]
+Labels: ['Diabetes']
+Scores: [0.015194261446595192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9218659996986389]
+Labels: ['Mental Health']
+Scores: [0.035380445420742035]
+Labels: ['Cancer']
+Scores: [0.011760502122342587]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.017403431236743927]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724625
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Chernobyl Nuclear Accident', 'Male', 'Ukraine', 'Middle Aged', 'Emergency Responders', 'Adult', 'Military Personnel', 'Electrocardiography', 'Radiation Exposure', 'Occupational Exposure', 'Hypertension', 'Echocardiography', 'Cardiovascular System', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.011055801063776016]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9325846433639526]
+Labels: ['Diabetes type 1']
+Scores: [0.009415961802005768]
+Labels: ['Diabetes']
+Scores: [0.005056873429566622]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9938502907752991]
+Labels: ['Mental Health']
+Scores: [0.0010051655117422342]
+Labels: ['Cancer']
+Scores: [0.00134363048709929]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15288665890693665]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39724617
+Predictions: ['Chronic respiratory disease', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Chernobyl Nuclear Accident', 'Male', 'Adult', 'Occupational Exposure', 'Middle Aged', 'Ukraine', 'Radiation Exposure', 'Radiation Dosage', 'Occupational Diseases', 'Cardiovascular Diseases', 'Aged', 'Gamma Rays', 'Radiation Injuries', 'Risk Assessment', 'Cerebrovascular Disorders', 'Myocardial Infarction', 'Respiratory Tract Diseases', 'Digestive System Diseases', 'Emergency Responders', 'Adolescent', 'Cardiomyopathies']
+Labels: ['Diabetes type 2']
+Scores: [0.06226746365427971]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07220125198364258]
+Labels: ['Diabetes type 1']
+Scores: [0.06519652158021927]
+Labels: ['Diabetes']
+Scores: [0.029009971767663956]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010377990081906319]
+Labels: ['Mental Health']
+Scores: [0.14388413727283478]
+Labels: ['Cancer']
+Scores: [0.04222578555345535]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8484790325164795]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39724119
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Mental Disorders', 'Male', 'Adult', 'Female', 'Middle Aged', 'Schizophrenia', 'Mass Screening', 'Healthy Lifestyle', 'Occupational Therapy', 'Cardiovascular Diseases', 'Pilot Projects', 'Risk Factors', 'Physical Therapy Modalities']
+Labels: ['Diabetes type 2']
+Scores: [0.0898895338177681]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0556151419878006]
+Labels: ['Diabetes type 1']
+Scores: [0.0698443129658699]
+Labels: ['Diabetes']
+Scores: [0.032567184418439865]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7707697153091431]
+Labels: ['Mental Health']
+Scores: [0.9130798578262329]
+Labels: ['Cancer']
+Scores: [0.009071290493011475]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09585151076316833]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39723980
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Delphi Technique', 'Fatty Liver', 'Mass Screening', 'Metabolic Syndrome', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.09004750847816467]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0389176569879055]
+Labels: ['Diabetes type 1']
+Scores: [0.0636110007762909]
+Labels: ['Diabetes']
+Scores: [0.031618159264326096]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9295333027839661]
+Labels: ['Mental Health']
+Scores: [0.002192337065935135]
+Labels: ['Cancer']
+Scores: [0.006685488857328892]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015161450020968914]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39723782
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Risk Factors', 'SARS-CoV-2', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0007442284841090441]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00024281707010231912]
+Labels: ['Diabetes type 1']
+Scores: [0.0008384793763980269]
+Labels: ['Diabetes']
+Scores: [0.00026319269090890884]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9917210340499878]
+Labels: ['Mental Health']
+Scores: [0.00012010050704702735]
+Labels: ['Cancer']
+Scores: [0.00026022407109849155]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0025056686718016863]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39723699
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Female', 'Male', 'Middle Aged', 'Obesity', 'Cohort Studies', 'Cardiovascular Diseases', 'China', 'Body Mass Index', 'Adult', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.009794902056455612]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002300283871591091]
+Labels: ['Diabetes type 1']
+Scores: [0.007765322457998991]
+Labels: ['Diabetes']
+Scores: [0.004605645313858986]
+Labels: ['Cardiovascular diseases']
+Scores: [0.943536639213562]
+Labels: ['Mental Health']
+Scores: [0.003607814898714423]
+Labels: ['Cancer']
+Scores: [0.003938572946935892]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00131443259306252]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722803
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Testosterone', 'Cross-Sectional Studies', 'Adult', 'Middle Aged', 'Triglycerides', 'Nutrition Surveys', 'Insulin Resistance', 'Cholesterol, HDL', 'Aged', 'Cardiovascular Diseases', 'Cardiometabolic Risk Factors', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.51933753490448]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3749781847000122]
+Labels: ['Diabetes type 1']
+Scores: [0.44872698187828064]
+Labels: ['Diabetes']
+Scores: [0.3406565189361572]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9080063104629517]
+Labels: ['Mental Health']
+Scores: [0.0342799574136734]
+Labels: ['Cancer']
+Scores: [0.06345654278993607]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11968889087438583]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722158
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Comorbidity', 'Kidney Diseases', 'Masked Hypertension', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.004677305929362774]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011683816090226173]
+Labels: ['Diabetes type 1']
+Scores: [0.004560277331620455]
+Labels: ['Diabetes']
+Scores: [0.0006159956683404744]
+Labels: ['Cardiovascular diseases']
+Scores: [0.681309700012207]
+Labels: ['Mental Health']
+Scores: [0.007257476914674044]
+Labels: ['Cancer']
+Scores: [0.0015132622793316841]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09041708707809448]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39721760
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Pulmonary Disease, Chronic Obstructive', 'Male', 'Female', 'Aged', 'Administration, Inhalation', 'Bronchodilator Agents', 'Cardiovascular Diseases', 'England', 'Adrenal Cortex Hormones', 'Middle Aged', 'Heart Failure', 'Acute Coronary Syndrome']
+Labels: ['Diabetes type 2']
+Scores: [0.0010091960430145264]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9889590740203857]
+Labels: ['Diabetes type 1']
+Scores: [0.0005852709291502833]
+Labels: ['Diabetes']
+Scores: [0.00018053209350910038]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8316587805747986]
+Labels: ['Mental Health']
+Scores: [0.0002293270081281662]
+Labels: ['Cancer']
+Scores: [0.0003676454653032124]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006796966306865215]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39721361
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Sleep Apnea, Obstructive', 'Humans', 'Cardiovascular Diseases', 'China', 'Consensus', 'Risk Factors', 'Delphi Technique', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.027841562405228615]
+Labels: ['Chronic respiratory disease']
+Scores: [0.260320782661438]
+Labels: ['Diabetes type 1']
+Scores: [0.02406349778175354]
+Labels: ['Diabetes']
+Scores: [0.011272348463535309]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9735054969787598]
+Labels: ['Mental Health']
+Scores: [0.011630524881184101]
+Labels: ['Cancer']
+Scores: [0.007581235840916634]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.060948505997657776]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720249
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Blood Glucose', 'Glycemic Control', 'Cohort Studies', 'Aged', 'Follow-Up Studies', 'Risk Factors', 'Hypoglycemic Agents', 'Adult', 'Cause of Death', 'China']
+Labels: ['Diabetes type 2']
+Scores: [0.9973321557044983]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007688171463087201]
+Labels: ['Diabetes type 1']
+Scores: [0.0001669859339017421]
+Labels: ['Diabetes']
+Scores: [0.9637406468391418]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8617773056030273]
+Labels: ['Mental Health']
+Scores: [0.0006277533830143511]
+Labels: ['Cancer']
+Scores: [0.0004974283510819077]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01961068995296955]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719690
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Neoplasms', 'Cardiovascular Diseases', 'Prognosis', 'Risk Factors', 'Antineoplastic Agents']
+Labels: ['Diabetes type 2']
+Scores: [0.03869723156094551]
+Labels: ['Chronic respiratory disease']
+Scores: [0.059245288372039795]
+Labels: ['Diabetes type 1']
+Scores: [0.04126868024468422]
+Labels: ['Diabetes']
+Scores: [0.01766061596572399]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9847367405891418]
+Labels: ['Mental Health']
+Scores: [0.040198810398578644]
+Labels: ['Cancer']
+Scores: [0.9271504878997803]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07879482954740524]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719674
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Regenerative Medicine', 'Myocytes, Cardiac', 'Carbon', 'Cell Differentiation', 'Animals', 'Quantum Dots', 'Pluripotent Stem Cells', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.020923295989632607]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004443369805812836]
+Labels: ['Diabetes type 1']
+Scores: [0.02776101976633072]
+Labels: ['Diabetes']
+Scores: [0.004463165998458862]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9913673400878906]
+Labels: ['Mental Health']
+Scores: [0.007120347581803799]
+Labels: ['Cancer']
+Scores: [0.005850701127201319]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.008757339790463448]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719571
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'Nutrition Surveys', 'Adult', 'United States', 'Middle Aged', 'Cardiovascular Diseases', 'Risk Factors', 'Young Adult', 'Incidence']
+Labels: ['Diabetes type 2']
+Scores: [0.17623582482337952]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19094936549663544]
+Labels: ['Diabetes type 1']
+Scores: [0.17347604036331177]
+Labels: ['Diabetes']
+Scores: [0.10404359549283981]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9841483235359192]
+Labels: ['Mental Health']
+Scores: [0.10804899781942368]
+Labels: ['Cancer']
+Scores: [0.08489926904439926]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.28688570857048035]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719456
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Mendelian Randomization Analysis', 'Neoplasms', 'Male', 'Female', 'Cardiovascular Diseases', 'Cross-Sectional Studies', 'Middle Aged', 'Risk Factors', 'Aged', 'Nutrition Surveys', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.15427018702030182]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5995173454284668]
+Labels: ['Diabetes type 1']
+Scores: [0.12924537062644958]
+Labels: ['Diabetes']
+Scores: [0.030603494495153427]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9457623362541199]
+Labels: ['Mental Health']
+Scores: [0.04388529062271118]
+Labels: ['Cancer']
+Scores: [0.8796511292457581]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.17991822957992554]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719431
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Asian', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'United States', 'Prevalence', 'Adult', 'Aged', 'Sleep', 'Time Factors', 'Risk Factors', 'Risk Assessment', 'Cross-Sectional Studies', 'Health Surveys', 'Sleep Duration']
+Labels: ['Diabetes type 2']
+Scores: [0.004672914277762175]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0004033574659842998]
+Labels: ['Diabetes type 1']
+Scores: [0.0046956283040344715]
+Labels: ['Diabetes']
+Scores: [0.00088416354265064]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9913949966430664]
+Labels: ['Mental Health']
+Scores: [0.0003967855009250343]
+Labels: ['Cancer']
+Scores: [0.00041604574653320014]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0002460895339027047]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719421
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Hyperkalemia', 'Male', 'Renal Insufficiency, Chronic', 'Female', 'Aged', 'Middle Aged', 'Cardiovascular Diseases', 'Risk Assessment', 'Risk Factors', 'Potassium', 'Aged, 80 and over', 'Arrhythmias, Cardiac', 'Retrospective Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.00032608112087473273]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0001666857860982418]
+Labels: ['Diabetes type 1']
+Scores: [0.0002111137000611052]
+Labels: ['Diabetes']
+Scores: [0.00021853081125300378]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9650064706802368]
+Labels: ['Mental Health']
+Scores: [0.00022476521553471684]
+Labels: ['Cancer']
+Scores: [0.00033250372507609427]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0023638636339455843]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719405
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Adult', 'Nutrition Surveys', 'Chronic Disease', 'United States', 'Cardiovascular Diseases', 'Aged', 'Health Status', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.0952247604727745]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06867149472236633]
+Labels: ['Diabetes type 1']
+Scores: [0.07061294466257095]
+Labels: ['Diabetes']
+Scores: [0.06626231968402863]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9493001699447632]
+Labels: ['Mental Health']
+Scores: [0.0006889155483804643]
+Labels: ['Cancer']
+Scores: [0.003942872863262892]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009628186002373695]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719315
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Kidney Neoplasms', 'Male', 'Nephrectomy', 'Female', 'Middle Aged', 'Propensity Score', 'Aged', 'Retrospective Studies', 'Cardiovascular Diseases', 'Risk Factors', 'Carcinoma, Renal Cell']
+Labels: ['Diabetes type 2']
+Scores: [0.10744820535182953]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07227526605129242]
+Labels: ['Diabetes type 1']
+Scores: [0.12568716704845428]
+Labels: ['Diabetes']
+Scores: [0.036919254809617996]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9713947772979736]
+Labels: ['Mental Health']
+Scores: [0.09062568843364716]
+Labels: ['Cancer']
+Scores: [0.9046522974967957]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.28631171584129333]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39719183
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Female', 'Male', 'Middle Aged', 'Non-alcoholic Fatty Liver Disease', 'Blood Glucose', 'Retrospective Studies', 'Glucose Tolerance Test', 'Adult', 'Aged', 'Cardiovascular Diseases', 'Risk Factors', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.05628310516476631]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009971522726118565]
+Labels: ['Diabetes type 1']
+Scores: [0.025717299431562424]
+Labels: ['Diabetes']
+Scores: [0.12993451952934265]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01756203919649124]
+Labels: ['Mental Health']
+Scores: [0.013938619755208492]
+Labels: ['Cancer']
+Scores: [0.0015546911163255572]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.8929505944252014]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39719182
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Chitinase-3-Like Protein 1', 'Male', 'Female', 'Middle Aged', 'Aged', 'Denmark', 'Cardiovascular Diseases', 'Biomarkers', 'Cohort Studies', 'C-Reactive Protein']
+Labels: ['Diabetes type 2']
+Scores: [0.6554471850395203]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015152264677453786]
+Labels: ['Diabetes type 1']
+Scores: [5.466681977850385e-05]
+Labels: ['Diabetes']
+Scores: [0.3084595799446106]
+Labels: ['Cardiovascular diseases']
+Scores: [0.37044891715049744]
+Labels: ['Mental Health']
+Scores: [4.925681059830822e-05]
+Labels: ['Cancer']
+Scores: [0.0006687098648399115]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.047671519219875336]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39718412
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Tea', 'Cerebrovascular Disorders', 'Cardiovascular Diseases', 'China', 'Aged, 80 and over', 'Longitudinal Studies', 'Proportional Hazards Models', 'Longevity', 'Mortality', 'Middle Aged', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.0039163613691926]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003921593073755503]
+Labels: ['Diabetes type 1']
+Scores: [0.003775536548346281]
+Labels: ['Diabetes']
+Scores: [0.0004264135495759547]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5502279996871948]
+Labels: ['Mental Health']
+Scores: [0.0016865752404555678]
+Labels: ['Cancer']
+Scores: [0.0055984994396567345]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004267269279807806]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39717954
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Hyperuricemia', 'Uric Acid', 'Renal Insufficiency, Chronic', 'Kidney', 'Animals', 'Obesity', 'Diabetes Mellitus, Type 2', 'Cardiovascular Diseases', 'Gout']
+Labels: ['Diabetes type 2']
+Scores: [0.47801151871681213]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013218249194324017]
+Labels: ['Diabetes type 1']
+Scores: [0.03595952317118645]
+Labels: ['Diabetes']
+Scores: [0.3071269989013672]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6336542963981628]
+Labels: ['Mental Health']
+Scores: [0.03004346787929535]
+Labels: ['Cancer']
+Scores: [0.004971632268279791]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.42974853515625]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717783
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Animals', 'Humans', 'Cardiovascular Diseases', 'Heart Disease Risk Factors', 'Periodontitis']
+Labels: ['Diabetes type 2']
+Scores: [0.07097829878330231]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02198655530810356]
+Labels: ['Diabetes type 1']
+Scores: [0.04076270014047623]
+Labels: ['Diabetes']
+Scores: [0.016441108658909798]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9118087887763977]
+Labels: ['Mental Health']
+Scores: [0.017488010227680206]
+Labels: ['Cancer']
+Scores: [0.004381684120744467]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9755569696426392]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39717036
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Sweden', 'Middle Aged', 'Female', 'Cardiovascular Diseases', 'Aged', 'Aged, 80 and over', 'Incidence', 'Surveys and Questionnaires', 'Risk Factors', 'Sugar-Sweetened Beverages', 'Diet', 'Dietary Sugars']
+Labels: ['Diabetes type 2']
+Scores: [0.014350995421409607]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00871629174798727]
+Labels: ['Diabetes type 1']
+Scores: [0.013593570329248905]
+Labels: ['Diabetes']
+Scores: [0.012224080041050911]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9866095781326294]
+Labels: ['Mental Health']
+Scores: [0.004809455014765263]
+Labels: ['Cancer']
+Scores: [0.0009089581435546279]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08187301456928253]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39717032
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Obesity', 'Middle Aged', 'Adult', 'Retrospective Studies', 'Neoplasms', 'Nutrition Surveys', 'Cardiovascular Diseases', 'Phenotype', 'Proportional Hazards Models', 'Risk Factors', 'Cause of Death', 'Aged', 'Age Factors', 'Body Mass Index', 'Kaplan-Meier Estimate']
+Labels: ['Diabetes type 2']
+Scores: [0.011143353767693043]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0012113125994801521]
+Labels: ['Diabetes type 1']
+Scores: [0.009642625227570534]
+Labels: ['Diabetes']
+Scores: [0.004336085170507431]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5557942390441895]
+Labels: ['Mental Health']
+Scores: [0.011052632704377174]
+Labels: ['Cancer']
+Scores: [0.367389440536499]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1490906924009323]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39716258
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Biomarkers', 'Blood Glucose', 'Cardiovascular Diseases', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 2', 'Insulin Resistance', 'Metabolic Syndrome', 'Triglycerides']
+Labels: ['Diabetes type 2']
+Scores: [0.13128900527954102]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0020623819436877966]
+Labels: ['Diabetes type 1']
+Scores: [0.004957082215696573]
+Labels: ['Diabetes']
+Scores: [0.0035754579585045576]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9944515228271484]
+Labels: ['Mental Health']
+Scores: [0.00042847180156968534]
+Labels: ['Cancer']
+Scores: [0.00037789405905641615]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.000684463360812515]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715781
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Prospective Studies', 'Risk Factors', 'Adult', 'Aged', 'Cardiovascular Diseases', 'Fatty Liver', 'Cause of Death', 'Metabolic Diseases', 'Nutrition Surveys']
+Labels: ['Diabetes type 2']
+Scores: [0.09767104685306549]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04476559907197952]
+Labels: ['Diabetes type 1']
+Scores: [0.0871443897485733]
+Labels: ['Diabetes']
+Scores: [0.04042479768395424]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9520096778869629]
+Labels: ['Mental Health']
+Scores: [0.03730436787009239]
+Labels: ['Cancer']
+Scores: [0.5581120848655701]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21132224798202515]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715477
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Aged', 'Ischemic Attack, Transient', 'Middle Aged', 'Cardiovascular Diseases', 'Netherlands', 'Cohort Studies', 'Risk Factors', 'Aged, 80 and over', 'Stroke']
+Labels: ['Diabetes type 2']
+Scores: [0.0035163345746695995]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006241207011044025]
+Labels: ['Diabetes type 1']
+Scores: [0.0033379800152033567]
+Labels: ['Diabetes']
+Scores: [0.0009109970997087657]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9870093464851379]
+Labels: ['Mental Health']
+Scores: [0.0018849805928766727]
+Labels: ['Cancer']
+Scores: [0.0007027832907624543]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0026047006249427795]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715341
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Glucagon-Like Peptide 1', 'Animals', 'Female', 'Male', 'Sex Characteristics', 'Obesity', 'Glucagon-Like Peptides', 'Hypoglycemic Agents', 'Sex Factors', 'Cardiovascular Diseases', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.4590761065483093]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06427460163831711]
+Labels: ['Diabetes type 1']
+Scores: [0.5685520172119141]
+Labels: ['Diabetes']
+Scores: [0.8348962068557739]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6537151336669922]
+Labels: ['Mental Health']
+Scores: [0.2539387047290802]
+Labels: ['Cancer']
+Scores: [0.011929684318602085]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1536187082529068]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes']
+Confusion matrix: [[0, 1], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39714500
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Hyperkalemia', 'Potassium', 'Risk Factors', 'Cardiovascular Diseases', 'Electrocardiography']
+Labels: ['Diabetes type 2']
+Scores: [0.012701822444796562]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005914472509175539]
+Labels: ['Diabetes type 1']
+Scores: [0.012445339001715183]
+Labels: ['Diabetes']
+Scores: [0.006002762820571661]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9386193752288818]
+Labels: ['Mental Health']
+Scores: [0.0028597621712833643]
+Labels: ['Cancer']
+Scores: [0.002263053320348263]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014599398709833622]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39714498
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Patient Care Team', 'Chronic Disease', 'Italy', 'Multimorbidity', 'Telemedicine', 'Cardiology']
+Labels: ['Diabetes type 2']
+Scores: [0.02826712280511856]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002647317247465253]
+Labels: ['Diabetes type 1']
+Scores: [0.022404437884688377]
+Labels: ['Diabetes']
+Scores: [0.005418648477643728]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9957650899887085]
+Labels: ['Mental Health']
+Scores: [0.0025576320476830006]
+Labels: ['Cancer']
+Scores: [0.004305725451558828]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9945641756057739]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39714021
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Exercise', 'Life Style', 'Metabolic Syndrome', 'Primary Health Care', 'Risk Factors', 'Weight Loss']
+Labels: ['Diabetes type 2']
+Scores: [0.18729650974273682]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004382582381367683]
+Labels: ['Diabetes type 1']
+Scores: [0.11483591794967651]
+Labels: ['Diabetes']
+Scores: [0.2824420630931854]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8070302605628967]
+Labels: ['Mental Health']
+Scores: [0.0010486808605492115]
+Labels: ['Cancer']
+Scores: [0.000634696742054075]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021471906453371048]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39713140
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Ferroptosis', 'Humans', 'Neoplasms', 'Lipid Peroxidation', 'Reperfusion Injury', 'Cardiovascular Diseases', 'Inflammatory Bowel Diseases', 'Alzheimer Disease', 'Iron', 'Acute Kidney Injury', 'Stroke', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.11095543950796127]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026971807703375816]
+Labels: ['Diabetes type 1']
+Scores: [0.11300919204950333]
+Labels: ['Diabetes']
+Scores: [0.07750506699085236]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4729209840297699]
+Labels: ['Mental Health']
+Scores: [0.023401636630296707]
+Labels: ['Cancer']
+Scores: [0.38265588879585266]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2474626749753952]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39712314
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Incidence', 'Microclimate', 'China', 'Cerebrovascular Disorders', 'Meteorological Concepts', 'Temperature', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.0027319337241351604]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007103587267920375]
+Labels: ['Diabetes type 1']
+Scores: [0.0034163796808570623]
+Labels: ['Diabetes']
+Scores: [0.0005637772846966982]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9933687448501587]
+Labels: ['Mental Health']
+Scores: [0.00019606648129411042]
+Labels: ['Cancer']
+Scores: [0.0014663871843367815]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0023530609905719757]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39711839
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'South Africa', 'Tertiary Care Centers', 'Retrospective Studies', 'Adult', 'Male', 'Middle Aged', 'Magnetic Resonance Imaging', 'Young Adult', 'Aged', 'Cardiovascular Diseases', 'Adolescent', 'Hospitals, Public', 'Contrast Media', 'Aged, 80 and over', 'Heart Diseases', 'Child', 'Child, Preschool', 'Medical Audit']
+Labels: ['Diabetes type 2']
+Scores: [0.0009565907530486584]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00029833929147571325]
+Labels: ['Diabetes type 1']
+Scores: [0.0011335976887494326]
+Labels: ['Diabetes']
+Scores: [0.00012622837675735354]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9963636994361877]
+Labels: ['Mental Health']
+Scores: [9.369930194225162e-05]
+Labels: ['Cancer']
+Scores: [0.0004882912035100162]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.001432770281098783]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710789
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Neovascularization, Pathologic', 'Neoplasms', 'Inflammation', 'Cardiovascular Diseases', 'Animals', 'Neurodegenerative Diseases', 'Angiogenesis']
+Labels: ['Diabetes type 2']
+Scores: [0.5122508406639099]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14146675169467926]
+Labels: ['Diabetes type 1']
+Scores: [0.4847819209098816]
+Labels: ['Diabetes']
+Scores: [0.6385544538497925]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9947080016136169]
+Labels: ['Mental Health']
+Scores: [0.0788232758641243]
+Labels: ['Cancer']
+Scores: [0.8876464366912842]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08557923883199692]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710702
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Ferroptosis', 'Humans', 'Neurodegenerative Diseases', 'Cardiovascular Diseases', 'Neoplasms', 'Animals', 'Molecular Targeted Therapy']
+Labels: ['Diabetes type 2']
+Scores: [0.0164949893951416]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009276414290070534]
+Labels: ['Diabetes type 1']
+Scores: [0.0203578919172287]
+Labels: ['Diabetes']
+Scores: [0.0066252537071704865]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9630705118179321]
+Labels: ['Mental Health']
+Scores: [0.005022307857871056]
+Labels: ['Cancer']
+Scores: [0.6388031840324402]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.057663727551698685]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39710576
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Male', 'Female', 'Middle Aged', 'Adult', 'Cross-Over Studies', 'Inflammation', 'Endotoxemia', 'Cardiovascular Diseases', 'Cardiometabolic Risk Factors', 'Diet', 'Polyphenols', 'Edible Grain', 'Feces', 'Bacteria', 'Fatty Acids, Omega-3', 'Dietary Fiber', 'Intestines']
+Labels: ['Diabetes type 2']
+Scores: [0.1336151510477066]
+Labels: ['Chronic respiratory disease']
+Scores: [0.029428808018565178]
+Labels: ['Diabetes type 1']
+Scores: [0.11063941568136215]
+Labels: ['Diabetes']
+Scores: [0.1268593966960907]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9636415839195251]
+Labels: ['Mental Health']
+Scores: [0.05852038413286209]
+Labels: ['Cancer']
+Scores: [0.015390260145068169]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22492247819900513]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710465
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Hypersensitivity', 'Incidence']
+Labels: ['Diabetes type 2']
+Scores: [0.02627328597009182]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07944820076227188]
+Labels: ['Diabetes type 1']
+Scores: [0.026233414188027382]
+Labels: ['Diabetes']
+Scores: [0.01385857816785574]
+Labels: ['Cardiovascular diseases']
+Scores: [0.987108051776886]
+Labels: ['Mental Health']
+Scores: [0.021270332857966423]
+Labels: ['Cancer']
+Scores: [0.007752029690891504]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05046554654836655]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709856
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Male', 'Female', 'China', 'Middle Aged', 'Ambulances', 'Aged', 'Adult', 'Emergency Medical Dispatch', 'Temperature', 'Incidence', 'Adolescent', 'Child']
+Labels: ['Diabetes type 2']
+Scores: [0.0021914702374488115]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0010558788198977709]
+Labels: ['Diabetes type 1']
+Scores: [0.002940939273685217]
+Labels: ['Diabetes']
+Scores: [0.0005544635350815952]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9916574954986572]
+Labels: ['Mental Health']
+Scores: [0.0005455415230244398]
+Labels: ['Cancer']
+Scores: [0.000696384406182915]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0014482054393738508]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709670
+Predictions: ['Cancer', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Male', 'Female', 'Immune Checkpoint Inhibitors', 'Retrospective Studies', 'Neoplasms', 'Aged', 'Middle Aged', 'Cardiovascular Diseases', 'Glucagon-Like Peptide 1', 'Diabetes Mellitus, Type 2']
+Labels: ['Diabetes type 2']
+Scores: [0.8249608874320984]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007538790814578533]
+Labels: ['Diabetes type 1']
+Scores: [0.7571285963058472]
+Labels: ['Diabetes']
+Scores: [0.4753637909889221]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9959877729415894]
+Labels: ['Mental Health']
+Scores: [0.00044567041913978755]
+Labels: ['Cancer']
+Scores: [0.9914880394935608]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011091380380094051]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes type 1', 'Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[3, 1], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39709650
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Energy Metabolism', 'Lipid Metabolism', 'Signal Transduction', 'Stearic Acids', 'Stearoyl-CoA Desaturase']
+Labels: ['Diabetes type 2']
+Scores: [0.22575247287750244]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11453351378440857]
+Labels: ['Diabetes type 1']
+Scores: [0.22676372528076172]
+Labels: ['Diabetes']
+Scores: [0.3127775490283966]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7307053208351135]
+Labels: ['Mental Health']
+Scores: [0.13859914243221283]
+Labels: ['Cancer']
+Scores: [0.07851770520210266]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11125121265649796]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709627
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Drug Therapy, Combination', 'Hyperlipidemias', 'Hypolipidemic Agents', 'Hydroxymethylglutaryl-CoA Reductase Inhibitors', 'Cardiovascular Diseases', 'Cholesterol, LDL', 'Animals', 'Triglycerides']
+Labels: ['Diabetes type 2']
+Scores: [0.0335550419986248]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0185505673289299]
+Labels: ['Diabetes type 1']
+Scores: [0.025187168270349503]
+Labels: ['Diabetes']
+Scores: [0.01037348061800003]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8517372608184814]
+Labels: ['Mental Health']
+Scores: [0.00769979041069746]
+Labels: ['Cancer']
+Scores: [0.0021575370337814093]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08768250793218613]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709554
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Feces', 'Gastrointestinal Microbiome', 'Male', 'Female', 'Proteomics', 'Middle Aged', 'Heart Failure', 'Cardiovascular Diseases', 'Aged', 'Adult', 'Proteome', 'Bacteria', 'Risk Factors', 'Diet']
+Labels: ['Diabetes type 2']
+Scores: [0.05295873433351517]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07048424333333969]
+Labels: ['Diabetes type 1']
+Scores: [0.04663372039794922]
+Labels: ['Diabetes']
+Scores: [0.019796207547187805]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9763630032539368]
+Labels: ['Mental Health']
+Scores: [0.010829749517142773]
+Labels: ['Cancer']
+Scores: [0.006943076848983765]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08271932601928711]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709470
+Predictions: ['Cardiovascular diseases', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Genetic Predisposition to Disease', 'Diabetic Nephropathies', 'Diabetes Mellitus, Type 1', 'Peptidyl-Dipeptidase A', 'Cardiovascular Diseases', 'Phenotype', 'Genome-Wide Association Study', 'Risk Factors', 'Polymorphism, Genetic']
+Labels: ['Diabetes type 2']
+Scores: [0.020667970180511475]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09505603462457657]
+Labels: ['Diabetes type 1']
+Scores: [0.9513075351715088]
+Labels: ['Diabetes']
+Scores: [0.8729259967803955]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9573359489440918]
+Labels: ['Mental Health']
+Scores: [0.05262095108628273]
+Labels: ['Cancer']
+Scores: [0.012610968202352524]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18759320676326752]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709437
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Male', 'Prospective Studies', 'Middle Aged', 'Risk Assessment', 'Aged', 'Time Factors', 'Potassium, Dietary', 'Cardiovascular Diseases', 'Reproducibility of Results', 'Prognosis', 'Biomarkers', 'Risk Factors', 'Protective Factors', 'Albuminuria', 'Urinalysis', 'Recommended Dietary Allowances']
+Labels: ['Diabetes type 2']
+Scores: [0.9937928915023804]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0020843225065618753]
+Labels: ['Diabetes type 1']
+Scores: [0.00034686282742768526]
+Labels: ['Diabetes']
+Scores: [0.9743339419364929]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9855194687843323]
+Labels: ['Mental Health']
+Scores: [0.015307363122701645]
+Labels: ['Cancer']
+Scores: [0.003574568312615156]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11329168826341629]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39709369
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Asthma', 'Male', 'Female', 'Adult', 'Middle Aged', 'Nutrition Surveys', 'Inflammation', 'Cause of Death', 'Cardiovascular Diseases', 'Aged', 'United States', 'Proportional Hazards Models', 'Kaplan-Meier Estimate', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.00042043140274472535]
+Labels: ['Chronic respiratory disease']
+Scores: [0.7953470349311829]
+Labels: ['Diabetes type 1']
+Scores: [0.0003406311443541199]
+Labels: ['Diabetes']
+Scores: [0.00011781450302805752]
+Labels: ['Cardiovascular diseases']
+Scores: [8.692547271493822e-05]
+Labels: ['Mental Health']
+Scores: [0.00015282051754184067]
+Labels: ['Cancer']
+Scores: [0.00010436242882860824]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004269031807780266]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709364
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Aged', 'Female', 'Male', 'Postoperative Complications', 'Cardiovascular Diseases', 'Abdomen', 'Risk Assessment', 'Nomograms', 'Retrospective Studies', 'Aged, 80 and over', 'Risk Factors', 'Predictive Value of Tests', 'ROC Curve', 'Incidence']
+Labels: ['Diabetes type 2']
+Scores: [0.0007511511212214828]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015100761083886027]
+Labels: ['Diabetes type 1']
+Scores: [0.0005099943373352289]
+Labels: ['Diabetes']
+Scores: [0.00015274147153832018]
+Labels: ['Cardiovascular diseases']
+Scores: [0.984806478023529]
+Labels: ['Mental Health']
+Scores: [0.0001840246404753998]
+Labels: ['Cancer']
+Scores: [0.00017050317546818405]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007750861346721649]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709110
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Insulin Resistance', 'Adult', 'Blood Glucose', 'Nutrition Surveys', 'Sex Factors', 'Risk Factors', 'Cause of Death', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.01496860384941101]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0042773764580488205]
+Labels: ['Diabetes type 1']
+Scores: [0.013310934416949749]
+Labels: ['Diabetes']
+Scores: [0.281898558139801]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8393645286560059]
+Labels: ['Mental Health']
+Scores: [0.014653145335614681]
+Labels: ['Cancer']
+Scores: [0.0015899607678875327]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06411251425743103]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39708996
+Predictions: ['Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'United Kingdom', 'Female', 'Male', 'Exercise', 'Middle Aged', 'Prospective Studies', 'Multimorbidity', 'Diabetes Mellitus, Type 2', 'Aged', 'Cardiovascular Diseases', 'Biological Specimen Banks', 'Coronary Disease', 'Genetic Predisposition to Disease', 'Stroke', 'Adult', 'UK Biobank']
+Labels: ['Diabetes type 2']
+Scores: [0.05883471295237541]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0022865827195346355]
+Labels: ['Diabetes type 1']
+Scores: [0.03300819545984268]
+Labels: ['Diabetes']
+Scores: [0.026660926640033722]
+Labels: ['Cardiovascular diseases']
+Scores: [0.957390308380127]
+Labels: ['Mental Health']
+Scores: [0.00012409125338308513]
+Labels: ['Cancer']
+Scores: [0.00029212975641712546]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00040334169170819223]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39708590
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Female', 'Sleep Apnea, Obstructive', 'Cardiovascular Diseases', 'Quality of Life', 'Heart Disease Risk Factors', 'Sex Factors', 'Risk Factors', 'Prevalence', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.014492522925138474]
+Labels: ['Chronic respiratory disease']
+Scores: [0.272878497838974]
+Labels: ['Diabetes type 1']
+Scores: [0.012109451927244663]
+Labels: ['Diabetes']
+Scores: [0.007494885474443436]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8694375157356262]
+Labels: ['Mental Health']
+Scores: [0.00981227494776249]
+Labels: ['Cancer']
+Scores: [0.0009589272667653859]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18480080366134644]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39708140
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Cross-Sectional Studies', 'Female', 'Osteoarthritis', 'Middle Aged', 'Aged', 'Heart Disease Risk Factors', 'Prevalence', 'Hand Joints', 'Comorbidity', 'Cardiovascular Diseases', 'Hand Strength', 'Quality of Life', 'Risk Factors', 'Hydroxymethylglutaryl-CoA Reductase Inhibitors']
+Labels: ['Diabetes type 2']
+Scores: [0.013433179818093777]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02652522549033165]
+Labels: ['Diabetes type 1']
+Scores: [0.009399842470884323]
+Labels: ['Diabetes']
+Scores: [0.006355085875838995]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9645612835884094]
+Labels: ['Mental Health']
+Scores: [0.015492838807404041]
+Labels: ['Cancer']
+Scores: [0.003504091640934348]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.24811948835849762]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39707266
+Predictions: ['Cardiovascular diseases']
+MeshTerm: ['Humans', 'Pulmonary Disease, Chronic Obstructive', 'Vascular Stiffness', 'Breathing Exercises', 'Randomized Controlled Trials as Topic', 'Pulse Wave Analysis', 'Resistance Training', 'Cardiovascular Diseases', 'Exercise', 'Quality of Life', 'Respiratory Muscles', 'Aged', 'Ankle Brachial Index', 'Male', 'Exercise Therapy', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.0015656070318073034]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9929961562156677]
+Labels: ['Diabetes type 1']
+Scores: [0.0015841096173971891]
+Labels: ['Diabetes']
+Scores: [0.00025797158014029264]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8704109787940979]
+Labels: ['Mental Health']
+Scores: [0.0002984650491271168]
+Labels: ['Cancer']
+Scores: [0.00036453621578402817]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0026773891877382994]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39738254
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Students', 'Female', 'Exercise', 'Universities', 'China', 'Mental Health', 'Young Adult', 'Depression', 'Cross-Sectional Studies', 'Anxiety', 'Sleep', 'Surveys and Questionnaires', 'Adult', 'Adolescent', 'Sleep Quality', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.01688382774591446]
+Labels: ['Chronic respiratory disease']
+Scores: [0.019105492159724236]
+Labels: ['Diabetes type 1']
+Scores: [0.014402644708752632]
+Labels: ['Diabetes']
+Scores: [0.009041114710271358]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004647670779377222]
+Labels: ['Mental Health']
+Scores: [0.9931663274765015]
+Labels: ['Cancer']
+Scores: [0.008151073008775711]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1329938918352127]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737457
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'China', 'COVID-19', 'Male', 'Female', 'Students', 'Bullying', 'COVID-19 Vaccines', 'Surveys and Questionnaires', 'Mental Health', 'Vaccination', 'Depression', 'Anxiety', 'SARS-CoV-2', 'Stress Disorders, Post-Traumatic']
+Labels: ['Diabetes type 2']
+Scores: [0.02473103627562523]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0368400402367115]
+Labels: ['Diabetes type 1']
+Scores: [0.022526444867253304]
+Labels: ['Diabetes']
+Scores: [0.007763521745800972]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002724679419770837]
+Labels: ['Mental Health']
+Scores: [0.9445281624794006]
+Labels: ['Cancer']
+Scores: [0.009750541299581528]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10518006235361099]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735766
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Unemployment', 'Mental Disorders', 'Female', 'Male', 'Adult', 'Middle Aged', 'Global Health', 'Mental Health', 'Young Adult', 'Socioeconomic Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.007665918208658695]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0038480444345623255]
+Labels: ['Diabetes type 1']
+Scores: [0.009025273844599724]
+Labels: ['Diabetes']
+Scores: [0.0011880651582032442]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000509113073348999]
+Labels: ['Mental Health']
+Scores: [0.977515697479248]
+Labels: ['Cancer']
+Scores: [0.0006466869381256402]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0016618361696600914]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735765
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Mental Disorders', 'Qualitative Research', 'Adolescent', 'Female', 'Health Promotion', 'Male', 'Social Media', 'Social Stigma', 'Health Knowledge, Attitudes, Practice', 'Middle East', 'Mental Health', 'Public Opinion']
+Labels: ['Diabetes type 2']
+Scores: [0.21769596636295319]
+Labels: ['Chronic respiratory disease']
+Scores: [0.20522329211235046]
+Labels: ['Diabetes type 1']
+Scores: [0.22239327430725098]
+Labels: ['Diabetes']
+Scores: [0.07714804261922836]
+Labels: ['Cardiovascular diseases']
+Scores: [0.043997157365083694]
+Labels: ['Mental Health']
+Scores: [0.9177107810974121]
+Labels: ['Cancer']
+Scores: [0.08660589903593063]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08687015622854233]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735755
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'China', 'Aged', 'Rural Population', 'Mental Health', 'Male', 'Female', 'Social Participation', 'Internet Use', 'Surveys and Questionnaires', 'Middle Aged', 'Aged, 80 and over', 'Internet']
+Labels: ['Diabetes type 2']
+Scores: [0.010814299806952477]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005118900910019875]
+Labels: ['Diabetes type 1']
+Scores: [0.012182813137769699]
+Labels: ['Diabetes']
+Scores: [0.0033662684727460146]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009668041602708399]
+Labels: ['Mental Health']
+Scores: [0.992857813835144]
+Labels: ['Cancer']
+Scores: [0.002675640629604459]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01670052669942379]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735753
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'China', 'Students', 'Universities', 'Male', 'Female', 'Mental Health', 'Young Adult', 'Adult', 'SARS-CoV-2', 'City Planning']
+Labels: ['Diabetes type 2']
+Scores: [0.0030210919212549925]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0023071325849741697]
+Labels: ['Diabetes type 1']
+Scores: [0.0025222525000572205]
+Labels: ['Diabetes']
+Scores: [0.0011630650842562318]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004292751254979521]
+Labels: ['Mental Health']
+Scores: [0.09284510463476181]
+Labels: ['Cancer']
+Scores: [0.0005325293750502169]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009421939961612225]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735752
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Acceptance and Commitment Therapy', 'Female', 'Male', 'Parents', 'Stress, Psychological', 'Adult', 'Child', 'Hong Kong', 'Middle Aged', 'SARS-CoV-2', 'Psychotherapy, Group', 'Pandemics', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.008498367853462696]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0038370792753994465]
+Labels: ['Diabetes type 1']
+Scores: [0.007917373441159725]
+Labels: ['Diabetes']
+Scores: [0.0015784638235345483]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0022992065642029047]
+Labels: ['Mental Health']
+Scores: [0.6334627866744995]
+Labels: ['Cancer']
+Scores: [0.000484263407997787]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.003182018641382456]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735743
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Universities', 'Male', 'Female', 'China', 'Students', 'Academic Performance', 'Mental Health', 'Young Adult', 'Depression', 'Anxiety', 'Adolescent', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.013677654787898064]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0058798291720449924]
+Labels: ['Diabetes type 1']
+Scores: [0.015849974006414413]
+Labels: ['Diabetes']
+Scores: [0.004226291552186012]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0020356611348688602]
+Labels: ['Mental Health']
+Scores: [0.9483809471130371]
+Labels: ['Cancer']
+Scores: [0.007196270395070314]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007964419201016426]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735742
+Predictions: ['Mental Health']
+MeshTerm: ['Volcanic Eruptions', 'Humans', 'Mental Health', 'Mental Disorders', 'Environmental Exposure']
+Labels: ['Diabetes type 2']
+Scores: [0.005943100433796644]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002932352479547262]
+Labels: ['Diabetes type 1']
+Scores: [0.005783607717603445]
+Labels: ['Diabetes']
+Scores: [0.0014161810977384448]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004481444484554231]
+Labels: ['Mental Health']
+Scores: [0.9859662055969238]
+Labels: ['Cancer']
+Scores: [0.001545680221170187]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005940121598541737]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39734104
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'Male', 'Sexual and Gender Minorities', 'Female', 'Schools', 'Bullying', 'Mental Health', 'Crime Victims', 'United States', 'Surveys and Questionnaires', 'Students', 'Peer Group']
+Labels: ['Diabetes type 2']
+Scores: [0.04233241453766823]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01125138346105814]
+Labels: ['Diabetes type 1']
+Scores: [0.04595138505101204]
+Labels: ['Diabetes']
+Scores: [0.0161802489310503]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005284475162625313]
+Labels: ['Mental Health']
+Scores: [0.8795815110206604]
+Labels: ['Cancer']
+Scores: [0.007557765115052462]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.025447050109505653]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39734100
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Adolescent', 'Mental Health', 'SARS-CoV-2', 'Adolescent Development', 'Pandemics', 'Peer Group', 'Socioeconomic Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.05603554844856262]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0919312834739685]
+Labels: ['Diabetes type 1']
+Scores: [0.05251031368970871]
+Labels: ['Diabetes']
+Scores: [0.029122257605195045]
+Labels: ['Cardiovascular diseases']
+Scores: [0.024822339415550232]
+Labels: ['Mental Health']
+Scores: [0.7717279195785522]
+Labels: ['Cancer']
+Scores: [0.04732152074575424]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08847229182720184]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732736
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Colombia', 'Students', 'Young Adult', 'Adult', 'Adolescent', 'Psychometrics', 'Personal Satisfaction', 'Universities', 'Procrastination', 'Reproducibility of Results', 'Mental Health', 'Surveys and Questionnaires', 'Factor Analysis, Statistical']
+Labels: ['Diabetes type 2']
+Scores: [0.011558756232261658]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0037353280931711197]
+Labels: ['Diabetes type 1']
+Scores: [0.010074235498905182]
+Labels: ['Diabetes']
+Scores: [0.004010059870779514]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0021634146105498075]
+Labels: ['Mental Health']
+Scores: [0.891287088394165]
+Labels: ['Cancer']
+Scores: [0.008060642518103123]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011382746510207653]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732545
+Predictions: ['Mental Health', 'Diabetes type 1']
+MeshTerm: ['Humans', 'Diabetes Mellitus, Type 1', 'Adolescent', 'Male', 'Female', 'Patient Education as Topic', 'Glycemic Control', 'Transition to Adult Care', 'Self Care', 'Emotions', 'Mental Health', 'Feeding and Eating Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.0004454136360436678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005248500499874353]
+Labels: ['Diabetes type 1']
+Scores: [0.990707516670227]
+Labels: ['Diabetes']
+Scores: [0.9226664304733276]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0039262291975319386]
+Labels: ['Mental Health']
+Scores: [0.0287537332624197]
+Labels: ['Cancer']
+Scores: [0.0036038346588611603]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10160235315561295]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': True, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Diabetes type 1', 'Diabetes']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39731523
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Holistic Health', 'Mental Disorders', 'Health Policy', 'Social Theory', 'Mental Health', 'Health Status Disparities']
+Labels: ['Diabetes type 2']
+Scores: [0.003990466706454754]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011713786516338587]
+Labels: ['Diabetes type 1']
+Scores: [0.003623265540227294]
+Labels: ['Diabetes']
+Scores: [0.001474951859563589]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005305598606355488]
+Labels: ['Mental Health']
+Scores: [0.9779854416847229]
+Labels: ['Cancer']
+Scores: [0.0008875473286025226]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005603882018476725]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731316
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Denmark', 'Female', 'Male', 'Attention Deficit Disorder with Hyperactivity', 'Adult', 'Middle Aged', 'Adolescent', 'Young Adult', 'Aged', 'COVID-19', 'Sex Factors', 'Aged, 80 and over', 'Reference Values', 'Brief Psychiatric Rating Scale', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.002328394213691354]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0036309286952018738]
+Labels: ['Diabetes type 1']
+Scores: [0.0026065553538501263]
+Labels: ['Diabetes']
+Scores: [0.0005684253992512822]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00043070485116913915]
+Labels: ['Mental Health']
+Scores: [0.9814676642417908]
+Labels: ['Cancer']
+Scores: [0.0011477592634037137]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004703241400420666]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730730
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'China', 'Male', 'Mental Health', 'Female', 'Rural Population', 'Sleep', 'Cross-Sectional Studies', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.06502895057201385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03658795729279518]
+Labels: ['Diabetes type 1']
+Scores: [0.07620514184236526]
+Labels: ['Diabetes']
+Scores: [0.05332368612289429]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016278481110930443]
+Labels: ['Mental Health']
+Scores: [0.9303194880485535]
+Labels: ['Cancer']
+Scores: [0.1010122075676918]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12671926617622375]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730531
+Predictions: ['Mental Health']
+MeshTerm: ['Loneliness', 'Humans', 'Exercise', 'Male', 'Female', 'Social Support', 'Students', 'Young Adult', 'Interpersonal Relations', 'Adult', 'Adolescent', 'Universities', 'Mental Health', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.06275714933872223]
+Labels: ['Chronic respiratory disease']
+Scores: [0.048016395419836044]
+Labels: ['Diabetes type 1']
+Scores: [0.060170408338308334]
+Labels: ['Diabetes']
+Scores: [0.0277014821767807]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009753881953656673]
+Labels: ['Mental Health']
+Scores: [0.7906039953231812]
+Labels: ['Cancer']
+Scores: [0.034213025122880936]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.012368450872600079]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730236
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'India', 'Male', 'Adult', 'Female', 'Anxiety', 'Mental Health', 'Middle Aged', 'Disasters', 'Depression', 'Sleep Initiation and Maintenance Disorders', 'Sleep', 'Surveys and Questionnaires', 'Circadian Rhythm']
+Labels: ['Diabetes type 2']
+Scores: [0.03605061024427414]
+Labels: ['Chronic respiratory disease']
+Scores: [0.041716307401657104]
+Labels: ['Diabetes type 1']
+Scores: [0.02623520977795124]
+Labels: ['Diabetes']
+Scores: [0.015299179591238499]
+Labels: ['Cardiovascular diseases']
+Scores: [0.019316980615258217]
+Labels: ['Mental Health']
+Scores: [0.9887662529945374]
+Labels: ['Cancer']
+Scores: [0.020477481186389923]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.025981007143855095]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729870
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'New Zealand', 'Prospective Studies', 'Adult', 'Mental Health', 'Male', 'Female', 'Child', 'Young Adult', 'Infant', 'Child, Preschool', 'Birth Cohort', 'Parks, Recreational', 'Infant, Newborn', 'Depression']
+Labels: ['Diabetes type 2']
+Scores: [0.0018537945579737425]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0004967224667780101]
+Labels: ['Diabetes type 1']
+Scores: [0.002140105003491044]
+Labels: ['Diabetes']
+Scores: [0.00033528823405504227]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00011695061402861029]
+Labels: ['Mental Health']
+Scores: [0.995815098285675]
+Labels: ['Cancer']
+Scores: [0.00024758605286478996]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002457519993185997]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729805
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Adult', 'Community Pharmacy Services', 'Community-Based Participatory Research', 'Ill-Housed Persons', 'Tobacco Use Cessation', 'Mental Health', 'Substance-Related Disorders', 'Program Evaluation', 'San Francisco', 'Counseling', 'Nicotine Replacement Therapy', 'Mentoring', 'Tobacco Products', 'Tobacco Use', 'Odds Ratio', 'Poisson Distribution', 'Logistic Models', 'Time Factors', 'Diagnosis, Dual (Psychiatry)', 'Mental Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.0011390481377020478]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0046121119521558285]
+Labels: ['Diabetes type 1']
+Scores: [0.0010281166760250926]
+Labels: ['Diabetes']
+Scores: [0.00017343902436550707]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00011946783342864364]
+Labels: ['Mental Health']
+Scores: [0.6667528748512268]
+Labels: ['Cancer']
+Scores: [0.00018589703540783376]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12056826800107956]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727705
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Colorectal Neoplasms', 'Middle Aged', 'COVID-19', 'Female', 'Longitudinal Studies', 'Aged', 'Anxiety', 'Prospective Studies', 'SARS-CoV-2', 'Depression', 'Follow-Up Studies', 'Surveys and Questionnaires', 'Mental Health', 'United Kingdom', 'Psychological Well-Being']
+Labels: ['Diabetes type 2']
+Scores: [0.010126790031790733]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006422353908419609]
+Labels: ['Diabetes type 1']
+Scores: [0.006656694691628218]
+Labels: ['Diabetes']
+Scores: [0.0025665012653917074]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0030403994023799896]
+Labels: ['Mental Health']
+Scores: [0.5712313055992126]
+Labels: ['Cancer']
+Scores: [0.8482321500778198]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.029712917283177376]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39727168
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Denmark', 'Loneliness', 'Female', 'Middle Aged', 'Male', 'Chronic Pain', 'Prevalence', 'Adult', 'Aged', 'Mental Health', 'COVID-19', 'Young Adult', 'Adolescent', 'Aged, 80 and over', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.0015538842417299747]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003572108980733901]
+Labels: ['Diabetes type 1']
+Scores: [0.001266470761038363]
+Labels: ['Diabetes']
+Scores: [0.0005172649398446083]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00030795863131061196]
+Labels: ['Mental Health']
+Scores: [0.9245442748069763]
+Labels: ['Cancer']
+Scores: [0.003711207304149866]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08720217645168304]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727091
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'Child', 'Mental Health', 'Biomedical Research', 'Delphi Technique', 'Mental Health Services']
+Labels: ['Diabetes type 2']
+Scores: [0.0016153944889083505]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003077060973737389]
+Labels: ['Diabetes type 1']
+Scores: [0.0014184055617079139]
+Labels: ['Diabetes']
+Scores: [0.00028925950755365193]
+Labels: ['Cardiovascular diseases']
+Scores: [7.850127440178767e-05]
+Labels: ['Mental Health']
+Scores: [0.9939974546432495]
+Labels: ['Cancer']
+Scores: [0.00013448121899273247]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0007597486837767065]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726658
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Exercise', 'Self Report', 'Adolescent', 'Students', 'China', 'Child', 'Schools', 'Mental Health', 'Surveys and Questionnaires', 'Health Surveys', 'Sedentary Behavior', 'Depression']
+Labels: ['Diabetes type 2']
+Scores: [0.015163485892117023]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013188227079808712]
+Labels: ['Diabetes type 1']
+Scores: [0.01311473362147808]
+Labels: ['Diabetes']
+Scores: [0.013829026371240616]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0019218986853957176]
+Labels: ['Mental Health']
+Scores: [0.9729686379432678]
+Labels: ['Cancer']
+Scores: [0.007128254976123571]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.024872248992323875]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726069
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Substance-Related Disorders', 'Middle Aged', 'Heart Transplantation', 'Heart-Assist Devices', 'Adult', 'Databases, Factual', 'Incidence', 'Mental Health', 'Quality of Life', 'Aged', 'Mental Disorders', 'Waiting Lists', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.04916825890541077]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1896965205669403]
+Labels: ['Diabetes type 1']
+Scores: [0.04589908942580223]
+Labels: ['Diabetes']
+Scores: [0.01724572852253914]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5662139654159546]
+Labels: ['Mental Health']
+Scores: [0.9560781121253967]
+Labels: ['Cancer']
+Scores: [0.01011717226356268]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09326838701963425]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725888
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'Pregnancy', 'Adult', 'Cross-Sectional Studies', 'Pregnancy, Unplanned', 'Parents', 'Mental Health', 'Reproductive Techniques, Assisted', 'Young Adult', 'Stress, Psychological', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.005391597282141447]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0003895103873219341]
+Labels: ['Diabetes type 1']
+Scores: [0.0042465487495064735]
+Labels: ['Diabetes']
+Scores: [0.000616714358329773]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002481501433067024]
+Labels: ['Mental Health']
+Scores: [0.7923450469970703]
+Labels: ['Cancer']
+Scores: [0.0003088809608016163]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02896369807422161]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725758
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Adolescent', 'Mental Health', 'Pandemics', 'SARS-CoV-2', 'Japan', 'Male', 'Suicide', 'Female', 'Mental Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.009458902291953564]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007923414930701256]
+Labels: ['Diabetes type 1']
+Scores: [0.010167109780013561]
+Labels: ['Diabetes']
+Scores: [0.003439785912632942]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008871567551977932]
+Labels: ['Mental Health']
+Scores: [0.9947360754013062]
+Labels: ['Cancer']
+Scores: [0.0022076561581343412]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0011879283702000976]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724226
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'Germany', 'Cross-Sectional Studies', 'Mental Health', 'Adult', 'Surveys and Questionnaires', 'Young Adult', 'Stress, Psychological', 'Students', 'Occupational Stress', 'Universities']
+Labels: ['Diabetes type 2']
+Scores: [0.004771645646542311]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0017008204013109207]
+Labels: ['Diabetes type 1']
+Scores: [0.0044688573107123375]
+Labels: ['Diabetes']
+Scores: [0.0030536025296896696]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006107685621827841]
+Labels: ['Mental Health']
+Scores: [0.9888741374015808]
+Labels: ['Cancer']
+Scores: [0.0011646643979474902]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002108668675646186]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724125
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Female', 'Male', 'Stress Disorders, Post-Traumatic', 'Survivors', 'Middle Aged', 'Adult', 'Anxiety', 'Risk Factors', 'Depression', 'Prevalence', 'Aged', 'Comorbidity', 'Sex Factors', 'Sleep Initiation and Maintenance Disorders', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.08192788809537888]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10870002210140228]
+Labels: ['Diabetes type 1']
+Scores: [0.06793118268251419]
+Labels: ['Diabetes']
+Scores: [0.04457889869809151]
+Labels: ['Cardiovascular diseases']
+Scores: [0.033330634236335754]
+Labels: ['Mental Health']
+Scores: [0.9910206198692322]
+Labels: ['Cancer']
+Scores: [0.03385400027036667]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10741577297449112]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724115
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Empathy', 'Global Health', 'Mental Health', 'Existentialism', 'Warfare']
+Labels: ['Diabetes type 2']
+Scores: [0.15809234976768494]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09497949481010437]
+Labels: ['Diabetes type 1']
+Scores: [0.1637096256017685]
+Labels: ['Diabetes']
+Scores: [0.0798070877790451]
+Labels: ['Cardiovascular diseases']
+Scores: [0.045204296708106995]
+Labels: ['Mental Health']
+Scores: [0.9792402982711792]
+Labels: ['Cancer']
+Scores: [0.07133246958255768]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.055133987218141556]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39724057
+Predictions: ['Mental Health']
+MeshTerm: ['Adolescent', 'Adult', 'Female', 'Humans', 'Male', 'Young Adult', 'COVID-19', 'Depression', 'East Asian People', 'Mental Health', 'Pandemics', 'Republic of Korea', 'Social Media']
+Labels: ['Diabetes type 2']
+Scores: [0.03383457288146019]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16999579966068268]
+Labels: ['Diabetes type 1']
+Scores: [0.03652891144156456]
+Labels: ['Diabetes']
+Scores: [0.01438682060688734]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015023463405668736]
+Labels: ['Mental Health']
+Scores: [0.8095167875289917]
+Labels: ['Cancer']
+Scores: [0.01180251408368349]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15232165157794952]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722713
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'Child, Preschool', 'Cross-Sectional Studies', 'China', 'Screen Time', 'Surveys and Questionnaires', 'Mental Health', 'Parents', 'Psychological Well-Being']
+Labels: ['Diabetes type 2']
+Scores: [0.004109514877200127]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009628159459680319]
+Labels: ['Diabetes type 1']
+Scores: [0.003767233807593584]
+Labels: ['Diabetes']
+Scores: [0.0029419425409287214]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00019895975128747523]
+Labels: ['Mental Health']
+Scores: [0.9388072490692139]
+Labels: ['Cancer']
+Scores: [0.002862190129235387]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0012186082312837243]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722022
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Loneliness', 'Adolescent', 'Male', 'Female', 'Cross-Sectional Studies', 'Urban Population', 'Young Adult', 'Adult', 'Mental Health', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.013695511035621166]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0036870029289275408]
+Labels: ['Diabetes type 1']
+Scores: [0.012364763766527176]
+Labels: ['Diabetes']
+Scores: [0.00617937371134758]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007568431319668889]
+Labels: ['Mental Health']
+Scores: [0.9345243573188782]
+Labels: ['Cancer']
+Scores: [0.006444193422794342]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014624102041125298]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39720811
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Mental Health', 'China', 'Middle Aged', 'Adult', 'Emotions', 'Surveys and Questionnaires', 'Aged', 'Adolescent', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.007276750635355711]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005540252663195133]
+Labels: ['Diabetes type 1']
+Scores: [0.007067889906466007]
+Labels: ['Diabetes']
+Scores: [0.004322919528931379]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007276636315509677]
+Labels: ['Mental Health']
+Scores: [0.9663558006286621]
+Labels: ['Cancer']
+Scores: [0.003340445226058364]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0035574128851294518]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719817
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Hospitals, General', 'Psychiatry', 'Mental Health Services', 'Japan', 'Psychiatric Department, Hospital', 'Referral and Consultation', 'Mental Disorders', 'Surveys and Questionnaires', 'Mental Health', 'Psychiatrists']
+Labels: ['Diabetes type 2']
+Scores: [0.07608944922685623]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14483080804347992]
+Labels: ['Diabetes type 1']
+Scores: [0.07373647391796112]
+Labels: ['Diabetes']
+Scores: [0.04273916780948639]
+Labels: ['Cardiovascular diseases']
+Scores: [0.036589860916137695]
+Labels: ['Mental Health']
+Scores: [0.9421700239181519]
+Labels: ['Cancer']
+Scores: [0.02952241711318493]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09193569421768188]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719755
+Predictions: ['Mental Health']
+MeshTerm: ['Adolescent', 'Humans', 'Ozone', 'Mental Health', 'Nitrogen Dioxide', 'Male', 'Female', 'Child', 'China', 'Air Pollutants', 'Environmental Exposure', 'Schools', 'Cross-Sectional Studies', 'Air Pollution', 'Students']
+Labels: ['Diabetes type 2']
+Scores: [0.003949962090700865]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08410785347223282]
+Labels: ['Diabetes type 1']
+Scores: [0.004129142966121435]
+Labels: ['Diabetes']
+Scores: [0.002240052679553628]
+Labels: ['Cardiovascular diseases']
+Scores: [0.046586811542510986]
+Labels: ['Mental Health']
+Scores: [0.004287504591047764]
+Labels: ['Cancer']
+Scores: [0.01823575608432293]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006294704508036375]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39719653
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Social Capital', 'Students', 'Social Media', 'Japan', 'Universities', 'Male', 'Female', 'Young Adult', 'Mental Health', 'Adult', 'Loneliness', 'Health Status', 'Personality', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.0018304834375157952]
+Labels: ['Chronic respiratory disease']
+Scores: [0.000644071027636528]
+Labels: ['Diabetes type 1']
+Scores: [0.0016730561619624496]
+Labels: ['Diabetes']
+Scores: [0.0006197145557962358]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00022138937492854893]
+Labels: ['Mental Health']
+Scores: [0.8671196699142456]
+Labels: ['Cancer']
+Scores: [0.00040313240606337786]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004845832008868456]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39716066
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Quality of Life', 'Pakistan', 'Myocardial Infarction', 'Middle Aged', 'Cross-Sectional Studies', 'Aged', 'Health Status', 'Risk Factors', 'Mental Health', 'Time Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.0013068519765511155]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0011782085057348013]
+Labels: ['Diabetes type 1']
+Scores: [0.0009195923339575529]
+Labels: ['Diabetes']
+Scores: [0.00045939284609630704]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9779677391052246]
+Labels: ['Mental Health']
+Scores: [0.024912795051932335]
+Labels: ['Cancer']
+Scores: [0.00026358081959187984]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005638977512717247]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[0, 1], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39715637
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Biomedical Research', 'Circadian Rhythm', 'Information Dissemination', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.15504063665866852]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10146751254796982]
+Labels: ['Diabetes type 1']
+Scores: [0.14346665143966675]
+Labels: ['Diabetes']
+Scores: [0.09562908858060837]
+Labels: ['Cardiovascular diseases']
+Scores: [0.021743202582001686]
+Labels: ['Mental Health']
+Scores: [0.9660771489143372]
+Labels: ['Cancer']
+Scores: [0.059811029583215714]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06776951253414154]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715235
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Colombia', 'Emigrants and Immigrants', 'Venezuela', 'Female', 'Male', 'United States', 'Child', 'Adult', 'Child Welfare', 'Parents', 'Stress, Psychological', 'Surveys and Questionnaires', 'Adolescent', 'Middle Aged', 'Mental Health', 'Child, Preschool']
+Labels: ['Diabetes type 2']
+Scores: [0.21252042055130005]
+Labels: ['Chronic respiratory disease']
+Scores: [0.054448001086711884]
+Labels: ['Diabetes type 1']
+Scores: [0.22884124517440796]
+Labels: ['Diabetes']
+Scores: [0.08729121834039688]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0357307605445385]
+Labels: ['Mental Health']
+Scores: [0.779964804649353]
+Labels: ['Cancer']
+Scores: [0.07746453583240509]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.10026165843009949]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39715113
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Ukraine', 'Mental Health Services', 'Health Services Accessibility', 'Pandemics', 'Quality of Health Care', 'SARS-CoV-2', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.000969301036093384]
+Labels: ['Chronic respiratory disease']
+Scores: [0.014608520083129406]
+Labels: ['Diabetes type 1']
+Scores: [0.001091304700821638]
+Labels: ['Diabetes']
+Scores: [0.00039947277400642633]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00013017845049034804]
+Labels: ['Mental Health']
+Scores: [0.9975206255912781]
+Labels: ['Cancer']
+Scores: [0.0006161208730190992]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0008043370326049626]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39714844
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'Aged', 'England', 'Middle Aged', 'Longitudinal Studies', 'Personal Satisfaction', 'Cohort Studies', 'Depression', 'Mental Health', 'Health Status', 'Social Support', 'Health Behavior', 'Cluster Analysis']
+Labels: ['Diabetes type 2']
+Scores: [0.015050376765429974]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008081412874162197]
+Labels: ['Diabetes type 1']
+Scores: [0.012947361916303635]
+Labels: ['Diabetes']
+Scores: [0.007584994658827782]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008788707666099072]
+Labels: ['Mental Health']
+Scores: [0.017797138541936874]
+Labels: ['Cancer']
+Scores: [0.004689866676926613]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009125602431595325]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39713741
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Substance-Related Disorders', 'Social Stigma', 'Sexism', 'Mental Health', 'Racism', 'Mental Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.09934791922569275]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023720918223261833]
+Labels: ['Diabetes type 1']
+Scores: [0.10628722608089447]
+Labels: ['Diabetes']
+Scores: [0.027551336213946342]
+Labels: ['Cardiovascular diseases']
+Scores: [0.018335742875933647]
+Labels: ['Mental Health']
+Scores: [0.7923149466514587]
+Labels: ['Cancer']
+Scores: [0.012887697666883469]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02872064709663391]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39712316
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Aged', 'Female', 'Male', 'China', 'Mental Health', 'Internet Use', 'Middle Aged', 'Residence Characteristics', 'Aged, 80 and over', 'Independent Living', 'Surveys and Questionnaires', 'Internet', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.010790334083139896]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008961419574916363]
+Labels: ['Diabetes type 1']
+Scores: [0.012112169526517391]
+Labels: ['Diabetes']
+Scores: [0.0016072099097073078]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008011112222447991]
+Labels: ['Mental Health']
+Scores: [0.9797214269638062]
+Labels: ['Cancer']
+Scores: [0.002476536436006427]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006552914623171091]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39712299
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'China', 'Mental Health', 'Aged', 'Social Environment', 'Female', 'Male', 'Middle Aged', 'Residence Characteristics', 'Surveys and Questionnaires', 'Neighborhood Characteristics', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.05449286848306656]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02977900207042694]
+Labels: ['Diabetes type 1']
+Scores: [0.05822349339723587]
+Labels: ['Diabetes']
+Scores: [0.026746433228254318]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012926608324050903]
+Labels: ['Mental Health']
+Scores: [0.9309605360031128]
+Labels: ['Cancer']
+Scores: [0.02109549753367901]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.036085378378629684]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39711409
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Pilots', 'Aerospace Medicine', 'Mental Health', 'United States']
+Labels: ['Diabetes type 2']
+Scores: [0.07743927836418152]
+Labels: ['Chronic respiratory disease']
+Scores: [0.051234785467386246]
+Labels: ['Diabetes type 1']
+Scores: [0.08004588633775711]
+Labels: ['Diabetes']
+Scores: [0.022420324385166168]
+Labels: ['Cardiovascular diseases']
+Scores: [0.019098758697509766]
+Labels: ['Mental Health']
+Scores: [0.968814492225647]
+Labels: ['Cancer']
+Scores: [0.02205674722790718]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0816584974527359]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39711341
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Aerospace Medicine', 'Mental Health', 'Delphi Technique', 'Aviation', 'Research', 'Societies, Medical', 'Occupational Health']
+Labels: ['Diabetes type 2']
+Scores: [0.038982048630714417]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021760033443570137]
+Labels: ['Diabetes type 1']
+Scores: [0.04012707993388176]
+Labels: ['Diabetes']
+Scores: [0.006643528118729591]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002609974006190896]
+Labels: ['Mental Health']
+Scores: [0.9827837347984314]
+Labels: ['Cancer']
+Scores: [0.00938065443187952]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04208938777446747]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39711028
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'Refugees', 'Syria', 'Psychological Distress', 'Female', 'Jordan', 'Male', 'Follow-Up Studies', 'Child', 'Single-Blind Method', 'Stress Disorders, Post-Traumatic', 'Depression', 'Stress, Psychological', 'Behavior Therapy', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.0012010145001113415]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0023148334585130215]
+Labels: ['Diabetes type 1']
+Scores: [0.00101177126634866]
+Labels: ['Diabetes']
+Scores: [0.0005867053987458348]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007264177547767758]
+Labels: ['Mental Health']
+Scores: [0.9058716893196106]
+Labels: ['Cancer']
+Scores: [0.0017845055554062128]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.003641062881797552]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710807
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Resilience, Psychological', 'Cross-Sectional Studies', 'Female', 'Adult', 'Male', 'Workplace Violence', 'Burnout, Professional', 'Mental Health', 'Middle Aged', 'Surveys and Questionnaires', 'Nursing Staff, Hospital', 'Taiwan']
+Labels: ['Diabetes type 2']
+Scores: [0.3128820061683655]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3152250349521637]
+Labels: ['Diabetes type 1']
+Scores: [0.3236903250217438]
+Labels: ['Diabetes']
+Scores: [0.1494123488664627]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10407806187868118]
+Labels: ['Mental Health']
+Scores: [0.9205166101455688]
+Labels: ['Cancer']
+Scores: [0.17043350636959076]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21657705307006836]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710755
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Quality of Life', 'Romania', 'Male', 'Female', 'Prospective Studies', 'Tuberculosis, Multidrug-Resistant', 'Middle Aged', 'Adult', 'Mental Health', 'Social Class', 'Socioeconomic Factors', 'Surveys and Questionnaires', 'Aged', 'Cohort Studies', 'Longitudinal Studies', 'Psychological Well-Being']
+Labels: ['Diabetes type 2']
+Scores: [0.007212282624095678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.502655029296875]
+Labels: ['Diabetes type 1']
+Scores: [0.007553405128419399]
+Labels: ['Diabetes']
+Scores: [0.0012393343495205045]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001565938931889832]
+Labels: ['Mental Health']
+Scores: [0.47294187545776367]
+Labels: ['Cancer']
+Scores: [0.0020738167222589254]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5297790169715881]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710684
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Ontario', 'Pregnancy', 'Retrospective Studies', 'Adult', 'Social Class', 'Pregnancy Complications', 'Anxiety', 'Depression', 'Young Adult', 'Residence Characteristics', 'Mental Health', 'Cohort Studies', 'Educational Status', 'Mental Disorders', 'Income']
+Labels: ['Diabetes type 2']
+Scores: [0.014496698044240475]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0030051672365516424]
+Labels: ['Diabetes type 1']
+Scores: [0.014221694320440292]
+Labels: ['Diabetes']
+Scores: [0.0032556974329054356]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006781996926292777]
+Labels: ['Mental Health']
+Scores: [0.9776499271392822]
+Labels: ['Cancer']
+Scores: [0.0028674264904111624]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00940820761024952]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710634
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Female', 'United Kingdom', 'Adult', 'Cross-Sectional Studies', 'Mental Health', 'Domestic Violence', 'Middle Aged', 'Social Support', 'Resilience, Psychological', 'Pandemics', 'Young Adult', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.00030791512108407915]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00025023650960065424]
+Labels: ['Diabetes type 1']
+Scores: [0.00027781384414993227]
+Labels: ['Diabetes']
+Scores: [0.00012647078256122768]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00014642566384281963]
+Labels: ['Mental Health']
+Scores: [0.9655512571334839]
+Labels: ['Cancer']
+Scores: [0.0002622817119117826]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00046825993922539055]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710627
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Health Literacy', 'Adolescent', 'Anxiety', 'Depression', 'Mental Health', 'Health Education']
+Labels: ['Diabetes type 2']
+Scores: [0.03644105792045593]
+Labels: ['Chronic respiratory disease']
+Scores: [0.015911230817437172]
+Labels: ['Diabetes type 1']
+Scores: [0.032233625650405884]
+Labels: ['Diabetes']
+Scores: [0.019531086087226868]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004763572942465544]
+Labels: ['Mental Health']
+Scores: [0.717504620552063]
+Labels: ['Cancer']
+Scores: [0.013756520114839077]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.050509434193372726]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710497
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'China', 'Aged', 'Risk Factors', 'Middle Aged', 'Depression', 'Longitudinal Studies', 'Health Status', 'Mental Health', 'Aged, 80 and over', 'Rural Population', 'Logistic Models']
+Labels: ['Diabetes type 2']
+Scores: [0.0014662571484223008]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0009175671148113906]
+Labels: ['Diabetes type 1']
+Scores: [0.0017861905507743359]
+Labels: ['Diabetes']
+Scores: [0.00047911188448779285]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00034574265009723604]
+Labels: ['Mental Health']
+Scores: [0.9858801364898682]
+Labels: ['Cancer']
+Scores: [0.00038788889651186764]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0023646822664886713]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39710338
+Predictions: ['Cancer', 'Mental Health']
+MeshTerm: ['Humans', 'Cancer Survivors', 'Adolescent', 'Young Adult', 'Female', 'Male', 'Internet-Based Intervention', 'Mindfulness', 'Adult', 'Emotional Regulation', 'Quality of Life', 'Mental Health', 'Depression', 'Neoplasms', 'Research Design', 'Adaptation, Psychological', 'Digital Health']
+Labels: ['Diabetes type 2']
+Scores: [0.037281062453985214]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05397253483533859]
+Labels: ['Diabetes type 1']
+Scores: [0.035238467156887054]
+Labels: ['Diabetes']
+Scores: [0.012256182730197906]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013647145591676235]
+Labels: ['Mental Health']
+Scores: [0.6834592819213867]
+Labels: ['Cancer']
+Scores: [0.6914944052696228]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04448070004582405]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39709458
+Predictions: ['Mental Health']
+MeshTerm: ['Adolescent', 'Child', 'Humans', 'Adaptation, Psychological', 'Child Behavior', 'Mental Disorders', 'Mental Health', 'Multicenter Studies as Topic', 'Norway', 'Parents', 'Pragmatic Clinical Trials as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.0012728095753118396]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00036660555633716285]
+Labels: ['Diabetes type 1']
+Scores: [0.0011873220792040229]
+Labels: ['Diabetes']
+Scores: [0.00046444841427728534]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002179891016567126]
+Labels: ['Mental Health']
+Scores: [0.9201103448867798]
+Labels: ['Cancer']
+Scores: [0.00036542367888614535]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002383980667218566]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709340
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Randomized Controlled Trials as Topic', 'Mental Health', 'Research Design', 'Outcome Assessment, Health Care', 'Mental Disorders', 'Treatment Outcome']
+Labels: ['Diabetes type 2']
+Scores: [0.0002148290368495509]
+Labels: ['Chronic respiratory disease']
+Scores: [3.688944343593903e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.00017725701036397368]
+Labels: ['Diabetes']
+Scores: [3.382115755812265e-05]
+Labels: ['Cardiovascular diseases']
+Scores: [2.58093041338725e-05]
+Labels: ['Mental Health']
+Scores: [0.9910197257995605]
+Labels: ['Cancer']
+Scores: [3.5570872569223866e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00010952830052701756]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709337
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Sufentanil', 'Male', 'Cough', 'Female', 'Ketamine', 'Middle Aged', 'Prospective Studies', 'Adult', 'Anesthesia, General', 'Anesthetics, Intravenous', 'Mental Health', 'Double-Blind Method']
+Labels: ['Diabetes type 2']
+Scores: [0.0011310091940686107]
+Labels: ['Chronic respiratory disease']
+Scores: [0.025208350270986557]
+Labels: ['Diabetes type 1']
+Scores: [0.0011398309143260121]
+Labels: ['Diabetes']
+Scores: [0.00039376242784783244]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009463371243327856]
+Labels: ['Mental Health']
+Scores: [0.7835515141487122]
+Labels: ['Cancer']
+Scores: [0.000526641437318176]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05358615145087242]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709183
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Mental Health', "Women's Health", 'Health Promotion']
+Labels: ['Diabetes type 2']
+Scores: [0.02248399704694748]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01249777153134346]
+Labels: ['Diabetes type 1']
+Scores: [0.01859699748456478]
+Labels: ['Diabetes']
+Scores: [0.011290094815194607]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018085312331095338]
+Labels: ['Mental Health']
+Scores: [0.9872975945472717]
+Labels: ['Cancer']
+Scores: [0.012423168867826462]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021471505984663963]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39709182
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'United States', "Women's Health", 'Racial Groups', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.03230194374918938]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03134334087371826]
+Labels: ['Diabetes type 1']
+Scores: [0.02809293568134308]
+Labels: ['Diabetes']
+Scores: [0.012914059683680534]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016586456913501024]
+Labels: ['Mental Health']
+Scores: [0.9856160283088684]
+Labels: ['Cancer']
+Scores: [0.010101771913468838]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013105967082083225]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39708948
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Asthma', 'Metals, Heavy', 'Male', 'Adult', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Republic of Korea', 'Mental Health', 'Suicidal Ideation', 'Environmental Exposure', 'Air Pollutants', 'Young Adult', 'Depression', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.0013367626816034317]
+Labels: ['Chronic respiratory disease']
+Scores: [0.8740132451057434]
+Labels: ['Diabetes type 1']
+Scores: [0.0010713787050917745]
+Labels: ['Diabetes']
+Scores: [0.0005295738810673356]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003749416791833937]
+Labels: ['Mental Health']
+Scores: [0.9810831546783447]
+Labels: ['Cancer']
+Scores: [0.0012075381819158792]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18232256174087524]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39707472
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'General Practitioners', 'Self Care', 'Cross-Sectional Studies', 'Male', 'Female', 'Adult', 'Middle Aged', 'Burnout, Professional', 'Surveys and Questionnaires', 'Mental Health', 'Anxiety', 'SARS-CoV-2', 'Pandemics']
+Labels: ['Diabetes type 2']
+Scores: [0.06653769314289093]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07208237051963806]
+Labels: ['Diabetes type 1']
+Scores: [0.06516660004854202]
+Labels: ['Diabetes']
+Scores: [0.012219948694109917]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004311376716941595]
+Labels: ['Mental Health']
+Scores: [0.05171031132340431]
+Labels: ['Cancer']
+Scores: [0.005049350671470165]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05022919923067093]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39706574
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Mental Health', "Women's Health", 'Pregnancy', 'Perinatal Care', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.010698660276830196]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009549340233206749]
+Labels: ['Diabetes type 1']
+Scores: [0.008507685735821724]
+Labels: ['Diabetes']
+Scores: [0.006254912819713354]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000891460629645735]
+Labels: ['Mental Health']
+Scores: [0.9756622910499573]
+Labels: ['Cancer']
+Scores: [0.005858144722878933]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.021359248086810112]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39706486
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Binge Drinking', 'Male', 'Middle Aged', 'Spain', 'Longitudinal Studies', 'Health Behavior', 'Mental Health', 'Health Status', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.019799603149294853]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010485121048986912]
+Labels: ['Diabetes type 1']
+Scores: [0.016764314845204353]
+Labels: ['Diabetes']
+Scores: [0.006847828160971403]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006266432348638773]
+Labels: ['Mental Health']
+Scores: [0.024753453209996223]
+Labels: ['Cancer']
+Scores: [0.005263142287731171]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03998259827494621]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39706485
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Social Support', 'Male', 'Female', 'Longitudinal Studies', 'Adult', 'Stress, Psychological', 'Middle Aged', 'Depressive Disorder, Major', 'Mental Health', 'Social Class', 'Socioeconomic Factors', 'Young Adult', 'Aged', 'Risk Factors', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.03266210854053497]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02300148271024227]
+Labels: ['Diabetes type 1']
+Scores: [0.030970823019742966]
+Labels: ['Diabetes']
+Scores: [0.024503719061613083]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004284695256501436]
+Labels: ['Mental Health']
+Scores: [0.7792941927909851]
+Labels: ['Cancer']
+Scores: [0.013409714214503765]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05426250770688057]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39706484
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Mental Disorders', 'Mental Health', 'Ukraine', 'Armed Conflicts', 'Refugees']
+Labels: ['Diabetes type 2']
+Scores: [0.005391823127865791]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007114418549463153]
+Labels: ['Diabetes type 1']
+Scores: [0.0056285373866558075]
+Labels: ['Diabetes']
+Scores: [0.0005677074077539146]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000121302880870644]
+Labels: ['Mental Health']
+Scores: [0.9985480904579163]
+Labels: ['Cancer']
+Scores: [0.00017149560153484344]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0006171796121634543]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39705174
+Predictions: ['Mental Health']
+MeshTerm: ['Adolescent', 'Adult', 'Humans', 'Male', 'Young Adult', 'Adaptation, Psychological', 'Black or African American', 'HIV Infections', 'Interviews as Topic', 'Mental Health', 'Qualitative Research', 'Sexual and Gender Minorities', 'Social Stigma']
+Labels: ['Diabetes type 2']
+Scores: [0.06746585667133331]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04177325218915939]
+Labels: ['Diabetes type 1']
+Scores: [0.07099419087171555]
+Labels: ['Diabetes']
+Scores: [0.022293252870440483]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01413705013692379]
+Labels: ['Mental Health']
+Scores: [0.9530821442604065]
+Labels: ['Cancer']
+Scores: [0.026683785021305084]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02635008655488491]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39704003
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Mental Disorders', 'Mental Health', 'Diagnostic and Statistical Manual of Mental Disorders', 'International Classification of Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.09996067732572556]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08484707027673721]
+Labels: ['Diabetes type 1']
+Scores: [0.1049204096198082]
+Labels: ['Diabetes']
+Scores: [0.02660222165286541]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01616298407316208]
+Labels: ['Mental Health']
+Scores: [0.9311139583587646]
+Labels: ['Cancer']
+Scores: [0.04352514073252678]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04873285070061684]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39703482
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Adolescent', 'Mental Health', 'Reproductive Health', 'Sexual Behavior', 'Sexual Health', 'Menstruation', 'Health Knowledge, Attitudes, Practice']
+Labels: ['Diabetes type 2']
+Scores: [0.005567311774939299]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0014954559737816453]
+Labels: ['Diabetes type 1']
+Scores: [0.0065447986125946045]
+Labels: ['Diabetes']
+Scores: [0.0017093359492719173]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00026840000646188855]
+Labels: ['Mental Health']
+Scores: [0.40277865529060364]
+Labels: ['Cancer']
+Scores: [0.002497460227459669]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00603302801027894]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39703180
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Qualitative Research', 'Male', 'Female', 'Pharmacists', 'Adult', 'England', 'Middle Aged', 'Focus Groups', 'Mental Health', 'Community Pharmacy Services', 'Depression', 'Interviews as Topic', 'Professional Role', 'Anxiety']
+Labels: ['Diabetes type 2']
+Scores: [0.06860647350549698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03908958286046982]
+Labels: ['Diabetes type 1']
+Scores: [0.05960763245820999]
+Labels: ['Diabetes']
+Scores: [0.024286853149533272]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00990908220410347]
+Labels: ['Mental Health']
+Scores: [0.9865079522132874]
+Labels: ['Cancer']
+Scores: [0.032304681837558746]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03777531906962395]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702091
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Lebanon', 'Primary Health Care', 'Social Stigma', 'Qualitative Research', 'Mental Disorders', 'Male', 'Female', 'Attitude of Health Personnel', 'Health Personnel', 'Adult', 'Interviews as Topic', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.011022602207958698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008386564441025257]
+Labels: ['Diabetes type 1']
+Scores: [0.01273042056709528]
+Labels: ['Diabetes']
+Scores: [0.006365280598402023]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001423848094418645]
+Labels: ['Mental Health']
+Scores: [0.7961466312408447]
+Labels: ['Cancer']
+Scores: [0.008658895269036293]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004405630752444267]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39701588
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'COVID-19', 'Mental Health', 'Female', 'Male', 'Mental Health Services', 'United States', 'Child', 'Emotions', 'Telemedicine', 'Social Skills', 'School Mental Health Services']
+Labels: ['Diabetes type 2']
+Scores: [0.007732593920081854]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00015395205991808325]
+Labels: ['Diabetes type 1']
+Scores: [0.00753440335392952]
+Labels: ['Diabetes']
+Scores: [0.0011207202915102243]
+Labels: ['Cardiovascular diseases']
+Scores: [8.075456571532413e-05]
+Labels: ['Mental Health']
+Scores: [0.9593610763549805]
+Labels: ['Cancer']
+Scores: [0.00043033395195379853]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0003979889734182507]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39700572
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Machine Learning', 'Mental Health', 'Adult', 'Female']
+Labels: ['Diabetes type 2']
+Scores: [0.21133515238761902]
+Labels: ['Chronic respiratory disease']
+Scores: [0.17350435256958008]
+Labels: ['Diabetes type 1']
+Scores: [0.19879941642284393]
+Labels: ['Diabetes']
+Scores: [0.07636517286300659]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00893965270370245]
+Labels: ['Mental Health']
+Scores: [0.8420411944389343]
+Labels: ['Cancer']
+Scores: [0.0897301584482193]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14626196026802063]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39700155
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Female', 'Male', 'Mental Health', 'United Kingdom', 'Adolescent', 'Young Adult', 'Loneliness', 'Adult', 'Sex Factors', 'Pandemics', 'SARS-CoV-2', 'Longitudinal Studies', 'Aged', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.002441642340272665]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005410082521848381]
+Labels: ['Diabetes type 1']
+Scores: [0.0031787101179361343]
+Labels: ['Diabetes']
+Scores: [0.0005743319052271545]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005301274941302836]
+Labels: ['Mental Health']
+Scores: [0.9707607626914978]
+Labels: ['Cancer']
+Scores: [0.000969089160207659]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00036162350443191826]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699982
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Italy', 'Prospective Studies', 'COVID-19', 'Internship and Residency', 'Male', 'Female', 'Adult', 'Depression', 'Anxiety', 'Mental Health', 'Stress Disorders, Post-Traumatic', 'Pandemics']
+Labels: ['Diabetes type 2']
+Scores: [0.019427208229899406]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007820081897079945]
+Labels: ['Diabetes type 1']
+Scores: [0.01647915318608284]
+Labels: ['Diabetes']
+Scores: [0.010072936303913593]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018079441506415606]
+Labels: ['Mental Health']
+Scores: [0.9597053527832031]
+Labels: ['Cancer']
+Scores: [0.009885389357805252]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01327256578952074]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699544
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Absenteeism', 'Male', 'Female', 'Chikungunya Fever', 'Arthralgia', 'Middle Aged', 'Adult', 'Chronic Disease', 'Mental Health', 'Cross-Sectional Studies', 'Depression', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.00243154214695096]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9070098996162415]
+Labels: ['Diabetes type 1']
+Scores: [0.0019614018965512514]
+Labels: ['Diabetes']
+Scores: [0.0005329440464265645]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00021029477647971362]
+Labels: ['Mental Health']
+Scores: [0.9668211936950684]
+Labels: ['Cancer']
+Scores: [0.000548153358977288]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.25416770577430725]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Chronic respiratory disease', 'Mental Health']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39699441
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Brazil', 'Transgender Persons', 'Health Services Accessibility', 'Male', 'Female', 'Primary Health Care', 'National Health Programs', 'Interviews as Topic', 'Health Personnel', 'Health Services for Transgender Persons', 'Qualitative Research', 'Adult', 'Health Policy', 'Mental Health', 'Transsexualism', 'Young Adult', 'Middle Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.003627162426710129]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002380724297836423]
+Labels: ['Diabetes type 1']
+Scores: [0.0030907117761671543]
+Labels: ['Diabetes']
+Scores: [0.0012006411561742425]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006650393479503691]
+Labels: ['Mental Health']
+Scores: [0.007126523647457361]
+Labels: ['Cancer']
+Scores: [0.004906758666038513]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005763049237430096]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699366
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Workplace', 'Mental Health', 'Health Promotion', 'Occupational Health', 'Guidelines as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.00817285105586052]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0004888451658189297]
+Labels: ['Diabetes type 1']
+Scores: [0.005932440981268883]
+Labels: ['Diabetes']
+Scores: [0.0017484072595834732]
+Labels: ['Cardiovascular diseases']
+Scores: [5.244708154350519e-05]
+Labels: ['Mental Health']
+Scores: [0.9436930418014526]
+Labels: ['Cancer']
+Scores: [0.0024638506583869457]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004537126049399376]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39697298
+Predictions: ['Mental Health']
+MeshTerm: ['Adolescent', 'Female', 'Humans', 'Male', 'China', 'COVID-19', 'East Asian People', 'Mental Disorders', 'Mental Health', 'Risk Factors', 'Students', 'Suicidal Ideation', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.013310838490724564]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010366491973400116]
+Labels: ['Diabetes type 1']
+Scores: [0.011402261443436146]
+Labels: ['Diabetes']
+Scores: [0.006746114697307348]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0018694833852350712]
+Labels: ['Mental Health']
+Scores: [0.9247106313705444]
+Labels: ['Cancer']
+Scores: [0.009827742353081703]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006101068574935198]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39697006
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Health Services Accessibility', 'Health Literacy', 'Mexico', 'Female', 'Male', 'Adolescent', 'Child', 'Adult', 'Surveys and Questionnaires', 'Parents', 'Mental Health', 'Middle Aged', 'Health Behavior']
+Labels: ['Diabetes type 2']
+Scores: [0.11354365199804306]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08127353340387344]
+Labels: ['Diabetes type 1']
+Scores: [0.1135057806968689]
+Labels: ['Diabetes']
+Scores: [0.05536447465419769]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04009992256760597]
+Labels: ['Mental Health']
+Scores: [0.9221245050430298]
+Labels: ['Cancer']
+Scores: [0.06199523061513901]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16401994228363037]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696336
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Intimate Partner Violence', 'Female', 'Sex Offenses', 'Canada', 'Male', 'Transgender Persons', 'Surveys and Questionnaires', 'Crime Victims', 'Research', 'Stakeholder Participation', 'Mental Health', 'Health Priorities']
+Labels: ['Diabetes type 2']
+Scores: [0.01328551210463047]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004887570161372423]
+Labels: ['Diabetes type 1']
+Scores: [0.013231082819402218]
+Labels: ['Diabetes']
+Scores: [0.0044625564478337765]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008480008109472692]
+Labels: ['Mental Health']
+Scores: [0.021086031571030617]
+Labels: ['Cancer']
+Scores: [0.015998991206288338]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0025869798846542835]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696264
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Female', 'Male', 'Adult', 'Middle Aged', 'Adolescent', 'Young Adult', 'Ownership', 'Housing', 'Behavioral Risk Factor Surveillance System', 'Aged', 'United States', 'Mental Health', 'Prevalence', 'Depressive Disorder']
+Labels: ['Diabetes type 2']
+Scores: [0.006363852880895138]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0022525303065776825]
+Labels: ['Diabetes type 1']
+Scores: [0.005413178354501724]
+Labels: ['Diabetes']
+Scores: [0.0010345431510359049]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002925713488366455]
+Labels: ['Mental Health']
+Scores: [0.9820788502693176]
+Labels: ['Cancer']
+Scores: [0.0010663126595318317]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005478535313159227]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696245
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Sudan', 'Cross-Sectional Studies', 'Child', 'Female', 'Adolescent', 'Male', 'Refugees', 'Mental Health', 'Surveys and Questionnaires', 'Stress Disorders, Post-Traumatic']
+Labels: ['Diabetes type 2']
+Scores: [0.014387667179107666]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005174057558178902]
+Labels: ['Diabetes type 1']
+Scores: [0.014566555619239807]
+Labels: ['Diabetes']
+Scores: [0.005788848735392094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0011657653376460075]
+Labels: ['Mental Health']
+Scores: [0.9084415435791016]
+Labels: ['Cancer']
+Scores: [0.00863667856901884]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028359416872262955]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696093
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Female', 'Students', 'Universities', 'United Kingdom', 'Young Adult', 'Exercise', 'Cohort Studies', 'Life Style', 'Ethnicity', 'COVID-19', 'Health Behavior', 'Sex Factors', 'Adult', 'Adolescent', 'Body Mass Index', 'Diet', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.13754764199256897]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1367926001548767]
+Labels: ['Diabetes type 1']
+Scores: [0.13038255274295807]
+Labels: ['Diabetes']
+Scores: [0.10416007041931152]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07025358825922012]
+Labels: ['Mental Health']
+Scores: [0.11675703525543213]
+Labels: ['Cancer']
+Scores: [0.04031676426529884]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4106944501399994]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695709
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Patient Selection', 'Mental Disorders', 'Mental Health', 'Randomized Controlled Trials as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.0037398485001176596]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00017435294284950942]
+Labels: ['Diabetes type 1']
+Scores: [0.003954117652028799]
+Labels: ['Diabetes']
+Scores: [0.0001321296440437436]
+Labels: ['Cardiovascular diseases']
+Scores: [3.807758912444115e-05]
+Labels: ['Mental Health']
+Scores: [0.9925004243850708]
+Labels: ['Cancer']
+Scores: [0.0005857609212398529]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00018972439283970743]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695633
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Male', 'Adverse Childhood Experiences', 'Female', 'England', 'Adult', 'Middle Aged', 'Adolescent', 'Young Adult', 'Criminal Law', 'Health Status', 'Surveys and Questionnaires', 'Aged', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.008461511693894863]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00863037258386612]
+Labels: ['Diabetes type 1']
+Scores: [0.008324665948748589]
+Labels: ['Diabetes']
+Scores: [0.0030215282458812]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0017881797393783927]
+Labels: ['Mental Health']
+Scores: [0.29036441445350647]
+Labels: ['Cancer']
+Scores: [0.004403028637170792]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.5331862568855286]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695572
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Students', 'Video Games', 'Universities', 'Mental Health', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.029667222872376442]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008139829733408988]
+Labels: ['Diabetes type 1']
+Scores: [0.017241209745407104]
+Labels: ['Diabetes']
+Scores: [0.0027708476409316063]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00023433133901562542]
+Labels: ['Mental Health']
+Scores: [0.7527397871017456]
+Labels: ['Cancer']
+Scores: [0.003224567975848913]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0011015348136425018]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695547
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Military Personnel', 'Female', 'Male', 'Cross-Sectional Studies', 'China', 'Adult', 'Stress Disorders, Post-Traumatic', 'COVID-19', 'Sleep Initiation and Maintenance Disorders', 'Prevalence', 'Young Adult', 'Depression', 'Anxiety', 'Mental Health', 'Middle Aged', 'Surveys and Questionnaires', 'Adolescent', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.01058154460042715]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004663539584726095]
+Labels: ['Diabetes type 1']
+Scores: [0.012278148904442787]
+Labels: ['Diabetes']
+Scores: [0.001206338289193809]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006868835771456361]
+Labels: ['Mental Health']
+Scores: [0.9735473990440369]
+Labels: ['Cancer']
+Scores: [0.0015277959173545241]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.004513178952038288]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695533
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Belgium', 'Male', 'Female', 'Multimorbidity', 'Middle Aged', 'Adult', 'Aged', 'Health Surveys', 'Mental Disorders', 'Quality of Life', 'Young Adult', 'Mental Health', 'Adolescent', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.04090319946408272]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05254890397191048]
+Labels: ['Diabetes type 1']
+Scores: [0.03105001710355282]
+Labels: ['Diabetes']
+Scores: [0.029075756669044495]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012286164797842503]
+Labels: ['Mental Health']
+Scores: [0.9179390668869019]
+Labels: ['Cancer']
+Scores: [0.02601570449769497]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04943038523197174]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695518
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Resilience, Psychological', 'Military Personnel', 'Male', 'Social Support', 'Adult', 'Personal Satisfaction', 'Female', 'Mental Health', 'Depression', 'Longitudinal Studies', 'Young Adult', 'Surveys and Questionnaires', 'Cross-Sectional Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.014096463099122047]
+Labels: ['Chronic respiratory disease']
+Scores: [0.007961105555295944]
+Labels: ['Diabetes type 1']
+Scores: [0.013243753463029861]
+Labels: ['Diabetes']
+Scores: [0.004985274747014046]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008898625383153558]
+Labels: ['Mental Health']
+Scores: [0.9840309023857117]
+Labels: ['Cancer']
+Scores: [0.012360243126749992]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009854125790297985]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39695503
+Predictions: ['Noncommunicable Diseases', 'Mental Health']
+MeshTerm: ['Humans', 'Indonesia', 'Adolescent', 'Male', 'Female', 'Noncommunicable Diseases', 'Cross-Sectional Studies', 'Risk Factors', 'Mental Health', 'Quality of Life', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.06907564401626587]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07403238117694855]
+Labels: ['Diabetes type 1']
+Scores: [0.05188040807843208]
+Labels: ['Diabetes']
+Scores: [0.05287676304578781]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01694539375603199]
+Labels: ['Mental Health']
+Scores: [0.9077291488647461]
+Labels: ['Cancer']
+Scores: [0.01998181641101837]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9864504337310791]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39695274
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Students', 'Female', 'Male', 'Young Adult', 'Depression', 'Universities', 'China', 'Surveys and Questionnaires', 'Mental Health', 'Adolescent', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.060464758425951004]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03869382292032242]
+Labels: ['Diabetes type 1']
+Scores: [0.06277142465114594]
+Labels: ['Diabetes']
+Scores: [0.061822161078453064]
+Labels: ['Cardiovascular diseases']
+Scores: [0.021335918456315994]
+Labels: ['Mental Health']
+Scores: [0.9450997710227966]
+Labels: ['Cancer']
+Scores: [0.06126659736037254]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09222589433193207]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39693620
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Mobile Applications', 'Adult', 'Mental Health', 'Health Behavior', 'Life Style', 'Exercise', 'Telemedicine']
+Labels: ['Diabetes type 2']
+Scores: [0.03463450074195862]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004576567094773054]
+Labels: ['Diabetes type 1']
+Scores: [0.02387053333222866]
+Labels: ['Diabetes']
+Scores: [0.008210036903619766]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0007057301118038595]
+Labels: ['Mental Health']
+Scores: [0.9840620756149292]
+Labels: ['Cancer']
+Scores: [0.0015553872799500823]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0124138705432415]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39693599
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'COVID-19', 'Male', 'Female', 'Adult', 'Middle Aged', 'Mental Health', 'Mental Disorders', 'Aged', 'Schizophrenia', 'SARS-CoV-2']
+Labels: ['Diabetes type 2']
+Scores: [0.017835134640336037]
+Labels: ['Chronic respiratory disease']
+Scores: [0.021649807691574097]
+Labels: ['Diabetes type 1']
+Scores: [0.021458204835653305]
+Labels: ['Diabetes']
+Scores: [0.005110606551170349]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0028141748625785112]
+Labels: ['Mental Health']
+Scores: [0.9537146091461182]
+Labels: ['Cancer']
+Scores: [0.004505135118961334]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009211719036102295]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39691047
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Workplace', 'Burnout, Professional', 'Mental Health', 'Organizational Culture', 'Leadership', 'Health Personnel', 'Job Satisfaction', 'Ontario']
+Labels: ['Diabetes type 2']
+Scores: [0.007068617269396782]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0030024631414562464]
+Labels: ['Diabetes type 1']
+Scores: [0.005742547567933798]
+Labels: ['Diabetes']
+Scores: [0.007204254157841206]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009422278963029385]
+Labels: ['Mental Health']
+Scores: [0.9782605171203613]
+Labels: ['Cancer']
+Scores: [0.011126707307994366]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005771314725279808]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39691046
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Canada', 'Mental Health', 'Occupational Health', 'Workplace', 'Health Personnel', 'Organizational Culture', 'Surveys and Questionnaires', 'Patient Safety', 'Safety Management']
+Labels: ['Diabetes type 2']
+Scores: [0.035264018923044205]
+Labels: ['Chronic respiratory disease']
+Scores: [0.013737235218286514]
+Labels: ['Diabetes type 1']
+Scores: [0.03663724288344383]
+Labels: ['Diabetes']
+Scores: [0.020007962360978127]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003942854702472687]
+Labels: ['Mental Health']
+Scores: [0.40395382046699524]
+Labels: ['Cancer']
+Scores: [0.009267725050449371]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.028447717428207397]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39691045
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Workplace', 'Health Personnel', 'Mental Health', 'Occupational Health']
+Labels: ['Diabetes type 2']
+Scores: [0.0006160126067698002]
+Labels: ['Chronic respiratory disease']
+Scores: [7.95617452240549e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.0005896122893318534]
+Labels: ['Diabetes']
+Scores: [9.945333295036107e-05]
+Labels: ['Cardiovascular diseases']
+Scores: [3.7932601117063314e-05]
+Labels: ['Mental Health']
+Scores: [0.9945472478866577]
+Labels: ['Cancer']
+Scores: [7.418380118906498e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00020358883193694055]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39690437
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'South Australia', 'Housing', 'Male', 'Female', 'Adult', 'Middle Aged', 'Food Security', 'Health Status', 'Mental Health', 'Health Surveys', 'Socioeconomic Factors', 'Adolescent', 'Food Insecurity', 'Aged', 'Chronic Disease', 'Young Adult', 'Food Supply']
+Labels: ['Diabetes type 2']
+Scores: [0.020053453743457794]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005775445140898228]
+Labels: ['Diabetes type 1']
+Scores: [0.01716514676809311]
+Labels: ['Diabetes']
+Scores: [0.006196699570864439]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002209325786679983]
+Labels: ['Mental Health']
+Scores: [0.00024975056294351816]
+Labels: ['Cancer']
+Scores: [0.0012447910849004984]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006035950500518084]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39690123
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Adolescent', 'Adolescent Development', 'Young Adult', 'Adult', 'Child', 'Mental Health']
+Labels: ['Diabetes type 2']
+Scores: [0.02901153638958931]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012994948774576187]
+Labels: ['Diabetes type 1']
+Scores: [0.02897285483777523]
+Labels: ['Diabetes']
+Scores: [0.016244938597083092]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00738715473562479]
+Labels: ['Mental Health']
+Scores: [0.9529750943183899]
+Labels: ['Cancer']
+Scores: [0.013291650451719761]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.007968134246766567]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39690113
+Predictions: ['Mental Health']
+MeshTerm: ['Humans', 'Mexico', 'Adolescent', 'Male', 'Female', 'Racism', 'Mental Disorders', 'Qualitative Research', 'Mental Health', 'Mental Health Services', 'Young Adult', 'Interviews as Topic', 'Health Services Accessibility', 'Urban Population', 'Urban Health', 'Indigenous Peoples', 'Patient Acceptance of Health Care']
+Labels: ['Diabetes type 2']
+Scores: [0.08258259296417236]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06331604719161987]
+Labels: ['Diabetes type 1']
+Scores: [0.09173104166984558]
+Labels: ['Diabetes']
+Scores: [0.06853608042001724]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013779226690530777]
+Labels: ['Mental Health']
+Scores: [0.9750561714172363]
+Labels: ['Cancer']
+Scores: [0.11909790337085724]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04289906844496727]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Mental Health']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738287
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Biomarkers, Tumor', 'Prognosis', 'Tumor Microenvironment', 'Melanoma', 'Gene Expression Regulation, Neoplastic', 'Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.21190151572227478]
+Labels: ['Chronic respiratory disease']
+Scores: [0.13212062418460846]
+Labels: ['Diabetes type 1']
+Scores: [0.23011712729930878]
+Labels: ['Diabetes']
+Scores: [0.10861766338348389]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02993517555296421]
+Labels: ['Mental Health']
+Scores: [0.06694585829973221]
+Labels: ['Cancer']
+Scores: [0.9063827991485596]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.25044775009155273]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738156
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Precision Medicine', 'Genome, Human', 'Theranostic Nanomedicine', 'Deep Learning']
+Labels: ['Diabetes type 2']
+Scores: [0.3378305435180664]
+Labels: ['Chronic respiratory disease']
+Scores: [0.290758341550827]
+Labels: ['Diabetes type 1']
+Scores: [0.3463907837867737]
+Labels: ['Diabetes']
+Scores: [0.24766650795936584]
+Labels: ['Cardiovascular diseases']
+Scores: [0.22550001740455627]
+Labels: ['Mental Health']
+Scores: [0.1920805424451828]
+Labels: ['Cancer']
+Scores: [0.9668750762939453]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.29507848620414734]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738052
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Mutation', 'Neoplasms', 'Precision Medicine', 'Genomics', 'Immunotherapy', 'Carcinoma, Non-Small-Cell Lung', 'Machine Learning', 'Female', 'Male', 'Treatment Outcome', 'Electronic Health Records', 'Lung Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.07829876244068146]
+Labels: ['Chronic respiratory disease']
+Scores: [0.49069690704345703]
+Labels: ['Diabetes type 1']
+Scores: [0.0723709762096405]
+Labels: ['Diabetes']
+Scores: [0.018880236893892288]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014713595621287823]
+Labels: ['Mental Health']
+Scores: [0.0630461722612381]
+Labels: ['Cancer']
+Scores: [0.959672212600708]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.062487125396728516]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738026
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'DNA Replication', 'Mutagenesis', 'Pancreatic Neoplasms', 'Neoplasms', 'Cell Line, Tumor', 'DNA Copy Number Variations', 'G-Quadruplexes', 'Gene Rearrangement', 'Carcinoma, Pancreatic Ductal', 'DNA Repair', 'Mutation']
+Labels: ['Diabetes type 2']
+Scores: [0.011270605027675629]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004246652126312256]
+Labels: ['Diabetes type 1']
+Scores: [0.011953205801546574]
+Labels: ['Diabetes']
+Scores: [0.0021228776313364506]
+Labels: ['Cardiovascular diseases']
+Scores: [0.014299048110842705]
+Labels: ['Mental Health']
+Scores: [0.05879012122750282]
+Labels: ['Cancer']
+Scores: [0.9763553738594055]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06055976822972298]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39738003
+Predictions: ['Cancer']
+MeshTerm: ["5'-Nucleotidase", 'Animals', 'Humans', 'Mice', 'GPI-Linked Proteins', 'Epitopes', 'Cell Line, Tumor', 'Xenograft Model Antitumor Assays', 'Cell Proliferation', 'Antibodies, Monoclonal, Humanized', 'Neoplasms', 'Female', 'T-Lymphocytes', 'Antibodies, Monoclonal', 'Mice, Inbred BALB C', 'Combined Antibody Therapeutics']
+Labels: ['Diabetes type 2']
+Scores: [0.0620894581079483]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12014641612768173]
+Labels: ['Diabetes type 1']
+Scores: [0.06166496127843857]
+Labels: ['Diabetes']
+Scores: [0.032313812524080276]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05391625687479973]
+Labels: ['Mental Health']
+Scores: [0.18762405216693878]
+Labels: ['Cancer']
+Scores: [0.9762232303619385]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1674613654613495]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737979
+Predictions: ['Cancer']
+MeshTerm: ['Pyroptosis', 'Animals', 'Mice', 'Inflammasomes', 'Mice, Inbred C57BL', 'Humans', 'Cell Line, Tumor', 'Cytokines', 'Melanoma, Experimental', 'Interleukin-18', 'Interleukin-1beta', 'Phosphate-Binding Proteins', 'Intracellular Signaling Peptides and Proteins', 'Neoplasms', 'Female', 'Interferon-gamma', 'Interleukin-12', 'Gasdermins']
+Labels: ['Diabetes type 2']
+Scores: [0.05743284523487091]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22463111579418182]
+Labels: ['Diabetes type 1']
+Scores: [0.05368645116686821]
+Labels: ['Diabetes']
+Scores: [0.03591790422797203]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06776680797338486]
+Labels: ['Mental Health']
+Scores: [0.12735405564308167]
+Labels: ['Cancer']
+Scores: [0.8266462683677673]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0981689840555191]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737928
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Immunotherapy', 'Neoplasms', 'Histocompatibility Antigens Class I', 'Peptides', 'Antigen Presentation', 'Cancer Vaccines', 'Alleles', 'Computational Biology']
+Labels: ['Diabetes type 2']
+Scores: [0.16580140590667725]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22609670460224152]
+Labels: ['Diabetes type 1']
+Scores: [0.18436670303344727]
+Labels: ['Diabetes']
+Scores: [0.0922125056385994]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1108609139919281]
+Labels: ['Mental Health']
+Scores: [0.05509945750236511]
+Labels: ['Cancer']
+Scores: [0.9302278161048889]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.19450680911540985]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737671
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Humans', 'Antineoplastic Agents', 'Molecular Structure', 'Neoplasms', 'Nitrogen', 'Structure-Activity Relationship', 'Triazoles']
+Labels: ['Diabetes type 2']
+Scores: [0.04701635614037514]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07754462212324142]
+Labels: ['Diabetes type 1']
+Scores: [0.05575636774301529]
+Labels: ['Diabetes']
+Scores: [0.01635347492992878]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03171994164586067]
+Labels: ['Mental Health']
+Scores: [0.05100644379854202]
+Labels: ['Cancer']
+Scores: [0.90093994140625]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04204002395272255]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737633
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Child', 'Male', 'Female', 'Child, Preschool', 'Retrospective Studies', 'Turkey', 'Adolescent', 'Measles-Mumps-Rubella Vaccine', 'Neoplasms', 'Antibodies, Viral', 'Infant', 'Vaccination', 'Hepatitis B Vaccines', 'Chickenpox Vaccine', 'Hepatitis A Vaccines', 'Follow-Up Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.00036731993895955384]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0005484872381202877]
+Labels: ['Diabetes type 1']
+Scores: [0.00032229776843450963]
+Labels: ['Diabetes']
+Scores: [0.00016665487783029675]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00018180576444137841]
+Labels: ['Mental Health']
+Scores: [0.00021001676213927567]
+Labels: ['Cancer']
+Scores: [0.9921506643295288]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0008159159333445132]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737568
+Predictions: ['Cancer']
+MeshTerm: ['Neoplasms', 'Humans', 'Benchmarking', 'Algorithms', 'Computational Biology', 'Protein Interaction Maps', 'Protein Interaction Mapping', 'Gene Regulatory Networks']
+Labels: ['Diabetes type 2']
+Scores: [0.15777678787708282]
+Labels: ['Chronic respiratory disease']
+Scores: [0.15315461158752441]
+Labels: ['Diabetes type 1']
+Scores: [0.18239502608776093]
+Labels: ['Diabetes']
+Scores: [0.13249540328979492]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02875271812081337]
+Labels: ['Mental Health']
+Scores: [0.0924149826169014]
+Labels: ['Cancer']
+Scores: [0.9459237456321716]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.35372838377952576]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737564
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Germ-Line Mutation', 'Neoplasms', 'Reproducibility of Results', 'Mutation', 'Computational Biology', 'Genomics', 'Lung Neoplasms', 'Biomarkers, Tumor']
+Labels: ['Diabetes type 2']
+Scores: [0.18636928498744965]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6259154677391052]
+Labels: ['Diabetes type 1']
+Scores: [0.1579764038324356]
+Labels: ['Diabetes']
+Scores: [0.05230109393596649]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08174485713243484]
+Labels: ['Mental Health']
+Scores: [0.10527168214321136]
+Labels: ['Cancer']
+Scores: [0.9508345127105713]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11858740448951721]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737563
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Algorithms', 'Biomarkers, Tumor', 'Machine Learning', 'Neoplasms', 'Computational Biology']
+Labels: ['Diabetes type 2']
+Scores: [0.12520921230316162]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0736117959022522]
+Labels: ['Diabetes type 1']
+Scores: [0.12601029872894287]
+Labels: ['Diabetes']
+Scores: [0.01891455240547657]
+Labels: ['Cardiovascular diseases']
+Scores: [0.021201854571700096]
+Labels: ['Mental Health']
+Scores: [0.04770568013191223]
+Labels: ['Cancer']
+Scores: [0.975396454334259]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.43757686018943787]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737507
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Male', 'Female', 'Aged', 'Global Health', 'Middle Aged', 'Incidence', 'Aged, 80 and over', 'Global Burden of Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.10784372687339783]
+Labels: ['Chronic respiratory disease']
+Scores: [0.23298609256744385]
+Labels: ['Diabetes type 1']
+Scores: [0.10430945456027985]
+Labels: ['Diabetes']
+Scores: [0.03724668547511101]
+Labels: ['Cardiovascular diseases']
+Scores: [0.045717090368270874]
+Labels: ['Mental Health']
+Scores: [0.26089128851890564]
+Labels: ['Cancer']
+Scores: [0.9583480358123779]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.3403189182281494]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737190
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Nucleotidyltransferases', 'Signal Transduction', 'Membrane Proteins', 'Medicine, Chinese Traditional', 'Animals', 'Neoplasms', 'Drugs, Chinese Herbal', 'Immunity, Innate', 'Autoimmune Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.2082507461309433]
+Labels: ['Chronic respiratory disease']
+Scores: [0.35871052742004395]
+Labels: ['Diabetes type 1']
+Scores: [0.20431391894817352]
+Labels: ['Diabetes']
+Scores: [0.08923199772834778]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08099325001239777]
+Labels: ['Mental Health']
+Scores: [0.03621570020914078]
+Labels: ['Cancer']
+Scores: [0.4908870458602905]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15218164026737213]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737177
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Biomarkers, Tumor', 'Prognosis', 'Gene Expression Regulation, Neoplastic', 'Cell Line, Tumor', 'Membrane Proteins', 'Immunotherapy', 'Female', 'Male', 'Tumor Microenvironment', 'Lymphocytes, Tumor-Infiltrating', 'DNA Copy Number Variations']
+Labels: ['Diabetes type 2']
+Scores: [0.0012283901451155543]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00203674822114408]
+Labels: ['Diabetes type 1']
+Scores: [0.0013280409621074796]
+Labels: ['Diabetes']
+Scores: [0.0004842376511078328]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000499570625834167]
+Labels: ['Mental Health']
+Scores: [0.00039828894659876823]
+Labels: ['Cancer']
+Scores: [0.9566279649734497]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0021050935611128807]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736787
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Antibodies, Monoclonal, Humanized', 'Aged', 'Adult', 'Lymphocyte Activation Gene 3 Protein', 'Programmed Cell Death 1 Receptor', 'Antineoplastic Combined Chemotherapy Protocols', 'Neoplasms', 'Immune Checkpoint Inhibitors', 'Antigens, CD']
+Labels: ['Diabetes type 2']
+Scores: [0.00033029800397343934]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0001905235112644732]
+Labels: ['Diabetes type 1']
+Scores: [0.000244972383370623]
+Labels: ['Diabetes']
+Scores: [0.0001627158490009606]
+Labels: ['Cardiovascular diseases']
+Scores: [9.92481509456411e-05]
+Labels: ['Mental Health']
+Scores: [0.00032498390646651387]
+Labels: ['Cancer']
+Scores: [0.9815675020217896]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0007126802811399102]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736754
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Iran', 'Health Services Accessibility', 'Antineoplastic Agents', 'Neoplasms', 'Health Policy', 'Social Network Analysis', 'Policy Making', 'Stakeholder Participation', 'Surveys and Questionnaires', 'Social Networking', 'Drug Industry']
+Labels: ['Diabetes type 2']
+Scores: [0.0018009805353358388]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0013784042093902826]
+Labels: ['Diabetes type 1']
+Scores: [0.0021910006180405617]
+Labels: ['Diabetes']
+Scores: [0.0005371531005948782]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0003564509388525039]
+Labels: ['Mental Health']
+Scores: [0.0016854086425155401]
+Labels: ['Cancer']
+Scores: [0.9513418078422546]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.26425111293792725]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736712
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Patient-Centered Care', 'Neoplasms', 'Interprofessional Relations', 'Interprofessional Education', 'Patient Care Team', 'Health Personnel', 'Cooperative Behavior']
+Labels: ['Diabetes type 2']
+Scores: [0.047925252467393875]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01735788583755493]
+Labels: ['Diabetes type 1']
+Scores: [0.053860846906900406]
+Labels: ['Diabetes']
+Scores: [0.001817932352423668]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000328630703734234]
+Labels: ['Mental Health']
+Scores: [0.0004862490459345281]
+Labels: ['Cancer']
+Scores: [0.9304169416427612]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00301111931912601]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736689
+Predictions: ['Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Cardiovascular Diseases', 'Neoplasms', 'Male', 'Female', 'Middle Aged', 'Adult', 'Longitudinal Studies', 'Aged', 'Proportional Hazards Models', 'Diabetes Mellitus', 'Risk Factors', 'Cardiometabolic Risk Factors', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.003595756134018302]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0016912327846512198]
+Labels: ['Diabetes type 1']
+Scores: [0.003273831680417061]
+Labels: ['Diabetes']
+Scores: [0.0013767826603725553]
+Labels: ['Cardiovascular diseases']
+Scores: [0.961646318435669]
+Labels: ['Mental Health']
+Scores: [0.0009968432132154703]
+Labels: ['Cancer']
+Scores: [0.9326162338256836]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.03587875887751579]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases', 'Cancer']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39736601
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Female', 'Male', 'Middle Aged', 'Adult', 'Self Efficacy', 'Surveys and Questionnaires', 'Latent Class Analysis', 'Aged', 'Socioeconomic Factors', 'Avoidance Learning']
+Labels: ['Diabetes type 2']
+Scores: [0.008631945587694645]
+Labels: ['Chronic respiratory disease']
+Scores: [0.012108275666832924]
+Labels: ['Diabetes type 1']
+Scores: [0.008313695900142193]
+Labels: ['Diabetes']
+Scores: [0.001067077973857522]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005017317016609013]
+Labels: ['Mental Health']
+Scores: [0.006551399827003479]
+Labels: ['Cancer']
+Scores: [0.8260897994041443]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11508987098932266]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736556
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Information Seeking Behavior', 'Early Detection of Cancer', 'Qualitative Research', 'Neoplasms', 'Needs Assessment']
+Labels: ['Diabetes type 2']
+Scores: [0.001415860839188099]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0007073216256685555]
+Labels: ['Diabetes type 1']
+Scores: [0.0015257947379723191]
+Labels: ['Diabetes']
+Scores: [0.00034578380291350186]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001240051642525941]
+Labels: ['Mental Health']
+Scores: [0.0002994082751683891]
+Labels: ['Cancer']
+Scores: [0.9679093956947327]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.000836160674225539]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736554
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Middle East', 'Male', 'Africa, Northern', 'Neoplasms', 'Incidence', 'Female', 'Child', 'Adolescent', 'Child, Preschool', 'Infant', 'Health Status Disparities', 'Socioeconomic Factors', 'Young Adult', 'Infant, Newborn']
+Labels: ['Diabetes type 2']
+Scores: [0.01863701641559601]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1858668476343155]
+Labels: ['Diabetes type 1']
+Scores: [0.029132463037967682]
+Labels: ['Diabetes']
+Scores: [0.004326971713453531]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0010668581817299128]
+Labels: ['Mental Health']
+Scores: [0.018910475075244904]
+Labels: ['Cancer']
+Scores: [0.9473322629928589]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04874793812632561]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736368
+Predictions: ['Cancer']
+MeshTerm: ['Ferroptosis', 'Photochemotherapy', 'Humans', 'Photosensitizing Agents', 'Reactive Oxygen Species', 'Neoplasms', 'Lipid Peroxidation']
+Labels: ['Diabetes type 2']
+Scores: [0.05658462643623352]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2227674424648285]
+Labels: ['Diabetes type 1']
+Scores: [0.07717540115118027]
+Labels: ['Diabetes']
+Scores: [0.02835870161652565]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0589328370988369]
+Labels: ['Mental Health']
+Scores: [0.13754160702228546]
+Labels: ['Cancer']
+Scores: [0.9541373252868652]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16908760368824005]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736217
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Bacteria', 'Surface Properties', 'Animals', 'Biological Products', 'Neoplasms', 'Biological Therapy', 'Biocompatible Materials']
+Labels: ['Diabetes type 2']
+Scores: [0.12840759754180908]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05884823575615883]
+Labels: ['Diabetes type 1']
+Scores: [0.1428411453962326]
+Labels: ['Diabetes']
+Scores: [0.04833051934838295]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06036216765642166]
+Labels: ['Mental Health']
+Scores: [0.06044064462184906]
+Labels: ['Cancer']
+Scores: [0.6159167289733887]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06496883183717728]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736186
+Predictions: ['Cancer']
+MeshTerm: ['Spectrum Analysis, Raman', 'Humans', 'N-Acetylneuraminic Acid', 'Biomarkers, Tumor', 'Neoplasms', 'Animals', 'Polysaccharides']
+Labels: ['Diabetes type 2']
+Scores: [0.04331563413143158]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05958101525902748]
+Labels: ['Diabetes type 1']
+Scores: [0.04268781095743179]
+Labels: ['Diabetes']
+Scores: [0.014234068803489208]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03262115642428398]
+Labels: ['Mental Health']
+Scores: [0.11465335637331009]
+Labels: ['Cancer']
+Scores: [0.9226232767105103]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07661294937133789]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736017
+Predictions: ['Cancer']
+MeshTerm: ['Mesenchymal Stem Cells', 'Neoplasms', 'Gene Expression', 'Humans', 'HeLa Cells', 'MCF-7 Cells', 'A549 Cells', 'Reference Values', 'Genes, Essential', 'Real-Time Polymerase Chain Reaction']
+Labels: ['Diabetes type 2']
+Scores: [0.005318036302924156]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001988112460821867]
+Labels: ['Diabetes type 1']
+Scores: [0.005708735436201096]
+Labels: ['Diabetes']
+Scores: [0.002718178788200021]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006508276565000415]
+Labels: ['Mental Health']
+Scores: [0.0024081419687718153]
+Labels: ['Cancer']
+Scores: [0.9312657713890076]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002373951021581888]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735992
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Cell Line, Tumor', 'Transcriptome', 'Neoplasms', 'Gene Fusion', 'Sequence Analysis, RNA', 'Gene Expression Profiling', 'Oncogene Proteins, Fusion']
+Labels: ['Diabetes type 2']
+Scores: [0.004180118907243013]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008665166678838432]
+Labels: ['Diabetes type 1']
+Scores: [0.005029003135859966]
+Labels: ['Diabetes']
+Scores: [0.0013245907612144947]
+Labels: ['Cardiovascular diseases']
+Scores: [6.58498756820336e-05]
+Labels: ['Mental Health']
+Scores: [0.0003776421654038131]
+Labels: ['Cancer']
+Scores: [0.9877505898475647]
+Labels: ['Noncommunicable Diseases']
+Scores: [9.826860332395881e-05]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735988
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Warburg Effect, Oncologic', 'Neoplasms', 'Glycolysis', 'Animals', 'Oxidative Phosphorylation', 'Energy Metabolism', 'Mitochondria', 'Cell Proliferation']
+Labels: ['Diabetes type 2']
+Scores: [0.11683206260204315]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3425132930278778]
+Labels: ['Diabetes type 1']
+Scores: [0.12772396206855774]
+Labels: ['Diabetes']
+Scores: [0.09953916817903519]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2507912218570709]
+Labels: ['Mental Health']
+Scores: [0.35142743587493896]
+Labels: ['Cancer']
+Scores: [0.9937037825584412]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14215990900993347]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735979
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Aneuploidy', 'Machine Learning', 'Neoplasms', 'Myristoylated Alanine-Rich C Kinase Substrate', 'Membrane Proteins', 'Gene Expression Regulation, Neoplastic', 'Cell Proliferation', 'Cytoskeletal Proteins']
+Labels: ['Diabetes type 2']
+Scores: [0.0003490126400720328]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00018104698392562568]
+Labels: ['Diabetes type 1']
+Scores: [0.0003908563812728971]
+Labels: ['Diabetes']
+Scores: [0.00010175534407608211]
+Labels: ['Cardiovascular diseases']
+Scores: [9.193555888487026e-05]
+Labels: ['Mental Health']
+Scores: [9.994793799705803e-05]
+Labels: ['Cancer']
+Scores: [0.992357075214386]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.000748897553421557]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735978
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Immunity, Innate', 'Tumor-Associated Macrophages', 'Neoplasms', 'Tumor Microenvironment', 'Phenotype', 'Animals', 'Epigenesis, Genetic']
+Labels: ['Diabetes type 2']
+Scores: [0.019466087222099304]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07346823066473007]
+Labels: ['Diabetes type 1']
+Scores: [0.021167514845728874]
+Labels: ['Diabetes']
+Scores: [0.005638711154460907]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013694273307919502]
+Labels: ['Mental Health']
+Scores: [0.032782506197690964]
+Labels: ['Cancer']
+Scores: [0.8944002389907837]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019241664558649063]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735682
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Biomarkers, Tumor', 'Disease Progression', 'Heterogeneous-Nuclear Ribonucleoprotein Group C', 'Neoplasms', 'Tumor Microenvironment', 'Prognosis', 'Gene Expression Regulation, Neoplastic', 'Liver Neoplasms', 'Cell Line, Tumor', 'Cell Proliferation']
+Labels: ['Diabetes type 2']
+Scores: [0.0022123244125396013]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001311378669925034]
+Labels: ['Diabetes type 1']
+Scores: [0.0020284715574234724]
+Labels: ['Diabetes']
+Scores: [0.000954764720518142]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000365023355698213]
+Labels: ['Mental Health']
+Scores: [0.002803147304803133]
+Labels: ['Cancer']
+Scores: [0.9642446637153625]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.003958689980208874]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735681
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Nanoparticles', 'Drug Delivery Systems', 'Tumor Microenvironment', 'Antineoplastic Agents', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.08322490751743317]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1681969314813614]
+Labels: ['Diabetes type 1']
+Scores: [0.09845718741416931]
+Labels: ['Diabetes']
+Scores: [0.039007965475320816]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05111188814043999]
+Labels: ['Mental Health']
+Scores: [0.18863366544246674]
+Labels: ['Cancer']
+Scores: [0.8545700311660767]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13818243145942688]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735536
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Humans', 'CD28 Antigens', 'Mice', 'Cell Adhesion Molecules', 'Neoplasms', 'Lymphocyte Activation', 'Cell Line, Tumor', 'Immunotherapy, Adoptive', 'T-Lymphocytes', 'Receptors, Antigen, T-Cell', 'Xenograft Model Antitumor Assays', 'Female', 'Nectins']
+Labels: ['Diabetes type 2']
+Scores: [0.004761225543916225]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001840347540564835]
+Labels: ['Diabetes type 1']
+Scores: [0.004583423491567373]
+Labels: ['Diabetes']
+Scores: [0.0021856571547687054]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005578970885835588]
+Labels: ['Mental Health']
+Scores: [0.03254740312695503]
+Labels: ['Cancer']
+Scores: [0.9600030779838562]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1958068460226059]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735534
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Immunotherapy', 'Neoplasms', 'Combined Modality Therapy', 'Humans', 'Ultrasonic Therapy', 'Disease Models, Animal']
+Labels: ['Diabetes type 2']
+Scores: [0.00235073734074831]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006841224967502058]
+Labels: ['Diabetes type 1']
+Scores: [0.002129956381395459]
+Labels: ['Diabetes']
+Scores: [0.0007107296260073781]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00022821221500635147]
+Labels: ['Mental Health']
+Scores: [0.0006164368242025375]
+Labels: ['Cancer']
+Scores: [0.9163515567779541]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.002376170828938484]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39735533
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Early Detection of Cancer', 'Metabolomics', 'Male', 'Female', 'Biomarkers, Tumor', 'Middle Aged', 'Aged', 'Stomach Neoplasms', 'Colorectal Neoplasms', 'Metabolome', 'Adult', 'Lung Neoplasms', 'Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.017308179289102554]
+Labels: ['Chronic respiratory disease']
+Scores: [0.022980209439992905]
+Labels: ['Diabetes type 1']
+Scores: [0.02123952843248844]
+Labels: ['Diabetes']
+Scores: [0.001530695939436555]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0009901871671900153]
+Labels: ['Mental Health']
+Scores: [0.007539327722042799]
+Labels: ['Cancer']
+Scores: [0.9648311734199524]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.153067946434021]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39734197
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Humans', '5-Methylcytosine', 'DNA Methylation', 'DNA Transposable Elements', 'Epigenesis, Genetic', 'Nanopore Sequencing', 'Nanopores', 'Neoplasms', 'Sequence Analysis, DNA']
+Labels: ['Diabetes type 2']
+Scores: [0.19086626172065735]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16115836799144745]
+Labels: ['Diabetes type 1']
+Scores: [0.21649566292762756]
+Labels: ['Diabetes']
+Scores: [0.08922933042049408]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06758973747491837]
+Labels: ['Mental Health']
+Scores: [0.08166882395744324]
+Labels: ['Cancer']
+Scores: [0.9094502925872803]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05862787738442421]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733511
+Predictions: ['Cancer']
+MeshTerm: ['Protein-Arginine N-Methyltransferases', 'Humans', 'Enzyme Inhibitors', 'Neoplasms', 'Antineoplastic Agents', 'Molecular Structure', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.09382764250040054]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12497374415397644]
+Labels: ['Diabetes type 1']
+Scores: [0.10949938744306564]
+Labels: ['Diabetes']
+Scores: [0.043398190289735794]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03219885006546974]
+Labels: ['Mental Health']
+Scores: [0.05740834400057793]
+Labels: ['Cancer']
+Scores: [0.9315131306648254]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04022962972521782]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733440
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Occupational Exposure', 'Occupational Diseases', 'Carcinogens']
+Labels: ['Diabetes type 2']
+Scores: [0.056736886501312256]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1006808876991272]
+Labels: ['Diabetes type 1']
+Scores: [0.05774728208780289]
+Labels: ['Diabetes']
+Scores: [0.010243011638522148]
+Labels: ['Cardiovascular diseases']
+Scores: [0.007993490435183048]
+Labels: ['Mental Health']
+Scores: [0.01177961565554142]
+Labels: ['Cancer']
+Scores: [0.8974898457527161]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.01970035210251808]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733439
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Antigen Presentation', 'Immunotherapy', 'Neoplasms', 'Antigens, Neoplasm', 'Immune Checkpoint Inhibitors', 'HLA Antigens']
+Labels: ['Diabetes type 2']
+Scores: [0.03332670405507088]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11254283785820007]
+Labels: ['Diabetes type 1']
+Scores: [0.036132872104644775]
+Labels: ['Diabetes']
+Scores: [0.012893031351268291]
+Labels: ['Cardiovascular diseases']
+Scores: [0.021068602800369263]
+Labels: ['Mental Health']
+Scores: [0.02246386557817459]
+Labels: ['Cancer']
+Scores: [0.659069836139679]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.039208587259054184]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733429
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Registries', 'Female', 'Male', 'Tunisia', 'Neoplasms', 'Incidence', 'Middle Aged', 'Adult', 'Aged', 'Adolescent', 'Young Adult', 'Infant, Newborn', 'Infant', 'Child', 'Child, Preschool', 'Follow-Up Studies', 'Prognosis', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.003013050649315119]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02057570219039917]
+Labels: ['Diabetes type 1']
+Scores: [0.0036166671197861433]
+Labels: ['Diabetes']
+Scores: [0.0007166297873482108]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006109283422119915]
+Labels: ['Mental Health']
+Scores: [0.0015166393714025617]
+Labels: ['Cancer']
+Scores: [0.9905702471733093]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022339366376399994]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39733076
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Mitochondria', 'Gene Expression Regulation, Neoplastic', 'Biomarkers, Tumor', 'Prognosis', 'Genomics', 'Cell Proliferation', 'Kaplan-Meier Estimate']
+Labels: ['Diabetes type 2']
+Scores: [0.07256702333688736]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1309812217950821]
+Labels: ['Diabetes type 1']
+Scores: [0.08414081484079361]
+Labels: ['Diabetes']
+Scores: [0.027503227815032005]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04007727652788162]
+Labels: ['Mental Health']
+Scores: [0.0836222767829895]
+Labels: ['Cancer']
+Scores: [0.914198637008667]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.08626417070627213]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732961
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Biomarkers, Tumor', 'Transcription Factors', 'Proto-Oncogene Proteins c-ets', 'Prognosis', 'Neoplasms', 'Gene Expression Regulation, Neoplastic', 'Tumor Microenvironment', 'Adenovirus E1A Proteins', 'DNA-Binding Proteins', 'Kaplan-Meier Estimate', 'Gene Expression Profiling']
+Labels: ['Diabetes type 2']
+Scores: [0.04120627045631409]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07040652632713318]
+Labels: ['Diabetes type 1']
+Scores: [0.047145817428827286]
+Labels: ['Diabetes']
+Scores: [0.01457238383591175]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01528918370604515]
+Labels: ['Mental Health']
+Scores: [0.01666007936000824]
+Labels: ['Cancer']
+Scores: [0.9176018238067627]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.023676030337810516]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732661
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Fever of Unknown Origin', 'Prospective Studies', 'Female', 'Male', 'China', 'Middle Aged', 'Adult', 'Aged', 'Neoplasms', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.00013814668636769056]
+Labels: ['Chronic respiratory disease']
+Scores: [0.004393723793327808]
+Labels: ['Diabetes type 1']
+Scores: [0.00012747582513839006]
+Labels: ['Diabetes']
+Scores: [8.977828110801056e-05]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006267029093578458]
+Labels: ['Mental Health']
+Scores: [0.0030481494031846523]
+Labels: ['Cancer']
+Scores: [0.00041654965025372803]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05540063977241516]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732529
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Immune Checkpoint Inhibitors', 'Neoplasms', 'Animals', 'Signal Transduction', 'Cytokines', 'Immunotherapy', 'Molecular Targeted Therapy']
+Labels: ['Diabetes type 2']
+Scores: [0.068517304956913]
+Labels: ['Chronic respiratory disease']
+Scores: [0.12017287313938141]
+Labels: ['Diabetes type 1']
+Scores: [0.06538019329309464]
+Labels: ['Diabetes']
+Scores: [0.06598538905382156]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09051311016082764]
+Labels: ['Mental Health']
+Scores: [0.06521693617105484]
+Labels: ['Cancer']
+Scores: [0.5409104228019714]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09285231679677963]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732497
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Feasibility Studies', 'Fear', 'Schizophrenia', 'Psychotic Disorders', 'Neoplasms', 'Psychosocial Intervention', 'Neoplasm Recurrence, Local', 'Research Design']
+Labels: ['Diabetes type 2']
+Scores: [0.00022573189926333725]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00026129622710868716]
+Labels: ['Diabetes type 1']
+Scores: [0.0002109437045874074]
+Labels: ['Diabetes']
+Scores: [0.0001059721180354245]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00010135719639947638]
+Labels: ['Mental Health']
+Scores: [0.6632562875747681]
+Labels: ['Cancer']
+Scores: [0.3331695795059204]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00101313681807369]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732363
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'T-Lymphocytes', 'Cell Movement', 'Immunotherapy, Adoptive', 'Tumor Microenvironment', 'Receptors, Chimeric Antigen', 'Neoplasms', 'Microfluidics', 'Lab-On-A-Chip Devices', 'Cell Line, Tumor']
+Labels: ['Diabetes type 2']
+Scores: [0.11743132025003433]
+Labels: ['Chronic respiratory disease']
+Scores: [0.15127739310264587]
+Labels: ['Diabetes type 1']
+Scores: [0.13753825426101685]
+Labels: ['Diabetes']
+Scores: [0.09195462614297867]
+Labels: ['Cardiovascular diseases']
+Scores: [0.031730253249406815]
+Labels: ['Mental Health']
+Scores: [0.0843605175614357]
+Labels: ['Cancer']
+Scores: [0.8723099827766418]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.16200195252895355]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732216
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Antioxidants', 'Flavonoids', 'Nanoparticles', 'Animals', 'Neuroprotective Agents', 'Cosmeceuticals', 'Neoplasms', 'Biological Availability', 'Nanoparticle Drug Delivery System', 'Antineoplastic Agents', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.0625477060675621]
+Labels: ['Chronic respiratory disease']
+Scores: [0.051503654569387436]
+Labels: ['Diabetes type 1']
+Scores: [0.05722085013985634]
+Labels: ['Diabetes']
+Scores: [0.017069468274712563]
+Labels: ['Cardiovascular diseases']
+Scores: [0.26421260833740234]
+Labels: ['Mental Health']
+Scores: [0.010879682376980782]
+Labels: ['Cancer']
+Scores: [0.25420066714286804]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09183720499277115]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39732178
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Mitochondria', 'Neoplasms', 'Cytoskeleton', 'Animals', 'Autophagy', 'Apoptosis', 'Cell Proliferation']
+Labels: ['Diabetes type 2']
+Scores: [0.06348692625761032]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05393761396408081]
+Labels: ['Diabetes type 1']
+Scores: [0.06506702303886414]
+Labels: ['Diabetes']
+Scores: [0.01771007478237152]
+Labels: ['Cardiovascular diseases']
+Scores: [0.020095737650990486]
+Labels: ['Mental Health']
+Scores: [0.12433180212974548]
+Labels: ['Cancer']
+Scores: [0.821498453617096]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06932123750448227]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732132
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Animals', 'Complement Activation', 'Tumor Microenvironment', 'Complement C4', 'Biomarkers, Tumor', 'Immunotherapy', 'Complement C4b', 'Peptide Fragments']
+Labels: ['Diabetes type 2']
+Scores: [0.032670874148607254]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03293508663773537]
+Labels: ['Diabetes type 1']
+Scores: [0.03528117761015892]
+Labels: ['Diabetes']
+Scores: [0.009787341579794884]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010714600794017315]
+Labels: ['Mental Health']
+Scores: [0.04872606694698334]
+Labels: ['Cancer']
+Scores: [0.9052498936653137]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05414064601063728]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731918
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Biomarkers, Tumor', 'Immunotherapy', 'Tumor Microenvironment', 'CD8-Positive T-Lymphocytes', 'Leukocytes, Mononuclear', 'Male', 'Female', 'Receptors, Antigen, T-Cell', 'Neoplasms', 'Middle Aged', 'Transcriptome']
+Labels: ['Diabetes type 2']
+Scores: [0.001911950414068997]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0018986421637237072]
+Labels: ['Diabetes type 1']
+Scores: [0.0019083097577095032]
+Labels: ['Diabetes']
+Scores: [0.0011143466690555215]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008351170690730214]
+Labels: ['Mental Health']
+Scores: [0.005803105887025595]
+Labels: ['Cancer']
+Scores: [0.5018426775932312]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013537563383579254]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731836
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'MicroRNAs', 'Hydrogels', 'HeLa Cells', 'DNA', 'Doxorubicin', 'PTEN Phosphohydrolase', 'Cell Survival', 'Neoplasms', 'Apoptosis Regulatory Proteins', 'RNA-Binding Proteins', 'Antineoplastic Agents', 'Gene Expression Regulation, Neoplastic']
+Labels: ['Diabetes type 2']
+Scores: [0.08069711923599243]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1313561350107193]
+Labels: ['Diabetes type 1']
+Scores: [0.07721801847219467]
+Labels: ['Diabetes']
+Scores: [0.035422202199697495]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04940995201468468]
+Labels: ['Mental Health']
+Scores: [0.09548395127058029]
+Labels: ['Cancer']
+Scores: [0.9563180208206177]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05311880260705948]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731788
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Antineoplastic Agents', 'Peptides', 'Animals', 'Drug Development', 'Molecular Structure']
+Labels: ['Diabetes type 2']
+Scores: [0.026553494855761528]
+Labels: ['Chronic respiratory disease']
+Scores: [0.041699714958667755]
+Labels: ['Diabetes type 1']
+Scores: [0.03332414850592613]
+Labels: ['Diabetes']
+Scores: [0.00318404333665967]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002410599496215582]
+Labels: ['Mental Health']
+Scores: [0.02486594021320343]
+Labels: ['Cancer']
+Scores: [0.92854905128479]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.010867966338992119]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731736
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Algorithms', 'Neoplasms', 'Genomics']
+Labels: ['Diabetes type 2']
+Scores: [0.03999720886349678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04599752649664879]
+Labels: ['Diabetes type 1']
+Scores: [0.04055400192737579]
+Labels: ['Diabetes']
+Scores: [0.0655769631266594]
+Labels: ['Cardiovascular diseases']
+Scores: [0.09521545469760895]
+Labels: ['Mental Health']
+Scores: [0.06919068098068237]
+Labels: ['Cancer']
+Scores: [0.047350067645311356]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1399974673986435]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731651
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Quality of Life', 'Female', 'Male', 'Hydrocortisone', 'Qigong', 'Middle Aged', 'Neoplasms', 'Aged', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.0027100523002445698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001534396898932755]
+Labels: ['Diabetes type 1']
+Scores: [0.002335695782676339]
+Labels: ['Diabetes']
+Scores: [0.0007905574748292565]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0002607939823064953]
+Labels: ['Mental Health']
+Scores: [0.046647872775793076]
+Labels: ['Cancer']
+Scores: [0.9707579016685486]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11573014408349991]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731471
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Endoplasmic Reticulum Chaperone BiP', 'Single-Domain Antibodies', 'Recombinant Fusion Proteins', 'Immunotoxins', 'Apoptosis', 'Exotoxins', 'Animals', 'Heat-Shock Proteins', 'Cell Line, Tumor', 'Camelus', 'Breast Neoplasms', 'Female', 'ADP Ribose Transferases', 'Bacterial Toxins', 'HEK293 Cells', 'Pseudomonas aeruginosa Exotoxin A', 'Neoplasms', 'MCF-7 Cells', 'Virulence Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.0010741215664893389]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0014664051122963428]
+Labels: ['Diabetes type 1']
+Scores: [0.0011717024026438594]
+Labels: ['Diabetes']
+Scores: [0.00042712781578302383]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005131863290444016]
+Labels: ['Mental Health']
+Scores: [0.00130043167155236]
+Labels: ['Cancer']
+Scores: [0.9879615902900696]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0017603497253730893]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731178
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Organoids', 'Neoplasms', 'Tumor Microenvironment', 'Precision Medicine', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.15449534356594086]
+Labels: ['Chronic respiratory disease']
+Scores: [0.23419860005378723]
+Labels: ['Diabetes type 1']
+Scores: [0.17653192579746246]
+Labels: ['Diabetes']
+Scores: [0.018299566581845284]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01139556523412466]
+Labels: ['Mental Health']
+Scores: [0.05247471481561661]
+Labels: ['Cancer']
+Scores: [0.9412268400192261]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.00961620919406414]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731135
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Immune Checkpoint Inhibitors', 'Neoplasms', 'Mutation', 'Tumor Microenvironment', 'Histone Demethylases', 'Biomarkers, Tumor', 'Prognosis', 'Immunotherapy']
+Labels: ['Diabetes type 2']
+Scores: [0.024588720872998238]
+Labels: ['Chronic respiratory disease']
+Scores: [0.041170306503772736]
+Labels: ['Diabetes type 1']
+Scores: [0.02347964234650135]
+Labels: ['Diabetes']
+Scores: [0.008920839056372643]
+Labels: ['Cardiovascular diseases']
+Scores: [0.013067778199911118]
+Labels: ['Mental Health']
+Scores: [0.09107183665037155]
+Labels: ['Cancer']
+Scores: [0.9386420249938965]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.04583192244172096]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731127
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'RNA Editing', 'Neoplasms', 'Inosine', 'Adenosine', 'Animals', 'Gene Expression Regulation, Neoplastic', 'Adenosine Deaminase', 'Biomarkers, Tumor', 'MicroRNAs']
+Labels: ['Diabetes type 2']
+Scores: [0.03986426442861557]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08073244988918304]
+Labels: ['Diabetes type 1']
+Scores: [0.04911427944898605]
+Labels: ['Diabetes']
+Scores: [0.018853334710001945]
+Labels: ['Cardiovascular diseases']
+Scores: [0.028414100408554077]
+Labels: ['Mental Health']
+Scores: [0.09821996837854385]
+Labels: ['Cancer']
+Scores: [0.7907900214195251]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07253169268369675]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731088
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Female', 'Male', 'Retrospective Studies', 'Palliative Care', 'Aged', 'Middle Aged', 'Neoplasms', 'Terminal Care', 'Aged, 80 and over', 'Finland', 'Hospital Costs', 'Ambulatory Care Facilities', 'Registries', 'Adult', 'Ambulatory Care']
+Labels: ['Diabetes type 2']
+Scores: [0.0010593847837299109]
+Labels: ['Chronic respiratory disease']
+Scores: [0.002807389944791794]
+Labels: ['Diabetes type 1']
+Scores: [0.0009909047512337565]
+Labels: ['Diabetes']
+Scores: [0.0003583942889235914]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0001293295790674165]
+Labels: ['Mental Health']
+Scores: [0.0010608129668980837]
+Labels: ['Cancer']
+Scores: [0.9943419694900513]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.014186153188347816]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731068
+Predictions: ['Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cardiovascular Diseases', 'Middle Aged', 'Nutrition Surveys', 'Neoplasms', 'Adult', 'Aged', 'Triglycerides', 'Cause of Death', 'Waist Circumference', 'Cholesterol, HDL', 'Proportional Hazards Models', 'Kaplan-Meier Estimate', 'Body Mass Index', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.07265758514404297]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03867340087890625]
+Labels: ['Diabetes type 1']
+Scores: [0.06516285240650177]
+Labels: ['Diabetes']
+Scores: [0.007936539128422737]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9271019697189331]
+Labels: ['Mental Health']
+Scores: [0.004229276441037655]
+Labels: ['Cancer']
+Scores: [0.2374640852212906]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.019918005913496017]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: ['Cardiovascular diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39731019
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Algorithms', 'Deep Learning', 'Gene Expression Profiling', 'Computational Biology', 'Databases, Genetic']
+Labels: ['Diabetes type 2']
+Scores: [0.0013545203255489469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006774744251742959]
+Labels: ['Diabetes type 1']
+Scores: [0.0017390443244948983]
+Labels: ['Diabetes']
+Scores: [0.0005762354703620076]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0008164253085851669]
+Labels: ['Mental Health']
+Scores: [0.0005423867842182517]
+Labels: ['Cancer']
+Scores: [0.9671715497970581]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0018227489199489355]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730977
+Predictions: ['Cancer']
+MeshTerm: ['Copper', 'Humans', 'Metal Nanoparticles', 'Green Chemistry Technology', 'Neoplasms', 'Antineoplastic Agents', 'Drug Resistance, Neoplasm']
+Labels: ['Diabetes type 2']
+Scores: [0.040741048753261566]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03307180106639862]
+Labels: ['Diabetes type 1']
+Scores: [0.05010310932993889]
+Labels: ['Diabetes']
+Scores: [0.015554194338619709]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01667260192334652]
+Labels: ['Mental Health']
+Scores: [0.008747211657464504]
+Labels: ['Cancer']
+Scores: [0.8029717206954956]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.075676828622818]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730928
+Predictions: ['Cancer']
+MeshTerm: ['Doxorubicin', 'Animals', 'Mice', 'Humans', 'Cell Line, Tumor', 'Immunotherapy', 'Neoplasms', 'Drug Delivery Systems', 'Nanoparticles', 'Tumor Microenvironment', 'Biomimetics', 'Imiquimod', 'Serotonin', 'Antineoplastic Agents', 'Combined Modality Therapy', 'Mice, Inbred BALB C']
+Labels: ['Diabetes type 2']
+Scores: [0.13421916961669922]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3853084146976471]
+Labels: ['Diabetes type 1']
+Scores: [0.1442878544330597]
+Labels: ['Diabetes']
+Scores: [0.06058550626039505]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05032983049750328]
+Labels: ['Mental Health']
+Scores: [0.4334171414375305]
+Labels: ['Cancer']
+Scores: [0.9457939267158508]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13111361861228943]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730772
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Cancer Survivors', 'Female', 'Male', 'Adult', 'Middle Aged', 'Return to Work', 'Social Stigma', 'Social Support', 'Adolescent', 'Young Adult', 'Adaptation, Psychological', 'Health Literacy', 'Neoplasms', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.10125990957021713]
+Labels: ['Chronic respiratory disease']
+Scores: [0.188698410987854]
+Labels: ['Diabetes type 1']
+Scores: [0.08939404040575027]
+Labels: ['Diabetes']
+Scores: [0.05887924134731293]
+Labels: ['Cardiovascular diseases']
+Scores: [0.033877111971378326]
+Labels: ['Mental Health']
+Scores: [0.4945041835308075]
+Labels: ['Cancer']
+Scores: [0.8182476162910461]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14761419594287872]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730706
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Denmark', 'Male', 'Female', 'Middle Aged', 'Adult', 'Aged', 'Cohort Studies', 'Environmental Pollution', 'Young Adult', 'Child, Preschool', 'Infant, Newborn', 'Environmental Exposure', 'Adolescent', 'Child', 'Infant', 'Aged, 80 and over', 'Neoplasms', 'Cause of Death']
+Labels: ['Diabetes type 2']
+Scores: [0.16360101103782654]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1250789612531662]
+Labels: ['Diabetes type 1']
+Scores: [0.1558052897453308]
+Labels: ['Diabetes']
+Scores: [0.044705040752887726]
+Labels: ['Cardiovascular diseases']
+Scores: [0.6509393453598022]
+Labels: ['Mental Health']
+Scores: [0.5516974329948425]
+Labels: ['Cancer']
+Scores: [0.9286090135574341]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.22575516998767853]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730699
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Machine Learning', 'Antineoplastic Agents', 'Precision Medicine', 'Neoplasms', 'Cell Line, Tumor']
+Labels: ['Diabetes type 2']
+Scores: [0.19902746379375458]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2003002017736435]
+Labels: ['Diabetes type 1']
+Scores: [0.2028152197599411]
+Labels: ['Diabetes']
+Scores: [0.10773174464702606]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06512828916311264]
+Labels: ['Mental Health']
+Scores: [0.07510167360305786]
+Labels: ['Cancer']
+Scores: [0.4655626714229584]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18185926973819733]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730637
+Predictions: ['Cancer']
+MeshTerm: ['Adult', 'Aged', 'Female', 'Humans', 'Male', 'Middle Aged', 'China', 'Drug-Related Side Effects and Adverse Reactions', 'East Asian People', 'Immune Checkpoint Inhibitors', 'Neoplasms', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.12341311573982239]
+Labels: ['Chronic respiratory disease']
+Scores: [0.31707724928855896]
+Labels: ['Diabetes type 1']
+Scores: [0.08752059936523438]
+Labels: ['Diabetes']
+Scores: [0.07102025300264359]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07554006576538086]
+Labels: ['Mental Health']
+Scores: [0.2671237289905548]
+Labels: ['Cancer']
+Scores: [0.9619601964950562]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13013619184494019]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730328
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Gastrointestinal Microbiome', 'Mice', 'Immunotherapy', 'Humans', 'Immune Checkpoint Inhibitors', 'Female', 'Fimbriae Proteins', 'Programmed Cell Death 1 Receptor', 'Neoplasms', 'Mice, Inbred C57BL', 'Bacteria', 'Cell Line, Tumor', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.03018580935895443]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06631942838430405]
+Labels: ['Diabetes type 1']
+Scores: [0.029831096529960632]
+Labels: ['Diabetes']
+Scores: [0.010897358879446983]
+Labels: ['Cardiovascular diseases']
+Scores: [0.015643198043107986]
+Labels: ['Mental Health']
+Scores: [0.1185620054602623]
+Labels: ['Cancer']
+Scores: [0.9544104337692261]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.12240809947252274]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730320
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Cancer Survivors', 'Social Support', 'Neoplasms', 'Qualitative Research', 'Social Adjustment', 'Social Interaction']
+Labels: ['Diabetes type 2']
+Scores: [0.02638751082122326]
+Labels: ['Chronic respiratory disease']
+Scores: [0.032881833612918854]
+Labels: ['Diabetes type 1']
+Scores: [0.025933444499969482]
+Labels: ['Diabetes']
+Scores: [0.009853063151240349]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006717285607010126]
+Labels: ['Mental Health']
+Scores: [0.12885408103466034]
+Labels: ['Cancer']
+Scores: [0.9783754944801331]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.026277700439095497]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39730153
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Social Support', 'Aged', 'COVID-19', 'SARS-CoV-2', 'Online Social Networking', 'Research Design', 'Scoping Reviews As Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.0002662648621480912]
+Labels: ['Chronic respiratory disease']
+Scores: [9.06770583242178e-05]
+Labels: ['Diabetes type 1']
+Scores: [0.0003167779359500855]
+Labels: ['Diabetes']
+Scores: [4.323522443883121e-05]
+Labels: ['Cardiovascular diseases']
+Scores: [3.757490776479244e-05]
+Labels: ['Mental Health']
+Scores: [0.0003358888498041779]
+Labels: ['Cancer']
+Scores: [0.8796247243881226]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006545399781316519]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729927
+Predictions: ['Cancer', 'Chronic respiratory disease']
+MeshTerm: ['Humans', 'CD4-Positive T-Lymphocytes', 'Neoplasms', 'Machine Learning', 'Digestive System Diseases', 'Metabolic Diseases', 'Respiratory Tract Diseases', 'Gene Expression Profiling', 'Respiration Disorders']
+Labels: ['Diabetes type 2']
+Scores: [0.029085589572787285]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1744055300951004]
+Labels: ['Diabetes type 1']
+Scores: [0.023278798907995224]
+Labels: ['Diabetes']
+Scores: [0.013081480748951435]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000938767334446311]
+Labels: ['Mental Health']
+Scores: [0.0006342012784443796]
+Labels: ['Cancer']
+Scores: [0.761882483959198]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.212141752243042]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39729909
+Predictions: ['Cancer']
+MeshTerm: ['Reactive Oxygen Species', 'Humans', 'Neoplasms', 'Magnetic Fields', 'Animals', 'Mitochondria', 'Electromagnetic Fields']
+Labels: ['Diabetes type 2']
+Scores: [0.09350381791591644]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04653225466609001]
+Labels: ['Diabetes type 1']
+Scores: [0.09905019402503967]
+Labels: ['Diabetes']
+Scores: [0.03535044193267822]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016087567433714867]
+Labels: ['Mental Health']
+Scores: [0.007742845453321934]
+Labels: ['Cancer']
+Scores: [0.9528314471244812]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09087374806404114]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729775
+Predictions: ['Cancer']
+MeshTerm: ['Granulocyte-Macrophage Colony-Stimulating Factor', 'Animals', 'RNA, Small Interfering', 'Immunotherapy', 'Mice', 'Macrophages', 'Cellular Reprogramming', 'Mice, Inbred C57BL', 'Neoplasms', 'Tumor Microenvironment', 'Cell Line, Tumor', 'Humans', 'Tumor-Associated Macrophages', 'Female', 'RAW 264.7 Cells']
+Labels: ['Diabetes type 2']
+Scores: [0.013089560903608799]
+Labels: ['Chronic respiratory disease']
+Scores: [0.005205290392041206]
+Labels: ['Diabetes type 1']
+Scores: [0.011861439794301987]
+Labels: ['Diabetes']
+Scores: [0.0023855045437812805]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0016105909598991275]
+Labels: ['Mental Health']
+Scores: [0.036123041063547134]
+Labels: ['Cancer']
+Scores: [0.9767321348190308]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0043111094273626804]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729479
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Single-Cell Analysis', 'Lymphocytes, Tumor-Infiltrating', 'Neoplasms', 'RNA-Seq', 'T-Lymphocytes, Regulatory', 'Transcriptome', 'Gene Expression Profiling', 'Protein Interaction Maps', 'Sequence Analysis, RNA', 'Gene Regulatory Networks', 'Gene Expression Regulation, Neoplastic', 'Single-Cell Gene Expression Analysis']
+Labels: ['Diabetes type 2']
+Scores: [0.10430492460727692]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06288289278745651]
+Labels: ['Diabetes type 1']
+Scores: [0.10728275775909424]
+Labels: ['Diabetes']
+Scores: [0.046398140490055084]
+Labels: ['Cardiovascular diseases']
+Scores: [0.025147516280412674]
+Labels: ['Mental Health']
+Scores: [0.0562431626021862]
+Labels: ['Cancer']
+Scores: [0.956165075302124]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.09914471954107285]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729462
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Maytansine', 'Immunoconjugates', 'Antibodies, Monoclonal, Humanized', 'Neoplasms', 'Female', 'Folate Receptor 1', 'Progression-Free Survival']
+Labels: ['Diabetes type 2']
+Scores: [0.03485610708594322]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10033158957958221]
+Labels: ['Diabetes type 1']
+Scores: [0.03200140967965126]
+Labels: ['Diabetes']
+Scores: [0.006669115275144577]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0034101735800504684]
+Labels: ['Mental Health']
+Scores: [0.020416006445884705]
+Labels: ['Cancer']
+Scores: [0.8940733075141907]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.052524369210004807]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729341
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Animals', 'Mice', 'Neoplasms', 'Drug Carriers', 'Cell Line, Tumor', 'Macromolecular Substances', 'Protein Binding', 'Drug Delivery Systems']
+Labels: ['Diabetes type 2']
+Scores: [0.18938212096691132]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22293172776699066]
+Labels: ['Diabetes type 1']
+Scores: [0.20203903317451477]
+Labels: ['Diabetes']
+Scores: [0.138503298163414]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08998160809278488]
+Labels: ['Mental Health']
+Scores: [0.11667500436306]
+Labels: ['Cancer']
+Scores: [0.8185231685638428]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14626534283161163]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729330
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Peripheral Nervous System Diseases', 'Child', 'Neoplasms', 'Gait Disorders, Neurologic', 'Antineoplastic Agents', 'Gait', 'Range of Motion, Articular', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.0021328667644411325]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0008415434276685119]
+Labels: ['Diabetes type 1']
+Scores: [0.0019700212869793177]
+Labels: ['Diabetes']
+Scores: [0.0005892306799069047]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000287369592115283]
+Labels: ['Mental Health']
+Scores: [0.0080718994140625]
+Labels: ['Cancer']
+Scores: [0.8915215730667114]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.005037317052483559]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39729314
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Radiation Oncology', 'Radiologists', 'Peer Review', 'Peer Review, Health Care', 'Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.037785232067108154]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08048895001411438]
+Labels: ['Diabetes type 1']
+Scores: [0.04021696746349335]
+Labels: ['Diabetes']
+Scores: [0.012110316194593906]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008106863126158714]
+Labels: ['Mental Health']
+Scores: [0.001652022823691368]
+Labels: ['Cancer']
+Scores: [0.7091135382652283]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.013310673646628857]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727835
+Predictions: ['Cancer']
+MeshTerm: ['Biosensing Techniques', 'Humans', 'Drug Discovery', 'Neoplasms', 'Antineoplastic Agents', 'Fluorescence', 'Fluorescence Resonance Energy Transfer', 'Signal Transduction', 'Luminescent Measurements', 'Pentacyclic Triterpenes']
+Labels: ['Diabetes type 2']
+Scores: [0.12173990160226822]
+Labels: ['Chronic respiratory disease']
+Scores: [0.15921011567115784]
+Labels: ['Diabetes type 1']
+Scores: [0.14244171977043152]
+Labels: ['Diabetes']
+Scores: [0.027301177382469177]
+Labels: ['Cardiovascular diseases']
+Scores: [0.02782595157623291]
+Labels: ['Mental Health']
+Scores: [0.08483076095581055]
+Labels: ['Cancer']
+Scores: [0.8714970350265503]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07912460714578629]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727719
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neutropenia', 'Antineoplastic Agents', 'Anemia', 'Thrombocytopenia', 'Neoplasms', 'Intercellular Signaling Peptides and Proteins', 'Granulocyte Colony-Stimulating Factor', 'Receptors, Thrombopoietin', 'Cytopenia']
+Labels: ['Diabetes type 2']
+Scores: [0.00971739087253809]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01688230410218239]
+Labels: ['Diabetes type 1']
+Scores: [0.010012508369982243]
+Labels: ['Diabetes']
+Scores: [0.0035145659931004047]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0075943018309772015]
+Labels: ['Mental Health']
+Scores: [0.02280442789196968]
+Labels: ['Cancer']
+Scores: [0.9068215489387512]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.011334529146552086]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727703
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Saudi Arabia', 'Early Detection of Cancer', 'Female', 'Male', 'Aged', 'Middle Aged', 'Neoplasms', 'Oncology Nursing', 'Health Services Accessibility', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.01114838570356369]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0164671428501606]
+Labels: ['Diabetes type 1']
+Scores: [0.01276678591966629]
+Labels: ['Diabetes']
+Scores: [0.002762813353911042]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001877384725958109]
+Labels: ['Mental Health']
+Scores: [0.4632215201854706]
+Labels: ['Cancer']
+Scores: [0.9743419289588928]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009353170171380043]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727701
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Aged', 'Male', 'Female', 'Frailty', 'Neoplasms', 'Retrospective Studies', 'Aged, 80 and over', 'Prognosis']
+Labels: ['Diabetes type 2']
+Scores: [0.021339567378163338]
+Labels: ['Chronic respiratory disease']
+Scores: [0.024622807279229164]
+Labels: ['Diabetes type 1']
+Scores: [0.018825724720954895]
+Labels: ['Diabetes']
+Scores: [0.004439877811819315]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00979115255177021]
+Labels: ['Mental Health']
+Scores: [0.07684272527694702]
+Labels: ['Cancer']
+Scores: [0.7947074770927429]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015459144487977028]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727700
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Peripheral Nervous System Diseases', 'Neoplasms', 'Patient Reported Outcome Measures', 'Psychometrics']
+Labels: ['Diabetes type 2']
+Scores: [0.03670883551239967]
+Labels: ['Chronic respiratory disease']
+Scores: [0.020529188215732574]
+Labels: ['Diabetes type 1']
+Scores: [0.039388082921504974]
+Labels: ['Diabetes']
+Scores: [0.006241379771381617]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005983470007777214]
+Labels: ['Mental Health']
+Scores: [0.031035011634230614]
+Labels: ['Cancer']
+Scores: [0.9153653979301453]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.020647061988711357]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727690
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Artificial Intelligence', 'Empathy', 'Neoplasms', 'Nurse-Patient Relations', 'Oncology Nursing', 'Qualitative Research']
+Labels: ['Diabetes type 2']
+Scores: [0.04112905636429787]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04135001450777054]
+Labels: ['Diabetes type 1']
+Scores: [0.046782754361629486]
+Labels: ['Diabetes']
+Scores: [0.004632443655282259]
+Labels: ['Cardiovascular diseases']
+Scores: [0.001155575504526496]
+Labels: ['Mental Health']
+Scores: [0.0013015042059123516]
+Labels: ['Cancer']
+Scores: [0.922737181186676]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0012661966029554605]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727688
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Aged', 'Neoplasms', 'Cross-Sectional Studies', 'Male', 'Female', 'Malnutrition', 'Aged, 80 and over', 'Nutritional Status', 'Surveys and Questionnaires', 'Nutrition Assessment', 'Diet', 'Symptom Burden']
+Labels: ['Diabetes type 2']
+Scores: [0.000697035517077893]
+Labels: ['Chronic respiratory disease']
+Scores: [0.001967883901670575]
+Labels: ['Diabetes type 1']
+Scores: [0.0005085360025987029]
+Labels: ['Diabetes']
+Scores: [0.00013900533667765558]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00011593213275773451]
+Labels: ['Mental Health']
+Scores: [0.00031928226235322654]
+Labels: ['Cancer']
+Scores: [0.9746770262718201]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0008788161212578416]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727686
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Exercise', 'Exercise Therapy', 'Neoplasms', 'Quality of Life', 'Randomized Controlled Trials as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.07651598751544952]
+Labels: ['Chronic respiratory disease']
+Scores: [0.043013788759708405]
+Labels: ['Diabetes type 1']
+Scores: [0.06605888158082962]
+Labels: ['Diabetes']
+Scores: [0.040315065532922745]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005858744494616985]
+Labels: ['Mental Health']
+Scores: [0.04789688065648079]
+Labels: ['Cancer']
+Scores: [0.9789009690284729]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0098581463098526]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727684
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Methadone', 'Neuralgia', 'Cancer Pain', 'Analgesics, Opioid', 'Neoplasms', 'Quality of Life']
+Labels: ['Diabetes type 2']
+Scores: [0.00037031000829301775]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0001948917779373005]
+Labels: ['Diabetes type 1']
+Scores: [0.0003776933590415865]
+Labels: ['Diabetes']
+Scores: [9.256580960936844e-05]
+Labels: ['Cardiovascular diseases']
+Scores: [7.959002687130123e-05]
+Labels: ['Mental Health']
+Scores: [0.0010971702868118882]
+Labels: ['Cancer']
+Scores: [0.9058853983879089]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0006797928363084793]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727683
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Female', 'Cancer Survivors', 'Male', 'Adult', 'Adolescent', 'Neoplasms', 'Young Adult', 'Fertility', 'Cohort Studies', 'Surveys and Questionnaires', 'Canada', 'Cross-Sectional Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.016010098159313202]
+Labels: ['Chronic respiratory disease']
+Scores: [0.010942263528704643]
+Labels: ['Diabetes type 1']
+Scores: [0.014400825835764408]
+Labels: ['Diabetes']
+Scores: [0.007473560515791178]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004417662043124437]
+Labels: ['Mental Health']
+Scores: [0.04096975550055504]
+Labels: ['Cancer']
+Scores: [0.7980870008468628]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.015795588493347168]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727682
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Health Literacy', 'Fear', 'Neoplasms', 'Neoplasm Recurrence, Local', 'Disease Progression']
+Labels: ['Diabetes type 2']
+Scores: [0.07844439148902893]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14143937826156616]
+Labels: ['Diabetes type 1']
+Scores: [0.07781148701906204]
+Labels: ['Diabetes']
+Scores: [0.030208760872483253]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04542050138115883]
+Labels: ['Mental Health']
+Scores: [0.26102957129478455]
+Labels: ['Cancer']
+Scores: [0.9421341419219971]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.13866981863975525]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39727182
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Patents as Topic', 'Ataxia Telangiectasia Mutated Proteins', 'Neoplasms', 'Antineoplastic Agents', 'Animals', 'Protein Kinase Inhibitors', 'Drug Development', 'Molecular Targeted Therapy', 'DNA Breaks, Double-Stranded']
+Labels: ['Diabetes type 2']
+Scores: [0.02159520797431469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026869669556617737]
+Labels: ['Diabetes type 1']
+Scores: [0.02512138895690441]
+Labels: ['Diabetes']
+Scores: [0.00629492336884141]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004477255512028933]
+Labels: ['Mental Health']
+Scores: [0.007969608530402184]
+Labels: ['Cancer']
+Scores: [0.9915706515312195]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.022397052496671677]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726750
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Male', 'Female', 'Cerebral Hemorrhage', 'Retrospective Studies', 'Middle Aged', 'Propensity Score', 'Risk Factors', 'Neoplasms', 'Aged', 'Prognosis', 'Neutrophils', 'Hemoglobins', 'China', 'ROC Curve']
+Labels: ['Diabetes type 2']
+Scores: [0.0006351234042085707]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00046686941641382873]
+Labels: ['Diabetes type 1']
+Scores: [0.0005374883185140789]
+Labels: ['Diabetes']
+Scores: [0.00014982075663283467]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0005759808118455112]
+Labels: ['Mental Health']
+Scores: [0.002638377482071519]
+Labels: ['Cancer']
+Scores: [0.6965644359588623]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0013525746762752533]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726590
+Predictions: ['Cancer']
+MeshTerm: ['Animals', 'Humans', 'Cell Movement', 'Immunotherapy', 'Mesenchymal Stem Cell Transplantation', 'Mesenchymal Stem Cells', 'Neoplasms', 'Tumor Microenvironment']
+Labels: ['Diabetes type 2']
+Scores: [0.056046854704618454]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05883096158504486]
+Labels: ['Diabetes type 1']
+Scores: [0.06684280931949615]
+Labels: ['Diabetes']
+Scores: [0.012437242083251476]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006753030698746443]
+Labels: ['Mental Health']
+Scores: [0.016150832176208496]
+Labels: ['Cancer']
+Scores: [0.9231727719306946]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02128673531115055]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726589
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Bibliometrics', 'Methylation', 'Tumor Microenvironment', 'RNA', 'Lymphocytes, Tumor-Infiltrating', 'Animals', 'RNA Methylation']
+Labels: ['Diabetes type 2']
+Scores: [0.009044477716088295]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02566460520029068]
+Labels: ['Diabetes type 1']
+Scores: [0.009673792868852615]
+Labels: ['Diabetes']
+Scores: [0.002049847040325403]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006565000512637198]
+Labels: ['Mental Health']
+Scores: [0.005750193726271391]
+Labels: ['Cancer']
+Scores: [0.8943868279457092]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.018380748108029366]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726379
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Tumor Microenvironment', 'Antineoplastic Agents', 'Lipid Metabolism', 'Neoplasms', 'Animals']
+Labels: ['Diabetes type 2']
+Scores: [0.014429658651351929]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01922089420258999]
+Labels: ['Diabetes type 1']
+Scores: [0.011245950125157833]
+Labels: ['Diabetes']
+Scores: [0.004671541042625904]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009913638234138489]
+Labels: ['Mental Health']
+Scores: [0.014280680567026138]
+Labels: ['Cancer']
+Scores: [0.5329059362411499]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.02786668762564659]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726369
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Reactive Oxygen Species', 'Glutathione', 'Photochemotherapy', 'Animals', 'Tumor Microenvironment', 'Nanostructures', 'Antineoplastic Agents', 'Photosensitizing Agents', 'Antioxidants', 'Immunotherapy']
+Labels: ['Diabetes type 2']
+Scores: [0.06255824118852615]
+Labels: ['Chronic respiratory disease']
+Scores: [0.30593106150627136]
+Labels: ['Diabetes type 1']
+Scores: [0.07960150390863419]
+Labels: ['Diabetes']
+Scores: [0.015824537724256516]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03315344825387001]
+Labels: ['Mental Health']
+Scores: [0.09450985491275787]
+Labels: ['Cancer']
+Scores: [0.9682874083518982]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.18394361436367035]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726308
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Connective Tissue Diseases', 'Vasculitis', 'Immunologic Factors', 'Immunomodulating Agents']
+Labels: ['Diabetes type 2']
+Scores: [0.043869808316230774]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07651455700397491]
+Labels: ['Diabetes type 1']
+Scores: [0.04107632488012314]
+Labels: ['Diabetes']
+Scores: [0.011960490606725216]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01750546507537365]
+Labels: ['Mental Health']
+Scores: [0.03496437892317772]
+Labels: ['Cancer']
+Scores: [0.9751387238502502]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.05293179303407669]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726258
+Predictions: ['Cancer']
+MeshTerm: ['Vaccinia virus', 'Humans', 'Animals', 'Cell Line, Tumor', 'Mice', 'Mice, Nude', 'Virus Replication', 'Oncolytic Viruses', 'Oncolytic Virotherapy', 'RNA-Binding Proteins', 'Neoplasms', 'Xenograft Model Antitumor Assays', 'Female']
+Labels: ['Diabetes type 2']
+Scores: [0.08120592683553696]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1135776937007904]
+Labels: ['Diabetes type 1']
+Scores: [0.0947321429848671]
+Labels: ['Diabetes']
+Scores: [0.016723232343792915]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05744794011116028]
+Labels: ['Mental Health']
+Scores: [0.1671009212732315]
+Labels: ['Cancer']
+Scores: [0.9731695055961609]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.31377112865448]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726235
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Adult', 'Neoplasms', 'Aged', 'Healthy Volunteers', 'Protein Kinase Inhibitors', 'Young Adult', 'Models, Biological', 'Aged, 80 and over', 'Carcinoma, Non-Small-Cell Lung']
+Labels: ['Diabetes type 2']
+Scores: [0.05419810116291046]
+Labels: ['Chronic respiratory disease']
+Scores: [0.16423213481903076]
+Labels: ['Diabetes type 1']
+Scores: [0.04173547402024269]
+Labels: ['Diabetes']
+Scores: [0.02871694602072239]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06797786802053452]
+Labels: ['Mental Health']
+Scores: [0.11117668449878693]
+Labels: ['Cancer']
+Scores: [0.79092937707901]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2545837461948395]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726139
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Neoplasms', 'Retrospective Studies', 'Female', 'Male', 'Japan', 'Middle Aged', 'Exercise', 'Smartphone', 'Databases, Factual', 'Aged', 'Adult', 'Cohort Studies', 'East Asian People']
+Labels: ['Diabetes type 2']
+Scores: [0.004111867863684893]
+Labels: ['Chronic respiratory disease']
+Scores: [0.006753101479262114]
+Labels: ['Diabetes type 1']
+Scores: [0.004025606904178858]
+Labels: ['Diabetes']
+Scores: [0.000811389705631882]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0004720464057754725]
+Labels: ['Mental Health']
+Scores: [0.0008277909946627915]
+Labels: ['Cancer']
+Scores: [0.9573401808738708]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.006732640787959099]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39726004
+Predictions: ['Cancer']
+MeshTerm: ['Humans', 'Taiwan', 'Qualitative Research', 'Guideline Adherence', 'Practice Guidelines as Topic', 'Neoplasms', 'Quality of Health Care', 'Case Managers', 'Medical Oncology', 'Interviews as Topic', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.007401019800454378]
+Labels: ['Chronic respiratory disease']
+Scores: [0.009065067395567894]
+Labels: ['Diabetes type 1']
+Scores: [0.008213119581341743]
+Labels: ['Diabetes']
+Scores: [0.00047424412332475185]
+Labels: ['Cardiovascular diseases']
+Scores: [0.000419983989559114]
+Labels: ['Mental Health']
+Scores: [0.0008077837410382926]
+Labels: ['Cancer']
+Scores: [0.9621239304542542]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.0031176009215414524]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': False}
+Selected labels: ['Cancer']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737510
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adult', 'Middle Aged', 'India', 'Male', 'Female', 'Noncommunicable Diseases', 'Risk Factors', 'Aged', 'Poverty Areas', 'Adolescent', 'Prevalence', 'Smoking', 'Alcohol Drinking', 'Obesity', 'Cross-Sectional Studies', 'Young Adult', 'Urban Population']
+Labels: ['Diabetes type 2']
+Scores: [0.5511229634284973]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5901545882225037]
+Labels: ['Diabetes type 1']
+Scores: [0.49159494042396545]
+Labels: ['Diabetes']
+Scores: [0.3953719735145569]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4859950840473175]
+Labels: ['Mental Health']
+Scores: [0.4017779529094696]
+Labels: ['Cancer']
+Scores: [0.22597965598106384]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9837626814842224]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39737504
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Stem Cell Transplantation', 'Cell- and Tissue-Based Therapy', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.25953778624534607]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2999213635921478]
+Labels: ['Diabetes type 1']
+Scores: [0.23799310624599457]
+Labels: ['Diabetes']
+Scores: [0.17943328619003296]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1279115378856659]
+Labels: ['Mental Health']
+Scores: [0.11578354984521866]
+Labels: ['Cancer']
+Scores: [0.23802915215492249]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.21342431008815765]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39736607
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Sex Factors', 'Employment', 'Socioeconomic Factors', 'Poverty', 'Universal Health Insurance', 'Cost of Illness']
+Labels: ['Diabetes type 2']
+Scores: [0.10041400045156479]
+Labels: ['Chronic respiratory disease']
+Scores: [0.18700549006462097]
+Labels: ['Diabetes type 1']
+Scores: [0.09018442779779434]
+Labels: ['Diabetes']
+Scores: [0.07692468911409378]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07252095639705658]
+Labels: ['Mental Health']
+Scores: [0.0012300709495320916]
+Labels: ['Cancer']
+Scores: [0.015980765223503113]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.994484543800354]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39732655
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Machine Learning', 'Bias', 'Population Health', 'Algorithms']
+Labels: ['Diabetes type 2']
+Scores: [0.060280878096818924]
+Labels: ['Chronic respiratory disease']
+Scores: [0.077474445104599]
+Labels: ['Diabetes type 1']
+Scores: [0.06185879930853844]
+Labels: ['Diabetes']
+Scores: [0.027544522657990456]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010932973586022854]
+Labels: ['Mental Health']
+Scores: [0.004872608929872513]
+Labels: ['Cancer']
+Scores: [0.012470424175262451]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.996798574924469]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39731009
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Republic of Korea', 'Male', 'Female', 'Middle Aged', 'Longitudinal Studies', 'Noncommunicable Diseases', 'Exercise', 'Employment', 'Aged', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.06865143030881882]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09332932531833649]
+Labels: ['Diabetes type 1']
+Scores: [0.06703068315982819]
+Labels: ['Diabetes']
+Scores: [0.05395635962486267]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030211251229047775]
+Labels: ['Mental Health']
+Scores: [0.011109011247754097]
+Labels: ['Cancer']
+Scores: [0.020639808848500252]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9446531534194946]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39725416
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'New Zealand', 'Cross-Sectional Studies', 'Male', 'Female', 'Middle Aged', 'Aged', 'Noncommunicable Diseases', 'Adult', 'Comorbidity', 'Censuses', 'Adolescent', 'Young Adult', 'Aged, 80 and over', 'Prevalence', 'Child', 'Child, Preschool']
+Labels: ['Diabetes type 2']
+Scores: [0.038761258125305176]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04639166221022606]
+Labels: ['Diabetes type 1']
+Scores: [0.044567275792360306]
+Labels: ['Diabetes']
+Scores: [0.03918410837650299]
+Labels: ['Cardiovascular diseases']
+Scores: [0.010383925400674343]
+Labels: ['Mental Health']
+Scores: [0.01342440489679575]
+Labels: ['Cancer']
+Scores: [0.00848805345594883]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9741330742835999]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39722627
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Sugar-Sweetened Beverages', 'Taxes', 'Tobacco Products', 'Mediterranean Region', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.9083549380302429]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2382308542728424]
+Labels: ['Diabetes type 1']
+Scores: [0.03143191337585449]
+Labels: ['Diabetes']
+Scores: [0.854133129119873]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9326767325401306]
+Labels: ['Mental Health']
+Scores: [0.019823165610432625]
+Labels: ['Cancer']
+Scores: [0.6524595618247986]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9837488532066345]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 3], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39709790
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['NF-E2-Related Factor 2', 'Humans', 'Animals', 'Noncommunicable Diseases', 'Oxidative Stress', 'Reactive Oxygen Species', 'Oxidation-Reduction', 'Disease Models, Animal', 'Inflammation', 'Gene Expression Regulation']
+Labels: ['Diabetes type 2']
+Scores: [0.1092873215675354]
+Labels: ['Chronic respiratory disease']
+Scores: [0.21384085714817047]
+Labels: ['Diabetes type 1']
+Scores: [0.11244048178195953]
+Labels: ['Diabetes']
+Scores: [0.09423413872718811]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07863475382328033]
+Labels: ['Mental Health']
+Scores: [0.034179527312517166]
+Labels: ['Cancer']
+Scores: [0.01947811432182789]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9715389013290405]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39702198
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Aged', 'Female', 'Male', 'India', 'Middle Aged', 'Aged, 80 and over', 'Noncommunicable Diseases', 'Cost of Illness', 'Disability-Adjusted Life Years', 'Sex Factors', 'Age Factors', 'Global Burden of Disease', 'Wounds and Injuries']
+Labels: ['Diabetes type 2']
+Scores: [0.212974414229393]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2578461766242981]
+Labels: ['Diabetes type 1']
+Scores: [0.20644649863243103]
+Labels: ['Diabetes']
+Scores: [0.1981293261051178]
+Labels: ['Cardiovascular diseases']
+Scores: [0.264423131942749]
+Labels: ['Mental Health']
+Scores: [0.09728465974330902]
+Labels: ['Cancer']
+Scores: [0.17986343801021576]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4431159794330597]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39699459
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Absenteeism', 'Male', 'Female', 'Brazil', 'Cross-Sectional Studies', 'Adult', 'Middle Aged', 'Chronic Disease', 'Noncommunicable Diseases', 'Prevalence', 'Health Surveys', 'Young Adult', 'Adolescent', 'Sex Distribution', 'Socioeconomic Factors', 'Cost of Illness', 'Multimorbidity', 'Sociodemographic Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.21512700617313385]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3932153582572937]
+Labels: ['Diabetes type 1']
+Scores: [0.18836699426174164]
+Labels: ['Diabetes']
+Scores: [0.1844647079706192]
+Labels: ['Cardiovascular diseases']
+Scores: [0.18063311278820038]
+Labels: ['Mental Health']
+Scores: [0.003318444825708866]
+Labels: ['Cancer']
+Scores: [0.06541295349597931]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9905285835266113]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39697299
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Cross-Sectional Studies', 'Multimorbidity', 'Noncommunicable Diseases', 'Health Expenditures', 'Prevalence', 'Aged', 'Adult', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.12766213715076447]
+Labels: ['Chronic respiratory disease']
+Scores: [0.25806182622909546]
+Labels: ['Diabetes type 1']
+Scores: [0.11106643825769424]
+Labels: ['Diabetes']
+Scores: [0.12231431156396866]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05537007376551628]
+Labels: ['Mental Health']
+Scores: [0.0035768351517617702]
+Labels: ['Cancer']
+Scores: [0.046018995344638824]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.992103636264801]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696316
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Thailand', 'Humans', 'Noncommunicable Diseases', 'Stakeholder Participation', 'Health Policy', 'Sustainable Development', 'Intersectoral Collaboration', 'Cooperative Behavior']
+Labels: ['Diabetes type 2']
+Scores: [0.16753274202346802]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2605232894420624]
+Labels: ['Diabetes type 1']
+Scores: [0.15973292291164398]
+Labels: ['Diabetes']
+Scores: [0.17467817664146423]
+Labels: ['Cardiovascular diseases']
+Scores: [0.14473620057106018]
+Labels: ['Mental Health']
+Scores: [0.282196044921875]
+Labels: ['Cancer']
+Scores: [0.11608650535345078]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9933009743690491]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39696309
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Middle Aged', 'Adult', 'Male', 'Female', 'Diabetes Mellitus, Type 2', 'Prevalence', 'Aged', 'Risk Factors', 'Adolescent', 'Young Adult', 'Cabo Verde', 'Prediabetic State', 'Noncommunicable Diseases', 'World Health Organization', 'Cross-Sectional Studies', 'Surveys and Questionnaires']
+Labels: ['Diabetes type 2']
+Scores: [0.007272489834576845]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00010106999252457172]
+Labels: ['Diabetes type 1']
+Scores: [0.004023050889372826]
+Labels: ['Diabetes']
+Scores: [0.044613588601350784]
+Labels: ['Cardiovascular diseases']
+Scores: [9.960214083548635e-05]
+Labels: ['Mental Health']
+Scores: [9.605091327102855e-05]
+Labels: ['Cancer']
+Scores: [5.628482540487312e-05]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.15108153223991394]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39695503
+Predictions: ['Noncommunicable Diseases', 'Mental Health']
+MeshTerm: ['Humans', 'Indonesia', 'Adolescent', 'Male', 'Female', 'Noncommunicable Diseases', 'Cross-Sectional Studies', 'Risk Factors', 'Mental Health', 'Quality of Life', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.06907564401626587]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07403238117694855]
+Labels: ['Diabetes type 1']
+Scores: [0.05188040807843208]
+Labels: ['Diabetes']
+Scores: [0.05287676304578781]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01694539375603199]
+Labels: ['Mental Health']
+Scores: [0.9077291488647461]
+Labels: ['Cancer']
+Scores: [0.01998181641101837]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9864504337310791]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39693027
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Melatonin', 'Humans', 'Animals', 'Antioxidants', 'Noncommunicable Diseases', 'Circadian Rhythm', 'Cytoprotection', 'Inflammation']
+Labels: ['Diabetes type 2']
+Scores: [0.3435128629207611]
+Labels: ['Chronic respiratory disease']
+Scores: [0.42215579748153687]
+Labels: ['Diabetes type 1']
+Scores: [0.36075884103775024]
+Labels: ['Diabetes']
+Scores: [0.5196422934532166]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5711607336997986]
+Labels: ['Mental Health']
+Scores: [0.07726476341485977]
+Labels: ['Cancer']
+Scores: [0.3082832396030426]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9955955147743225]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39683555
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adolescent', 'Male', 'Female', 'Italy', 'Exercise', 'Feeding Behavior', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Knowledge, Attitudes, Practice', 'Young Adult', 'Child', 'Adolescent Behavior', 'Surveys and Questionnaires', 'Health Risk Behaviors', 'Risk-Taking', 'Diet']
+Labels: ['Diabetes type 2']
+Scores: [0.06285248696804047]
+Labels: ['Chronic respiratory disease']
+Scores: [0.011352639645338058]
+Labels: ['Diabetes type 1']
+Scores: [0.037703629583120346]
+Labels: ['Diabetes']
+Scores: [0.034027595072984695]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0060415673069655895]
+Labels: ['Mental Health']
+Scores: [0.0006143961800262332]
+Labels: ['Cancer']
+Scores: [0.006262325216084719]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9771642088890076]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39678524
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Middle Aged', 'Adult', 'Aged', 'Iran', 'Economic Status', 'Cluster Analysis', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.10207130759954453]
+Labels: ['Chronic respiratory disease']
+Scores: [0.17811451852321625]
+Labels: ['Diabetes type 1']
+Scores: [0.11972078680992126]
+Labels: ['Diabetes']
+Scores: [0.09927820414304733]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06200357526540756]
+Labels: ['Mental Health']
+Scores: [0.006738204974681139]
+Labels: ['Cancer']
+Scores: [0.044437225908041]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9770771265029907]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39671524
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Exercise', 'Comorbidity', 'Noncommunicable Diseases', 'SARS-CoV-2', 'Self Report', 'Pandemics']
+Labels: ['Diabetes type 2']
+Scores: [0.07458066940307617]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10486722737550735]
+Labels: ['Diabetes type 1']
+Scores: [0.07599302381277084]
+Labels: ['Diabetes']
+Scores: [0.04717087373137474]
+Labels: ['Cardiovascular diseases']
+Scores: [0.027228329330682755]
+Labels: ['Mental Health']
+Scores: [0.019350368529558182]
+Labels: ['Cancer']
+Scores: [0.01199094858020544]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.925562858581543]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39662975
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Argentina', 'Noncommunicable Diseases', 'Primary Health Care', 'Male', 'Female', 'Cross-Sectional Studies', 'Middle Aged', 'Delivery of Health Care', 'Focus Groups', 'Adult', 'Aged', 'Disease Management', 'Health Services Accessibility', 'Needs Assessment', 'Diabetes Mellitus, Type 2', 'Delphi Technique']
+Labels: ['Diabetes type 2']
+Scores: [0.1865285336971283]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07509028166532516]
+Labels: ['Diabetes type 1']
+Scores: [0.17655211687088013]
+Labels: ['Diabetes']
+Scores: [0.07758601009845734]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006568941753357649]
+Labels: ['Mental Health']
+Scores: [0.0010484755039215088]
+Labels: ['Cancer']
+Scores: [0.01127732265740633]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9585356116294861]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39662129
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Argentina', 'Body Mass Index', 'Male', 'Female', 'Noncommunicable Diseases', 'Adult', 'Middle Aged', 'Obesity', 'Aged', 'Cost of Illness', 'Risk Assessment', 'Overweight']
+Labels: ['Diabetes type 2']
+Scores: [0.04907175526022911]
+Labels: ['Chronic respiratory disease']
+Scores: [0.050948116928339005]
+Labels: ['Diabetes type 1']
+Scores: [0.04803136736154556]
+Labels: ['Diabetes']
+Scores: [0.03757966309785843]
+Labels: ['Cardiovascular diseases']
+Scores: [0.017030566930770874]
+Labels: ['Mental Health']
+Scores: [0.004597874823957682]
+Labels: ['Cancer']
+Scores: [0.008672494441270828]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9980889558792114]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39658798
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Translational Research, Biomedical', 'Humans', 'Ethiopia', 'Capacity Building', 'Decision Making', 'Research Personnel', 'Public Health', 'Malawi', 'Uganda', 'Noncommunicable Diseases', 'Cooperative Behavior', 'South Africa', 'Delivery of Health Care', 'Africa', 'Rwanda', 'Administrative Personnel', 'Focus Groups', 'Surveys and Questionnaires', 'Evidence-Based Practice', 'Qualitative Research', 'Health Policy']
+Labels: ['Diabetes type 2']
+Scores: [0.0390683189034462]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07635922729969025]
+Labels: ['Diabetes type 1']
+Scores: [0.03640525043010712]
+Labels: ['Diabetes']
+Scores: [0.045544032007455826]
+Labels: ['Cardiovascular diseases']
+Scores: [0.03695046529173851]
+Labels: ['Mental Health']
+Scores: [0.07922909408807755]
+Labels: ['Cancer']
+Scores: [0.013373232446610928]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.1930720955133438]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39655600
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'White People', 'Female', 'Male', 'Middle Aged', 'Aged', 'Noncommunicable Diseases', 'Risk Factors', 'Black People', 'Africa South of the Sahara', 'Europe', 'Renal Insufficiency, Chronic', 'Cardiovascular Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.2355039268732071]
+Labels: ['Chronic respiratory disease']
+Scores: [0.28290629386901855]
+Labels: ['Diabetes type 1']
+Scores: [0.20435336232185364]
+Labels: ['Diabetes']
+Scores: [0.2419174164533615]
+Labels: ['Cardiovascular diseases']
+Scores: [0.20041322708129883]
+Labels: ['Mental Health']
+Scores: [0.09797026962041855]
+Labels: ['Cancer']
+Scores: [0.1301884949207306]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9842653274536133]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39653570
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Medication Adherence', 'Thailand', 'Islam', 'Middle Aged', 'Noncommunicable Diseases', 'Rural Population', 'Adult', 'Focus Groups', 'Qualitative Research', 'Aged', 'Health Knowledge, Attitudes, Practice', 'Southeast Asian People', 'Assessment of Medication Adherence']
+Labels: ['Diabetes type 2']
+Scores: [0.317818820476532]
+Labels: ['Chronic respiratory disease']
+Scores: [0.258025199174881]
+Labels: ['Diabetes type 1']
+Scores: [0.2764851152896881]
+Labels: ['Diabetes']
+Scores: [0.24995234608650208]
+Labels: ['Cardiovascular diseases']
+Scores: [0.003989263903349638]
+Labels: ['Mental Health']
+Scores: [0.018021361902356148]
+Labels: ['Cancer']
+Scores: [0.008684172295033932]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9918494820594788]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39653567
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Developing Countries', 'Noncommunicable Diseases', 'Research Design', 'Stakeholder Participation', 'Implementation Science', 'Scoping Reviews As Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.12662582099437714]
+Labels: ['Chronic respiratory disease']
+Scores: [0.042961493134498596]
+Labels: ['Diabetes type 1']
+Scores: [0.1198093444108963]
+Labels: ['Diabetes']
+Scores: [0.1262933909893036]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01141574326902628]
+Labels: ['Mental Health']
+Scores: [0.0003401882422622293]
+Labels: ['Cancer']
+Scores: [0.0024271304719150066]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9972521662712097]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39645277
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Chronic Disease', 'Diet, Western', 'Gastrointestinal Microbiome', 'Inflammation', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.21534417569637299]
+Labels: ['Chronic respiratory disease']
+Scores: [0.29798465967178345]
+Labels: ['Diabetes type 1']
+Scores: [0.20724311470985413]
+Labels: ['Diabetes']
+Scores: [0.16298051178455353]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07369419932365417]
+Labels: ['Mental Health']
+Scores: [0.1031448096036911]
+Labels: ['Cancer']
+Scores: [0.030246326699852943]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9877071976661682]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39644320
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Delivery of Health Care', 'Russia', 'Primary Health Care', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.06755147129297256]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14997071027755737]
+Labels: ['Diabetes type 1']
+Scores: [0.06730920821428299]
+Labels: ['Diabetes']
+Scores: [0.07168475538492203]
+Labels: ['Cardiovascular diseases']
+Scores: [0.15336045622825623]
+Labels: ['Mental Health']
+Scores: [0.02078435570001602]
+Labels: ['Cancer']
+Scores: [0.04728468880057335]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9665901064872742]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39644303
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Risk Factors', 'Exercise', 'Cardiovascular Diseases', 'Diabetes Mellitus, Type 2', 'Obesity']
+Labels: ['Diabetes type 2']
+Scores: [0.3002290427684784]
+Labels: ['Chronic respiratory disease']
+Scores: [0.06080075725913048]
+Labels: ['Diabetes type 1']
+Scores: [0.09140543639659882]
+Labels: ['Diabetes']
+Scores: [0.4954615533351898]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7651999592781067]
+Labels: ['Mental Health']
+Scores: [0.5571107864379883]
+Labels: ['Cancer']
+Scores: [0.07256732881069183]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9920303225517273]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39632114
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Delphi Technique', 'Precision Medicine', 'Noncommunicable Diseases', 'Consensus', 'Female', 'Australia', 'Pregnancy', 'Adult', 'Male', 'Mass Screening', 'Middle Aged', 'Health Priorities']
+Labels: ['Diabetes type 2']
+Scores: [0.12459968775510788]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1605362743139267]
+Labels: ['Diabetes type 1']
+Scores: [0.10259384661912918]
+Labels: ['Diabetes']
+Scores: [0.14841490983963013]
+Labels: ['Cardiovascular diseases']
+Scores: [0.13335631787776947]
+Labels: ['Mental Health']
+Scores: [0.03051433525979519]
+Labels: ['Cancer']
+Scores: [0.058263566344976425]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9908020496368408]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39625743
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Male', 'Female', 'Surveys and Questionnaires', 'Reproducibility of Results', 'Multicenter Studies as Topic', 'Assessment of Medication Adherence']
+Labels: ['Diabetes type 2']
+Scores: [0.18516159057617188]
+Labels: ['Chronic respiratory disease']
+Scores: [0.07023024559020996]
+Labels: ['Diabetes type 1']
+Scores: [0.16595441102981567]
+Labels: ['Diabetes']
+Scores: [0.18783298134803772]
+Labels: ['Cardiovascular diseases']
+Scores: [0.023996882140636444]
+Labels: ['Mental Health']
+Scores: [0.004296118393540382]
+Labels: ['Cancer']
+Scores: [0.02158002369105816]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9610961675643921]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39622542
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Kenya', 'Food Insecurity', 'Male', 'Female', 'HIV Infections', 'Adult', 'Health Services Accessibility', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Middle Aged', 'Comorbidity', 'Young Adult', 'Food Supply']
+Labels: ['Diabetes type 2']
+Scores: [0.036411102861166]
+Labels: ['Chronic respiratory disease']
+Scores: [0.031380102038383484]
+Labels: ['Diabetes type 1']
+Scores: [0.04175429418683052]
+Labels: ['Diabetes']
+Scores: [0.006575270090252161]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00105208286549896]
+Labels: ['Mental Health']
+Scores: [0.0027036075480282307]
+Labels: ['Cancer']
+Scores: [0.009036446921527386]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9321972727775574]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39613439
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Systematic Reviews as Topic', 'Sedentary Behavior', 'Meta-Analysis as Topic', 'Prevalence', 'Risk Factors', 'Exercise', 'Adult', 'Africa, Eastern', 'Research Design', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.014350099489092827]
+Labels: ['Chronic respiratory disease']
+Scores: [0.003793732263147831]
+Labels: ['Diabetes type 1']
+Scores: [0.012452835217118263]
+Labels: ['Diabetes']
+Scores: [0.0019750187639147043]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0015885272296145558]
+Labels: ['Mental Health']
+Scores: [0.0003765513829421252]
+Labels: ['Cancer']
+Scores: [0.001462863408960402]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.062212467193603516]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39602608
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Mexico', 'Cost of Illness', 'Noncommunicable Diseases', 'Risk Factors', 'Disability-Adjusted Life Years', 'Healthy Aging', 'Mortality', 'Life Expectancy', 'Prevalence', 'Incidence', 'Humans', 'Male', 'Female', 'Middle Aged', 'Aged', 'Aged, 80 and over', 'Delivery of Health Care', 'Health Services Needs and Demand']
+Labels: ['Diabetes type 2']
+Scores: [0.09588507562875748]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1644790768623352]
+Labels: ['Diabetes type 1']
+Scores: [0.07277697324752808]
+Labels: ['Diabetes']
+Scores: [0.07067810744047165]
+Labels: ['Cardiovascular diseases']
+Scores: [0.08378331363201141]
+Labels: ['Mental Health']
+Scores: [0.007749734912067652]
+Labels: ['Cancer']
+Scores: [0.03821874409914017]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.049148108810186386]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39595773
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Tanzania', 'Humans', 'Male', 'Female', 'Noncommunicable Diseases', 'Middle Aged', 'Adult', 'Rural Population', 'Aged', 'Young Adult', 'Politics', 'Adolescent', 'Treatment Adherence and Compliance', 'Patient Compliance']
+Labels: ['Diabetes type 2']
+Scores: [0.28572630882263184]
+Labels: ['Chronic respiratory disease']
+Scores: [0.43849173188209534]
+Labels: ['Diabetes type 1']
+Scores: [0.2754978537559509]
+Labels: ['Diabetes']
+Scores: [0.19583062827587128]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1373496949672699]
+Labels: ['Mental Health']
+Scores: [0.035047050565481186]
+Labels: ['Cancer']
+Scores: [0.13482828438282013]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9794526100158691]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39595772
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Refugees', 'Male', 'Female', 'Risk Factors', 'Adult', 'Portugal', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Young Adult', 'Prevalence', 'Middle Aged', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.26825690269470215]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3850424587726593]
+Labels: ['Diabetes type 1']
+Scores: [0.27010107040405273]
+Labels: ['Diabetes']
+Scores: [0.18022389709949493]
+Labels: ['Cardiovascular diseases']
+Scores: [0.18986761569976807]
+Labels: ['Mental Health']
+Scores: [0.9294002056121826]
+Labels: ['Cancer']
+Scores: [0.11199656128883362]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9894280433654785]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39592985
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Pregnancy', 'Noncommunicable Diseases', 'Middle Aged', 'Prospective Studies', 'Adolescent', 'Male', 'Young Adult', 'Aged', 'Multimorbidity', 'Prenatal Exposure Delayed Effects', 'Aged, 80 and over', 'Smoking', 'Chronic Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.17795531451702118]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5400174260139465]
+Labels: ['Diabetes type 1']
+Scores: [0.1554127186536789]
+Labels: ['Diabetes']
+Scores: [0.15761396288871765]
+Labels: ['Cardiovascular diseases']
+Scores: [0.16110049188137054]
+Labels: ['Mental Health']
+Scores: [0.14843352138996124]
+Labels: ['Cancer']
+Scores: [0.14597100019454956]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9857410192489624]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39592160
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Exercise', 'Aged', 'Noncommunicable Diseases', 'Randomized Controlled Trials as Topic', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.18071813881397247]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04352782666683197]
+Labels: ['Diabetes type 1']
+Scores: [0.16253656148910522]
+Labels: ['Diabetes']
+Scores: [0.2639395296573639]
+Labels: ['Cardiovascular diseases']
+Scores: [0.12710337340831757]
+Labels: ['Mental Health']
+Scores: [0.004037231672555208]
+Labels: ['Cancer']
+Scores: [0.0016227986197918653]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9801486134529114]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39589015
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Male', 'Female', 'South Africa', 'Longitudinal Studies', 'Adult', 'Middle Aged', 'Depressive Disorder, Major', 'Communicable Diseases', 'Mediation Analysis', 'Comorbidity', 'Causality', 'Aged', 'Monte Carlo Method', 'Neoplasms', 'Cardiovascular Diseases', 'Young Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.017236528918147087]
+Labels: ['Chronic respiratory disease']
+Scores: [0.026184462010860443]
+Labels: ['Diabetes type 1']
+Scores: [0.016865786164999008]
+Labels: ['Diabetes']
+Scores: [0.011597963981330395]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004299610387533903]
+Labels: ['Mental Health']
+Scores: [0.8624765872955322]
+Labels: ['Cancer']
+Scores: [0.0030195151921361685]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9151611328125]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [2, 4]]
+---------------------------------
+---------------------------------
+PMID: 39584432
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Noncommunicable Diseases', 'Digital Technology', 'Middle East', 'Telemedicine', 'Mediterranean Region', 'Pandemics', 'SARS-CoV-2', 'Delivery of Health Care']
+Labels: ['Diabetes type 2']
+Scores: [0.11300981044769287]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10261025279760361]
+Labels: ['Diabetes type 1']
+Scores: [0.11657804995775223]
+Labels: ['Diabetes']
+Scores: [0.10032742470502853]
+Labels: ['Cardiovascular diseases']
+Scores: [0.030304359272122383]
+Labels: ['Mental Health']
+Scores: [0.003242915030568838]
+Labels: ['Cancer']
+Scores: [0.02324885129928589]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9962544441223145]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39563350
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'England', 'Adult', 'Male', 'Middle Aged', 'Schools', 'Female', 'Obesity', 'Public Health', 'Fast Foods', 'Body Mass Index', 'Cross-Sectional Studies', 'Health Care Costs', 'Restaurants', 'Noncommunicable Diseases', 'Quality-Adjusted Life Years', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.002521149581298232]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0006282584508880973]
+Labels: ['Diabetes type 1']
+Scores: [0.0024656394962221384]
+Labels: ['Diabetes']
+Scores: [0.0008086023735813797]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00037478169542737305]
+Labels: ['Mental Health']
+Scores: [0.00027096812846139073]
+Labels: ['Cancer']
+Scores: [0.0007108128629624844]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.14213253557682037]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39552939
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Noncommunicable Diseases', 'HIV Infections', 'Delivery of Health Care, Integrated']
+Labels: ['Diabetes type 2']
+Scores: [0.042972221970558167]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04600014165043831]
+Labels: ['Diabetes type 1']
+Scores: [0.04042050987482071]
+Labels: ['Diabetes']
+Scores: [0.012561481446027756]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014217052375897765]
+Labels: ['Mental Health']
+Scores: [0.007238601800054312]
+Labels: ['Cancer']
+Scores: [0.0030155566055327654]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.4194822311401367]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39552340
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Noncommunicable Diseases', 'Humans', 'Qualitative Research', 'Health Policy', 'Policy Making', 'Stakeholder Participation', 'Interviews as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.42931899428367615]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5566613674163818]
+Labels: ['Diabetes type 1']
+Scores: [0.4364784061908722]
+Labels: ['Diabetes']
+Scores: [0.32093560695648193]
+Labels: ['Cardiovascular diseases']
+Scores: [0.30194413661956787]
+Labels: ['Mental Health']
+Scores: [0.3221222162246704]
+Labels: ['Cancer']
+Scores: [0.3270352780818939]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9888539910316467]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39548534
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Ghana', 'Noncommunicable Diseases', 'Health Policy', 'World Health Organization', 'Focus Groups', 'Stakeholder Participation', 'Policy Making', 'Administrative Personnel', 'Qualitative Research', 'Public Health', 'Health Promotion', 'Health Plan Implementation']
+Labels: ['Diabetes type 2']
+Scores: [0.24288205802440643]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22893278300762177]
+Labels: ['Diabetes type 1']
+Scores: [0.22796884179115295]
+Labels: ['Diabetes']
+Scores: [0.2151293158531189]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2501814663410187]
+Labels: ['Mental Health']
+Scores: [0.09761388599872589]
+Labels: ['Cancer']
+Scores: [0.18221540749073029]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9973563551902771]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39541160
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Primary Health Care', 'Female', 'Male', 'Hypertension', 'Noncommunicable Diseases', 'Diabetes Mellitus, Type 2', 'Ghana', 'Adult', 'Middle Aged', 'Delivery of Health Care, Integrated', 'Quality Improvement', 'Depression', 'Mental Health Services', 'Anxiety', 'Mental Disorders', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.10957358032464981]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1188490241765976]
+Labels: ['Diabetes type 1']
+Scores: [0.10357552021741867]
+Labels: ['Diabetes']
+Scores: [0.07706116139888763]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004806201905012131]
+Labels: ['Mental Health']
+Scores: [0.9792183637619019]
+Labels: ['Cancer']
+Scores: [0.04304185137152672]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9913673996925354]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39530940
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Risk Factors', 'Cardiovascular Diseases', 'Secondary Prevention']
+Labels: ['Diabetes type 2']
+Scores: [0.2410115897655487]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5924896001815796]
+Labels: ['Diabetes type 1']
+Scores: [0.24786758422851562]
+Labels: ['Diabetes']
+Scores: [0.3104732632637024]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9423028826713562]
+Labels: ['Mental Health']
+Scores: [0.04951092228293419]
+Labels: ['Cancer']
+Scores: [0.08892284333705902]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9816155433654785]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39522888
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'China', 'Noncommunicable Diseases', 'Aged', 'Middle Aged', 'Male', 'Female', 'Incidence', 'Aged, 80 and over', 'Disability-Adjusted Life Years', 'Health Priorities', 'Global Burden of Disease']
+Labels: ['Diabetes type 2']
+Scores: [0.14470303058624268]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9030250906944275]
+Labels: ['Diabetes type 1']
+Scores: [0.14042262732982635]
+Labels: ['Diabetes']
+Scores: [0.07517004013061523]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8805809617042542]
+Labels: ['Mental Health']
+Scores: [0.7859522104263306]
+Labels: ['Cancer']
+Scores: [0.06024060770869255]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9922069907188416]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': True, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases', 'Mental Health', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 3], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39515219
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Quality of Life', 'Male', 'Body Mass Index', 'Child', 'Female', 'Pediatric Obesity', 'Victoria', 'COVID-19', 'Health Behavior', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.04625117406249046]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05639052391052246]
+Labels: ['Diabetes type 1']
+Scores: [0.040284913033246994]
+Labels: ['Diabetes']
+Scores: [0.05196910351514816]
+Labels: ['Cardiovascular diseases']
+Scores: [0.009764770045876503]
+Labels: ['Mental Health']
+Scores: [0.5250383615493774]
+Labels: ['Cancer']
+Scores: [0.008398665115237236]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.30601754784584045]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39514466
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Exercise', 'Noncommunicable Diseases', 'Health Promotion', 'Healthy Lifestyle', 'Perception', 'Life Style']
+Labels: ['Diabetes type 2']
+Scores: [0.1321689635515213]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14233049750328064]
+Labels: ['Diabetes type 1']
+Scores: [0.12813261151313782]
+Labels: ['Diabetes']
+Scores: [0.058093246072530746]
+Labels: ['Cardiovascular diseases']
+Scores: [0.016909226775169373]
+Labels: ['Mental Health']
+Scores: [0.001124309841543436]
+Labels: ['Cancer']
+Scores: [0.01187047641724348]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9585769772529602]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39511525
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Behavior Therapy', 'Health Promotion', 'Life Style', 'Noncommunicable Diseases', 'Systematic Reviews as Topic']
+Labels: ['Diabetes type 2']
+Scores: [0.04838818684220314]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01417317520827055]
+Labels: ['Diabetes type 1']
+Scores: [0.02673836052417755]
+Labels: ['Diabetes']
+Scores: [0.0448724739253521]
+Labels: ['Cardiovascular diseases']
+Scores: [0.004655970726162195]
+Labels: ['Mental Health']
+Scores: [0.00022053248540032655]
+Labels: ['Cancer']
+Scores: [0.0020323938224464655]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9776937961578369]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39496368
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Dyslipidemias', 'Adult', 'Cross-Sectional Studies', 'Aged', 'Prevalence', 'Sex Factors', 'Socioeconomic Factors', 'Noncommunicable Diseases', 'Cohort Studies', 'Age Factors', 'Social Class', 'Health Status Disparities', 'Risk Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.10476325452327728]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08702486008405685]
+Labels: ['Diabetes type 1']
+Scores: [0.08287191390991211]
+Labels: ['Diabetes']
+Scores: [0.04824939742684364]
+Labels: ['Cardiovascular diseases']
+Scores: [0.4165315628051758]
+Labels: ['Mental Health']
+Scores: [0.0004480075149331242]
+Labels: ['Cancer']
+Scores: [0.0018170989351347089]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9970588088035583]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39494478
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Risk Factors', 'Cardiovascular Diseases', 'Periodontal Diseases', 'Periodontitis', 'Disease Susceptibility', 'Noncommunicable Diseases', 'Comorbidity']
+Labels: ['Diabetes type 2']
+Scores: [0.48291754722595215]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9540264010429382]
+Labels: ['Diabetes type 1']
+Scores: [0.47119155526161194]
+Labels: ['Diabetes']
+Scores: [0.3886898458003998]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9621421694755554]
+Labels: ['Mental Health']
+Scores: [0.09699251502752304]
+Labels: ['Cancer']
+Scores: [0.049791399389505386]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9036991596221924]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Chronic respiratory disease', 'Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 1], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39478581
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Adult', 'Male', 'Exercise', 'Female', 'Middle Aged', 'Young Adult', 'Africa', 'Adolescent', 'Aged', 'Socioeconomic Factors', 'Noncommunicable Diseases', 'Leisure Activities', 'Sociodemographic Factors', 'Surveys and Questionnaires', 'Sex Factors', 'Educational Status']
+Labels: ['Diabetes type 2']
+Scores: [0.09041687846183777]
+Labels: ['Chronic respiratory disease']
+Scores: [0.14872503280639648]
+Labels: ['Diabetes type 1']
+Scores: [0.09264404326677322]
+Labels: ['Diabetes']
+Scores: [0.09031341969966888]
+Labels: ['Cardiovascular diseases']
+Scores: [0.11870682239532471]
+Labels: ['Mental Health']
+Scores: [0.11622544378042221]
+Labels: ['Cancer']
+Scores: [0.01968981884419918]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07028325647115707]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39478517
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Adult', 'Prospective Studies', 'Diet', 'Risk Factors', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.08558964729309082]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9528005123138428]
+Labels: ['Diabetes type 1']
+Scores: [0.0566699281334877]
+Labels: ['Diabetes']
+Scores: [0.0619347058236599]
+Labels: ['Cardiovascular diseases']
+Scores: [0.403158575296402]
+Labels: ['Mental Health']
+Scores: [0.001285690814256668]
+Labels: ['Cancer']
+Scores: [0.004966148640960455]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9506576061248779]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Chronic respiratory disease', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39460821
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Ukraine', 'Retrospective Studies', 'Aged', 'Persons with Disabilities', 'Male', 'Female', 'Noncommunicable Diseases', 'Middle Aged', 'Aged, 80 and over', 'Cardiovascular Diseases', 'Armed Conflicts', 'Neoplasms', 'Eastern European People']
+Labels: ['Diabetes type 2']
+Scores: [0.12492474913597107]
+Labels: ['Chronic respiratory disease']
+Scores: [0.17703570425510406]
+Labels: ['Diabetes type 1']
+Scores: [0.10702021420001984]
+Labels: ['Diabetes']
+Scores: [0.02119888924062252]
+Labels: ['Cardiovascular diseases']
+Scores: [0.7734643816947937]
+Labels: ['Mental Health']
+Scores: [0.00033657156745903194]
+Labels: ['Cancer']
+Scores: [0.3220282793045044]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9455406665802002]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39458499
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Liver Diseases', 'Probiotics', 'Chronic Disease', 'Noncommunicable Diseases', 'Risk Factors', 'Dietary Fiber', 'Polyphenols', 'Food Ingredients', 'Diet', 'Spices', 'Fatty Acids, Omega-3', 'Dietary Supplements']
+Labels: ['Diabetes type 2']
+Scores: [0.003528935369104147]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00022900040494278073]
+Labels: ['Diabetes type 1']
+Scores: [0.003116721287369728]
+Labels: ['Diabetes']
+Scores: [0.002892308635637164]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0006343494169414043]
+Labels: ['Mental Health']
+Scores: [0.0007360484451055527]
+Labels: ['Cancer']
+Scores: [0.037842757999897]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9890785813331604]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39458490
+Predictions: ['Noncommunicable Diseases', 'Cancer']
+MeshTerm: ['Humans', 'Biodiversity', 'One Health', 'Diet, Healthy', 'Interdisciplinary Research', 'Noncommunicable Diseases', 'Diet, Vegetarian', 'Neoplasms', 'Quality of Life']
+Labels: ['Diabetes type 2']
+Scores: [0.13832786679267883]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11333046853542328]
+Labels: ['Diabetes type 1']
+Scores: [0.1344580054283142]
+Labels: ['Diabetes']
+Scores: [0.11000316590070724]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0740889385342598]
+Labels: ['Mental Health']
+Scores: [0.0028578615747392178]
+Labels: ['Cancer']
+Scores: [0.047544728964567184]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9881638884544373]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39458487
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Bibliometrics', 'Humans', 'Food Labeling', 'Beverages', 'Global Health', 'Nutrition Policy', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.08161497116088867]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02788568288087845]
+Labels: ['Diabetes type 1']
+Scores: [0.07056301832199097]
+Labels: ['Diabetes']
+Scores: [0.02977234311401844]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04421825706958771]
+Labels: ['Mental Health']
+Scores: [0.0009623516234569252]
+Labels: ['Cancer']
+Scores: [0.009158474393188953]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.07874217629432678]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39449123
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Male', 'Life Style', 'Female', 'Middle Aged', 'Cross-Sectional Studies', 'Diabetes Mellitus, Type 2', 'Inflammatory Bowel Diseases', 'Adult', 'Noncommunicable Diseases', 'Risk Factors', 'Aged', 'Inflammation', 'Age of Onset', 'Cohort Studies']
+Labels: ['Diabetes type 2']
+Scores: [0.2938356101512909]
+Labels: ['Chronic respiratory disease']
+Scores: [0.34019753336906433]
+Labels: ['Diabetes type 1']
+Scores: [0.25301000475883484]
+Labels: ['Diabetes']
+Scores: [0.30371931195259094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.15484045445919037]
+Labels: ['Mental Health']
+Scores: [0.003470279276371002]
+Labels: ['Cancer']
+Scores: [0.1689291149377823]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.998252272605896]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39438053
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'COVID-19', 'Thailand', 'Noncommunicable Diseases', 'Delivery of Health Care', 'SARS-CoV-2', 'Pandemics']
+Labels: ['Diabetes type 2']
+Scores: [0.5525270104408264]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5310230255126953]
+Labels: ['Diabetes type 1']
+Scores: [0.4988117516040802]
+Labels: ['Diabetes']
+Scores: [0.3184707760810852]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2576259672641754]
+Labels: ['Mental Health']
+Scores: [0.1650066375732422]
+Labels: ['Cancer']
+Scores: [0.2856980562210083]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9948004484176636]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39437825
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Germany', 'Communicable Diseases', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.08927306532859802]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11329162120819092]
+Labels: ['Diabetes type 1']
+Scores: [0.08974997699260712]
+Labels: ['Diabetes']
+Scores: [0.03399449959397316]
+Labels: ['Cardiovascular diseases']
+Scores: [0.01279553771018982]
+Labels: ['Mental Health']
+Scores: [0.002034157747402787]
+Labels: ['Cancer']
+Scores: [0.002951393835246563]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.2576223611831665]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39437462
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Emotions', 'Physician-Patient Relations', 'Communication', 'Decision Making', 'Noncommunicable Diseases', 'Informed Consent']
+Labels: ['Diabetes type 2']
+Scores: [0.16364207863807678]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19018149375915527]
+Labels: ['Diabetes type 1']
+Scores: [0.14696013927459717]
+Labels: ['Diabetes']
+Scores: [0.15277443826198578]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07750450074672699]
+Labels: ['Mental Health']
+Scores: [0.035008467733860016]
+Labels: ['Cancer']
+Scores: [0.04711255803704262]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9982488751411438]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39436669
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Health Policy', 'Policy Making', 'Administrative Personnel', 'Noncommunicable Diseases', 'Developing Countries']
+Labels: ['Diabetes type 2']
+Scores: [0.26116693019866943]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2972739338874817]
+Labels: ['Diabetes type 1']
+Scores: [0.26485973596572876]
+Labels: ['Diabetes']
+Scores: [0.2351890355348587]
+Labels: ['Cardiovascular diseases']
+Scores: [0.252760648727417]
+Labels: ['Mental Health']
+Scores: [0.2544059455394745]
+Labels: ['Cancer']
+Scores: [0.1800469309091568]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9695384502410889]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39432502
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Tuberculosis, Pulmonary', 'Noncommunicable Diseases', 'Gene Regulatory Networks', 'Lung Neoplasms', 'Silicosis', 'Protein Interaction Maps', 'Renal Insufficiency, Chronic']
+Labels: ['Diabetes type 2']
+Scores: [0.005160304252058268]
+Labels: ['Chronic respiratory disease']
+Scores: [0.5801851749420166]
+Labels: ['Diabetes type 1']
+Scores: [0.005281317047774792]
+Labels: ['Diabetes']
+Scores: [0.0032921324018388987]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0014881936367601156]
+Labels: ['Mental Health']
+Scores: [0.0013160431990399957]
+Labels: ['Cancer']
+Scores: [0.0011678929440677166]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9464445114135742]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39426077
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Brazil', 'Obesity', 'Male', 'Female', 'Adult', 'Middle Aged', 'Noncommunicable Diseases', 'Hospitalization', 'Body Mass Index', 'Sick Leave', 'Prevalence', 'Cost of Illness', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.14955447614192963]
+Labels: ['Chronic respiratory disease']
+Scores: [0.22064509987831116]
+Labels: ['Diabetes type 1']
+Scores: [0.12021522969007492]
+Labels: ['Diabetes']
+Scores: [0.058393314480781555]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9500340223312378]
+Labels: ['Mental Health']
+Scores: [0.0005387478740885854]
+Labels: ['Cancer']
+Scores: [0.0018019519047811627]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9669433832168579]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39421825
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Prevalence', 'Incidence', 'Global Health', 'Male', 'Global Burden of Disease', 'Data Analysis', 'World Health Organization', 'Secondary Data Analysis']
+Labels: ['Diabetes type 2']
+Scores: [0.18844188749790192]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2539215385913849]
+Labels: ['Diabetes type 1']
+Scores: [0.1680113524198532]
+Labels: ['Diabetes']
+Scores: [0.1621742993593216]
+Labels: ['Cardiovascular diseases']
+Scores: [0.23492056131362915]
+Labels: ['Mental Health']
+Scores: [0.036525025963783264]
+Labels: ['Cancer']
+Scores: [0.1409492790699005]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9952523708343506]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39418781
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Sedentary Behavior', 'Female', 'Male', 'Case-Control Studies', 'Middle Aged', 'Adult', 'Occupations', 'Databases, Factual', 'Occupational Exposure', 'Risk Factors', 'Noncommunicable Diseases', 'Myocardial Infarction', 'Sitting Position', 'Diabetes Mellitus', 'Aged', 'Workplace']
+Labels: ['Diabetes type 2']
+Scores: [0.06642413884401321]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05868115276098251]
+Labels: ['Diabetes type 1']
+Scores: [0.0591534785926342]
+Labels: ['Diabetes']
+Scores: [0.06863510608673096]
+Labels: ['Cardiovascular diseases']
+Scores: [0.07229464501142502]
+Labels: ['Mental Health']
+Scores: [0.0026783915236592293]
+Labels: ['Cancer']
+Scores: [0.04133012518286705]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.11732706427574158]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [2, 6]]
+---------------------------------
+---------------------------------
+PMID: 39418779
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Male', 'Europe', 'Female', 'Noncommunicable Diseases', 'Risk Factors', 'Disability-Adjusted Life Years', 'Middle Aged', 'Aged', 'Adult', 'Aged, 80 and over', 'Adolescent', 'Neoplasms', 'Cardiovascular Diseases', 'Young Adult', 'Global Burden of Disease', 'Child', 'Infant', 'Cost of Illness', 'Child, Preschool', 'Infant, Newborn']
+Labels: ['Diabetes type 2']
+Scores: [0.10829360783100128]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04607973247766495]
+Labels: ['Diabetes type 1']
+Scores: [0.10076212137937546]
+Labels: ['Diabetes']
+Scores: [0.06248044595122337]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9680458307266235]
+Labels: ['Mental Health']
+Scores: [0.002115900395438075]
+Labels: ['Cancer']
+Scores: [0.7710872292518616]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9891716241836548]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Cancer', 'Noncommunicable Diseases']
+Confusion matrix: [[3, 0], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39418251
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Middle Aged', 'Female', 'Noncommunicable Diseases', 'Aged', 'Adult', 'Obesity', 'Hypertension', 'Motivation', 'Risk Factors', 'Hyperlipidemias', 'Iran', 'Overweight', 'Prevalence']
+Labels: ['Diabetes type 2']
+Scores: [0.05697141960263252]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03175783529877663]
+Labels: ['Diabetes type 1']
+Scores: [0.038698628544807434]
+Labels: ['Diabetes']
+Scores: [0.031004462391138077]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04247478395700455]
+Labels: ['Mental Health']
+Scores: [0.0003211751754861325]
+Labels: ['Cancer']
+Scores: [0.001473798998631537]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9954959750175476]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39416942
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Information Dissemination', 'Translational Research, Biomedical']
+Labels: ['Diabetes type 2']
+Scores: [0.03249283879995346]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04086638242006302]
+Labels: ['Diabetes type 1']
+Scores: [0.023100178688764572]
+Labels: ['Diabetes']
+Scores: [0.02282237820327282]
+Labels: ['Cardiovascular diseases']
+Scores: [0.020402343943715096]
+Labels: ['Mental Health']
+Scores: [0.003191766096279025]
+Labels: ['Cancer']
+Scores: [0.006151970010250807]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9521176815032959]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39411832
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Inflammation', 'Diet', 'Anti-Inflammatory Agents', 'Obesity', 'Chronic Disease', 'Diabetes Mellitus, Type 2', 'Fruit']
+Labels: ['Diabetes type 2']
+Scores: [0.4334200918674469]
+Labels: ['Chronic respiratory disease']
+Scores: [0.04951746016740799]
+Labels: ['Diabetes type 1']
+Scores: [0.24113771319389343]
+Labels: ['Diabetes']
+Scores: [0.2598087191581726]
+Labels: ['Cardiovascular diseases']
+Scores: [0.5248041152954102]
+Labels: ['Mental Health']
+Scores: [0.12486153841018677]
+Labels: ['Cancer']
+Scores: [0.2609935402870178]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9846017956733704]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39408274
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Malus', 'Noncommunicable Diseases', 'Fruit', 'Nutritive Value', 'Diet', 'Diet, Healthy']
+Labels: ['Diabetes type 2']
+Scores: [0.23362989723682404]
+Labels: ['Chronic respiratory disease']
+Scores: [0.6218438744544983]
+Labels: ['Diabetes type 1']
+Scores: [0.24346397817134857]
+Labels: ['Diabetes']
+Scores: [0.2995511293411255]
+Labels: ['Cardiovascular diseases']
+Scores: [0.8705122470855713]
+Labels: ['Mental Health']
+Scores: [0.11514286696910858]
+Labels: ['Cancer']
+Scores: [0.11752145737409592]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9883036613464355]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39408232
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Biological Products', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.49229177832603455]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10561759024858475]
+Labels: ['Diabetes type 1']
+Scores: [0.4843970239162445]
+Labels: ['Diabetes']
+Scores: [0.9115683436393738]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9615544080734253]
+Labels: ['Mental Health']
+Scores: [0.01206139661371708]
+Labels: ['Cancer']
+Scores: [0.8569371104240417]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9823215007781982]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Cardiovascular diseases', 'Cancer', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 3], [0, 4]]
+---------------------------------
+---------------------------------
+PMID: 39407160
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Nepal', 'Humans', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Services Accessibility', 'Health Care Surveys', 'Health Facilities', 'Female', 'Male']
+Labels: ['Diabetes type 2']
+Scores: [0.1015181913971901]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1466478854417801]
+Labels: ['Diabetes type 1']
+Scores: [0.1083400771021843]
+Labels: ['Diabetes']
+Scores: [0.08423050493001938]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06469885259866714]
+Labels: ['Mental Health']
+Scores: [0.010615377686917782]
+Labels: ['Cancer']
+Scores: [0.05095531791448593]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9917289018630981]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39404094
+Predictions: ['Noncommunicable Diseases', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Fibrinolytic Agents', 'Subtilisins', 'Antioxidants', 'Oxidative Stress', 'Anti-Inflammatory Agents', 'Animals', 'Inflammation', 'Cardiovascular Diseases', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.10601775348186493]
+Labels: ['Chronic respiratory disease']
+Scores: [0.11707481741905212]
+Labels: ['Diabetes type 1']
+Scores: [0.11044660955667496]
+Labels: ['Diabetes']
+Scores: [0.08160649985074997]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9893836975097656]
+Labels: ['Mental Health']
+Scores: [0.0018195733428001404]
+Labels: ['Cancer']
+Scores: [0.0015194588340818882]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9989054203033447]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39394102
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Communication Barriers', 'Aged', 'Rural Population', 'South Africa', 'Middle Aged', 'Qualitative Research', 'Interviews as Topic', 'Health Knowledge, Attitudes, Practice', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.5805659890174866]
+Labels: ['Chronic respiratory disease']
+Scores: [0.08348844200372696]
+Labels: ['Diabetes type 1']
+Scores: [0.4651535153388977]
+Labels: ['Diabetes']
+Scores: [0.8839210867881775]
+Labels: ['Cardiovascular diseases']
+Scores: [0.04618474096059799]
+Labels: ['Mental Health']
+Scores: [0.03238718584179878]
+Labels: ['Cancer']
+Scores: [0.010675120167434216]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9933765530586243]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Noncommunicable Diseases']
+Confusion matrix: [[1, 1], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39391944
+Predictions: ['Noncommunicable Diseases', 'Cancer']
+MeshTerm: ['Humans', 'Female', 'Male', 'Adult', 'Noncommunicable Diseases', 'Middle Aged', 'Cross-Sectional Studies', 'Prevalence', 'Chronic Disease', 'Beverages', 'Obesity', 'Aged', 'Neoplasms', 'Hypercholesterolemia', 'Young Adult', 'Diet', 'Alcoholic Beverages', 'Feeding Behavior']
+Labels: ['Diabetes type 2']
+Scores: [0.4785345494747162]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1766819804906845]
+Labels: ['Diabetes type 1']
+Scores: [0.4474645256996155]
+Labels: ['Diabetes']
+Scores: [0.41994020342826843]
+Labels: ['Cardiovascular diseases']
+Scores: [0.34871381521224976]
+Labels: ['Mental Health']
+Scores: [0.07047393918037415]
+Labels: ['Cancer']
+Scores: [0.8213803172111511]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9751922488212585]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Selected labels: ['Cancer', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [0, 6]]
+---------------------------------
+---------------------------------
+PMID: 39390457
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Satellite Imagery', 'Cardiovascular Diseases', 'Neoplasms']
+Labels: ['Diabetes type 2']
+Scores: [0.19711726903915405]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2541269361972809]
+Labels: ['Diabetes type 1']
+Scores: [0.20732268691062927]
+Labels: ['Diabetes']
+Scores: [0.20225466787815094]
+Labels: ['Cardiovascular diseases']
+Scores: [0.16861774027347565]
+Labels: ['Mental Health']
+Scores: [0.031236348673701286]
+Labels: ['Cancer']
+Scores: [0.1454184502363205]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9884430170059204]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [2, 5]]
+---------------------------------
+---------------------------------
+PMID: 39388415
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Africa South of the Sahara', 'Alcohol Drinking', 'Exercise', 'Meta-Analysis as Topic', 'Noncommunicable Diseases', 'Prevalence', 'Risk Factors', 'Systematic Reviews as Topic', 'Tobacco Use']
+Labels: ['Diabetes type 2']
+Scores: [0.11525742709636688]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10960180312395096]
+Labels: ['Diabetes type 1']
+Scores: [0.10777153074741364]
+Labels: ['Diabetes']
+Scores: [0.11840780079364777]
+Labels: ['Cardiovascular diseases']
+Scores: [0.06299031525850296]
+Labels: ['Mental Health']
+Scores: [0.039154376834630966]
+Labels: ['Cancer']
+Scores: [0.0595795176923275]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9718484878540039]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39386956
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Guyana', 'Humans', 'Noncommunicable Diseases', 'Qualitative Research', 'Health Policy', 'Government', 'Policy Making']
+Labels: ['Diabetes type 2']
+Scores: [0.06345641613006592]
+Labels: ['Chronic respiratory disease']
+Scores: [0.09733150899410248]
+Labels: ['Diabetes type 1']
+Scores: [0.06200224161148071]
+Labels: ['Diabetes']
+Scores: [0.05394107848405838]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10470443964004517]
+Labels: ['Mental Health']
+Scores: [0.04330842196941376]
+Labels: ['Cancer']
+Scores: [0.03332284092903137]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9912295937538147]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39379988
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Male', 'Female', 'Aged', 'Body Mass Index', 'Cardiovascular Diseases', 'China', 'Neoplasms', 'Age Factors', 'Cause of Death', 'Cohort Studies', 'Proportional Hazards Models', 'Weight Loss', 'Weight Gain', 'Risk Factors', 'Noncommunicable Diseases']
+Labels: ['Diabetes type 2']
+Scores: [0.014533286914229393]
+Labels: ['Chronic respiratory disease']
+Scores: [0.008029675111174583]
+Labels: ['Diabetes type 1']
+Scores: [0.011073863133788109]
+Labels: ['Diabetes']
+Scores: [0.004426079336553812]
+Labels: ['Cardiovascular diseases']
+Scores: [0.002669766778126359]
+Labels: ['Mental Health']
+Scores: [0.004041782580316067]
+Labels: ['Cancer']
+Scores: [0.002753532025963068]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.009978863410651684]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [3, 5]]
+---------------------------------
+---------------------------------
+PMID: 39374955
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Research', 'Health Priorities', 'Biomedical Research']
+Labels: ['Diabetes type 2']
+Scores: [0.24662034213542938]
+Labels: ['Chronic respiratory disease']
+Scores: [0.19743244349956512]
+Labels: ['Diabetes type 1']
+Scores: [0.22705724835395813]
+Labels: ['Diabetes']
+Scores: [0.2229689061641693]
+Labels: ['Cardiovascular diseases']
+Scores: [0.1633497029542923]
+Labels: ['Mental Health']
+Scores: [0.3037412464618683]
+Labels: ['Cancer']
+Scores: [0.1587720811367035]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9933893084526062]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39369417
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Male', 'Cross-Sectional Studies', 'Female', 'Middle Aged', 'Tertiary Care Centers', 'Noncommunicable Diseases', 'Aged', 'Adult', 'Nepal', 'Health Knowledge, Attitudes, Practice', 'Assessment of Medication Adherence']
+Labels: ['Diabetes type 2']
+Scores: [0.17910945415496826]
+Labels: ['Chronic respiratory disease']
+Scores: [0.056983690708875656]
+Labels: ['Diabetes type 1']
+Scores: [0.14511345326900482]
+Labels: ['Diabetes']
+Scores: [0.12757080793380737]
+Labels: ['Cardiovascular diseases']
+Scores: [0.006369287613779306]
+Labels: ['Mental Health']
+Scores: [0.003594030626118183]
+Labels: ['Cancer']
+Scores: [0.008732006885111332]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.994891345500946]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39369183
+Predictions: ['Noncommunicable Diseases', 'Diabetes', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Middle Aged', 'Female', 'Male', 'Aged', 'Asia, Central', 'Adult', 'Europe, Eastern', 'Noncommunicable Diseases', 'Mortality, Premature', 'Global Health', 'Global Burden of Disease', 'Cardiovascular Diseases', 'Neoplasms', 'Diabetes Mellitus']
+Labels: ['Diabetes type 2']
+Scores: [0.39937660098075867]
+Labels: ['Chronic respiratory disease']
+Scores: [0.9762511849403381]
+Labels: ['Diabetes type 1']
+Scores: [0.37353718280792236]
+Labels: ['Diabetes']
+Scores: [0.8153443932533264]
+Labels: ['Cardiovascular diseases']
+Scores: [0.005242054350674152]
+Labels: ['Mental Health']
+Scores: [0.017392214387655258]
+Labels: ['Cancer']
+Scores: [0.856968879699707]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9922432899475098]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': True, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Selected labels: ['Chronic respiratory disease', 'Diabetes', 'Cancer', 'Noncommunicable Diseases']
+Confusion matrix: [[3, 1], [1, 3]]
+---------------------------------
+---------------------------------
+PMID: 39368120
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Saudi Arabia', 'Middle Aged', 'Adult', 'Male', 'Female', 'Noncommunicable Diseases', 'Natural Language Processing', 'Prevalence', 'Retrospective Studies', 'Hypertension', 'Aged', 'Adolescent', 'Young Adult', 'Diabetes Mellitus', 'Electronic Health Records', 'Obesity', 'Multimorbidity', 'Dyslipidemias', 'Mental Disorders', 'Logistic Models']
+Labels: ['Diabetes type 2']
+Scores: [0.03108973428606987]
+Labels: ['Chronic respiratory disease']
+Scores: [0.03888494521379471]
+Labels: ['Diabetes type 1']
+Scores: [0.028172900900244713]
+Labels: ['Diabetes']
+Scores: [0.029553432017564774]
+Labels: ['Cardiovascular diseases']
+Scores: [0.043790239840745926]
+Labels: ['Mental Health']
+Scores: [0.004336459096521139]
+Labels: ['Cancer']
+Scores: [0.00955754704773426]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9393656849861145]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39367295
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['India', 'Humans', 'Primary Health Care', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Comprehensive Health Care', 'Health Services Needs and Demand']
+Labels: ['Diabetes type 2']
+Scores: [0.20070898532867432]
+Labels: ['Chronic respiratory disease']
+Scores: [0.2296200841665268]
+Labels: ['Diabetes type 1']
+Scores: [0.21540935337543488]
+Labels: ['Diabetes']
+Scores: [0.10525710880756378]
+Labels: ['Cardiovascular diseases']
+Scores: [0.060639481991529465]
+Labels: ['Mental Health']
+Scores: [0.0005220320308580995]
+Labels: ['Cancer']
+Scores: [0.034054264426231384]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.06471443176269531]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': False}
+Selected labels: []
+Confusion matrix: [[0, 0], [1, 7]]
+---------------------------------
+---------------------------------
+PMID: 39365121
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Dental Research']
+Labels: ['Diabetes type 2']
+Scores: [0.031239094212651253]
+Labels: ['Chronic respiratory disease']
+Scores: [0.0015034498646855354]
+Labels: ['Diabetes type 1']
+Scores: [0.026631135493516922]
+Labels: ['Diabetes']
+Scores: [0.03474440053105354]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00024646628298796713]
+Labels: ['Mental Health']
+Scores: [0.0001704298483673483]
+Labels: ['Cancer']
+Scores: [0.0026865340769290924]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9146885275840759]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39363978
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Female', 'Male', 'Sex Factors']
+Labels: ['Diabetes type 2']
+Scores: [0.2089291512966156]
+Labels: ['Chronic respiratory disease']
+Scores: [0.21939575672149658]
+Labels: ['Diabetes type 1']
+Scores: [0.17347945272922516]
+Labels: ['Diabetes']
+Scores: [0.24256093800067902]
+Labels: ['Cardiovascular diseases']
+Scores: [0.2610858678817749]
+Labels: ['Mental Health']
+Scores: [0.12636233866214752]
+Labels: ['Cancer']
+Scores: [0.2540966272354126]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9925960898399353]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39356704
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Female', 'Adult', 'Nepal', 'Adolescent', 'Middle Aged', 'Risk Factors', 'Young Adult', 'Hypertension', 'Obesity', 'Smoking', 'Prevalence', 'Overweight', 'Cluster Analysis', 'Noncommunicable Diseases', 'Health Surveys']
+Labels: ['Diabetes type 2']
+Scores: [0.4392183721065521]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3959106206893921]
+Labels: ['Diabetes type 1']
+Scores: [0.3837588131427765]
+Labels: ['Diabetes']
+Scores: [0.44740206003189087]
+Labels: ['Cardiovascular diseases']
+Scores: [0.23514226078987122]
+Labels: ['Mental Health']
+Scores: [0.010765641927719116]
+Labels: ['Cancer']
+Scores: [0.23845596611499786]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9967836737632751]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39352154
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Malaysia', 'Female', 'Male', 'Adult', 'Cross-Sectional Studies', 'Health Knowledge, Attitudes, Practice', 'Noncommunicable Diseases', 'Middle Aged', 'Young Adult', 'Indigenous Peoples', 'Adolescent', 'Aged']
+Labels: ['Diabetes type 2']
+Scores: [0.10501252114772797]
+Labels: ['Chronic respiratory disease']
+Scores: [0.10382232815027237]
+Labels: ['Diabetes type 1']
+Scores: [0.1020086333155632]
+Labels: ['Diabetes']
+Scores: [0.08944562822580338]
+Labels: ['Cardiovascular diseases']
+Scores: [0.05086350813508034]
+Labels: ['Mental Health']
+Scores: [0.01637320965528488]
+Labels: ['Cancer']
+Scores: [0.044504791498184204]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9832340478897095]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39352096
+Predictions: ['Noncommunicable Diseases', 'Diabetes type 2']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Noncommunicable Diseases', 'Diet', 'Obesity', 'Dysbiosis', 'Diabetes Mellitus, Type 2', 'Czech Republic', 'Inflammation']
+Labels: ['Diabetes type 2']
+Scores: [0.0476309135556221]
+Labels: ['Chronic respiratory disease']
+Scores: [0.016159672290086746]
+Labels: ['Diabetes type 1']
+Scores: [0.03436041623353958]
+Labels: ['Diabetes']
+Scores: [0.014789389446377754]
+Labels: ['Cardiovascular diseases']
+Scores: [0.00037158734630793333]
+Labels: ['Mental Health']
+Scores: [0.00048817682545632124]
+Labels: ['Cancer']
+Scores: [0.0008986711036413908]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9839643836021423]
+Wanted: {'Diabetes type 2': True, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39344941
+Predictions: ['Noncommunicable Diseases', 'Diabetes', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Mass Screening', 'Cardiovascular Diseases', 'Oral Health', 'Diabetes Mellitus', 'United Kingdom']
+Labels: ['Diabetes type 2']
+Scores: [0.5119343996047974]
+Labels: ['Chronic respiratory disease']
+Scores: [0.17749929428100586]
+Labels: ['Diabetes type 1']
+Scores: [0.5016087889671326]
+Labels: ['Diabetes']
+Scores: [0.8063444495201111]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9228525757789612]
+Labels: ['Mental Health']
+Scores: [0.004457891918718815]
+Labels: ['Cancer']
+Scores: [0.009457545354962349]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9894228577613831]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Diabetes', 'Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[3, 0], [0, 5]]
+---------------------------------
+---------------------------------
+PMID: 39342408
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Mexico', 'Female', 'Male', 'Adult', 'Middle Aged', 'Noncommunicable Diseases', 'Ambulatory Care', 'Cross-Sectional Studies', 'Young Adult', 'Aged', 'Sex Factors', 'Healthcare Disparities']
+Labels: ['Diabetes type 2']
+Scores: [0.2118033617734909]
+Labels: ['Chronic respiratory disease']
+Scores: [0.20453009009361267]
+Labels: ['Diabetes type 1']
+Scores: [0.2083785980939865]
+Labels: ['Diabetes']
+Scores: [0.22177040576934814]
+Labels: ['Cardiovascular diseases']
+Scores: [0.10234983265399933]
+Labels: ['Mental Health']
+Scores: [0.007396555971354246]
+Labels: ['Cancer']
+Scores: [0.12747013568878174]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9952166080474854]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39342100
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Female', 'Male', 'Qualitative Research', 'Fisheries', 'Adult', 'Middle Aged', 'Delayed Diagnosis', 'Patient Acceptance of Health Care', 'Interviews as Topic', 'Aged', 'Self Care']
+Labels: ['Diabetes type 2']
+Scores: [0.13034795224666595]
+Labels: ['Chronic respiratory disease']
+Scores: [0.1942518949508667]
+Labels: ['Diabetes type 1']
+Scores: [0.11309908330440521]
+Labels: ['Diabetes']
+Scores: [0.0712360218167305]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008839343674480915]
+Labels: ['Mental Health']
+Scores: [0.014813853427767754]
+Labels: ['Cancer']
+Scores: [0.028061365708708763]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9962983727455139]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39339734
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Gastrointestinal Microbiome', 'Noncommunicable Diseases', 'Diet, Mediterranean', 'Dysbiosis', 'Diet, Western', 'Diet, Vegetarian', 'Diet', 'Methylamines', 'Fatty Acids, Volatile']
+Labels: ['Diabetes type 2']
+Scores: [0.040875159204006195]
+Labels: ['Chronic respiratory disease']
+Scores: [0.02965215966105461]
+Labels: ['Diabetes type 1']
+Scores: [0.04564425349235535]
+Labels: ['Diabetes']
+Scores: [0.03424278646707535]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0022486899979412556]
+Labels: ['Mental Health']
+Scores: [0.003547822358086705]
+Labels: ['Cancer']
+Scores: [0.004293899517506361]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9931241273880005]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39338107
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'India', 'Noncommunicable Diseases', 'Male', 'Female', 'Middle Aged', 'Adult', 'Aged', 'Sex Factors', 'Longitudinal Studies', 'Young Adult', 'Health Surveys', 'Prevalence', 'Socioeconomic Factors', 'Adolescent', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.10426880419254303]
+Labels: ['Chronic respiratory disease']
+Scores: [0.20661340653896332]
+Labels: ['Diabetes type 1']
+Scores: [0.09254329651594162]
+Labels: ['Diabetes']
+Scores: [0.10386264324188232]
+Labels: ['Cardiovascular diseases']
+Scores: [0.12082924693822861]
+Labels: ['Mental Health']
+Scores: [0.0029620295390486717]
+Labels: ['Cancer']
+Scores: [0.04617857560515404]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9896148443222046]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39338026
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Noncommunicable Diseases', 'Humans', 'Developing Countries', 'Economic Development']
+Labels: ['Diabetes type 2']
+Scores: [0.28348496556282043]
+Labels: ['Chronic respiratory disease']
+Scores: [0.3260139226913452]
+Labels: ['Diabetes type 1']
+Scores: [0.27406981587409973]
+Labels: ['Diabetes']
+Scores: [0.15883702039718628]
+Labels: ['Cardiovascular diseases']
+Scores: [0.13089323043823242]
+Labels: ['Mental Health']
+Scores: [0.1502304971218109]
+Labels: ['Cancer']
+Scores: [0.12864001095294952]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9777488112449646]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39334103
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Metabolic Syndrome', 'Female', 'Male', 'Aged', 'Cross-Sectional Studies', 'Thailand', 'Multilevel Analysis', 'Noncommunicable Diseases', 'Middle Aged', 'Aged, 80 and over']
+Labels: ['Diabetes type 2']
+Scores: [0.0696360394358635]
+Labels: ['Chronic respiratory disease']
+Scores: [0.023634962737560272]
+Labels: ['Diabetes type 1']
+Scores: [0.04530264809727669]
+Labels: ['Diabetes']
+Scores: [0.038570649921894073]
+Labels: ['Cardiovascular diseases']
+Scores: [0.012507320381700993]
+Labels: ['Mental Health']
+Scores: [0.006987520027905703]
+Labels: ['Cancer']
+Scores: [0.004163776990026236]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.958610475063324]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39333314
+Predictions: ['Noncommunicable Diseases', 'Cancer', 'Cardiovascular diseases']
+MeshTerm: ['Humans', 'Noncommunicable Diseases', 'Wounds and Injuries', 'Female', 'Male', 'Neoplasms', 'Cardiovascular Diseases', 'Cause of Death', 'Global Health']
+Labels: ['Diabetes type 2']
+Scores: [0.013599521480500698]
+Labels: ['Chronic respiratory disease']
+Scores: [0.00715015921741724]
+Labels: ['Diabetes type 1']
+Scores: [0.015481595881283283]
+Labels: ['Diabetes']
+Scores: [0.00429534912109375]
+Labels: ['Cardiovascular diseases']
+Scores: [0.9921297430992126]
+Labels: ['Mental Health']
+Scores: [0.057699307799339294]
+Labels: ['Cancer']
+Scores: [0.49068886041641235]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9861796498298645]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': True, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': True, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Cardiovascular diseases', 'Noncommunicable Diseases']
+Confusion matrix: [[2, 0], [1, 5]]
+---------------------------------
+---------------------------------
+PMID: 39324155
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Ethiopia', 'Male', 'Female', 'Adult', 'Cross-Sectional Studies', 'Noncommunicable Diseases', 'Health Belief Model', 'Middle Aged', 'Health Behavior', 'Surveys and Questionnaires', 'Health Promotion', 'Young Adult', 'Health Knowledge, Attitudes, Practice', 'Adolescent']
+Labels: ['Diabetes type 2']
+Scores: [0.06314157694578171]
+Labels: ['Chronic respiratory disease']
+Scores: [0.05471646040678024]
+Labels: ['Diabetes type 1']
+Scores: [0.059747595340013504]
+Labels: ['Diabetes']
+Scores: [0.016347818076610565]
+Labels: ['Cardiovascular diseases']
+Scores: [0.008060228079557419]
+Labels: ['Mental Health']
+Scores: [0.001722904504276812]
+Labels: ['Cancer']
+Scores: [0.004545330535620451]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.992780327796936]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+---------------------------------
+PMID: 39308827
+Predictions: ['Noncommunicable Diseases', 'Diabetes']
+MeshTerm: ['Humans', 'Thailand', 'Particulate Matter', 'Noncommunicable Diseases', 'Female', 'Male', 'Air Pollutants', 'Environmental Exposure', 'Air Pollution', 'Hypertension', 'Diabetes Mellitus', 'Middle Aged', 'Adult']
+Labels: ['Diabetes type 2']
+Scores: [0.06495410948991776]
+Labels: ['Chronic respiratory disease']
+Scores: [0.33103421330451965]
+Labels: ['Diabetes type 1']
+Scores: [0.07319042831659317]
+Labels: ['Diabetes']
+Scores: [0.05273871123790741]
+Labels: ['Cardiovascular diseases']
+Scores: [0.17666733264923096]
+Labels: ['Mental Health']
+Scores: [0.02496986836194992]
+Labels: ['Cancer']
+Scores: [0.04622364044189453]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9881493449211121]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': True, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [1, 6]]
+---------------------------------
+---------------------------------
+PMID: 39307578
+Predictions: ['Noncommunicable Diseases']
+MeshTerm: ['Humans', 'Pregnancy', 'Female', 'Noncommunicable Diseases', 'Postpartum Period', 'Parturition', 'Pregnancy Complications', 'Australia']
+Labels: ['Diabetes type 2']
+Scores: [0.09552980959415436]
+Labels: ['Chronic respiratory disease']
+Scores: [0.01280132681131363]
+Labels: ['Diabetes type 1']
+Scores: [0.09105271100997925]
+Labels: ['Diabetes']
+Scores: [0.02879425510764122]
+Labels: ['Cardiovascular diseases']
+Scores: [0.0012384933652356267]
+Labels: ['Mental Health']
+Scores: [0.00016918826440814883]
+Labels: ['Cancer']
+Scores: [0.00027807982405647635]
+Labels: ['Noncommunicable Diseases']
+Scores: [0.9479281306266785]
+Wanted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Predicted: {'Diabetes type 2': False, 'Chronic respiratory disease': False, 'Diabetes type 1': False, 'Diabetes': False, 'Cardiovascular diseases': False, 'Mental Health': False, 'Cancer': False, 'Noncommunicable Diseases': True}
+Selected labels: ['Noncommunicable Diseases']
+Confusion matrix: [[1, 0], [0, 7]]
+---------------------------------
+Result confusion matrix: [[103, 48], [78, 923]]
+True Positive Rate (TPR): 0.569060773480663
+True Negative Rate (TNR): 0.9505664263645726
+Precision: 0.6821192052980133
+---------------------------------
+Result confusion matrix: [[247, 100], [124, 1929]]
+True Positive Rate (TPR): 0.6657681940700808
+True Negative Rate (TNR): 0.9507146377525875
+Precision: 0.7118155619596542
+---------------------------------
+Result confusion matrix: [[60, 24], [30, 486]]
+True Positive Rate (TPR): 0.6666666666666666
+True Negative Rate (TNR): 0.9529411764705882
+Precision: 0.7142857142857143
+---------------------------------
+Result confusion matrix: [[265, 83], [62, 1838]]
+True Positive Rate (TPR): 0.8103975535168195
+True Negative Rate (TNR): 0.956793336803748
+Precision: 0.7614942528735632
+---------------------------------
+Time to classify all articles: 6689.5230884552 seconds
+Result confusion matrix: [[675, 255], [294, 5176]]
+True Positive Rate (TPR): 0.6965944272445821
+True Negative Rate (TNR): 0.953047320935371
+Precision: 0.7258064516129032
diff --git a/testModel/results/zero_shot/v2/results.json b/testModel/results/zero_shot/v2/results.json
new file mode 100644
index 000000000..5bd503181
--- /dev/null
+++ b/testModel/results/zero_shot/v2/results.json
@@ -0,0 +1,74 @@
+{
+    "results":[
+        {
+            "model" : "facebook/bart-large-mnli",
+            "data": [
+                {
+                    "Name": "ALL",
+                    "TPR": 0.6965944272445821,
+                    "TNR": 0.953047320935371,
+                    "Precision": 0.7258064516129032
+                },
+                {
+                    "Name": "SHORT",
+                    "TPR": 0.569060773480663,
+                    "TNR": 0.9505664263645726,
+                    "Precision": 0.6821192052980133
+                },
+                {
+                    "Name": "MEDIUM",
+                    "TPR": 0.6657681940700808,
+                    "TNR": 0.9507146377525875,
+                    "Precision": 0.7118155619596542
+                },
+                {
+                    "Name": "LONG",
+                    "TPR": 0.6666666666666666,
+                    "TNR": 0.9529411764705882,
+                    "Precision": 0.7142857142857143
+                },
+                {
+                    "Name": "VERY LONG",
+                    "TPR": 0.8103975535168195,
+                    "TNR": 0.956793336803748,
+                    "Precision": 0.7614942528735632
+                }
+            ]
+        },
+        {
+            "model" : "MoritzLaurer/bge-m3-zeroshot-v2.0",
+            "data": [
+                {
+                    "Name": "ALL",
+                    "TPR": 0.6965944272445821,
+                    "TNR": 0.953047320935371,
+                    "Precision": 0.7258064516129032
+                },
+                {
+                    "Name": "SHORT",
+                    "TPR": 0.569060773480663,
+                    "TNR": 0.9505664263645726,
+                    "Precision": 0.6821192052980133
+                },
+                {
+                    "Name": "MEDIUM",
+                    "TPR": 0.6657681940700808,
+                    "TNR": 0.9507146377525875,
+                    "Precision": 0.7118155619596542
+                },
+                {
+                    "Name": "LONG",
+                    "TPR": 0.6666666666666666,
+                    "TNR": 0.9529411764705882,
+                    "Precision": 0.7142857142857143
+                },
+                {
+                    "Name": "VERY LONG",
+                    "TPR": 0.8103975535168195,
+                    "TNR": 0.956793336803748,
+                    "Precision": 0.7614942528735632
+                }
+            ]
+        }
+    ]
+}
\ No newline at end of file
diff --git a/testModel/results/zero_shot/v2/results.png b/testModel/results/zero_shot/v2/results.png
new file mode 100644
index 0000000000000000000000000000000000000000..b9c97cb6f3b8edab150f5a8466a16a134f7c273e
GIT binary patch
literal 36830
zcmeAS@N?(olHy`uVBq!ia0y~yVCP_9VEn?t#=yX!DO`Dvfq}uQ#5JNMI6tkVJh3R1
z!8fs_ASb^hCo@T*EVZaOGe6H*&(J{6Kt~~?q@<wON?$)0u0k)rC|!R_QA7~~0|RG)
zM`SSr1Aih2Gp?{-p2@(_@8#*@7*a9k&E4_}k*oiXe>}fT+DU(*^OCLxj!R0Ri&t=5
zS`w$JrPZWxLNs8>2~ifoz)U42u?hDaMVvP>G;uI_P2{`eDkP-v_0PWt)2Gg0nUG_&
z+xq?W&rf!m8>c^;qq=#%?04(*V~IV6ObjrPz-<@C592T}IDA{^zyasp;9zxva}Ky^
z2q5&CIW-Evr8Wq1wZJ(Iy#Wd=a9&OelOmjxpe(|{2<J)Dz$%+dOFSn(DX<9HUG}!*
zy0r}7*H>3x@A{o_WyM6T@O5)U4>L1t-(LLOZ)@gdx20ZFg8~93bct#&W0$LNc)$Pu
zzRkWbFD?E0VsZbn-G6tLzJ5|*VN(C^kIC!0zhA@uKDYlLxH0Ldh=jz7MXueef|vXK
z`g%S7@|L-V$!#)x?VpdIKkt9EOEmcUy4bJB<?B5r?J9daYn88?eeCYC(zEt_3_DJ2
zmHhtq`~BsS`8|Q1LaI*+EP|fC{krMh&gb)rxBX7HYintF@$Ghg_-wP>EeQviRMpj&
zzck)k{NVLm>+|#N<N4a1Ute46eK~(!%+8XZpPriB{`2qm`*Vi9vew_){`)Z`Y@M>_
z-^=CmjdGHEE~d|~UB<>MrQtu%hKr9cY^ql1mtU{fYnz#w`Tln6l{)#bU`6ESw9IR=
zb~P4<du)oI^|0~Dtk4QwrJ<tY;^^q86}@fEuF}`j-lcOgq%3`QcDA;KMTEG1+?fr&
z%l+nx2nZ~&|NkfW(%Si_+1S`t)%^S<Wt7sfE@r2a=PcXmZ8CiAc0V38m;8QradG>f
zzkk1;*599Ev2R`MZY>p+CvEFZ&CJ4--FgD9t_l^Eky&$RXYuN~zrTKcx$K|X<9XRG
z^-li&zh$#Zum6s@xiPtYSLy3z8#WlQva)KbsJL8R6?*x!{{A)1?ELo%<}_&kjI?EV
z5O!vcW$;q(>DQi}oxQdGf8A8w=xeVO85@q@*pS#PWuCWYlB)Nr>hJHgVs>okleJ#v
zJKOB#-SYcax%KxHoc<lRqhO&`$%_RwKR>-(xqMzwM8pg}dAl|JcE3D6KR<u{&CShM
zH>I97xxM$_uh(4M+?S_nhi}Qetaf&Wq4WLv|9i{c-ddVIzcx%zQ1INgc0Sol6BM1l
zoH0JXqVDgnb5B!GP1*Uhkl7)Oi;L^hn#j!|>*Mx@oW8z3e*NR){n`cw24~IqZ9X(u
zmA{*lR{8VO)8M~y5)vyiFE8_)q!+($jk0@R#?4KsS(lgfN||OYQT3jt5xy=)uf{a|
z=g*%nFD><s+Lkl(*0$W)S$EIOG!_*RdGaTToxvtHC}@&Z*_#zRi=VHm`}<4EEN4bj
zbMx1`<@Ymxe0Vs^Jb&K4pU<RQ+uD}hEc^NC>8)L*tFx}GC_G$emVa-}GT+&+9v$t@
zy1#Glyy|zBtZZzrE-ZA8+EcMH?aYjYUteEe?byr~`O%0`q1SJ&Rp!l2sZm=p0(U)M
zHeE0F(j-;yFBhEoHS7QVIrnsXk)E`u=u%bhX&Fa41g#1lG^CxIv+~>9+pj14+g&`+
z$b5B?Yj=p{?#j<;zH_ZY_4j_6^lsPdbv}E~U0&}0`rq&O*WcaUeRW@L_19Ndy~EeV
zTx??HzOvL?d~M9mAmj9NQ`WD~pOt&R>b36I7Z;rm9z1CN=J{cM`;dM)+mHngjHR!x
zc#3L=g(M{{0>zQP{ojzs$NR58Jw5&MTlNz|Y#$8R`Q=O|ojKIX?R&6^_3Vbk!<V*9
zOsV?zrt<DzlbjnD?o>XX8)@ppP!Qd3^Ql8KV#9);uh;Ltw8pyj*Ot%!r)!0tGReJV
za<_I(?CxtGMxURZE!MlezkWX_AD@}1c9==}xjCL!|Gl}nd0EoYE;aW)nP&$Yna@3y
zum7`gV#>Cho0C@kZD3^XQ87+GH^-zl|K_Hn9!B!@e?Few6T`5<$LrYEtgEL)Gy)E&
zsHiN7y1%!&Jb1BNuSsRK@$*f`BrY%Y7N4x_-dA$HSIYF1hf(hBZN6J=K*hyZ^Za`@
z$|u*v?l$w?&u{l*LFUCpuCsDaP1R11+MbuIGIRUAs@HAnnHknhyJ(r&HBs4J%5z!$
z|9_d+bYpj2`SIh&jCQ#yjjNy9c%^4eQuUs-r}Fcxw6n98MwP#~u+T)Z^537z;3Xb{
z!8-~PH&=guXYyA?U43@s=Cqk-XPe(Y<;~I%UG(yj>SW_|zspNJCzo75Kg;yAhtcNr
z^JRLc&+N=8D%!L%czIu;h0L=nD}#^CSUpoxMkdFq<i&%W=`&_ztO{M7<~3a}Hz_&!
zf2sZdD@#0uA3uJaJWVHZQd;c)e}8*bK0lkCzbs1cWXS5UvmQpEqGDC)%i48+J{;yh
zcK!NwlZ*=oT-@E4zkL4b>FKl&4-Tps8h+fB%o@`f-E-(MsGz9){4DhHGT*Dqe5KFM
zvAhf_DBLXz9yGk$^V#p|$;s+xcR96k-ThPtN?5VGN<4#?`-L8CVhvua9k8Im?#Bb>
zqsNYAota^1ekc6YnFGx1e0M%oFdT?2d2zw9{@>5#Ve8}G#)!$wumAb^`Re53eUX=*
zA82I$`k<LV>)xKqTif&Fr+vA&G1<NL=hNxC3LZ8U-<+l!{pI)j{pmMfGc~*^`}rw#
z@7HV5TJih#xb;d+O{?9Ub{3rIqqcg@Hp}(es+WFl&a2zo*H6=pUN*n}-_KoteP$ZD
zs{7Bo^5f&<(2Yq)O<v3LwS!8uS*F=(?^qcR>@T>TyM1No>aeb!o+~qr(=V-=Z<;-=
z=-HW-&(6-?y~Mu#@WQIEuTDxl-g7tY<)x*jIX4VyKOPl7_xa`bd)5B8x94Afa&mHh
z*0XzGb8c<%jIaGV6;!*udo5v_HRaS)?d2C2yD#6l_ut;{_g4RYx7$DYSdZuTYrn5c
z+12cj;cExw`8k%w%Od4PM3x9DyBSmq-0Wgfv^jTXrt#HPq1vo0EGwMb`F{QVet&D~
zX|dJqtPFCCLskZXN~N;5w@MFh<K*PDDt{L<YyOHAD@<~y>qalTwA6d~uD8#(N||IV
zxU|$e`)HS_`J3+_9v+^wWKZSidmD5acI>{i)O&T_-Ce&Pb?eVLz3<N_Z&z2>m9@XW
zz050qdTMIPXLCEdf6IQ?KI&9Y>G2GmQL;2_ZPdw!1sM+ywVq4eoOU+oXqRZ{-m0%U
zFNGO4-Tr>Re*OM`zr1Cw%cjha|K<P6b7$|pPft%@Ui13$^8QcH&aO^8+!niie(LFI
zmis%{8OkrM3|3cFQ_FgHXXnak^X=>7K;ag(EobHJyxqE2cb%DYdfE3{hx_|#ORvY4
zuXOL1yS2Z5e;beFB2f9buwCxdm)FtTa%QS5t@aLi`D*P~>#{d1Kn}3~^TB!6*TZeR
zmtS69Zd&>23D55xB`+skTNAn1tygMg#m7f8<%}O_iEum&+?IEDm2LGmi~Sxe!`IL2
z64yVc<HYbo{MYyQ>%FJzt&G~5#l_Emy@8SW%h&7i+KP&bzPH!!{};u|E#~w2GN@>N
zyJ*p(l1E26rSE;;pLKPWRo$P8S?qJ%U0q+^*;#B=_h*NgPQ-$ThugIc3<CP?eq}6+
z*Js$#+$U?D_3_csbK2eM=jN<z<CR{OadFYhZU0{^?!R>Qes*`EdC<<HRL@9rY3uZJ
zbE>{vbT`eursEk@RJ1AW{Jgb%vQ{ac^$ZEE_v?Q9PFhzzZ}z6V@9*wrUVD0Ks<-~W
zACGv`1>fD=>@KPmGGYJz`c+TG_2YcLKCQ~hd9!v855tbs?{~}RcZp~|vU%=pn19bk
zRYhe*@N&P*Z9mPQZ_@l(_TT{H-oM{&M{P)G)Cym>hD%h-;`Wc9KQmulS!q@BVnWvS
zb-MQU_Pz4<_f*&GZ?=rzUsr3IcPAo$@7J)l%^cs~-(P>^h|BYzKewKnZ(n~}oP}wo
zYomZ%>a#O5xp;X)A0O*gjh$O|Z(XeQ*?G3no}Qj!{d^2Ihne|p7W7J+ud4j~?AO!j
z@g`|!Buq0exg6~hy?kk@cktG=vAeg0t&f}gEd9-mjVo_075Q^%x9_p7LD$^f-Iqtn
z2?{Q3V&z`t(kTRL3lu#$v2dyP^rBQ*hV>V><wnQutBE{4UH|&gZt<-(KR>;`*Y<hi
zaXD}E`rvcT`EDK_9V$zAY8;*lY7&&bzV`CU%HXKYX`tHs=v!CDim9_L&!2rEWA1uN
z=g`B$?dd!EU%bdj&x?QEsXou+>(gHijLiSeeqdC%TvJ;Ms*Q8+?6_#T+kaQp^NtG_
z0`AuT|C_mO=gs1qH*Q3v@0+R{9rpM4_v?GV-&?KfJ?+H9f+bnetHX3{zuzggs{aQn
z)0SSi5HNj@UHFqf8xjwfyt<<4JJU$@?pMv*OQ(O{e!s4I)tvv&zZ*G(dHuh~(ID;R
z<#h?v2HR1XENfMAV&|T+x3{W(zuhh>DY=qezUIOqL8gZ1D<U^96Vr=X@#9Cu-%qFY
zqqbyByjS^L7Sz(ey*)pCsn=AM*xIrL7Z;aVZ~s?TFP$>^sdO#p+>4#xk8}!$?yISE
zb#=}B_2uQSZ@2SBB_t|NujgmD18NnB3JNZa+zcuey}i7=f@YiL8s)_AsrXp(`TPBj
z&d!M?kGswDj@j>D;Q8@{a=%9UxjD0p)BCpN-(NS&G<#Lf%}p!!*)TEqml;3bY5uFo
zvi#khs*gv-O-o(`<lf$<d-wK>=VxYKo_YIv)!(nzudWW)_YBwn!pxvu^6HA``#qog
zKoxIzT&3&re);R=_iLBm+grW-_nAGjZKv~caTVQr^!dlf$5O^=J?G|FPJT9Rsb<i;
z!&T>Pzo$I9x}+@k-1C!@)$f{_pZdwhE48BV@iCCfdDZWB^8EJDe?DC&a#2eQ3n;i=
z-QWLz?H-l~(+ryh<dV<MGPSDwv;>qDi=LjctiQD_SKISWng~Olqk}_3*0nV&Cn~#V
zeR^`z%fsWsp32YvzSb2zKetxNwJYOzpX~MA?a9aaM76_wb{0ML+PWufZB$oBN5JcA
zYqyrX3<_Nr6Dez5=JWlDB!f-p@jltFPp8LcotmOq_2Xf?@gJr`p+WOZqqpVUe7%jE
zhv&?PGLPwcv6D)^o}S&aE%)lGsdhh~2<t{|>A2a<u;-j?`5i^i>$c~8Bc~TljIH|h
z<>g|V%1<d4-5ZjQcHP=to<HmMzwotDp@M>fGxue%Fc^Uf$W;*=7k!?2E57DqYmec}
zdvRaxfB5>fG%e=(x>!((3SRE_@@D${(xV&lyH*#~y|}Q@s`S+qyB`mlO<tdxrmJml
zZx71)Qf4_TIyyM6t_Xa5pHKFL30KPp3FGv0Aq$;aP4e&UF|n7mD!H)8wcF@V5;H?V
zvS#>$xi*!brfsYLa?!o?#RbLM|9`)~T=)Oo?)N1>K0K7R3%_vvdiY|u-b<ar>L!VY
zTB4=68Fnn5rW<|g_;L5yX1S-PIo(R1U#r%BxbU!~`cki{m+tMYz8pJ!)1Hu(L6Uj*
zHzvD-T7csEaV2)zG7NiM_f~zKqV6wuc9yC3VfWcJzg{k%RC4$8ohgwm-qUn0Zp*!W
zX${ydKR>1FMr}D^%FNCn{`$(w$)J|9taVw&wKb8TK6A0#{M90wK`ynwzkxbIpnlKv
zch<_9H|I`z`hUulDN7<Zr)lQj+q3KYy=vn-{)gLmudWDG?v=B(I$M6lvgk>`Vz=Hc
zb$_e=empL}PTFRIrwGSGK~Tr0m0SGPMR)no*=D(y{(O0L)mvOY?up!4h63Sh>teN&
zeP%t?4qrEANeDmFfAfF8@Be?b?RMVf&FAe_+yDP#e0A67=jUJVd_FI@pkM<?_Fh4J
zuas%f+NiB2b$=>icNRUJc8r<fotlb@%Vc%`Ya0>|Us)5mS?BHRv*!1&T#v6`TlV(W
z%9x!+*K>cLQ0~vTyv+C3uF~vPPsR0OE}WTZ9J)5jR8%j<;_zE(^Sm{J%5E8lS~#!g
zvNO!nu&{^#m2UU;R)2l9di}D<{Ygi;Ks`a<StfyVtxDJJUN0VB6Il7_$;H>}_s>g<
z?U%C^k&;@qul9G={e88W*Or(6<72p~nY!)41V!g9wZFgloR>Ruf?I#jf(H*0_Wpb}
zJ95+idM<wca2J;ryMI5Db>sKhoc$FZUmN=S+gni2ch1AL{=rLZx(i-iS($l_SJKGE
z)6?_U`TBp8-`$;bqB5c}UEq+iPVBA_as9ZE&(F?Yj*VaLCo8HG5dcb`yUX6Hc-sH{
zGWp;4{r{I{-d+)?e06oW|D=*{Z*G>{ZfR{zz1c3q5b?HEJnq6$@99@IrFw_1i3t4o
z@#C!xiOtW>%v=m=RYh;l+rH&~(bH2eC;Qt4F87-oveZk|_Un~kQ1|%Z;r6c=-Q__o
zgkO)k^+T5V%$$Aee*OR7@wWedJf3Bk?6&Ls2X+SkD@(nn&(7MOf8Vb5-_Pfn)7snG
zmdz5JF=NJyobsoqL}e|DT)e02UG0;#zOtk6amoHUKbAK#vxC~uSr-;G&a3?v338db
z-<%6QlEx*Uo_N;&`FQ;L-FwH6yEn7*?^}7DmEm2^uP-m7wq}LSdaA$YL({h0+siI4
zcF%r%tT*fKuB~~y-<pB);jcfR&zByTEq^iD-)`r_f5p$wt+lKDwWNCX#hRa=K%J+o
zYink{+x1#+YySN>)9h<g_V3@{Cu{wzhR5OLBvs@8PK*!4T3TB*ZERw^r|C>w^180P
zYV-3=FHg?5-wztR@SLoc`TgD9bI}cHZca{4yY4eSKRw<5y#4<@c7MMFgR0M}Hye*%
z*_iBpb$xt%VPRp^j)H~P)<!Qcdwc8dm80i)rOiSPxAAVR`}@n}^{eaa*K-Q1y=WDW
z3)oro^vcR$_2=bAptJ$%{|g8lU@bop2FhfhR`-Gh3wZ1uYHDh(Y{?7;^>r+>pB|U5
zztV62Z^p8>9fHbpSPvPepL?<OdYt#=Xa9b`U+%zhAiG!AIt-L>PEFM|EqxVo^!V}B
zDJLgY{rmacwBo}9A6wzqACJq2AMFw~&AOtI9%xYi?@!j99UJ2+pNfXAi}|_iJE&1V
zRWsNv`FLOG_jh+M*M6{Ms91e<b$IsIS64HqndjUvxN2D#6EkOC#UoD7@bsM`S|J{$
zSywJhP;{QN-DK~?3l{?Z{&?IE8n$?LZtm*K%l);(*TsO^s&g!hLw1+tUf*lLP>?)X
z-QTag^7^`1)ADyQwZC32pJkRiE3W#jDagq_GmWIIN>;>Gy;OaAV&davzbZiWZrz^>
zS6A1ik>T6(V&C4{>izgw@8vF0ZIkqKGOFt8t0OihtqNa1Z<*iRRlmNzPJd;}<d6oc
zilxnR0@g-tUH5y=>)E!`&wA{y`)iVVN~BlLHp)2d%!xA-R6Rd_{P?ntJ!YAYr0xGd
zpS6OPbb!WEw%@Od28Cr4EBBM<&zG+XU7dBTNAlI3ottI&j{ANE^|Va$?pWL{wXOOR
zaCcYf*K^kIGw$uF1XVhJ{{9VJ<|A49@{+4<)t4PFyH_!W7f3u?hZu+5cF>rdA=O7^
ztcUXV{|!4k%QX1nBG;z{7F#MlK9bJcoOjnMbbVZGV`C#|05I*$jEPSlBSv#=Cf*k1
zNKQ@$^;a?<9qBZ``tQO*=d4>>R)U7u-rnB+`lxvPmCOG2YuE4lrPb{Y8cBzY_g2WY
z8y<_W?dY+P;nR)U;sL60Hk@r>WZsf=l<V!St*3Xcsr~&8)EN$28&w(%8c}$Cq*M6R
zOylJ;eC}!Oyb9ft$t52jxr*vWh1l8UmCt3)W3=R{5G%T|d&0qnbj9Yq+>$&MVn#Q9
zPdMC=uGk)X`ur=#lxxR&r9}k=CuT)XR`dPxs9XQu7dyW>77K+`y>?WjFl@TDG5L7N
zo{GZN?Tq3I?TqJL_^R2BBtH10Y$#V~W<2l0R?S}|@xkZGhU|)(#t&Ck26OT9`fk-R
zF$uYN@#3zUpPTY_zujhX`^eFwntFQYepa7SIhB08PcwX7Or&)J!%Q(**|kEdUZ6H%
z7(eUw4jDEZY0Eb^Pb3`JJn`VXULH0ZX~{P~Pb41LJn`_lryp4lMH^;a(cqQ0vpM@I
zW@phyM}`W4yuS~2o=7}kJ>l@YP9C;B%#v?ro=7-gJ>lTIZW*>c%$9GY<mxA1JJibk
z`pe79E2qu1tBnFRyUM>UP~nv_@dykIJU2i2cwg%A07i!Y{W5F}uO}R2NRTy>U|8eI
z$9&+vO&wd}-Cd<yi=LheIUTk>Ztbqp*J(R^6A~6MF*9$j%3x^VnQ$1Y!I_P@Ve5%R
zh99$UpH=AT?7aBx?d`3#zso!?Ep%?*Qv171*0w6-($&>AR^{*B<ov%=eE#KwgUwYx
zpHAPJeqPRZmWgNa^K+s1_tmbIu!E!v1_p))*Y4!8J@mK#yX07}v~~Ua>+9#Mtn{9)
zH_I@&&2OH~OC2#U(12{%nuvw_YJb1FTYf+E<D;XdxwlMAGcT#!KF;@j>Xa!<T3T3E
zw>Q=+DkwOBk_RtyL$nKDwOD<9{m);&qHK8>^qknL#f&6A=$$-yva7#;dzHiw@gH_f
zAN1yMSBsr%-8}uaD2KFZmP)cu+w1f*GbX+>yS**<^r66m!IH_K9!l(vf`hLXK8XMH
z@nc{_#0(}TrZsY04L%C(w&C+^DnoV@B+C8atuQdUQ9SWrLwQGk|Mi8=?NjE=$@v=a
zLH|Q7%L7>p@ozD6xYOmgYYQ-~oAOC9U`2o;D?7WemYkBMWhAH?J2_cBbW@7wzq|%^
z<#yYCLpRWP>P+Kw6;IbLk&P8D40)oGZz@kD9H^E^2Gw^zfBgdW2hVtX7O0VDtl&S_
zYRmup(9M1(#XVs`L6bf^E7bq{6UNW}Kj>f+Yw4pSoT_SSr|#ds|LP&b4%R0dp6`0Q
z?Y4?%`nfrQ3!Peb>}7w@cp~AvD;x7YMMJ~D>3Xq27Z<sT%E;t=Er598C)5l2dht!y
zy>@OlQGYZ~^J$nIxQokjV69TSZS<-8z3HY5^E!FH<)j!q_!;ysdfM%fD!G0A3^wx5
z56$Z>e)z_@Q6R4W<>Pss`=uY)R@hgo{mW}8f3Ww>%pbcM?=^ql{QO})TLu5U^Yc3Q
zN8_82`m;ukA)(cL``pvl{;}PQeX#8Iy$r6e7Zy5S-I^WV+S+P4{psoH{-A2*#l^*?
z-|v=tPXZ00e|>%3dlC~fGbpG_UtjZOX6H+pWyat=@nDJpL-xeOPYghLBn3(aC9^3$
zNCPFrKa%!!dy1Z(nwk~)|KH!ax%+=Ulb&l+83Y>DNlHrk^5HQ5>qD*F=f2+EU4H%K
zWc97(@8dvO(7BE0;uOtbor+L~2a+ce7&eGm@-SReY-T)Qm13~Qp;4f~xRqPH?BA1f
zbEEm%m9K7^FhL;w_Me}hR~I}ywCnl2YLl`z5uki+|L@1*;@X0O4P4@SYl4<~t&HBD
zw<>Dus<8EOxkpbkG4wk?^XCRWNw5uxtXwS((|3Sl`Qyirnb#zfzkp@{&d;;u;@~*(
zZXsjCb>(Kp15r;57$Vwvz-7Y;o_UTO6^-2DdY}<|E>6zCwNYE=oL2XpwIuWMGEF<X
zI8IJZE-tR1_xJYd%4jlF$U}>ghSC!W3f*T;9ZNr2YI5_sc+BHN>o3jk+$B&Ns2o=v
zt7zF2x;m%f%X9yrL$08<^5tc|p*1y4LPA2KA|fm9#mep2_3!?PdjD%Z@_Efn3wJ+0
z%y3;$F3#P~&aSI>@0#1*;+N;}|6d-kKl#%9<4an)UtL+&8Ta=0l7G7d)-Ft5rnM(6
zv^AXL!C?l57zG=fKmUy_!nWV9+YM^5UbqnO{FmQctCv^9<FCfo|6RJ!xn0Y~Cg$P8
zhhlva412gOc~T7b^&cqxP|Ly)q5fy$@}Tq&TPAYpPPxBxU-0bqOKAmbck9R)-VtSW
zI?#OfXTcJ!&>gWqKR*qdcgOPbn)7qDT~hP)6+LHJ=T13wEo-IK_mD7`!?$kQh8!^d
zxRhgE^11f^-m?#C##gAsguFYTtu_05)0FEAcTQ%HJNv+^@_#Mc=cOEPdSu+H{@qg4
zoLw}7hpnOHBgif7JZ-B#@Hic4o~j|X$|&*Z<-ZC)mQR?F@U?Q;-e3H+;m1C(N-(5|
zfudWf9h{&*5!tpnK!GLa$xXerTizcC)Q#A7?A1bshPR-CU$;ntVGXDpFFlcv(!!*e
zp#1aGv#{sed`)xCgs7^kN88FUY!F3?QictDl07{ZJfFQpWo6gi*;%ZurRBA==;@{^
zi<KYmOpPuBwbZRjJQ5QVxwyDCRavb2o-hAquB4bv_0y_)`|Wk-A5Giw_Wl%}b0X`{
zCF-9~=#<$ey!~JGq{G{Lc*+EgBqGnO{XZ|IVA+JjdWXIXo=D33ZLZpE+{#lXc&>G?
z99hj9YEMpg%)iRapksJ?;@-cdCgyjqJlyf`MjM~(D$snU&YERhVkcHJM~i8upOZQF
z^{P~9NO!w*=8cAQ70=#T_N%{2*G*GlWn){BvhmQXYaau7-(3FMR?FxxO`-W@0>iaW
zUu5dm>^ii{-i?p>gU`Hq2j_4ze@IC&kn9PW;mEOL=45q$tNLU8^6O)E7A=jsw!gkU
z{dTwEbd$12&&}_oe^-xs@nn5`*862YrM@JI^HzRl_WfDm7`Bgx;e$tt0YgN$3^-SV
zEAX%d4jemX9%|*bt}l9iPPhH=#H>gUkB-f6x&60a-Ener$+I^<U%xZ9u<&Sg=3Wuf
zsr2gF#+|Few3c6eU4Q1)bS4HlP#KXu5z!nt%q7CX$bW5NsPNRidw0aiTfbd)OFH?>
z-DA18Hviwi^yly9iV}tgchL*Im{umm2M1;NUY@;PmHBFUcgcebA9-&3&a#VFTq>op
zA!CP>NwwR_lWu$GXHM@`W@UH}O0b}Y2drRws0Fh3`jdUTR)z1L6(?<~df064Et@58
zv(sO-i(dXx;Ibp`?QP$OTi=~J7Rc04u7p;|6@Usx@rq&({j-sKqHdSH@hz`?7o(_E
zUCnuQP2KWme$q=h<<DL<zmqS;5YxoN2C5doK?uq_%9}L=nBo?MeYL*&>f$jei=;!m
zx7%7+R-ZS1d$s<>Zlhx<hhH!p*gf$eLjp=}6JvEc;JxRg7ysIydEMXM*;gIjcD^ig
zX)SwS*1=7tHw}y!KGdN{*-Xbqfe%7YPfxovS$6j8Q&V?HZ#z5Pe7n{5+*OIm%d{*l
zEv4Pq8SeF>JJDFC?dOuNzP_+`cXo=3iY|@WSrlnI=SrI8ruFOl?v-l9>@0F^=aU6B
zteTpd*2wj}{`)id+t;c8=e>FT`hV>E_s_4rkGvza{qO8a2WLLIYWe1=q|U^{Wsk1a
z`xpI~Hu0dI6Pt4P&ad|;^PCeYy5ai6jw$j??*C<=Y<y7f(9R9lliBFG?gQSK1TQi1
zm?XoRmG$vdsrmJ54=+4A+P%5Nh9SWmsgeW5%#D5E_5<tj0{3m-(%WX$U)`5|eci7o
zll@gZ|NZ-?6}f4NRr$L$pt0Awy2#JlY=6F<ermS*^|M=TD}yROKRY|Akl{n!yLktN
zEO`#>-dW8z`5?m{Ny#~4k~|8#cT}@^KQY)O&gyi)*Y?W==U+b__lt^)FQ2L%zAF9v
zyiec1Uti$Z9JIB&-#@^ip?=wKZJDSC&u)w9&3XBc;lN#_ECz0Ir-<hna_v}o;DCdu
zUQ7gN<qBw2Nl*|p1+Xgn`ns%(i(2nVn8&)luZa+SwPm7;?C-}@ZrPc7ROaQcsY!i*
zJ^6p7XM6uVkFDol8c%<9uKKpthKwCuAypoG*?J1s?Jm=*tf^_L;+0seG*vDrU}JUY
zsu0ayDbrW)xBZ{twXgWO-`(>2wV>wW6#M!*+s|i=yE;1y*ZE6+zOgYmbcu)H)ARG=
zZL7b9I5|0q{W;CpkR4;*KL5r1T1y!b7e3|<;O@rZ?}7{oy60La#%c&K$vxV3J1@AV
zW{--dkx@|fclnF2ScSLLT(eMBQCW5J@!qM%DiQZ}{|DHwnX_zy%=VWHx9t^`uQ$z6
z_n*Ih9`msmGtcR6{d`-0%a_mFL(SGy?5f>sUb=1Cx?f?%_EJmt&VH8t?95E9*j**N
za+8yjuP*TvetLFxc=WcMi+d_Re>rP@e?|EExRtlo#_kSd=aac`Yist`lj`#`j`c`_
zx*ezg)iNloUV7?b{`Qo3zV~;%`ItA@g6c%L7eaR&)p+o%#}G7~8XjM}R6MT2G5!3!
z&^{SUliWWE&qY3+f4(lHsA$u&UU{AN$FKHov9GIN@o7rtno|3mtIfTyU(`Qd_Il}a
z>y_s>%g*_|F7ofWlHWGJj%QBYy|?An)s<@PhZhF@e1Ec_W^>xvOH;MOzr0*NU(3Bu
zX3`Q)VKvaw9Vy$YEl$qPs-BgfpIvR?6n^sh_3AEB?NynVmv!~@gnWN@H}=ze7KTXG
zzcPHM_Q~i4crEpsda9u2i2*~t8yj;&=?^<5hBZfb8f=m>=3q46TJy80wWUQvL&JmL
z{?CS6TeFuZ9&YoTv?^rfq*wng?f>&@_cwW~b#s<VYb^<3Zk>{~pyuhj>r=HqS{1z5
zac++7dg0~gUj6%Jn!oD(y0`LIzs2rf?ex~{m2JkFegA&F=DGdu-rnf)yQR}VJ3CBz
zxA%LTs=9ji`+IxOrIz2TTwYUKJ9odhW{^wzxj8#;*7Gr(D7$|4q4lY>c)suNd@<7x
zsA61stXDew)02~292^0lA&lqWzu*3P>%!C}Gj5z-RT%Dic8-zK**Y$<6Wa6t@2`52
z7P^1+BEG+SBI4^dJKkS&f6cbs+geIWPM@Ej-@jE{`Q&~3ugt}=eC?AaPtLEbXP9tx
z-R#2$w=d0_z0~s0W5ptg25{?1c3(dOLw2EF&l{&kfr4Pr@b=A3srjpNzpfHBN&lE7
zsx>2gXHnad+sjH$F6#P|*DZDZ{Eu%k*H29~c6l3Rx1vl}K4kWP(DE4DC7++4*N)#;
zv+~y6!sD`_RF{;TJoo>?4~O~fPaHoEn%ms5av#G1*`2<8_O<=Dwq!c<F+*BrkIf{{
zd>3TMIh9*9qd0N>aa}h?{R=D49@d(m-!J#uzrJ>R;cPzHpU$uM-CuRD`Pi!;otGyq
zNz^aDetUA-tGz2XfBoIK_}9<rwpITRTfTgke`m?eUr7hUZ+-rq`1W?a%jaijgC8Dh
zovQ9XZ%b|Yt0fB-D1Zi_c9*@q1j;6dxb<Ijs?RI9moCMyCwAJi5BqAL7%;@JgPNcZ
ze{(Qw5PN>;1W%d(Q=Ec@g~xrp-ww=i^B080#$P)+!&@tC$%1$5<AZk=#qF(H?ETxl
z^r_dLdozu^|F-X2&Ghrr3g6GaFW-$nHzA>S=7*Ja_7y(+?Ce%WuI>w47o#aZf6H|d
z7Iya6tJm)fnr~MdvN_F{m7RTc>FaA!=6NyG_N6fts7KB^yzk$t$jxe&JPeWwpgvZO
zJR`%kM==sJ9~vB!Sk0ce^~H;fr|0HI2L=Y7nyNkh>S52^Yx{S*7c49Jvd;P8sj1qa
zDd0ng4vC0}q<k%id4GQXruFOpn4AB-Gj-kf@5Qgb>*RIb{^xu0fzQWRGT%P&OgoWi
zUHE#xx@FDj6A9vq%@dE_`SsqDEuG8qjZ%$#qt3H!^}$9K!6y>LAI98xUDzE6udL9P
zR6d%<dZ<%aeO1ZJOQ8PM+gn?=R(^i=dYim`-5#xw6$@_X?e<mmni2q7F!1!$)Ep^Y
zxJeHz|E!TaV1IU|vHRa&UoTJ53<iyn_R8DG`OY%AcyDiY=!$@aCU4Wv&RPl@LI3sT
zB^N*c^?kL!uWZc@x0K<NYvY8Pbz%#sKfP@qTUxY#LF?q{LYvmESGsvk_|1X0X##!H
z=6-i~mxpi9yBo4HNY!_yk?X;O2WQ#UR_%Igo^xYC_4~cyvesoGpjDI)n)z2bxAU3L
zDdm6~&A@PDVzem7<HwJ;mc9;ib#bwn{`1EV4J9QfY4bdv^4T9g6y)CBbv07JrsBhb
zuyrvj-Q_A(qL1->pAH&D5h&p9F%08pZ0H7!gzcApAX}ji9y$2_V1KSHf4%X6>H@!~
zGk@$(mEXSW=!>1j&q0$@7cN`~IqmH1yfyv&ypruNZ){wAZm#um@KTq>M~=9FrlhN$
zP7ODDqpqjtS6Enh?*8J%i(@}CJqTlBVtVrU@nT_hzZD4wo47bQCLDgap(<jX@ciD|
z)X&DYy@poR-`2?RftELJ-kP7nUvxumk5&6#o94%lAD4c66AAL0f`UTyZ})4;&2JmQ
zeH}eFw%hId_wSeCYd<&7c6Adgca=YzcijBLHS!Pdo=B`d@vit`%Z@j@kG>GqKc4^^
zm5LVS$UnNP^tDOR6A#b;+Scsr*Z%$eeRa9Ne6NI|)B3&NqITWxkuvo<+|Gag*+iw?
zAZvAWd_aqVI)&9iExV&>_iN9WJ`DKw_3M8bzV<G0eZBbj`#JBWBl~5xu|qm#o}fjd
zCnu>sef&7gd`<)RgoEE4*miSB@`x)pzdd~Ydic?9@#`NSA20p!A#rv4<EXfK$WC7I
zV~NgtW!Idh^7IWyb{3QsNtn+vmzS4c|KLHw+4=VIx=~vS^xj`u+N~F}V}Yvov?Vu}
z)&2doDtLL{y{gx`&o`a7{~vSS=5tR{Qqm>cj!V0Pmbi2Zb#-+Gt&7<i^Lvp|c9>aQ
z;<bype5}*GW=77MGNsmWuI{w(GyC?*`PQ@Lhkg3~{rra%8!M}*oyE_~&VSd*>pK3#
zK=O@H+|0vq^A7IYx9`*E&!<0dc^BQ-T<OE+{bU38go86(*bW~(@qniylg&FQC}@(9
z(5Cz}&ut$*$vpeb@qXG&nY!ZWZ=z{z@APKm)>am?rC;Cq;mZAgr!M`Ce?7Cgbn{yM
zbFF*lN1s*T;ou19l`<8Plzgcppr)>_ZDbU*x9Y1``E2j$dP_B#meq8mhy3Q@;R#7d
zSn!&SZ~L^OXpZ%}O<n#>eDhjcL*w_aCfx~#zdf32>BDxodE&uuPHgEykdQxq{rdIa
zX^SQv{*drw!`_tZJ3pwpf18`lKJj3I;&v?oub};Pe?cq5?iQc7T@|`|8mOOm<3<E%
zRBO_eoyF;(N%+NXy^~Z-v#<GpW;*Vc-+#O3=!@+2dzYo1omF|CQv#kjCwS(CE96{X
zHy4yL6`k8&Tv-{sDs1hnu(eU3<r<!sE-rQtJ}V((Q?WsYubquwZjJrFAI_}YVj-K;
z&VD&2ogeX42yPg|_NQg6PM)u>t`2Y8E)u&vFLu@azkmLil)MPwm9;XFc4LDptuUJ}
zZO#biKG3D<I&*MW9%k9i^M-dO=GM+!sCN68)3d^y3i~tx#N3J*wTBU?u$=zL`B#hw
zYAxEVH?7q-zLF9hf5N7Z7v`Nk?8J_iRKR*?I){tjPZR_hv560|*nit`@d+OM$5}y!
z<{#B{L&OZx3-%wSe`T<_IQ#aw)aZET&1=<nFdc_ScR~3Xa<&IRqis_14&~dwjGTS9
zeQiDS_y)+03=9pc4VwiZOa=yq4diV`__(<WY=q5mgu7G3j<Zg%tyr(9EF;ap@Zf$D
zEYuhn7{DD(unrJGbkGdKB!y>(M&W6uhoIF_yGk-ySy@+>y}fm7Pvz&*+wnUJ96`Ok
ziAt`Z?GT@yp3Z)HYU)jsC{S2{@qywWk+u!>pp{U+zP?_r8N6&o+1p!E_H}z^nPe{7
zTm5}iz(S|YTgQ(df8EF~7XVr`Q~$39R9w0D$pp@`soYfm0c;S6Xqa8Ro9W?>!pB$k
zR+odzHqg}T+K7!#mzVorKhVg0dCPpe+Fj@7+pp)9Hal_ue*C16T_rEy$QXfigYg5y
zJFmnRgBCIDDqXFlq%`MrO-+r6py0w@Y4c^f&t6*U9lAX)_UoIQ!3!5IToto(lUtw6
z$|Xydypb{k>jx1J4DV#IJ=}?{VPRSEVZpUEk&FH2T4g>xH5Igub6)+wN>vq=j29Oc
zzRVLA7hk?(hsE>v7cX91S1riUAdNIy3mIMdV7`5pV}<sl$&*7@1So<Q!<%MZ3D{ls
z_RFi)>p|<IB=d~3u4p_xH~03>;6*N-IWmR}4M>A~(CNH8s~jR0I57VF_3PCa(0t&0
zyV|H$ZgIcz*-EZmD{6jz`t<c{sow6#eb%5!t)s_}FW-H3fn&3XsOZx_mSt~dypCgG
zc+hqt5j5-zo<o4l4*WU0HqTH>KwyECX_khOQIKxbmI)=LZ3!tUORB!Un)=S{`@QP*
zprvY0o}~Qz5wo`Z-R<rEu3aL54h{~xZnLnlX&D$8c*ij_JUE8U>@-MK_T^!_{43DL
z0MMfU#qRt^j~!bTy*+Qzl5=ydvo9=gJonAE>dS?npPz%8KW}eu_ty?vbK%59<*S?1
z{a42!O6~{S?qsnoRN0z+-7o$8ysHxwok5-rT^;7TI&5uFM#c)2moF|ZJ~y*zQph3~
z&f2e6!$GU5SB0%zm2|XgrT=_8DT9QDP<=$vR}h^St}tau+}^6x3h#@hudgkQ4BMU;
zn|o`EX16=Is01Yth6=mwyN_ysnINKJjWb!hr0PIhvKs0ipUr)~Y3=&Po7aS68k3np
zCNePWuq3wpJXz9cps47WdTPqWcXxNk8p<&=%vO32iB8yL55ojgqgaJ6-@jj<svRC<
zD8|qrt&FK8rl|YkJlpE5FE1{7`S_F^eaFC%*R_WoWl)s4;q}j*N$SztaspFQmhAiY
zD?4;$kgH|U6OXNR4-d7jd%?z#VE9Q6oJv76MUeEh?)fC9#CbNAS9X<Vhri(hrH*RU
z`7wqa^SrrQKszS1%a|Doil5k`j%hQ*oL4=MRHHnQj4^69(9!YXYgaz}m7QO%#MPXE
zp?l(Y(2$=5X!w>HY<+?4bP<mDnvX|A_N%L?WZd4C8?`lSDrhCyu0`Ao4blqe!SJ9;
zPgCIA%ggF_p9-t{UGca7`=m>cfg!H}Gayo58gt0k{Ycb}*r1@jn}J~mBZkMf>v?mx
ze13jDd|%DaO`EV<SnwJY?z`Xbv%cz_)N2S@4+3hLc}`Z_iN}T8GA=4zeQ#%HrxmdQ
zlv$T_iE88X5udEp717;{3_C0_+_>)frgQ;0ivovccK)z-KG~9IXCyr@O^>fz8DIbR
zYG^D2!ySf7euir(McMTt&&GnkzrL;tTH00j=cBuB%#Hv<L&Hf+;_H64uC``4&^-Zb
zRIu~OtoZ-;eSOs4s;x{+Omj}Z-~HY$_tut^qB!g+_G~P8er|5o%}uGZp0;v{UfNmw
zJmw-R!vS9G7JPnka`9w!|7DT;a&Mc7YKNV{WAKLB-`_w*fZtpz)%L>+pFBzV`{6ME
ztNZ)+gBCX6iuRpL94v~Sc!1WVfx78FK0R8YtCoN^;n~>4G_&)Uxr#F|m^<79kLW_u
zKX?}S>z|m7lN%ZsYJWUzuX?-n`j+hLdPk2OdGT)d`>>rwPh&P#Gc?S`o*tKJL~dH*
zHBIN`saPh4I|7)ovGXZY;{Lk7dAr{3D14l^RhpsU=n3>3ma;ZlPayC1wztb}S<3W9
zzhz>0z=mDXy4c;<raoq1*rAD$SRzj!e}yP78BW-3w`u+`zwXyd^|N!W!`=JkLThSj
zR+Vy#>y?CJ&yc#)&nV2Xt=@L%@Zqi1-}6ALgg7}lL3=E>rk#}n)q8kitl-IsiB-?%
zmT$?qX~fFH@&dHCZ=P-Sm2J7vQ*|OQ;nDfwKqE6~1(S-Vf`Y@wjT?(BWI&a{GQYX6
z@I>?s^ZdBjJr#kILe@kWf|ij@DtUN_HFj4C&h&aZq|rdNL)s)`!PV8_-jn3&{}g_G
zdD$H_oC3;Q|NnkZubaZa;EhpIov^B#d2>hB)m5t^H!q9YlCki(e0|I$P^;k7{rmBt
zb!o4!tu?LqkT9J`gdsr|GiKC-Sr2`Eef{<0e*0@H0vCh2YAZ@#U#t4{a=B^21BdWl
zeykBb*XM51mb$;cX4%#5@|$O~^85Yz_;!Bzu)}S<pyl$Qm2b=a<`!MGU}O-(tXE2n
zLKS=_D!cQ6+H0?`uLlh_efjaYKl{;<PSDiKEc5(#c*3`0?WWYzucn5_U3_q`d8%=`
z-`a?chpyr%3Qk-x=J@~ecK-gWUtV6`nsAWm=Z_yNa&K>|dbM(S%uVb?!dxG54*xk8
z3nh)yK%@Sk7Tcl2hriyde!nvJ_O??KmD{zCaWE7xW7IdB+?H{*fQHCH`zJ*;0vzUA
zmtULgZ?}?5RBK084g-U^BYF;3c%8D!;l=y+p#5O4FS^T5UB7<)>SHVn1;&`B`z_;Y
z@t&?%dewq~A+HC$ZgIHwaU-Ok0%;9w;)itFz&y0!L@IPO3U6a;|NG{eSAWZ~l;PW&
zaZxE7v_&3lJp)69!gd{jbI>u!3k#jUem-yidfo1KL6g;dOP-yX`8u!s$A`qP@9)Qd
zeSQ7>vWbWW+q|Q?+%1of^#*@`clYYrX!FojA)dj@d;$v!HZ1d>KkuQLr>EzuD=R0r
z@yoBfoxk5!+MOF}Cj&zT-*#<*W5<tYzrMD%tD~bp@AJoxfi5mBW_fpJJS<zk|KBby
zQLQD*=T&K0!$&z87%EikSF?Zce|~Oma8S@BCuiqiU4CBPtMhEDFWr6i`~Cjw?((%u
z-rnARKSaK;u&}GUyZE1+tZeP+$E*y0s?lZ=B^draD>LT!zqVUk|5c~@ybJB}bt{-y
zx$aysTkO^w^zP2ix%R4FQ%*bzWMWw7$_HtHK&G;l+8H0@=Y=ci1T1K%sjV&j_2p&A
zY5)0lYY(+@FVC!haDY+Pt|sE_EYr#J=g<H1=MQKaDC^~=rJp{3zTC*neksQ|<AQ>#
ztE**wpRDz?)b;EP6OdOIf!j(A`*+^ebz^2?3R&#N>+0sV%C%c;(vl}nQb6qR^>LZE
z!q-FuT9?1`*_!j=!NFY>9~a%L{eHJ(JrgH*%qn48k32&`GB!_xhIp>8pTDc*<)Z3$
zJKeWtUA^?<<6}{2>D766cX>_%&7US6?aI8eA`mp9{q)q-;N1D@{&JpPn`Pkfx50Y5
zj=(njP4!P73wQ5cj7Tqe=XJSTCS6$_zP==1Q_J)9wY9t7Z8J_gQ}DL|ZZ3oV0TUZI
zkNTN|2FDk`T{|L17e)gR7T;u!Sy4LxkK}T<2&?;nrf)<=M3&sznw|am*;&bLpvG_L
z{<>Pw6gp_@w2RA;(%aDfC<6mS+0$vPhb)Vqt%%=WCuLQ#qVC_%^t+|kW3w(T=>+Xc
z%llpW`r1n8cD|_HWoymy?yL|}^?GrTUH*!E{hx_vmDypTz;I`Fv>3<nUg_oU?(SX<
zTH6@1a?&!NnTsAgNbsF+XM6XXar(I{pU>N`&$_y5Wzx|u&|?2dlP8NxO3p+zX8u*?
zAIpFIsK~v$E3}!7w+N|9s0aq{l@$^anxY@SujKl1*wXEil9Fd^ybM3Wv5Zf=O%s@B
zUGC@U>B$9J|7~Mp60+QH?yi-!JQ4;DuH9mxE-o&+Uc2{7Exog|*t*_pipIp3h0F|j
za+c5`6f5Yuo`(H9V;c=N->doT3)&jmEv6e35D>5{myK6y$%+*k&(Cj6KEA1P3PVCZ
zw$gUHgf5n9BEJ0g#^mF#K>M1^@7F8_ZJ)oPXJ8P}*x0Bisn77>zA|EAAbhB4wxa}m
zFz3=v9ZSo|i4!M+##-8L_evVODZBMtSQWau1hkP5v~V02Mg5P<j5$<S#_z9tb!ln$
zyPePFuC5C8etf(?JSPWqT!@+{Xk!EDNR`0FZl06e`sLOtI=6whlEv=Y@;S0qQBjeL
zlXK&nQkaPh4DXKVa<{y_we|AN&FQ8oCj{nNm3o2B_*fOXT0}}p%hRgr%Zi$sfAjuW
zRDMbU?d$NJZMO28F=!@1+Dyl~oeyr*4%6*A0$xGu<Mx7UhU;six9eSf-_9?8?iVAX
zZxVOl?L0@soTS3*0X(k;?)1?DA5pmv#(5V!gXGjMg$JQk9k<0e)cxkHxU|$;TSLPG
zGzb0c?CkZo>+bETToti#QBzYBX#d~Zn4Lzm-H<l@@Zs+dl-$n0vB43vPd3=!c4_YI
zZ7W^7#Xw8h%HH0Zidv!*s2JYw`@K%C>V@Lp@B9B>l`X%sP*B-zMb+0=vkVfQ%=!^+
z&4T>8F#ZSgA3>HN@JgAS*m>soad$yM!CN~DlXu<Dxw9ki@2{`kTi19_R*TwGQMl{v
z<42D~#KoWgvDMP@nj|7CTN|9bN2vJYvRgZyzAVjo?X_!CZS37Q`?oHCc;m#L*_LKO
zw<MA`Rau-+nt3wuUiwUTw)A;-`+19QY%bKB!)RW!zEY^K`wVzNz_|wLeb;SxkGnnl
zSleRzq1MIf&YRk2ofc+B{l$sd7Cp27de5^cbON0Z(8enrvOO>M`KRgeb&;Unbie(-
z8ELaYgGQfDs=vChu(|l=63@vdH9rdG+SOY5{!TpH20G^_@-q`d%IxIheV{`j!uXlD
zH^_kZ48gV#L3b2EHyEu;Jk9jbe!YmNpWn5gpPx^)udlO|;S=A#=nZJ;H>lRWu`wC4
zW~Nd4<Fe$#5{tXV^;czFT=eN<;c08t$80AOZ}e`L6@RiJUAZ~Y{a#7VgoE?W&Nhzt
zwC=l9%<<WM+(tJ(R~GYCU#{j|_tf_|o8_CRyz=ggOsrfdu3tCzO??05<z=my9R<5?
zi|EDth~LT&>42<Ct^D+4=U2zw3uAT`RsNYR8+kaoulLT*;%Hlz6edfa-Jg~{Zj$*H
zlVb4ZOmrWw(T(Dpip{F;E7u>~y65Q*g=X8?vPCzd?`0R*=3APbNW5OSTPPc}k^Rbw
zg(psUJl_QA3oV-!SOMDov@A>Cb9MOoa~o_C#dCO`d2_%d&{URQ?5-E{s^5WjMSyl1
zBTrGRj@XzaWtufb1vG__bz{TAdv(8aO>=LBY)(Ia&ENj-l9j>BqkbYLr5Lt9p2m8p
z?Cq_WZ*Fb|ouB15*J^3j)m52SSA}x%@=jHewXHI_`Zx9P;lrTgF?i){BG&Ku)CD?k
z<!HC~>Y}Ho!uGP9W?^H?dU0W4=CV`FGSUv;9_(%VQV_#%v-!J}(V>luDg5`cLDRXg
zdCU_Xhb5BN$RYOhHN1IPb{=T}eL^YT`S%0=e?Oa@za{s!nWs?yvleSFKfi5N91hcz
z+8>@fkx*f6B=N3Krfs`2f~%u#JcCIw=k<X`=BVv?b5&m6*qA)aqHqytbl7v!;fEUv
zQXGEO)O6%jh!;uBYvF0zuGsuA^F(5WG=l57$*5VjZIVTfhNWfXdE4)Ers+g30&NP_
z)b!l9Z{MVKajJ*d8Sk7uH`f}pkP)=kSvPuH$iF{7*UAY^(0pQG!zsy=@62}i@`S@5
z%n;nkDWz=1KiP9m9zX7Wc9!Yoqut`7va-7I@$sM&eojr%1f5rL^)Pc#<>#~JS2rX&
z*Z%!_eU?FD(=7A+b-mK&UXRS=Kg2vSuwj+t$#-EpJbA+54{iu<aEd!yutLjqZ$H1V
zprD{xPp4{!Pn$n~zLK)Cs^{+V_hI+<)tXj+%kjLEFBPe5Y56mr^~W^bXi&P^`}^H)
zP<z?#*9&FPE~eUFUnU;O<$oY~B5?<|kwlpb+u^wr4sTE{l6cp|(<VFdV1f9%SqDWp
z9)7K<sR6A8{qdt>u1)17$q%huqCsC@UEP{;Qphvt<D;WrPbl|WythBg&bX<mzrX+U
zzKiO9b9N;DZf57#($n+vxB1wjveK<rO3I>O0ciX-_vWTn;i3u_giY#C4Bm9ewCz@C
zPION(xYN2j&4AUZV$YK&DXMB}%c7<UJ#z1tySgrRH)x?F=*YIU(c7=Ja0;t<IyyS;
z`v31YXh7F9=-!^n(A8nOxi>aA3h^hjy#|e^&aeBm60}DPbkYfEjPhZtc*(;<tvuT;
zi=K3xnywEzGtGNfRnGNwvC&ht!>`@hS-d&($$_sE4}V}uG1wz2$>Z<HcQ_h}`{119
znTdS;pU<y+XlG~l>GS8}b(7cmZH(Plv(sz3-rDl}wc+3I*Y5|VM$qQ#+FxHTo||j^
z^!4l2Y`ju0etdikYJY-ui*3ycJ$mFw#`AM?r|mJTnE&KSiez$1&qeY0nuY#$KV81Q
zzJ49H5_o>ir%uoWa<{ntvYURBoSd9MF~ZEw=dtTo;)CbUm;ZjhKR)~Vx>7ynO~RHu
z{*G*ir6(Tzpz_3Ek0638GH((nLIs2F1zfrxd^kAg_BP+O(c8o3T9ullosoDRs?2Zm
zp`oUxW=rYoFwhds^82;hK~3&Ss@_@W=2&`pcmyo<ni{ep!EtTWRxi+;c;-}%Kqu|6
zH3i?eQ`-9b`(^mrW%%0H#q3-Jn&12I;NYsby}LkX#QgvFegCa3nUg{Nw|C#Jt_lr~
ziHVstc`~SU`v33mq#f_=H?dpt_`9$jj-GJvL&y_@J*)_>3&Q1-wp4x1`uh61zkJPy
z#z&7HnIs?MnW_^Bnn1pwy?)Ok&&g^pKRrFo#lv$2RBwAt)zb8zXLGLB)y3sSyL{b+
z`St%+f)az@T&t*EB`Z}lO-w>S!%XJ)Ym$$iZkg@1^VZ|AIX0C+pw&&!&d$ENyF7nu
z)>W^@#>R8P(-tgHm}_0`mwIZ7=T-MpYkA)7`<(|0g4fsA`)~cTe*Ztv28eTWt*6hN
z&UVM7NFq$JnbAlBG^14{0h*gJlDM|f8I*<HZ*0k&Jg@FoCg_L((5Y76-rQWQ=-dWc
z)c_icn_-x2Qt-gx>$|(rpwl(h#qL&#<^3DGyKL#M`R^C^+pW60yZrTyjmeXiu*=s3
zL~qNPr~+Dp3R?VpZB3+dGSBzfZ7P=Qzj+ky<!_r(;OF5nq2#L<=&XX}yY4!kn)1PW
zx*lj{0qE3%&GV=HUH+x;b}slpuc-ZXd(+O%(ewnJk^?$kaCMmO)6>(>A6+lzA#cgE
zdcr{lNgmLi9ZR0qVD{@9ip`d%5;>E5CQX`@XAx@sly_tO|2j|-Nj}zdaYy0fEk#eg
z_I^604LYvx)HGe~`ucj$pv%jAOCKI$ea`N<I&AHh>hF2a58EtV9ehSuSQxaq*E8ts
zEYs3&Zz4g5knG#HFYDf(ouHN9YbtJj2-scz{@RI&%AoOJZ?F1aWhEtBs=mBf`0MLy
z?@6C$oSARGKPfpGyg}3J?}W#u+1Fm2n5g{f*4FG*wM%P$965RvGL)znyDQ_tfkx0l
zF`)A~JTHAdZ-4$ISDqvy&!A_avJ(lDWTq8Z$b9<xb!vZqKggbce}0C%o;+#Nlo>N#
z)V#>~`s!-vng~PCwB6RMtCLhr^Y6ugQrP?b|KHtN7q&JEls50}tycB?`uh6x_3PJ{
zy}9vl&4K49COTUdJ-GlnOXT!){ncJmwLs@dotmz%@2M5OZjO?Y(vJRJy-VjbEcx?(
zXYq4T!hd^zfBba)_-lWDex4iNERj5A&YU$9CJ2DTy7t$Wd)4o4j~+knJ*n>ZTl1;<
z@p0<@^GddrTgZTRnuCT2K!ez4Lq4rop|SVZtJPIMpH8298dT1(a*M49TI%)c?(XfN
z)q1<%?doQ4dOU67;ezlKgEtL4ZPv=|iR@1d?ubhASSvI?T=!<i!8*O0+!OkiELjrr
zy<^|Cr>CcbkL>vS{r>fzpPz#k!+_4FvaS9GI)P=juaD1_x7+WpvwpwlvgC(JA*(_(
zr|QK<{r>hAbQY$Fh{zJq5uQFXjjT#uOaPs)DWvMPB4%e1=p2h%+j3Vwc#z<E33RN=
zo{GY|Ww&!DEdd=}Cl!B6TI}0Ip;!C%?K`)>_SE}h5}-N&G$rQa)04OVZyD%hl7$Nw
zu3R>2x<;TAGdtgvFE1~LZp(?Z{d7VZbX**0txRi6i^s3uUX!=qtMc~r^sM@NHGJ;r
z<fJ4KAt9ys_;^|SI-9G`8Grx&1=TjsI|I1-f@ApcB$@LGX#z^8V}36K9dFhrWBDjX
zTvBpn=H+ECmrjqn^y}+u&~}o&pU+v(GR>Z*lKJt`(Q{f=p#3-^B1^Kau6p_B=jU^o
zpvq>~<38&z*W>G7Zogkw{BC#D)~s6_liSPQ+)(tade|x+vcInO`Ik6P(0LPH)Ai<N
z?YSOy_ou)IKF#{e+~RsKK0Q5sJ$H7|*GVdGZ)|j)ZJuBDZ(rtRHBh-BsvUNvPuBX&
z@Avybn}p9X%(t)K2QHree!UJ#7okhNM0usnd<qK-wE`A2{QL2k|LLizrz@Xces^~_
zXo?J!fPVdYz5eT$%l_IrIzH#^ey@4-__3&v(4vjW$E}vH|Nq%^=^OSPf<+QxO3jJo
zDF$oY_zu52kr>g*({^{_!3{!^fAl3Dh^eZp&t9@*Ny+uUKcCM}JJiCNcA$YV?bDN!
zpd&BSZfr<ACXt+!lmuFQdiMGJ`gb}1Z|CoyxnYAr@Nz%d<Q_xNOj_pkb#rH$W>2%M
z{ItaI*bM#se=dcrjk<bfmg(u8cg^qDBxhY)lX<W5x$N^z@pV6s^2poWk+G@x(Du0f
zyLHWv4TTmmX<uJmy>6Q}dGh45H#R2w?yLFf)5yf?)5;}!rdxks2IxGw9z&3;p53c{
zZwjh;^EQ{gjS?0TN;)-NKOc0I%;wtPWyw8;paVg#t_n5YTm9XvnVsLvcea`D)$7{p
z_aw>iwHI2*sKxKA0i7P3c5O}MvrkV?pW7H?t*4;;#NdvsBu~B@+hO4ehd-ntxOXQW
zG;e28jClk)i}L5Er=TM*)y&MUnPgo#5warS;GggN|C{>GHZxUJRD1?Hc1rGzWziFZ
z+FxJ5L347ldcS7KiV2zb_UxQ#TfNQG!^7iin{TD@oBR9kn`B=*WApip@ww9D{qp9y
zx3(AxtNZPF_d`fXXw!qx!@*C^&c43q@3-6M?k`@n=nQDIb=BEdS6BOjg5}A{$!C{(
zPd{^IWw7tlQ&W9!Z_Dj9JeG573;0w`pBV-RclyS}%(1Nakg!YMz&QP!Nn&E6n*ThT
zXJ4<!n|F40su>zylt?}!9$%A~c6L^(-yDmHqWa=yu6&1MCm!6uY$WlnN2X170=x*?
zt<;>~!=yOJvHIJa$ma)VZqm`z)I2Qk_x1YyXF3Fx&%C?4+jni$R-cVYN6$>tjXv|_
z<YZqE+u#0gN{`{QQ&Y8{HL}YYm}Xxy+5i9F?$2Hmn^?JL6+S*T^ZmZx=Z+jXa;IR<
zbiG(3f7`E9K4(pO?dj!p>cc9AiuKvd*JteSfBfw1?Ag<Fqi2CsUs)f2|HsdtGe3MN
zFs}TRl73s!xorlQsMeBO_ut&y?Capr@bmL|dtWD~rpzlVCceD6d3k4l|NfO9L4kej
zVZjW3`#%PU%}$;?sivr?cy&jj{S$*djFLS5uAtV?VQ^~*%9WmQaC;w<VvpgmH+Oem
zpQ0as@6Y@C|ED*cy}3C(`0u{z?|F|4EPP&GT6%VhX7C(&iMdv#M*X(mW*8o`IQ(Pt
zc{}6KRUw9_r|B9WleoM#+PwJr-123&;$vdwMD8p~UG;L;f6&>CCCu|K90#2@c0$Io
z=!it}nJt-@eb&Y7^!fho?%5Vj;WK@*);{<5)%N!H_ut%IzTVTv$0T-Fi6LlNe%|~k
zQ&P^&v(0vLays+r>FHj>V>bW)d|sA$d0E>1eYMx$T0gDWbC1(6C`f3#v4hqVgFT#*
zJpRsXhi^|f{J{jloju{;|Gxg$^Rqb0lh;+A$Z`WU)`OOMy*$z>+|}JZSw&S%P0PqA
zsNeqI4zDR13xB`c?SHtP|N6mZc2!SM7iD$W+9&VduYY!S_UZHI{U?cti9O4i{OQ4&
zUteE?PF1+Ivv|46%KZELK!q}BcN*yU8qhIT_bMLqf=)}_Rq`^Z?XgbKl8&01OLE&@
z>NbBjJf>l27<lsJ$(QTm_t)*6WtzRL=I5uCm7kx1&P-NWnR<E}XtJ~H{k^s7^D3M|
zSA~FDKcMz9Xw$;Jefv($x8FZ$^5oJ72N*rW`@!2Ub)!Odm%pE;0y+;8)XUjX_!zV`
z<LkS-)^`h+$n;wlJ(;kiL|)<b<Hv`c`*T}l+RPQ2AFe!+P{Ca!F|P~3Wj3;S{o&ol
zMrqjs&HOc9Q?)Yx|NDDR;QrR^>7Y};Kr0JCogvWaMYUhAhJy-qRZq*}XCYIyLQ8&r
zN)^=%I`XqoSWa%8ZS}VoM>>T+eg8gP1=P4TG&BU&GoZZ|TA`~zs~fz$yn@cpv%R{b
zFuC^k+wGur5mz=O9$xcnc|*J5u_at}?S~cZ?d?HZM?eYM^BkzveXyAwG@uc+DWwy1
zuHvn&+1iSVj-UgoBO+#Kg|B<Vli>*(<k<K3TePa0+A7CpHmjm19ZJf|b6;Oy8@+tS
z3<*%1Y7*$=DbOKh(cAN`c8O|-Y|FXHV?Sfv)7P(Gch&P%7!*m&>)>hI4i2S6a412!
zohKgTOvx=4P3(N~B<1tX^!b*{4=+<sef4^dWwB4Ml<Ao!R_-3dW1uu&^ZBg#xw4HL
zH-eA*RZ%%o>Ho?!`<g`i;fc>4&U5V+GX>Repd)?_kIgVlJ~rdg(eBwD9UPlWUx%gd
z_MWb1d7DAgXxH~oH#et)PJss196n3Erk**_$b5EX@bVtRV>SPNK3|q{a?-OG7Z)F!
zv4vlu?$^uZXZL=;m;LY0XaDD${Ox`o5z!7i^XA^(+eeNao7Kq7E@f|TZ=7~U;`7hv
z^Jo8lzyE&8iwla~ajI{cWZIT1Hb3+|kx-#jByq0=!Id(y_#LS5C5V%g^ISvzr6rw}
zPbRv9JZVvIAm`?$qY|ILvpbwRY}zklnFN}CF-|(t5%PPMb@{rL@%#6koN2s#Wx&EF
zP>uNQ&CO#H$)Jiqcte7taqX`!A-_RKv#$(WJ8Nao(yo;;J2!!9mCDy^xBE=h3Y{ab
z_kYjzclPpXT-7`7)gJ1Xx6gCyk$7mcuZ>3%bS73F=-^}H<YPR+D*_ZRuL{*Jes{<6
z^WF0MGk2A~o>ler)y#Kych5GzS8>>9mdVMSdwXt5B%j%odfKO;V8hLw#mkHTFZZ8s
z_Vd$I<KpM%O8ZjZ+}NmQV{@mawRI+VUG1VtGiJ<q*gT6d`9xv`n~}u5E}pjK3hfWq
zo=B`<f^gLpn(s2RI_XckcUV_HeqYY6l9x$E&(35zIXU?R1Wc%WyY+gH;miG;v(5AK
ztjgcz=*8?v=rK&YyQ>tm+a>M6fyT7+^K3yi*OisQ$8CN-nS5-<YW@ki7Z<f=-rcp;
zP_4A}--(IJX<uGkOnY>s^Vy@L-D$tSy*>7@pdgjQr>N*tsXa?v#Y0x(ygL?`SBL8d
zZ%*^wT=39obLHo>;Dt`C#zjv&(s$?Y|9kDqionB_pEeae_4<6L`25W2aaAX`<lnzH
zMLYc56wTmcl6U_7`<HfZj^)Z<pfUzj!|W`1IjQ*O)6>&q|8ymaKQXXjl;p{GWjh=^
z;qZqr1Xp;%!FTOU3)#K={LDH#J74abIcf6bvpb8QpK+J3P0<Qnm9nesZ5HVKY#F}x
z%J+M}pP8y19<=rU<9_=ypsJvSQ@F?QSdWC^A<!||e||jfKPHh3I^;cgYgXv<vftm{
z8Yd<uF7umfrDkPyOCtHqiHXX+haY+vPs=_oE-jrMwKXgC)z#JM|9-vJpZ>@CfHCOo
z@0OO96914#j~<;lHC6lUBvtPqS#i)f66lEUm&@my6&4mAlSsa{E;gG>OlQWcto{`%
zG%jyW_y2ssnSbf6e6Jb*zunFURjj_V%_Nh1G$S`Hd3j->^QsM?<1yz1U%D*){j1%U
zgm}cr8u~!ngoE=A9)Fdtpk!Knmf6hsQGvyi*RQqZ=WnUsrxm*D#m)5jp(!a#K;yRy
zo!dc&*=t2_Tca1dYsrBF4xT|iK0Uk2->-Xgv^)FK63=sQv#+jN+AXf1b$?&&q$Qu8
zo(7Fwf)*lzI>4X>t)f~X7y9l0tvKAy?>z~$_=Q*6Y>DLQi;LY&Ykm}%=G+JXt-AjA
z_qS=;n~0|;CqEbam-@hS(&WigXUx!e`M&)`-0y%VEiEjddJA+T0jM)<e!nIdGz7WK
zceaY>+NiCQRJP{a3}R$toV3nP=jWZB#a(@UW&8Y#o}L07=I|1<Pqp;b6wpjY`TICk
z6%`FFEw9VVe1lzFT0T8LukQ&OzLPS`c~RrBNd?-C%8Wa_m4AQh-U)|4l%yEgNJ{eL
zJMbNzJQ2?IcW0|sSgkdAht^V|z3J!WKHsZ;FPYr)S!+Visw<#2Cg_rkN>I6XX{onw
zNXV4pyT<2jl4bbXi%;dA+B<uG%_q;x3mloBzvtxS1ZA~nKR!NQ`K|WfpUUF*d%w>*
z*vu}S+|$|DXVxoaYNYBt&BW2s5mX4s*j9m#=X}=o{np-^pPPQZ*?j)Y>-GEJ?fJwq
z?{(GjCtu&(-hLj`lwDT+{T=8i-eWUXhu48}l8c+0RB}&eXQ$!bs;@@8QYHq+B#J*h
z@qGOJdAgW>Tu#r=-)5YkbATib5*$`lPuiYy^ODWC8_8e;KqbJksI6I`qxqL*U0sz1
zIz(J1xhj0q0XsyggINgem1cD^{|E}4_QQpDf8SA4QJJy*Ue)O-TA`<|tc$%3%IYHe
zad$xGtEs6SlSn>uW~MQyTQVnq(G>IdO|0BL9v&Uw{*Kz;X8Y90&1q-P)PBGF{Lci7
z>ThczH>dSlR(;86OMZN|B|G=to|`6lcWyj6Ir%sXE9=ZpPfts?A5Pr&?^kwmk0Gd|
za=4w}{Fnr&2Lq~Zo;UXeFY69p8Fci^`}_ALK7TK?srr%;ye%gZv{+17R5UegO++H7
z2Hzv<R8q1fa#Kp@O!NG>UBO3s4dcEFMD7r?<jHqrJ1ji$;0LuQ1~!5Su2{;3=L;P&
zHs0G?Jv;OAvYEWnW-}JKc3a)oiLd{=RnjzT%Flnl-_KQ)mX*!5`~7Bf$kq3~(&n?Q
z-|aXIsz8rPB=^bLW_5|_W-arbJ#E!|<MeYg7A#QMT=Vl2&+$n?jq|O`*UdD|4qL@u
zvTVo2W|xO^%ii6|jH`ZY8oWI(_VbP8{+Xc0_u1Oh>$g^XOuD>1KVDc;GE+!M=*;u^
z^?6dJSt)*VEE0PRK^sh$c}!GVR`BqUTK&I2%L*SKOM7!;W7_L$YtKDiUH|{zvv<4S
zn|=KF@!VfGclX)l_bQLyDLgK_EMjAlnuW!UFR!kiK632XGV8u6zc(>ocjh~McjCbh
zX(<LajFvq4ZgB1$S;;qlH3ZTozIc&Q3|_srj`zY8W)mf)L!f@DimK{NtI}69md~%d
z<ulLbrifn5jVmhx4}((5o)3q(kIh&e`fiH06R2zim%{5}EI~;ZRLeYXwq6~+J}<83
zqig!@DRr-}t<47cZ{Lqc+@RGDpPx>TUnUvuwnOO1yho28pZ)Uk@>$vPJBf02KN3L|
z)aPHX*GtF8$AA8IJKws0?vf=clV{AB@ouU_XJ;oku^;IWJeRtD@3&ber)p1++*!2r
zvxRTr$49QoJ%$q}PE^y-I3Z(GVQ|*2{Ozq&P-BPZ_}P<OJ&NrQf1XIFFfx+3*C5lT
zuH63cC4@V#k7pbIY@1BO-&fa0hc~nFdTo7ki#__+uV1e|Jv|MYCKeJFe){<F;x=CC
zSC{?muU=Z}{q^<w{jWf)EnlzSzphhQJ?rbMtDio94(^k&1TRzepKk{`6B0D29kw>=
z<@NabQahP#esitBrSY#XnVz7XyDBf|mfs7UsO0+PlDB^5?QOZ|+Dn#wKXCTRlP4kj
z<9{0jRxF>=eqvU(T*sUD@7HhGVBkB?CbC;xA2j{)^;Y)!m8Gw*fd;#il9E(nZQE*U
zYo9)U{``)aqN3v@lj?6df4^RjuljUSeeUabyWiU#J$_u<&@d3x&@cIF5xXsCCTQFa
zbi{nx*;!rP-Iw$C|DBdK=a|IZ%I9-e1ukwYw*K7TZgKmW;-(#Xh$$`f8Lkrvvo|l$
z$mC{b<1ql0*QTOnudl5Iji8)cxqiBSycwulIMXn>&G6Wao14?6>+9=5ZDPsffBUQ!
zm%Y99Y~}KKMuvulX`i2+efI5kzWL*0y~XR~&2naF#_ZTo-1T#jYq!t8KR@SQKDK`E
zsmE2{H?{4(^Csl=ms=*ex32Wa+1~p3dt>tPGyng6w=X_#`+Y|B`@PpI@2IP*gEr<r
zzv_2A?&!tE?);Oj%kwTT_m}^COgeuCyIjQq&>bmhplb8+7to2e?|wACRz%GHp-l$%
z@EqH!u`&%5YeK@pmv!o&OmyE;{M=90w(82wccAgLR&H_7WXY2!DXgrlncv^tJ(pFv
zv*_s*>+-zVokgybN?u-4eZFs7&P~wR9%yjCv9WPgz``aOzIHwtiv?4)!?g?z1EtM!
zCX{Ry0-f9sIx#2c)oPojrY057&d$!vb!?5_cYiy@)qYqpK0f~WuEXv8tIOZt>+0yZ
zuqE^Ioa6Ccvz6WZUQBeC3;g%z=hp1&dZ2?*6crsme*8GgrgGE1U$3;cW?Xc7e7t}9
z{{8z^K;!bi-fq7ST9WUzt4h>8BxH(^kkFTZzu&(GT}BfUG6i&+fmP|NjC*@3UtL_>
z{@LQ}bp7~Q+Kxd5Uxk7u9R47ZVz5V0lE>eP@38bl1lN&GS($J0#r-D#wmx~1^4#Rw
zj2RN5x=|sZY8ce)0G&&Ha*`@&p0McInU{A!z4odHjqIS4PG4PF8T{(b&ds2U0$jVr
zGz|>{>+0%2cldx#BnDk00XnayTTE9(RCFn*lRZ7YE)aA^d;R}9)2u5Vxwp1>er01f
z`t*AJ{;Z>2qFSM=rht0TptWWP8ktYcwcakK8?^*<RmIxv_lo4MFZZ8+?ZLrj(CObt
zj~~ze@Zez8lZoyod3Sb%9N$t>dTRUOhXI?@&Vujdd3!4qbg|MTRqrYK@piQz4zjO`
z-M!6qz0AEHnYQH$%@2D|Bvc3$N!;r|aJh^mR;K)(<H|qz(}J^KmaS7$Q=64~dfH5P
z`PwTXD}#>m$l2Tgb-s4)3ta5BEdBhvwA0gcmzBJ{lm;51ecNLQ>bWhe{r&CP<9>Uy
zV-mvR;^}R?(rKW9k8f{p&&|EPB{NydB;&!HuIeu@0xz$RxBvX(asTXoyI&__b{46g
zy^&Y8%HYk@?f2`9_4oZ)^z+kcecz>CQ+>X^y6PJdF(dQBg2v3t%X&XYfR5(T3|!RG
z+0}KbAii5%->m#jVSD7ZoSBAdZ=Dmqzqy&*C90h!!`FUtuJ!iJYinlCw5#2<v*4lA
ztXfr7)tN0VEXz8SV?lFjlHe(}*%J<ba6xdRCmcM%!FniqLeT~N=xt|0R)w7W^5*7c
zpE(v6L7DN{yy|y_Z9iUIT<rVr&rjda&(59|_P0swF<faEvMy$45@=w3bLwfa=liDX
z$LDd0>123K)k*~&2R<|H>@3jvaI;ObuPu3HZOgLX7Br*#>vp_;K>fd;>7cQytE)oK
z^4tFb^{XBo=~PotIB;gB@$sAQj?34ZfI8ZrpPw)PR+w9VOu{((nojVh6wl9R&F?R{
z4O$@>xixF5W!ak>Yxi3yFh4Q4!z#&Rt<?O`??mDaK}();N4CR#ClWx@+v^ferwg2$
zYaM>S?)Tcy-?QHz{O!O0&!=uS9*G5ccXxqqoB|Ch_4oIK`XQjrvWba_pm}-Fu3ONx
zI-t9@tl#fZ_5@89mHzuvIoG1l33Lqe6wP1}VPWO=!-~m0Ow7!nqhmo=UDShaZc9j5
zFv~1=73k#6l#`P{V?<Ksc{<5G#jC1L?U+1i(wzOqt#{^u4lAnv%`L9CWEcNtL$#}g
zK`Vn)K_eZhr>9-LTYg{HGwc4oy`V)Jpuy^$v7JJyAuEGab>sKNT)J9q?e6NTX=xd`
zZ{NOKd#ksL>Bp^+GR@Mkv9Y;Z2s+HhbF!LN+@2jhhF(5CKBapO-8+$3!EFQ{A~9EN
zf7prOf<{b)ZiaQ0Fl&as+pxg^)Fl@d7B0T~ty@gj=xCRyG3d^!%152*J`<H(&rJ5W
z%j_|HcHaKKNh_DAQStM0zFW_pn5gV~c9to0h(km(=tz&0=_yczg4)(5IX5oo#O$~r
zk$k3+ncb&bO!v&5%FlCdA3t_%7RYZ$jvwFsru6V;RaMp0iq?Rjph-U;b?f_7RO|rt
z;6Uj*a!0|!oh2`WW^L09pJ?;%$79eKZoxizAt523^>KSaS!ZtU`k0+b;1=G#n#$xe
zS8vPkNEjR_d4CUd#>`RB7&d5}`_0|m-`gIicUi1+<vV<N!od$}DUgP#6N1Yt+4Cl0
zwPee)|LfT*pUq4MZKMNT-vqih?D_oqb>;Ue-P!qM3byU7__zqvtSWtTBM`KO__%!i
z8h*PU4)XPXHeOp3xwz)%r;`$kH>aOJ6|*;VwF+qQl$Vdsm3_6pRXj^yU%Ps3ZS>V`
zxzV|Ib_9aB-uio&sQJ!%ablwKugCrNCBNTpxBkt`#}{^WRp`_A@AY54x~g#U<jI>~
z{aMVPJbwImkJF1ot=ucu>44V5sQJxV0XoX+-JPAF`6AHFzVCdy*hyQGkMr&Qb}JiH
zw}J29sCu!m{R?PE&7oHANh<dC_IJzg*Mf#claiBFJsTSvcm001`|I!b`(J;*Umxz^
z(6B0O?W#LFi(i9k)qS<Ux0JjLnyMfFukG>vZ?8lf5MxdlLr@Yom8xG)ys5soeWRL+
zibQhH&#%|xd*{!e59%po-q^5EGk)KmozLf0`y6ayo%{X4-OcI!oSdA7`~QBMU0i=m
z0@PFojaDb0xw`7NGr#SWS6!1mC#%ggN<B4WbNYFy<er&UrK>=L17~I$pEI*Ae`m70
z{5@!tV3|`Z*SXbR5AFu7`_a+aX$Y$5cGmpdWcchCKcAnEkBRqmJ=4Q&yr3Z@)6~<`
z!0clZ!t(O@|31(EKjYrsYU|tY@9)148s7mW;Uh<n&NR!t1#YN-`j2VX*TsT5Au^Up
zHMO;8e|>!&oGUIPlQT^x@=?sT?CW|UcRw%tKV{CGn!DBWL4_2jB+qWe=7)JF5^wNY
z@{~KV9nL$EutV5L;@z2Su9oYwH|?tap7;6n`u)qIrrFomfo??ujRQ@dG9_iv;>F<N
zcklOm*`PVy&yV}<XRQidZMD2|`JTddKG`g-ur(PyhM<1uvWkz7mX*K1r>3QKO2)3{
zhRv4?&Y;@rTpg%G!^SU{vuN?+%RR<+cK2$2KAjGlLo)r(@qwfI+Z#i^_QN_+TVCvX
z3mWhO2gIMBpJ%U&-94*M)>^9la3bj1w;sc14-PiN2EvwQUtb5ZQZ0O4jGB$jojo6q
zNrMK)jvPI@boYC&sai7^I=5TZ_xJUgJ$(2u?aGS4>$1T?K|=htZf*Fw#t-{!b~#k+
z{rw?sU(L-uzh13Y%fGh=)Tvrl_4QTSkq$x7kiapC<Xc;_)BpVadls~h`cB&6Hr{1%
zd#j$!Ex%`&etw>*prGKhqvG)<$NtpLe+3$^1zkh)8+6EnX7I8e(C{TE7njk)hYz2D
z*6uvKv6FrMU!C}UclLa_<P92kP*YMmWb^yY=3^4c-`?I%SM!^b0qQnA=WI6&_cvi;
zW<LAu?Cf5{W1w+|Ejc$YJvl%B{!MVJ8B{j<+x=V;xu;^IW#y+QzP(G6kM})WxBH!!
z=$n_Vf4;6uVFdMoEKej<C>u%40}b#iwLjE^a+`SCtUteCO6;03Lt=B$Q!miS;PaA?
z{Puq?w6wR+o~j)_tEGhnG-g=*|L^zNb$@?JCa?4Rcy6Zg@}Ezq$Itm~S^TUAbWGLD
zD=Q}(9-9H0m||k(vba6Rs`M17q6Y=(O1lQojij3^J|-2vxUjI~`1C1LO71>*?tJif
zjPxSS<EKD#XIrzb_81=Hkuo_kMK}6d&W#NRK_e2Nc~wxpxUxF@d}ZtL35w1>&1}3u
zve}?HrpixGKs~=>63MenGLu04NMTXYr*F(HEpM)g-hQs;@7L=qf9=24DXczcyY&vS
zgZ<I2e23>wIJiODNa9_aOxxWFhYQqG4BoWyv{{4J@YSrTV@v9K@gf6saMi<y4?)+t
zEm_T<<m=;ereHQ`MGUBoeXxo3>hAJ<(E5|*{`13vf+k&C7rPp?$rUs=ylBxP5ozhw
zpiA36pSPc`V*BgG;;zoli~s)qp8H!nV#9((ixy2WPWJ=dvvy*_|Lphonip%mx9_Xx
zyE#FCgJlYf5XbZ-JDI1=W)byVI;E(yi>2GkQRZmYLN2Sg<wi;w>?=YNCP>P<>n!lN
zxKW{tgCp5N*r$`riDShA7ABz{PR|>6-@otwvq`A4OLxQUH^0B~>+F91=49IUy=Ue;
zw>%#|b>6&nbLPnK%36ig{{9BKqQ$iGQ_6j&g_EXCo3<=_{ob(H-DOi}&fQv(vpMZ-
zT~VN)*qa=yS9Ra}9)oULomBIF>W&>2_uv1TmAww+DUfd6*j*vk<?pVXnyS4u|Gu5=
zj|a_@vc%`--rcp8PtNAW?fRsoMM=rYU!Tp+_nHK1&4Km^n%^y%T=wqHN@jMx4A6Ct
z_VxSncN^bdT?$&x<*mQ>%bNQ2)@dy2Rz1i1*cKZuKA6Gv!a&Lx!F`iqAf-KhKmUSr
zXJ#6M%+5N}A=uU5KRx7sZ)9lb(hnaB?!WEo;yOFa)H`o`v~~Hr5Fei&&}|AgZbX3Y
zYWex|r&Zyj7EqH0bcbB*u9AzOWl=dd40hhl168$it;??!pSN8e|NqzZSJ&3g2HmlG
z=T406w;RbtJG0_vnPy+hINZj2>h$T$w%_k8zW@K<_aYhhv@rb#X=*FYm|AQtuC)F?
zbK~0IzehTSLGx1A*2k|m&AtXYLJqVPC3Sl2vQM9imM&SM0qL!sI&)@<3TRChXk{Fz
zVrOROd(ox6?!q+P=q>s8?Ldp>CS6(PD;*jhp8fmV+eu5_yvf;`cQ*<&cnzwUK?l`T
ze}4yBuIkn+RcaW|XTn$_(aXu}7VO-7@y3Nj6H^3t#)SkE&AJ&|E2eGQWF&2n&|v%J
zg7d!m)vH!*64eg7ablvfuBz(MWBu~^pnJXE|7&VuDwa78x>$<s`^-s`l5DHKY!HvD
zILIe!6_UTJ>~6_jP#0Y0_(sFzV>cG}+hx6c`O>W7LxOe1hX?+0`oa5~Z~OoK7hm;K
z_4LV;8~6Wts&7{ICZhV&N%h*x+m`#!&l6VnGcn$L>Xg^%bLX}t9&Vd?^ZWagxwp67
zTwnK9J9>NG+^JKh+&Iw4ocrd+#&4jBoS8RI>+jE*YhAwW+S=&fVixOe$2&SUPMtnI
ze!_f7UwK)#WXI-<A{P@()Ji0L1rb~^6A9lyhnS=-zO&6<-P^kxw8;x}Ma`}3^;e_w
z_bz4S7Sqtw^fXR8GvV~pOJA?Yzn}f<@5|-$K?eka`lw58O_WMoHfxrYC+J*9(5C&^
z+OJplW$rOGHI3Ss)C#&-#`DsFMrKvd#qRxKo}QimejK;Yy16O!)s>Z(BagrMTJ_pj
z)UCk4xYA}`)pptAfv&EtakXDVLH7-5X=ntLmTpy9xonx+?d|#3kM&A_{qeZ}^+9%d
z&^6I2o`!~ozy5qauj;vQ;lfj=P6frq&0Dp4_0>I<#hzQ=gRetexNsq;%vlq;c}wD9
zwq7YyukiTVt^Ypu*S`RrUX+uwrl`1B_3A$J=q(uwPwVaW0gc~Ze?9g1<Bz>@Oy^i-
z-4qrb<PbBFXzb!sj<}G>q9oOm;MgqKkzvqu%+*@-r|>eLnMr+*XPkbz>Eq+$w|Bqa
zmz{lm-PYLMWml_Xe0+L9%bn8FwiP|~dVPEQ`n7R;Z=E?8=V7d`e}2=ZO*)E-2SFhe
zy)mivZqaGovaeUeZ+D4m*W4Bn5sCRBFVH*h_S<dB?tL?6-kfEc4N^X7^5onX7Zy&N
zH7l$B*X8+V&g8tmxA)rWaD8dZq9ys(n{T-$K0h}XbWPIdx1XE&?F^=$P6f@N=1)0(
zX{ooak<lf)pHGDEKL!oXg2tt6KOA8Gb~QZyW*e`xj-lbje}CWC$4{9rd$5sDdBVj6
zlTs6j#y-BqD;FQ;NHLM{mF0C)SbQ+!71JY@#K6Fbdw)FYzP8j`{P%~${AbsEI~*Js
znE3hG+0FB8tD|mj%hk29xx>aIkpMc7^wFavX|tRee;@MKuh_mmc6ZrNJCEvbZ#HIL
zUIx09VQu#Hb!M5DRI1<a{a$mq@%$XIH(#sHzAZEMmD$%&|MhD4w&de{)vs1AKT|04
z`*r;Ptf^C{URxh;Kif2W+WU{JtgP1-xpGJEuiIN`Be(nKv)OOU_y3-o-&Jw9`qj1Q
z{H>D4X%W7@y)$QmGLC3?Ok&^T8_fJR3Bk+#K&Oh{uP-}SqhDnscmMwTeZTWgpE&WM
z){^l#v#i^K1qV6YOe7jx_>?6sCbDoz^(4473u<H-G)+8x-&jHwG&&>K?_O9~2s;1d
z*VotT+i$OJ<rdF+dTJ`DS5Wfz>-E(;c0@!*M&8<--Vd6`IyqTA`^}AwyIwAvZIXA#
z;_bb?(fND7PFv<Xd)bvMA*!mXnfLZou3E7o;Pf=z^HukZm$z8=1?PW^Hpz`!zx|%m
zrb(a+L_oTj*?2C@v#l-xttZ{HCuVQ;_iOF)bt|4cNdaA`q@}HW`7poznm>PPKs7X|
zLB49$D$x4Rzu&g+4~>eN1*)z0R)5!0R(1x}-=CkI4Gj%l3cB0c#3Uqb*@_h!pgj`R
z-``1@WK5W*7rW}`=jYj9UR<2Cuf9GkJRE$<bEmL6Xc2R3d;9D6_5XJ-TD(~Q*Xy=r
z-F%Oe79Dh`HIWdPmSuaj`0$Py83qCJyvL5ZG&lZYO5%0$1nqsP`u1j}ZuB;fNvBSq
z{(3~%A9PpSuFvPJLHp31+xbow%79kwTGjsAvTpY~E8XaAK55G|gO_D|eRXx$yIrqK
zu7-wR{k>p&&ds1Swe7dx?v68QYMyEO!#e-knwfX<w!bg)_3Z^+rUl;9IBC+PDYIs+
zTC_;%>60fb^6&5K>gfUX3`4@gmW8d2%6xKSqLz-%l^KS~ArTQPcE8)@J?YBkbpOh|
zaiCRvlWP7Sd~s{*YQK3lnk&t|fJQBBtG9vfiF$ar{q@u7@z-_~J{A!Z3w!_L@S#H@
z^789J+e2P1pMUM#Tx-*sA0N0sHz}^Tm^dfjM8cxnL_(ZNmhGIZ?6IG2&5gzG&4v3e
zCOo*qa)ifeWtroxxV=@GXJ?se>FS35{`MBMwC~cTpsQD|fL67G4oi9Ru>!O@`{|P>
z8YU(omX?-Mb~P2v%8uurSoFoLYxr6C(LO6<i@Wo8>%QV^j}E3SQ}vz(o=UB&+ZUrZ
z9kd4mbgSLfRiU@`R&Ngq4hA)bPMq-Ant%V^_T1Ok)`BA7;o<h|Z*OjX{Z{?wM`3Ky
zN!3?3H!lY@+GfvQ%_*z~Y6O8s4nddYOq&*#Kl{j$BUQ(9(!RRsT$TM@`~B|s)A1?~
z#1|d52se?i_@7}=$7#hgr@lnuc^4b=b9vrlI~N^1@Ke;lm_rpbtODA}wWo5k%FFZh
z|2BiJ40`e;W$BV7E9(FM1C8)6^Pj)&#0ii4Wu@^<a{cad{qAYc`VSv>{Sq9{l74T0
z`TIECs4X6#se#DInM-aRXlrYGb!BDnuNRB^Yi_HksjVt~eGRnWT18V;)fKc(H7;)6
zdqYV{Nl<g9sJQrbui4FQxwGHx|6ezC+B7XYyEs{^k_j_GRnH{QC4l++e!9i(F8g~j
z`B@R$2Xm{QV#nr2?q;^fF&7gb99nSLLfk}Rhe3wHIaXe_bDOz0ZF*P_S{5{I=FH6G
zV?Bo8%KY}e+TDA<T=Fja@W9btUY4o#`s=Or|31$zd%ySlzZc16Z*C+iyZ3D=dwc8V
z)bO}WNlD3RQ>Uhat}Qj*eCJNg=`&}xsL!vtwB6U!v$I#$`r4+=o6nwkb6S7@7C~jV
z8?xnh0`u>;wzi7N%I5B^{=RKx@bX)s;jyW)yGk~CPFDLV*12}os!z82@)~dZ&NjQb
zulD!3)7cC$8YL3;?QG2Ae7whYE;xLk)w%s+afU&`!wU(2WTbfJ)H9kkZ*Xqsn`MyL
zv}yBZRZrchEf=0nk6#y^x6^g5Rq3Z*hKE%b4<0@9<YUE?vfZg^MKbQzWp6H2zu&uj
zZ}s<Ia>dW)AMcY5-e33k%gyxpnXj*{y|t%uvsLM<CHw!r&7YLD{_mU#6BgXL6LbG_
zOwmczeXi+eedb!1hi%Wh`{n8M_*b*@_e~73mRjlFFL&zv`Rlpc?=HJ^DG0Pg7POu2
z^LhLC(JE#-IzDM(`BgtaXU<HRP*50W@?gJ9`$uOJi5(Rg22xJ#jos~hkJ~d03O-&)
z_#?o}rq{$>{_f+Sj}<om>{xy@-hOMg{`&0)wfTEKw(&|B9GIpbpO==t-~H6-(`z?v
zx}>G8{r2ni`0bp+Y7wA%&B*9dR#w)TGjC3+&);(8N{Dsot10=rL7T)}Tw0z!e?EKW
z%|Aas>lzwfytXzvJ#DLUXx*C`uipLFv@f?8Sn;CZ!@`3O4;CCe*vZG-*v!W+FU7;c
zCnZw@avsYSo<ml0{mbvYoxgjVft2|A>#IRW0KK@lc+!$ptF&_O?g~A6^ypVPaUmh4
z<AotHF>7`fKiAUM_GV`13keLI2wIUaO*cC0c%ST~l52}LuZ`Lol$p75)8@@zUo7rF
z^|UDSSdZkYRjV!?>y=jZ{QK)`aAoDrd6my3Jul6(tp-IA_=@3uH9J)@9~@}h^?Kdz
zDU&8Ws-9;&|Mcsx*LLsw$>0CDz3yF|LcoQG%evW^8~fSJb4w&RYD#vzTy)Uk!Qz9y
z;=F83{tjZ(TrFpB^PO#$d2Wv7t*zP9RWeUc(*+gpTT5Sud0sj>S-tenkHWJvjor`A
zHV=1mYy0<geLZNKNM&Uu=nUbSnmwRZ66xpVLc_z&C2qFMRe6}2nu4y|{R+CF>{j;r
z(2$TRX1TXiR+d$L|MBth*E7cFLH7fkI(IHCENt2|{rGhYo!h-u{XMkf`@QP=62+Ul
zTvIx2W=UDyDY=-S@ZsWvWxagNjs1M)u_h86H6{=r6s~z^VqVZV*RD2d;lhQVs`h?$
z`w!|ugJuV`w6sdz+%OCc3CZ~U?5viiCg@5rBV%LGUBh$c$f&BQWPE#b6Ljk&==!4T
zan-)uVmbly?P_1Wz5cc=8`LrD?7Vnsskf>px47PwD=UMi&Y833?(TB$Nvl?`{`zkB
z`&BDecwCPu?lm$pI%k#l`~Pb<<0MXpWVdF<1N&bXF#O=>Wn=gcN<T$Ee=}UzGS~8~
zm5E76&|8k~#qRyD-fq8t?Z?N*TXSw2)qcB~4mvD+P2}d1!@TAiT3V~_)q(EO+_T5V
zcc#%%@uzWnt6pxs9v56!x9``Nm%;BpDk>_1E^Y)BwxHdTpgmM2FD8Jt?18o|ZrT(i
zC@2WJC-lR^!{@D@89)AiSn~<Pg@_9Y3?KBZco_aUH!~in&oH=PQP3o?zvKGrsaHOH
z-7mdsz22g@_2I9tt-bu_=H}A-wcl4RS>nQP`(?tVOP5Oi|NXu?bahzNww#%lE?p84
z6;<s&zIeg}ft`2rcE;#|E@brb^t`yhvAJfkpOKLfsE_gYx&8l-w(*{xom^a8pz8bN
zWcAZ$wq#w^f^PnkGD_*l+yD0)TmN3YUq|E}7A!i*@F2cKg5gg)8*{_|3keG{AF(Lb
zO>Eo8a>l3cu}Q`Klatj=OI`%TRz97&YTdePpbn{B?XMTz`uhU<<!rYUK6V40`6VeS
zStR2gy)7p&Ep3_1@rg4}J}r6)+8(*LYHM8G&s5J(y;hyQy`f1-i$DPl+A*|q=T1;1
zRPySICg{3=Q|HcI+md<NB=^>q&3)h7FCU(%#kat40jBeW8#Z4#x=FFMwH35!$*o6X
zp|X3Q$FDk<6VJ}hHZ6YUvo?CW-_xg0CuJ$mo-t#^^7(a9phoDHjERpPKL$;X_|3J_
zG&c{QG-ckrbuV6Ih>D5*+P3=k`#U>}L4!8;l{OyllfCRNU#sHj<>z+|v>9$|_Vug>
z2O4i}O6|6h>j#YnOw*12)pz@C*>AVae{P72Gq5m8@i6>zZ3o9PI4L&q&*zx4G|%cQ
z=!Wad%l*A4*~s;)yab(T0qQ@3lH_E6yNN2Y76lHV>(oG-loAiKfsVaCb@JrI<BtPV
zQkJaS^-2rWf}9qe_tDnf$EWAgrAwfa?ft&res6DW4Ngj0)F)%PsF|Jrm)!RH|8=0t
zKS29MzFc&lI&Ipr7cVl-&a;h9O-%)L_r1KlzI;3`|9a)}c|q^*?X5jt{Y-q;>8Fpl
z85|Znpl6~F4=*=vuK9RW{MGgK^CwN7{Pmc0zQ-!rTt!da=xtY)PLEp!3Pyc>|4HDP
z+0**_L+a}GftC$`hI&|8SwYu7obj0+U$=AB>eZo9QCcs5zYbcyY}u)|Wv~B!zdv2&
z>)YGm?fmlBKnrL?LY9DbEn1ho3CPS`37T5ov&RNB835X;2-^R%VugmQi_3{Z8BlLn
z*~!VtX-Aq#gIgyXb3^^bM1~LYpx}3IZhUZ<(`nAq(%08MRqX{`dv2P4&qmg|%qKB1
z5mdB4JltOT_v`i3XFx+Go|izE!6qJJIePTy&qwv2&zge<Otkd$!m_eff##w?x9a`+
zcUnPH(^J;E?8>#Z(W;)!?EKe`bP9v^n=D<j1T-vl>dYBX^#a-=1iBb?vYPLurPJfI
z)?bg#H}UZB;81pAFyS<jVEEI`2hL$&$Fj)VSz369giN_~`7-E)5YWOn<MeYOp`lYj
zXSRVZOue!q5VXj-uyCW7m)Dg&mBsNhUb{_=sr&g9bdmYD_xIO-_)q}4j4%88x~X6O
zeqH(a@#CxOVy!{Rf6|qGwbj1!?e3PJeQ|Yl`0C*0eqFu2U*GP|i~2qD`eL?*Wi41k
z?r5P5=qxi)QPEvruSI_aon6~19ybBJflO3X6f~6J>e{+3|Ngpz&FtBS+ju7}xo{!C
zGsw%U%kKZ5V$g`#B+!BAd;kCY4eFdYIXS6Zt$TT=_WNDXzNz;+XPag(1D&I_s`o$t
zddb-Bx(p_vm|^25u*eZKh8r0<bJ60(pz*`K|9-uW+LAF5w5GA_?JZEdc;Ui@x3*?a
zKh`U~TsL}K#@Sh>``(7HjZ&R{dg+lPE}o#(;iBT=&u2HqrGI#E@YI<zIUgiq^u(2&
z7+6$6sRbpocAvh_-f&>bj2SCVoB*#A0G-RT(7FA~m0<sqg)*Q6A1_|K`0B>S#h~kr
zZU1~YyzB3`+oqY9R6vIYg3f}Bi<>8=6R|){H_BturOTH~KRh_dHvjaQ4m*Z9jTm8l
zh{wqUG{ncr$*HBI6XNUJD_8kMaBJpew}lHA7Rk8xJ=U<bjdgW(1@*fosd{foILHKA
z<_=nmvwHo$RnmDo4sPGS>&Eq1{a-#cf()SkBw7L!PZN0L{`Z;r{)<hl+@OBjzrVjh
zqaR&;ec$fhUmdOw>Oihqvu29Q-HOM(yFMP1t}mJ&qc6p9ju%vqE;`Kcz#bGc?QF~k
z4{tOM|HE>w;K2dLUTJeb(6}t<Fv;29-hQpRx+Zcn+w#WQGxx-;mpLA|In5`4wc)=Q
zh8fNN+I1l@F>{iVl4^nvygn2!{&Uyuxb@e!_dd4Z;^chT&A{-_9b_R&HsMD;z231U
z_}7of^gcF5hL{+1r6#q=rwBK3Ae|fEpm2!O34ZW_LPtRp;%s#er8!6^1vGJ}Bkmp^
bOxpgl&%bL^n~+uZ8RQR7S3j3^P6<r_Cxb;4

literal 0
HcmV?d00001

diff --git a/testModel/show_results.py b/testModel/show_results.py
new file mode 100644
index 000000000..e77e83ad9
--- /dev/null
+++ b/testModel/show_results.py
@@ -0,0 +1,49 @@
+import sys
+import os
+import matplotlib.pyplot as plt
+import numpy as np
+
+# Ajouter le répertoire parent au chemin de recherche
+sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
+
+from parsers.jsonParser import parseJsonFile
+
+RESULTS_DIR_NAME = "./results"
+RESULTS_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), RESULTS_DIR_NAME))
+
+try:
+    results = parseJsonFile(f"{RESULTS_DIR}/zero_shot/v2/results.json")
+    print(results["results"])
+except Exception as e:
+    print(f"Error: {e}")
+
+data = results["results"]
+models = [entry["model"] for entry in data]
+categories = [entry["Name"] for entry in data[0]["data"]]
+
+fig, axes = plt.subplots(1, 5, figsize=(18, 5), sharey=True)
+
+colors = ["skyblue", "orange", "green"]
+metrics = ["TPR", "TNR", "Precision"]
+bar_width = 0.2
+x_positions = np.arange(len(models))
+
+for i, category in enumerate(categories):
+    ax = axes[i]
+    
+    for j, metric in enumerate(metrics):
+        values = []
+        for model_data in data:
+            category_data = next(item for item in model_data["data"] if item["Name"] == category)
+            values.append(category_data[metric])
+
+        ax.bar(x_positions + j * bar_width, values, width=bar_width, label=metric, color=colors[j])
+
+    ax.set_title(category)
+    ax.set_xticks(x_positions + bar_width)
+    ax.set_xticklabels(models, rotation=15)
+    ax.set_ylabel("Valeur")
+    ax.legend()
+
+plt.tight_layout()
+plt.savefig(f"{RESULTS_DIR}/zero_shot/v2/results.png")
\ No newline at end of file
diff --git a/testModel/test.py b/testModel/test.py
new file mode 100644
index 000000000..a96a80f39
--- /dev/null
+++ b/testModel/test.py
@@ -0,0 +1,120 @@
+import sys
+import os
+import statistics
+import time
+
+# Ajouter le répertoire parent au chemin de recherche
+sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
+
+from variables.diseases import DISEASES_LABELS
+from variables.huggingface import HUGGINGFACE_MODELS
+from variables.articles import LENGTH_CATEGORIES, LENGTH_CATEGORIES_TRESHOLDS
+from testModel.utils import get_dataset_filename, get_article_data, get_wanted_predictions
+from testModel.metrics import confusion_matrix, add_confusion_matrices, get_tpr, get_tnr, get_precision
+from parsers.jsonParser import parseJsonFile
+
+from models.ZeroShotClassifier.HuggingFace.zero_shot_classification import create_classifier, classify
+
+RESULTS_DIR_NAME = "./results"
+DATASET_DIR_NAME = "./dataset"
+
+RESULTS_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), RESULTS_DIR_NAME))
+DATASET_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), DATASET_DIR_NAME))
+
+TRESHOLD = 0.7
+
+for model in HUGGINGFACE_MODELS:
+    classifier = create_classifier(model)
+
+    result_filename = model.replace(" ", "_").replace("-", "_").replace(".", "_").replace("/", "-")
+
+    with open(f"{RESULTS_DIR}/zero_shot/v2/{result_filename}.txt", "w+") as file:
+
+        print("---------------------------------", file=file)
+        print(f"MODEL: {model}", file=file)
+        print(f"TRESHOLD: {TRESHOLD}", file=file)
+        print("---------------------------------", file=file)
+
+        nb_articles = 0
+        result_matrix = [[0, 0], [0, 0]]
+
+        length_matrix = {}
+
+        for length_category in LENGTH_CATEGORIES:
+            length_matrix[length_category] = [[0, 0], [0, 0]]
+
+        start = time.time()
+
+        for disease_label in DISEASES_LABELS:
+
+            try:
+                filename = get_dataset_filename(disease_label)
+                articles = parseJsonFile(f"{DATASET_DIR}/{filename}.json")
+            except Exception as e:
+                print(f"Error: {e}")
+
+            for article in articles:
+                nb_articles += 1
+
+                print("---------------------------------", file=file)
+
+                title, abstract = get_article_data(article)
+                wanted = get_wanted_predictions(article, DISEASES_LABELS)
+
+                print(f"PMID: {article["PMID"]}", file=file)
+                pred = article["Predictions"]
+                print(f"Predictions: {pred}", file=file)
+                print(f"MeshTerm: {article["MeshTerms"]}", file=file)
+
+                predictions = {}
+
+                selected_labels = []
+
+                for predict_label in DISEASES_LABELS:
+                    results = classify(classifier, title+abstract, [predict_label])
+
+                    print(f"Labels: {results["labels"]}", file=file)
+                    print(f"Scores: {results["scores"]}", file=file)
+
+                    predictions[predict_label] = results["scores"][0] > TRESHOLD
+
+                    if results["scores"][0] > TRESHOLD:
+                        selected_labels.append(predict_label)
+
+                print(f"Wanted: {wanted}", file=file)
+                print(f"Predicted: {predictions}", file=file)
+                print(f"Selected labels: {selected_labels}", file=file)
+
+                matrix = confusion_matrix(wanted, predictions)
+                print(f"Confusion matrix: {matrix}", file=file)
+                
+                result_matrix = add_confusion_matrices(result_matrix, matrix)
+
+                added = False
+
+                for id, length_category_treshold in enumerate(LENGTH_CATEGORIES_TRESHOLDS):
+                    if len(title+abstract) < length_category_treshold:
+                        length_matrix[LENGTH_CATEGORIES[id]] = add_confusion_matrices(length_matrix[LENGTH_CATEGORIES[id]], matrix)
+                        added = True
+                        break
+
+                if not added:
+                    length_matrix[LENGTH_CATEGORIES[-1]] = add_confusion_matrices(length_matrix[LENGTH_CATEGORIES[-1]], matrix)
+
+                print("---------------------------------", file=file)
+
+        end = time.time()
+
+        for length_category in LENGTH_CATEGORIES:
+            print(f"Result confusion matrix: {length_matrix[length_category]}", file=file)
+            print(f"True Positive Rate (TPR): {get_tpr(length_matrix[length_category])}", file=file)
+            print(f"True Negative Rate (TNR): {get_tnr(length_matrix[length_category])}", file=file)
+            print(f"Precision: {get_precision(length_matrix[length_category])}", file=file)
+            print("---------------------------------", file=file)
+
+        print(f"Time to classify all articles: {end-start} seconds", file=file)
+        print(f"Result confusion matrix: {result_matrix}", file=file)
+        print(f"True Positive Rate (TPR): {get_tpr(result_matrix)}", file=file)
+        print(f"True Negative Rate (TNR): {get_tnr(result_matrix)}", file=file)
+        print(f"Precision: {get_precision(result_matrix)}", file=file)
+        print()
\ No newline at end of file
diff --git a/testModel/test_articles_len.py b/testModel/test_articles_len.py
new file mode 100644
index 000000000..496f967f6
--- /dev/null
+++ b/testModel/test_articles_len.py
@@ -0,0 +1,66 @@
+import sys
+import os
+import statistics
+
+# Ajouter le répertoire parent au chemin de recherche
+sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
+
+from variables.diseases import DISEASES_LABELS
+from variables.articles import LENGTH_CATEGORIES, LENGTH_CATEGORIES_TRESHOLDS
+from testModel.utils import get_dataset_filename, get_article_data
+from parsers.jsonParser import parseJsonFile
+
+DATASET_DIR_NAME = "./dataset"
+
+DATASET_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), DATASET_DIR_NAME))
+
+nb_articles = 0
+
+nb_articles_categories = {}
+
+for length_category in LENGTH_CATEGORIES:
+    nb_articles_categories[length_category] = 0
+
+lens = []
+
+
+
+for disease_label in DISEASES_LABELS:
+
+    try:
+        filename = get_dataset_filename(disease_label)
+        articles = parseJsonFile(f"{DATASET_DIR}/{filename}.json")
+    except Exception as e:
+        print(f"Error: {e}")
+
+    for article in articles:
+        nb_articles += 1
+
+        title, abstract = get_article_data(article)
+
+        text = title + abstract 
+
+        lens.append(len(text))
+
+        added = False
+        for id, length_category_treshold in enumerate(LENGTH_CATEGORIES_TRESHOLDS):
+            if len(text) < length_category_treshold:
+                nb_articles_categories[LENGTH_CATEGORIES[id]] += 1
+                added = True
+                break;
+
+        if not added:
+            nb_articles_categories[LENGTH_CATEGORIES[-1]] += 1
+
+print(f"Nb articles: {nb_articles}")
+
+for length_category in LENGTH_CATEGORIES:
+    print(f"Nb articles ({length_category}): {nb_articles_categories[length_category]}")
+
+print()
+
+print(f"Longuest: {max(lens)}")
+print(f"Shortest: {min(lens)}")
+print(f"Mean: {statistics.mean(lens)}")
+print(f"Median: {statistics.median(lens)}")
+
diff --git a/testModel/utils.py b/testModel/utils.py
new file mode 100644
index 000000000..6d1c5152b
--- /dev/null
+++ b/testModel/utils.py
@@ -0,0 +1,21 @@
+def get_dataset_filename(name):
+    return name.replace(" ", "_").replace(",", "").lower()
+
+def get_article_data(article):
+    title = article["ArticleTitle"]
+    abstract = article["Abstract"]
+
+    if not isinstance(title, str):
+        title = ""
+
+    if not isinstance(abstract, str):
+        abstract = ""
+
+    return title, abstract
+
+def get_wanted_predictions(article, labels):
+    wanted = {}
+    for label in labels:
+        wanted[label] = label in article["Predictions"]
+
+    return wanted
\ No newline at end of file
diff --git a/variables/__pycache__/articles.cpython-313.pyc b/variables/__pycache__/articles.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..15417bce22639b5c0e702fba484a5e57114d9d04
GIT binary patch
literal 307
zcmey&%ge>Uz`&qxdmz1=fq~&Mhy%k+P{wBw1_p+y4EhYg41tVAAeu3dv4}C9Nt0QV
z<rZtOhksDWEjC|Q7tc`NTP!~Qe(qJAVXi@u3LvH?bEXa>14Cv669YqL3o`?QpC;2S
zK_6E?_YjYGXU7m%cmE(y*Wg>y7(($OL9W3b{yr|jD;Yk6oN_BjKO;XkRX?*VF;Cwm
zKe;qFHLs*tKQB2&HzlzoQ8zI?y(l$3u_QA;Pd70yMK?JovA8%hEi)M`q+ga;l$n^6
zlUl5wSX7dkoReCtS5SG2!zMRBr8Fnit_Tzmj0_A6#i9%h3?G;o85ut@v5GQXU=aMo
Q$0E;kkwLnMgMono0E|CTo&W#<

literal 0
HcmV?d00001

diff --git a/variables/__pycache__/diseases.cpython-313.pyc b/variables/__pycache__/diseases.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..81bb1083916fe734a1b04a222dc8af8edda5e199
GIT binary patch
literal 360
zcmey&%ge>Uz`&p!xIg_m0|Ucj5C?{tpp4Hv3=9lY84MYM8L}CR7}6Ovnd~?i7#MD`
zIVa{NrxxAfaLG(eN-aq({>AH?npcvTqu`O6m{XGRiytPTP*Pcts$hsNVDwAeIk6}u
zGrugcIJq<@u}C2$vp6-eIJNkfgkOGMa(-@ZX<lY>Vp2}3f(uMW+Bu^rKQA*`p(wSu
zAhRg3B)_N<rq554@fN>}XRxbduxoI<kE4^TPw+~H&mfQ73ewNW&rQ|OEKAJOcgasK
z%}vcKDb~+RPSH(CEJ@T&OiwRLO;0Sz%+J$J%uCTt&PgmT&P>Zp1`FwzB^G6Z+)=C#
vbD~~B<t+}I-29Z%oK(9aJ_ZH`Mg|6kVo+dxU}j`w{KUj5%+$zV1QGxMetmLA

literal 0
HcmV?d00001

diff --git a/variables/__pycache__/huggingface.cpython-313.pyc b/variables/__pycache__/huggingface.cpython-313.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c06c63e9dbaaf0f17954833f1840b43703e2c3c5
GIT binary patch
literal 452
zcmey&%ge>Uz`#&3<v{u$Mh1q*APx*OK^dQU7#J9)GUzh|GXydgF{CqUGHJ3_Df;FY
zWtLR=B$gJX7U?IYr|RY!>sF-}<rin<m*|!m=^0e%peS)kb#e^~Nz^Sf)=f$*PSwrL
z%gNMDOD#(+(oM|E$*eL&QJs>Slv-4RP>nFzP|r{|F(*gY*tkj`MN4jJPDy4?W?p(}
zVveqFW?rU`Z<&#<j~T?K3XmNpxtYmD`NjEZCHhX8`MIenem()Z5EjUB5QmlKB_|fA
zrsyUn6_*qxCYShWGTsvM2z7V&^mBJ}basvR^>=ag30}$Y85BUbLiIE9b5r#*%M$bS
zUGkGlb5rw5iuLo7Q*=`jOA>Vx)6<Jm(-TWF^Ye5Q^HOw^a}tY-Gt)AY!9x0FiA9--
zNja&-`WdC^>6v-yX^F|HdIgoYIBatBQ%ZAE?TXkK7#J8C7#NCq85kHoFf%eTeqv%5
OW4g#7RK&u-zyJW(o{(4o

literal 0
HcmV?d00001

diff --git a/variables/articles.py b/variables/articles.py
new file mode 100644
index 000000000..16e8b8988
--- /dev/null
+++ b/variables/articles.py
@@ -0,0 +1,12 @@
+LENGTH_CATEGORIES = [
+    "SHORT",
+    "MEDIUM",
+    "LONG",
+    "VERY LONG"
+]
+
+LENGTH_CATEGORIES_TRESHOLDS = [
+    300,
+    600,
+    900
+]
\ No newline at end of file
diff --git a/variables/diseases.py b/variables/diseases.py
new file mode 100644
index 000000000..c31050e2e
--- /dev/null
+++ b/variables/diseases.py
@@ -0,0 +1,10 @@
+DISEASES_LABELS = {
+    "Noncommunicable Diseases",
+    "Diabetes",
+    "Cancer",
+    "Chronic respiratory disease",
+    "Cardiovascular diseases",
+    "Mental Health",
+    "Diabetes type 1",
+    "Diabetes type 2"
+}
\ No newline at end of file
diff --git a/variables/huggingface.py b/variables/huggingface.py
new file mode 100644
index 000000000..c5dd2c823
--- /dev/null
+++ b/variables/huggingface.py
@@ -0,0 +1,8 @@
+HUGGINGFACE_MODELS = [
+    #"facebook/bart-large-mnli", # https://huggingface.co/facebook/bart-large-mnli
+    "MoritzLaurer/bge-m3-zeroshot-v2.0", # https://huggingface.co/MoritzLaurer/bge-m3-zeroshot-v2.0
+    "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
+    "MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33",
+    "MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli",
+    "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract" # https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
+]
\ No newline at end of file
-- 
GitLab