From 7dc61c6e80907453cbab3324adfb61272c71f8a7 Mon Sep 17 00:00:00 2001
From: "ivan.pavlovic" <ivan.pavlovic@hes-so.ch>
Date: Wed, 15 Jan 2025 13:53:05 +0100
Subject: [PATCH] =?UTF-8?q?Premiere=20version=20du=20teste=20pour=20les=20?=
 =?UTF-8?q?mod=C3=A8les?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

---
 .gitignore                                    |   1 +
 api/data/pubmedData.xml                       |  22 +-
 .../facebookBartLargeMnli.cpython-312.pyc     | Bin 0 -> 683 bytes
 api/model/facebookBartLargeMnli.py            |  15 +-
 api/model/facebookBartLargeMnli_results.txt   | 232 ------------
 api/model/test.json                           | 339 ++++++++++++++++++
 api/pubmedApi.py                              |  84 +++--
 api/test_model.py                             |  55 +++
 rapport.md                                    |  52 +++
 9 files changed, 537 insertions(+), 263 deletions(-)
 create mode 100644 .gitignore
 create mode 100644 api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc
 delete mode 100644 api/model/facebookBartLargeMnli_results.txt
 create mode 100644 api/model/test.json
 create mode 100644 api/test_model.py
 create mode 100644 rapport.md

diff --git a/.gitignore b/.gitignore
new file mode 100644
index 000000000..d2e6893bd
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+gptKey
\ No newline at end of file
diff --git a/api/data/pubmedData.xml b/api/data/pubmedData.xml
index 99ba7bad6..30bc3fe2a 100644
--- a/api/data/pubmedData.xml
+++ b/api/data/pubmedData.xml
@@ -1,13 +1,27 @@
 <?xml version="1.0" ?>
 <!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle, 1st January 2024//EN" "https://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_240101.dtd">
 <PubmedArticleSet>
-<PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612437</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Association between serum uric acid and prediabetes in a normal Chinese population: A cross-sectional study.</ArticleTitle><Pagination><StartPage>e40544</StartPage><MedlinePgn>e40544</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40544</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040544</ELocationID><Abstract><AbstractText>Cardiovascular events are frequent among individuals with prediabetes. And the relationship between cardiovascular diseases and elevated serum uric acid (SUA) levels has been supported by extensive scientific evidence. However, there remains controversy regarding the correlation between elevated SUA and prediabetes. The aim of this study was to investigate the association between elevated SUA levels and the prevalence of prediabetes and gender differences in the association. A total of 190,891 individuals who participated in health checkups at the Health Promotion Center of Sir Run Run Shaw Hospital of Zhejiang University from January 2017 to December 2021 were included in this cross-sectional study. The health checkups were carried out by trained general practitioners and nurses. The diagnostic criteria for diabetes and prediabetes are defined in the Standards of Medical Care in Diabetes-2022. The association between SUA levels and diabetes and prediabetes was examined based on logistic regression analysis. The dose-response effect between SUA levels and diabetes and prediabetes in both sexes was assessed using a restricted cubic spline (RCS) regression model. Among 190,891 participants, this study included 106,482 males (55.8%) and 84,409 females (44.2%). There were 46,240 (24.2%) patients with prediabetes and 20,792 (10.9%) patients with diabetes. SUA was divided into quartiles (Q). Compared to the SUA Q1 group, the prevalence of prediabetes was elevated in the SUA Q4 group (OR&#x2005;=&#x2005;1.378, 95% CI&#x2005;=&#x2005;1.321-1.437), but diabetes risk was decreased in the SUA Q4 group (OR&#x2005;=&#x2005;0.690, 95% CI&#x2005;=&#x2005;0.651-0.730). We found that SUA levels were correlated with prediabetes more significantly in male subjects (OR&#x2005;=&#x2005;1.328, 95% CI&#x2005;=&#x2005;1.272-1.386) than in female subjects (OR&#x2005;=&#x2005;1.184, 95% CI&#x2005;=&#x2005;1.122-1.249) (P for interaction&#x2005;&lt;&#x2005;.001). Higher SUA levels were strongly related to an elevated prevalence of prediabetes but a decreased prevalence of diabetes. The association of SUA in prediabetes was more significant in men.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shen</LastName><ForeName>Keqing</ForeName><Initials>K</Initials><Identifier Source="ORCID">0009-0008-1033-4473</Identifier><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Yilin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Junlu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Liangli</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Pathology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cai</LastName><ForeName>Xixuan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Jianjiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jingyi</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Lusha</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Liying</ForeName><Initials>L</Initials><Identifier Source="ORCID">0000-0002-8895-3775</Identifier><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>WKJ-ZJ-2304</GrantID><Agency>Major Program Co-sponsored by Province and Ministry of China</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>268B43MJ25</RegistryNumber><NameOfSubstance UI="D014527">Uric Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014527" MajorTopicYN="Y">Uric Acid</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012737" MajorTopicYN="N">Sex Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095225" MajorTopicYN="N">East Asian People</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612437</ArticleId><ArticleId IdType="pmc">PMC11608712</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040544</ArticleId><ArticleId IdType="pii">00005792-202411290-00062</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed. Brussels: International Diabetes Federation; 2021.</Citation><ArticleIdList><ArticleId IdType="pubmed">35914061</ArticleId></ArticleIdList></Reference><Reference><Citation>Hubbard D, Colantonio LD, Tanner RM, et al. . Prediabetes and risk for cardiovascular disease by hypertension status in black adults: the Jackson heart study. Diabetes Care. 2019;42:2322&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7011196</ArticleId><ArticleId IdType="pubmed">31591089</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Peng W, Zhao Z, et al. . Prevalence and treatment of diabetes in China, 2013 to 2018. JAMA. 2021;326:2498&#x2013;506.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8715349</ArticleId><ArticleId IdType="pubmed">34962526</ArticleId></ArticleIdList></Reference><Reference><Citation>Davidson KW, Barry MJ, Mangione CM, et al. ; US Preventive Services Task Force. Screening for prediabetes and type 2 diabetes: US preventive services task force recommendation statement. JAMA. 2021;326:736&#x2013;43.</Citation><ArticleIdList><ArticleId IdType="pubmed">34427594</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan XR, Li GW, Hu YH, et al. . Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pubmed">9096977</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuomilehto J, Lindstr&#xf6;m J, Eriksson JG, et al. ; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">11333990</ArticleId></ArticleIdList></Reference><Reference><Citation>Knowler WC, Barrett-Connor E, Fowler SE, et al. ; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393&#x2013;403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1370926</ArticleId><ArticleId IdType="pubmed">11832527</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V; Indian Diabetes Prevention Programme (IDPP). The Indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">16391903</ArticleId></ArticleIdList></Reference><Reference><Citation>Brannick B, Dagogo-Jack S. Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am. 2018;47:33&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5806140</ArticleId><ArticleId IdType="pubmed">29407055</ArticleId></ArticleIdList></Reference><Reference><Citation>Tab&#xe1;k AG, Herder C, Rathmann W, Brunner EJ, Kivim&#xe4;ki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3891203</ArticleId><ArticleId IdType="pubmed">22683128</ArticleId></ArticleIdList></Reference><Reference><Citation>Echouffo-Tcheugui JB, Perreault L, Ji L, Dagogo-Jack S. Diagnosis and management of prediabetes: a review. JAMA. 2023;329:1206&#x2013;16.</Citation><ArticleIdList><ArticleId IdType="pubmed">37039787</ArticleId></ArticleIdList></Reference><Reference><Citation>Crawley WT, Jungels CG, Stenmark KR, Fini MA. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biol. 2022;51:102271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8889273</ArticleId><ArticleId IdType="pubmed">35228125</ArticleId></ArticleIdList></Reference><Reference><Citation>Lazzeroni D, Bini M, Camaiora U, et al. . Serum uric acid level predicts adverse outcomes after myocardial revascularization or cardiac valve surgery. Eur J Prev Cardiol. 2018;25:119&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pubmed">29164926</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuwabara M, Hisatome I, Niwa K, et al. . Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese cohort study. Hypertension. 2018;71:78&#x2013;86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5730471</ArticleId><ArticleId IdType="pubmed">29203632</ArticleId></ArticleIdList></Reference><Reference><Citation>Stack AG, Hanley A, Casserly LF, et al. . Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013;106:647&#x2013;58.</Citation><ArticleIdList><ArticleId IdType="pubmed">23564632</ArticleId></ArticleIdList></Reference><Reference><Citation>Cang Y, Xu S, Zhang J, et al. . Serum uric acid revealed a U-Shaped relationship with all-cause mortality and cardiovascular mortality in high atherosclerosis risk patients: the ASSURE study. Front Cardiovasc Med. 2021;8:641513.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8180559</ArticleId><ArticleId IdType="pubmed">34109223</ArticleId></ArticleIdList></Reference><Reference><Citation>Krishnan E, Akhras KS, Sharma H, et al. . Relative and attributable diabetes risk associated with hyperuricemia in US veterans with gout. QJM. 2013;106:721&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3713590</ArticleId><ArticleId IdType="pubmed">23620537</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou C, Liu M, Zhang Z, et al. . Positive association of serum uric acid with new-onset diabetes in Chinese women with hypertension in a retrospective analysis of the China stroke primary prevention trial. Diabetes Obes Metab. 2020;22:1598&#x2013;606.</Citation><ArticleIdList><ArticleId IdType="pubmed">32363743</ArticleId></ArticleIdList></Reference><Reference><Citation>Su H, Liu T, Li Y, et al. . Serum uric acid and its change with the risk of type 2 diabetes: a prospective study in China. Prim Care Diabetes. 2021;15:1002&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">34217642</ArticleId></ArticleIdList></Reference><Reference><Citation>Chien KL, Chen MF, Hsu HC, et al. . Plasma uric acid and the risk of type 2 diabetes in a Chinese community. Clin Chem. 2008;54:310&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">18089655</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med. 2010;123:957&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3131180</ArticleId><ArticleId IdType="pubmed">20920699</ArticleId></ArticleIdList></Reference><Reference><Citation>Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108&#x2013;16.</Citation><ArticleIdList><ArticleId IdType="pubmed">22753829</ArticleId></ArticleIdList></Reference><Reference><Citation>Haque T, Rahman S, Islam S, Molla NH, Ali N. Assessment of the relationship between serum uric acid and glucose levels in healthy, prediabetic and diabetic individuals. Diabetol Metab Syndr. 2019;11:49.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6588943</ArticleId><ArticleId IdType="pubmed">31285758</ArticleId></ArticleIdList></Reference><Reference><Citation>Nan H, Dong Y, Gao W, Tuomilehto J, Qiao Q. Diabetes associated with a low serum uric acid level in a general Chinese population. Diabetes Res Clin Pract. 2007;76:68&#x2013;74.</Citation><ArticleIdList><ArticleId IdType="pubmed">16963150</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandaru P, Shankar A. Association between serum uric acid levels and diabetes mellitus. Int J Endocrinol. 2011;2011:604715.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3216382</ArticleId><ArticleId IdType="pubmed">22114591</ArticleId></ArticleIdList></Reference><Reference><Citation>Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men: the Osaka health survey. J Hypertens. 2001;19:1209&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pubmed">11446710</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen N, Muhammad IF, Li Z, Nilsson PM, Born&#xe9; Y. Sex-Specific associations of circulating uric acid with risk of diabetes incidence: a population-based cohort study from Sweden. Diabetes Metab Syndr Obes. 2020;13:4323&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7669519</ArticleId><ArticleId IdType="pubmed">33209045</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi HK, Ford ES. Haemoglobin A1C, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels&#x2013;the third national health and nutrition examination survey. Rheumatology (Oxford). 2008;47:713&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">18390895</ArticleId></ArticleIdList></Reference><Reference><Citation>Park RJ, Kang MG. Association between serum uric acid and prediabetes in the Korean general population. Asia Pac J Public Health. 2019;31:719&#x2013;27.</Citation><ArticleIdList><ArticleId IdType="pubmed">31852225</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Schaft N, Brahimaj A, Wen KX, Franco OH, Dehghan A. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: the Rotterdam study. PLoS One. 2017;12:e0179482.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5478118</ArticleId><ArticleId IdType="pubmed">28632742</ArticleId></ArticleIdList></Reference><Reference><Citation>Zoppini G, Targher G, Chonchol M, et al. . Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012;35:99&#x2013;104.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3241303</ArticleId><ArticleId IdType="pubmed">22028277</ArticleId></ArticleIdList></Reference><Reference><Citation>Pape&#x17e;&#xed;kov&#xe1; I, Pekarov&#xe1; M, Kol&#xe1;&#x159;ov&#xe1; H, et al. . Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res. 2013;47:82&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">23136942</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodr&#xed;guez G, Soriano LC, Choi HK. Impact of diabetes against the future risk of developing gout. Ann Rheum Dis. 2010;69:2090&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3136217</ArticleId><ArticleId IdType="pubmed">20570836</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Li W, Chen J, et al. . The elevation of serum uric acid depends on insulin resistance but not fasting plasma glucose in hyperuricaemia. Pathogenesis Rheumatoid Arthritis. 2022;40:613&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">33886461</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J, Qiu SH, Guo HJ, Li W, Sun ZL. Increased urinary glucose excretion is associated with a reduced risk of hyperuricaemia. Diabet Med. 2019;36:902&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">30920678</ArticleId></ArticleIdList></Reference><Reference><Citation>Shimodaira M, Minemura Y, Nakayama T. Elevated serum uric acid is a risk factor for progression to prediabetes in Japanese women: a 5-year retrospective cohort study. J Diabetes Investig. 2023;14:1237&#x2013;45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10583653</ArticleId><ArticleId IdType="pubmed">37553791</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Jin C, Xing A, et al. . Serum uric acid levels and the risk of impaired fasting glucose: a prospective study in adults of north China. PLoS One. 2013;8:e84712.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3871632</ArticleId><ArticleId IdType="pubmed">24376838</ArticleId></ArticleIdList></Reference><Reference><Citation>Meyer MR, Clegg DJ, Prossnitz ER, Barton M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf). 2011;203:259&#x2013;69.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3110567</ArticleId><ArticleId IdType="pubmed">21281456</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612426</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Exploring the link between SIRT1 gene variants and depression comorbidity in type 2 diabetes.</ArticleTitle><Pagination><StartPage>e40563</StartPage><MedlinePgn>e40563</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40563</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040563</ELocationID><Abstract><AbstractText>This study aims to (1) analyze the clinical characteristics and risk factors of patients with type 2 diabetes and comorbid depression and (2) explore the association between SIRT1 gene single-nucleotide polymorphism sites and this comorbidity. A total of 450 type 2 diabetes patients hospitalized in the General Medicine Department at The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology from July 2022 to September 2023, and 300 healthy individuals from the physical examination department were selected as study subjects. Both groups were assessed using general information surveys and questionnaires. Statistical analyses were performed to compare clinical indicators across 3 groups: individuals with only type 2 diabetes, those with comorbid depression, and healthy controls. The age, gender, disease duration, marital status, income and drug expenditure, employment status, fasting blood glucose level, fasting insulin level difference, insulin resistance index difference, glycated hemoglobin, high-density lipoprotein level, and HCY difference among the 3 groups of patients were risk factors for type 2 diabetes comorbid depression patients. The SIRT1 mRNA level was significantly reduced in type 2 diabetes comorbid depression patients. The SIRT1 gene had 3 sites: rs12415800, rs3758391, and rs932658, which were related to the patient's type 2 diabetes comorbid depression. They were the additive model and dominant model of rs12415800 and rs3758391, respectively. In addition, the GTGGT haplotype composed of rs12415800-rs932658-rs7895833-rs2273773-rs1467568 and the AGACT haplotype composed of rs3758391-rs932658-rs33957861-rs3818292-rs1467568 were significantly associated with type 2 diabetes comorbid depression. Numerous factors influence the presence of depression in patients with type 2 diabetes, with the SIRT1 gene playing a significant role, serving as a potential biomarker for this comorbidity.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Yingxia</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Qinqin</ForeName><Initials>Q</Initials></Author><Author ValidYN="Y"><LastName>Yin</LastName><ForeName>Ziwei</ForeName><Initials>Z</Initials></Author><Author ValidYN="Y"><LastName>Zeng</LastName><ForeName>Yi</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Ningyu</ForeName><Initials>N</Initials></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Hong</ForeName><Initials>H</Initials><Identifier Source="ORCID">0009-0007-8771-336</Identifier></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 3.5.1.-</RegistryNumber><NameOfSubstance UI="D056564">Sirtuin 1</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.5.1.-</RegistryNumber><NameOfSubstance UI="C447939">SIRT1 protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D056564" MajorTopicYN="Y">Sirtuin 1</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003863" MajorTopicYN="Y">Depression</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="Y">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612426</ArticleId><ArticleId IdType="pmc">PMC11608703</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040563</ArticleId><ArticleId IdType="pii">00005792-202411290-00051</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Farooqi A, Gillies C, Sathanapally H, et al. . A systematic review and meta-analysis to compare the prevalence of depression between patient with and without type 1 and type 2 diabetes. Prim Care Diabetes. 2022;16:1&#x2013;10.</Citation><ArticleIdList><ArticleId IdType="pubmed">34810141</ArticleId></ArticleIdList></Reference><Reference><Citation>Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci. 2021;53:2870&#x2013;900.</Citation><ArticleIdList><ArticleId IdType="pubmed">33529409</ArticleId></ArticleIdList></Reference><Reference><Citation>Yonggui Y. The pathogenesis of depression and diabetes is bidirectionally linked. Chin Med Inf Herald. 2019;34:1.</Citation></Reference><Reference><Citation>Ding X, Rong S, Wang Y, et al. . The association of the prevalence of depression in type 2 diabetes mellitus with visual-related quality of life and social support. Diabetes Metab Syndr Obes. 2022;15:535&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8882658</ArticleId><ArticleId IdType="pubmed">35237054</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu HNC, Skolnick VG, Carlin CS, Solberg L, Raiter AM, Peterson KA. The effect of depression and rurality on diabetes control. J Am Board Fam Med. 2020;33:913&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8489964</ArticleId><ArticleId IdType="pubmed">33219070</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin Q, Shen L, Qi Y, et al. . Decreased SIRT1 expression in the peripheral blood of patients with Graves&#x2019; disease. J Endocrinol. 2020;246:161&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7354706</ArticleId><ArticleId IdType="pubmed">32485674</ArticleId></ArticleIdList></Reference><Reference><Citation>van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CD. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8:325&#x2013;36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11044807</ArticleId><ArticleId IdType="pubmed">32135131</ArticleId></ArticleIdList></Reference><Reference><Citation>Mizuki Y, Sakamoto S, Okahisa Y, et al. . Mechanisms underlying the comorbidity of schizophrenia and type 2 diabetes mellitus. Int J Neuropsychopharmacol. 2021;24:367&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8130204</ArticleId><ArticleId IdType="pubmed">33315097</ArticleId></ArticleIdList></Reference><Reference><Citation>McGrory CL, Ryan KM, Kolshus E, Finnegan M, McLoughlin DM. Peripheral blood SIRT1 mRNA levels in depression and treatment with electroconvulsive therapy. Eur Neuropsychopharmacol. 2018;28:1015&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pubmed">30017261</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramirez A, Hernandez M, Suarez-Sanchez R, et al. . Type 2 diabetes&#x2013;associated polymorphisms correlate with SIRT1 and TGF-&#x3b2;1 gene expression. Ann Hum Genet. 2020;84:185&#x2013;94.</Citation><ArticleIdList><ArticleId IdType="pubmed">31799723</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez-Jimenez V, Cortez-Espinosa N, Rodriguez-Varela E, Vega-Cardenas M, Briones-Espinoza M, Ruiz-Rodriguez VM. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individuals with obesity. Diabetes Metab Syndr. 2019;13:582&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30641770</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao B, Li X, Zhou L, Wang Y, Shang P. SIRT1: a potential tumour biomarker and therapeutic target. J Drug Target. 2019;27:1046&#x2013;52.</Citation><ArticleIdList><ArticleId IdType="pubmed">31056963</ArticleId></ArticleIdList></Reference><Reference><Citation>Rao S, Luo N, Sui J, Xu Q, Zhang F. Effect of the SIRT1 gene on regional cortical grey matter density in the Han Chinese population. Br J Psychiatry. 2020;216:254&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30567608</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang G, Collins JM, Rafiee R, et al. . SIRT1 gene SNP rs932658 is associated with medication-related osteonecrosis of the jaw. J Bone Miner Res. 2020;36:347&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8733933</ArticleId><ArticleId IdType="pubmed">32967053</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajkhowa B, Mehan S, Sethi P, Prajapati A. Activation of SIRT-1 signalling in the prevention of bipolar disorder and related neurocomplications: target activators and influences on neurological dysfunctions. Neurotox Res. 2022;40:670&#x2013;86.</Citation><ArticleIdList><ArticleId IdType="pubmed">35156173</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612420</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Effects of genetic variants of organic cation transporters on metformin response in newly diagnosed patients with type 2 diabetes.</ArticleTitle><Pagination><StartPage>e40684</StartPage><MedlinePgn>e40684</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40684</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040684</ELocationID><Abstract><AbstractText>Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean&#x2005;&#xb1;&#x2005;SD age was 50.4&#x2005;&#xb1;&#x2005;10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927&#x2005;&#xb1;&#x2005;1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c&#x2005;&lt;&#x2005;7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P&#x2005;=&#x2005;.021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>AlKreathy</LastName><ForeName>Huda M</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Abdulhhakim A</ForeName><Initials>AA</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Pharmacy, Medical Affairs, Al-Baha Health Cluster, Al-Baha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Esmat</LastName><ForeName>Ahmed</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Damanhouri</LastName><ForeName>Zoheir A</ForeName><Initials>ZA</Initials><Identifier Source="ORCID">0000-0002-9150-5471</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>988</GrantID><Agency>Deputyship for Research and Innovation of the Ministry of Education in Saudi Arabia</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9100L32L2N</RegistryNumber><NameOfSubstance UI="D008687">Metformin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="D017346">Protein Serine-Threonine Kinases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D027701">Organic Cation Transport Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="C109790">STK11 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C521870">SLC47A2 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.3</RegistryNumber><NameOfSubstance UI="D000091162">AMP-Activated Protein Kinase Kinases</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="D064007">Ataxia Telangiectasia Mutated Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="C576324">ATM protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008687" MajorTopicYN="Y">Metformin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017346" MajorTopicYN="Y">Protein Serine-Threonine Kinases</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D027701" MajorTopicYN="Y">Organic Cation Transport Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012529" MajorTopicYN="N" Type="Geographic">Saudi Arabia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000091162" MajorTopicYN="N">AMP-Activated Protein Kinase Kinases</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D064007" MajorTopicYN="N">Ataxia Telangiectasia Mutated Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612420</ArticleId><ArticleId IdType="pmc">PMC11608742</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040684</ArticleId><ArticleId IdType="pii">00005792-202411290-00045</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Deepthi B, Sowjanya K, Lidiya B, Bhargavi R, Babu P. A modern review of diabetes mellitus: an annihilatory metabolic disorder. J In Silico In Vitro Pharmacol. 2017;3:1&#x2013;5.</Citation></Reference><Reference><Citation>Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg. 2019;113:56&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6364794</ArticleId><ArticleId IdType="pubmed">30517697</ArticleId></ArticleIdList></Reference><Reference><Citation>Triggle C, Ding H. Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta physiologica. 2017;219(:138&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26680745</ArticleId></ArticleIdList></Reference><Reference><Citation>Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss. Curr Obes Rep. 2019;8:156&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6520185</ArticleId><ArticleId IdType="pubmed">30874963</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang SY, Bruce K, Danaei Z, et al. . Metformin triggers a kidney GDF15- dependent area postrema axis to regulate food intake and body weight. Cell Metab. 2023;35:875&#x2013;86.e5.</Citation><ArticleIdList><ArticleId IdType="pubmed">37060902</ArticleId></ArticleIdList></Reference><Reference><Citation>Zaharenko L. Pharmacogenetics of efficiency and tolerance of the peroral antidiabetic drug metformin [doctoral thesis]. Riga: University of Latvia, Riga, Latvia. 2015.</Citation></Reference><Reference><Citation>Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci. 2017;106:2245&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">28495567</ArticleId></ArticleIdList></Reference><Reference><Citation>Veiga-Matos J, Remi&#xe3;o F, Motales A. Pharmacokinetics and toxicokinetics roles of membrane transporters at kidney level. J Pharm Pharm Sci. 2020;23:333&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pubmed">32997956</ArticleId></ArticleIdList></Reference><Reference><Citation>Dawed AY, Zhou K, van Leeuwen N, et al. ; IMI DIRECT Consortium. Variation in the plasma membrane monoamine transporter (PMAT)(encoded by SLC29A4) and organic cation transporter 1 (OCT1)(encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care. 2019;42:1027&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pubmed">30885951</ArticleId></ArticleIdList></Reference><Reference><Citation>Zeng Z, Huang SY, Sun T. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther. 2020;11:2521&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7548012</ArticleId><ArticleId IdType="pubmed">32930968</ArticleId></ArticleIdList></Reference><Reference><Citation>K&#xf6;lz C, Schaeffeler E, Schwab M, Nies AT. Genetic and epigenetic regulation of organic cation transporters. Handb Exp Pharmacol. 2021;266:81&#x2013;100.</Citation><ArticleIdList><ArticleId IdType="pubmed">33674913</ArticleId></ArticleIdList></Reference><Reference><Citation>Lofthouse EM, Cleal J, Lewis RM, Sengers BG. computational modelling of paracellular diffusion and OCT3 mediated transport of metformin in the perfused human placenta. J Pharm Sci. 2023;112:2570&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">37211316</ArticleId></ArticleIdList></Reference><Reference><Citation>Hanke N, T&#xfc;rk D, Selzer D, et al. . A comprehensive whole-body physiologically based pharmacokinetic drug&#x2013;drug&#x2013;gene interaction model of metformin and cimetidine in healthy adults and renally impaired individuals. Clin Pharmacokinet. 2020;59:1419&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7658088</ArticleId><ArticleId IdType="pubmed">32449077</ArticleId></ArticleIdList></Reference><Reference><Citation>Burt H, Neuhoff S, Almond L, et al. . Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug&#x2013;drug interactions. Eur J Pharm Sci. 2016;88:70&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pubmed">27019345</ArticleId></ArticleIdList></Reference><Reference><Citation>Shao J, Markowitz JS, Bei D, An G. Enzyme-transporter-mediated drug interactions with small molecule tyrosine kinase inhibitors. J Pharm Sci. 2014;103:3810&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pubmed">25308414</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhlaghi F, Matson KL, Mohammadpour AH, Kelly M, Karimani A. Clinical pharmacokinetics and pharmacodynamics of antihyperglycemic medications in children and adolescents with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2017;56:561&#x2013;71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5425330</ArticleId><ArticleId IdType="pubmed">27832452</ArticleId></ArticleIdList></Reference><Reference><Citation>Goswami S. Novel Computational Methods to Discover Genes Linked to Drug Response. University of California, San Francisco; 2015:28&#x2013;64.</Citation></Reference><Reference><Citation>Ma Y, Wang X, Gou X, Wu X. Identification and characterization of an endogenous biomarker of the renal vectorial transport (OCT2-MATE1). Biopharm Drug Dispos. 2024;45:43&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pubmed">38305087</ArticleId></ArticleIdList></Reference><Reference><Citation>Raj GM, Mathaiyan J, Wyawahare M, Priyadarshini R. Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metab Personalized Ther. 2018;33:175&#x2013;85.</Citation><ArticleIdList><ArticleId IdType="pubmed">30433870</ArticleId></ArticleIdList></Reference><Reference><Citation>Alshadfan H, Aljohani S, Mirghani H, Abdullah MNH. A comparison between metformin immediate-release and extended-release: a review. BNHS. 2022;140:2099&#x2013;120.</Citation></Reference><Reference><Citation>Barrett T, Jalaludin MY, Turan S, Hafez M, Shehadeh N; Novo Nordisk Pediatric Type 2 Diabetes Global Expert Panel. Rapid progression of type 2 diabetes and related complications in children and young people&#x2014;A literature review. Pediatr Diabetes. 2020;21:158&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7028065</ArticleId><ArticleId IdType="pubmed">31804738</ArticleId></ArticleIdList></Reference><Reference><Citation>Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: AN overview. J Epidemiol glob health. 2017;7:211&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7384574</ArticleId><ArticleId IdType="pubmed">29110860</ArticleId></ArticleIdList></Reference><Reference><Citation>HEARTS D: diagnosis and management of type 2 diabetes.
-2020. Available at: https://www.who.int/publications/i/item/who-ucn-ncd-20.1. Accessed February 2024.</Citation></Reference><Reference><Citation>Qaseem A, Barry MJ, Humphrey LL, et al. ; Clinical Guidelines Committee of the American College of Physicians. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166:279&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">28055075</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahrooz A, Parsanasab H, Hashemi-Soteh MB, et al. . The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clin Exp Med. 2015;15:159&#x2013;65.</Citation><ArticleIdList><ArticleId IdType="pubmed">24740684</ArticleId></ArticleIdList></Reference><Reference><Citation>Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. Metformin pharmacogenomics: current status and future directions. Diabetes. 2014;63:2590&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4113063</ArticleId><ArticleId IdType="pubmed">25060887</ArticleId></ArticleIdList></Reference><Reference><Citation>Campesi I, Franconi F, Seghieri G, Meloni M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol Res. 2017;119:195&#x2013;207.</Citation><ArticleIdList><ArticleId IdType="pubmed">28189784</ArticleId></ArticleIdList></Reference><Reference><Citation>Klein S, Gastaldelli A, Yki-J&#xe4;rvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34:11&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8740746</ArticleId><ArticleId IdType="pubmed">34986330</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Xu B, Fan S, et al. . Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol. 2022;15:1107&#x2013;17.</Citation><ArticleIdList><ArticleId IdType="pubmed">36065506</ArticleId></ArticleIdList></Reference><Reference><Citation>Breitenstein MK, Simon G, Ryu E, et al. . Using EHR-linked biobank data to study metformin pharmacogenomics. In: Digital Healthcare Empowering Europeans. Stud Health Technol Inform: IOS Press; 2015:914&#x2013;918.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5051541</ArticleId><ArticleId IdType="pubmed">25991289</ArticleId></ArticleIdList></Reference><Reference><Citation>Todd JN, Florez JC. An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics. 2014;15:529&#x2013;39.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4121960</ArticleId><ArticleId IdType="pubmed">24624919</ArticleId></ArticleIdList></Reference><Reference><Citation>ilvanathan S, Gurusamy U, Mukta V, Das A, Chandrasekaran A. Allele and genotype frequency of a genetic variant in ataxia telangiectasia mutated gene affecting glycemic response to metformin in South Indian population. IJEM. 2014;18:850&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4192993</ArticleId><ArticleId IdType="pubmed">25364682</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen MM, Brasch-Andersen C, Green H, et al. . The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">21989078</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612398</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective.</ArticleTitle><Pagination><StartPage>e40729</StartPage><MedlinePgn>e40729</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40729</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040729</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetic nephropathy (DN) is a common complication of diabetes, which is prone to develop into end-stage renal disease, and early diagnosis and treatment is the key to effective management of DN. Biomarkers have important clinical significance in the diagnosis and treatment of DN and have attracted extensive attention from researchers in recent years. The aim of this study was to visualize the field of biomarker research in DN through bibliometric analysis, to summarize the current status and predict future trends of this field, with a view to providing valuable insights for scholars and policy makers.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Literature search and data collection from Web of Science Core Collection. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">We identified 1274 publications about biomarker research in DN from 1995 to November 01, 2023, with a steady increase in annual publications. China, Steno Diabetes Center in Denmark, and Frontiers in Endocrinology were the most productive country, institution, and journal, respectively; Mischak, Harald was both the most productive and highly cited author, and Kidney International was the most cited journal. The high frequency keywords were "albuminuria," "chronic kidney disease" and "expression." In addition, "macrophage," "fibrosis" and "omics" are potentially promising topics.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Qin</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Hunan University of Medicine, Huaihua, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Yafei</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>The First Clinical Medical College of Lanzhou University, Lanzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zuo</LastName><ForeName>Meiying</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>The First Clinical Medical College of Lanzhou University, Lanzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Fang</ForeName><Initials>F</Initials><Identifier Source="ORCID">0009-0003-2442-6604</Identifier><AffiliationInfo><Affiliation>Hunan University of Medicine, Huaihua, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015706" MajorTopicYN="Y">Bibliometrics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D035843" MajorTopicYN="N">Biomedical Research</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName><QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612398</ArticleId><ArticleId IdType="pmc">PMC11608688</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040729</ArticleId><ArticleId IdType="pii">00005792-202411290-00023</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164&#x2013;76.</Citation><ArticleIdList><ArticleId IdType="pubmed">15616252</ArticleId></ArticleIdList></Reference><Reference><Citation>Afkarian M, Sachs MC, Kestenbaum B, et al. . Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3559486</ArticleId><ArticleId IdType="pubmed">23362314</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet A. Diabetic kidney disease: past and present. Adv Anat Pathol. 2020;27:87&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">31876542</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng HT, Xu X, Lim PS, Hung KY. Worldwide Epidemiology of diabetes-related end-stage renal disease, 2000-2015. Diabetes Care. 2021;44:89&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">33203706</ArticleId></ArticleIdList></Reference><Reference><Citation>CKD in the General Population. National institute of diabetes and digestive and kidney diseases.
-Available at: https://usrds-adr.niddk.nih.gov/2022/chronic-kidney-disease/1-ckd-in-the-general-populatio [access date 14 May 2023].</Citation></Reference><Reference><Citation>Rocha NA, McCullough PA. Cardiovascular outcomes in diabetic kidney disease: insights from recent clinical trials. Kidney Int Suppl. 2018;8:8&#x2013;17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6336216</ArticleId><ArticleId IdType="pubmed">30675434</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402:203&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Persson F, Rossing P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl (2011). 2018;8:2&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6336222</ArticleId><ArticleId IdType="pubmed">30675433</ArticleId></ArticleIdList></Reference><Reference><Citation>Kwiendacz H, Nabrdalik K, Stompor T, Gumprecht J. What do we know about biomarkers in diabetic kidney disease? Endokrynol Pol. 2020;71:545&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">33378070</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuttle KR, Agarwal R, Alpers CE, et al. . Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248&#x2013;60.</Citation><ArticleIdList><ArticleId IdType="pubmed">35661785</ArticleId></ArticleIdList></Reference><Reference><Citation>Watanabe K, Sato E, Mishima E, Miyazaki M, Tanaka T. What&#x2019;s new in the molecular mechanisms of diabetic kidney disease: recent advances. Int J Mol Sci. 2022;24:570.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9820354</ArticleId><ArticleId IdType="pubmed">36614011</ArticleId></ArticleIdList></Reference><Reference><Citation>Order SE. Beneficial and detrimental effects of therapy on immunity in breast cancer. Int J Radiat Oncol Biol Phys. 1977;2:377&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">863770</ArticleId></ArticleIdList></Reference><Reference><Citation>Sauriasari R, Safitri DD, Azmi NU. Current updates on protein as biomarkers for diabetic kidney disease: a systematic review. Ther Adv Endocrinol Metab. 2021;12:20420188211049612.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8554552</ArticleId><ArticleId IdType="pubmed">34721837</ArticleId></ArticleIdList></Reference><Reference><Citation>Roointan A, Gheisari Y, Hudkins KL, Gholaminejad A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis. 2021;31:2253&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">34059383</ArticleId></ArticleIdList></Reference><Reference><Citation>Dong X, Xie Y, Xu J, et al. . Global historical retrospect and future prospects on biomarkers of heart failure: a bibliometric analysis and science mapping. Heliyon. 2023;9:e13509.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9942007</ArticleId><ArticleId IdType="pubmed">36825183</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Hu L, Liao S, et al. . Bibliometric analysis of publications on enthesitis in spondyloarthritis in 2012-2021 based on web of science core collection databases. Rheumatol Int. 2023;43:173&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pubmed">36464747</ArticleId></ArticleIdList></Reference><Reference><Citation>van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2883932</ArticleId><ArticleId IdType="pubmed">20585380</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA. 2004;101 Suppl 1(Suppl 1):5303&#x2013;10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC387312</ArticleId><ArticleId IdType="pubmed">14724295</ArticleId></ArticleIdList></Reference><Reference><Citation>Desai N, Veras L, Gosain A. Using Bradford&#x2019;s law of scattering to identify the core journals of pediatric surgery. J Surg Res. 2018;229:90&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">29937022</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx W, Bornmann L, Barth A, Leydesdorff L. Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). J Assoc Inf Sci Tech. 2014;65:751&#x2013;64.</Citation></Reference><Reference><Citation>Aronson JK, Ferner RE. Biomarkers-a general review. Curr Protoc Pharmacol. 2017;76:9.23.1&#x2013;9.23.17.</Citation><ArticleIdList><ArticleId IdType="pubmed">28306150</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhong VW, Yu D, Zhao L, et al. . Achievement of guideline-recommended targets in diabetes care in China: a nationwide cross-sectional study. Ann Intern Med. 2023;176:1037&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">37523704</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7567026</ArticleId><ArticleId IdType="pubmed">33069326</ArticleId></ArticleIdList></Reference><Reference><Citation>Crick F. Central dogma of molecular biology. Nature. 1970;227:561&#x2013;3.</Citation><ArticleIdList><ArticleId IdType="pubmed">4913914</ArticleId></ArticleIdList></Reference><Reference><Citation>Wada J, Makino H, Kanwar YS. Gene expression and identification of gene therapy targets in diabetic nephropathy. Kidney Int. 2002;61(1 Suppl):S73&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">11841617</ArticleId></ArticleIdList></Reference><Reference><Citation>Hohenadel D, van der Woude FJ. Gene expression in diabetic nephropathy. Curr Diab Rep. 2004;4:462&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">15539012</ArticleId></ArticleIdList></Reference><Reference><Citation>Hostetter TH. Diabetic nephropathy. Metabolic versus hemodynamic considerations. Diabetes Care. 1992;15:1205&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pubmed">1396017</ArticleId></ArticleIdList></Reference><Reference><Citation>Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33:363&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6430926</ArticleId><ArticleId IdType="pubmed">30806496</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">11342793</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol. 2023;14:1194738.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10410279</ArticleId><ArticleId IdType="pubmed">37564641</ArticleId></ArticleIdList></Reference><Reference><Citation>Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci . 2020;21:2806.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7215738</ArticleId><ArticleId IdType="pubmed">32316547</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakagawa T, Tanabe K, Croker BP, et al. . Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011;7:36&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3653134</ArticleId><ArticleId IdType="pubmed">21045790</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol. 2011;7:176&#x2013;84.</Citation><ArticleIdList><ArticleId IdType="pubmed">21151200</ArticleId></ArticleIdList></Reference><Reference><Citation>Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 2007;71:846&#x2013;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">17342177</ArticleId></ArticleIdList></Reference><Reference><Citation>Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol. 2017;312:F716&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6109808</ArticleId><ArticleId IdType="pubmed">27558558</ArticleId></ArticleIdList></Reference><Reference><Citation>Hojs R, Ekart R, Bevc S, Hojs N. Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients. Nephron. 2016;133:159&#x2013;62.</Citation><ArticleIdList><ArticleId IdType="pubmed">27344598</ArticleId></ArticleIdList></Reference><Reference><Citation>Viberti GC, Jarrett RJ, Keen H. Microalbuminuria as predictor of nephropathy in diabetics. Lancet. 1982;2:611.</Citation><ArticleIdList><ArticleId IdType="pubmed">6125757</ArticleId></ArticleIdList></Reference><Reference><Citation>Mogensen CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int. 1987;31:673&#x2013;89.</Citation><ArticleIdList><ArticleId IdType="pubmed">3550239</ArticleId></ArticleIdList></Reference><Reference><Citation>Jones RH, Hayakawa H, Mackay JD, Parsons V, Watkins PJ. Progression of diabetic nephropathy. Lancet. 1979;1:1105&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">86831</ArticleId></ArticleIdList></Reference><Reference><Citation>Rossing P, Caramori ML, Chan JCN, et al. . Executive summary of the KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease: an update based on rapidly emerging new evidence. Kidney Int. 2022;102:990&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">36272755</ArticleId></ArticleIdList></Reference><Reference><Citation>Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3725722</ArticleId><ArticleId IdType="pubmed">19847154</ArticleId></ArticleIdList></Reference><Reference><Citation>Krolewski AS, Niewczas MA, Skupien J, et al. . Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37:226&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3867993</ArticleId><ArticleId IdType="pubmed">23939543</ArticleId></ArticleIdList></Reference><Reference><Citation>Skupien J, Warram JH, Smiles AM, et al. . The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end-stage renal disease. Kidney Int. 2012;82:589&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3425658</ArticleId><ArticleId IdType="pubmed">22622493</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SS, Song SH, Kim IJ, et al. . Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36:656&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3579333</ArticleId><ArticleId IdType="pubmed">23093662</ArticleId></ArticleIdList></Reference><Reference><Citation>Feng BY, Lu Y, Ye L, Yin LJ, Zhou YJ, Chen AQ. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol. 2022;13:1043174.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9724588</ArticleId><ArticleId IdType="pubmed">36482996</ArticleId></ArticleIdList></Reference><Reference><Citation>Krolewski AS, Warram JH, Forsblom C, et al. . Serum concentration of cystatin c and risk of end-stage renal disease in diabetes. Diabetes Care. 2012;35:2311&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3476893</ArticleId><ArticleId IdType="pubmed">22851596</ArticleId></ArticleIdList></Reference><Reference><Citation>Nielsen SE, Schjoedt KJ, Astrup AS, et al. . Neutrophil Gelatinase-Associated Lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabetic Med. 2010;27:1144&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">20854382</ArticleId></ArticleIdList></Reference><Reference><Citation>Pavkov ME, Weil EJ, Fufaa GD, et al. . Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 2016;89:226&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4805514</ArticleId><ArticleId IdType="pubmed">26398493</ArticleId></ArticleIdList></Reference><Reference><Citation>Roy MS, Janal MN, Crosby J, Donnelly R. Markers of endothelial dysfunction and inflammation predict progression of diabetic nephropathy in African Americans with type 1 diabetes. Kidney Int. 2015;87:427&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4263810</ArticleId><ArticleId IdType="pubmed">24918153</ArticleId></ArticleIdList></Reference><Reference><Citation>Scurt FG, Menne J, Brandt S, et al. . Monocyte chemoattractant protein-1 predicts the development of diabetic nephropathy. Diabetes-Metab Res Rev. 2022;38:e3497.</Citation><ArticleIdList><ArticleId IdType="pubmed">34541760</ArticleId></ArticleIdList></Reference><Reference><Citation>Panduru NM, Forsblom C, Saraheimo M, et al. .; FinnDiane Study Group. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2013;36:2077&#x2013;83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3687279</ArticleId><ArticleId IdType="pubmed">23378622</ArticleId></ArticleIdList></Reference><Reference><Citation>Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. . Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011;34:691&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3041209</ArticleId><ArticleId IdType="pubmed">21273494</ArticleId></ArticleIdList></Reference><Reference><Citation>Jian WX, Peng WH, Jin J, et al. . Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metab Clin Exp. 2012;61:853&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">22136913</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu L, Li XQ, Chang DY, et al. . Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant. 2020;35:291&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">30357416</ArticleId></ArticleIdList></Reference><Reference><Citation>Carranza K, Veron D, Cercado A, et al. . Cellular and molecular aspects of diabetic nephropathy and the role of VEGF-A. Nefrologia. 2015;35:131&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">26300505</ArticleId></ArticleIdList></Reference><Reference><Citation>Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care. 2010;33:1567&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2890360</ArticleId><ArticleId IdType="pubmed">20357380</ArticleId></ArticleIdList></Reference><Reference><Citation>Sinha N, Kumar V, Puri V, et al. . Urinary exosomes: potential biomarkers for diabetic nephropathy. Nephrology (Carlton). 2020;25:881&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">32323449</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu YF, Liu DW, Feng Q, Liu ZS. Diabetic nephropathy: perspective on extracellular vesicles. Front Immunol. 2020;11:943.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7283536</ArticleId><ArticleId IdType="pubmed">32582146</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen JF, Zhang Q, Liu DW, Liu ZS. Exosomes: advances, development and potential therapeutic strategies in diabetic nephropathy. Metab Clin Exp. 2021;122:154834.</Citation><ArticleIdList><ArticleId IdType="pubmed">34217734</ArticleId></ArticleIdList></Reference><Reference><Citation>Liao WL, Chang CT, Chen CC, et al. . Urinary proteomics for the early diagnosis of diabetic nephropathy in Taiwanese patients. J Clin Med. 2018;7:483.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6306863</ArticleId><ArticleId IdType="pubmed">30486327</ArticleId></ArticleIdList></Reference><Reference><Citation>Z&#xfc;rbig P, Jerums G, Hovind P, et al. . Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304&#x2013;13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3501878</ArticleId><ArticleId IdType="pubmed">22872235</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang YM, Zhang SW, Wang GX. Metabolomic biomarkers in diabetic kidney diseases-a systematic review. J Diabetes Complications. 2015;29:1345&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26253264</ArticleId></ArticleIdList></Reference><Reference><Citation>Szostak J, Goracy A, Durys D, Dec P, Modrzejewski A, Pawlik A. The role of MicroRNA in the pathogenesis of diabetic nephropathy. Int J Mol Sci. 2023;24:6214.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10094215</ArticleId><ArticleId IdType="pubmed">37047185</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewanjee S, Bhattacharjee N. MicroRNA: a new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol. 2018;155:32&#x2013;47.</Citation><ArticleIdList><ArticleId IdType="pubmed">29940170</ArticleId></ArticleIdList></Reference><Reference><Citation>Lei L, Bai YH, Li YL, Wang JP. Association of the expression pattern and functions of long non-coding RNA with the progression of diabetic nephropathy. Asian J Surg. 2022;45:2752&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">35718604</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612259</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2376-1032</ISSN><JournalIssue CitedMedium="Internet"><Volume>30</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of managed care &amp; specialty pharmacy</Title><ISOAbbreviation>J Manag Care Spec Pharm</ISOAbbreviation></Journal><ArticleTitle>Area deprivation index impact on type 2 diabetes outcomes in a regional health plan.</ArticleTitle><Pagination><StartPage>1375</StartPage><EndPage>1384</EndPage><MedlinePgn>1375-1384</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.18553/jmcp.2024.30.12.1375</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Rates of attainment of high-quality diabetes care have been shown to be lower for those living in more disadvantaged and rural areas. Diabetes management relies on access to care and is impacted by physical, social, and economic factors. Area deprivation index (ADI) is one way to quantify geographic disparities in aggregate. We aimed to investigate how ADI impacts outcomes in members with type 2 diabetes enrolled in a large, regional health plan.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To evalute clinical and economic objectives. Clinical objectives included the percentage of members who achieved hemoglobin A1c (A1c) goal level of 7% or less, the percentage of members who received comorbidity-focused therapies, noninsulin diabetes medication adherence, and the frequency and type of health care services used. Economic outcomes included per member per month differences in total cost of care, pharmacy cost, medical cost, and diabetes-associated cost.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">This retrospective review of pharmacy and medical claims included 8,814 adult members with newly diagnosed type 2 diabetes enrolled in an integrated health plan during calendar year 2021. To be included, members were required to be at least 18 years of age, reside in Pennsylvania, and have continuous enrollment for 2 years prior to type 2 diabetes diagnosis. State-level ADI data were derived for each member and applied to the Census block group on file in the administrative claims data. The study population deciles were grouped into ADI quintiles for analysis. Multivariable regression models and descriptive statistics were used to evaluate the association between ADI and outcomes while controlling for confounding variables.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">There were no statistically significant differences between any ADI quintile for achievement of A1c goal or receipt of comorbidity-focused therapy. Significant differences were identified between ADI quintiles 1 (least deprived) and 5 (most deprived) for obtainment of at least 1 A1c test during calendar year 2021 (72% vs 56%, <i>P</i> &lt; 0.01) and adherence to noninsulin diabetes medications (70% vs 62%, <i>P</i> &lt; 0.01). Significant differences were also identified for all-cause inpatient, outpatient, and unplanned health care service utilization. The difference in per member per month all-cause total cost of care was on average $363.50 less for those living in ADI quintile 1 vs those in quintile 5 (<i>P</i> &lt; 0.01).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Significant differences were identified between ADI quintiles 1 and 5 for noninsulin diabetes medication adherence, frequency of A1c test claims, all-cause health care service utilization, and total cost of care. There were no statistically significant differences between ADI quintiles for achievement of A1c goal or receipt of comorbidity-focused therapies.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Laffey</LastName><ForeName>Taylor N</ForeName><Initials>TN</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marr</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Modany</LastName><ForeName>Ashley</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McGraw</LastName><ForeName>Molly</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mounarath</LastName><ForeName>Tavvy</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bryk</LastName><ForeName>Andrew</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Christian</LastName><ForeName>Nicholas</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Good</LastName><ForeName>Chester</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Manag Care Spec Pharm</MedlineTA><NlmUniqueID>101644425</NlmUniqueID><ISSNLinking>2376-0540</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055118" MajorTopicYN="N">Medication Adherence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010414" MajorTopicYN="N" Type="Geographic">Pennsylvania</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012041" MajorTopicYN="N">Regional Medical Programs</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017048" MajorTopicYN="N">Health Care Costs</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612259</ArticleId><ArticleId IdType="pmc">PMC11607216</ArticleId><ArticleId IdType="doi">10.18553/jmcp.2024.30.12.1375</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Centers for Disease Control and Prevention. National Diabetes Statistics Report website. Accessed July 9, 2023. https://www.cdc.gov/diabetes/php/data-research/?CDC_AAref_Val=https://www.cdc.gov/diabetes/data/statistics-report/index.html</Citation></Reference><Reference><Citation>Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. U.S. Dept of Health and Human Services. 2020. Accessed July 9, 2023. https://diabetesresearch.org/wp-content/uploads/2022/05/national-diabetes-statistics-report-2020.pdf</Citation></Reference><Reference><Citation>Kurani SS, Lampman MA, Funni SA, et al.. Association between area-level socioeconomic deprivation and diabetes care quality in US primary care practices. JAMA Netw Open. 2021;4(12):e2138438. doi:10.1001/jamanetworkopen.2021.38438</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8717098</ArticleId><ArticleId IdType="pubmed">34964856</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurani SS, Heien HC, Sangaralingham LR, et al.. Association of area-level socioeconomic deprivation with hypoglycemic and hyperglycemic crises in US adults with diabetes. JAMA Netw Open. 2022;5(1):e2143597. doi:10.1001/jamanetworkopen.2021.43597</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8767428</ArticleId><ArticleId IdType="pubmed">35040969</ArticleId></ArticleIdList></Reference><Reference><Citation>Center for Health Disparities Research, University of Wisconsin School of Medicine and Public Health. Neighborhood Atlas&#xae;. Accessed December 15, 2023. http://www.neighborhoodatlas.medicine.wisc.edu</Citation></Reference><Reference><Citation>Eberly LA, Yang L, Eneanya ND, et al.. Association of race/ethnicity, gender, and socioeconomic status with sodium-glucose cotransporter 2 inhibitor use among patients with diabetes in the US. JAMA Netw Open. 2021;4(4):e216139. doi:10.1001/jamanetworkopen.2021.6139</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8050743</ArticleId><ArticleId IdType="pubmed">33856475</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmer SC, Tendal B, Mustafa RA, et al.. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;372:m4573. doi:10.1136/bmj.m4573</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7804890</ArticleId><ArticleId IdType="pubmed">33441402</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes &#x2013; 2021. Diabetes Care. 2021;(44)(suppl 1):S111-24.</Citation><ArticleIdList><ArticleId IdType="pubmed">33298420</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, et al.; American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2023. Diabetes Care. 2023;46(suppl 1):S140-57. doi:10.2337/dc23-S009</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810476</ArticleId><ArticleId IdType="pubmed">36507650</ArticleId></ArticleIdList></Reference><Reference><Citation>Omole TD, Zhu J, Garrard W, et al.. Area deprivation index and oral anticoagulation in new onset atrial fibrillation. Am J Prev Cardiol. 2022;10:100346. doi:10.1016/j.ajpc.2022.100346</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9066349</ArticleId><ArticleId IdType="pubmed">35517873</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, et al.; American Diabetes Association. 6. Glycemic targets: Standards of Medical Care in Diabetes-2023. Diabetes Care. 2023;46(suppl 1): S97-110. doi:10.2337/dc23-S006</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810469</ArticleId><ArticleId IdType="pubmed">36507646</ArticleId></ArticleIdList></Reference><Reference><Citation>Towne SD, Bolin J, Ferdinand A, Nicklett EJ, Smith ML, Ory MG. Assessing diabetes and factors associated with foregoing medical care among persons with diabetes: Disparities facing American Indian/Alaska native, Black, Hispanic, low income, and Southern adults in the U.S. (2011-2015). Int J Environ Res Public Health. 2017;14(5):464. doi:10.3390/ijerph14050464</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5451915</ArticleId><ArticleId IdType="pubmed">28445431</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilder ME, Kulie P, Jensen C, et al.. The impact of social determinants of health on medication adherence: A systematic review and meta-analysis. J Gen Intern Med. 2021;36(5):1359-70. doi:10.1007/s11606-020-06447-0</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8131473</ArticleId><ArticleId IdType="pubmed">33515188</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization. Adherence to Long-Term Therapies: Evidence for Action. World Health Organization; 2003. Accessed March 3, 2024. https://iris.who.int/handle/10665/42682</Citation></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, et al.. Social determinants of health and diabetes: A scientific review. Diabetes Care. 2020;44(1):258-79. doi:10.2337/dci20-0053</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Apperley LJ, Ng SM. Socioeconomic deprivation, household education, and employment are associated with increased hospital admissions and poor glycemic control in children with type 1 diabetes mellitus. Rev Diabet Stud. 2017;14(2-3):295-300. doi:10.1900/RDS.2017.14.295</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6115008</ArticleId><ArticleId IdType="pubmed">29145539</ArticleId></ArticleIdList></Reference><Reference><Citation>Collins PF, Stratton RJ, Kurukulaaratchy RJ, Elia M. Influence of deprivation on health care use, health care costs, and mortality in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1289-96. doi:10.2147/COPD.S157594</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5914553</ArticleId><ArticleId IdType="pubmed">29719384</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612042</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1522-1709</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Sleep &amp; breathing = Schlaf &amp; Atmung</Title><ISOAbbreviation>Sleep Breath</ISOAbbreviation></Journal><ArticleTitle>The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea.</ArticleTitle><Pagination><StartPage>32</StartPage><MedlinePgn>32</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">32</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11325-024-03221-y</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Obstructive sleep apnea (OSA) is associated with a variety of diseases, including type 2 diabetes (T2D). Chemosensitivity is an important component of the pathophysiological mechanisms of OSA, and it is not only elevated in patients with OSA but also in those with T2D. This study aimed to investigate the association between chemosensitivity and the risk of developing T2D in patients with OSA.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 135 male participants with OSA and without pre-existing T2D were enrolled in this study. Peripheral chemosensitivity was evaluated using the rebreathing test. Data on demographics, polysomnographic parameters, and clinical characteristics were collected. The QDiabetes-2018 risk calculator was employed to calculate the 10-year T2D risk. The association between peripheral chemosensitivity and 10-year T2D risk was examined using multivariate logistic regression.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 64 participants had moderate-to-high 10-year risk of T2D. In the fully adjusted model, participants situated within the second and fifth quantiles of peripheral chemosensitivity levels demonstrated a higher risk of developing T2D, with OR of 4.87 (95% CI, 1.22-19.43) and 5.26 (95% CI, 1.27-21.68) respectively. However, across varying levels of peripheral chemosensitivity, no significant difference in the 10-year T2D risk was observed among different severities of OSA.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Higher peripheral chemosensitivity was associated with an increased 10-year T2D risk, as calculated using a risk calculator based on clinical variables. For outcomes that reflect a moderate-to-high 10-year risk of T2D, the severity of OSA did not significantly affect the risk, irrespective of whether patients exhibited relatively low or high chemosensitivity.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Lixia</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dai</LastName><ForeName>Lu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Xiaona</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Junwei</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Rong</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiao</LastName><ForeName>Yi</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0000-0001-5315-7771</Identifier><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China. xiaoyipumch@sina.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>82370052</GrantID><Agency>the National Natural Science Foundation of China</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Sleep Breath</MedlineTA><NlmUniqueID>9804161</NlmUniqueID><ISSNLinking>1520-9512</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020181" MajorTopicYN="Y">Sleep Apnea, Obstructive</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017286" MajorTopicYN="N">Polysomnography</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Hypercapnic ventilatory response</Keyword><Keyword MajorTopicYN="N">Obstructive sleep apnea</Keyword><Keyword MajorTopicYN="N">Peripheral chemosensitivity</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declarations. Ethical approval: The study was approved by the ethics committees of Peking Union Medical College (JS-3573) and was conducted in accordance with the Declaration of Helsinki. Informed consent: Written informed consent was obtained from all participants. Conflict of interest: Dr Xiaona Wang reports a patent for a device for measuring ventilatory control based on hypercapnic ventilatory response issued to ZL 2021 2 1127108.9. There were no financial or other relationships might lead to a conflict of interest in the present article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>17</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612042</ArticleId><ArticleId IdType="pmc">PMC11607132</ArticleId><ArticleId IdType="doi">10.1007/s11325-024-03221-y</ArticleId><ArticleId IdType="pii">10.1007/s11325-024-03221-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7:687&#x2013;698. 10.1016/s2213-2600(19)30198-5</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7007763</ArticleId><ArticleId IdType="pubmed">31300334</ArticleId></ArticleIdList></Reference><Reference><Citation>Deacon NL, Catcheside PG (2015) The role of high loop gain induced by intermittent hypoxia in the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 22:3&#x2013;14. 10.1016/j.smrv.2014.10.003</Citation><ArticleIdList><ArticleId IdType="pubmed">25454671</ArticleId></ArticleIdList></Reference><Reference><Citation>Ward DS, Voter WA, Karan S (2007) The effects of hypo- and hyperglycaemia on the hypoxic ventilatory response in humans. J Physiol 582:859&#x2013;869. 10.1113/jphysiol.2007.130112</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2075331</ArticleId><ArticleId IdType="pubmed">17478538</ArticleId></ArticleIdList></Reference><Reference><Citation>Eckert DJ, White DP, Jordan AS et al (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188:996&#x2013;1004. 10.1164/rccm.201303-0448OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3826282</ArticleId><ArticleId IdType="pubmed">23721582</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmickl CN, Orr JE, Kim P et al Point-of-care prediction model of loop gain in patients with obstructive sleep apnea: development and validation. BMC Pulmonary Med 2022, 22:158. 10.1186/s12890-022-01950-y</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9036750</ArticleId><ArticleId IdType="pubmed">35468829</ArticleId></ArticleIdList></Reference><Reference><Citation>Subramani Y, Singh M, Wong J et al (2017) Understanding phenotypes of obstructive sleep apnea: applications in anesthesia, surgery, and Perioperative Medicine. Anesth Analg 124:179&#x2013;191. 10.1213/ane.0000000000001546</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5429962</ArticleId><ArticleId IdType="pubmed">27861433</ArticleId></ArticleIdList></Reference><Reference><Citation>Dempsey JA, Smith CA, Przybylowski T et al (2004) The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep. J Physiol 560:1&#x2013;11. 10.1113/jphysiol.2004.072371</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1665213</ArticleId><ArticleId IdType="pubmed">15284345</ArticleId></ArticleIdList></Reference><Reference><Citation>Gloyn AL, Drucker DJ (2018) Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol 6:891&#x2013;900. 10.1016/s2213-8587(18)30052-4</Citation><ArticleIdList><ArticleId IdType="pubmed">29699867</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim NH, Cho NH, Yun CH et al (2013) Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care 36:3909&#x2013;3915. 10.2337/dc13-0375</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3836097</ArticleId><ArticleId IdType="pubmed">24101695</ArticleId></ArticleIdList></Reference><Reference><Citation>Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: a state of the Art Review. Chest 152:1070&#x2013;1086. 10.1016/j.chest.2017.05.009</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5812754</ArticleId><ArticleId IdType="pubmed">28527878</ArticleId></ArticleIdList></Reference><Reference><Citation>Fredheim JM, Rollheim J, Omland T et al (2011) Type 2 diabetes and pre-diabetes are associated with obstructive sleep apnea in extremely obese subjects: a cross-sectional study. Cardiovasc Diabetol 10:84. 10.1186/1475-2840-10-84</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3206416</ArticleId><ArticleId IdType="pubmed">21943153</ArticleId></ArticleIdList></Reference><Reference><Citation>Cunha-Guimaraes JP, Guarino MP, Tim&#xf3;teo AT et al (2020) Carotid body chemosensitivity: early biomarker of dysmetabolism in humans. Eur J Endocrinol 182:549&#x2013;557. 10.1530/eje-19-0976</Citation><ArticleIdList><ArticleId IdType="pubmed">32213652</ArticleId></ArticleIdList></Reference><Reference><Citation>Ribeiro MJ, Sacramento JF, Gonzalez C et al (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62:2905&#x2013;2916. 10.2337/db12-1463</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3717872</ArticleId><ArticleId IdType="pubmed">23530003</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang M, Buttigieg J, Nurse CA (2007) Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 578:735&#x2013;750. 10.1113/jphysiol.2006.121871</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2151341</ArticleId><ArticleId IdType="pubmed">17124268</ArticleId></ArticleIdList></Reference><Reference><Citation>Conde SV, Sacramento JF, Guarino MP (2018) Carotid body: a metabolic sensor implicated in insulin resistance. Physiol Genomics 50:208&#x2013;214. 10.1152/physiolgenomics.00121.2017</Citation><ArticleIdList><ArticleId IdType="pubmed">29373079</ArticleId></ArticleIdList></Reference><Reference><Citation>Conde SV, Obeso A, Gonzalez C (2007) Low glucose effects on rat carotid body chemoreceptor cells&#x2019; secretory responses and action potential frequency in the carotid sinus nerve. J Physiol 585:721&#x2013;730. 10.1113/jphysiol.2007.144261</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2375508</ArticleId><ArticleId IdType="pubmed">17947309</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen L, Magliano DJ, Balkau B et al (2010) AUSDRISK: an Australian type 2 diabetes risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust 192:197&#x2013;202. 10.5694/j.1326-5377.2010.tb03507.x</Citation><ArticleIdList><ArticleId IdType="pubmed">20170456</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmidt MI, Duncan BB, Bang H et al (2005) Identifying individuals at high risk for diabetes: the atherosclerosis risk in communities study. Diabetes Care 28:2013&#x2013;2018. 10.2337/diacare.28.8.2013</Citation><ArticleIdList><ArticleId IdType="pubmed">16043747</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosella LC, Manuel DG, Burchill C et al (2011) A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health 65:613&#x2013;620. 10.1136/jech.2009.102244</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3112365</ArticleId><ArticleId IdType="pubmed">20515896</ArticleId></ArticleIdList></Reference><Reference><Citation>Hippisley-Cox J, Coupland C (2017) Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ 359:j5019. 10.1136/bmj.j5019</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5694979</ArticleId><ArticleId IdType="pubmed">29158232</ArticleId></ArticleIdList></Reference><Reference><Citation>Kengne AP, Beulens JW, Peelen LM et al (2014) Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2:19&#x2013;29. 10.1016/s2213-8587(13)70103-7</Citation><ArticleIdList><ArticleId IdType="pubmed">24622666</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathur R, Noble D, Smith D et al (2012) Quantifying the risk of type 2 diabetes in East London using the QDScore: a cross-sectional analysis. Br J Gen Pract 62:e663&#x2013;670. 10.3399/bjgp12X656793</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3459773</ArticleId><ArticleId IdType="pubmed">23265225</ArticleId></ArticleIdList></Reference><Reference><Citation>Iber C (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. No Title)</Citation></Reference><Reference><Citation>Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146:1387&#x2013;1394. 10.1378/chest.14-0970</Citation><ArticleIdList><ArticleId IdType="pubmed">25367475</ArticleId></ArticleIdList></Reference><Reference><Citation>Edwards BA, Eckert DJ, McSharry DG et al (2014) Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med 190:1293&#x2013;1300. 10.1164/rccm.201404-0718OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4315811</ArticleId><ArticleId IdType="pubmed">25321848</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhai Y, Zhao WH, Chen CM (2010) Verification on the cut-offs of waist circumference for defining central obesity in Chinese elderly and tall adults. Zhonghua Liu Xing Bing Xue Za Zhi 31:621&#x2013;625</Citation><ArticleIdList><ArticleId IdType="pubmed">21163090</ArticleId></ArticleIdList></Reference><Reference><Citation>Coutinho Costa J, Rebelo-Marques A, Machado JN et al (2019) Validation of NoSAS (Neck, obesity, snoring, age, sex) score as a screening tool for obstructive sleep apnea: analysis in a sleep clinic. Pulmonology 25:263&#x2013;270. 10.1016/j.pulmoe.2019.04.004</Citation><ArticleIdList><ArticleId IdType="pubmed">31196834</ArticleId></ArticleIdList></Reference><Reference><Citation>Powell FL (2012) Measuring the respiratory chemoreflexes in humans by J. Duffin. Respir Physiol Neurobiol 181:44&#x2013;45. 10.1016/j.resp.2012.01.007</Citation><ArticleIdList><ArticleId IdType="pubmed">22306918</ArticleId></ArticleIdList></Reference><Reference><Citation>Dai L, Guo J, Hui X et al (2024) The potential interaction between chemosensitivity and the development of cardiovascular disease in obstructive sleep apnea. Sleep Med 114:266&#x2013;271. 10.1016/j.sleep.2024.01.010</Citation><ArticleIdList><ArticleId IdType="pubmed">38244464</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu PH, Hui CKM, Lui MMS et al (2019) Incident Type 2 diabetes in OSA and Effect of CPAP Treatment: a retrospective clinic Cohort Study. Chest 156:743&#x2013;753. 10.1016/j.chest.2019.04.130</Citation><ArticleIdList><ArticleId IdType="pubmed">31128116</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamura A, Kawano Y, Watanabe T et al (2008) Relationship between the severity of obstructive sleep apnea and impaired glucose metabolism in patients with obstructive sleep apnea. Respir Med 102:1412&#x2013;1416. 10.1016/j.rmed.2008.04.020</Citation><ArticleIdList><ArticleId IdType="pubmed">18606532</ArticleId></ArticleIdList></Reference><Reference><Citation>Baby SM, Zaidi F, Hunsberger GE et al (2023) Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs. Exp Physiol 108:280&#x2013;295. 10.1113/ep090584</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10103873</ArticleId><ArticleId IdType="pubmed">36459572</ArticleId></ArticleIdList></Reference><Reference><Citation>de Ara&#xfa;jo EV, Guimar&#xe3;es KSL, Magnani M et al (2019) Maternal dyslipidemia during pregnancy and lactation increases blood pressure and disrupts cardiorespiratory and glucose hemostasis in female rat offspring. Appl Physiol Nutr Metab 44:925&#x2013;936. 10.1139/apnm-2018-0756</Citation><ArticleIdList><ArticleId IdType="pubmed">30649894</ArticleId></ArticleIdList></Reference><Reference><Citation>Hruby A, Guasch-Ferr&#xe9; M, Bhupathiraju SN et al (2017) Magnesium intake, quality of Carbohydrates, and risk of type 2 diabetes: results from three U.S. cohorts. Diabetes Care 40:1695&#x2013;1702. 10.2337/dc17-1143</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5711333</ArticleId><ArticleId IdType="pubmed">28978672</ArticleId></ArticleIdList></Reference><Reference><Citation>Langenberg C, Lotta LA (2018) Genomic insights into the causes of type 2 diabetes. Lancet 391:2463&#x2013;2474. 10.1016/s0140-6736(18)31132-2</Citation><ArticleIdList><ArticleId IdType="pubmed">29916387</ArticleId></ArticleIdList></Reference><Reference><Citation>Samson P, Casey KR, Knepler J et al (2012) Clinical characteristics, comorbidities, and response to treatment of veterans with obstructive sleep apnea, Cincinnati Veterans Affairs Medical Center, 2005&#x2013;2007. Prev Chronic Dis 9:E46. 10.5888/pcd9.110117</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3337849</ArticleId><ArticleId IdType="pubmed">22280961</ArticleId></ArticleIdList></Reference><Reference><Citation>Ronksley PE, Hemmelgarn BR, Heitman SJ et al (2009) Obstructive sleep apnoea is associated with diabetes in sleepy subjects. Thorax 64:834&#x2013;839. 10.1136/thx.2009.115105</Citation><ArticleIdList><ArticleId IdType="pubmed">19679579</ArticleId></ArticleIdList></Reference><Reference><Citation>Reichmuth KJ, Austin D, Skatrud JB et al (2005) Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med 172:1590&#x2013;1595. 10.1164/rccm.200504-637OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2718458</ArticleId><ArticleId IdType="pubmed">16192452</ArticleId></ArticleIdList></Reference><Reference><Citation>Marshall NS, Wong KK, Phillips CL et al (2009) Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med 5:15&#x2013;20</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2637161</ArticleId><ArticleId IdType="pubmed">19317376</ArticleId></ArticleIdList></Reference><Reference><Citation>Malhotra A, Ayappa I, Ayas N et al (2021) Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep 44. 10.1093/sleep/zsab030</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8271129</ArticleId><ArticleId IdType="pubmed">33693939</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas A, Belaidi E, Moulin S et al (2017) Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK. Diabetes 66:2942&#x2013;2951. 10.2337/db17-0186</Citation><ArticleIdList><ArticleId IdType="pubmed">28882901</ArticleId></ArticleIdList></Reference><Reference><Citation>Behrendt T, Bielitzki R, Behrens M et al (2022) Effects of intermittent hypoxia-hyperoxia on performance- and health-related outcomes in humans: a systematic review. Sports Med Open 8:70. 10.1186/s40798-022-00450-x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9156652</ArticleId><ArticleId IdType="pubmed">35639211</ArticleId></ArticleIdList></Reference><Reference><Citation>Celen YT, Hedner J, Carlson J et al (2010) Impact of gender on incident diabetes mellitus in obstructive sleep apnea: a 16-year follow-up. J Clin Sleep Med 6:244&#x2013;250</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2883035</ArticleId><ArticleId IdType="pubmed">20572417</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612019</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1522-1709</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Sleep &amp; breathing = Schlaf &amp; Atmung</Title><ISOAbbreviation>Sleep Breath</ISOAbbreviation></Journal><ArticleTitle>The effect of physical activity on sleep quality in people with diabetes: systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>23</StartPage><MedlinePgn>23</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11325-024-03176-0</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">To revise and critically summarize the available scientific evidence regarding the effect of exercise on sleep quality in people with diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Three electronic databases (MEDLINE/PubMed, PEDro Database and Scopus) were searched systematically from their inception until February 2024. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database and Quality Assessment Tool for Before-After Studies with No Control Group scales.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 7 randomized controlled trials and 3 single-arm studies were included. Most of the studies included patients with type 2 diabetes (n&#x2009;=&#x2009;8). Self-reported sleep quality (n&#x2009;=&#x2009;9) and objective sleep status (n&#x2009;=&#x2009;1) were the main outcomes analysed. A variety of training programs were assessed over durations ranging from 4 to 16 weeks in the studies included. Data from eleven interventions demonstrated a significant improvement in self-reported sleep quality among patients with type 2 diabetes (Hedges' g -1.45; 95% CI -2.6; -0.29, p&#x2009;=&#x2009;0.005). However, data synthesis indicated that participants who exercised did not obtain significant improvements on their self-reported sleep quality compared to those in the control groups (Hedges' g 1.40; 95% CI -1.36; 4.18, p&#x2009;=&#x2009;0.111).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Preliminary evidence suggests that exercise can be prescribed to manage self-reported sleep quality in this population, although its effects may not surpass those of usual care.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Gonz&#xe1;lez-Devesa</LastName><ForeName>Daniel</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0001-6254-6461</Identifier><AffiliationInfo><Affiliation>Facultad de Humanidades y Educaci&#xf3;n, Universidad Cat&#xf3;lica de &#xc1;vila, C/ Canteros, &#xc1;vila, 05005, Espa&#xf1;a. danidevesa4@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain. danidevesa4@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sanchez-Lastra</LastName><ForeName>Miguel Adriano</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>P&#xe9;rez-Fern&#xe1;ndez</LastName><ForeName>Pedro</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Facultad de Ciencias de la Educaci&#xf3;n y del Deporte, Universidad de Vigo, Pontevedra, 36005, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Diz-G&#xf3;mez</LastName><ForeName>Jos&#xe9; Carlos</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ay&#xe1;n-P&#xe9;rez</LastName><ForeName>Carlos</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Sleep Breath</MedlineTA><NlmUniqueID>9804161</NlmUniqueID><ISSNLinking>1520-9512</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000089943" MajorTopicYN="Y">Sleep Quality</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005081" MajorTopicYN="N">Exercise Therapy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Exercise</Keyword><Keyword MajorTopicYN="N">Health</Keyword><Keyword MajorTopicYN="N">Rehabilitation</Keyword><Keyword MajorTopicYN="N">Sleep</Keyword><Keyword MajorTopicYN="N">Training</Keyword></KeywordList><CoiStatement>Declarations. Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Conflict of interest: All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers&#x2019; bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>16</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612019</ArticleId><ArticleId IdType="doi">10.1007/s11325-024-03176-0</ArticleId><ArticleId IdType="pii">10.1007/s11325-024-03176-0</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Hazen RA, Fehr KK, Fidler A, Cousino MK, MacLeish SA, Gubitosi-Klug R (2015) Sleep disruption in adolescents with type 1 diabetes mellitus: relationships with adherence and diabetes control. Diabetes Manag 5:257&#x2013;265. https://doi.org/10.2217/dmt.15.18</Citation><ArticleIdList><ArticleId IdType="doi">10.2217/dmt.15.18</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu B, Abu Irsheed GM, Martyn-Nemeth P, Reutrakul S (2021) Type 1 diabetes, sleep, and hypoglycemia. Curr Diab Rep 21. https://doi.org/10.1007/s11892-021-01424-1</Citation></Reference><Reference><Citation>Donbalo&#x11f;lu Z, Barsal &#xc7;etiner E, &#x130;nan Y&#xfc;ksel A, Singin B, Ayd&#x131;n Behram B, Bedel A et al (2024) Sleep disturbances in children and adolescents with type 1 diabetes mellitus: prevalence, and relationship with diabetes management. Sleep Med 115:55&#x2013;60. https://doi.org/10.1016/j.sleep.2024.01.031</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2024.01.031</ArticleId><ArticleId IdType="pubmed">38330696</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogilvie RP, Patel SR The epidemiology of Sleep and Diabetes. Curr Diab Rep 2018;18. https://doi.org/10.1007/s11892-018-1055-8</Citation></Reference><Reference><Citation>Henson J, Covenant A, Hall AP, Herring L, Rowlands AV, Yates T et al (2024) Waking up to the importance of Sleep in Type 2 Diabetes Management: a narrative review. Diabetes Care 47:331&#x2013;343. https://doi.org/10.2337/dci23-0037</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci23-0037</ArticleId><ArticleId IdType="pubmed">38394635</ArticleId></ArticleIdList></Reference><Reference><Citation>Alsudairy NM, Kariri AN, Alghamdi OK, Aljohani LMM, Alahmadi SFM, Khalid F et al (2024) Quality of Sleep and its Effect on Glycemic Control. J Adv Zool 45:250&#x2013;256. https://doi.org/10.53555/jaz.v45i1.3127</Citation><ArticleIdList><ArticleId IdType="doi">10.53555/jaz.v45i1.3127</ArticleId></ArticleIdList></Reference><Reference><Citation>Gozashti MH, Eslami N, Radfar MH, Pakmanesh H (2016) Sleep pattern, duration and quality in relation with glycemic control in people with type 2 diabetes mellitus. Iran J Med Sci 41:531&#x2013;538</Citation><ArticleIdList><ArticleId IdType="pubmed">27853334</ArticleId></ArticleIdList></Reference><Reference><Citation>Elsayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) 5. Facilitating Positive Health Behaviors and Well-being to Improve Health outcomes: standards of Care in Diabetes&#x2014;2023. Diabetes Care 46:S68&#x2013;96. https://doi.org/10.2337/dc23-S005</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-S005</ArticleId><ArticleId IdType="pubmed">36507648</ArticleId></ArticleIdList></Reference><Reference><Citation>Perfect MM (2020) Sleep-related disorders in patients with type 1 diabetes mellitus: current insights. Nat Sci Sleep 12:101&#x2013;123. https://doi.org/10.2147/NSS.S152555</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/NSS.S152555</ArticleId><ArticleId IdType="pubmed">32104119</ArticleId><ArticleId IdType="pmc">7023878</ArticleId></ArticleIdList></Reference><Reference><Citation>Smyth A, Jenkins M, Dunham M, Kutzer Y, Taheri S, Whitehead L (2020) Systematic review of clinical practice guidelines to identify recommendations for sleep in type 2 diabetes mellitus management. Diabetes Res Clin Pract 170:108532. https://doi.org/10.1016/j.diabres.2020.108532</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108532</ArticleId><ArticleId IdType="pubmed">33157114</ArticleId></ArticleIdList></Reference><Reference><Citation>Chennaoui M, Arnal PJ, Sauvet F, L&#xe9;ger D (2015) Sleep and exercise: a reciprocal issue? Sleep Med Rev 20:59&#x2013;72. https://doi.org/10.1016/j.smrv.2014.06.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2014.06.008</ArticleId><ArticleId IdType="pubmed">25127157</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelley GA, Kelley KS (2017) Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med 10:26&#x2013;36. https://doi.org/10.1111/jebm.12236</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jebm.12236</ArticleId><ArticleId IdType="pubmed">28276627</ArticleId><ArticleId IdType="pmc">5527334</ArticleId></ArticleIdList></Reference><Reference><Citation>Valera S, Diz JC, Rey-Fern&#xe1;ndez B, Gonz&#xe1;lez-Devesa D, Garc&#xed;a-Fresneda A, Ay&#xe1;n C (2023) Efficacy of physical exercise on sleep quality in patients with chronic kidney disease: a systematic review and meta-analysis. Sleep Breath 28:381&#x2013;392. https://doi.org/10.1007/s11325-023-02891-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11325-023-02891-4</ArticleId><ArticleId IdType="pubmed">37566185</ArticleId></ArticleIdList></Reference><Reference><Citation>R&#xf6;hling M, Herder C, Roden M, Stemper T, M&#xfc;ssig K (2016) Effects of Long-Term Exercise interventions on Glycaemic Control in Type 1 and type 2 diabetes: a systematic review. Exp Clin Endocrinol Diabetes 124:495&#x2013;496. https://doi.org/10.1055/s-0042-106293</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0042-106293</ArticleId></ArticleIdList></Reference><Reference><Citation>Higgins J, Altman D, Sterne J (2017) Assessing risk of bias in included studies. In: Higgins J, Churchill R, Chandler J, Cumpston M, editors. Cochrane Handb. Syst. Rev. Interv. version 5.2.0 (updated June 2017), Cochrane</Citation></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372. https://doi.org/10.1136/bmj.n71</Citation></Reference><Reference><Citation>Gonz&#xe1;lez-Devesa D, Varela S, Diz-G&#xf3;mez JC, Ay&#xe1;n-P&#xe9;rez C (2024) The efficacy of pilates method in patients with hypertension: systematic review and meta-analysis. J Hum Hypertens 38:200&#x2013;211. https://doi.org/10.1038/s41371-024-00899-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41371-024-00899-1</ArticleId><ArticleId IdType="pubmed">38361026</ArticleId></ArticleIdList></Reference><Reference><Citation>Institute National Heart Lung and Blood (2024) Quality assessment tool for before-after (pre&#x2010;post) studies with no control group 2014. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools</Citation></Reference><Reference><Citation>Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods 8:537&#x2013;553. https://doi.org/10.1002/jrsm.1260</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jrsm.1260</ArticleId><ArticleId IdType="pubmed">28801932</ArticleId><ArticleId IdType="pmc">5725669</ArticleId></ArticleIdList></Reference><Reference><Citation>Chitra J, Chhajed P (2024) Comparison of Brain Gym and stretching in type 2 diabetes Mellitus having short sleep duration: a Randomised Clinical Trial. Int Neurourol J 28:188&#x2013;192. https://doi.org/10.5123/inj.2024.1.inj23</Citation><ArticleIdList><ArticleId IdType="doi">10.5123/inj.2024.1.inj23</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh Ni, Pradhan B, Pandey M, Parajuli N, Singh A (2021) Influence of yoga-based program on health satisfaction in the mongoloid patients diagnosed with type 2 diabetes mellitus. Yoga Mimamsa 53:109. https://doi.org/10.4103/ym.ym_111_21</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ym.ym_111_21</ArticleId></ArticleIdList></Reference><Reference><Citation>Alarc&#xf3;n-G&#xf3;mez J, Chulvi-Medrano I, Martin-Rivera F, Calatayud J (2021) Effect of high-intensity interval training on quality of life, sleep quality, exercise motivation and enjoyment in sedentary people with type 1 diabetes mellitus. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph182312612</Citation></Reference><Reference><Citation>Viswanathan V, Sivakumar S, Sai Prathiba A, Devarajan A, George L, Kumpatla S (2021) Effect of yoga intervention on biochemical, oxidative stress markers, inflammatory markers and sleep quality among subjects with type 2 diabetes in South India: results from the SATYAM project. Diabetes Res Clin Pract 172:108644. https://doi.org/10.1016/j.diabres.2020.108644</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108644</ArticleId><ArticleId IdType="pubmed">33359750</ArticleId></ArticleIdList></Reference><Reference><Citation>Delevatti RS, Schuch FB, Kanitz AC, Alberton CL, Marson EC, Lisboa SC et al (2017) Quality of life and sleep quality are similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: a randomized clinical trial. J Sci Med Sport 21:483&#x2013;488. https://doi.org/10.1016/j.jsams.2017.08.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jsams.2017.08.024</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebrahimi M, Guilan-Nejad TN, Pordanjani AF (2017) Effect of yoga and aerobics exercise on sleep quality in women with type 2 diabetes: a randomized controlled trial. Sleep Sci 10:68&#x2013;72. https://doi.org/10.5935/1984-0063.20170012</Citation><ArticleIdList><ArticleId IdType="doi">10.5935/1984-0063.20170012</ArticleId><ArticleId IdType="pubmed">28966742</ArticleId><ArticleId IdType="pmc">5612039</ArticleId></ArticleIdList></Reference><Reference><Citation>Fritz T, Caidahl K, Osler M, &#xd6;stenson CG, Zierath JR, W&#xe4;ndell P (2011) Effects of Nordic walking on health-related quality of life in overweight individuals with Type2 diabetes mellitus, impaired or normal glucose tolerance. Diabet Med 28:1362&#x2013;1372. https://doi.org/10.1111/j.1464-5491.2011.03348.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2011.03348.x</ArticleId><ArticleId IdType="pubmed">21658122</ArticleId><ArticleId IdType="pmc">3229676</ArticleId></ArticleIdList></Reference><Reference><Citation>Yilmaz-Menek M, Budak M (2022) The effect of combination of aerobic and strengthening Exercise on muscle strength, Balance, and Sleep Quality in individuals with type 2 diabetes. Duzce Med J 24:235&#x2013;240. https://doi.org/10.18678/dtfd.1109209</Citation><ArticleIdList><ArticleId IdType="doi">10.18678/dtfd.1109209</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma D, Kaur J, Rani M, Bansal A, Malik M, Kulandaivelan S (2018) Efficacy of Pilates Based Mat Exercise on Quality of Life, Quality of Sleep and satisfaction with life in type 2 diabetes Mellitus. Rom J Diabetes Nutr Metab Dis 25:149&#x2013;156. https://doi.org/10.2478/rjdnmd-2018-0017</Citation><ArticleIdList><ArticleId IdType="doi">10.2478/rjdnmd-2018-0017</ArticleId></ArticleIdList></Reference><Reference><Citation>Reddy R, Youssef J, El, Winters-Stone K, Branigan D, Leitschuh J, Castle J et al (2018) The impact of exercise on sleep in adults with type 1 diabetes. Diabetes Obes Metab 20:443&#x2013;447. https://doi.org/10.1111/dom.13065</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13065</ArticleId><ArticleId IdType="pubmed">28718987</ArticleId></ArticleIdList></Reference><Reference><Citation>Linde K, Scholz M, Melchart D, Willich SN (2002) Should systematic reviews include non-randomized and uncontrolled studies? The case of acupuncture for chronic headache. J Clin Epidemiol 55:77&#x2013;85. https://doi.org/10.1016/S0895-4356(01)00422-X</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0895-4356(01)00422-X</ArticleId><ArticleId IdType="pubmed">11781125</ArticleId></ArticleIdList></Reference><Reference><Citation>Peinemann F, Tushabe DA, Kleijnen J (2013) Using multiple types of studies in systematic reviews of health care interventions - a systematic review. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0085035</Citation></Reference><Reference><Citation>Reutrakul S, Thakkinstian A, Anothaisintawee T, Chontong S, Borel AL, Perfect MM et al (2016) Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep Med 23:26&#x2013;45. https://doi.org/10.1016/j.sleep.2016.03.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2016.03.019</ArticleId><ArticleId IdType="pubmed">27692274</ArticleId><ArticleId IdType="pmc">9554893</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee SWH, Ng KY, Chin WK (2017) The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis. Sleep Med Rev 31:91&#x2013;101. https://doi.org/10.1016/j.smrv.2016.02.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2016.02.001</ArticleId><ArticleId IdType="pubmed">26944909</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaser SS, Foster NC, Nelson BA, Kittelsrud JM, DiMeglio LA, Quinn M et al (2017) Sleep in children with type 1 diabetes and their parents in the T1D Exchange. Sleep Med 39:108&#x2013;115. https://doi.org/10.1016/j.sleep.2017.07.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2017.07.005</ArticleId><ArticleId IdType="pubmed">29157581</ArticleId><ArticleId IdType="pmc">7650845</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang WL, Chen KH, Pan YC, Yang SN, Chan YY (2020) The effect of yoga on sleep quality and insomnia in women with sleep problems: a systematic review and meta-analysis. BMC Psychiatry 20:1&#x2013;19. https://doi.org/10.1186/s12888-020-02566-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12888-020-02566-4</ArticleId><ArticleId IdType="pubmed">31898506</ArticleId><ArticleId IdType="pmc">6939336</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasan F, Tu YK, Lin CM, Chuang LP, Jeng C, Yuliana LT et al (2022) Comparative efficacy of exercise regimens on sleep quality in older adults: a systematic review and network meta-analysis. Sleep Med Rev 65:101673. https://doi.org/10.1016/j.smrv.2022.101673</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2022.101673</ArticleId><ArticleId IdType="pubmed">36087457</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang PY, Ho KH, Chen HC, Chien MY (2012) Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. J Physiother 58:157&#x2013;163. https://doi.org/10.1016/S1836-9553(12)70106-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1836-9553(12)70106-6</ArticleId><ArticleId IdType="pubmed">22884182</ArticleId></ArticleIdList></Reference><Reference><Citation>Est&#xe9;vez-L&#xf3;pez F, Maestre-Cascales C, Russell D, &#xc1;lvarez-Gallardo IC, Rodriguez-Ayllon M, Hughes CM et al (2021) Effectiveness of Exercise on fatigue and Sleep Quality in Fibromyalgia: a systematic review and Meta-analysis of Randomized trials. Arch Phys Med Rehabil 102:752&#x2013;761. https://doi.org/10.1016/j.apmr.2020.06.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apmr.2020.06.019</ArticleId><ArticleId IdType="pubmed">32721388</ArticleId></ArticleIdList></Reference><Reference><Citation>Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y et al (2018) Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ 11:e5172. https://doi.org/10.7717/peerj.5172</Citation><ArticleIdList><ArticleId IdType="doi">10.7717/peerj.5172</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubio-Arias J, Mar&#xed;n-Cascales E, Ramos-Campo DJ, Hernandez AV, P&#xe9;rez-L&#xf3;pez FR (2017) Effect of exercise on sleep quality and insomnia in middle-aged women: a systematic review and meta-analysis of randomized controlled trials. Maturitas 100:49&#x2013;56. https://doi.org/10.1016/j.maturitas.2017.04.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.maturitas.2017.04.003</ArticleId><ArticleId IdType="pubmed">28539176</ArticleId></ArticleIdList></Reference><Reference><Citation>Landry GJ, Best JR, Liu-Ambrose T (2015) Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci 7:1&#x2013;10. https://doi.org/10.3389/fnagi.2015.00166</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnagi.2015.00166</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguayo GA, Pastore J, Backes A, Stranges S, Witte DR, Diederich NJ et al (2022) Objective and subjective sleep measures are associated with HbA1c and insulin sensitivity in the general population: findings from the ORISCAV-LUX-2 study. Diabetes Metab 48:101263. https://doi.org/10.1016/j.diabet.2021.101263</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2021.101263</ArticleId><ArticleId IdType="pubmed">34023494</ArticleId></ArticleIdList></Reference><Reference><Citation>Chrysant SG (2024) Effects of physical activity on sleep quality and wellbeing. Hosp Pract 1&#x2013;6. https://doi.org/10.1080/21548331.2024.2320069</Citation></Reference><Reference><Citation>Mendelson M, Bailly S, Marillier M, Flore P, Borel JC, Vivodtzev I et al (2018) Obstructive sleep apnea syndrome, objectively measured physical activity and exercise training interventions: a systematic review and meta-analysis. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00073</Citation></Reference><Reference><Citation>Stavrou V, Karetsi E, Daniil Z, Gourgoulianis IK (2019) Four weeks exercise in obstructive sleep apnea syndrome patient with type 2 diabetes mellitus and without continuous positive airway pressure treatment: a case report. Sleep Med Res 10:54&#x2013;57. https://doi.org/10.17241/smr.2019.00374</Citation><ArticleIdList><ArticleId IdType="doi">10.17241/smr.2019.00374</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen HH, Xu YM, Wang N, Wang J, Ren L, Chen R (2019) Efficacy of nasal CPAP and aerobic exercise of different intensity in patients with obstructive sleep apnea hypopnea syndrome and type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi 99:2187&#x2013;2192. https://doi.org/10.3760/cma.j.issn.0376-2491.2019.28.007</Citation><ArticleIdList><ArticleId IdType="doi">10.3760/cma.j.issn.0376-2491.2019.28.007</ArticleId><ArticleId IdType="pubmed">31434390</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39611987</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1432-119X</ISSN><JournalIssue CitedMedium="Internet"><Volume>163</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Histochemistry and cell biology</Title><ISOAbbreviation>Histochem Cell Biol</ISOAbbreviation></Journal><ArticleTitle>Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds.</ArticleTitle><Pagination><StartPage>13</StartPage><MedlinePgn>13</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s00418-024-02330-9</ELocationID><Abstract><AbstractText>In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options. One promising candidate is Cramoll (Cratylia mollis seed lectin), known for its immunomodulatory, mitogenic, and healing properties. However, its efficacy in infected diabetic wounds remains unexplored. This study evaluated the effects of topical Cramoll treatment on diabetic wounds infected by S. aureus. Diabetic Swiss mice (induced by streptozotocin) were subjected to an 8-mm wound on the back and subsequently infected with a suspension of multidrug-resistant S. aureus. During the treatment period, the wounds were clinically evaluated for inflammation and the area of injury. After seven days, samples were collected from the wounds to quantify the bacterial load and histopathological and immunological analyses. Wounds infected by S. aureus exhibited more pronounced areas and severity indices, which were significantly reduced by Cramoll treatment (p&#x2009;&lt;&#x2009;0.05). Histopathological analysis revealed a reduction in inflammatory cells and an increase in revascularization with Cramoll treatment (p&#x2009;&lt;&#x2009;0.05). Cramoll also promoted greater collagen production compared to controls (p&#x2009;&lt;&#x2009;0.05). Furthermore, Cramoll treatment significantly reduced the S. aureus load in wounds (p&#x2009;&lt;&#x2009;0.0001), decreased TNF-&#x3b1; and IL-6 levels in infected wounds, and increased ERK pathway activation (p&#x2009;&lt;&#x2009;0.05). In conclusion, Cramoll lectin improves the healing of diabetic wounds, and these results contribute to the understanding of Cramoll healing mechanisms, reinforcing its potential as a healing agent in various clinical conditions.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Dos Santos Silva</LastName><ForeName>Lucas</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dos Santos Castelo Branco</LastName><ForeName>Simeone J&#xfa;lio</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Silva</LastName><ForeName>Izadora Souza Soeiro</ForeName><Initials>ISS</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paiva</LastName><ForeName>Miria Yasmim Miranda</ForeName><Initials>MYM</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vila Nova</LastName><ForeName>Beatriz Gomes</ForeName><Initials>BG</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Matos Chaves Lima</LastName><ForeName>Carlos Emanuel</ForeName><Initials>CE</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Odontologia, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Oliveira</LastName><ForeName>Weslley Felix</ForeName><Initials>WF</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Paiva</LastName><ForeName>Felipe Eduardo Alves</ForeName><Initials>FEA</Initials><AffiliationInfo><Affiliation>Departamento de Histologia, Embriologia e Biologia Celular, Universidade Federal de Goi&#xe1;s, Goi&#xe2;nia, 74690-900, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paiva</LastName><ForeName>Patr&#xed;cia Maria Guedes</ForeName><Initials>PMG</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Souza Monteiro</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Microbiologia Aplicada, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Teixeira</LastName><ForeName>Claudener Souza</ForeName><Initials>CS</Initials><AffiliationInfo><Affiliation>Centro de Ci&#xea;ncias Agr&#xe1;rias e da Biodiversidade, Universidade Federal do Cariri, Crato, Cear&#xe1;, 63130-025, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cardoso</LastName><ForeName>Cl&#xe9;ver Gomes</ForeName><Initials>CG</Initials><AffiliationInfo><Affiliation>Departamento de Histologia, Embriologia e Biologia Celular, Universidade Federal de Goi&#xe1;s, Goi&#xe2;nia, 74690-900, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dos Santos Correia</LastName><ForeName>Maria Tereza</ForeName><Initials>MT</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nascimento da Silva</LastName><ForeName>Lu&#xed;s Cl&#xe1;udio</ForeName><Initials>LC</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil. luisclaudionsilva@yahoo.com.br.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Odontologia, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil. luisclaudionsilva@yahoo.com.br.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Histochem Cell Biol</MedlineTA><NlmUniqueID>9506663</NlmUniqueID><ISSNLinking>0948-6143</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014945" MajorTopicYN="N">Wound Healing</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055624" MajorTopicYN="N">Methicillin-Resistant Staphylococcus aureus</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D037121" MajorTopicYN="N">Plant Lectins</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Bioactive lectins</Keyword><Keyword MajorTopicYN="N">Complications of diabetes</Keyword><Keyword MajorTopicYN="N">Cramoll</Keyword><Keyword MajorTopicYN="N">Inflammatory response</Keyword><Keyword MajorTopicYN="N">Wound healing</Keyword></KeywordList><CoiStatement>Declarations. Conflict of interest: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>14</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39611987</ArticleId><ArticleId IdType="doi">10.1007/s00418-024-02330-9</ArticleId><ArticleId IdType="pii">10.1007/s00418-024-02330-9</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Albuquerque PBS, Soares PAG, Arag&#xe3;o-Neto AC et al (2017) Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 102:749&#x2013;757. https://doi.org/10.1016/J.IJBIOMAC.2017.04.064</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJBIOMAC.2017.04.064</ArticleId><ArticleId IdType="pubmed">28433769</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade CAS, Correia MTS, Coelho LCBB et al (2004) Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int J Pharm 278:435&#x2013;445. https://doi.org/10.1016/J.IJPHARM.2004.03.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJPHARM.2004.03.028</ArticleId><ArticleId IdType="pubmed">15196647</ArticleId></ArticleIdList></Reference><Reference><Citation>Baidoo N, Sanger GJ, Belai A (2023) Histochemical and biochemical analysis of collagen content in formalin-fixed, paraffin embedded colonic samples. MethodsX. https://doi.org/10.1016/J.MEX.2023.102416</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.MEX.2023.102416</ArticleId><ArticleId IdType="pubmed">37876831</ArticleId><ArticleId IdType="pmc">10590991</ArticleId></ArticleIdList></Reference><Reference><Citation>Barman PK, Koh TJ (2020) Macrophage dysregulation and impaired skin wound healing in diabetes. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.00528</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCELL.2020.00528</ArticleId><ArticleId IdType="pubmed">32671072</ArticleId><ArticleId IdType="pmc">7333180</ArticleId></ArticleIdList></Reference><Reference><Citation>Beserra FP, Xue M, De Azevedo Maia GL et al (2018) Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules. https://doi.org/10.3390/MOLECULES23112819</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/MOLECULES23112819</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12:547&#x2013;569. https://doi.org/10.1080/21505594.2021.1878688</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/21505594.2021.1878688</ArticleId><ArticleId IdType="pubmed">33522395</ArticleId><ArticleId IdType="pmc">7872022</ArticleId></ArticleIdList></Reference><Reference><Citation>Correia MTS, Coelho LCBB (1995) Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Appl Biochem Biotechnol 55:261&#x2013;273. https://doi.org/10.1007/BF02786865</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF02786865</ArticleId><ArticleId IdType="pubmed">8579345</ArticleId></ArticleIdList></Reference><Reference><Citation>Da Silva LCN, Alves NMP, De Castro MCAB et al (2015) pCramoll and rCramoll as new preventive agents against the oxidative dysfunction induced by hydrogen peroxide. Oxid Med Cell Longev. https://doi.org/10.1155/2015/520872</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2015/520872</ArticleId><ArticleId IdType="pubmed">26839634</ArticleId><ArticleId IdType="pmc">4709764</ArticleId></ArticleIdList></Reference><Reference><Citation>De Melo CML, De Castro MCAB, De Oliveira AP et al (2010) Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother Res 24:1631&#x2013;1636. https://doi.org/10.1002/PTR.3156</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/PTR.3156</ArticleId><ArticleId IdType="pubmed">21031620</ArticleId></ArticleIdList></Reference><Reference><Citation>De Melo CML, Melo H, Correia MTS et al (2011) Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand J Immunol 73:112&#x2013;121. https://doi.org/10.1111/J.1365-3083.2010.02490.X</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/J.1365-3083.2010.02490.X</ArticleId><ArticleId IdType="pubmed">21198751</ArticleId></ArticleIdList></Reference><Reference><Citation>Melo CML de, Lima ALR de, Beltr&#xe3;o EIC et al (2011a) Potential effects of Cramoll 1,4 lectin on murine Schistosomiasis mansoni. Acta Trop 118:152&#x2013;158. https://doi.org/10.1016/J.ACTATROPICA.2011.01.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.ACTATROPICA.2011.01.008</ArticleId><ArticleId IdType="pubmed">21333623</ArticleId></ArticleIdList></Reference><Reference><Citation>Melo CML de, Porto CS, Melo MR et al (2011b) Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. Int J Pharm 408:113&#x2013;119. https://doi.org/10.1016/J.IJPHARM.2011.02.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJPHARM.2011.02.011</ArticleId><ArticleId IdType="pubmed">21335081</ArticleId></ArticleIdList></Reference><Reference><Citation>De Oliveira PSS, R&#xea;go MJBDM, Da Silva RR et al (2013) Cratylia mollis 1, 4 lectin: a new biotechnological tool in IL-6, IL-17A, IL-22, and IL-23 induction and generation of immunological memory. Biomed Res Int. https://doi.org/10.1155/2013/263968</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/263968</ArticleId></ArticleIdList></Reference><Reference><Citation>de Andrade FM, Neves FPA, de Albuquerque PBS et al (2021) Healing activities of Cramoll and xyloglucan membrane in cutaneous wounds of diabetic mice. J Immunol Regen Med 13:100045. https://doi.org/10.1016/J.REGEN.2021.100045</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.REGEN.2021.100045</ArticleId></ArticleIdList></Reference><Reference><Citation>de Macedo GHRV, Costa GDE, Oliveira ER et al (2021) Interplay between ESKAPE pathogens and immunity in skin infections: an overview of the major determinants of virulence and antibiotic resistance. Pathogens 10:1&#x2013;34. https://doi.org/10.3390/PATHOGENS10020148</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/PATHOGENS10020148</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng L, Du C, Song P et al (2021) The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8852759</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2021/8852759</ArticleId><ArticleId IdType="pubmed">34900083</ArticleId><ArticleId IdType="pmc">8664534</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng Z, Fan T, Xiao C et al (2024) TGF-&#x3b2; signaling in health, disease, and therapeutics. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-024-01764-W</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/S41392-024-01764-W</ArticleId><ArticleId IdType="pubmed">39438467</ArticleId><ArticleId IdType="pmc">11491465</ArticleId></ArticleIdList></Reference><Reference><Citation>Escuin-Ordinas H, Li S, Xie MW et al (2016) Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat Commun 7:12348. https://doi.org/10.1038/NCOMMS12348</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/NCOMMS12348</ArticleId><ArticleId IdType="pubmed">27476449</ArticleId><ArticleId IdType="pmc">4974650</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferreira RM, dos Santos Silva DH, Silva KF et al (2023) Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genom. https://doi.org/10.1007/S10142-023-01204-Y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10142-023-01204-Y</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferro TAF, Souza EB, Suarez MAM et al (2019) Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules 24(1624):1627. https://doi.org/10.3390/MOLECULES24081627</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/MOLECULES24081627</ArticleId><ArticleId IdType="pubmed">31027179</ArticleId><ArticleId IdType="pmc">6515316</ArticleId></ArticleIdList></Reference><Reference><Citation>Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. https://doi.org/10.1002/CPZ1.78</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/CPZ1.78</ArticleId><ArticleId IdType="pubmed">33905609</ArticleId></ArticleIdList></Reference><Reference><Citation>Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes&#x2014;a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49&#x2013;63. https://doi.org/10.1016/J.CBI.2015.11.032</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.CBI.2015.11.032</ArticleId><ArticleId IdType="pubmed">26656244</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2020.00107</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCIMB.2020.00107</ArticleId><ArticleId IdType="pubmed">33643931</ArticleId><ArticleId IdType="pmc">7793837</ArticleId></ArticleIdList></Reference><Reference><Citation>Jand&#xfa; JJ, Costa MC, Santos JRA et al (2017) Treatment with pCramoll alone and in combination with fluconazole provides therapeutic benefits in C. gattii infected mice. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2017.00211</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCIMB.2017.00211</ArticleId><ArticleId IdType="pubmed">28596945</ArticleId><ArticleId IdType="pmc">5442327</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867&#x2013;882. https://doi.org/10.1007/S00204-015-1472-2/FIGURES/2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S00204-015-1472-2/FIGURES/2</ArticleId><ArticleId IdType="pubmed">25690731</ArticleId></ArticleIdList></Reference><Reference><Citation>Maciel EVM, Ara&#xfa;jo-Filho VS, Nakazawa M et al (2004) Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals 32:57&#x2013;60. https://doi.org/10.1016/J.BIOLOGICALS.2003.12.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOLOGICALS.2003.12.001</ArticleId><ArticleId IdType="pubmed">15026026</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakhate VP, Akojwar NS, Sinha SK et al (2023) Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 13:489&#x2013;499. https://doi.org/10.1016/J.JTCME.2023.05.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JTCME.2023.05.001</ArticleId><ArticleId IdType="pubmed">37693096</ArticleId><ArticleId IdType="pmc">10492149</ArticleId></ArticleIdList></Reference><Reference><Citation>Nunes MAS, dos Silva L, S, Santos DM, et al (2022) Schinus terebinthifolius leaf lectin (SteLL) reduces the bacterial and inflammatory burden of wounds infected by staphylococcus aureus promoting skin repair. Pharmaceuticals (Basel). https://doi.org/10.3390/PH15111441</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/PH15111441</ArticleId><ArticleId IdType="pubmed">36422571</ArticleId><ArticleId IdType="pmc">8779312</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2019.108615</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOPHA.2019.108615</ArticleId><ArticleId IdType="pubmed">31810137</ArticleId></ArticleIdList></Reference><Reference><Citation>Pe&#xf1;a OA, Martin P (2024) Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 25:599&#x2013;616. https://doi.org/10.1038/s41580-024-00715-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41580-024-00715-1</ArticleId><ArticleId IdType="pubmed">38528155</ArticleId></ArticleIdList></Reference><Reference><Citation>Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359&#x2013;370. https://doi.org/10.1111/J.1464-5491.2005.01499.X</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/J.1464-5491.2005.01499.X</ArticleId><ArticleId IdType="pubmed">15787657</ArticleId></ArticleIdList></Reference><Reference><Citation>Roskoski R (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105&#x2013;143. https://doi.org/10.1016/J.PHRS.2012.04.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.PHRS.2012.04.005</ArticleId><ArticleId IdType="pubmed">22569528</ArticleId></ArticleIdList></Reference><Reference><Citation>Sen CK (2021) Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle) 10:281&#x2013;292. https://doi.org/10.1089/WOUND.2021.0026</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/WOUND.2021.0026</ArticleId><ArticleId IdType="pubmed">33733885</ArticleId></ArticleIdList></Reference><Reference><Citation>Shettigar K, Murali TS (2020) Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis 39:2235&#x2013;2246. https://doi.org/10.1007/S10096-020-03984-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10096-020-03984-8</ArticleId><ArticleId IdType="pubmed">32683595</ArticleId><ArticleId IdType="pmc">7669779</ArticleId></ArticleIdList></Reference><Reference><Citation>Singla R, Soni S, Patial V et al (2017) In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 105:45&#x2013;55. https://doi.org/10.1016/J.IJBIOMAC.2017.06.109</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJBIOMAC.2017.06.109</ArticleId><ArticleId IdType="pubmed">28669805</ArticleId></ArticleIdList></Reference><Reference><Citation>Suarez Carneiro MAM, Silva LDS, Diniz RM&#xa0;et al (2021) Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int Immunopharmacol. https://doi.org/10.1016/J.INTIMP.2021.108094</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.INTIMP.2021.108094</ArticleId><ArticleId IdType="pubmed">34508942</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavares Pereira DS, Madruga Lima-Ribeiro MH, Santos-Oliveira R et al (2012) Topical application effect of the isolectin hydrogel (Cramoll 1,4) on second-degree burns: experimental model. J Biomed Biotechnol. https://doi.org/10.1155/2012/184538</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2012/184538</ArticleId><ArticleId IdType="pubmed">22736951</ArticleId><ArticleId IdType="pmc">3379528</ArticleId></ArticleIdList></Reference><Reference><Citation>Tu C, Lu H, Zhou T et al (2022) Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. https://doi.org/10.1016/J.BIOMATERIALS.2022.121597</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOMATERIALS.2022.121597</ArticleId><ArticleId IdType="pubmed">36436305</ArticleId><ArticleId IdType="pmc">9673044</ArticleId></ArticleIdList></Reference><Reference><Citation>Yadav JP, Singh AK, Grishina M et al (2024a) Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 32:149&#x2013;228. https://doi.org/10.1007/S10787-023-01407-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10787-023-01407-6</ArticleId><ArticleId IdType="pubmed">38212535</ArticleId></ArticleIdList></Reference><Reference><Citation>Yadav JP, Verma A, Pathak P et al (2024b) Phytoconstituents as modulators of NF-&#x3ba;B signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother https://doi.org/10.1016/J.BIOPHA.2024.117058</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOPHA.2024.117058</ArticleId><ArticleId IdType="pubmed">39208668</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang WQ, Tang W, Hu SQ et al (2023) Effect of matrix metalloproteinases on the healing of diabetic foot ulcer: a systematic review. J Tissue Viability 32:51&#x2013;58. https://doi.org/10.1016/J.JTV.2022.12.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JTV.2022.12.001</ArticleId><ArticleId IdType="pubmed">36513539</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Guo Y, Yang K et al (2022) The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J Ethnopharmacol. https://doi.org/10.1016/J.JEP.2021.114662</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JEP.2021.114662</ArticleId><ArticleId IdType="pubmed">36587876</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou S, Xie M, Su J et al (2023) New insights into balancing wound healing and scarless skin repair. J Tissue Eng. https://doi.org/10.1177/20417314231185848</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/20417314231185848</ArticleId><ArticleId IdType="pubmed">37736245</ArticleId><ArticleId IdType="pmc">10510347</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39611704</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2054-1058</ISSN><JournalIssue CitedMedium="Internet"><Volume>11</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Nursing open</Title><ISOAbbreviation>Nurs Open</ISOAbbreviation></Journal><ArticleTitle>Diabetes Education Program for Nursing Students: A Systematic Review and Meta-Analysis.</ArticleTitle><Pagination><StartPage>e70105</StartPage><MedlinePgn>e70105</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70105</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1002/nop2.70105</ELocationID><Abstract><AbstractText Label="AIM" NlmCategory="OBJECTIVE">The purpose of this study was to summarise the current state of the science on diabetes mellitus education programs for nursing students.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">A systematic review and meta-analysis.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Eligible studies were identified by searching PubMed, EMBASE, CINAHL, and Cochrane Library databases. Randomised controlled trials and quasi-experimental studies, published in English between 2013 and 2022, that examined diabetes education programs for nursing students were considered in the review. The quality of the articles was evaluated using the Joanna Briggs Institute's Critical Appraisal Checklist. Key information such as authors, study focus, population, sample size, details of intervention and control group treatments, outcome variables, and main findings were extracted and summarised in a data extraction form for further analyses and syntheses.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The literature search identified 464 articles, from which 13 studies were evaluated in the systematic review. Most studies (n&#x2009;=&#x2009;12, 92.3%) used technology-based teaching methods, such as high-fidelity simulations, mobile applications, and virtual reality simulations. Regarding the evaluation of diabetes education program effectiveness, the majority of studies showed significant improvements in knowledge (n&#x2009;=&#x2009;8, 61.5%), followed by satisfaction with learning (n&#x2009;=&#x2009;4, 30.8%), nursing skill performance (n&#x2009;=&#x2009;3, 23.1%), and self-confidence (n&#x2009;=&#x2009;3, 23.1%) in nursing students. In meta-analyses, technology-based teaching interventions, compared to traditional education, showed no statistically significant improvement in diabetes knowledge (standard mean difference 9.52, 95% CI [-0.18, 19.21], p&#x2009;=&#x2009;0.05) and self-efficacy (standard mean difference 24.09, 95% CI [-10.75, 58.92], p&#x2009;=&#x2009;0.18). Despite this, technology-based methods demonstrated favourable effects on knowledge and self-efficacy against traditional education. Findings highlight the importance of emerging technology-based diabetes education programs tailored for nursing students, crucial for enhancing positive educational outcomes. No Patient or Public Contribution.</AbstractText><CopyrightInformation>&#xa9; 2024 The Author(s). Nursing Open published by John Wiley &amp; Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ahn</LastName><ForeName>Jeong-Ah</ForeName><Initials>JA</Initials><Identifier Source="ORCID">0000-0002-8293-5349</Identifier><AffiliationInfo><Affiliation>College of Nursing and Research Institute of Nursing Science, Ajou University, Suwon, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Eun-Mi</ForeName><Initials>EM</Initials><AffiliationInfo><Affiliation>College of Nursing, Research Institute of Nursing Science, Pusan National University, Pusan, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Jung Eun</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>College of Nursing, University of Rhode Island, Kingston, RI, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Kyoung-A</ForeName><Initials>KA</Initials><Identifier Source="ORCID">0000-0002-3521-7758</Identifier><AffiliationInfo><Affiliation>College of Nursing, Suwon Women's University, Suwon, South Korea.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>RS-2022-00166443</GrantID><Agency>National Research Foundation of Korea(NRF)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Nurs Open</MedlineTA><NlmUniqueID>101675107</NlmUniqueID><ISSNLinking>2054-1058</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013338" MajorTopicYN="Y">Students, Nursing</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="Y">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004506" MajorTopicYN="N">Education, Nursing</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">education</Keyword><Keyword MajorTopicYN="N">nursing students</Keyword><Keyword MajorTopicYN="N">systematic review</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>9</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39611704</ArticleId><ArticleId IdType="pmc">PMC11605939</ArticleId><ArticleId IdType="doi">10.1002/nop2.70105</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Allen, M. L. , Groll M., Emlund M., et&#xa0;al. 2020. &#x201c;Healthcare Students' Psychological Well&#x2010;Being in a Diabetic Ketoacidosis Simulation.&#x201d; Clinical Simulation in Nursing 39: 1&#x2013;6. 10.1016/j.ecns.2019.10.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2019.10.005</ArticleId></ArticleIdList></Reference><Reference><Citation>Almahasees, Z. , Mohsen K., and Amin M. O.. 2021. &#x201c;Faculty's and Students' Perceptions of Online Learning During COVID&#x2010;19.&#x201d; Frontiers in Education 6: 638470. 10.3389/feduc.2021.638470.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/feduc.2021.638470</ArticleId></ArticleIdList></Reference><Reference><Citation>Babel, R. A. , and Dandekar M. P.. 2021. &#x201c;A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications.&#x201d; Current Diabetes Reviews 17, no. 4: 457&#x2013;473. 10.2174/1573399816666201103143818.</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1573399816666201103143818</ArticleId><ArticleId IdType="pubmed">33143626</ArticleId></ArticleIdList></Reference><Reference><Citation>Badowski, D. , and Wells&#x2010;Beede E.. 2022. &#x201c;State of Prebriefing and Debriefing in Virtual Simulation.&#x201d; Clinical Simulation in Nursing 62: 42&#x2013;51. 10.1016/j.ecns.2021.10.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2021.10.006</ArticleId></ArticleIdList></Reference><Reference><Citation>
+<PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612437</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Association between serum uric acid and prediabetes in a normal Chinese population: A cross-sectional study.</ArticleTitle><Pagination><StartPage>e40544</StartPage><MedlinePgn>e40544</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40544</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040544</ELocationID><Abstract><AbstractText>Cardiovascular events are frequent among individuals with prediabetes. And the relationship between cardiovascular diseases and elevated serum uric acid (SUA) levels has been supported by extensive scientific evidence. However, there remains controversy regarding the correlation between elevated SUA and prediabetes. The aim of this study was to investigate the association between elevated SUA levels and the prevalence of prediabetes and gender differences in the association. A total of 190,891 individuals who participated in health checkups at the Health Promotion Center of Sir Run Run Shaw Hospital of Zhejiang University from January 2017 to December 2021 were included in this cross-sectional study. The health checkups were carried out by trained general practitioners and nurses. The diagnostic criteria for diabetes and prediabetes are defined in the Standards of Medical Care in Diabetes-2022. The association between SUA levels and diabetes and prediabetes was examined based on logistic regression analysis. The dose-response effect between SUA levels and diabetes and prediabetes in both sexes was assessed using a restricted cubic spline (RCS) regression model. Among 190,891 participants, this study included 106,482 males (55.8%) and 84,409 females (44.2%). There were 46,240 (24.2%) patients with prediabetes and 20,792 (10.9%) patients with diabetes. SUA was divided into quartiles (Q). Compared to the SUA Q1 group, the prevalence of prediabetes was elevated in the SUA Q4 group (OR&#x2005;=&#x2005;1.378, 95% CI&#x2005;=&#x2005;1.321-1.437), but diabetes risk was decreased in the SUA Q4 group (OR&#x2005;=&#x2005;0.690, 95% CI&#x2005;=&#x2005;0.651-0.730). We found that SUA levels were correlated with prediabetes more significantly in male subjects (OR&#x2005;=&#x2005;1.328, 95% CI&#x2005;=&#x2005;1.272-1.386) than in female subjects (OR&#x2005;=&#x2005;1.184, 95% CI&#x2005;=&#x2005;1.122-1.249) (P for interaction&#x2005;&lt;&#x2005;.001). Higher SUA levels were strongly related to an elevated prevalence of prediabetes but a decreased prevalence of diabetes. The association of SUA in prediabetes was more significant in men.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shen</LastName><ForeName>Keqing</ForeName><Initials>K</Initials><Identifier Source="ORCID">0009-0008-1033-4473</Identifier><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Yilin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Junlu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Liangli</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Pathology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cai</LastName><ForeName>Xixuan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Jianjiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jingyi</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Lusha</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Liying</ForeName><Initials>L</Initials><Identifier Source="ORCID">0000-0002-8895-3775</Identifier><AffiliationInfo><Affiliation>Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>WKJ-ZJ-2304</GrantID><Agency>Major Program Co-sponsored by Province and Ministry of China</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>268B43MJ25</RegistryNumber><NameOfSubstance UI="D014527">Uric Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014527" MajorTopicYN="Y">Uric Acid</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012737" MajorTopicYN="N">Sex Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095225" MajorTopicYN="N">East Asian People</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612437</ArticleId><ArticleId IdType="pmc">PMC11608712</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040544</ArticleId><ArticleId IdType="pii">00005792-202411290-00062</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed. Brussels: International Diabetes Federation; 2021.</Citation><ArticleIdList><ArticleId IdType="pubmed">35914061</ArticleId></ArticleIdList></Reference><Reference><Citation>Hubbard D, Colantonio LD, Tanner RM, et al. . Prediabetes and risk for cardiovascular disease by hypertension status in black adults: the Jackson heart study. Diabetes Care. 2019;42:2322&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7011196</ArticleId><ArticleId IdType="pubmed">31591089</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Peng W, Zhao Z, et al. . Prevalence and treatment of diabetes in China, 2013 to 2018. JAMA. 2021;326:2498&#x2013;506.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8715349</ArticleId><ArticleId IdType="pubmed">34962526</ArticleId></ArticleIdList></Reference><Reference><Citation>Davidson KW, Barry MJ, Mangione CM, et al. ; US Preventive Services Task Force. Screening for prediabetes and type 2 diabetes: US preventive services task force recommendation statement. JAMA. 2021;326:736&#x2013;43.</Citation><ArticleIdList><ArticleId IdType="pubmed">34427594</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan XR, Li GW, Hu YH, et al. . Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care. 1997;20:537&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pubmed">9096977</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuomilehto J, Lindstr&#xf6;m J, Eriksson JG, et al. ; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">11333990</ArticleId></ArticleIdList></Reference><Reference><Citation>Knowler WC, Barrett-Connor E, Fowler SE, et al. ; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393&#x2013;403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1370926</ArticleId><ArticleId IdType="pubmed">11832527</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V; Indian Diabetes Prevention Programme (IDPP). The Indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">16391903</ArticleId></ArticleIdList></Reference><Reference><Citation>Brannick B, Dagogo-Jack S. Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am. 2018;47:33&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5806140</ArticleId><ArticleId IdType="pubmed">29407055</ArticleId></ArticleIdList></Reference><Reference><Citation>Tab&#xe1;k AG, Herder C, Rathmann W, Brunner EJ, Kivim&#xe4;ki M. Prediabetes: a high-risk state for diabetes development. Lancet. 2012;379:2279&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3891203</ArticleId><ArticleId IdType="pubmed">22683128</ArticleId></ArticleIdList></Reference><Reference><Citation>Echouffo-Tcheugui JB, Perreault L, Ji L, Dagogo-Jack S. Diagnosis and management of prediabetes: a review. JAMA. 2023;329:1206&#x2013;16.</Citation><ArticleIdList><ArticleId IdType="pubmed">37039787</ArticleId></ArticleIdList></Reference><Reference><Citation>Crawley WT, Jungels CG, Stenmark KR, Fini MA. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biol. 2022;51:102271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8889273</ArticleId><ArticleId IdType="pubmed">35228125</ArticleId></ArticleIdList></Reference><Reference><Citation>Lazzeroni D, Bini M, Camaiora U, et al. . Serum uric acid level predicts adverse outcomes after myocardial revascularization or cardiac valve surgery. Eur J Prev Cardiol. 2018;25:119&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pubmed">29164926</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuwabara M, Hisatome I, Niwa K, et al. . Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese cohort study. Hypertension. 2018;71:78&#x2013;86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5730471</ArticleId><ArticleId IdType="pubmed">29203632</ArticleId></ArticleIdList></Reference><Reference><Citation>Stack AG, Hanley A, Casserly LF, et al. . Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013;106:647&#x2013;58.</Citation><ArticleIdList><ArticleId IdType="pubmed">23564632</ArticleId></ArticleIdList></Reference><Reference><Citation>Cang Y, Xu S, Zhang J, et al. . Serum uric acid revealed a U-Shaped relationship with all-cause mortality and cardiovascular mortality in high atherosclerosis risk patients: the ASSURE study. Front Cardiovasc Med. 2021;8:641513.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8180559</ArticleId><ArticleId IdType="pubmed">34109223</ArticleId></ArticleIdList></Reference><Reference><Citation>Krishnan E, Akhras KS, Sharma H, et al. . Relative and attributable diabetes risk associated with hyperuricemia in US veterans with gout. QJM. 2013;106:721&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3713590</ArticleId><ArticleId IdType="pubmed">23620537</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou C, Liu M, Zhang Z, et al. . Positive association of serum uric acid with new-onset diabetes in Chinese women with hypertension in a retrospective analysis of the China stroke primary prevention trial. Diabetes Obes Metab. 2020;22:1598&#x2013;606.</Citation><ArticleIdList><ArticleId IdType="pubmed">32363743</ArticleId></ArticleIdList></Reference><Reference><Citation>Su H, Liu T, Li Y, et al. . Serum uric acid and its change with the risk of type 2 diabetes: a prospective study in China. Prim Care Diabetes. 2021;15:1002&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">34217642</ArticleId></ArticleIdList></Reference><Reference><Citation>Chien KL, Chen MF, Hsu HC, et al. . Plasma uric acid and the risk of type 2 diabetes in a Chinese community. Clin Chem. 2008;54:310&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">18089655</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med. 2010;123:957&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3131180</ArticleId><ArticleId IdType="pubmed">20920699</ArticleId></ArticleIdList></Reference><Reference><Citation>Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108&#x2013;16.</Citation><ArticleIdList><ArticleId IdType="pubmed">22753829</ArticleId></ArticleIdList></Reference><Reference><Citation>Haque T, Rahman S, Islam S, Molla NH, Ali N. Assessment of the relationship between serum uric acid and glucose levels in healthy, prediabetic and diabetic individuals. Diabetol Metab Syndr. 2019;11:49.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6588943</ArticleId><ArticleId IdType="pubmed">31285758</ArticleId></ArticleIdList></Reference><Reference><Citation>Nan H, Dong Y, Gao W, Tuomilehto J, Qiao Q. Diabetes associated with a low serum uric acid level in a general Chinese population. Diabetes Res Clin Pract. 2007;76:68&#x2013;74.</Citation><ArticleIdList><ArticleId IdType="pubmed">16963150</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandaru P, Shankar A. Association between serum uric acid levels and diabetes mellitus. Int J Endocrinol. 2011;2011:604715.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3216382</ArticleId><ArticleId IdType="pubmed">22114591</ArticleId></ArticleIdList></Reference><Reference><Citation>Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men: the Osaka health survey. J Hypertens. 2001;19:1209&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pubmed">11446710</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen N, Muhammad IF, Li Z, Nilsson PM, Born&#xe9; Y. Sex-Specific associations of circulating uric acid with risk of diabetes incidence: a population-based cohort study from Sweden. Diabetes Metab Syndr Obes. 2020;13:4323&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7669519</ArticleId><ArticleId IdType="pubmed">33209045</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi HK, Ford ES. Haemoglobin A1C, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels&#x2013;the third national health and nutrition examination survey. Rheumatology (Oxford). 2008;47:713&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">18390895</ArticleId></ArticleIdList></Reference><Reference><Citation>Park RJ, Kang MG. Association between serum uric acid and prediabetes in the Korean general population. Asia Pac J Public Health. 2019;31:719&#x2013;27.</Citation><ArticleIdList><ArticleId IdType="pubmed">31852225</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Schaft N, Brahimaj A, Wen KX, Franco OH, Dehghan A. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: the Rotterdam study. PLoS One. 2017;12:e0179482.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5478118</ArticleId><ArticleId IdType="pubmed">28632742</ArticleId></ArticleIdList></Reference><Reference><Citation>Zoppini G, Targher G, Chonchol M, et al. . Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012;35:99&#x2013;104.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3241303</ArticleId><ArticleId IdType="pubmed">22028277</ArticleId></ArticleIdList></Reference><Reference><Citation>Pape&#x17e;&#xed;kov&#xe1; I, Pekarov&#xe1; M, Kol&#xe1;&#x159;ov&#xe1; H, et al. . Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res. 2013;47:82&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">23136942</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodr&#xed;guez G, Soriano LC, Choi HK. Impact of diabetes against the future risk of developing gout. Ann Rheum Dis. 2010;69:2090&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3136217</ArticleId><ArticleId IdType="pubmed">20570836</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Li W, Chen J, et al. . The elevation of serum uric acid depends on insulin resistance but not fasting plasma glucose in hyperuricaemia. Pathogenesis Rheumatoid Arthritis. 2022;40:613&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">33886461</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J, Qiu SH, Guo HJ, Li W, Sun ZL. Increased urinary glucose excretion is associated with a reduced risk of hyperuricaemia. Diabet Med. 2019;36:902&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">30920678</ArticleId></ArticleIdList></Reference><Reference><Citation>Shimodaira M, Minemura Y, Nakayama T. Elevated serum uric acid is a risk factor for progression to prediabetes in Japanese women: a 5-year retrospective cohort study. J Diabetes Investig. 2023;14:1237&#x2013;45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10583653</ArticleId><ArticleId IdType="pubmed">37553791</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Jin C, Xing A, et al. . Serum uric acid levels and the risk of impaired fasting glucose: a prospective study in adults of north China. PLoS One. 2013;8:e84712.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3871632</ArticleId><ArticleId IdType="pubmed">24376838</ArticleId></ArticleIdList></Reference><Reference><Citation>Meyer MR, Clegg DJ, Prossnitz ER, Barton M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf). 2011;203:259&#x2013;69.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3110567</ArticleId><ArticleId IdType="pubmed">21281456</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39612426</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Exploring the link between SIRT1 gene variants and depression comorbidity in type 2 diabetes.</ArticleTitle><Pagination><StartPage>e40563</StartPage><MedlinePgn>e40563</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40563</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040563</ELocationID><Abstract><AbstractText>This study aims to (1) analyze the clinical characteristics and risk factors of patients with type 2 diabetes and comorbid depression and (2) explore the association between SIRT1 gene single-nucleotide polymorphism sites and this comorbidity. A total of 450 type 2 diabetes patients hospitalized in the General Medicine Department at The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology from July 2022 to September 2023, and 300 healthy individuals from the physical examination department were selected as study subjects. Both groups were assessed using general information surveys and questionnaires. Statistical analyses were performed to compare clinical indicators across 3 groups: individuals with only type 2 diabetes, those with comorbid depression, and healthy controls. The age, gender, disease duration, marital status, income and drug expenditure, employment status, fasting blood glucose level, fasting insulin level difference, insulin resistance index difference, glycated hemoglobin, high-density lipoprotein level, and HCY difference among the 3 groups of patients were risk factors for type 2 diabetes comorbid depression patients. The SIRT1 mRNA level was significantly reduced in type 2 diabetes comorbid depression patients. The SIRT1 gene had 3 sites: rs12415800, rs3758391, and rs932658, which were related to the patient's type 2 diabetes comorbid depression. They were the additive model and dominant model of rs12415800 and rs3758391, respectively. In addition, the GTGGT haplotype composed of rs12415800-rs932658-rs7895833-rs2273773-rs1467568 and the AGACT haplotype composed of rs3758391-rs932658-rs33957861-rs3818292-rs1467568 were significantly associated with type 2 diabetes comorbid depression. Numerous factors influence the presence of depression in patients with type 2 diabetes, with the SIRT1 gene playing a significant role, serving as a potential biomarker for this comorbidity.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Yingxia</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Qinqin</ForeName><Initials>Q</Initials></Author><Author ValidYN="Y"><LastName>Yin</LastName><ForeName>Ziwei</ForeName><Initials>Z</Initials></Author><Author ValidYN="Y"><LastName>Zeng</LastName><ForeName>Yi</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Ningyu</ForeName><Initials>N</Initials></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Hong</ForeName><Initials>H</Initials><Identifier Source="ORCID">0009-0007-8771-336</Identifier></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 3.5.1.-</RegistryNumber><NameOfSubstance UI="C447939">SIRT1 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.5.1.-</RegistryNumber><NameOfSubstance UI="D056564">Sirtuin 1</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003863" MajorTopicYN="Y">Depression</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056564" MajorTopicYN="Y">Sirtuin 1</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612426</ArticleId><ArticleId IdType="pmc">PMC11608703</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040563</ArticleId><ArticleId IdType="pii">00005792-202411290-00051</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Farooqi A, Gillies C, Sathanapally H, et al. . A systematic review and meta-analysis to compare the prevalence of depression between patient with and without type 1 and type 2 diabetes. Prim Care Diabetes. 2022;16:1&#x2013;10.</Citation><ArticleIdList><ArticleId IdType="pubmed">34810141</ArticleId></ArticleIdList></Reference><Reference><Citation>Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci. 2021;53:2870&#x2013;900.</Citation><ArticleIdList><ArticleId IdType="pubmed">33529409</ArticleId></ArticleIdList></Reference><Reference><Citation>Yonggui Y. The pathogenesis of depression and diabetes is bidirectionally linked. Chin Med Inf Herald. 2019;34:1.</Citation></Reference><Reference><Citation>Ding X, Rong S, Wang Y, et al. . The association of the prevalence of depression in type 2 diabetes mellitus with visual-related quality of life and social support. Diabetes Metab Syndr Obes. 2022;15:535&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8882658</ArticleId><ArticleId IdType="pubmed">35237054</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu HNC, Skolnick VG, Carlin CS, Solberg L, Raiter AM, Peterson KA. The effect of depression and rurality on diabetes control. J Am Board Fam Med. 2020;33:913&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8489964</ArticleId><ArticleId IdType="pubmed">33219070</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin Q, Shen L, Qi Y, et al. . Decreased SIRT1 expression in the peripheral blood of patients with Graves&#x2019; disease. J Endocrinol. 2020;246:161&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7354706</ArticleId><ArticleId IdType="pubmed">32485674</ArticleId></ArticleIdList></Reference><Reference><Citation>van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CD. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol. 2020;8:325&#x2013;36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11044807</ArticleId><ArticleId IdType="pubmed">32135131</ArticleId></ArticleIdList></Reference><Reference><Citation>Mizuki Y, Sakamoto S, Okahisa Y, et al. . Mechanisms underlying the comorbidity of schizophrenia and type 2 diabetes mellitus. Int J Neuropsychopharmacol. 2021;24:367&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8130204</ArticleId><ArticleId IdType="pubmed">33315097</ArticleId></ArticleIdList></Reference><Reference><Citation>McGrory CL, Ryan KM, Kolshus E, Finnegan M, McLoughlin DM. Peripheral blood SIRT1 mRNA levels in depression and treatment with electroconvulsive therapy. Eur Neuropsychopharmacol. 2018;28:1015&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pubmed">30017261</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramirez A, Hernandez M, Suarez-Sanchez R, et al. . Type 2 diabetes&#x2013;associated polymorphisms correlate with SIRT1 and TGF-&#x3b2;1 gene expression. Ann Hum Genet. 2020;84:185&#x2013;94.</Citation><ArticleIdList><ArticleId IdType="pubmed">31799723</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez-Jimenez V, Cortez-Espinosa N, Rodriguez-Varela E, Vega-Cardenas M, Briones-Espinoza M, Ruiz-Rodriguez VM. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individuals with obesity. Diabetes Metab Syndr. 2019;13:582&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30641770</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao B, Li X, Zhou L, Wang Y, Shang P. SIRT1: a potential tumour biomarker and therapeutic target. J Drug Target. 2019;27:1046&#x2013;52.</Citation><ArticleIdList><ArticleId IdType="pubmed">31056963</ArticleId></ArticleIdList></Reference><Reference><Citation>Rao S, Luo N, Sui J, Xu Q, Zhang F. Effect of the SIRT1 gene on regional cortical grey matter density in the Han Chinese population. Br J Psychiatry. 2020;216:254&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30567608</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang G, Collins JM, Rafiee R, et al. . SIRT1 gene SNP rs932658 is associated with medication-related osteonecrosis of the jaw. J Bone Miner Res. 2020;36:347&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8733933</ArticleId><ArticleId IdType="pubmed">32967053</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajkhowa B, Mehan S, Sethi P, Prajapati A. Activation of SIRT-1 signalling in the prevention of bipolar disorder and related neurocomplications: target activators and influences on neurological dysfunctions. Neurotox Res. 2022;40:670&#x2013;86.</Citation><ArticleIdList><ArticleId IdType="pubmed">35156173</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39612420</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Effects of genetic variants of organic cation transporters on metformin response in newly diagnosed patients with type 2 diabetes.</ArticleTitle><Pagination><StartPage>e40684</StartPage><MedlinePgn>e40684</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40684</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040684</ELocationID><Abstract><AbstractText>Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean&#x2005;&#xb1;&#x2005;SD age was 50.4&#x2005;&#xb1;&#x2005;10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927&#x2005;&#xb1;&#x2005;1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c&#x2005;&lt;&#x2005;7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P&#x2005;=&#x2005;.021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>AlKreathy</LastName><ForeName>Huda M</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Abdulhhakim A</ForeName><Initials>AA</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Pharmacy, Medical Affairs, Al-Baha Health Cluster, Al-Baha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Esmat</LastName><ForeName>Ahmed</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Damanhouri</LastName><ForeName>Zoheir A</ForeName><Initials>ZA</Initials><Identifier Source="ORCID">0000-0002-9150-5471</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>988</GrantID><Agency>Deputyship for Research and Innovation of the Ministry of Education in Saudi Arabia</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9100L32L2N</RegistryNumber><NameOfSubstance UI="D008687">Metformin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="D017346">Protein Serine-Threonine Kinases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D027701">Organic Cation Transport Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="C109790">STK11 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C521870">SLC47A2 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.3</RegistryNumber><NameOfSubstance UI="D000091162">AMP-Activated Protein Kinase Kinases</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="D064007">Ataxia Telangiectasia Mutated Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.11.1</RegistryNumber><NameOfSubstance UI="C576324">ATM protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008687" MajorTopicYN="Y">Metformin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017346" MajorTopicYN="Y">Protein Serine-Threonine Kinases</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D027701" MajorTopicYN="Y">Organic Cation Transport Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012529" MajorTopicYN="N" Type="Geographic">Saudi Arabia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000091162" MajorTopicYN="N">AMP-Activated Protein Kinase Kinases</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D064007" MajorTopicYN="N">Ataxia Telangiectasia Mutated Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612420</ArticleId><ArticleId IdType="pmc">PMC11608742</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040684</ArticleId><ArticleId IdType="pii">00005792-202411290-00045</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Deepthi B, Sowjanya K, Lidiya B, Bhargavi R, Babu P. A modern review of diabetes mellitus: an annihilatory metabolic disorder. J In Silico In Vitro Pharmacol. 2017;3:1&#x2013;5.</Citation></Reference><Reference><Citation>Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg. 2019;113:56&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6364794</ArticleId><ArticleId IdType="pubmed">30517697</ArticleId></ArticleIdList></Reference><Reference><Citation>Triggle C, Ding H. Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta physiologica. 2017;219(:138&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26680745</ArticleId></ArticleIdList></Reference><Reference><Citation>Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss. Curr Obes Rep. 2019;8:156&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6520185</ArticleId><ArticleId IdType="pubmed">30874963</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang SY, Bruce K, Danaei Z, et al. . Metformin triggers a kidney GDF15- dependent area postrema axis to regulate food intake and body weight. Cell Metab. 2023;35:875&#x2013;86.e5.</Citation><ArticleIdList><ArticleId IdType="pubmed">37060902</ArticleId></ArticleIdList></Reference><Reference><Citation>Zaharenko L. Pharmacogenetics of efficiency and tolerance of the peroral antidiabetic drug metformin [doctoral thesis]. Riga: University of Latvia, Riga, Latvia. 2015.</Citation></Reference><Reference><Citation>Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci. 2017;106:2245&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">28495567</ArticleId></ArticleIdList></Reference><Reference><Citation>Veiga-Matos J, Remi&#xe3;o F, Motales A. Pharmacokinetics and toxicokinetics roles of membrane transporters at kidney level. J Pharm Pharm Sci. 2020;23:333&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pubmed">32997956</ArticleId></ArticleIdList></Reference><Reference><Citation>Dawed AY, Zhou K, van Leeuwen N, et al. ; IMI DIRECT Consortium. Variation in the plasma membrane monoamine transporter (PMAT)(encoded by SLC29A4) and organic cation transporter 1 (OCT1)(encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care. 2019;42:1027&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pubmed">30885951</ArticleId></ArticleIdList></Reference><Reference><Citation>Zeng Z, Huang SY, Sun T. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther. 2020;11:2521&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7548012</ArticleId><ArticleId IdType="pubmed">32930968</ArticleId></ArticleIdList></Reference><Reference><Citation>K&#xf6;lz C, Schaeffeler E, Schwab M, Nies AT. Genetic and epigenetic regulation of organic cation transporters. Handb Exp Pharmacol. 2021;266:81&#x2013;100.</Citation><ArticleIdList><ArticleId IdType="pubmed">33674913</ArticleId></ArticleIdList></Reference><Reference><Citation>Lofthouse EM, Cleal J, Lewis RM, Sengers BG. computational modelling of paracellular diffusion and OCT3 mediated transport of metformin in the perfused human placenta. J Pharm Sci. 2023;112:2570&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">37211316</ArticleId></ArticleIdList></Reference><Reference><Citation>Hanke N, T&#xfc;rk D, Selzer D, et al. . A comprehensive whole-body physiologically based pharmacokinetic drug&#x2013;drug&#x2013;gene interaction model of metformin and cimetidine in healthy adults and renally impaired individuals. Clin Pharmacokinet. 2020;59:1419&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7658088</ArticleId><ArticleId IdType="pubmed">32449077</ArticleId></ArticleIdList></Reference><Reference><Citation>Burt H, Neuhoff S, Almond L, et al. . Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug&#x2013;drug interactions. Eur J Pharm Sci. 2016;88:70&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pubmed">27019345</ArticleId></ArticleIdList></Reference><Reference><Citation>Shao J, Markowitz JS, Bei D, An G. Enzyme-transporter-mediated drug interactions with small molecule tyrosine kinase inhibitors. J Pharm Sci. 2014;103:3810&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pubmed">25308414</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhlaghi F, Matson KL, Mohammadpour AH, Kelly M, Karimani A. Clinical pharmacokinetics and pharmacodynamics of antihyperglycemic medications in children and adolescents with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2017;56:561&#x2013;71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5425330</ArticleId><ArticleId IdType="pubmed">27832452</ArticleId></ArticleIdList></Reference><Reference><Citation>Goswami S. Novel Computational Methods to Discover Genes Linked to Drug Response. University of California, San Francisco; 2015:28&#x2013;64.</Citation></Reference><Reference><Citation>Ma Y, Wang X, Gou X, Wu X. Identification and characterization of an endogenous biomarker of the renal vectorial transport (OCT2-MATE1). Biopharm Drug Dispos. 2024;45:43&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pubmed">38305087</ArticleId></ArticleIdList></Reference><Reference><Citation>Raj GM, Mathaiyan J, Wyawahare M, Priyadarshini R. Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metab Personalized Ther. 2018;33:175&#x2013;85.</Citation><ArticleIdList><ArticleId IdType="pubmed">30433870</ArticleId></ArticleIdList></Reference><Reference><Citation>Alshadfan H, Aljohani S, Mirghani H, Abdullah MNH. A comparison between metformin immediate-release and extended-release: a review. BNHS. 2022;140:2099&#x2013;120.</Citation></Reference><Reference><Citation>Barrett T, Jalaludin MY, Turan S, Hafez M, Shehadeh N; Novo Nordisk Pediatric Type 2 Diabetes Global Expert Panel. Rapid progression of type 2 diabetes and related complications in children and young people&#x2014;A literature review. Pediatr Diabetes. 2020;21:158&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7028065</ArticleId><ArticleId IdType="pubmed">31804738</ArticleId></ArticleIdList></Reference><Reference><Citation>Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: AN overview. J Epidemiol glob health. 2017;7:211&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7384574</ArticleId><ArticleId IdType="pubmed">29110860</ArticleId></ArticleIdList></Reference><Reference><Citation>HEARTS D: diagnosis and management of type 2 diabetes.
+2020. Available at: https://www.who.int/publications/i/item/who-ucn-ncd-20.1. Accessed February 2024.</Citation></Reference><Reference><Citation>Qaseem A, Barry MJ, Humphrey LL, et al. ; Clinical Guidelines Committee of the American College of Physicians. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American College of Physicians. Ann Intern Med. 2017;166:279&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">28055075</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahrooz A, Parsanasab H, Hashemi-Soteh MB, et al. . The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clin Exp Med. 2015;15:159&#x2013;65.</Citation><ArticleIdList><ArticleId IdType="pubmed">24740684</ArticleId></ArticleIdList></Reference><Reference><Citation>Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. Metformin pharmacogenomics: current status and future directions. Diabetes. 2014;63:2590&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4113063</ArticleId><ArticleId IdType="pubmed">25060887</ArticleId></ArticleIdList></Reference><Reference><Citation>Campesi I, Franconi F, Seghieri G, Meloni M. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. Pharmacol Res. 2017;119:195&#x2013;207.</Citation><ArticleIdList><ArticleId IdType="pubmed">28189784</ArticleId></ArticleIdList></Reference><Reference><Citation>Klein S, Gastaldelli A, Yki-J&#xe4;rvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab. 2022;34:11&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8740746</ArticleId><ArticleId IdType="pubmed">34986330</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Xu B, Fan S, et al. . Effects of single-nucleotide polymorphism on the pharmacokinetics and pharmacodynamics of metformin. Expert Rev Clin Pharmacol. 2022;15:1107&#x2013;17.</Citation><ArticleIdList><ArticleId IdType="pubmed">36065506</ArticleId></ArticleIdList></Reference><Reference><Citation>Breitenstein MK, Simon G, Ryu E, et al. . Using EHR-linked biobank data to study metformin pharmacogenomics. In: Digital Healthcare Empowering Europeans. Stud Health Technol Inform: IOS Press; 2015:914&#x2013;918.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5051541</ArticleId><ArticleId IdType="pubmed">25991289</ArticleId></ArticleIdList></Reference><Reference><Citation>Todd JN, Florez JC. An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics. 2014;15:529&#x2013;39.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4121960</ArticleId><ArticleId IdType="pubmed">24624919</ArticleId></ArticleIdList></Reference><Reference><Citation>ilvanathan S, Gurusamy U, Mukta V, Das A, Chandrasekaran A. Allele and genotype frequency of a genetic variant in ataxia telangiectasia mutated gene affecting glycemic response to metformin in South Indian population. IJEM. 2014;18:850&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4192993</ArticleId><ArticleId IdType="pubmed">25364682</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen MM, Brasch-Andersen C, Green H, et al. . The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">21989078</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39612398</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>06</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>48</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective.</ArticleTitle><Pagination><StartPage>e40729</StartPage><MedlinePgn>e40729</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40729</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040729</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetic nephropathy (DN) is a common complication of diabetes, which is prone to develop into end-stage renal disease, and early diagnosis and treatment is the key to effective management of DN. Biomarkers have important clinical significance in the diagnosis and treatment of DN and have attracted extensive attention from researchers in recent years. The aim of this study was to visualize the field of biomarker research in DN through bibliometric analysis, to summarize the current status and predict future trends of this field, with a view to providing valuable insights for scholars and policy makers.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Literature search and data collection from Web of Science Core Collection. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">We identified 1274 publications about biomarker research in DN from 1995 to November 01, 2023, with a steady increase in annual publications. China, Steno Diabetes Center in Denmark, and Frontiers in Endocrinology were the most productive country, institution, and journal, respectively; Mischak, Harald was both the most productive and highly cited author, and Kidney International was the most cited journal. The high frequency keywords were "albuminuria," "chronic kidney disease" and "expression." In addition, "macrophage," "fibrosis" and "omics" are potentially promising topics.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Qin</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Hunan University of Medicine, Huaihua, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Yafei</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>The First Clinical Medical College of Lanzhou University, Lanzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zuo</LastName><ForeName>Meiying</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>The First Clinical Medical College of Lanzhou University, Lanzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Fang</ForeName><Initials>F</Initials><Identifier Source="ORCID">0009-0003-2442-6604</Identifier><AffiliationInfo><Affiliation>Hunan University of Medicine, Huaihua, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015706" MajorTopicYN="Y">Bibliometrics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D035843" MajorTopicYN="N">Biomedical Research</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName><QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflicts of interest to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612398</ArticleId><ArticleId IdType="pmc">PMC11608688</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040729</ArticleId><ArticleId IdType="pii">00005792-202411290-00023</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164&#x2013;76.</Citation><ArticleIdList><ArticleId IdType="pubmed">15616252</ArticleId></ArticleIdList></Reference><Reference><Citation>Afkarian M, Sachs MC, Kestenbaum B, et al. . Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3559486</ArticleId><ArticleId IdType="pubmed">23362314</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet A. Diabetic kidney disease: past and present. Adv Anat Pathol. 2020;27:87&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">31876542</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng HT, Xu X, Lim PS, Hung KY. Worldwide Epidemiology of diabetes-related end-stage renal disease, 2000-2015. Diabetes Care. 2021;44:89&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pubmed">33203706</ArticleId></ArticleIdList></Reference><Reference><Citation>CKD in the General Population. National institute of diabetes and digestive and kidney diseases.
+Available at: https://usrds-adr.niddk.nih.gov/2022/chronic-kidney-disease/1-ckd-in-the-general-populatio [access date 14 May 2023].</Citation></Reference><Reference><Citation>Rocha NA, McCullough PA. Cardiovascular outcomes in diabetic kidney disease: insights from recent clinical trials. Kidney Int Suppl. 2018;8:8&#x2013;17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6336216</ArticleId><ArticleId IdType="pubmed">30675434</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402:203&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Persson F, Rossing P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl (2011). 2018;8:2&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6336222</ArticleId><ArticleId IdType="pubmed">30675433</ArticleId></ArticleIdList></Reference><Reference><Citation>Kwiendacz H, Nabrdalik K, Stompor T, Gumprecht J. What do we know about biomarkers in diabetic kidney disease? Endokrynol Pol. 2020;71:545&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">33378070</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuttle KR, Agarwal R, Alpers CE, et al. . Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248&#x2013;60.</Citation><ArticleIdList><ArticleId IdType="pubmed">35661785</ArticleId></ArticleIdList></Reference><Reference><Citation>Watanabe K, Sato E, Mishima E, Miyazaki M, Tanaka T. What&#x2019;s new in the molecular mechanisms of diabetic kidney disease: recent advances. Int J Mol Sci. 2022;24:570.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9820354</ArticleId><ArticleId IdType="pubmed">36614011</ArticleId></ArticleIdList></Reference><Reference><Citation>Order SE. Beneficial and detrimental effects of therapy on immunity in breast cancer. Int J Radiat Oncol Biol Phys. 1977;2:377&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">863770</ArticleId></ArticleIdList></Reference><Reference><Citation>Sauriasari R, Safitri DD, Azmi NU. Current updates on protein as biomarkers for diabetic kidney disease: a systematic review. Ther Adv Endocrinol Metab. 2021;12:20420188211049612.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8554552</ArticleId><ArticleId IdType="pubmed">34721837</ArticleId></ArticleIdList></Reference><Reference><Citation>Roointan A, Gheisari Y, Hudkins KL, Gholaminejad A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis. 2021;31:2253&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">34059383</ArticleId></ArticleIdList></Reference><Reference><Citation>Dong X, Xie Y, Xu J, et al. . Global historical retrospect and future prospects on biomarkers of heart failure: a bibliometric analysis and science mapping. Heliyon. 2023;9:e13509.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9942007</ArticleId><ArticleId IdType="pubmed">36825183</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Hu L, Liao S, et al. . Bibliometric analysis of publications on enthesitis in spondyloarthritis in 2012-2021 based on web of science core collection databases. Rheumatol Int. 2023;43:173&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pubmed">36464747</ArticleId></ArticleIdList></Reference><Reference><Citation>van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523&#x2013;38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2883932</ArticleId><ArticleId IdType="pubmed">20585380</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA. 2004;101 Suppl 1(Suppl 1):5303&#x2013;10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC387312</ArticleId><ArticleId IdType="pubmed">14724295</ArticleId></ArticleIdList></Reference><Reference><Citation>Desai N, Veras L, Gosain A. Using Bradford&#x2019;s law of scattering to identify the core journals of pediatric surgery. J Surg Res. 2018;229:90&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">29937022</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx W, Bornmann L, Barth A, Leydesdorff L. Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). J Assoc Inf Sci Tech. 2014;65:751&#x2013;64.</Citation></Reference><Reference><Citation>Aronson JK, Ferner RE. Biomarkers-a general review. Curr Protoc Pharmacol. 2017;76:9.23.1&#x2013;9.23.17.</Citation><ArticleIdList><ArticleId IdType="pubmed">28306150</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhong VW, Yu D, Zhao L, et al. . Achievement of guideline-recommended targets in diabetes care in China: a nationwide cross-sectional study. Ann Intern Med. 2023;176:1037&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">37523704</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7567026</ArticleId><ArticleId IdType="pubmed">33069326</ArticleId></ArticleIdList></Reference><Reference><Citation>Crick F. Central dogma of molecular biology. Nature. 1970;227:561&#x2013;3.</Citation><ArticleIdList><ArticleId IdType="pubmed">4913914</ArticleId></ArticleIdList></Reference><Reference><Citation>Wada J, Makino H, Kanwar YS. Gene expression and identification of gene therapy targets in diabetic nephropathy. Kidney Int. 2002;61(1 Suppl):S73&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">11841617</ArticleId></ArticleIdList></Reference><Reference><Citation>Hohenadel D, van der Woude FJ. Gene expression in diabetic nephropathy. Curr Diab Rep. 2004;4:462&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">15539012</ArticleId></ArticleIdList></Reference><Reference><Citation>Hostetter TH. Diabetic nephropathy. Metabolic versus hemodynamic considerations. Diabetes Care. 1992;15:1205&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pubmed">1396017</ArticleId></ArticleIdList></Reference><Reference><Citation>Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33:363&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6430926</ArticleId><ArticleId IdType="pubmed">30806496</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">11342793</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol. 2023;14:1194738.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10410279</ArticleId><ArticleId IdType="pubmed">37564641</ArticleId></ArticleIdList></Reference><Reference><Citation>Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci . 2020;21:2806.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7215738</ArticleId><ArticleId IdType="pubmed">32316547</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakagawa T, Tanabe K, Croker BP, et al. . Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011;7:36&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3653134</ArticleId><ArticleId IdType="pubmed">21045790</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol. 2011;7:176&#x2013;84.</Citation><ArticleIdList><ArticleId IdType="pubmed">21151200</ArticleId></ArticleIdList></Reference><Reference><Citation>Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 2007;71:846&#x2013;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">17342177</ArticleId></ArticleIdList></Reference><Reference><Citation>Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol. 2017;312:F716&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6109808</ArticleId><ArticleId IdType="pubmed">27558558</ArticleId></ArticleIdList></Reference><Reference><Citation>Hojs R, Ekart R, Bevc S, Hojs N. Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients. Nephron. 2016;133:159&#x2013;62.</Citation><ArticleIdList><ArticleId IdType="pubmed">27344598</ArticleId></ArticleIdList></Reference><Reference><Citation>Viberti GC, Jarrett RJ, Keen H. Microalbuminuria as predictor of nephropathy in diabetics. Lancet. 1982;2:611.</Citation><ArticleIdList><ArticleId IdType="pubmed">6125757</ArticleId></ArticleIdList></Reference><Reference><Citation>Mogensen CE. Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int. 1987;31:673&#x2013;89.</Citation><ArticleIdList><ArticleId IdType="pubmed">3550239</ArticleId></ArticleIdList></Reference><Reference><Citation>Jones RH, Hayakawa H, Mackay JD, Parsons V, Watkins PJ. Progression of diabetic nephropathy. Lancet. 1979;1:1105&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">86831</ArticleId></ArticleIdList></Reference><Reference><Citation>Rossing P, Caramori ML, Chan JCN, et al. . Executive summary of the KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease: an update based on rapidly emerging new evidence. Kidney Int. 2022;102:990&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">36272755</ArticleId></ArticleIdList></Reference><Reference><Citation>Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3725722</ArticleId><ArticleId IdType="pubmed">19847154</ArticleId></ArticleIdList></Reference><Reference><Citation>Krolewski AS, Niewczas MA, Skupien J, et al. . Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37:226&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3867993</ArticleId><ArticleId IdType="pubmed">23939543</ArticleId></ArticleIdList></Reference><Reference><Citation>Skupien J, Warram JH, Smiles AM, et al. . The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end-stage renal disease. Kidney Int. 2012;82:589&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3425658</ArticleId><ArticleId IdType="pubmed">22622493</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SS, Song SH, Kim IJ, et al. . Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36:656&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3579333</ArticleId><ArticleId IdType="pubmed">23093662</ArticleId></ArticleIdList></Reference><Reference><Citation>Feng BY, Lu Y, Ye L, Yin LJ, Zhou YJ, Chen AQ. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol. 2022;13:1043174.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9724588</ArticleId><ArticleId IdType="pubmed">36482996</ArticleId></ArticleIdList></Reference><Reference><Citation>Krolewski AS, Warram JH, Forsblom C, et al. . Serum concentration of cystatin c and risk of end-stage renal disease in diabetes. Diabetes Care. 2012;35:2311&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3476893</ArticleId><ArticleId IdType="pubmed">22851596</ArticleId></ArticleIdList></Reference><Reference><Citation>Nielsen SE, Schjoedt KJ, Astrup AS, et al. . Neutrophil Gelatinase-Associated Lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabetic Med. 2010;27:1144&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">20854382</ArticleId></ArticleIdList></Reference><Reference><Citation>Pavkov ME, Weil EJ, Fufaa GD, et al. . Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 2016;89:226&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4805514</ArticleId><ArticleId IdType="pubmed">26398493</ArticleId></ArticleIdList></Reference><Reference><Citation>Roy MS, Janal MN, Crosby J, Donnelly R. Markers of endothelial dysfunction and inflammation predict progression of diabetic nephropathy in African Americans with type 1 diabetes. Kidney Int. 2015;87:427&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4263810</ArticleId><ArticleId IdType="pubmed">24918153</ArticleId></ArticleIdList></Reference><Reference><Citation>Scurt FG, Menne J, Brandt S, et al. . Monocyte chemoattractant protein-1 predicts the development of diabetic nephropathy. Diabetes-Metab Res Rev. 2022;38:e3497.</Citation><ArticleIdList><ArticleId IdType="pubmed">34541760</ArticleId></ArticleIdList></Reference><Reference><Citation>Panduru NM, Forsblom C, Saraheimo M, et al. .; FinnDiane Study Group. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2013;36:2077&#x2013;83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3687279</ArticleId><ArticleId IdType="pubmed">23378622</ArticleId></ArticleIdList></Reference><Reference><Citation>Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. . Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011;34:691&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3041209</ArticleId><ArticleId IdType="pubmed">21273494</ArticleId></ArticleIdList></Reference><Reference><Citation>Jian WX, Peng WH, Jin J, et al. . Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metab Clin Exp. 2012;61:853&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">22136913</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu L, Li XQ, Chang DY, et al. . Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant. 2020;35:291&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">30357416</ArticleId></ArticleIdList></Reference><Reference><Citation>Carranza K, Veron D, Cercado A, et al. . Cellular and molecular aspects of diabetic nephropathy and the role of VEGF-A. Nefrologia. 2015;35:131&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">26300505</ArticleId></ArticleIdList></Reference><Reference><Citation>Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care. 2010;33:1567&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2890360</ArticleId><ArticleId IdType="pubmed">20357380</ArticleId></ArticleIdList></Reference><Reference><Citation>Sinha N, Kumar V, Puri V, et al. . Urinary exosomes: potential biomarkers for diabetic nephropathy. Nephrology (Carlton). 2020;25:881&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">32323449</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu YF, Liu DW, Feng Q, Liu ZS. Diabetic nephropathy: perspective on extracellular vesicles. Front Immunol. 2020;11:943.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7283536</ArticleId><ArticleId IdType="pubmed">32582146</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen JF, Zhang Q, Liu DW, Liu ZS. Exosomes: advances, development and potential therapeutic strategies in diabetic nephropathy. Metab Clin Exp. 2021;122:154834.</Citation><ArticleIdList><ArticleId IdType="pubmed">34217734</ArticleId></ArticleIdList></Reference><Reference><Citation>Liao WL, Chang CT, Chen CC, et al. . Urinary proteomics for the early diagnosis of diabetic nephropathy in Taiwanese patients. J Clin Med. 2018;7:483.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6306863</ArticleId><ArticleId IdType="pubmed">30486327</ArticleId></ArticleIdList></Reference><Reference><Citation>Z&#xfc;rbig P, Jerums G, Hovind P, et al. . Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304&#x2013;13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3501878</ArticleId><ArticleId IdType="pubmed">22872235</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang YM, Zhang SW, Wang GX. Metabolomic biomarkers in diabetic kidney diseases-a systematic review. J Diabetes Complications. 2015;29:1345&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26253264</ArticleId></ArticleIdList></Reference><Reference><Citation>Szostak J, Goracy A, Durys D, Dec P, Modrzejewski A, Pawlik A. The role of MicroRNA in the pathogenesis of diabetic nephropathy. Int J Mol Sci. 2023;24:6214.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10094215</ArticleId><ArticleId IdType="pubmed">37047185</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewanjee S, Bhattacharjee N. MicroRNA: a new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol. 2018;155:32&#x2013;47.</Citation><ArticleIdList><ArticleId IdType="pubmed">29940170</ArticleId></ArticleIdList></Reference><Reference><Citation>Lei L, Bai YH, Li YL, Wang JP. Association of the expression pattern and functions of long non-coding RNA with the progression of diabetic nephropathy. Asian J Surg. 2022;45:2752&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">35718604</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612259</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2376-1032</ISSN><JournalIssue CitedMedium="Internet"><Volume>30</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of managed care &amp; specialty pharmacy</Title><ISOAbbreviation>J Manag Care Spec Pharm</ISOAbbreviation></Journal><ArticleTitle>Area deprivation index impact on type 2 diabetes outcomes in a regional health plan.</ArticleTitle><Pagination><StartPage>1375</StartPage><EndPage>1384</EndPage><MedlinePgn>1375-1384</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.18553/jmcp.2024.30.12.1375</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Rates of attainment of high-quality diabetes care have been shown to be lower for those living in more disadvantaged and rural areas. Diabetes management relies on access to care and is impacted by physical, social, and economic factors. Area deprivation index (ADI) is one way to quantify geographic disparities in aggregate. We aimed to investigate how ADI impacts outcomes in members with type 2 diabetes enrolled in a large, regional health plan.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To evalute clinical and economic objectives. Clinical objectives included the percentage of members who achieved hemoglobin A1c (A1c) goal level of 7% or less, the percentage of members who received comorbidity-focused therapies, noninsulin diabetes medication adherence, and the frequency and type of health care services used. Economic outcomes included per member per month differences in total cost of care, pharmacy cost, medical cost, and diabetes-associated cost.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">This retrospective review of pharmacy and medical claims included 8,814 adult members with newly diagnosed type 2 diabetes enrolled in an integrated health plan during calendar year 2021. To be included, members were required to be at least 18 years of age, reside in Pennsylvania, and have continuous enrollment for 2 years prior to type 2 diabetes diagnosis. State-level ADI data were derived for each member and applied to the Census block group on file in the administrative claims data. The study population deciles were grouped into ADI quintiles for analysis. Multivariable regression models and descriptive statistics were used to evaluate the association between ADI and outcomes while controlling for confounding variables.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">There were no statistically significant differences between any ADI quintile for achievement of A1c goal or receipt of comorbidity-focused therapy. Significant differences were identified between ADI quintiles 1 (least deprived) and 5 (most deprived) for obtainment of at least 1 A1c test during calendar year 2021 (72% vs 56%, <i>P</i> &lt; 0.01) and adherence to noninsulin diabetes medications (70% vs 62%, <i>P</i> &lt; 0.01). Significant differences were also identified for all-cause inpatient, outpatient, and unplanned health care service utilization. The difference in per member per month all-cause total cost of care was on average $363.50 less for those living in ADI quintile 1 vs those in quintile 5 (<i>P</i> &lt; 0.01).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Significant differences were identified between ADI quintiles 1 and 5 for noninsulin diabetes medication adherence, frequency of A1c test claims, all-cause health care service utilization, and total cost of care. There were no statistically significant differences between ADI quintiles for achievement of A1c goal or receipt of comorbidity-focused therapies.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Laffey</LastName><ForeName>Taylor N</ForeName><Initials>TN</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marr</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Modany</LastName><ForeName>Ashley</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McGraw</LastName><ForeName>Molly</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mounarath</LastName><ForeName>Tavvy</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bryk</LastName><ForeName>Andrew</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Christian</LastName><ForeName>Nicholas</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Good</LastName><ForeName>Chester</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>UPMC Health Plan, Pittsburgh, PA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Manag Care Spec Pharm</MedlineTA><NlmUniqueID>101644425</NlmUniqueID><ISSNLinking>2376-0540</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055118" MajorTopicYN="N">Medication Adherence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010414" MajorTopicYN="N" Type="Geographic">Pennsylvania</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012041" MajorTopicYN="N">Regional Medical Programs</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017048" MajorTopicYN="N">Health Care Costs</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>19</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612259</ArticleId><ArticleId IdType="pmc">PMC11607216</ArticleId><ArticleId IdType="doi">10.18553/jmcp.2024.30.12.1375</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Centers for Disease Control and Prevention. National Diabetes Statistics Report website. Accessed July 9, 2023. https://www.cdc.gov/diabetes/php/data-research/?CDC_AAref_Val=https://www.cdc.gov/diabetes/data/statistics-report/index.html</Citation></Reference><Reference><Citation>Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. U.S. Dept of Health and Human Services. 2020. Accessed July 9, 2023. https://diabetesresearch.org/wp-content/uploads/2022/05/national-diabetes-statistics-report-2020.pdf</Citation></Reference><Reference><Citation>Kurani SS, Lampman MA, Funni SA, et al.. Association between area-level socioeconomic deprivation and diabetes care quality in US primary care practices. JAMA Netw Open. 2021;4(12):e2138438. doi:10.1001/jamanetworkopen.2021.38438</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8717098</ArticleId><ArticleId IdType="pubmed">34964856</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurani SS, Heien HC, Sangaralingham LR, et al.. Association of area-level socioeconomic deprivation with hypoglycemic and hyperglycemic crises in US adults with diabetes. JAMA Netw Open. 2022;5(1):e2143597. doi:10.1001/jamanetworkopen.2021.43597</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8767428</ArticleId><ArticleId IdType="pubmed">35040969</ArticleId></ArticleIdList></Reference><Reference><Citation>Center for Health Disparities Research, University of Wisconsin School of Medicine and Public Health. Neighborhood Atlas&#xae;. Accessed December 15, 2023. http://www.neighborhoodatlas.medicine.wisc.edu</Citation></Reference><Reference><Citation>Eberly LA, Yang L, Eneanya ND, et al.. Association of race/ethnicity, gender, and socioeconomic status with sodium-glucose cotransporter 2 inhibitor use among patients with diabetes in the US. JAMA Netw Open. 2021;4(4):e216139. doi:10.1001/jamanetworkopen.2021.6139</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8050743</ArticleId><ArticleId IdType="pubmed">33856475</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmer SC, Tendal B, Mustafa RA, et al.. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: Systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;372:m4573. doi:10.1136/bmj.m4573</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7804890</ArticleId><ArticleId IdType="pubmed">33441402</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes &#x2013; 2021. Diabetes Care. 2021;(44)(suppl 1):S111-24.</Citation><ArticleIdList><ArticleId IdType="pubmed">33298420</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, et al.; American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2023. Diabetes Care. 2023;46(suppl 1):S140-57. doi:10.2337/dc23-S009</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810476</ArticleId><ArticleId IdType="pubmed">36507650</ArticleId></ArticleIdList></Reference><Reference><Citation>Omole TD, Zhu J, Garrard W, et al.. Area deprivation index and oral anticoagulation in new onset atrial fibrillation. Am J Prev Cardiol. 2022;10:100346. doi:10.1016/j.ajpc.2022.100346</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9066349</ArticleId><ArticleId IdType="pubmed">35517873</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, et al.; American Diabetes Association. 6. Glycemic targets: Standards of Medical Care in Diabetes-2023. Diabetes Care. 2023;46(suppl 1): S97-110. doi:10.2337/dc23-S006</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810469</ArticleId><ArticleId IdType="pubmed">36507646</ArticleId></ArticleIdList></Reference><Reference><Citation>Towne SD, Bolin J, Ferdinand A, Nicklett EJ, Smith ML, Ory MG. Assessing diabetes and factors associated with foregoing medical care among persons with diabetes: Disparities facing American Indian/Alaska native, Black, Hispanic, low income, and Southern adults in the U.S. (2011-2015). Int J Environ Res Public Health. 2017;14(5):464. doi:10.3390/ijerph14050464</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5451915</ArticleId><ArticleId IdType="pubmed">28445431</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilder ME, Kulie P, Jensen C, et al.. The impact of social determinants of health on medication adherence: A systematic review and meta-analysis. J Gen Intern Med. 2021;36(5):1359-70. doi:10.1007/s11606-020-06447-0</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8131473</ArticleId><ArticleId IdType="pubmed">33515188</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization. Adherence to Long-Term Therapies: Evidence for Action. World Health Organization; 2003. Accessed March 3, 2024. https://iris.who.int/handle/10665/42682</Citation></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, et al.. Social determinants of health and diabetes: A scientific review. Diabetes Care. 2020;44(1):258-79. doi:10.2337/dci20-0053</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Apperley LJ, Ng SM. Socioeconomic deprivation, household education, and employment are associated with increased hospital admissions and poor glycemic control in children with type 1 diabetes mellitus. Rev Diabet Stud. 2017;14(2-3):295-300. doi:10.1900/RDS.2017.14.295</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6115008</ArticleId><ArticleId IdType="pubmed">29145539</ArticleId></ArticleIdList></Reference><Reference><Citation>Collins PF, Stratton RJ, Kurukulaaratchy RJ, Elia M. Influence of deprivation on health care use, health care costs, and mortality in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1289-96. doi:10.2147/COPD.S157594</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5914553</ArticleId><ArticleId IdType="pubmed">29719384</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39612042</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1522-1709</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Sleep &amp; breathing = Schlaf &amp; Atmung</Title><ISOAbbreviation>Sleep Breath</ISOAbbreviation></Journal><ArticleTitle>The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea.</ArticleTitle><Pagination><StartPage>32</StartPage><MedlinePgn>32</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">32</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11325-024-03221-y</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Obstructive sleep apnea (OSA) is associated with a variety of diseases, including type 2 diabetes (T2D). Chemosensitivity is an important component of the pathophysiological mechanisms of OSA, and it is not only elevated in patients with OSA but also in those with T2D. This study aimed to investigate the association between chemosensitivity and the risk of developing T2D in patients with OSA.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 135 male participants with OSA and without pre-existing T2D were enrolled in this study. Peripheral chemosensitivity was evaluated using the rebreathing test. Data on demographics, polysomnographic parameters, and clinical characteristics were collected. The QDiabetes-2018 risk calculator was employed to calculate the 10-year T2D risk. The association between peripheral chemosensitivity and 10-year T2D risk was examined using multivariate logistic regression.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 64 participants had moderate-to-high 10-year risk of T2D. In the fully adjusted model, participants situated within the second and fifth quantiles of peripheral chemosensitivity levels demonstrated a higher risk of developing T2D, with OR of 4.87 (95% CI, 1.22-19.43) and 5.26 (95% CI, 1.27-21.68) respectively. However, across varying levels of peripheral chemosensitivity, no significant difference in the 10-year T2D risk was observed among different severities of OSA.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Higher peripheral chemosensitivity was associated with an increased 10-year T2D risk, as calculated using a risk calculator based on clinical variables. For outcomes that reflect a moderate-to-high 10-year risk of T2D, the severity of OSA did not significantly affect the risk, irrespective of whether patients exhibited relatively low or high chemosensitivity.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Lixia</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dai</LastName><ForeName>Lu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Xiaona</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Junwei</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Rong</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiao</LastName><ForeName>Yi</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0000-0001-5315-7771</Identifier><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &amp; Peking Union Medical College, Beijing, 100730, China. xiaoyipumch@sina.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>82370052</GrantID><Agency>the National Natural Science Foundation of China</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Sleep Breath</MedlineTA><NlmUniqueID>9804161</NlmUniqueID><ISSNLinking>1520-9512</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020181" MajorTopicYN="Y">Sleep Apnea, Obstructive</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017286" MajorTopicYN="N">Polysomnography</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Hypercapnic ventilatory response</Keyword><Keyword MajorTopicYN="N">Obstructive sleep apnea</Keyword><Keyword MajorTopicYN="N">Peripheral chemosensitivity</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declarations. Ethical approval: The study was approved by the ethics committees of Peking Union Medical College (JS-3573) and was conducted in accordance with the Declaration of Helsinki. Informed consent: Written informed consent was obtained from all participants. Conflict of interest: Dr Xiaona Wang reports a patent for a device for measuring ventilatory control based on hypercapnic ventilatory response issued to ZL 2021 2 1127108.9. There were no financial or other relationships might lead to a conflict of interest in the present article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>17</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612042</ArticleId><ArticleId IdType="pmc">PMC11607132</ArticleId><ArticleId IdType="doi">10.1007/s11325-024-03221-y</ArticleId><ArticleId IdType="pii">10.1007/s11325-024-03221-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7:687&#x2013;698. 10.1016/s2213-2600(19)30198-5</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7007763</ArticleId><ArticleId IdType="pubmed">31300334</ArticleId></ArticleIdList></Reference><Reference><Citation>Deacon NL, Catcheside PG (2015) The role of high loop gain induced by intermittent hypoxia in the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 22:3&#x2013;14. 10.1016/j.smrv.2014.10.003</Citation><ArticleIdList><ArticleId IdType="pubmed">25454671</ArticleId></ArticleIdList></Reference><Reference><Citation>Ward DS, Voter WA, Karan S (2007) The effects of hypo- and hyperglycaemia on the hypoxic ventilatory response in humans. J Physiol 582:859&#x2013;869. 10.1113/jphysiol.2007.130112</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2075331</ArticleId><ArticleId IdType="pubmed">17478538</ArticleId></ArticleIdList></Reference><Reference><Citation>Eckert DJ, White DP, Jordan AS et al (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188:996&#x2013;1004. 10.1164/rccm.201303-0448OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3826282</ArticleId><ArticleId IdType="pubmed">23721582</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmickl CN, Orr JE, Kim P et al Point-of-care prediction model of loop gain in patients with obstructive sleep apnea: development and validation. BMC Pulmonary Med 2022, 22:158. 10.1186/s12890-022-01950-y</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9036750</ArticleId><ArticleId IdType="pubmed">35468829</ArticleId></ArticleIdList></Reference><Reference><Citation>Subramani Y, Singh M, Wong J et al (2017) Understanding phenotypes of obstructive sleep apnea: applications in anesthesia, surgery, and Perioperative Medicine. Anesth Analg 124:179&#x2013;191. 10.1213/ane.0000000000001546</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5429962</ArticleId><ArticleId IdType="pubmed">27861433</ArticleId></ArticleIdList></Reference><Reference><Citation>Dempsey JA, Smith CA, Przybylowski T et al (2004) The ventilatory responsiveness to CO(2) below eupnoea as a determinant of ventilatory stability in sleep. J Physiol 560:1&#x2013;11. 10.1113/jphysiol.2004.072371</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1665213</ArticleId><ArticleId IdType="pubmed">15284345</ArticleId></ArticleIdList></Reference><Reference><Citation>Gloyn AL, Drucker DJ (2018) Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol 6:891&#x2013;900. 10.1016/s2213-8587(18)30052-4</Citation><ArticleIdList><ArticleId IdType="pubmed">29699867</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim NH, Cho NH, Yun CH et al (2013) Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care 36:3909&#x2013;3915. 10.2337/dc13-0375</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3836097</ArticleId><ArticleId IdType="pubmed">24101695</ArticleId></ArticleIdList></Reference><Reference><Citation>Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: a state of the Art Review. Chest 152:1070&#x2013;1086. 10.1016/j.chest.2017.05.009</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5812754</ArticleId><ArticleId IdType="pubmed">28527878</ArticleId></ArticleIdList></Reference><Reference><Citation>Fredheim JM, Rollheim J, Omland T et al (2011) Type 2 diabetes and pre-diabetes are associated with obstructive sleep apnea in extremely obese subjects: a cross-sectional study. Cardiovasc Diabetol 10:84. 10.1186/1475-2840-10-84</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3206416</ArticleId><ArticleId IdType="pubmed">21943153</ArticleId></ArticleIdList></Reference><Reference><Citation>Cunha-Guimaraes JP, Guarino MP, Tim&#xf3;teo AT et al (2020) Carotid body chemosensitivity: early biomarker of dysmetabolism in humans. Eur J Endocrinol 182:549&#x2013;557. 10.1530/eje-19-0976</Citation><ArticleIdList><ArticleId IdType="pubmed">32213652</ArticleId></ArticleIdList></Reference><Reference><Citation>Ribeiro MJ, Sacramento JF, Gonzalez C et al (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62:2905&#x2013;2916. 10.2337/db12-1463</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3717872</ArticleId><ArticleId IdType="pubmed">23530003</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang M, Buttigieg J, Nurse CA (2007) Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 578:735&#x2013;750. 10.1113/jphysiol.2006.121871</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2151341</ArticleId><ArticleId IdType="pubmed">17124268</ArticleId></ArticleIdList></Reference><Reference><Citation>Conde SV, Sacramento JF, Guarino MP (2018) Carotid body: a metabolic sensor implicated in insulin resistance. Physiol Genomics 50:208&#x2013;214. 10.1152/physiolgenomics.00121.2017</Citation><ArticleIdList><ArticleId IdType="pubmed">29373079</ArticleId></ArticleIdList></Reference><Reference><Citation>Conde SV, Obeso A, Gonzalez C (2007) Low glucose effects on rat carotid body chemoreceptor cells&#x2019; secretory responses and action potential frequency in the carotid sinus nerve. J Physiol 585:721&#x2013;730. 10.1113/jphysiol.2007.144261</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2375508</ArticleId><ArticleId IdType="pubmed">17947309</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen L, Magliano DJ, Balkau B et al (2010) AUSDRISK: an Australian type 2 diabetes risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust 192:197&#x2013;202. 10.5694/j.1326-5377.2010.tb03507.x</Citation><ArticleIdList><ArticleId IdType="pubmed">20170456</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmidt MI, Duncan BB, Bang H et al (2005) Identifying individuals at high risk for diabetes: the atherosclerosis risk in communities study. Diabetes Care 28:2013&#x2013;2018. 10.2337/diacare.28.8.2013</Citation><ArticleIdList><ArticleId IdType="pubmed">16043747</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosella LC, Manuel DG, Burchill C et al (2011) A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health 65:613&#x2013;620. 10.1136/jech.2009.102244</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3112365</ArticleId><ArticleId IdType="pubmed">20515896</ArticleId></ArticleIdList></Reference><Reference><Citation>Hippisley-Cox J, Coupland C (2017) Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ 359:j5019. 10.1136/bmj.j5019</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5694979</ArticleId><ArticleId IdType="pubmed">29158232</ArticleId></ArticleIdList></Reference><Reference><Citation>Kengne AP, Beulens JW, Peelen LM et al (2014) Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2:19&#x2013;29. 10.1016/s2213-8587(13)70103-7</Citation><ArticleIdList><ArticleId IdType="pubmed">24622666</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathur R, Noble D, Smith D et al (2012) Quantifying the risk of type 2 diabetes in East London using the QDScore: a cross-sectional analysis. Br J Gen Pract 62:e663&#x2013;670. 10.3399/bjgp12X656793</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3459773</ArticleId><ArticleId IdType="pubmed">23265225</ArticleId></ArticleIdList></Reference><Reference><Citation>Iber C (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. No Title)</Citation></Reference><Reference><Citation>Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146:1387&#x2013;1394. 10.1378/chest.14-0970</Citation><ArticleIdList><ArticleId IdType="pubmed">25367475</ArticleId></ArticleIdList></Reference><Reference><Citation>Edwards BA, Eckert DJ, McSharry DG et al (2014) Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am J Respir Crit Care Med 190:1293&#x2013;1300. 10.1164/rccm.201404-0718OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4315811</ArticleId><ArticleId IdType="pubmed">25321848</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhai Y, Zhao WH, Chen CM (2010) Verification on the cut-offs of waist circumference for defining central obesity in Chinese elderly and tall adults. Zhonghua Liu Xing Bing Xue Za Zhi 31:621&#x2013;625</Citation><ArticleIdList><ArticleId IdType="pubmed">21163090</ArticleId></ArticleIdList></Reference><Reference><Citation>Coutinho Costa J, Rebelo-Marques A, Machado JN et al (2019) Validation of NoSAS (Neck, obesity, snoring, age, sex) score as a screening tool for obstructive sleep apnea: analysis in a sleep clinic. Pulmonology 25:263&#x2013;270. 10.1016/j.pulmoe.2019.04.004</Citation><ArticleIdList><ArticleId IdType="pubmed">31196834</ArticleId></ArticleIdList></Reference><Reference><Citation>Powell FL (2012) Measuring the respiratory chemoreflexes in humans by J. Duffin. Respir Physiol Neurobiol 181:44&#x2013;45. 10.1016/j.resp.2012.01.007</Citation><ArticleIdList><ArticleId IdType="pubmed">22306918</ArticleId></ArticleIdList></Reference><Reference><Citation>Dai L, Guo J, Hui X et al (2024) The potential interaction between chemosensitivity and the development of cardiovascular disease in obstructive sleep apnea. Sleep Med 114:266&#x2013;271. 10.1016/j.sleep.2024.01.010</Citation><ArticleIdList><ArticleId IdType="pubmed">38244464</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu PH, Hui CKM, Lui MMS et al (2019) Incident Type 2 diabetes in OSA and Effect of CPAP Treatment: a retrospective clinic Cohort Study. Chest 156:743&#x2013;753. 10.1016/j.chest.2019.04.130</Citation><ArticleIdList><ArticleId IdType="pubmed">31128116</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamura A, Kawano Y, Watanabe T et al (2008) Relationship between the severity of obstructive sleep apnea and impaired glucose metabolism in patients with obstructive sleep apnea. Respir Med 102:1412&#x2013;1416. 10.1016/j.rmed.2008.04.020</Citation><ArticleIdList><ArticleId IdType="pubmed">18606532</ArticleId></ArticleIdList></Reference><Reference><Citation>Baby SM, Zaidi F, Hunsberger GE et al (2023) Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs. Exp Physiol 108:280&#x2013;295. 10.1113/ep090584</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10103873</ArticleId><ArticleId IdType="pubmed">36459572</ArticleId></ArticleIdList></Reference><Reference><Citation>de Ara&#xfa;jo EV, Guimar&#xe3;es KSL, Magnani M et al (2019) Maternal dyslipidemia during pregnancy and lactation increases blood pressure and disrupts cardiorespiratory and glucose hemostasis in female rat offspring. Appl Physiol Nutr Metab 44:925&#x2013;936. 10.1139/apnm-2018-0756</Citation><ArticleIdList><ArticleId IdType="pubmed">30649894</ArticleId></ArticleIdList></Reference><Reference><Citation>Hruby A, Guasch-Ferr&#xe9; M, Bhupathiraju SN et al (2017) Magnesium intake, quality of Carbohydrates, and risk of type 2 diabetes: results from three U.S. cohorts. Diabetes Care 40:1695&#x2013;1702. 10.2337/dc17-1143</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5711333</ArticleId><ArticleId IdType="pubmed">28978672</ArticleId></ArticleIdList></Reference><Reference><Citation>Langenberg C, Lotta LA (2018) Genomic insights into the causes of type 2 diabetes. Lancet 391:2463&#x2013;2474. 10.1016/s0140-6736(18)31132-2</Citation><ArticleIdList><ArticleId IdType="pubmed">29916387</ArticleId></ArticleIdList></Reference><Reference><Citation>Samson P, Casey KR, Knepler J et al (2012) Clinical characteristics, comorbidities, and response to treatment of veterans with obstructive sleep apnea, Cincinnati Veterans Affairs Medical Center, 2005&#x2013;2007. Prev Chronic Dis 9:E46. 10.5888/pcd9.110117</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3337849</ArticleId><ArticleId IdType="pubmed">22280961</ArticleId></ArticleIdList></Reference><Reference><Citation>Ronksley PE, Hemmelgarn BR, Heitman SJ et al (2009) Obstructive sleep apnoea is associated with diabetes in sleepy subjects. Thorax 64:834&#x2013;839. 10.1136/thx.2009.115105</Citation><ArticleIdList><ArticleId IdType="pubmed">19679579</ArticleId></ArticleIdList></Reference><Reference><Citation>Reichmuth KJ, Austin D, Skatrud JB et al (2005) Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med 172:1590&#x2013;1595. 10.1164/rccm.200504-637OC</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2718458</ArticleId><ArticleId IdType="pubmed">16192452</ArticleId></ArticleIdList></Reference><Reference><Citation>Marshall NS, Wong KK, Phillips CL et al (2009) Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med 5:15&#x2013;20</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2637161</ArticleId><ArticleId IdType="pubmed">19317376</ArticleId></ArticleIdList></Reference><Reference><Citation>Malhotra A, Ayappa I, Ayas N et al (2021) Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep 44. 10.1093/sleep/zsab030</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8271129</ArticleId><ArticleId IdType="pubmed">33693939</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas A, Belaidi E, Moulin S et al (2017) Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK. Diabetes 66:2942&#x2013;2951. 10.2337/db17-0186</Citation><ArticleIdList><ArticleId IdType="pubmed">28882901</ArticleId></ArticleIdList></Reference><Reference><Citation>Behrendt T, Bielitzki R, Behrens M et al (2022) Effects of intermittent hypoxia-hyperoxia on performance- and health-related outcomes in humans: a systematic review. Sports Med Open 8:70. 10.1186/s40798-022-00450-x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9156652</ArticleId><ArticleId IdType="pubmed">35639211</ArticleId></ArticleIdList></Reference><Reference><Citation>Celen YT, Hedner J, Carlson J et al (2010) Impact of gender on incident diabetes mellitus in obstructive sleep apnea: a 16-year follow-up. J Clin Sleep Med 6:244&#x2013;250</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2883035</ArticleId><ArticleId IdType="pubmed">20572417</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39612019</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1522-1709</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Sleep &amp; breathing = Schlaf &amp; Atmung</Title><ISOAbbreviation>Sleep Breath</ISOAbbreviation></Journal><ArticleTitle>The effect of physical activity on sleep quality in people with diabetes: systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>23</StartPage><MedlinePgn>23</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11325-024-03176-0</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">To revise and critically summarize the available scientific evidence regarding the effect of exercise on sleep quality in people with diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Three electronic databases (MEDLINE/PubMed, PEDro Database and Scopus) were searched systematically from their inception until February 2024. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database and Quality Assessment Tool for Before-After Studies with No Control Group scales.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 7 randomized controlled trials and 3 single-arm studies were included. Most of the studies included patients with type 2 diabetes (n&#x2009;=&#x2009;8). Self-reported sleep quality (n&#x2009;=&#x2009;9) and objective sleep status (n&#x2009;=&#x2009;1) were the main outcomes analysed. A variety of training programs were assessed over durations ranging from 4 to 16 weeks in the studies included. Data from eleven interventions demonstrated a significant improvement in self-reported sleep quality among patients with type 2 diabetes (Hedges' g -1.45; 95% CI -2.6; -0.29, p&#x2009;=&#x2009;0.005). However, data synthesis indicated that participants who exercised did not obtain significant improvements on their self-reported sleep quality compared to those in the control groups (Hedges' g 1.40; 95% CI -1.36; 4.18, p&#x2009;=&#x2009;0.111).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Preliminary evidence suggests that exercise can be prescribed to manage self-reported sleep quality in this population, although its effects may not surpass those of usual care.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Gonz&#xe1;lez-Devesa</LastName><ForeName>Daniel</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0001-6254-6461</Identifier><AffiliationInfo><Affiliation>Facultad de Humanidades y Educaci&#xf3;n, Universidad Cat&#xf3;lica de &#xc1;vila, C/ Canteros, &#xc1;vila, 05005, Espa&#xf1;a. danidevesa4@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain. danidevesa4@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sanchez-Lastra</LastName><ForeName>Miguel Adriano</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>P&#xe9;rez-Fern&#xe1;ndez</LastName><ForeName>Pedro</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Facultad de Ciencias de la Educaci&#xf3;n y del Deporte, Universidad de Vigo, Pontevedra, 36005, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Diz-G&#xf3;mez</LastName><ForeName>Jos&#xe9; Carlos</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ay&#xe1;n-P&#xe9;rez</LastName><ForeName>Carlos</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36310, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Did&#xe1;cticas Especi&#xe1;is, Universidad de Vigo, Vigo, 36310, Spain.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Sleep Breath</MedlineTA><NlmUniqueID>9804161</NlmUniqueID><ISSNLinking>1520-9512</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000089943" MajorTopicYN="Y">Sleep Quality</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005081" MajorTopicYN="N">Exercise Therapy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Exercise</Keyword><Keyword MajorTopicYN="N">Health</Keyword><Keyword MajorTopicYN="N">Rehabilitation</Keyword><Keyword MajorTopicYN="N">Sleep</Keyword><Keyword MajorTopicYN="N">Training</Keyword></KeywordList><CoiStatement>Declarations. Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Conflict of interest: All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers&#x2019; bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>16</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39612019</ArticleId><ArticleId IdType="doi">10.1007/s11325-024-03176-0</ArticleId><ArticleId IdType="pii">10.1007/s11325-024-03176-0</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Hazen RA, Fehr KK, Fidler A, Cousino MK, MacLeish SA, Gubitosi-Klug R (2015) Sleep disruption in adolescents with type 1 diabetes mellitus: relationships with adherence and diabetes control. Diabetes Manag 5:257&#x2013;265. https://doi.org/10.2217/dmt.15.18</Citation><ArticleIdList><ArticleId IdType="doi">10.2217/dmt.15.18</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu B, Abu Irsheed GM, Martyn-Nemeth P, Reutrakul S (2021) Type 1 diabetes, sleep, and hypoglycemia. Curr Diab Rep 21. https://doi.org/10.1007/s11892-021-01424-1</Citation></Reference><Reference><Citation>Donbalo&#x11f;lu Z, Barsal &#xc7;etiner E, &#x130;nan Y&#xfc;ksel A, Singin B, Ayd&#x131;n Behram B, Bedel A et al (2024) Sleep disturbances in children and adolescents with type 1 diabetes mellitus: prevalence, and relationship with diabetes management. Sleep Med 115:55&#x2013;60. https://doi.org/10.1016/j.sleep.2024.01.031</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2024.01.031</ArticleId><ArticleId IdType="pubmed">38330696</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogilvie RP, Patel SR The epidemiology of Sleep and Diabetes. Curr Diab Rep 2018;18. https://doi.org/10.1007/s11892-018-1055-8</Citation></Reference><Reference><Citation>Henson J, Covenant A, Hall AP, Herring L, Rowlands AV, Yates T et al (2024) Waking up to the importance of Sleep in Type 2 Diabetes Management: a narrative review. Diabetes Care 47:331&#x2013;343. https://doi.org/10.2337/dci23-0037</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci23-0037</ArticleId><ArticleId IdType="pubmed">38394635</ArticleId></ArticleIdList></Reference><Reference><Citation>Alsudairy NM, Kariri AN, Alghamdi OK, Aljohani LMM, Alahmadi SFM, Khalid F et al (2024) Quality of Sleep and its Effect on Glycemic Control. J Adv Zool 45:250&#x2013;256. https://doi.org/10.53555/jaz.v45i1.3127</Citation><ArticleIdList><ArticleId IdType="doi">10.53555/jaz.v45i1.3127</ArticleId></ArticleIdList></Reference><Reference><Citation>Gozashti MH, Eslami N, Radfar MH, Pakmanesh H (2016) Sleep pattern, duration and quality in relation with glycemic control in people with type 2 diabetes mellitus. Iran J Med Sci 41:531&#x2013;538</Citation><ArticleIdList><ArticleId IdType="pubmed">27853334</ArticleId></ArticleIdList></Reference><Reference><Citation>Elsayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) 5. Facilitating Positive Health Behaviors and Well-being to Improve Health outcomes: standards of Care in Diabetes&#x2014;2023. Diabetes Care 46:S68&#x2013;96. https://doi.org/10.2337/dc23-S005</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-S005</ArticleId><ArticleId IdType="pubmed">36507648</ArticleId></ArticleIdList></Reference><Reference><Citation>Perfect MM (2020) Sleep-related disorders in patients with type 1 diabetes mellitus: current insights. Nat Sci Sleep 12:101&#x2013;123. https://doi.org/10.2147/NSS.S152555</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/NSS.S152555</ArticleId><ArticleId IdType="pubmed">32104119</ArticleId><ArticleId IdType="pmc">7023878</ArticleId></ArticleIdList></Reference><Reference><Citation>Smyth A, Jenkins M, Dunham M, Kutzer Y, Taheri S, Whitehead L (2020) Systematic review of clinical practice guidelines to identify recommendations for sleep in type 2 diabetes mellitus management. Diabetes Res Clin Pract 170:108532. https://doi.org/10.1016/j.diabres.2020.108532</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108532</ArticleId><ArticleId IdType="pubmed">33157114</ArticleId></ArticleIdList></Reference><Reference><Citation>Chennaoui M, Arnal PJ, Sauvet F, L&#xe9;ger D (2015) Sleep and exercise: a reciprocal issue? Sleep Med Rev 20:59&#x2013;72. https://doi.org/10.1016/j.smrv.2014.06.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2014.06.008</ArticleId><ArticleId IdType="pubmed">25127157</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelley GA, Kelley KS (2017) Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med 10:26&#x2013;36. https://doi.org/10.1111/jebm.12236</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jebm.12236</ArticleId><ArticleId IdType="pubmed">28276627</ArticleId><ArticleId IdType="pmc">5527334</ArticleId></ArticleIdList></Reference><Reference><Citation>Valera S, Diz JC, Rey-Fern&#xe1;ndez B, Gonz&#xe1;lez-Devesa D, Garc&#xed;a-Fresneda A, Ay&#xe1;n C (2023) Efficacy of physical exercise on sleep quality in patients with chronic kidney disease: a systematic review and meta-analysis. Sleep Breath 28:381&#x2013;392. https://doi.org/10.1007/s11325-023-02891-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11325-023-02891-4</ArticleId><ArticleId IdType="pubmed">37566185</ArticleId></ArticleIdList></Reference><Reference><Citation>R&#xf6;hling M, Herder C, Roden M, Stemper T, M&#xfc;ssig K (2016) Effects of Long-Term Exercise interventions on Glycaemic Control in Type 1 and type 2 diabetes: a systematic review. Exp Clin Endocrinol Diabetes 124:495&#x2013;496. https://doi.org/10.1055/s-0042-106293</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0042-106293</ArticleId></ArticleIdList></Reference><Reference><Citation>Higgins J, Altman D, Sterne J (2017) Assessing risk of bias in included studies. In: Higgins J, Churchill R, Chandler J, Cumpston M, editors. Cochrane Handb. Syst. Rev. Interv. version 5.2.0 (updated June 2017), Cochrane</Citation></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372. https://doi.org/10.1136/bmj.n71</Citation></Reference><Reference><Citation>Gonz&#xe1;lez-Devesa D, Varela S, Diz-G&#xf3;mez JC, Ay&#xe1;n-P&#xe9;rez C (2024) The efficacy of pilates method in patients with hypertension: systematic review and meta-analysis. J Hum Hypertens 38:200&#x2013;211. https://doi.org/10.1038/s41371-024-00899-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41371-024-00899-1</ArticleId><ArticleId IdType="pubmed">38361026</ArticleId></ArticleIdList></Reference><Reference><Citation>Institute National Heart Lung and Blood (2024) Quality assessment tool for before-after (pre&#x2010;post) studies with no control group 2014. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools</Citation></Reference><Reference><Citation>Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods 8:537&#x2013;553. https://doi.org/10.1002/jrsm.1260</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jrsm.1260</ArticleId><ArticleId IdType="pubmed">28801932</ArticleId><ArticleId IdType="pmc">5725669</ArticleId></ArticleIdList></Reference><Reference><Citation>Chitra J, Chhajed P (2024) Comparison of Brain Gym and stretching in type 2 diabetes Mellitus having short sleep duration: a Randomised Clinical Trial. Int Neurourol J 28:188&#x2013;192. https://doi.org/10.5123/inj.2024.1.inj23</Citation><ArticleIdList><ArticleId IdType="doi">10.5123/inj.2024.1.inj23</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh Ni, Pradhan B, Pandey M, Parajuli N, Singh A (2021) Influence of yoga-based program on health satisfaction in the mongoloid patients diagnosed with type 2 diabetes mellitus. Yoga Mimamsa 53:109. https://doi.org/10.4103/ym.ym_111_21</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ym.ym_111_21</ArticleId></ArticleIdList></Reference><Reference><Citation>Alarc&#xf3;n-G&#xf3;mez J, Chulvi-Medrano I, Martin-Rivera F, Calatayud J (2021) Effect of high-intensity interval training on quality of life, sleep quality, exercise motivation and enjoyment in sedentary people with type 1 diabetes mellitus. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph182312612</Citation></Reference><Reference><Citation>Viswanathan V, Sivakumar S, Sai Prathiba A, Devarajan A, George L, Kumpatla S (2021) Effect of yoga intervention on biochemical, oxidative stress markers, inflammatory markers and sleep quality among subjects with type 2 diabetes in South India: results from the SATYAM project. Diabetes Res Clin Pract 172:108644. https://doi.org/10.1016/j.diabres.2020.108644</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108644</ArticleId><ArticleId IdType="pubmed">33359750</ArticleId></ArticleIdList></Reference><Reference><Citation>Delevatti RS, Schuch FB, Kanitz AC, Alberton CL, Marson EC, Lisboa SC et al (2017) Quality of life and sleep quality are similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: a randomized clinical trial. J Sci Med Sport 21:483&#x2013;488. https://doi.org/10.1016/j.jsams.2017.08.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jsams.2017.08.024</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebrahimi M, Guilan-Nejad TN, Pordanjani AF (2017) Effect of yoga and aerobics exercise on sleep quality in women with type 2 diabetes: a randomized controlled trial. Sleep Sci 10:68&#x2013;72. https://doi.org/10.5935/1984-0063.20170012</Citation><ArticleIdList><ArticleId IdType="doi">10.5935/1984-0063.20170012</ArticleId><ArticleId IdType="pubmed">28966742</ArticleId><ArticleId IdType="pmc">5612039</ArticleId></ArticleIdList></Reference><Reference><Citation>Fritz T, Caidahl K, Osler M, &#xd6;stenson CG, Zierath JR, W&#xe4;ndell P (2011) Effects of Nordic walking on health-related quality of life in overweight individuals with Type2 diabetes mellitus, impaired or normal glucose tolerance. Diabet Med 28:1362&#x2013;1372. https://doi.org/10.1111/j.1464-5491.2011.03348.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2011.03348.x</ArticleId><ArticleId IdType="pubmed">21658122</ArticleId><ArticleId IdType="pmc">3229676</ArticleId></ArticleIdList></Reference><Reference><Citation>Yilmaz-Menek M, Budak M (2022) The effect of combination of aerobic and strengthening Exercise on muscle strength, Balance, and Sleep Quality in individuals with type 2 diabetes. Duzce Med J 24:235&#x2013;240. https://doi.org/10.18678/dtfd.1109209</Citation><ArticleIdList><ArticleId IdType="doi">10.18678/dtfd.1109209</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma D, Kaur J, Rani M, Bansal A, Malik M, Kulandaivelan S (2018) Efficacy of Pilates Based Mat Exercise on Quality of Life, Quality of Sleep and satisfaction with life in type 2 diabetes Mellitus. Rom J Diabetes Nutr Metab Dis 25:149&#x2013;156. https://doi.org/10.2478/rjdnmd-2018-0017</Citation><ArticleIdList><ArticleId IdType="doi">10.2478/rjdnmd-2018-0017</ArticleId></ArticleIdList></Reference><Reference><Citation>Reddy R, Youssef J, El, Winters-Stone K, Branigan D, Leitschuh J, Castle J et al (2018) The impact of exercise on sleep in adults with type 1 diabetes. Diabetes Obes Metab 20:443&#x2013;447. https://doi.org/10.1111/dom.13065</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13065</ArticleId><ArticleId IdType="pubmed">28718987</ArticleId></ArticleIdList></Reference><Reference><Citation>Linde K, Scholz M, Melchart D, Willich SN (2002) Should systematic reviews include non-randomized and uncontrolled studies? The case of acupuncture for chronic headache. J Clin Epidemiol 55:77&#x2013;85. https://doi.org/10.1016/S0895-4356(01)00422-X</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0895-4356(01)00422-X</ArticleId><ArticleId IdType="pubmed">11781125</ArticleId></ArticleIdList></Reference><Reference><Citation>Peinemann F, Tushabe DA, Kleijnen J (2013) Using multiple types of studies in systematic reviews of health care interventions - a systematic review. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0085035</Citation></Reference><Reference><Citation>Reutrakul S, Thakkinstian A, Anothaisintawee T, Chontong S, Borel AL, Perfect MM et al (2016) Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep Med 23:26&#x2013;45. https://doi.org/10.1016/j.sleep.2016.03.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2016.03.019</ArticleId><ArticleId IdType="pubmed">27692274</ArticleId><ArticleId IdType="pmc">9554893</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee SWH, Ng KY, Chin WK (2017) The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis. Sleep Med Rev 31:91&#x2013;101. https://doi.org/10.1016/j.smrv.2016.02.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2016.02.001</ArticleId><ArticleId IdType="pubmed">26944909</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaser SS, Foster NC, Nelson BA, Kittelsrud JM, DiMeglio LA, Quinn M et al (2017) Sleep in children with type 1 diabetes and their parents in the T1D Exchange. Sleep Med 39:108&#x2013;115. https://doi.org/10.1016/j.sleep.2017.07.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2017.07.005</ArticleId><ArticleId IdType="pubmed">29157581</ArticleId><ArticleId IdType="pmc">7650845</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang WL, Chen KH, Pan YC, Yang SN, Chan YY (2020) The effect of yoga on sleep quality and insomnia in women with sleep problems: a systematic review and meta-analysis. BMC Psychiatry 20:1&#x2013;19. https://doi.org/10.1186/s12888-020-02566-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12888-020-02566-4</ArticleId><ArticleId IdType="pubmed">31898506</ArticleId><ArticleId IdType="pmc">6939336</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasan F, Tu YK, Lin CM, Chuang LP, Jeng C, Yuliana LT et al (2022) Comparative efficacy of exercise regimens on sleep quality in older adults: a systematic review and network meta-analysis. Sleep Med Rev 65:101673. https://doi.org/10.1016/j.smrv.2022.101673</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.smrv.2022.101673</ArticleId><ArticleId IdType="pubmed">36087457</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang PY, Ho KH, Chen HC, Chien MY (2012) Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. J Physiother 58:157&#x2013;163. https://doi.org/10.1016/S1836-9553(12)70106-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1836-9553(12)70106-6</ArticleId><ArticleId IdType="pubmed">22884182</ArticleId></ArticleIdList></Reference><Reference><Citation>Est&#xe9;vez-L&#xf3;pez F, Maestre-Cascales C, Russell D, &#xc1;lvarez-Gallardo IC, Rodriguez-Ayllon M, Hughes CM et al (2021) Effectiveness of Exercise on fatigue and Sleep Quality in Fibromyalgia: a systematic review and Meta-analysis of Randomized trials. Arch Phys Med Rehabil 102:752&#x2013;761. https://doi.org/10.1016/j.apmr.2020.06.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apmr.2020.06.019</ArticleId><ArticleId IdType="pubmed">32721388</ArticleId></ArticleIdList></Reference><Reference><Citation>Banno M, Harada Y, Taniguchi M, Tobita R, Tsujimoto H, Tsujimoto Y et al (2018) Exercise can improve sleep quality: a systematic review and meta-analysis. PeerJ 11:e5172. https://doi.org/10.7717/peerj.5172</Citation><ArticleIdList><ArticleId IdType="doi">10.7717/peerj.5172</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubio-Arias J, Mar&#xed;n-Cascales E, Ramos-Campo DJ, Hernandez AV, P&#xe9;rez-L&#xf3;pez FR (2017) Effect of exercise on sleep quality and insomnia in middle-aged women: a systematic review and meta-analysis of randomized controlled trials. Maturitas 100:49&#x2013;56. https://doi.org/10.1016/j.maturitas.2017.04.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.maturitas.2017.04.003</ArticleId><ArticleId IdType="pubmed">28539176</ArticleId></ArticleIdList></Reference><Reference><Citation>Landry GJ, Best JR, Liu-Ambrose T (2015) Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci 7:1&#x2013;10. https://doi.org/10.3389/fnagi.2015.00166</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnagi.2015.00166</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguayo GA, Pastore J, Backes A, Stranges S, Witte DR, Diederich NJ et al (2022) Objective and subjective sleep measures are associated with HbA1c and insulin sensitivity in the general population: findings from the ORISCAV-LUX-2 study. Diabetes Metab 48:101263. https://doi.org/10.1016/j.diabet.2021.101263</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2021.101263</ArticleId><ArticleId IdType="pubmed">34023494</ArticleId></ArticleIdList></Reference><Reference><Citation>Chrysant SG (2024) Effects of physical activity on sleep quality and wellbeing. Hosp Pract 1&#x2013;6. https://doi.org/10.1080/21548331.2024.2320069</Citation></Reference><Reference><Citation>Mendelson M, Bailly S, Marillier M, Flore P, Borel JC, Vivodtzev I et al (2018) Obstructive sleep apnea syndrome, objectively measured physical activity and exercise training interventions: a systematic review and meta-analysis. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00073</Citation></Reference><Reference><Citation>Stavrou V, Karetsi E, Daniil Z, Gourgoulianis IK (2019) Four weeks exercise in obstructive sleep apnea syndrome patient with type 2 diabetes mellitus and without continuous positive airway pressure treatment: a case report. Sleep Med Res 10:54&#x2013;57. https://doi.org/10.17241/smr.2019.00374</Citation><ArticleIdList><ArticleId IdType="doi">10.17241/smr.2019.00374</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen HH, Xu YM, Wang N, Wang J, Ren L, Chen R (2019) Efficacy of nasal CPAP and aerobic exercise of different intensity in patients with obstructive sleep apnea hypopnea syndrome and type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi 99:2187&#x2013;2192. https://doi.org/10.3760/cma.j.issn.0376-2491.2019.28.007</Citation><ArticleIdList><ArticleId IdType="doi">10.3760/cma.j.issn.0376-2491.2019.28.007</ArticleId><ArticleId IdType="pubmed">31434390</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39611987</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1432-119X</ISSN><JournalIssue CitedMedium="Internet"><Volume>163</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Histochemistry and cell biology</Title><ISOAbbreviation>Histochem Cell Biol</ISOAbbreviation></Journal><ArticleTitle>Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds.</ArticleTitle><Pagination><StartPage>13</StartPage><MedlinePgn>13</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s00418-024-02330-9</ELocationID><Abstract><AbstractText>In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options. One promising candidate is Cramoll (Cratylia mollis seed lectin), known for its immunomodulatory, mitogenic, and healing properties. However, its efficacy in infected diabetic wounds remains unexplored. This study evaluated the effects of topical Cramoll treatment on diabetic wounds infected by S. aureus. Diabetic Swiss mice (induced by streptozotocin) were subjected to an 8-mm wound on the back and subsequently infected with a suspension of multidrug-resistant S. aureus. During the treatment period, the wounds were clinically evaluated for inflammation and the area of injury. After seven days, samples were collected from the wounds to quantify the bacterial load and histopathological and immunological analyses. Wounds infected by S. aureus exhibited more pronounced areas and severity indices, which were significantly reduced by Cramoll treatment (p&#x2009;&lt;&#x2009;0.05). Histopathological analysis revealed a reduction in inflammatory cells and an increase in revascularization with Cramoll treatment (p&#x2009;&lt;&#x2009;0.05). Cramoll also promoted greater collagen production compared to controls (p&#x2009;&lt;&#x2009;0.05). Furthermore, Cramoll treatment significantly reduced the S. aureus load in wounds (p&#x2009;&lt;&#x2009;0.0001), decreased TNF-&#x3b1; and IL-6 levels in infected wounds, and increased ERK pathway activation (p&#x2009;&lt;&#x2009;0.05). In conclusion, Cramoll lectin improves the healing of diabetic wounds, and these results contribute to the understanding of Cramoll healing mechanisms, reinforcing its potential as a healing agent in various clinical conditions.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Dos Santos Silva</LastName><ForeName>Lucas</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dos Santos Castelo Branco</LastName><ForeName>Simeone J&#xfa;lio</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Silva</LastName><ForeName>Izadora Souza Soeiro</ForeName><Initials>ISS</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paiva</LastName><ForeName>Miria Yasmim Miranda</ForeName><Initials>MYM</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vila Nova</LastName><ForeName>Beatriz Gomes</ForeName><Initials>BG</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Matos Chaves Lima</LastName><ForeName>Carlos Emanuel</ForeName><Initials>CE</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Odontologia, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Oliveira</LastName><ForeName>Weslley Felix</ForeName><Initials>WF</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Paiva</LastName><ForeName>Felipe Eduardo Alves</ForeName><Initials>FEA</Initials><AffiliationInfo><Affiliation>Departamento de Histologia, Embriologia e Biologia Celular, Universidade Federal de Goi&#xe1;s, Goi&#xe2;nia, 74690-900, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paiva</LastName><ForeName>Patr&#xed;cia Maria Guedes</ForeName><Initials>PMG</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Souza Monteiro</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Microbiologia Aplicada, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Teixeira</LastName><ForeName>Claudener Souza</ForeName><Initials>CS</Initials><AffiliationInfo><Affiliation>Centro de Ci&#xea;ncias Agr&#xe1;rias e da Biodiversidade, Universidade Federal do Cariri, Crato, Cear&#xe1;, 63130-025, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cardoso</LastName><ForeName>Cl&#xe9;ver Gomes</ForeName><Initials>CG</Initials><AffiliationInfo><Affiliation>Departamento de Histologia, Embriologia e Biologia Celular, Universidade Federal de Goi&#xe1;s, Goi&#xe2;nia, 74690-900, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dos Santos Correia</LastName><ForeName>Maria Tereza</ForeName><Initials>MT</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Bioqu&#xed;mica de Prote&#xed;nas, Centro de Bioci&#xea;ncias, Universidade Federal de Pernambuco, Recife, 50740-570, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nascimento da Silva</LastName><ForeName>Lu&#xed;s Cl&#xe1;udio</ForeName><Initials>LC</Initials><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Patogenicidade Microbiana, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil. luisclaudionsilva@yahoo.com.br.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Laborat&#xf3;rio de Odontologia, Universidade Ceuma, S&#xe3;o Lu&#xed;s, 65075-120, Brazil. luisclaudionsilva@yahoo.com.br.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Histochem Cell Biol</MedlineTA><NlmUniqueID>9506663</NlmUniqueID><ISSNLinking>0948-6143</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014945" MajorTopicYN="N">Wound Healing</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055624" MajorTopicYN="N">Methicillin-Resistant Staphylococcus aureus</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D037121" MajorTopicYN="N">Plant Lectins</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Bioactive lectins</Keyword><Keyword MajorTopicYN="N">Complications of diabetes</Keyword><Keyword MajorTopicYN="N">Cramoll</Keyword><Keyword MajorTopicYN="N">Inflammatory response</Keyword><Keyword MajorTopicYN="N">Wound healing</Keyword></KeywordList><CoiStatement>Declarations. Conflict of interest: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>11</Hour><Minute>14</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39611987</ArticleId><ArticleId IdType="doi">10.1007/s00418-024-02330-9</ArticleId><ArticleId IdType="pii">10.1007/s00418-024-02330-9</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Albuquerque PBS, Soares PAG, Arag&#xe3;o-Neto AC et al (2017) Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 102:749&#x2013;757. https://doi.org/10.1016/J.IJBIOMAC.2017.04.064</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJBIOMAC.2017.04.064</ArticleId><ArticleId IdType="pubmed">28433769</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade CAS, Correia MTS, Coelho LCBB et al (2004) Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int J Pharm 278:435&#x2013;445. https://doi.org/10.1016/J.IJPHARM.2004.03.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJPHARM.2004.03.028</ArticleId><ArticleId IdType="pubmed">15196647</ArticleId></ArticleIdList></Reference><Reference><Citation>Baidoo N, Sanger GJ, Belai A (2023) Histochemical and biochemical analysis of collagen content in formalin-fixed, paraffin embedded colonic samples. MethodsX. https://doi.org/10.1016/J.MEX.2023.102416</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.MEX.2023.102416</ArticleId><ArticleId IdType="pubmed">37876831</ArticleId><ArticleId IdType="pmc">10590991</ArticleId></ArticleIdList></Reference><Reference><Citation>Barman PK, Koh TJ (2020) Macrophage dysregulation and impaired skin wound healing in diabetes. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.00528</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCELL.2020.00528</ArticleId><ArticleId IdType="pubmed">32671072</ArticleId><ArticleId IdType="pmc">7333180</ArticleId></ArticleIdList></Reference><Reference><Citation>Beserra FP, Xue M, De Azevedo Maia GL et al (2018) Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules. https://doi.org/10.3390/MOLECULES23112819</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/MOLECULES23112819</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12:547&#x2013;569. https://doi.org/10.1080/21505594.2021.1878688</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/21505594.2021.1878688</ArticleId><ArticleId IdType="pubmed">33522395</ArticleId><ArticleId IdType="pmc">7872022</ArticleId></ArticleIdList></Reference><Reference><Citation>Correia MTS, Coelho LCBB (1995) Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Appl Biochem Biotechnol 55:261&#x2013;273. https://doi.org/10.1007/BF02786865</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF02786865</ArticleId><ArticleId IdType="pubmed">8579345</ArticleId></ArticleIdList></Reference><Reference><Citation>Da Silva LCN, Alves NMP, De Castro MCAB et al (2015) pCramoll and rCramoll as new preventive agents against the oxidative dysfunction induced by hydrogen peroxide. Oxid Med Cell Longev. https://doi.org/10.1155/2015/520872</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2015/520872</ArticleId><ArticleId IdType="pubmed">26839634</ArticleId><ArticleId IdType="pmc">4709764</ArticleId></ArticleIdList></Reference><Reference><Citation>De Melo CML, De Castro MCAB, De Oliveira AP et al (2010) Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother Res 24:1631&#x2013;1636. https://doi.org/10.1002/PTR.3156</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/PTR.3156</ArticleId><ArticleId IdType="pubmed">21031620</ArticleId></ArticleIdList></Reference><Reference><Citation>De Melo CML, Melo H, Correia MTS et al (2011) Mitogenic response and cytokine production induced by cramoll 1,4 lectin in splenocytes of inoculated mice. Scand J Immunol 73:112&#x2013;121. https://doi.org/10.1111/J.1365-3083.2010.02490.X</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/J.1365-3083.2010.02490.X</ArticleId><ArticleId IdType="pubmed">21198751</ArticleId></ArticleIdList></Reference><Reference><Citation>Melo CML de, Lima ALR de, Beltr&#xe3;o EIC et al (2011a) Potential effects of Cramoll 1,4 lectin on murine Schistosomiasis mansoni. Acta Trop 118:152&#x2013;158. https://doi.org/10.1016/J.ACTATROPICA.2011.01.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.ACTATROPICA.2011.01.008</ArticleId><ArticleId IdType="pubmed">21333623</ArticleId></ArticleIdList></Reference><Reference><Citation>Melo CML de, Porto CS, Melo MR et al (2011b) Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. Int J Pharm 408:113&#x2013;119. https://doi.org/10.1016/J.IJPHARM.2011.02.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJPHARM.2011.02.011</ArticleId><ArticleId IdType="pubmed">21335081</ArticleId></ArticleIdList></Reference><Reference><Citation>De Oliveira PSS, R&#xea;go MJBDM, Da Silva RR et al (2013) Cratylia mollis 1, 4 lectin: a new biotechnological tool in IL-6, IL-17A, IL-22, and IL-23 induction and generation of immunological memory. Biomed Res Int. https://doi.org/10.1155/2013/263968</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/263968</ArticleId></ArticleIdList></Reference><Reference><Citation>de Andrade FM, Neves FPA, de Albuquerque PBS et al (2021) Healing activities of Cramoll and xyloglucan membrane in cutaneous wounds of diabetic mice. J Immunol Regen Med 13:100045. https://doi.org/10.1016/J.REGEN.2021.100045</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.REGEN.2021.100045</ArticleId></ArticleIdList></Reference><Reference><Citation>de Macedo GHRV, Costa GDE, Oliveira ER et al (2021) Interplay between ESKAPE pathogens and immunity in skin infections: an overview of the major determinants of virulence and antibiotic resistance. Pathogens 10:1&#x2013;34. https://doi.org/10.3390/PATHOGENS10020148</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/PATHOGENS10020148</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng L, Du C, Song P et al (2021) The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. https://doi.org/10.1155/2021/8852759</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2021/8852759</ArticleId><ArticleId IdType="pubmed">34900083</ArticleId><ArticleId IdType="pmc">8664534</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng Z, Fan T, Xiao C et al (2024) TGF-&#x3b2; signaling in health, disease, and therapeutics. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-024-01764-W</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/S41392-024-01764-W</ArticleId><ArticleId IdType="pubmed">39438467</ArticleId><ArticleId IdType="pmc">11491465</ArticleId></ArticleIdList></Reference><Reference><Citation>Escuin-Ordinas H, Li S, Xie MW et al (2016) Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat Commun 7:12348. https://doi.org/10.1038/NCOMMS12348</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/NCOMMS12348</ArticleId><ArticleId IdType="pubmed">27476449</ArticleId><ArticleId IdType="pmc">4974650</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferreira RM, dos Santos Silva DH, Silva KF et al (2023) Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Funct Integr Genom. https://doi.org/10.1007/S10142-023-01204-Y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10142-023-01204-Y</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferro TAF, Souza EB, Suarez MAM et al (2019) Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules 24(1624):1627. https://doi.org/10.3390/MOLECULES24081627</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/MOLECULES24081627</ArticleId><ArticleId IdType="pubmed">31027179</ArticleId><ArticleId IdType="pmc">6515316</ArticleId></ArticleIdList></Reference><Reference><Citation>Furman BL (2021) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. https://doi.org/10.1002/CPZ1.78</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/CPZ1.78</ArticleId><ArticleId IdType="pubmed">33905609</ArticleId></ArticleIdList></Reference><Reference><Citation>Goyal SN, Reddy NM, Patil KR et al (2016) Challenges and issues with streptozotocin-induced diabetes&#x2014;a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49&#x2013;63. https://doi.org/10.1016/J.CBI.2015.11.032</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.CBI.2015.11.032</ArticleId><ArticleId IdType="pubmed">26656244</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo Y, Song G, Sun M et al (2020) Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2020.00107</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCIMB.2020.00107</ArticleId><ArticleId IdType="pubmed">33643931</ArticleId><ArticleId IdType="pmc">7793837</ArticleId></ArticleIdList></Reference><Reference><Citation>Jand&#xfa; JJ, Costa MC, Santos JRA et al (2017) Treatment with pCramoll alone and in combination with fluconazole provides therapeutic benefits in C. gattii infected mice. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2017.00211</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/FCIMB.2017.00211</ArticleId><ArticleId IdType="pubmed">28596945</ArticleId><ArticleId IdType="pmc">5442327</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim EK, Choi EJ (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867&#x2013;882. https://doi.org/10.1007/S00204-015-1472-2/FIGURES/2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S00204-015-1472-2/FIGURES/2</ArticleId><ArticleId IdType="pubmed">25690731</ArticleId></ArticleIdList></Reference><Reference><Citation>Maciel EVM, Ara&#xfa;jo-Filho VS, Nakazawa M et al (2004) Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals 32:57&#x2013;60. https://doi.org/10.1016/J.BIOLOGICALS.2003.12.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOLOGICALS.2003.12.001</ArticleId><ArticleId IdType="pubmed">15026026</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakhate VP, Akojwar NS, Sinha SK et al (2023) Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 13:489&#x2013;499. https://doi.org/10.1016/J.JTCME.2023.05.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JTCME.2023.05.001</ArticleId><ArticleId IdType="pubmed">37693096</ArticleId><ArticleId IdType="pmc">10492149</ArticleId></ArticleIdList></Reference><Reference><Citation>Nunes MAS, dos Silva L, S, Santos DM, et al (2022) Schinus terebinthifolius leaf lectin (SteLL) reduces the bacterial and inflammatory burden of wounds infected by staphylococcus aureus promoting skin repair. Pharmaceuticals (Basel). https://doi.org/10.3390/PH15111441</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/PH15111441</ArticleId><ArticleId IdType="pubmed">36422571</ArticleId><ArticleId IdType="pmc">8779312</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel S, Srivastava S, Singh MR, Singh D (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2019.108615</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOPHA.2019.108615</ArticleId><ArticleId IdType="pubmed">31810137</ArticleId></ArticleIdList></Reference><Reference><Citation>Pe&#xf1;a OA, Martin P (2024) Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 25:599&#x2013;616. https://doi.org/10.1038/s41580-024-00715-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41580-024-00715-1</ArticleId><ArticleId IdType="pubmed">38528155</ArticleId></ArticleIdList></Reference><Reference><Citation>Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359&#x2013;370. https://doi.org/10.1111/J.1464-5491.2005.01499.X</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/J.1464-5491.2005.01499.X</ArticleId><ArticleId IdType="pubmed">15787657</ArticleId></ArticleIdList></Reference><Reference><Citation>Roskoski R (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66:105&#x2013;143. https://doi.org/10.1016/J.PHRS.2012.04.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.PHRS.2012.04.005</ArticleId><ArticleId IdType="pubmed">22569528</ArticleId></ArticleIdList></Reference><Reference><Citation>Sen CK (2021) Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle) 10:281&#x2013;292. https://doi.org/10.1089/WOUND.2021.0026</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/WOUND.2021.0026</ArticleId><ArticleId IdType="pubmed">33733885</ArticleId></ArticleIdList></Reference><Reference><Citation>Shettigar K, Murali TS (2020) Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis 39:2235&#x2013;2246. https://doi.org/10.1007/S10096-020-03984-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10096-020-03984-8</ArticleId><ArticleId IdType="pubmed">32683595</ArticleId><ArticleId IdType="pmc">7669779</ArticleId></ArticleIdList></Reference><Reference><Citation>Singla R, Soni S, Patial V et al (2017) In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 105:45&#x2013;55. https://doi.org/10.1016/J.IJBIOMAC.2017.06.109</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.IJBIOMAC.2017.06.109</ArticleId><ArticleId IdType="pubmed">28669805</ArticleId></ArticleIdList></Reference><Reference><Citation>Suarez Carneiro MAM, Silva LDS, Diniz RM&#xa0;et al (2021) Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int Immunopharmacol. https://doi.org/10.1016/J.INTIMP.2021.108094</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.INTIMP.2021.108094</ArticleId><ArticleId IdType="pubmed">34508942</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavares Pereira DS, Madruga Lima-Ribeiro MH, Santos-Oliveira R et al (2012) Topical application effect of the isolectin hydrogel (Cramoll 1,4) on second-degree burns: experimental model. J Biomed Biotechnol. https://doi.org/10.1155/2012/184538</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2012/184538</ArticleId><ArticleId IdType="pubmed">22736951</ArticleId><ArticleId IdType="pmc">3379528</ArticleId></ArticleIdList></Reference><Reference><Citation>Tu C, Lu H, Zhou T et al (2022) Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. https://doi.org/10.1016/J.BIOMATERIALS.2022.121597</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOMATERIALS.2022.121597</ArticleId><ArticleId IdType="pubmed">36436305</ArticleId><ArticleId IdType="pmc">9673044</ArticleId></ArticleIdList></Reference><Reference><Citation>Yadav JP, Singh AK, Grishina M et al (2024a) Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 32:149&#x2013;228. https://doi.org/10.1007/S10787-023-01407-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/S10787-023-01407-6</ArticleId><ArticleId IdType="pubmed">38212535</ArticleId></ArticleIdList></Reference><Reference><Citation>Yadav JP, Verma A, Pathak P et al (2024b) Phytoconstituents as modulators of NF-&#x3ba;B signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother https://doi.org/10.1016/J.BIOPHA.2024.117058</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.BIOPHA.2024.117058</ArticleId><ArticleId IdType="pubmed">39208668</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang WQ, Tang W, Hu SQ et al (2023) Effect of matrix metalloproteinases on the healing of diabetic foot ulcer: a systematic review. J Tissue Viability 32:51&#x2013;58. https://doi.org/10.1016/J.JTV.2022.12.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JTV.2022.12.001</ArticleId><ArticleId IdType="pubmed">36513539</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Guo Y, Yang K et al (2022) The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J Ethnopharmacol. https://doi.org/10.1016/J.JEP.2021.114662</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/J.JEP.2021.114662</ArticleId><ArticleId IdType="pubmed">36587876</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou S, Xie M, Su J et al (2023) New insights into balancing wound healing and scarless skin repair. J Tissue Eng. https://doi.org/10.1177/20417314231185848</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/20417314231185848</ArticleId><ArticleId IdType="pubmed">37736245</ArticleId><ArticleId IdType="pmc">10510347</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39611704</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2054-1058</ISSN><JournalIssue CitedMedium="Internet"><Volume>11</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Nursing open</Title><ISOAbbreviation>Nurs Open</ISOAbbreviation></Journal><ArticleTitle>Diabetes Education Program for Nursing Students: A Systematic Review and Meta-Analysis.</ArticleTitle><Pagination><StartPage>e70105</StartPage><MedlinePgn>e70105</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70105</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1002/nop2.70105</ELocationID><Abstract><AbstractText Label="AIM" NlmCategory="OBJECTIVE">The purpose of this study was to summarise the current state of the science on diabetes mellitus education programs for nursing students.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">A systematic review and meta-analysis.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Eligible studies were identified by searching PubMed, EMBASE, CINAHL, and Cochrane Library databases. Randomised controlled trials and quasi-experimental studies, published in English between 2013 and 2022, that examined diabetes education programs for nursing students were considered in the review. The quality of the articles was evaluated using the Joanna Briggs Institute's Critical Appraisal Checklist. Key information such as authors, study focus, population, sample size, details of intervention and control group treatments, outcome variables, and main findings were extracted and summarised in a data extraction form for further analyses and syntheses.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The literature search identified 464 articles, from which 13 studies were evaluated in the systematic review. Most studies (n&#x2009;=&#x2009;12, 92.3%) used technology-based teaching methods, such as high-fidelity simulations, mobile applications, and virtual reality simulations. Regarding the evaluation of diabetes education program effectiveness, the majority of studies showed significant improvements in knowledge (n&#x2009;=&#x2009;8, 61.5%), followed by satisfaction with learning (n&#x2009;=&#x2009;4, 30.8%), nursing skill performance (n&#x2009;=&#x2009;3, 23.1%), and self-confidence (n&#x2009;=&#x2009;3, 23.1%) in nursing students. In meta-analyses, technology-based teaching interventions, compared to traditional education, showed no statistically significant improvement in diabetes knowledge (standard mean difference 9.52, 95% CI [-0.18, 19.21], p&#x2009;=&#x2009;0.05) and self-efficacy (standard mean difference 24.09, 95% CI [-10.75, 58.92], p&#x2009;=&#x2009;0.18). Despite this, technology-based methods demonstrated favourable effects on knowledge and self-efficacy against traditional education. Findings highlight the importance of emerging technology-based diabetes education programs tailored for nursing students, crucial for enhancing positive educational outcomes. No Patient or Public Contribution.</AbstractText><CopyrightInformation>&#xa9; 2024 The Author(s). Nursing Open published by John Wiley &amp; Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ahn</LastName><ForeName>Jeong-Ah</ForeName><Initials>JA</Initials><Identifier Source="ORCID">0000-0002-8293-5349</Identifier><AffiliationInfo><Affiliation>College of Nursing and Research Institute of Nursing Science, Ajou University, Suwon, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Eun-Mi</ForeName><Initials>EM</Initials><AffiliationInfo><Affiliation>College of Nursing, Research Institute of Nursing Science, Pusan National University, Pusan, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Jung Eun</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>College of Nursing, University of Rhode Island, Kingston, RI, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Kyoung-A</ForeName><Initials>KA</Initials><Identifier Source="ORCID">0000-0002-3521-7758</Identifier><AffiliationInfo><Affiliation>College of Nursing, Suwon Women's University, Suwon, South Korea.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>RS-2022-00166443</GrantID><Agency>National Research Foundation of Korea(NRF)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Nurs Open</MedlineTA><NlmUniqueID>101675107</NlmUniqueID><ISSNLinking>2054-1058</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013338" MajorTopicYN="Y">Students, Nursing</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="Y">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004506" MajorTopicYN="N">Education, Nursing</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">education</Keyword><Keyword MajorTopicYN="N">nursing students</Keyword><Keyword MajorTopicYN="N">systematic review</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>9</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39611704</ArticleId><ArticleId IdType="pmc">PMC11605939</ArticleId><ArticleId IdType="doi">10.1002/nop2.70105</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Allen, M. L. , Groll M., Emlund M., et&#xa0;al. 2020. &#x201c;Healthcare Students' Psychological Well&#x2010;Being in a Diabetic Ketoacidosis Simulation.&#x201d; Clinical Simulation in Nursing 39: 1&#x2013;6. 10.1016/j.ecns.2019.10.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2019.10.005</ArticleId></ArticleIdList></Reference><Reference><Citation>Almahasees, Z. , Mohsen K., and Amin M. O.. 2021. &#x201c;Faculty's and Students' Perceptions of Online Learning During COVID&#x2010;19.&#x201d; Frontiers in Education 6: 638470. 10.3389/feduc.2021.638470.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/feduc.2021.638470</ArticleId></ArticleIdList></Reference><Reference><Citation>Babel, R. A. , and Dandekar M. P.. 2021. &#x201c;A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications.&#x201d; Current Diabetes Reviews 17, no. 4: 457&#x2013;473. 10.2174/1573399816666201103143818.</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1573399816666201103143818</ArticleId><ArticleId IdType="pubmed">33143626</ArticleId></ArticleIdList></Reference><Reference><Citation>Badowski, D. , and Wells&#x2010;Beede E.. 2022. &#x201c;State of Prebriefing and Debriefing in Virtual Simulation.&#x201d; Clinical Simulation in Nursing 62: 42&#x2013;51. 10.1016/j.ecns.2021.10.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2021.10.006</ArticleId></ArticleIdList></Reference><Reference><Citation>
 Centers for Disease Control and Prevention
 . 2022. &#x201c;National Diabetes Statistics Report.&#x201d;
 https://www.cdc.gov/diabetes/data/statistics&#x2010;report/index.html.</Citation></Reference><Reference><Citation>Consorti, F. , Mancuso R., Nocioni M., and Piccolo A.. 2012. &#x201c;Efficacy of Virtual Patients in Medical Education: A Meta&#x2010;Analysis of Randomized Studies.&#x201d; Computers &amp; Education 59, no. 3: 1001&#x2013;1008.</Citation></Reference><Reference><Citation>Deng, F. F. 2015. &#x201c;Comparison of Nursing Education Among Different Countries.&#x201d; Chinese Nursing Research 2, no. 4: 96&#x2013;98. 10.1016/j.cnre.2015.11.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cnre.2015.11.001</ArticleId></ArticleIdList></Reference><Reference><Citation>Dincer, B. , and Ataman H.. 2020. &#x201c;The Effect of High Reality Simulation on Nursing Students' Knowledge, Satisfaction, and Self&#x2010;Confidence Levels in Learning.&#x201d; International Journal of Caring Sciences 13, no. 2: 894&#x2013;900.</Citation></Reference><Reference><Citation>D'Souza, M. S. , Labrague L. J., Karkada S. N., Parahoo K., and Venkatesaperumal R.. 2020. &#x201c;Testing a Diabetes Keotacidosis Simulation in Critical Care Nursing: A Randomized Control Trial.&#x201d; Clinical Epidemiology and Global Health 8, no. 4: 998&#x2013;1005. 10.1016/j.cegh.2020.03.011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cegh.2020.03.011</ArticleId></ArticleIdList></Reference><Reference><Citation>Du, Y. , Dennis B., Rhodes S. L., et&#xa0;al. 2020. &#x201c;Technology&#x2010;Assisted Self&#x2010;Monitoring of Lifestyle Behaviors and Health Indicators in Diabetes: Qualitative Study.&#x201d; JMIR Diabetes 5, no. 3: e21183.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7486673</ArticleId><ArticleId IdType="pubmed">32857056</ArticleId></ArticleIdList></Reference><Reference><Citation>Duffy, J. R. 2022. Quality Caring in Nursing and Health Systems: Implications for Clinicians, Educators, and Leaders. New York, NY: Springer Publishing Company.</Citation></Reference><Reference><Citation>Fawaz, M. A. , Hamdan&#x2010;Mansour A. M., and Tassi A.. 2018. &#x201c;Challenges Facing Nursing Education in the Advanced Healthcare Environment.&#x201d; International Journal of Africa Nursing Sciences 9: 105&#x2013;110. 10.1016/j.ijans.2018.10.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijans.2018.10.005</ArticleId></ArticleIdList></Reference><Reference><Citation>Foronda, C. , Liu S., and Bauman E. B.. 2013. &#x201c;Evaluation of Simulation in Undergraduate Nurse Education: An Integrative Review.&#x201d; Clinical Simulation in Nursing 9, no. 10: e409&#x2013;e416. 10.1016/j.ecns.2012.11.003.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2012.11.003</ArticleId></ArticleIdList></Reference><Reference><Citation>Gibbs, J. , Trotta D., and Overbeck A.. 2014. &#x201c;Human Patient Simulation Versus Case Study: Which Teaching Strategy Is More Effective in Teaching Nursing Care for the Hypoglycemic Patient?&#x201d; Teaching and Learning in Nursing 9, no. 2: 59&#x2013;63. 10.1016/j.teln.2014.01.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.teln.2014.01.002</ArticleId></ArticleIdList></Reference><Reference><Citation>Inangil, D. , Dincer B., and Kabuk A.. 2022. &#x201c;Effectiveness of the Use of Animation and Gamification in Online Distance Education During Pandemic.&#x201d; Computers, Informatics, Nursing 40, no. 5: 335&#x2013;340. 10.1097/CIN.0000000000000902.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/CIN.0000000000000902</ArticleId><ArticleId IdType="pmc">PMC9093234</ArticleId><ArticleId IdType="pubmed">35266898</ArticleId></ArticleIdList></Reference><Reference><Citation>Inkaya, B. V. , Tuzer H., and Elcin M.. 2020. &#x201c;The Impact of Simulation&#x2010;Based Education on Students' Knowledge and Skills in Diabetic Foot Examination.&#x201d; International Journal of Caring Sciences 13: 431&#x2013;437.</Citation></Reference><Reference><Citation>
 International Diabetes Federation
 . 2021. &#x201c;Facts and Figures.&#x201d;
 https://idf.org/about&#x2010;diabetes/facts&#x2010;figures.</Citation></Reference><Reference><Citation>Kang, J. , and Suh E. E.. 2018. &#x201c;Development and Evaluation of &#x201c;Chronic Illness Care Smartphone Apps&#x201d; on Nursing Students' Knowledge, Self&#x2010;Efficacy, and Learning Experience.&#x201d; Computers, Informatics, Nursing 36, no. 11: 550&#x2013;559. 10.1097/CIN.0000000000000447.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/CIN.0000000000000447</ArticleId><ArticleId IdType="pubmed">29901475</ArticleId></ArticleIdList></Reference><Reference><Citation>Kangas, S. , Rintala T. M., and Jaatinen P.. 2018. &#x201c;An Integrative Systematic Review of Interprofessional Education on Diabetes.&#x201d; Journal of Interprofessional Care 32, no. 6: 706&#x2013;718. 10.1080/13561820.2018.1500453.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/13561820.2018.1500453</ArticleId><ArticleId IdType="pubmed">30040507</ArticleId></ArticleIdList></Reference><Reference><Citation>Kazu, I. Y. 2009. &#x201c;The Effect of Learning Styles on Education and the Teaching Process.&#x201d; Journal of Social Sciences 5, no. 2: 85&#x2013;94. 10.3844/jssp.2009.85.94.</Citation><ArticleIdList><ArticleId IdType="doi">10.3844/jssp.2009.85.94</ArticleId></ArticleIdList></Reference><Reference><Citation>K&#xf6;nig, J. , J&#xe4;ger&#x2010;Biela D. J., and Glutsch N.. 2020. &#x201c;Adapting to Online Teaching During COVID&#x2010;19 School Closure: Teacher Education and Teacher Competence Effects Among Early Career Teachers in Germany.&#x201d; European Journal of Teacher Education 43, no. 4: 608&#x2013;622. 10.1080/02619768.2020.1809650.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/02619768.2020.1809650</ArticleId></ArticleIdList></Reference><Reference><Citation>Kulal, R. , Negi R., and Handa S.. 2017. &#x201c;Effectiveness of Structured&#x2010;Teaching Programme on Care of Children With Juvenile Diabetes Among the Nursing Students.&#x201d; I&#x2010;Manager's Journal on Nursing 7, no. 2: 14.</Citation></Reference><Reference><Citation>Lapitan, L. D. S., Jr. , Tiangco C. E., Sumalinog D. A. G., Sabarillo N. S., and Diaz J. M.. 2021. &#x201c;An Effective Blended Online Teaching and Learning Strategy During the COVID&#x2010;19 Pandemic.&#x201d; Education for Chemical Engineers 35: 116&#x2013;131. 10.1016/j.ece.2021.01.012.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ece.2021.01.012</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, F. , Weng H., Xu R., et&#xa0;al. 2021. &#x201c;Nursing Interns' Attitudes Toward, Preferences for, and Use of Diabetes Virtual Simulation Teaching Applications in China: National Web&#x2010;Based Survey.&#x201d; JMIR mHealth and uHealth 9, no. 9: e29498. 10.2196/29498.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/29498</ArticleId><ArticleId IdType="pmc">PMC8461537</ArticleId><ArticleId IdType="pubmed">34499047</ArticleId></ArticleIdList></Reference><Reference><Citation>MacNeill, H. , Telner D., Sparaggis&#x2010;Agaliotis A., and Hanna E.. 2014. &#x201c;All for One and One for all: Understanding Health Professionals' Experience in Individual Versus Collaborative Online Learning.&#x201d; Journal of Continuing Education in the Health Professions 34, no. 2: 102&#x2013;111. 10.1002/chp.21226.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/chp.21226</ArticleId><ArticleId IdType="pubmed">24939352</ArticleId></ArticleIdList></Reference><Reference><Citation>Mbunge, E. , Akinnuwesi B., Fashoto S. G., Metfula A. S., and Mashwama P.. 2021. &#x201c;A Critical Review of Emerging Technologies for Tackling COVID&#x2010;19 Pandemic.&#x201d; Human Behavior and Emerging Technologies 3, no. 1: 25&#x2013;39. 10.1002/hbe2.237.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hbe2.237</ArticleId><ArticleId IdType="pmc">PMC7753602</ArticleId><ArticleId IdType="pubmed">33363278</ArticleId></ArticleIdList></Reference><Reference><Citation>Mehall, S. 2020. &#x201c;Purposeful Interpersonal Interaction in Online Learning: What Is It and How Is It Measured?&#x201d; Online Learning 24, no. 1: 182&#x2013;204.</Citation></Reference><Reference><Citation>Mohamed, A. , Staite E., Ismail K., and Winkley K.. 2019. &#x201c;A Systematic Review of Diabetes Self&#x2010;Management Education Interventions for People With Type 2 Diabetes Mellitus in the Asian Western Pacific (AWP) Region.&#x201d; Nursing Open 6, no. 4: 1424&#x2013;1437. 10.1002/nop2.340.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/nop2.340</ArticleId><ArticleId IdType="pmc">PMC6805261</ArticleId><ArticleId IdType="pubmed">31660170</ArticleId></ArticleIdList></Reference><Reference><Citation>Moher, D. , Liberati A., Tetzlaff J., and Altman D. G.. 2009. &#x201c;Preferred Reporting Items for Systematic Reviews and Meta&#x2010;Analyses: The PRISMA Statement.&#x201d; PLoS Medicine 6, no. 7: e1000097. 10.1371/journal.pmed.1000097.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1000097</ArticleId><ArticleId IdType="pmc">PMC2707599</ArticleId><ArticleId IdType="pubmed">19621072</ArticleId></ArticleIdList></Reference><Reference><Citation>Moxley, E. , Maturin L. J. Jr., and Habtezgi D.. 2021. &#x201c;A Lesson Involving Nursing Management of Diabetes Care: Incorporating Simulation in Didactic Instruction to Prepare Students for Entry&#x2010;Level Practice.&#x201d; Teaching and Learning in Nursing 16, no. 1: 10&#x2013;15. 10.1016/j.teln.2020.09.007.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.teln.2020.09.007</ArticleId></ArticleIdList></Reference><Reference><Citation>Ndebu, J. , and Jones C.. 2018. &#x201c;Inpatient Nursing Staff Knowledge on Hypoglycemia Management.&#x201d; Journal of Diabetes Nursing 22, no. 1: 5.</Citation></Reference><Reference><Citation>Negreiros, F. D. D. S. , Flor A. C., Cestari V. R. F., Flor&#xea;ncio R. S., and Moreira T. M. M.. 2022. &#x201c;Efeito de Um Aplicativo no Conhecimento de Estudantes Sobre Diabetes Durante a Pandemia da COVID&#x2010;19 [Effect of an App on Students' Knowledge About Diabetes During the COVID&#x2010;19 Pandemic].&#x201d; Revista Latino&#x2010;Americana de Enfermagem 30: e3595. 10.1590/1518-8345.5798.3595.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1518-8345.5798.3595</ArticleId><ArticleId IdType="pmc">PMC9150429</ArticleId><ArticleId IdType="pubmed">35649093</ArticleId></ArticleIdList></Reference><Reference><Citation>Nichols, P. J. , and Norris S. L.. 2002. &#x201c;A Systematic Literature Review of the Effectiveness of Diabetes Education of School Personnel.&#x201d; Diabetes Educator 28, no. 3: 405&#x2013;414.</Citation><ArticleIdList><ArticleId IdType="pubmed">12068649</ArticleId></ArticleIdList></Reference><Reference><Citation>Piva&#x10d;, S. , Skela&#x2010;Savi&#x10d; B., Jovi&#x107; D., Avdi&#x107; M., and Kalender&#x2010;Smajlovi&#x107; S.. 2021. &#x201c;Implementation of Active Learning Methods by Nurse Educators in Undergraduate Nursing students' Programs&#x2014;A Group Interview.&#x201d; BMC Nursing 20, no. 1: 173. 10.1186/s12912-021-00688-y.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12912-021-00688-y</ArticleId><ArticleId IdType="pmc">PMC8449496</ArticleId><ArticleId IdType="pubmed">34535119</ArticleId></ArticleIdList></Reference><Reference><Citation>Rababa, M. , and Al&#x2010;Rawashdeh S.. 2021. &#x201c;Critical Care Nurses' Critical Thinking and Decision Making Related to Pain Management.&#x201d; Intensive &amp; Critical Care Nursing 63: 103000. 10.1016/j.iccn.2020.103000.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.iccn.2020.103000</ArticleId><ArticleId IdType="pubmed">33376039</ArticleId></ArticleIdList></Reference><Reference><Citation>Ra&#x10d;i&#x107;, M. , Joksimovi&#x107; B. N., Cicmil S., et&#xa0;al. 2017. &#x201c;The Effects of Interprofessional Diabetes Education on the Knowledge of Medical, Dentistry and Nursing Students.&#x201d; Acta Medica Academica 46, no. 2: 145&#x2013;154. 10.5644/ama2006-124.199.</Citation><ArticleIdList><ArticleId IdType="doi">10.5644/ama2006-124.199</ArticleId><ArticleId IdType="pubmed">29338278</ArticleId></ArticleIdList></Reference><Reference><Citation>Rapanta, C. , Botturi L., Goodyear P., Gu&#xe0;rdia L., and Koole M.. 2021. &#x201c;Balancing Technology, Pedagogy and the New Normal: Post&#x2010;Pandemic Challenges for Higher Education.&#x201d; Postdigital Science and Education 3, no. 3: 715&#x2013;742. 10.1007/s42438-021-00249-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s42438-021-00249-1</ArticleId></ArticleIdList></Reference><Reference><Citation>Reed, J. , Bain S., and Kanamarlapudi V.. 2021. &#x201c;A Review of Current Trends With Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives.&#x201d; Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 14: 3567&#x2013;3602. 10.2147/DMSO.S319895.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S319895</ArticleId><ArticleId IdType="pmc">PMC8369920</ArticleId><ArticleId IdType="pubmed">34413662</ArticleId></ArticleIdList></Reference><Reference><Citation>Saab, M. M. , Landers M., Murphy D., et&#xa0;al. 2022. &#x201c;Nursing Students' Views of Using Virtual Reality in Healthcare: A Qualitative Study.&#x201d; Journal of Clinical Nursing 31, no. 9&#x2013;10: 1228&#x2013;1242. 10.1111/jocn.15978.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jocn.15978</ArticleId><ArticleId IdType="pubmed">34296483</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiferaw, W. S. , Akalu T. Y., Desta M., Kassie A. M., Petrucka P. M., and Aynalem Y. A.. 2021. &#x201c;Effect of Educational Interventions on Knowledge of the Disease and Glycaemic Control in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta&#x2010;Analysis of Randomised Controlled Trials.&#x201d; BMJ Open 11, no. 12: e049806. 10.1136/bmjopen-2021-049806.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2021-049806</ArticleId><ArticleId IdType="pmc">PMC8663073</ArticleId><ArticleId IdType="pubmed">34887271</ArticleId></ArticleIdList></Reference><Reference><Citation>Shorey, S. , and Ng E. D.. 2021. &#x201c;The Use of Virtual Reality Simulation Among Nursing Students and Registered Nurses: A Systematic Review.&#x201d; Nurse Education Today 98: 104662. 10.1016/j.nedt.2020.104662.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.nedt.2020.104662</ArticleId><ArticleId IdType="pubmed">33203545</ArticleId></ArticleIdList></Reference><Reference><Citation>Singleton, H. , James J., Falconer L., et&#xa0;al. 2022. &#x201c;Effect of Non&#x2010;Immersive Virtual Reality Simulation on Type 2 Diabetes Education for Nursing Students: A Randomised Controlled Trial.&#x201d; Clinical Simulation in Nursing 66: 50&#x2013;57. 10.1016/j.ecns.2022.02.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2022.02.009</ArticleId></ArticleIdList></Reference><Reference><Citation>S&#xfc;r&#xfc;c&#xfc;, L. , and Maslak&#xe7;i A.. 2020. &#x201c;Validity and Reliability in Quantitative Research.&#x201d; Business and Management Studies: An International Journal 8, no. 3: 2694&#x2013;2726. 10.15295/bmij.v8i3.1540.</Citation><ArticleIdList><ArticleId IdType="doi">10.15295/bmij.v8i3.1540</ArticleId></ArticleIdList></Reference><Reference><Citation>Tanaka, R. , Shibayama T., Sugimoto K., and Hidaka K.. 2020. &#x201c;Diabetes Self&#x2010;Management Education and Support for Adults With Newly Diagnosed Type 2 Diabetes Mellitus: A Systematic Review and Meta&#x2010;Analysis of Randomized Controlled Trials.&#x201d; Diabetes Research and Clinical Practice 169: 108480. 10.1016/j.diabres.2020.108480.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108480</ArticleId><ArticleId IdType="pubmed">33002545</ArticleId></ArticleIdList></Reference><Reference><Citation>Woda, A. , Hansen J., Dreifuerst K. T., Anderson P., Hardy T., and Garnier&#x2010;Villarreal M.. 2019. &#x201c;The Impact of Simulation on Knowledge and Performance Gain Regarding Diabetic Patient Care.&#x201d; Clinical Simulation in Nursing 34: 16&#x2013;21. 10.1016/j.ecns.2019.05.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecns.2019.05.001</ArticleId></ArticleIdList></Reference><Reference><Citation>Youngwanichsetha, S. 2022. &#x201c;The Effect of Online Computer Assisted Instruction on Knowledge, Self&#x2010;Efficacy, and Satisfaction of Nursing Students.&#x201d; International Journal of Nursing Education 14, no. 1: 181&#x2013;185.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39611006</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>30</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1178-2013</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>International journal of nanomedicine</Title><ISOAbbreviation>Int J Nanomedicine</ISOAbbreviation></Journal><ArticleTitle>Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro.</ArticleTitle><Pagination><StartPage>12439</StartPage><EndPage>12460</EndPage><MedlinePgn>12439-12460</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.2147/IJN.S475840</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="UNASSIGNED">2-Dodecyl-6-methoxy-2,5-diene-1,4-cyclohexanedione (DMDD), isolated from <i>Averrhoa carambola L</i>. root, has demonstrated the potential to reduce blood sugar levels. However, DMDD has poor solubility and bioavailability. This study aimed to formulate DMDD-loaded nanoparticles (DMDD-NPs) using chitosan crosslinked with sodium tripolyphosphate through the ionic crosslinking method and to investigate their effect on diabetic kidney disease (DKD) treatment by inhibiting the development of the epithelial-mesenchymal transition (EMT).</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">DMDD-NPs were prepared by ionic crosslinking with sodium tripolyphosphate, optimizing six factors that affect nanoparticle characteristics, including particle size and zeta potential. Encapsulation efficiency (EE) and drug loading rate (DL) were optimized using a Box-Behnken design. The structure and characteristics of DMDD-NPs, including size, EE, DL, and release rates, were analyzed. Cytotoxicity was assessed using the Cell Counting Kit-8 (CCK-8) assay, while the migration capacity of HK-2 cells was evaluated through scratch-wound assays. The expression of EMT-related markers (E-cadherin, Vimentin, and TGF-&#x3b2;1) was assessed by qRT-PCR.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30&#xa0;min. In these conditions, the nanoparticles had a particle size of 320.37 &#xb1; 2.93 nm, an EE of 85.09 &#xb1; 1.43%, and a DL of 15.88 &#xb1; 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (&lt;24&#xa0;&#x3bc;g/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-&#x3b2;1 expression, suggesting their potential role in preventing EMT for DKD treatment.</AbstractText><CopyrightInformation>&#xa9; 2024 Huang et al.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Huang</LastName><ForeName>Xiao-Man</ForeName><Initials>XM</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Guo</LastName><ForeName>Yan-Xiang</ForeName><Initials>YX</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pang</LastName><ForeName>Qiu-Ling</ForeName><Initials>QL</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Xiao-Yi</ForeName><Initials>XY</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Hui</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jing-Yi</ForeName><Initials>JY</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>Gan-Ling</ForeName><Initials>GL</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>Hui-Xian</ForeName><Initials>HX</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Hong-Liang</ForeName><Initials>HL</Initials><Identifier Source="ORCID">0000-0002-3878-3624</Identifier><AffiliationInfo><Affiliation>The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>New Zealand</Country><MedlineTA>Int J Nanomedicine</MedlineTA><NlmUniqueID>101263847</NlmUniqueID><ISSNLinking>1176-9114</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9012-76-4</RegistryNumber><NameOfSubstance UI="D048271">Chitosan</NameOfSubstance></Chemical><Chemical><RegistryNumber>NU43IAG5BC</RegistryNumber><NameOfSubstance UI="C005692">triphosphoric acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004337">Drug Carriers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053773">Transforming Growth Factor beta1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011122">Polyphosphates</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D053758" MajorTopicYN="Y">Nanoparticles</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058750" MajorTopicYN="Y">Epithelial-Mesenchymal Transition</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010316" MajorTopicYN="Y">Particle Size</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D048271" MajorTopicYN="N">Chitosan</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065546" MajorTopicYN="N">Drug Liberation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004337" MajorTopicYN="N">Drug Carriers</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D053773" MajorTopicYN="N">Transforming Growth Factor beta1</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011122" MajorTopicYN="N">Polyphosphates</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DMDD</Keyword><Keyword MajorTopicYN="N">diabetic kidney disease</Keyword><Keyword MajorTopicYN="N">drug delivery system</Keyword><Keyword MajorTopicYN="N">epithelial-mesenchymal transformation</Keyword><Keyword MajorTopicYN="N">nanoparticles</Keyword></KeywordList><CoiStatement>The authors report no conflicts of interest in this work.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>4</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>23</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39611006</ArticleId><ArticleId IdType="pmc">PMC11602433</ArticleId><ArticleId IdType="doi">10.2147/IJN.S475840</ArticleId><ArticleId IdType="pii">475840</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Shahzad K, Ghosh S, Mathew A, et al. Methods to Detect Endoplasmic Reticulum Stress and Apoptosis in Diabetic Nephropathy. Methods Mol Biol. 2020;2067:153&#x2013;173.</Citation><ArticleIdList><ArticleId IdType="pubmed">31701452</ArticleId></ArticleIdList></Reference><Reference><Citation>Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(S1):3&#x2013;15. doi:10.1111/dom.14007</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14007</ArticleId><ArticleId IdType="pubmed">32267079</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuttle Katherine R, Anderson Pamela W. A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition. Am J Kidney Dis. 2003;42(3):456&#x2013;465. doi:10.1016/S0272-6386(03)00741-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0272-6386(03)00741-8</ArticleId><ArticleId IdType="pubmed">12955673</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhilong L, Junwei W, Peipei Z, et al. Acteosides alleviates apoptosis of HK2 cells induced by high glucose throughakt/Mtor signaling pathway. J Shanxi Med Univ. 2023;54(8):1092&#x2013;1099.</Citation></Reference><Reference><Citation>Qiuyuan X. Research progress of diabetic renal angiopathy. Cardiovascular Dis J Integr Tradit Chin Western Med. 2016;4(35):135.</Citation></Reference><Reference><Citation>Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032&#x2013;2045. doi:10.2215/CJN.11491116</Citation><ArticleIdList><ArticleId IdType="doi">10.2215/CJN.11491116</ArticleId><ArticleId IdType="pmc">PMC5718284</ArticleId><ArticleId IdType="pubmed">28522654</ArticleId></ArticleIdList></Reference><Reference><Citation>Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Auto-Phagy. 2021;17(1):1&#x2013;382.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7996087</ArticleId><ArticleId IdType="pubmed">33634751</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei J, Wei X, Caihong W, et al. Traditional Chinese Medicine Intervenes Mitochondrial Autophagy to Treat Diabetic Nephropathy research progress. Maths Medical. 2024;37(2):136&#x2013;143.</Citation></Reference><Reference><Citation>Hu Q, Chen Y, Deng X, et al. Diabetic nephropathy: focusing on patho-logical signals, clinical treatment, and dietary regulation. Biomed Pharma-Cother. 2023;159:114252. doi:10.1016/j.biopha.2023.114252</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2023.114252</ArticleId><ArticleId IdType="pubmed">36641921</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Z, Nan P, Gong Y, et al. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy. Biomed Pharmacother. 2023;164:114897. doi:10.1016/j.biopha.2023.114897</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2023.114897</ArticleId><ArticleId IdType="pubmed">37224754</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang L, H YL, Shergis J, et al. Chinese herbal medicine for diabetic kidney disease: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;9(4):253&#x2013;256.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6501976</ArticleId><ArticleId IdType="pubmed">31048437</ArticleId></ArticleIdList></Reference><Reference><Citation>Mingqi LI, Yuehong MA, Xiaolu ZHAO, et al. Research progress on the relationship between epithelial mesenchymal transformation and hepatic fibrosis. Chin J Pharmacovigi. 2024;2024 1&#x2013;9.</Citation></Reference><Reference><Citation>Wenxia Y, Wen Y, Enlai D, et al. Role of podocyte injury signaling pathway in steroid-resistant nephrotic syndrome and research progress in traditional Chinese medicine intervention. China J Chin Metaria Medica. 2023;48(12):32&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">37382008</ArticleId></ArticleIdList></Reference><Reference><Citation>Yanxu C, Xiaoxue J, Qinyuan Z, et al. Role of TGF-&#x3b2; /Smad signaling pathway in diabetic kidney disease and research progress of traditional Chinese medicine intervention. China J Chin Metaria Medica. 2023;48(10):26&#x2013;30.</Citation><ArticleIdList><ArticleId IdType="pubmed">37282924</ArticleId></ArticleIdList></Reference><Reference><Citation>Yawen D, Jin L, Dongping C. Modified Fangji Huangqi Decoction alleviates renal interstitial fibrosis by inhibiting TGF-&#x3b2;1/Smad/Snail signaling pathway during epithelial-mesenchymal transition. China J Chin Mater Med. 2024. 49. 1&#x2013;12.</Citation><ArticleIdList><ArticleId IdType="pubmed">39041161</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoang NH, Le Thanh T, Sangpueak R, et al. Chitosan nanoparticles-based ionic gelation method: a promising candidate for plant disease management. Polymers. 2022;14(4):662. doi:10.3390/polym14040662</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/polym14040662</ArticleId><ArticleId IdType="pmc">PMC8876194</ArticleId><ArticleId IdType="pubmed">35215574</ArticleId></ArticleIdList></Reference><Reference><Citation>Gadzi&#x144;ski P, Froelich A, Jadach B, et al. Ionotropic gelation and chemical crosslinking as methods for fabrication of modified-release gellan gum-based drug delivery systems. Pharmaceutics. 2023;15(1):1.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9865147</ArticleId><ArticleId IdType="pubmed">36678736</ArticleId></ArticleIdList></Reference><Reference><Citation>Wathoni N, Herdiana Y, Suhandi C, et al. Chitosan/Alginate-Based Nanoparticles for Antibacterial Agents Delivery. Int J Nanomed. 2024;19:5021&#x2013;5044. doi:10.2147/IJN.S469572</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/IJN.S469572</ArticleId><ArticleId IdType="pmc">PMC11146614</ArticleId><ArticleId IdType="pubmed">38832335</ArticleId></ArticleIdList></Reference><Reference><Citation>Domingues C, Santos A, Alvarez-Lorenzo C, et al. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano. 2022;16(7):9994&#x2013;10041. doi:10.1021/acsnano.2c00128</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/acsnano.2c00128</ArticleId><ArticleId IdType="pubmed">35729778</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou Q, Xiang J, Qiu N, et al. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev. 2023;123(18):10920&#x2013;10989. doi:10.1021/acs.chemrev.3c00062</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/acs.chemrev.3c00062</ArticleId><ArticleId IdType="pubmed">37713432</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, Li S, Wang J, et al. Application of Nano Drug Delivery System (NDDS) in Cancer Therapy: a Perspective. Recent Pat Anticancer Drug Discov. 2023;18(2):125&#x2013;132. doi:10.2174/1574892817666220713150521</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1574892817666220713150521</ArticleId><ArticleId IdType="pubmed">35838209</ArticleId></ArticleIdList></Reference><Reference><Citation>Qingwei W, Chunxia C, Xingmei L, et al. Isolation, Identification and Determination for Benzoquinone Compounds from Averrhoa carambola Roo. Chin J Exp Traditional Med Formulae. 2014;20(11):70&#x2013;73.</Citation></Reference><Reference><Citation>Li J, Pang Q, Huang X, et al. 2-Dodecyl-6-Methoxycyclohexa-2, 5-Diene-1, 4-Dione isolated from Averrhoa carambola L. root inhibits high glucose-induced EMT in HK-2 cells through targeting the regulation of miR-21-5p/Smad7 signaling pathway. Biomed Pharmacother. 2024;172:116280. doi:10.1016/j.biopha.2024.116280</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2024.116280</ArticleId><ArticleId IdType="pubmed">38368837</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu S, Zhang H, Wei X, et al. 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4 -dione isolated from Averrhoa carambola L. root ameliorates diabetic nephropathy by inhibiting the TLR4/MyD88/NF-&#x3ba;B pathway. Diabetes Metab Syndr Obes. 2019;Volume 12:1355&#x2013;1363. doi:10.2147/DMSO.S209436</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S209436</ArticleId><ArticleId IdType="pmc">PMC6689538</ArticleId><ArticleId IdType="pubmed">31496773</ArticleId></ArticleIdList></Reference><Reference><Citation>Rensong S, Jianbin Z, Jiani F, et al. Application of chitosan nanoparticles as drug delivery system in cancer treatment. China J Clin Pharmacol Therapeut. 2021;26(1):65&#x2013;75.</Citation></Reference><Reference><Citation>Tian B, Qiao X, Guo S, et al. Synthesis of &#x3b2;-acids loaded chitosan-sodium tripolyphosphate nanoparticle towards controlled release, antibacterial and anticancer activity. Int J Biol Macromol. 2024;257(Pt2):128719. doi:10.1016/j.ijbiomac.2023.128719</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijbiomac.2023.128719</ArticleId><ArticleId IdType="pubmed">38101686</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiqiang XU, Wang X, Wang Y, et al. Preparation process optimization of cinnamon essential oil-loaded chitosan nanoparticles by response surface methodology and their quality evaluation. China J Hospital Pharm. 2023;43(5):508&#x2013;514.</Citation></Reference><Reference><Citation>Xiaoya N, Han D. Advances in the mechanism of. Pract J Clin Med. 2023;20(04):177&#x2013;181.</Citation></Reference><Reference><Citation>Hongbin L, Xunlian G, Qian L, et al. Preparation process optimization and antibacterial activity analysis of nano-chitosan particles. Food Ferment Ind. 2020;46(3):110&#x2013;117.</Citation></Reference><Reference><Citation>Weiyan S, Zhiwe S, Fan Z, et al. Preparation of Chitosan/Sulfobutyl-&#x3b2;-cyclodextrin Nanoparticles and Its Effect on Physical Properties of Sodium Alginate Film. Food Sci. 2021;42(4):161&#x2013;167.</Citation></Reference><Reference><Citation>Agrawal M, Saraf S, Pradhan M, et al. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed Pharmacother. 2021;141:111&#x2013;119. doi:10.1016/j.biopha.2021.111919</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2021.111919</ArticleId><ArticleId IdType="pubmed">34328108</ArticleId></ArticleIdList></Reference><Reference><Citation>Manimohan M, Pugalmani S, Sithique MA. Biologically active water soluble novel biopolymer/hydrazide based O-carboxymethyl chitosan Schiff bases: synthesis and characterisation. J Inorg Organomet Polym Mater. 2020;30(9):3658&#x2013;3676. doi:10.1007/s10904-020-01487-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10904-020-01487-9</ArticleId></ArticleIdList></Reference><Reference><Citation>Park K. Prevention of nanoparticle aggregation during freeze-drying. J Control Release. 2017;248:153. doi:10.1016/j.jconrel.2017.01.038</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jconrel.2017.01.038</ArticleId><ArticleId IdType="pubmed">28190423</ArticleId></ArticleIdList></Reference><Reference><Citation>Weicheng CHEN, Junxiong YAN, Guojie CHEN. Development of Dust Measuring Appara-tus Based on Dynamic Light Scattering. Res Explorat Lab. 2011;30(7):23&#x2013;25+33.</Citation></Reference><Reference><Citation>Luo WC, Zhang W, Kim R, et al. Impact of controlled ice nucleation and lyoprotectants on nanoparticle stability during Freeze-drying and upon storage. Int J Pharm. 2023;641:123084. doi:10.1016/j.ijpharm.2023.123084</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijpharm.2023.123084</ArticleId><ArticleId IdType="pubmed">37245738</ArticleId></ArticleIdList></Reference><Reference><Citation>Cui Z, Zhiju L, Dehai L. Light scattering technology in the study of polymer characterization. Acta Polym Sinica. 2022;53(01):90&#x2013;106.</Citation></Reference><Reference><Citation>Chunhui L, Yue W. Research progress on application of nanoparticle technology in medicine field. Strait Pharm J. 2013;25(1):18&#x2013;22.</Citation></Reference><Reference><Citation>Qun G, Guojian W, Wentao L. Study on Molecular Conformation of Chitosan in Dilute Solution. Chemistry. 2009;72:1&#x2013;6.</Citation></Reference><Reference><Citation>Xingke L, wei Z, Yinliang Z, et al. The Effects of Deacetylation Degree, pH and Ionic Strength on Rheological Properties of Chitosan Solution. Mod Food Sci Technol. 2013;29(1):11&#x2013;14.</Citation></Reference><Reference><Citation>Xiaochen W, Xiaoyan M, Chengjun G. Construction of Risk Factors and Predictive Models for the Progression of Diabetic Kidney Disease. J Liaoning Univ TCM. 2023;25(01):161&#x2013;170.</Citation></Reference><Reference><Citation>Yuxin X, Yin Y. Research Progress of Diabetic Tubulopathy. J Kunming Med Univ. 2023;44(9):148&#x2013;154.</Citation></Reference><Reference><Citation>Meiling Q, Chunli W, Yanling C, et al. Effect of ginkgolide B on renal tubular epithelial cell apoptosis induced by high glucose by regulating miR-155-5p. J North Sichuan Medl Coll. 2024;39(2):150&#x2013;155.</Citation></Reference><Reference><Citation>Hongxin C, Xiaoping Y, Jin Z. E-cadherin and renal interstitial fibrosis. J Clin Exp Medi. 2010;9(15):1184&#x2013;1186.</Citation></Reference><Reference><Citation>Liu M, Liu L, Bai M, et al. Hypoxia-induced activation of Twist/miR-214/ E-cadherin axis promotes renal tubular epithelial cell mesenchymal transition and renal fibrosis. Biochem Biophys Res Commun. 2018;495(3):2324&#x2013;2330. doi:10.1016/j.bbrc.2017.12.130</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbrc.2017.12.130</ArticleId><ArticleId IdType="pubmed">29277613</ArticleId></ArticleIdList></Reference><Reference><Citation>Yanling P, Hongying F, Hongmin C, et al. Study on Tangtongyin Inhibiting Renal Fibrosis of Diabetic Kidney Disease by Targeting microRNA-21 to Regulate Smad7 and PTEN. J Chinese Med Mater. 2023;31(8):2023&#x2013;2029.</Citation></Reference><Reference><Citation>Widiasta A, Wahyudi K, Sribudiani Y, et al. The level of transforming growth factor-&#x3b2; as a possible predictor of cyclophosphamide response in children with steroid-resistant nephrotic syndrome. Biomedicine. 2021;11(3):3):68&#x2013;75. doi:10.37796/2211-8039.1205</Citation><ArticleIdList><ArticleId IdType="doi">10.37796/2211-8039.1205</ArticleId><ArticleId IdType="pmc">PMC8823489</ArticleId><ArticleId IdType="pubmed">35223413</ArticleId></ArticleIdList></Reference><Reference><Citation>Nuoqi Z, Guohui Y, Yaling W. Research progress of miRNA based on TGF-&#x3b2;1/ Smads signaling pathway in myocardial fibrosis. J Hebei Med Univ. 2024;45(1):89&#x2013;93.</Citation></Reference><Reference><Citation>Suryani S, Chaerunisaa AY, Joni IM, et al. The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles. Nanotechnol. Sci Appl. 2024;17:41&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10926861</ArticleId><ArticleId IdType="pubmed">38469157</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39610841</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>30</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Predicting hypoglycemia in elderly inpatients with type 2 diabetes: the ADOCHBIU model.</ArticleTitle><Pagination><StartPage>1366184</StartPage><MedlinePgn>1366184</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1366184</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1366184</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Hypoglycemic episodes cause varying degrees of damage in the functional system of elderly inpatients with type 2 diabetes mellitus (T2DM). The purpose of the study is to construct a nomogram prediction model for the risk of hypoglycemia in elderly inpatients with T2DM and to evaluate the predictive performance of the model.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">From August 2022 to April 2023, 546 elderly inpatients with T2DM were recruited in seven tertiary-level general hospitals in Beijing and Inner Mongolia province, China. Medical history and clinical data of the inpatients were collected with a self-designed questionnaire, with follow up on the occurrence of hypoglycemia within one week. Factors related to the occurrence of hypoglycemia were screened using regularized logistic analysis(r-LR), and a nomogram prediction visual model of hypoglycemia was constructed. AUROC, Hosmer-Lemeshow, and DCA were used to analyze the prediction performance of the model.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The incidence of hypoglycemia of elderly inpatients with T2DM was 41.21% (225/546). The risk prediction model included 8 predictors as follows(named ADOCHBIU): duration of diabetes (<i>OR</i>=2.276, 95%<i>CI</i> 2.097&#x2dc;2.469), urinary microalbumin(<i>OR</i>=0.864, 95%<i>CI</i> 0.798&#x2dc;0.935), oral hypoglycemic agents (<i>OR</i>=1.345, 95%<i>CI</i> 1.243&#x2dc;1.452), cognitive impairment (<i>OR</i>=1.226, 95%<i>CI</i> 1.178&#x2dc;1.276), insulin usage (<i>OR</i>=1.002, 95%<i>CI</i> 0.948&#x2dc;1.060), hypertension (<i>OR</i>=1.113, 95%<i>CI</i> 1.103&#x2dc;1.124), blood glucose monitoring (<i>OR</i>=1.909, 95%<i>CI</i> 1.791&#x2dc;2.036), and abdominal circumference (<i>OR</i>=2.998, 95%<i>CI</i> 2.972&#x2dc;3.024). The AUROC of the prediction model was 0.871, with sensitivity of 0.889 and specificity of 0.737, which indicated that the nomogram model has good discrimination. The Hosmer-Lemeshow was <i>&#x3c7;</i> <sup>2</sup> = 2.147 (<i>P</i>=0.75), which meant that the prediction model is well calibrated. DCA curve is consistently higher than all the positive line and all the negative line, which indicated that the nomogram prediction model has good clinical utility.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">The nomogram hypoglycemia prediction model constructed in this study had good prediction effect. It is used for early detection of high-risk individuals with hypoglycemia in elderly inpatients with T2DM, so as to take targeted measures to prevent hypoglycemia.</AbstractText><AbstractText Label="TRIAL REGISTRATION" NlmCategory="UNASSIGNED">ChiCTR2200062277. Registered on 31 July 2022.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 Zhang, Liu, Sun, Wu, Guo, Wang, Lin, Wang and Bai.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Rui-Ting</ForeName><Initials>RT</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Chao</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Nursing Department, Beijing Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Quan-Ying</ForeName><Initials>QY</Initials><AffiliationInfo><Affiliation>Nursing Department, Beijing Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Hong</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Gong-Ming</ForeName><Initials>GM</Initials><AffiliationInfo><Affiliation>Nursing Department, Beijing Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>Ke-Ke</ForeName><Initials>KK</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bai</LastName><ForeName>Xiao-Yan</ForeName><Initials>XY</Initials><AffiliationInfo><Affiliation>School of Nursing, Beijing University of Chinese Medicine, Beijing, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="Y">Hypoglycemia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D049451" MajorTopicYN="Y">Nomograms</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007297" MajorTopicYN="N">Inpatients</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics &amp; numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">hypoglycemia</Keyword><Keyword MajorTopicYN="N">logistic model</Keyword><Keyword MajorTopicYN="N">nomogram</Keyword><Keyword MajorTopicYN="N">prediction</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>4</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610841</ArticleId><ArticleId IdType="pmc">PMC11602273</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1366184</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Compilation group of &#x201c;Clinical guideline for prevention and treatment of older adults with diabetes in China&#x201d; . Clinical guideline for the prevention and treatment of elderly type 2 diabetes mellitus in China (2022 edition). Chin J Diabetes. (2022) 30:2&#x2013;51. doi:&#xa0;10.3969/j.issn.1006-6187.2022.01.002</Citation><ArticleIdList><ArticleId IdType="doi">10.3969/j.issn.1006-6187.2022.01.002</ArticleId></ArticleIdList></Reference><Reference><Citation>Longo M, Bellastella G, Maiorino MI, Meier JJ, Esposito K, Giugliano D. Diabetes and aging: from treatment goals to pharmacologic therapy. Front Endocrinol. (2019) 10:45. doi:&#xa0;10.3389/fendo.2019.00045</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2019.00045</ArticleId><ArticleId IdType="pmc">PMC6387929</ArticleId><ArticleId IdType="pubmed">30833929</ArticleId></ArticleIdList></Reference><Reference><Citation>Zulfiqar AA, Massimbo DND, Hajjam M, G&#xe9;ny B, Talha S, Hajjam J, et al. . Glycemic disorder risk remote monitoring program in the COVID-19 very elderly patients: preliminary results. Front Physiol. (2021) 12:749731. doi:&#xa0;10.3389/fphys.2021.749731</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2021.749731</ArticleId><ArticleId IdType="pmc">PMC8579000</ArticleId><ArticleId IdType="pubmed">34777011</ArticleId></ArticleIdList></Reference><Reference><Citation>van Mark G, Tittel SR, Welp R, Gloyer J, Sziegoleit S, Barion R, et al. . DIVE/DPV registries: benefits and risks of analog insulin use in individuals 75 years and older with type 2 diabetes mellitus. BMJ Open Diabetes Res Care. (2021) 9:e002215. doi:&#xa0;10.1136/bmjdrc-2021-002215</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2021-002215</ArticleId><ArticleId IdType="pmc">PMC8183199</ArticleId><ArticleId IdType="pubmed">34083247</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu L, Chen J. Effect of nursing intervention on decreasing hypoglycemia rate in the elderly patients with diabetes. J Clin Med Pract. (2017) 21:42&#x2013;4, 8. doi:&#xa0;10.7619/jcmp.201706013</Citation><ArticleIdList><ArticleId IdType="doi">10.7619/jcmp.201706013</ArticleId></ArticleIdList></Reference><Reference><Citation>Li M, Zhao M, Yan H, Guo H, Shi B. Clinical characteristics and influencing factors of hypoglycemia in hospitalized patients with type 2 diabetes mellitus: A cross-sectional study. Nurs Open. (2023) 10:6827&#x2013;35. doi:&#xa0;10.1002/nop2.1929</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/nop2.1929</ArticleId><ArticleId IdType="pmc">PMC10495719</ArticleId><ArticleId IdType="pubmed">37452509</ArticleId></ArticleIdList></Reference><Reference><Citation>Umpierrez GE, Pasquel FJ. Management of inpatient hyperglycemia and diabetes in older adults. Diabetes Care. (2017) 40:509&#x2013;17. doi:&#xa0;10.2337/dc16-0989</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc16-0989</ArticleId><ArticleId IdType="pmc">PMC5864102</ArticleId><ArticleId IdType="pubmed">28325798</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Musawe L, Torre C, Guerreiro JP, Rodrigues AT, Raposo JF, Mota-Filipe H, et al. . Overtreatment and undertreatment in a sample of elderly people with diabetes. Int J Clin Pract. (2021) 75:e14847. doi:&#xa0;10.1111/ijcp.14847</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ijcp.14847</ArticleId><ArticleId IdType="pubmed">34516684</ArticleId></ArticleIdList></Reference><Reference><Citation>Almomani HY, Pascual CR, Al-Azzam SI, Ahmadi K. Randomised controlled trial of pharmacist-led patient counselling in controlling hypoglycaemic attacks in older adults with type 2 diabetes mellitus (ROSE-ADAM): A study protocol of the SUGAR intervention. Res Soc Administrative Pharmacy: RSAP. (2021) 17:885&#x2013;93. doi:&#xa0;10.1016/j.sapharm.2020.07.012</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2020.07.012</ArticleId><ArticleId IdType="pmc">PMC7387288</ArticleId><ArticleId IdType="pubmed">32763086</ArticleId></ArticleIdList></Reference><Reference><Citation>Nuzzo A, Brignoli A, Ponziani MC, Zavattaro M, Prodam F, Castello LM, et al. . Aging and comorbidities influence the risk of hospitalization and mortality in diabetic patients experiencing severe hypoglycemia. Nutr Metab Cardiovasc Dis: NMCD. (2022) 32:160&#x2013;6. doi:&#xa0;10.1016/j.numecd.2021.09.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2021.09.016</ArticleId><ArticleId IdType="pubmed">34802847</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahoney GK, Henk HJ, McCoy RG. Severe hypoglycemia attributable to intensive glucose-lowering therapy among US adults with diabetes: population-based modeling study, 2011-2014. Mayo Clin Proc. (2019) 94:1731&#x2013;42. doi:&#xa0;10.1016/j.mayocp.2019.02.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mayocp.2019.02.028</ArticleId><ArticleId IdType="pmc">PMC6857710</ArticleId><ArticleId IdType="pubmed">31422897</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah BR, Walji S, Kiss A, James JE, Lowe JM. Derivation and validation of a risk-prediction tool for hypoglycemia in hospitalized adults with diabetes: the hypoglycemia during hospitalization (HyDHo) score. Can J Diabetes. (2019) 43:278&#x2013;82. e1. doi:&#xa0;10.1016/j.jcjd.2018.08.061</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2018.08.061</ArticleId><ArticleId IdType="pubmed">30322794</ArticleId></ArticleIdList></Reference><Reference><Citation>Schroeder EB, Xu S, Goodrich GK, Nichols GA, O&#x2019;Connor PJ, Steiner JF. Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: Development and external validation of a prediction model. J Diabetes its Complicat. (2017) 31:1158&#x2013;63. doi:&#xa0;10.1016/j.jdiacomp.2017.04.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2017.04.004</ArticleId><ArticleId IdType="pmc">PMC5516886</ArticleId><ArticleId IdType="pubmed">28462891</ArticleId></ArticleIdList></Reference><Reference><Citation>Levitan EB, Liu S, Stampfer MJ, Cook NR, Rexrode KM, Ridker PM, et al. . HbA1c measured in stored erythrocytes and mortality rate among middle-aged and older women. Diabetologia. (2008) 51:267&#x2013;75. doi:&#xa0;10.1007/s00125-007-0882-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-007-0882-y</ArticleId><ArticleId IdType="pmc">PMC2757266</ArticleId><ArticleId IdType="pubmed">18043905</ArticleId></ArticleIdList></Reference><Reference><Citation>Mansouri D, Khayat E, Khayat M, Aboawja M, Aseeri A, Banah F, et al. . Self-monitoring of blood glucose and hypoglycemia association during fasting in Ramadan among patients with diabetes. Diabetes Metab Syndr Obes: Targets Ther. (2020) 13:1035&#x2013;41. doi:&#xa0;10.2147/DMSO.S234675</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S234675</ArticleId><ArticleId IdType="pmc">PMC7147609</ArticleId><ArticleId IdType="pubmed">32308453</ArticleId></ArticleIdList></Reference><Reference><Citation>Thewjitcharoen Y, Prasartkaew H, Tongsumrit P, Wongjom S, Boonchoo C, Butadej S, et al. . Prevalence, risk factors, and clinical characteristics of lipodystrophy in insulin-treated patients with diabetes: an old problem in a new era of modern insulin. Diabetes Metab Syndr Obes: Targets Ther. (2020) 13:4609&#x2013;20. doi:&#xa0;10.2147/DMSO.S282926</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S282926</ArticleId><ArticleId IdType="pmc">PMC7705266</ArticleId><ArticleId IdType="pubmed">33273836</ArticleId></ArticleIdList></Reference><Reference><Citation>Al&#xe3;o S, Concei&#xe7;&#xe3;o J, Dores J, Santos L, Ara&#xfa;jo F, Pape E, et al. . Hypoglycemic episodes in hospitalized people with diabetes in Portugal: the HIPOS-WARD study. Clin Diabetes Endocrinol. (2021) 7:2. doi:&#xa0;10.1186/s40842-020-00114-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40842-020-00114-3</ArticleId><ArticleId IdType="pmc">PMC7786902</ArticleId><ArticleId IdType="pubmed">33402217</ArticleId></ArticleIdList></Reference><Reference><Citation>von Elm E, Altman DG, Egger M, Pocock SJ, G&#xf8;tzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Internal Med. (2007) 147:573&#x2013;7. doi:&#xa0;10.7326/0003-4819-147-8-200710160-00010</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/0003-4819-147-8-200710160-00010</ArticleId><ArticleId IdType="pubmed">17938396</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association . 6. Glycemic targets: standards of medical care in diabetes-2021. Diabetes Care. (2021) 44: S73-s84. doi:&#xa0;10.2337/dc21-S006</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-S006</ArticleId><ArticleId IdType="pubmed">33298417</ArticleId></ArticleIdList></Reference><Reference><Citation>Chinese Diabetes Society . Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin J Diabetes Mellitus. (2021) 13:315&#x2013;409. doi:&#xa0;10.3760/cma.j.cn115791-20210221-00095</Citation><ArticleIdList><ArticleId IdType="doi">10.3760/cma.j.cn115791-20210221-00095</ArticleId></ArticleIdList></Reference><Reference><Citation>Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. (1996) 49:1373&#x2013;9. doi:&#xa0;10.1016/s0895-4356(96)00236-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0895-4356(96)00236-3</ArticleId><ArticleId IdType="pubmed">8970487</ArticleId></ArticleIdList></Reference><Reference><Citation>Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of PRIME-MD: the PHQ primary care study. Primary care evaluation of mental disorders. Patient health questionnaire. JAMA. (1999) 282:1737&#x2013;44. doi:&#xa0;10.1001/jama.282.18.1737</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.282.18.1737</ArticleId><ArticleId IdType="pubmed">10568646</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang YL, Liang W, Chen ZM, Zhang HM, Zhang JH, Weng XQ, et al. . Validity and reliability of Patient Health Questionnaire-9 and Patient Health Questionnaire-2 to screen for depression among college students in China. Asia Pacif Psychiatry: Off J Pacific Rim Coll Psychiatrists. (2013) 5:268&#x2013;75. doi:&#xa0;10.1111/appy.12103</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/appy.12103</ArticleId><ArticleId IdType="pubmed">24123859</ArticleId></ArticleIdList></Reference><Reference><Citation>Folstein MF, Folstein SE, McHugh PR. Mini-mental state&#x201d;. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. (1975) 12:189&#x2013;98. doi:&#xa0;10.1016/0022-3956(75)90026-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0022-3956(75)90026-6</ArticleId><ArticleId IdType="pubmed">1202204</ArticleId></ArticleIdList></Reference><Reference><Citation>Li G, Shen YC, Chen CH, Li SR, Zhao YW, Liu M, et al. . Preliminary application of MMSE in the aged of urban population in Beijing. Chin Ment Health J. (1988) 2 (1):13&#x2013;8.</Citation></Reference><Reference><Citation>Zhang MY, Zhai GY, Jin H, Cai GJ, Wang ZY. Comparison of several dementia testing tools. Chin J Neurol Psychiatry. (1991) 24 (4):194&#x2013;6.</Citation></Reference><Reference><Citation>Zhou XX. A preliminary study on the reliability and validity of the Chinese version of the Mini-mental State Examination in stroke patients. Fujian: Fujian University of Traditional Chinese Medicine; (2015). doi:&#xa0;10.7666/d.Y2807907</Citation><ArticleIdList><ArticleId IdType="doi">10.7666/d.Y2807907</ArticleId></ArticleIdList></Reference><Reference><Citation>
-RapidMiner . Version 9.8 [Computer software]. Available online at: https://rapidminer.com/ (Accessed June 1, 2023).</Citation></Reference><Reference><Citation>Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. (1997) 16:965&#x2013;80. doi:&#xa0;10.1002/(sici)1097-0258(19970515)16:9&lt;965:aid-sim509&gt;3.0.co;2-o</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/(sici)1097-0258(19970515)16:9&lt;965:aid-sim509&gt;3.0.co;2-o</ArticleId><ArticleId IdType="pubmed">9160492</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoogwerf BJ. Hypoglycemia in older patients. Clinics Geriatr Med. (2020) 36:395&#x2013;406. doi:&#xa0;10.1016/j.cger.2020.04.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cger.2020.04.001</ArticleId><ArticleId IdType="pubmed">32586470</ArticleId></ArticleIdList></Reference><Reference><Citation>Chao G, Zhu Y, Chen L. Evaluation of risk factors and correlation in large sample from the perspective of hypoglycemia. Food Sci Nutr. (2021) 9:6627&#x2013;33. doi:&#xa0;10.1002/fsn3.2608</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/fsn3.2608</ArticleId><ArticleId IdType="pmc">PMC8645704</ArticleId><ArticleId IdType="pubmed">34925792</ArticleId></ArticleIdList></Reference><Reference><Citation>Almomani HY, Pascual CR, Grassby P, Ahmadi K. Effectiveness of the SUGAR intervention on hypoglycaemia in elderly patients with type 2 diabetes: A pragmatic randomised controlled trial. Res Soc Administrative Pharmacy: RSAP. (2023) 19:322&#x2013;31. doi:&#xa0;10.1016/j.sapharm.2022.09.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2022.09.017</ArticleId><ArticleId IdType="pubmed">36253284</ArticleId></ArticleIdList></Reference><Reference><Citation>Chantzaras A, Yfantopoulos J. Evaluating the incidence and risk factors associated with mild and severe hypoglycemia in insulin-treated type 2 diabetes. Value Health Regional Issues. (2022) 30:9&#x2013;17. doi:&#xa0;10.1016/j.vhri.2021.10.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vhri.2021.10.005</ArticleId><ArticleId IdType="pubmed">35033801</ArticleId></ArticleIdList></Reference><Reference><Citation>Aubert CE, Henderson JB, Kerr EA, Holleman R, Klamerus ML, Hofer TP. Type 2 diabetes management, control and outcomes during the COVID-19 pandemic in older US veterans: an observational study. J Gen Internal Med. (2022) 37:870&#x2013;7. doi:&#xa0;10.1007/s11606-021-07301-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11606-021-07301-7</ArticleId><ArticleId IdType="pmc">PMC8735737</ArticleId><ArticleId IdType="pubmed">34993873</ArticleId></ArticleIdList></Reference><Reference><Citation>Hodge M, McArthur E, Garg AX, Tangri N, Clemens KK. Hypoglycemia incidence in older adults by estimated GFR. Am J Kidney Dis: Off J Natl Kidney Foundation. (2017) 70:59&#x2013;68. doi:&#xa0;10.1053/j.ajkd.2016.11.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.ajkd.2016.11.019</ArticleId><ArticleId IdType="pubmed">28139395</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakhleh A, Shehadeh N. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. World J Diabetes. (2021) 12:2036&#x2013;49. doi:&#xa0;10.4239/wjd.v12.i12.2036</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i12.2036</ArticleId><ArticleId IdType="pmc">PMC8696639</ArticleId><ArticleId IdType="pubmed">35047118</ArticleId></ArticleIdList></Reference><Reference><Citation>Meinhardt U, Ammann RA, Fl&#xfc;ck C, Diem P, Mullis PE. Microalbuminuria in diabetes mellitus: efficacy of a new screening method in comparison with timed overnight urine collection. J Diabetes its Complicat. (2003) 17:254&#x2013;7. doi:&#xa0;10.1016/s1056-8727(02)00180-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s1056-8727(02)00180-0</ArticleId><ArticleId IdType="pubmed">12954153</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of dipeptidyl peptidase 4 inhibitors in antidiabetic treatment. Mol (Basel Switzerland). (2022) 27:3055. doi:&#xa0;10.3390/molecules27103055</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules27103055</ArticleId><ArticleId IdType="pmc">PMC9147686</ArticleId><ArticleId IdType="pubmed">35630534</ArticleId></ArticleIdList></Reference><Reference><Citation>Cahn A, Mosenzon O, Wiviott SD, Rozenberg A, Yanuv I, Goodrich EL, et al. . Efficacy and safety of dapagliflozin in the elderly: analysis from the DECLARE-TIMI 58 study. Diabetes Care. (2020) 43:468&#x2013;75. doi:&#xa0;10.2337/dc19-1476</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc19-1476</ArticleId><ArticleId IdType="pubmed">31843945</ArticleId></ArticleIdList></Reference><Reference><Citation>Niu G, Wang G, Lau J, Lang L, Jacobson O, Ma Y, et al. . Antidiabetic effect of abextide, a long-acting exendin-4 analogue in cynomolgus monkeys. Adv Healthc Mater. (2019) 8:e1800686. doi:&#xa0;10.1002/adhm.201800686</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/adhm.201800686</ArticleId><ArticleId IdType="pubmed">30300471</ArticleId></ArticleIdList></Reference><Reference><Citation>Takeishi S, Mori A, Kawai M, Yoshida Y, Hachiya H, Yumura T, et al. . Investigating the relationship between morning glycemic variability and patient characteristics using continuous glucose monitoring data in patients with type 2 diabetes. Internal Med (Tokyo Japan). (2017) 56:1467&#x2013;73. doi:&#xa0;10.2169/internalmedicine.56.7971</Citation><ArticleIdList><ArticleId IdType="doi">10.2169/internalmedicine.56.7971</ArticleId><ArticleId IdType="pmc">PMC5505900</ArticleId><ArticleId IdType="pubmed">28626170</ArticleId></ArticleIdList></Reference><Reference><Citation>Maranta F, Cianfanelli L, Cianflone D. Glycaemic control and vascular complications in diabetes mellitus type 2. Adv Exp Med Biol. (2021) 1307:129&#x2013;52. doi:&#xa0;10.1007/5584_2020_514</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/5584_2020_514</ArticleId><ArticleId IdType="pubmed">32266607</ArticleId></ArticleIdList></Reference><Reference><Citation>Dong F. Analysis of risk factors of hypoglycemia and blood glucose fluctuation in patients with type 2 diabetes mellitus. Contemp Med. (2021) 27:137&#x2013;8. doi:&#xa0;10.3969/j.issn.1009-4393.2021.20.058</Citation><ArticleIdList><ArticleId IdType="doi">10.3969/j.issn.1009-4393.2021.20.058</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan EYF, Fung CSC, Yu EYT, Chin WY, Fong DYT, Chan AKC, et al. . Effect of multifactorial treatment targets and relative importance of hemoglobin A1c, blood pressure, and low-density lipoprotein-cholesterol on cardiovascular diseases in Chinese primary care patients with type 2 diabetes mellitus: A population-based retrospective cohort study. J Am Heart Assoc. (2017) 6:e006400. doi:&#xa0;10.1161/JAHA.117.006400</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.117.006400</ArticleId><ArticleId IdType="pmc">PMC5586469</ArticleId><ArticleId IdType="pubmed">28862945</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaewput W, Thongprayoon C, Varothai N, Sirirungreung A, Rangsin R, Bathini T, et al. . Prevalence and associated factors of hospitalization for dysglycemia among elderly type 2 diabetes patients: A nationwide study. World J Diabetes. (2019) 10:212&#x2013;23. doi:&#xa0;10.4239/wjd.v10.i3.212</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v10.i3.212</ArticleId><ArticleId IdType="pmc">PMC6422861</ArticleId><ArticleId IdType="pubmed">30891156</ArticleId></ArticleIdList></Reference><Reference><Citation>Mantwill S, Fiordelli M, Ludolph R, Schulz PJ. EMPOWER-support of patient empowerment by an intelligent self-management pathway for patients: study protocol. BMC Med Inf Decision Making. (2015) 15:18. doi:&#xa0;10.1186/s12911-015-0142-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12911-015-0142-x</ArticleId><ArticleId IdType="pmc">PMC4372173</ArticleId><ArticleId IdType="pubmed">25890197</ArticleId></ArticleIdList></Reference><Reference><Citation>Criner KE, Kim HN, Ali H, Kumar SJ, Kanter JE, Wang L, et al. . Hypoglycemia symptoms are reduced in hospitalized patients with diabetes. J Diabetes its Complicat. (2021) 35:107976. doi:&#xa0;10.1016/j.jdiacomp.2021.107976</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2021.107976</ArticleId><ArticleId IdType="pmc">PMC8434970</ArticleId><ArticleId IdType="pubmed">34364780</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39610135</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Cardiovascular Disease &amp; Diabetes Statistics in Korea: Nationwide Data 2010 to 2019.</ArticleTitle><Pagination><StartPage>1084</StartPage><EndPage>1092</EndPage><MedlinePgn>1084-1092</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0275</ELocationID><Abstract><AbstractText Label="BACKGRUOUND" NlmCategory="BACKGROUND">This study aimed to provide updated insights into the incidence and management of cardiovascular disease (CVD) in Korean adults with diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Using data from the Korean National Health Insurance Service and Korea National Health and Nutrition Examination Survey, we analyzed the representative national estimates of CVD in adults with diabetes.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The age- and sex-standardized incidence rate of ischemic heart disease (IHD), ischemic stroke, and peripheral artery disease (PAD) decreased from 2010 to 2019 in individuals with type 2 diabetes mellitus (T2DM). However, an increase in the incidence of heart failure (HF) was observed during the same period. Only 4.96% of adults with diabetes and CVD achieved optimal control of all three risk factors (glycemic levels, blood pressure, and lipid control). Additionally, high-intensity statin treatment rates were 8.84% and 9.15% in individuals with IHD and ischemic stroke, respectively. Treatment with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) or a glucagon-like peptide-1 receptor agonist (GLP-1RA) was relatively low in 2019, with only 11.87%, 7.10%, and 11.05% of individuals with IHD, ischemic stroke, and HF, respectively, receiving SGLT2i treatment. Furthermore, only 1.08%, 0.79%, and 1.06% of patients with IHD, ischemic stroke, and HF, respectively, were treated with GLP-1RA.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Jin Hwa</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Junyeop</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Kyungdo</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Jae-Taek</ForeName><Initials>JT</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kwon</LastName><ForeName>Hyuk-Sang</ForeName><Initials>HS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Diabetic Vascular Disease Research Group of the Korean Diabetes Association</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="N">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="N">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiovascular diseases</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Epidemiology</Keyword><Keyword MajorTopicYN="N">Korea</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610135</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0275</ArticleId><ArticleId IdType="pii">dmj.2024.0275</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39610132</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.</ArticleTitle><Pagination><StartPage>1029</StartPage><EndPage>1046</EndPage><MedlinePgn>1029-1046</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0614</ELocationID><Abstract><AbstractText>Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Lu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Calcutt</LastName><ForeName>Nigel A</ForeName><Initials>NA</Initials><AffiliationInfo><Affiliation>Department of Pathology, University of California San Diego, La Jolla, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Xiajun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003929" MajorTopicYN="Y">Diabetic Neuropathies</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006181" MajorTopicYN="Y">H-Reflex</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009437" MajorTopicYN="N">Neuralgia</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004576" MajorTopicYN="N">Electromyography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013116" MajorTopicYN="N">Spinal Cord</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic neuropathies</Keyword><Keyword MajorTopicYN="N">Electrophysiology</Keyword><Keyword MajorTopicYN="N">H-reflex</Keyword><Keyword MajorTopicYN="N">Neural inhibition</Keyword><Keyword MajorTopicYN="N">Neuralgia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610132</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0614</ArticleId><ArticleId IdType="pii">dmj.2024.0614</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39610131</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association.</ArticleTitle><Pagination><StartPage>1015</StartPage><EndPage>1028</EndPage><MedlinePgn>1015-1028</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0541</ELocationID><Abstract><AbstractText>Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bae</LastName><ForeName>Jaehyun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Eugene</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Hye Won</ForeName><Initials>HW</Initials><AffiliationInfo><Affiliation>Department of Pathology, Keimyung University School of Medicine, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Cheol-Young</ForeName><Initials>CY</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chung</LastName><ForeName>Choon Hee</ForeName><Initials>CH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Dae Ho</ForeName><Initials>DH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cho</LastName><ForeName>Eun-Hee</ForeName><Initials>EH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rhee</LastName><ForeName>Eun-Jung</ForeName><Initials>EJ</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Ji Hee</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Ji Hyun</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bae</LastName><ForeName>Ji-Cheol</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Jung Hwan</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology &amp; Metabolism, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Choi</LastName><ForeName>Kyung Mook</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Kyung-Soo</ForeName><Initials>KS</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Seo</LastName><ForeName>Mi Hae</ForeName><Initials>MH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Minyoung</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Nan-Hee</ForeName><Initials>NH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>So Hun</ForeName><Initials>SH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Won-Young</ForeName><Initials>WY</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Woo Je</ForeName><Initials>WJ</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Choi</LastName><ForeName>Yeon-Kyung</ForeName><Initials>YK</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Yong-Ho</ForeName><Initials>YH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hwang</LastName><ForeName>You-Cheol</ForeName><Initials>YC</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lyu</LastName><ForeName>Young Sang</ForeName><Initials>YS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Byung-Wan</ForeName><Initials>BW</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cha</LastName><ForeName>Bong-Soo</ForeName><Initials>BS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Fatty Liver Research Group of the Korean Diabetes Association</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065626" MajorTopicYN="Y">Non-alcoholic Fatty Liver Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="Y">Fatty Liver</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes mellitus, type 2</Keyword><Keyword MajorTopicYN="N">Metabolic dysfunction-associated steatotic liver disease</Keyword><Keyword MajorTopicYN="N">Non-alcoholic fatty liver disease</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610131</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0541</ArticleId><ArticleId IdType="pii">dmj.2024.0541</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609996</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1819-2718</ISSN><JournalIssue CitedMedium="Internet"><Volume>36</Volume><Issue>2</Issue><PubDate><Year>2024</Year><Season>Apr-Jun</Season></PubDate></JournalIssue><Title>Journal of Ayub Medical College, Abbottabad : JAMC</Title><ISOAbbreviation>J Ayub Med Coll Abbottabad</ISOAbbreviation></Journal><ArticleTitle>A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.</ArticleTitle><Pagination><StartPage>433</StartPage><EndPage>435</EndPage><MedlinePgn>433-435</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.55519/JAMC-02-12379</ELocationID><Abstract><AbstractText Label="ABSTRACT" NlmCategory="UNASSIGNED">Wolfram syndrome is a progressive neurodegenerative disorder caused by an alteration in the WFS-1 gene, located on chromosome 4p16.1 and is characterized by the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). WFS-1 gene encodes for a transmembrane protein termed Wolframin found in the membrane of the endoplasmic reticulum. Although Wolfram Syndrome is generally considered an autosomal recessive disorder, a milder non-classic autosomal dominant form has been reported in association with a single pathogenic or likely pathogenic variant in WFS-1 gene. Objective was to date more than 200 variants have been identified in the WFS-1 gene. This case report aims to highlight and explain a novel de-novo likely pathogenic variant of the WFS-1 gene in a Pakistani child, which is highly plausible to induce non-classic WFS-1 spectrum disorder (MedGen UID: 481988).</AbstractText><AbstractText Label="CASE DISCUSSION" NlmCategory="UNASSIGNED">Our patient, a seven-year-old boy, initially sought medical attention at our endocrine clinic for diabetic control. Besides diabetes, other notable features included short stature, sensorineural deafness and a history of bilateral cataracts. Family history was significant for parental consanguinity. A clinical diagnosis of Wolfram Syndrome was suspected and a multi gene panel test which included the WFS-1 gene was ordered. Initial report noted a variant of uncertain significance in the WFS-1 gene at c.2586G&gt;T (p.Lys862Asn), which was later reclassified as a likely pathogenic variant by the laboratory based on the patient's clinical presentation.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hanif</LastName><ForeName>Misbah Iqbal</ForeName><Initials>MI</Initials><AffiliationInfo><Affiliation>Sindh Institute of Child Health and Neonatology, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Hamza</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Dow International Medical College, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ibrahim</LastName><ForeName>Mohsina Noor</ForeName><Initials>MN</Initials><AffiliationInfo><Affiliation>National Institute of Child Health, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Raza</LastName><ForeName>Syed Jamal</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Sindh Institute of Child Health and Neonatology, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Syed Ajaz</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Kaiser Permanente, Riverside, CA-USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Ayub Med Coll Abbottabad</MedlineTA><NlmUniqueID>8910750</NlmUniqueID><ISSNLinking>1025-9589</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C114987">wolframin protein</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008565" MajorTopicYN="Y">Membrane Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014929" MajorTopicYN="Y">Wolfram Syndrome</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">WFS-1; Non-classic WFS-1 spectrum disorder; Pakistan</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>0</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609996</ArticleId><ArticleId IdType="doi">10.55519/JAMC-02-12379</ArticleId><ArticleId IdType="pii">12379/3757</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609972</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1819-2718</ISSN><JournalIssue CitedMedium="Internet"><Volume>36</Volume><Issue>2</Issue><PubDate><Year>2024</Year><Season>Apr-Jun</Season></PubDate></JournalIssue><Title>Journal of Ayub Medical College, Abbottabad : JAMC</Title><ISOAbbreviation>J Ayub Med Coll Abbottabad</ISOAbbreviation></Journal><ArticleTitle>SELF-REPORTED MULTI-MORBIDITY WITH TUBERCULOSIS: DATA FROM THE KHYBER PAKHTUNKHWA INTEGRATED POPULATION HEALTH SURVEY (KPIPHS) IN PAKISTAN.</ArticleTitle><Pagination><StartPage>316</StartPage><EndPage>322</EndPage><MedlinePgn>316-322</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.55519/JAMC-02-12677</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">With the rise of non-communicable diseases (NCDs) in a country that is already facing high tuberculosis (TB) burden, TB multi-morbidity is likely to pose a significant public health challenge in Pakistan. Data were analysed to determine the prevalence of TB and explore the distribution and determinants of multi-morbidity associated with TB in the population of Khyber Pakhtunkhwa -a province of Pakistan.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This is a secondary analysis of data gathered as part of the KPIPHS survey conducted in 2016-17 in both the rural and urban areas of Khyber Pakhtunkhwa, Pakistan. An interviewer-administered questionnaire was used to collect data, from adults, on demographics, education and socioeconomic status, physical and mental health, reproductive health, child health, health-related quality of life, and self-reported cardiometabolic diseases including Diabetes, hypertension, renal disorders, cardiac failure, angina, and stroke.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 20,715 participants were recruited in the survey including 52.8% (n=10,943) males and 47.2% (n=9,772) females with a mean age of 41 (13.1) years. Data on TB status was available for a total of 14452 participants. The prevalence of TB in Khyber Pakhtunkhwa was found to be 0.49% (n=72) including an almost equal number of males and females [48% (n=34) vs 51% (n=36)], respectively. The mean age of the patients with TB was 47.5 (11.6) years. A higher proportion of people with TB had cardiometabolic diseases compared to people without TB (45.9% vs. 30.9%). Amongst the cardiometabolic disorders, self-reported hypertension (OR: 1.81, 95% CI 1.08-3.02, p=0.02), Diabetes (OR: 3.99, 95% CI 1.95-8.18, p=&lt;0.002), and angina (OR: 3.88 95% CI 1.20-12.49, p=0.02) were positively associated with the occurrence of TB. In the adjusted analysis, only self-reported Diabetes was positively associated with the occurrence of TB (OR: 3.33, 95% CI 1.61-6.88, p=0.001).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">There is a higher burden of self-reported cardiometabolic diseases among people with TB, suggesting that this high-risk group should be screened for cardiometabolic diseases, especially Diabetes.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><CollectiveName>Zia ul Haq</CollectiveName><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Afaq</LastName><ForeName>Saima</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan Department of Health Sciences, University of York, York-United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khattak</LastName><ForeName>Farhad Ali</ForeName><Initials>FA</Initials><AffiliationInfo><Affiliation>Khyber College of Dentistry, Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hussain</LastName><ForeName>Sana</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Gandhara University, Peshawa-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fazid</LastName><ForeName>Sheraz</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rahim</LastName><ForeName>Abid</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Khyber College of Dentistry, Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haroon</LastName><ForeName>Muhammad Zeeshan</ForeName><Initials>MZ</Initials><AffiliationInfo><Affiliation>Department of Community Medicine, Ayub Medical College, Abbottabad-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Kamran</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Hull York Medical School, University of York, York-United Kingdom.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Ayub Med Coll Abbottabad</MedlineTA><NlmUniqueID>8910750</NlmUniqueID><ISSNLinking>1025-9589</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057566" MajorTopicYN="Y">Self Report</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006306" MajorTopicYN="Y">Health Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000076322" MajorTopicYN="N">Multimorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiometabolic; South Asia; Low- and middle-income countries; TB-Diabetes comorbidity</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>0</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609972</ArticleId><ArticleId IdType="doi">10.55519/JAMC-02-12677</ArticleId><ArticleId IdType="pii">12677/3733</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39609829</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6823</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>BMC endocrine disorders</Title><ISOAbbreviation>BMC Endocr Disord</ISOAbbreviation></Journal><ArticleTitle>Cognitive changes in people with diabetes with lower extremity complications compared to people with diabetes without lower extremity complications: a systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>258</StartPage><MedlinePgn>258</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">258</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12902-024-01774-3</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Recent evidence suggests that diabetes-related lower-extremity complications (DRLECs) may be associated with cognitive changes in people with diabetes. However, existing literature has produced inconsistent findings, and no systematic reviews have been conducted to investigate whether DRLECs impact the cognition of people with diabetes. This systematic review evaluated existing studies that investigated cognition in people with diabetes with DRLECs and without DRLECs.</AbstractText><AbstractText Label="METHOD" NlmCategory="METHODS">Seven databases; MEDLINE, PubMed, CINAHL, EMBASE, Cochrane, PsycINFO and Web of Science were searched from inception until 22/8/2022 for studies that compared cognition in people with diabetes with and without DRLECs. Results were independently screened for eligibility and assessed for methodological quality by two authors, with key data extracted. Studies were eligible for meta-analysis if the studies reported similar cases, controls, and outcome measures.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Thirteen studies were included in the review, with eleven of medium methodological quality, one of high quality, and one of low quality. Four studies found significant differences in cognition between those with and without DRLECs, four found significant associations between diabetes-related lower-extremity complications and cognition, and five found no differences or associations. One small meta-analysis of eligible studies found that there was no statistically significant difference in cognition in people without, compared to with, peripheral neuropathy (Mean difference = -0.49; 95%CI: -1.59-0.61; N&#x2009;=&#x2009;3; n&#x2009;=&#x2009;215). Leave-one-out sensitivity analyses further confirmed that there was no significant difference in cognition among people with and without peripheral neuropathy (p&#x2009;&gt;&#x2009;0.05).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">DRLECs may be related to cognition in people with diabetes, however, existing evidence is unclear due to variability in used methodologies that may challenge concluding the findings. Future high-quality studies investigating cognition among people with and without DRLECs are needed.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Karunathilaka</LastName><ForeName>Nimantha</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Nursing and Midwifery, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Christina</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lazzarini</LastName><ForeName>Peter A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Allied Health Research Collaborative, The Prince Charles Hospital, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Pamela</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Joondalup Health Campus, Ramsay Healthcare, Perth, WA, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Katsanos</LastName><ForeName>Chloe</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Podiatry Department, The Alfred, Melbourne, VIC, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>MacAndrew</LastName><ForeName>Margaret</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Finlayson</LastName><ForeName>Kathleen</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>QUT Postgraduate Research Award and QUT Higher Degree Research tuition fee scholarships.</GrantID><Agency>Queensland University of Technology</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Endocr Disord</MedlineTA><NlmUniqueID>101088676</NlmUniqueID><ISSNLinking>1472-6823</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D035002" MajorTopicYN="Y">Lower Extremity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D048909" MajorTopicYN="Y">Diabetes Complications</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003071" MajorTopicYN="N">Cognition</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D060825" MajorTopicYN="N">Cognitive Dysfunction</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003929" MajorTopicYN="N">Diabetic Neuropathies</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cognition</Keyword><Keyword MajorTopicYN="N">Diabetes complications</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Diabetic foot</Keyword><Keyword MajorTopicYN="N">Meta-analysis</Keyword><Keyword MajorTopicYN="N">Systematic review</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: Not necessary. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>9</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>23</Hour><Minute>57</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609829</ArticleId><ArticleId IdType="pmc">PMC11605952</ArticleId><ArticleId IdType="doi">10.1186/s12902-024-01774-3</ArticleId><ArticleId IdType="pii">10.1186/s12902-024-01774-3</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616&#x2013;22. 10.1038/nrendo.2016.105.</Citation><ArticleIdList><ArticleId IdType="pubmed">27388988</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr. 2020;60(9):1447&#x2013;74. 10.1080/10408398.2019.1574708.</Citation><ArticleIdList><ArticleId IdType="pubmed">30806077</ArticleId></ArticleIdList></Reference><Reference><Citation>Riandini T, Pang D, Toh MPHS, Tan CS, Liu DYK, Choong AMTL, et al. Diabetes-related lower extremity complications in a multi-ethnic Asian population: a 10 year observational study in Singapore. Diabetologia. 2021;64(7):1538&#x2013;49. 10.1007/s00125-021-05441-3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8187215</ArticleId><ArticleId IdType="pubmed">33885933</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO. Gobal Reports on Diabetes World Health Organisation 2016.</Citation></Reference><Reference><Citation>Lazzarini PA, Pacella RE, Armstrong DG, van Netten JJ. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. Diabet Med. 2018. 10.1111/dme.13680.</Citation><ArticleIdList><ArticleId IdType="pubmed">29791033</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care. 2020;43(5):964&#x2013;74. 10.2337/dc19-1614.</Citation><ArticleIdList><ArticleId IdType="pubmed">32139380</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim HG. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ J Med. 2019;36(3):183&#x2013;91. 10.12701/yujm.2019.00255.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6784656</ArticleId><ArticleId IdType="pubmed">31620632</ArticleId></ArticleIdList></Reference><Reference><Citation>Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GEHM, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 2015;14(3):329&#x2013;40. 10.1016/s1474-4422(14)70249-2.</Citation><ArticleIdList><ArticleId IdType="pubmed">25728442</ArticleId></ArticleIdList></Reference><Reference><Citation>Natovich R, Kushnir T, Harman-Boehm I, Margalit D, Siev-Ner I, Tsalichin D, et al. Cognitive dysfunction: part and parcel of the diabetic foot. Diabetes Care. 2016;39(7):1202&#x2013;7. 10.2337/dc15-2838.</Citation><ArticleIdList><ArticleId IdType="pubmed">27208339</ArticleId></ArticleIdList></Reference><Reference><Citation>Corbett C, Jolley J, Barson E, Wraight P, Perrin B, Fisher C. Cognition and understanding of neuropathy of inpatients admitted to a specialized tertiary diabetic foot unit with diabetes-related foot ulcers. Int J Low Extrem Wounds. 2019;18(3):294&#x2013;300. 10.1177/1534734619862085.</Citation><ArticleIdList><ArticleId IdType="pubmed">31307246</ArticleId></ArticleIdList></Reference><Reference><Citation>Khera T, Rangasamy V. Cognition and pain: A Review. Psychol. 2021;12. https://www.frontiersin.org/article/10.3389/fpsyg.2021.673962</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpsyg.2021.673962</ArticleId><ArticleId IdType="pmc">PMC8175647</ArticleId><ArticleId IdType="pubmed">34093370</ArticleId></ArticleIdList></Reference><Reference><Citation>Burkauskas J, Lang P, Bunevicius A, Neverauskas J, Buciute-Jankauskiene M, Mickuviene N. Cognitive function in patients with coronary artery disease: a literature review. J Int Med Res. 2018;46(10):4019&#x2013;31. 10.1177/0300060517751452.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6166352</ArticleId><ArticleId IdType="pubmed">30157691</ArticleId></ArticleIdList></Reference><Reference><Citation>Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF. Higher baseline inflammatory marker levels predict greater cognitive decline in older people with type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 diabetes study. Diabetologia. 2022;65(3):467&#x2013;76. 10.1007/s00125-021-05634-w.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8803673</ArticleId><ArticleId IdType="pubmed">34932135</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun C, Xiao Y, Li J, Ge B, Chen X, Liu H, et al. Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimer&#x2019;s Dement J Alzheimer&#x2019;s Assoc. 2022;18(5):966&#x2013;87. 10.1002/alz.12437.</Citation><ArticleIdList><ArticleId IdType="pubmed">34374497</ArticleId></ArticleIdList></Reference><Reference><Citation>Anita NZ, Zebarth J, Chan B, Wu C-Y, Syed T, Shahrul D, et al. Inflammatory markers in type 2 diabetes with vs. without cognitive impairment; a systematic review and meta-analysis. Brain Behav Immun. 2022;100:55&#x2013;69. 10.1016/j.bbi.2021.11.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">34808290</ArticleId></ArticleIdList></Reference><Reference><Citation>Siru R, Burkhardt MS, Davis WA, Hiew J, Manning L, Ritter JC, et al. Cognitive impairment in people with diabetes-related foot ulceration. J Clin Med. 2021;10(13). 10.3390/jcm10132808.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8268193</ArticleId><ArticleId IdType="pubmed">34202360</ArticleId></ArticleIdList></Reference><Reference><Citation>Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8(6):535&#x2013;45. 10.1016/s2213-8587(20)30118-2.</Citation><ArticleIdList><ArticleId IdType="pubmed">32445740</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Zhang W, Wang X, Yuan T, Liu P, Wang T, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS ONE. 2018;13(1):e0190699. 10.1371/journal.pone.0190699.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5755882</ArticleId><ArticleId IdType="pubmed">29304099</ArticleId></ArticleIdList></Reference><Reference><Citation>Palomo-Osuna J, De Sola H, Duenas M, Moral-Munoz JA, Failde I. Cognitive function in diabetic persons with peripheral neuropathy: a systematic review and meta-analysis. Expert Rev Neurother. 2022;22(3):269&#x2013;81. 10.1080/14737175.2022.2048649.</Citation><ArticleIdList><ArticleId IdType="pubmed">35232335</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2(3):246&#x2013;55. 10.1016/s2213-8587(13)70088-3.</Citation><ArticleIdList><ArticleId IdType="pubmed">24622755</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia. 2020;63(1):3&#x2013;9. 10.1007/s00125-019-04977-9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6890615</ArticleId><ArticleId IdType="pubmed">31420699</ArticleId></ArticleIdList></Reference><Reference><Citation>Brognara L, Volta I, Cassano VM, Navarro-Flores E, Cauli O. The association between cognitive impairment and diabetic foot care: role of neuropathy and glycated hemoglobin. Pathophysiol. 2020;27(1):14&#x2013;27. 10.3390/pathophysiology27010003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8830443</ArticleId><ArticleId IdType="pubmed">35366252</ArticleId></ArticleIdList></Reference><Reference><Citation>Doucet J, Le Floch JP, Bauduceau B, Verny C, Intergroup SS. GERODIAB: Glycaemic control and 5-year morbidity/mortality of type 2 diabetic patients aged 70 years and older: description of the population at inclusion. Diabetes Metab. 2012;38(6):523&#x2013;30. 10.1016/j.diabet.2012.07.001.</Citation><ArticleIdList><ArticleId IdType="pubmed">23062595</ArticleId></ArticleIdList></Reference><Reference><Citation>Kloos C, Hagen F, Lindloh C, Braun A, Leppert K, Muller N, et al. Cognitive function is not associated with recurrent foot ulcers in patients with diabetes and neuropathy. Diabetes Care. 2009;32(5):894&#x2013;6. 10.2337/dc08-0490.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2671092</ArticleId><ArticleId IdType="pubmed">19244093</ArticleId></ArticleIdList></Reference><Reference><Citation>Marseglia A, Xu W, Rizzuto D, Ferrari C, Whisstock C, Brocco E, et al. Cognitive functioning among patients with diabetic foot. J Diabetes Complications. 2014;28(6):863&#x2013;8. 10.1016/j.jdiacomp.2014.07.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">25127250</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. 10.1136/bmj.n71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu, Wang L, Guo Y, Cao Z, Lu Y, Qin H. Study of the risk and preventive factors for progress of mild cognitive impairment to Dementia. Am J Alzheimer&#x2019;s Dis Other Dement. 2020;35:1533317520925324. 10.1177/1533317520925324.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10624080</ArticleId><ArticleId IdType="pubmed">32567328</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong QNPP, F&#xe0;bregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, Gagnon M-P, GF, Nicolau B, O&#x2019;Cathain A, Rousseau M-C, Vedel I. Mixed methods appraisal tool (MMAT) vRoC, Canadian, Intellectual Property Office IC.</Citation></Reference><Reference><Citation>McCann E, Brown M, Hollins-Martin C, Murray K, McCormick F. The views and experiences of LGBTQ&#x2009;+&#x2009;people regarding midwifery care: a systematic review of the international evidence. Midwifery. 2021;103:103102. 10.1016/j.midw.2021.103102.</Citation><ArticleIdList><ArticleId IdType="pubmed">34333210</ArticleId></ArticleIdList></Reference><Reference><Citation>McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston RV. Chapter 9: summarizing study characteristics and preparing for synthesis. Cochrane; 2021. www.training.cochrane.org/handbook.</Citation></Reference><Reference><Citation>Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785&#x2013;805. 10.1177/0962280216669183.</Citation><ArticleIdList><ArticleId IdType="pubmed">27683581</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. 10.1186/1471-2288-14-135.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4383202</ArticleId><ArticleId IdType="pubmed">25524443</ArticleId></ArticleIdList></Reference><Reference><Citation>Ding X, Fang C, Li X, Cao Y-J, Zhang Q-L, Huang Y, et al. Type 1 diabetes-associated cognitive impairment and diabetic peripheral neuropathy in Chinese adults: results from a prospective cross-sectional study. BMC Endocr Disord. 2019;19(1):34. 10.1186/s12902-019-0359-2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6437981</ArticleId><ArticleId IdType="pubmed">30917808</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang D, Huang Y, Gao J, Lei Y, Ai K, Tang M, et al. Altered functional topological organization in type-2 diabetes mellitus with and without microvascular complications. Front Neurosci. 2021;15. 10.3389/fnins.2021.726350.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8493598</ArticleId><ArticleId IdType="pubmed">34630014</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao L, Mao L, Liu Q, Chen X, Tang X, An D. Cognitive impairment in type 2 diabetes patients with and without diabetic peripheral neuropathy: a mismatch negativity study. NeuroReport. 2021;32(14):1223&#x2013;8. 10.1097/wnr.0000000000001716.</Citation><ArticleIdList><ArticleId IdType="pubmed">34406991</ArticleId></ArticleIdList></Reference><Reference><Citation>Perlmuter LC, Hakami MK, Hodgson-Harrington C. Decreased cognitive function in aging non-insulin-dependent diabetic patients. Am J Med. 1984;77(6):1043&#x2013;8. 10.1016/0002-9343(84)90186-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">6334441</ArticleId></ArticleIdList></Reference><Reference><Citation>El-Tamawy MS, Darwish MH, Mohamed SS, Hegazy M, Basheer MA. Influence of cognitive dysfunction on spatiotemporal gait parameters in patients with diabetic polyneuropathy. Egypt J Neurol Psychiatr Neurosurg. 2016;53(4):253&#x2013;7. 10.4103/1110-1083.202387.</Citation></Reference><Reference><Citation>Brismar T, Maurex L, Cooray G, Juntti-Berggren L, Lindstr&#xf6;m P, Ekberg K, et al. Predictors of cognitive impairment in type 1 diabetes. Psychoneuroendocrinology. 2007;32(8):1041&#x2013;51. 10.1016/j.psyneuen.2007.08.002.</Citation><ArticleIdList><ArticleId IdType="pubmed">17884300</ArticleId></ArticleIdList></Reference><Reference><Citation>Dejgaard A, Gade A, Larsson H, Balle V, Parving A, Parving HH. Evidence for diabetic encephalopathy. Diabet Med. 1991;8(2):162&#x2013;7. 10.1111/j.1464-5491.1991.tb01564.x.</Citation><ArticleIdList><ArticleId IdType="pubmed">1827403</ArticleId></ArticleIdList></Reference><Reference><Citation>de Bresser J, Reijmer YD, van den Berg E, Breedijk MA, Kappelle LJ, Viergever MA, et al. Microvascular determinants of cognitive decline and brain volume change in elderly patients with type 2 diabetes. Dement Geriatr Cogn Disord. 2010;30(5):381&#x2013;6. 10.1159/000321354.</Citation><ArticleIdList><ArticleId IdType="pubmed">20962529</ArticleId></ArticleIdList></Reference><Reference><Citation>Althubaity SK, Lodhi FS, Khan AA. Frequency and determinants of mild cognitive impairment among diabetic type II patients attending a secondary care hospital in Makkah, Saudi Arabia. Clin Anal Med. 2021;12(3):332&#x2013;6. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02274979/full.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/central/CN-02274979/full</ArticleId></ArticleIdList></Reference><Reference><Citation>Blanquisco L, Abejero JE, Buno Ii B, Trajano-Acampado L, Cenina A, Santiago D. Factors associated with mild cognitive impairment among elderly filipinos with type 2 diabetes mellitus. J Asean Fed Endocr Soc. 2017;32(2):145&#x2013;50. 10.15605/jafes.032.02.08.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7784175</ArticleId><ArticleId IdType="pubmed">33442098</ArticleId></ArticleIdList></Reference><Reference><Citation>Roman de Mettelinge T, Delbaere K, Calders P, Gysel T, Van Den Noortgate N, Cambier D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch Phys M. 2013;94(6):1074&#x2013;9. 10.1016/j.apmr.2013.01.018.</Citation><ArticleIdList><ArticleId IdType="pubmed">23385112</ArticleId></ArticleIdList></Reference><Reference><Citation>Moreira RO, Soldera AL, Cury B, Meireles C, Kupfer R. Is cognitive impairment associated with the presence and severity of peripheral neuropathy in patients with type 2 diabetes mellitus? Diabetol Metab Syndr. 2015;7:51. 10.1186/s13098-015-0045-0.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4465619</ArticleId><ArticleId IdType="pubmed">26075029</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrews JS, Desai U, Kirson NY, Zichlin ML, Ball DE, Matthews BR. Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer&#x2019;s disease clinical trials. Alzheimers Dement (N Y). 2019;5:354&#x2013;63. 10.1016/j.trci.2019.06.005.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6690415</ArticleId><ArticleId IdType="pubmed">31417957</ArticleId></ArticleIdList></Reference><Reference><Citation>Ojo O, Brooke J. Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health. 2015;12(7):8281&#x2013;94. 10.3390/ijerph120708281.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4515722</ArticleId><ArticleId IdType="pubmed">26193295</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591&#x2013;604. 10.1038/s41574-018-0048-7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6397437</ArticleId><ArticleId IdType="pubmed">30022099</ArticleId></ArticleIdList></Reference><Reference><Citation>Omura T, Tamura Y, Sakurai T, Umegaki H, Iimuro S, Ohashi Y, et al. Functional categories based on cognition and activities of daily living predict all-cause mortality in older adults with diabetes mellitus: the Japanese Elderly diabetes intervention trial. Geriatr Gerontol Int. 2021;21(6):512&#x2013;8. 10.1111/ggi.14171.</Citation><ArticleIdList><ArticleId IdType="pubmed">33890351</ArticleId></ArticleIdList></Reference><Reference><Citation>Li W, Huang E, Gao S. Type 1 diabetes mellitus and cognitive impairments: a systematic review. J Alzheimer&#x2019;s Dis. 2017;57:29&#x2013;36. 10.3233/JAD-161250.</Citation><ArticleIdList><ArticleId IdType="pubmed">28222533</ArticleId></ArticleIdList></Reference><Reference><Citation>Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189&#x2013;98. 10.1016/0022-3956(75)90026-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">1202204</ArticleId></ArticleIdList></Reference><Reference><Citation>Nasreddine ZS, Phillips NA, B&#xe9;dirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695&#x2013;9. 10.1111/j.1532-5415.2005.53221.x.</Citation><ArticleIdList><ArticleId IdType="pubmed">15817019</ArticleId></ArticleIdList></Reference><Reference><Citation>Grace J, Nadler JD, White DA, Guilmette TJ, Giuliano AJ, Monsch AU, et al. Folstein vs modified mini-mental state examination in geriatric stroke: Stability, validity, and screening utility. Arch Neurol. 1995;52(5):477&#x2013;84. 10.1001/archneur.1995.00540290067019.</Citation><ArticleIdList><ArticleId IdType="pubmed">7733842</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke&#x2019;s cognitive examination III in frontotemporal dementia and alzheimer&#x2019;s disease. Dement Geriatr Cogn Disord. 2013;36(3&#x2013;4):242&#x2013;50. 10.1159/000351671.</Citation><ArticleIdList><ArticleId IdType="pubmed">23949210</ArticleId></ArticleIdList></Reference><Reference><Citation>Bentvelzen A, Aerts L, Seeher K, Wesson J, Brodaty H. A comprehensive review of the quality and feasibility of dementia assessment measures: the dementia outcomes measurement suite. J Am Med Dir Assoc. 2017;18(10):826&#x2013;37. 10.1016/j.jamda.2017.01.006.</Citation><ArticleIdList><ArticleId IdType="pubmed">28283381</ArticleId></ArticleIdList></Reference><Reference><Citation>Au B, Dale-McGrath S, Tierney MC. Sex differences in the prevalence and incidence of mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2017;35:176&#x2013;99. 10.1016/j.arr.2016.09.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">27771474</ArticleId></ArticleIdList></Reference><Reference><Citation>Vatanabe IP, Pedroso RV, Teles RHG, Ribeiro JC, Manzine PR, Pott-Junior H, et al. A systematic review and meta-analysis on cognitive frailty in community-dwelling older adults: risk and associated factors. Aging Ment Health. 2022;26(3):464&#x2013;76. 10.1080/13607863.2021.1884844.</Citation><ArticleIdList><ArticleId IdType="pubmed">33612030</ArticleId></ArticleIdList></Reference><Reference><Citation>Lipnicki DM, Makkar SR, Crawford JD, Thalamuthu A, Kochan NA, Lima-Costa MF, et al. Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study. PLoS Med. 2019;16(7):e1002853. 10.1371/journal.pmed.1002853.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6650056</ArticleId><ArticleId IdType="pubmed">31335910</ArticleId></ArticleIdList></Reference><Reference><Citation>Jia P, Lee HWY, Chan JYC, Yiu KKL, Tsoi KKF. Long-term blood pressure variability increases risks of dementia and cognitive decline: a meta-analysis of longitudinal studies. J Hypertens. 2021;78(4):996&#x2013;1004. 10.1161/HYPERTENSIONAHA.121.17788.</Citation><ArticleIdList><ArticleId IdType="pubmed">34397274</ArticleId></ArticleIdList></Reference><Reference><Citation>Ou Y-N, Tan C-C, Shen X-N, Xu W, Hou X-H, Dong Q, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. J Hypertens. 2020;76(1):217&#x2013;25. 10.1161/HYPERTENSIONAHA.120.14993.</Citation><ArticleIdList><ArticleId IdType="pubmed">32450739</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, et al. Elevated serum TC and LDL-C levels in Alzheimer&#x2019;s disease and mild cognitive impairment: a meta-analysis study. Brain Res. 2020;1727:146554. 10.1016/j.brainres.2019.146554.</Citation><ArticleIdList><ArticleId IdType="pubmed">31765631</ArticleId></ArticleIdList></Reference><Reference><Citation>&#xc1;lvarez-Bueno C, Cavero-Redondo I, Bruno RM, Saz-Lara A, Sequ&#xed;-Dominguez I, Notario-Pacheco B, et al. Intima media thickness and cognitive function among adults: meta-analysis of observational and longitudinal studies. J Am Heart Assoc. 2022;11(5):e021760. 10.1161/JAHA.121.021760.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9075078</ArticleId><ArticleId IdType="pubmed">35179392</ArticleId></ArticleIdList></Reference><Reference><Citation>Anbar R, Sultan SR, Al Saikhan L, Alkharaiji M, Chaturvedi N, Hardy R, et al. Is carotid artery atherosclerosis associated with poor cognitive function assessed using the Mini-mental State examination? A systematic review and meta-analysis. BMJ open. 2022;12(4):e055131. 10.1136/bmjopen-2021-055131.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9020283</ArticleId><ArticleId IdType="pubmed">35440451</ArticleId></ArticleIdList></Reference><Reference><Citation>Hudon C, Escudier F, De Roy J, Croteau J, Cross N, Dang-Vu TT, et al. Behavioral and psychological symptoms that predict cognitive decline or impairment in cognitively normal middle-aged or older adults: a meta-analysis. Neuropsychol Rev. 2020;30(4):558&#x2013;79. 10.1007/s11065-020-09437-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">32394109</ArticleId></ArticleIdList></Reference><Reference><Citation>Rojer AGM, Ramsey KA, Amaral Gomes ES, D&#x2019;Andrea L, Chen C, Szoeke C, et al. Objectively assessed physical activity and sedentary behavior and global cognitive function in older adults: a systematic review. Mech Ageing Dev. 2021;198:111524. 10.1016/j.mad.2021.111524.</Citation><ArticleIdList><ArticleId IdType="pubmed">34181963</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartley P, Gibbins N, Saunders A, Alexander K, Conroy E, Dixon R, et al. The association between cognitive impairment and functional outcome in hospitalised older patients: a systematic review and meta-analysis. Age Ageing. 2017;46(4):559&#x2013;67. 10.1093/ageing/afx007.</Citation><ArticleIdList><ArticleId IdType="pubmed">28119313</ArticleId></ArticleIdList></Reference><Reference><Citation>Mui&#xf1;os M, Ballesteros S. Does dance counteract age-related cognitive and brain declines in middle-aged and older adults? A systematic review. Neurosci Biobehav Rev. 2021;121:259&#x2013;76. 10.1016/j.neubiorev.2020.11.028.</Citation><ArticleIdList><ArticleId IdType="pubmed">33278423</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39609030</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Incidence, prevalence and risk factors for comorbid mental illness among people with hypertension and type 2 diabetes in West Africa: protocol for a systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>e081824</StartPage><MedlinePgn>e081824</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e081824</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-081824</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Mental illness remains a significant global health concern that affects diverse populations, including individuals living with hypertension and/or type 2 diabetes, predominantly in lower-income to middle-income countries. The association between non-communicable diseases (NCDs) and mental illness is firmly established globally, however, this connection has yet to be comprehensively explored in West Africa. Our systematic review and meta-analysis aim to synthesise existing evidence on the prevalence, incidence, and risk factors for comorbid mental illness with hypertension and/or type 2 diabetes in West Africa. This effort seeks to contribute to bridging the knowledge gap and facilitating the implementation of interventions tailored to this context.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">A comprehensive search will be conducted across multiple databases (PubMed, Google Scholar, PsycINFO, Carin Info and CINAHL), supplemented by searches on the websites of the WHO and various countries' ministries of health, and references cited in relevant papers. Inclusion criteria specify studies conducted in countries from the Economic Community of West African States, reported from January 2000 until date of search, focusing on adults with hypertension and/or type 2 diabetes and mental illness. Exclusion criteria encompass studies outside the specified time frame, involving pregnant women, or lacking relevant outcomes. There will be no language restrictions for inclusion. Study selection, data extraction and risk of bias assessment will be carried out independently by at least two reviewers. We will employ pooled proportions of OR, risk ratio and mean differences to assess prevalence, and incidence of mental illness and heterogeneity will be assessed.</AbstractText><AbstractText Label="ETHICS AND DISSEMINATION" NlmCategory="BACKGROUND">This protocol does not require ethical approval; however, it is a part of a larger study on NCDs, which has received ethical clearance from the Ghana Health Service (ID NO: GHS-ERC 013/02/23). The results will be presented to stakeholders (policymakers and practitioners) and disseminated through conferences and peer-reviewed publications.</AbstractText><AbstractText Label="PROSPERO REGISTRATION NUMBER" NlmCategory="UNASSIGNED">CRD42023450732.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ayiku</LastName><ForeName>Roberta Naa Barkey</ForeName><Initials>RNB</Initials><Identifier Source="ORCID">0009-0009-8076-6092</Identifier><AffiliationInfo><Affiliation>STOP NCD PROJECT, Ghana College of Physicians and Surgeons, Accra, Ghana robbieayiku@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jahan</LastName><ForeName>Yasmin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Global Health and Development, London School of Hygiene &amp; Tropical Medicine, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adjei-Banuah</LastName><ForeName>Nhyira Yaw</ForeName><Initials>NY</Initials><AffiliationInfo><Affiliation>STOP NCD PROJECT, Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Antwi</LastName><ForeName>Edward</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Awini</LastName><ForeName>Elizabeth</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Dodowa Health Research Center, Ghana Health Service Research and Development Division, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ohene</LastName><ForeName>Sammy</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Psychiatry, University of Ghana Medical School, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Agyepong</LastName><ForeName>Irene Akua</ForeName><Initials>IA</Initials><Identifier Source="ORCID">0000-0002-0193-5882</Identifier><AffiliationInfo><Affiliation>Public Health Faculty, Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Dodowa Health Research Center, Ghana Health Service Research and Development Division, Dodowa, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mirzoev</LastName><ForeName>Tolib</ForeName><Initials>T</Initials><Identifier Source="ORCID">0000-0003-2959-9187</Identifier><AffiliationInfo><Affiliation>Global Health and Development, London School of Hygiene &amp; Tropical Medicine, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amoakoh-Coleman</LastName><ForeName>Mary</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>University of Ghana Noguchi Memorial Institute for Medical Research, Accra, Ghana.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078202" MajorTopicYN="Y">Systematic Reviews as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="Y">Hypertension</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001523" MajorTopicYN="Y">Mental Disorders</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000354" MajorTopicYN="N" Type="Geographic">Africa, Western</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="Y">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015201" MajorTopicYN="N">Meta-Analysis as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DIABETES &amp; ENDOCRINOLOGY</Keyword><Keyword MajorTopicYN="N">EPIDEMIOLOGIC STUDIES</Keyword><Keyword MajorTopicYN="N">Health policy</Keyword><Keyword MajorTopicYN="N">Hypertension</Keyword><Keyword MajorTopicYN="N">MENTAL HEALTH</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609030</ArticleId><ArticleId IdType="pmc">PMC11603740</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-081824</ArticleId><ArticleId IdType="pii">bmjopen-2023-081824</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Moitra M, Santomauro D, Collins PY, et al. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000-2019: A systematic review and Bayesian meta-regression analysis. PLoS Med. 2022;19:e1003901. doi: 10.1371/journal.pmed.1003901.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003901</ArticleId><ArticleId IdType="pmc">PMC8846511</ArticleId><ArticleId IdType="pubmed">35167593</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma M, Grover S, Tripathy JP, et al. Co-existing Non-communicable Diseases and Mental Illnesses Amongst the Elderly in Punjab, India. Eur Endocrinol. 2019;15:106&#x2013;12. doi: 10.17925/EE.2019.15.2.106.</Citation><ArticleIdList><ArticleId IdType="doi">10.17925/EE.2019.15.2.106</ArticleId><ArticleId IdType="pmc">PMC6785953</ArticleId><ArticleId IdType="pubmed">31616502</ArticleId></ArticleIdList></Reference><Reference><Citation>Agyemang C, Nyaaba G, Beune E, et al. Variations in hypertension awareness, treatment, and control among Ghanaian migrants living in Amsterdam, Berlin, London, and nonmigrant Ghanaians living in rural and urban Ghana - the RODAM study. J Hypertens. 2018;36:169&#x2013;77. doi: 10.1097/HJH.0000000000001520.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HJH.0000000000001520</ArticleId><ArticleId IdType="pubmed">28858173</ArticleId></ArticleIdList></Reference><Reference><Citation>Coelho FM da C, Pinheiro RT, Horta BL, et al. Common mental disorders and chronic non-communicable diseases in adults: a population-based study. Cad Sa&#xfa;de P&#xfa;blica. 2009;25:59&#x2013;67. doi: 10.1590/S0102-311X2009000100006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S0102-311X2009000100006</ArticleId><ArticleId IdType="pubmed">19180287</ArticleId></ArticleIdList></Reference><Reference><Citation>Stein DJ, Benjet C, Gureje O, et al. Integrating mental health with other non-communicable diseases. BMJ. 2019;364:l295. doi: 10.1136/bmj.l295.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.l295</ArticleId><ArticleId IdType="pmc">PMC6348425</ArticleId><ArticleId IdType="pubmed">30692081</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Z, Sum G, Qin VM, et al. Associations between mental health disorder and management of physical chronic conditions in China: a pooled cross-sectional analysis. Sci Rep. 2021;11:5731. doi: 10.1038/s41598-021-85126-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-85126-4</ArticleId><ArticleId IdType="pmc">PMC7952541</ArticleId><ArticleId IdType="pubmed">33707604</ArticleId></ArticleIdList></Reference><Reference><Citation>Collins PY, Insel TR, Chockalingam A, et al. Grand challenges in global mental health: integration in research, policy, and practice. PLoS Med . 2013;10:e1001434. doi: 10.1371/journal.pmed.1001434.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1001434</ArticleId><ArticleId IdType="pmc">PMC3640093</ArticleId><ArticleId IdType="pubmed">23637578</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C, Lee I, Su Y, et al. The longitudinal relationship between mental health disorders and chronic disease for older adults: a population&#x2010;based study. Int J Geriat Psychiatry. 2017;32:1017&#x2013;26. doi: 10.1002/gps.4561.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gps.4561</ArticleId><ArticleId IdType="pubmed">27546556</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalez JS, Peyrot M, McCarl LA, et al. Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care. 2008;31:2398&#x2013;403. doi: 10.2337/dc08-1341.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc08-1341</ArticleId><ArticleId IdType="pmc">PMC2584202</ArticleId><ArticleId IdType="pubmed">19033420</ArticleId></ArticleIdList></Reference><Reference><Citation>Egede LE, Ellis C. Diabetes and depression: global perspectives. Diabetes Res Clin Pract. 2010;87:302&#x2013;12. doi: 10.1016/j.diabres.2010.01.024.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2010.01.024</ArticleId><ArticleId IdType="pubmed">20181405</ArticleId></ArticleIdList></Reference><Reference><Citation>Ali S, Stone MA, Peters JL, et al. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23:1165&#x2013;73. doi: 10.1111/j.1464-5491.2006.01943.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2006.01943.x</ArticleId><ArticleId IdType="pubmed">17054590</ArticleId></ArticleIdList></Reference><Reference><Citation>Udedi M, Pence B, Kauye F, et al. The effect of depression management on diabetes and hypertension outcomes in low- and middle-income countries: a systematic review protocol. Syst Rev. 2018;7:223. doi: 10.1186/s13643-018-0896-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-018-0896-1</ArticleId><ArticleId IdType="pmc">PMC6280497</ArticleId><ArticleId IdType="pubmed">30518434</ArticleId></ArticleIdList></Reference><Reference><Citation>Endomba FT, Mazou TN, Bigna JJ. Epidemiology of depressive disorders in people living with hypertension in Africa: a systematic review and meta-analysis. BMJ Open. 2020;10:e037975. doi: 10.1136/bmjopen-2020-037975.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-037975</ArticleId><ArticleId IdType="pmc">PMC7733170</ArticleId><ArticleId IdType="pubmed">33303433</ArticleId></ArticleIdList></Reference><Reference><Citation>Asmare Y, Ali A, Belachew A. Magnitude and associated factors of depression among people with hypertension in Addis Ababa, Ethiopia: a hospital based cross-sectional study. BMC Psychiatry. 2022;22:327. doi: 10.1186/s12888-022-03972-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12888-022-03972-6</ArticleId><ArticleId IdType="pmc">PMC9086661</ArticleId><ArticleId IdType="pubmed">35538447</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization  Depressive disorder (depression WHO) https://www.who.int/news-room/facts-sheets/detail/depression n.d. Available.</Citation></Reference><Reference><Citation>Sartorius N. Translational research. 2018. www.dialogues-cns.org Available.</Citation></Reference><Reference><Citation>Park M, Katon WJ, Wolf FM. Depression and risk of mortality in individuals with diabetes: a meta-analysis and systematic review. Gen Hosp Psychiatry. 2013;35:217&#x2013;25. doi: 10.1016/j.genhosppsych.2013.01.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.genhosppsych.2013.01.006</ArticleId><ArticleId IdType="pmc">PMC3644308</ArticleId><ArticleId IdType="pubmed">23415577</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan Y, Cai W, Cheng Q, et al. Association between anxiety and hypertension: a systematic review and meta-analysis of epidemiological studies. Neuropsychiatr Dis Treat . 2015;11:1121&#x2013;30. doi: 10.2147/NDT.S77710.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/NDT.S77710</ArticleId><ArticleId IdType="pmc">PMC4411016</ArticleId><ArticleId IdType="pubmed">25960656</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim LF, Solmi M, Cortese S. Association between anxiety and hypertension in adults: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;131:96&#x2013;119. doi: 10.1016/j.neubiorev.2021.08.031.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.neubiorev.2021.08.031</ArticleId><ArticleId IdType="pubmed">34481847</ArticleId></ArticleIdList></Reference><Reference><Citation>Chaudhary R, Kumar P, Chopra A, et al. Comparative Study of Psychiatric Manifestations among Type I and Type II Diabetic Patients. Indian J Psychol Med. 2017;39:342&#x2013;6. doi: 10.4103/IJPSYM.IJPSYM_35_17.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/IJPSYM.IJPSYM_35_17</ArticleId><ArticleId IdType="pmc">PMC5461847</ArticleId><ArticleId IdType="pubmed">28615771</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang CJ, Hsieh HM, Tu HP, et al. Generalized anxiety disorder in type 2 diabetes mellitus: prevalence and clinical characteristics. Braz J Psychiatry . 2020;42:621&#x2013;9. doi: 10.1590/1516-4446-2019-0605.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1516-4446-2019-0605</ArticleId><ArticleId IdType="pmc">PMC7678902</ArticleId><ArticleId IdType="pubmed">32321059</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith KJ, B&#xe9;land M, Clyde M, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74:89&#x2013;99. doi: 10.1016/j.jpsychores.2012.11.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jpsychores.2012.11.013</ArticleId><ArticleId IdType="pubmed">23332522</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu MY, Li N, Li WA, et al. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res. 2017;39:573&#x2013;80. doi: 10.1080/01616412.2017.1317904.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/01616412.2017.1317904</ArticleId><ArticleId IdType="pubmed">28415916</ArticleId></ArticleIdList></Reference><Reference><Citation>Vedantam D, Poman DS, Motwani L, et al. Stress-Induced Hyperglycemia: Consequences and Management. Cureus. 2022;10 doi: 10.7759/cureus.26714.</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.26714</ArticleId><ArticleId IdType="pmc">PMC9360912</ArticleId><ArticleId IdType="pubmed">35959169</ArticleId></ArticleIdList></Reference><Reference><Citation>Addo J, Agyemang C, Smeeth L, et al. A review of population-based studies on hypertension in Ghana. Ghana Med J. 2012;46:4&#x2013;11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3645150</ArticleId><ArticleId IdType="pubmed">23661811</ArticleId></ArticleIdList></Reference><Reference><Citation>Adeloye D, Basquill C, Aderemi AV, et al. An estimate of the prevalence of hypertension in Nigeria: a systematic review and meta-analysis. J Hypertens. 2015;33:230&#x2013;42. doi: 10.1097/HJH.0000000000000413.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HJH.0000000000000413</ArticleId><ArticleId IdType="pubmed">25380154</ArticleId></ArticleIdList></Reference><Reference><Citation>Dar&#xe9; LO, Bruand P-E, G&#xe9;rard D, et al. Co-morbidities of mental disorders and chronic physical diseases in developing and emerging countries: a meta-analysis. BMC Public Health. 2019;19:304. doi: 10.1186/s12889-019-6623-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-019-6623-6</ArticleId><ArticleId IdType="pmc">PMC6417021</ArticleId><ArticleId IdType="pubmed">30866883</ArticleId></ArticleIdList></Reference><Reference><Citation>JBI Manual for Evidence Synthesis. JBI; 2020. Chapter 5: systematic reviews of prevalence and incidence.</Citation></Reference><Reference><Citation>Wells G, Shea B, O&#x2019;connell D, et al. Newcastle-Ottawa Quality Assessment Scale Cohort Studies. University of Ottawa; 2014.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609024</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Association of overweight and obesity with gestational diabetes mellitus among pregnant women attending antenatal care clinics in Addis Ababa, Ethiopia: a case-control study.</ArticleTitle><Pagination><StartPage>e082539</StartPage><MedlinePgn>e082539</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e082539</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-082539</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">Maternal obesity and gestational diabetes mellitus (GDM) are becoming major public health concerns in developing countries. Understanding their relationship can help in developing contextually appropriate and targeted prevention strategies and interventions to improve maternal and infant health outcomes. This study aimed to determine the association of maternal overweight and obesity with GDM among pregnant women in Ethiopia.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">Case-control study.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">The study was conducted in selected public hospitals in Addis Ababa, Ethiopia, from 10 March to 30 July 2020.</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">159 pregnant women with GDM (cases) and 477 pregnant women without GDM (controls).</AbstractText><AbstractText Label="OUTCOME MEASURES AND DATA ANALYSIS" NlmCategory="UNASSIGNED">Screening and diagnosis of GDM in pregnant women was done by a physician using the 2013 WHO criteria of 1-hour plasma glucose level of 10.0 mmol/L (180&#x2009;mg/dL) or 2-hour plasma glucose level of 8.5-11.0&#x2009;mmol/L (153-199&#x2009;mg/dL) following a 75&#x2009;g oral glucose load. Overweight and obesity were measured using mid-upper arm circumference (MUAC). Binary logistic regression with bivariate and multivariable models was done to measure the association of overweight and obesity with GDM. Adjusted ORs (AORs) with a 95% CI were computed, and statistical significance was determined at a value of p=0.05.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">GDM was associated with obesity (MUAC&#x2265;31) (AOR 2.80; 95% CI 1.58 to 4.90), previous history of caesarean section (AOR 1.91; 95% CI 1.14 to 3.21) and inadequate Minimum Dietary Diversification Score &lt;5 (AOR 3.55; 95% CI 2.15 to 5.86). The AOR for overweight (MUAC&#x2265;28&#x2009;and MUAC&lt;31) was 1.51 (95% CI 0.71 to 3.21). The odds of developing GDM were 72% lower in pregnant women who were engaging in high-level physical activity (AOR 0.28; 95% CI 0.12 to 0.67).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Obesity, but not overweight, was significantly associated with the development of GDM. Screening for GDM is recommended for pregnant women with obesity (MUAC&#x2265;31) for targeted intervention. Antenatal care providers should provide information for women of childbearing age on maintaining a healthy body weight before and in-between pregnancies and the need for healthy, diversified food and high-level physical activity.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Seifu</LastName><ForeName>Yeabsra Mesfin</ForeName><Initials>YM</Initials><Identifier Source="ORCID">0000-0002-9630-8215</Identifier><AffiliationInfo><Affiliation>Department of Public Health, Jigjiga University, Jigjiga, Ethiopia yeabsramesfin@yahoo.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deyessa</LastName><ForeName>Negussie</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Epidemiology and Biostatistics, Addis Ababa University College of Health Sciences, Addis Ababa, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Seid Yimer</LastName><ForeName>Yimer</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Preventive Medicine, Addis Ababa University, Addis Ababa, Ethiopia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016640" MajorTopicYN="Y">Diabetes, Gestational</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005002" MajorTopicYN="N" Type="Geographic">Ethiopia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011295" MajorTopicYN="Y">Prenatal Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050177" MajorTopicYN="Y">Overweight</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016015" MajorTopicYN="N">Logistic Models</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes &amp; endocrinology</Keyword><Keyword MajorTopicYN="N">Diabetes in pregnancy</Keyword><Keyword MajorTopicYN="N">Maternal medicine</Keyword><Keyword MajorTopicYN="N">Obesity</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609024</ArticleId><ArticleId IdType="pmc">PMC11603813</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-082539</ArticleId><ArticleId IdType="pii">bmjopen-2023-082539</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>WHO recommendation on the diagnosis of gestational diabetes in pregnancy. 2018. http://www.who.int/diabetes/publications/Hyperglycaemia_In_Pregnancy/en/ Available.</Citation></Reference><Reference><Citation>Hild&#xe9;n K. Gestational diabetes, obesity and pregnancy outcomes in Sweden. 2018.</Citation></Reference><Reference><Citation>Shostrom DCV, Sun Y, Oleson JJ, et al. History of Gestational Diabetes Mellitus in Relation to Cardiovascular Disease and Cardiovascular Risk Factors in US Women. Front Endocrinol (Lausanne) 2017;8:144. doi: 10.3389/fendo.2017.00144.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2017.00144</ArticleId><ArticleId IdType="pmc">PMC5483836</ArticleId><ArticleId IdType="pubmed">28694789</ArticleId></ArticleIdList></Reference><Reference><Citation>Oros Ruiz M, Perej&#xf3;n L&#xf3;pez D, Serna Arnaiz C, et al. Maternal and foetal complications of pregestational and gestational diabetes: a descriptive, retrospective cohort study. Sci Rep. 2024;14:9017. doi: 10.1038/s41598-024-59465-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-024-59465-x</ArticleId><ArticleId IdType="pmc">PMC11031602</ArticleId><ArticleId IdType="pubmed">38641705</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye W, Luo C, Huang J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 2022;377:e067946. doi: 10.1136/bmj-2021-067946.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj-2021-067946</ArticleId><ArticleId IdType="pmc">PMC9131781</ArticleId><ArticleId IdType="pubmed">35613728</ArticleId></ArticleIdList></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Gestational diabetes mellitus increased the risk of adverse neonatal outcomes: A prospective cohort study in Northwest Ethiopia. Midwifery. 2020;87:S0266-6138(20)30086-3. doi: 10.1016/j.midw.2020.102713.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.midw.2020.102713</ArticleId><ArticleId IdType="pubmed">32447182</ArticleId></ArticleIdList></Reference><Reference><Citation>Vounzoulaki E, Khunti K, Abner SC, et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. doi: 10.1136/bmj.m1361.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m1361</ArticleId><ArticleId IdType="pmc">PMC7218708</ArticleId><ArticleId IdType="pubmed">32404325</ArticleId></ArticleIdList></Reference><Reference><Citation>Moon JH, Jang HC. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab J. 2022;46:3&#x2013;14. doi: 10.4093/dmj.2021.0335.</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2021.0335</ArticleId><ArticleId IdType="pmc">PMC8831816</ArticleId><ArticleId IdType="pubmed">35135076</ArticleId></ArticleIdList></Reference><Reference><Citation>Wakwoya EB, Amante TD, Tesema KF. Gestational diabetes mellitus is a risk for macrosomia: case- control study in eastern ethiopia. Epidemiology. 2018 doi: 10.1101/492355. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/492355</ArticleId></ArticleIdList></Reference><Reference><Citation>Sunar L, Yan Z, Gynaecologist O. Evaluation of Pregnancy Outcomes in Gestational Diabetes Mellitus. Med J Pokhara Acad Health Sci. 2018;1:66&#x2013;9. doi: 10.3126/mjpahs.v1i2.23393.</Citation><ArticleIdList><ArticleId IdType="doi">10.3126/mjpahs.v1i2.23393</ArticleId></ArticleIdList></Reference><Reference><Citation>Fedak&#xe2;r A. Gestational Diabetes and Perinatal Outcomes: 5-Year Neonatal Intensive Care Experience. RPN . 2017;1:1&#x2013;5. doi: 10.31031/RPN.2017.01.000501.</Citation><ArticleIdList><ArticleId IdType="doi">10.31031/RPN.2017.01.000501</ArticleId></ArticleIdList></Reference><Reference><Citation>Domanski G, Lange AE, Ittermann T, et al. Evaluation of neonatal and maternal morbidity in mothers with gestational diabetes: a population-based study. BMC Pregnancy Childbirth. 2018;18:367. doi: 10.1186/s12884-018-2005-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-018-2005-9</ArticleId><ArticleId IdType="pmc">PMC6131836</ArticleId><ArticleId IdType="pubmed">30200916</ArticleId></ArticleIdList></Reference><Reference><Citation>Webber S. International Diabetes Federation. 10th ed. Vol. 10, Diabetes Research and Clinical Practice. 2021;10:147&#x2013;8.</Citation></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and meta-analysis. Arch Public Health . 2019;77:1&#x2013;20. doi: 10.1186/s13690-019-0362-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13690-019-0362-0</ArticleId><ArticleId IdType="pmc">PMC6683510</ArticleId><ArticleId IdType="pubmed">31402976</ArticleId></ArticleIdList></Reference><Reference><Citation>Woticha EW, Deressa W, Reja A. Prevalence of gestational diabetes mellitus and associated factors in Southern Ethiopia. Asian J Med Sci. 2018;10:86&#x2013;91. doi: 10.3126/ajms.v10i1.21331.</Citation><ArticleIdList><ArticleId IdType="doi">10.3126/ajms.v10i1.21331</ArticleId></ArticleIdList></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Prevalence of gestational diabetes mellitus and associated factors among women attending antenatal care at Gondar town public health facilities, Northwest Ethiopia. BMC Pregnancy Childbirth. 2019;19:334. doi: 10.1186/s12884-019-2492-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-019-2492-3</ArticleId><ArticleId IdType="pmc">PMC6743162</ArticleId><ArticleId IdType="pubmed">31519151</ArticleId></ArticleIdList></Reference><Reference><Citation>Pirjani R, Shirzad N, Qorbani M, et al. Gestational diabetes mellitus its association with obesity: a prospective cohort study. Eat Weight Disord. 2017;22:445&#x2013;50. doi: 10.1007/s40519-016-0332-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40519-016-0332-2</ArticleId><ArticleId IdType="pubmed">27747467</ArticleId></ArticleIdList></Reference><Reference><Citation>Njete HI, John B, Mlay P, et al. Prevalence, predictors and challenges of gestational diabetes mellitus screening among pregnant women in northern Tanzania. Tropical Med Int Health . 2018;23:236&#x2013;42. doi: 10.1111/tmi.13018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/tmi.13018</ArticleId><ArticleId IdType="pubmed">29178236</ArticleId></ArticleIdList></Reference><Reference><Citation>Egbe TO, Tsaku ES, Tchounzou R, et al. Prevalence and risk factors of gestational diabetes mellitus in a population of pregnant women attending three health facilities in Limbe, Cameroon: a cross-sectional study. Pan Afr Med J. 2018;31:195. doi: 10.11604/pamj.2018.31.195.17177.</Citation><ArticleIdList><ArticleId IdType="doi">10.11604/pamj.2018.31.195.17177</ArticleId><ArticleId IdType="pmc">PMC6488967</ArticleId><ArticleId IdType="pubmed">31086639</ArticleId></ArticleIdList></Reference><Reference><Citation>Yong HY, Mohd Shariff Z, Mohd Yusof BN, et al. Independent and combined effects of age, body mass index and gestational weight gain on the risk of gestational diabetes mellitus. Sci Rep. 2020;10:8486. doi: 10.1038/s41598-020-65251-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-65251-2</ArticleId><ArticleId IdType="pmc">PMC7244566</ArticleId><ArticleId IdType="pubmed">32444832</ArticleId></ArticleIdList></Reference><Reference><Citation>Stubert J, Reister F, Hartmann S, et al. The Risks Associated With Obesity in Pregnancy. Dtsch &#xc4;rztebl Int. 2018 doi: 10.3238/arztebl.2018.0276.</Citation><ArticleIdList><ArticleId IdType="doi">10.3238/arztebl.2018.0276</ArticleId><ArticleId IdType="pmc">PMC5954173</ArticleId><ArticleId IdType="pubmed">29739495</ArticleId></ArticleIdList></Reference><Reference><Citation>Fakier A, Petro G, Fawcus S. Mid-upper arm circumference: A surrogate for body mass index in pregnant women. S Afr Med J . 2017;107:606&#x2013;10. doi: 10.7196/SAMJ.2017.v107i7.12255.</Citation><ArticleIdList><ArticleId IdType="doi">10.7196/SAMJ.2017.v107i7.12255</ArticleId><ArticleId IdType="pubmed">29025451</ArticleId></ArticleIdList></Reference><Reference><Citation>Salih Y, Omar SM, AlHabardi N, et al. The Mid-Upper Arm Circumference as a Substitute for Body Mass Index in the Assessment of Nutritional Status among Pregnant Women: A Cross-Sectional Study. Medicina (Kaunas) 2023;59:1001. doi: 10.3390/medicina59061001.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/medicina59061001</ArticleId><ArticleId IdType="pmc">PMC10304801</ArticleId><ArticleId IdType="pubmed">37374205</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma N, Bai L, Niu Z, et al. Mid-upper arm circumference predicts the risk of gestational diabetes in early pregnancy. BMC Pregnancy Childbirth. 2024;24:462. doi: 10.1186/s12884-024-06664-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-024-06664-z</ArticleId><ArticleId IdType="pmc">PMC11225188</ArticleId><ArticleId IdType="pubmed">38965475</ArticleId></ArticleIdList></Reference><Reference><Citation>Chhillar E, Puri M, Sinha RK, et al. Comparison between body mass index and mid upper arm circumference for classifying nutritional status of pregnant women: a prospective cohort study. Int J Community Med Public Health . 2021;8:2293. doi: 10.18203/2394-6040.ijcmph20211748.</Citation><ArticleIdList><ArticleId IdType="doi">10.18203/2394-6040.ijcmph20211748</ArticleId></ArticleIdList></Reference><Reference><Citation>Miele MJ, Souza RT, Calderon I, et al. Proposal of MUAC as a fast tool to monitor pregnancy nutritional status: results from a cohort study in Brazil. BMJ Open. 2021;11:e047463. doi: 10.1136/bmjopen-2020-047463.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-047463</ArticleId><ArticleId IdType="pmc">PMC8149442</ArticleId><ArticleId IdType="pubmed">34031116</ArticleId></ArticleIdList></Reference><Reference><Citation>Suresh M, Jain S, Kaul NB. Evaluation of MUAC as a tool for assessing nutritional status during pregnancy (&gt;20 weeks of gestation) in Delhi India. WN. 2021;12:65&#x2013;72. doi: 10.26596/wn.202112165-72.</Citation><ArticleIdList><ArticleId IdType="doi">10.26596/wn.202112165-72</ArticleId></ArticleIdList></Reference><Reference><Citation>Federal Minsty of Health E . Ethiopian demographic and health survey 2016. Central Statistical Agency (CSA) [Ethiopia] and ICF; 2016.</Citation></Reference><Reference><Citation>Fahim NK, Negida A, Fahim AK. Sample Size Calculation Guide - Part 3: How to Calculate the Sample Size for an Independent Case-control Study. Adv J Emerg Med . 2019;3:e20. doi: 10.22114/AJEM.v0i0.138.</Citation><ArticleIdList><ArticleId IdType="doi">10.22114/AJEM.v0i0.138</ArticleId><ArticleId IdType="pmc">PMC6548115</ArticleId><ArticleId IdType="pubmed">31172131</ArticleId></ArticleIdList></Reference><Reference><Citation>FAO  Minimum Dietary Diversity for Women- A Guide to Measurement. 2010. www.fao.org/publications Available.</Citation></Reference><Reference><Citation>Hagstr&#xf6;mer M, Oja P, Sj&#xf6;str&#xf6;m M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9:755&#x2013;62. doi: 10.1079/phn2005898.</Citation><ArticleIdList><ArticleId IdType="doi">10.1079/phn2005898</ArticleId><ArticleId IdType="pubmed">16925881</ArticleId></ArticleIdList></Reference><Reference><Citation>Forde C. Scoring the International Physical Activity Questionnaire (IPAQ) www.ipaq.ki.se Available.</Citation></Reference><Reference><Citation>Mwanri AW, Kinabo J, Ramaiya K, et al. Prevalence of gestational diabetes mellitus in urban and rural Tanzania. Diabetes Res Clin Pract. 2014;103:71&#x2013;8. doi: 10.1016/j.diabres.2013.11.021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2013.11.021</ArticleId><ArticleId IdType="pubmed">24367971</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy. 2013.</Citation><ArticleIdList><ArticleId IdType="pubmed">24199271</ArticleId></ArticleIdList></Reference><Reference><Citation>Scott AJ, Hosmer DW, Lemeshow S. Applied Logistic Regression. Biometrics. 1991;47:1632. doi: 10.2307/2532419.</Citation><ArticleIdList><ArticleId IdType="doi">10.2307/2532419</ArticleId></ArticleIdList></Reference><Reference><Citation>Kiani F, Saei Ghare Naz M, Sayehmiri F, et al. The Risk Factors of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis Study. Int J Women's Health Reprod Sci. 2017;5:253&#x2013;63. doi: 10.15296/ijwhr.2017.44.</Citation><ArticleIdList><ArticleId IdType="doi">10.15296/ijwhr.2017.44</ArticleId></ArticleIdList></Reference><Reference><Citation>Petrova Genova M, Dimitrova Atanasova B, Nikolova Todorova-Ananieva K. Body Mass Index and Insulin Sensitivity/Resistance: Cross Talks in Gestational Diabetes, Normal Pregnancy and Beyond. BMI Heal. 2019 doi: 10.5772/intechopen.78363.</Citation><ArticleIdList><ArticleId IdType="doi">10.5772/intechopen.78363</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x160;imj&#xe1;k P, Cinkajzlov&#xe1; A, Anderlov&#xe1; K, et al. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol. 2018;238:R63&#x2013;77. doi: 10.1530/JOE-18-0032.</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/JOE-18-0032</ArticleId><ArticleId IdType="pubmed">29743342</ArticleId></ArticleIdList></Reference><Reference><Citation>Feleke BE. Determinants of gestational diabetes mellitus: a case-control study. J Matern Fetal Neonatal Med. 2018;31:2584&#x2013;9. doi: 10.1080/14767058.2017.1347923.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/14767058.2017.1347923</ArticleId><ArticleId IdType="pubmed">28651450</ArticleId></ArticleIdList></Reference><Reference><Citation>Bune GT. Gestational Diabetes Mellitus Risk Factors in Pregnant Women Attending Public Health Institutions in Ethiopia&#x2019;s Sidama Region: An Unmatched Case-Control Study. Diabetes Metab Syndr Obes. 2024;17:2303&#x2013;16. doi: 10.2147/DMSO.S457739.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S457739</ArticleId><ArticleId IdType="pmc">PMC11166162</ArticleId><ArticleId IdType="pubmed">38863518</ArticleId></ArticleIdList></Reference><Reference><Citation>Atlaw D, Sahiledengle B, Assefa T, et al. Incidence and risk factors of gestational diabetes mellitus in Goba town, Southeast Ethiopia: a prospective cohort study. BMJ Open. 2022;12:e060694. doi: 10.1136/bmjopen-2021-060694.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2021-060694</ArticleId><ArticleId IdType="pmc">PMC9516079</ArticleId><ArticleId IdType="pubmed">36167396</ArticleId></ArticleIdList></Reference><Reference><Citation>Mijatovic-Vukas J, Capling L, Cheng S, et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients. 2018;10:698. doi: 10.3390/nu10060698.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu10060698</ArticleId><ArticleId IdType="pmc">PMC6024719</ArticleId><ArticleId IdType="pubmed">29849003</ArticleId></ArticleIdList></Reference><Reference><Citation>Tryggvadottir EA, Medek H, Birgisdottir BE, et al. Association between healthy maternal dietary pattern and risk for gestational diabetes mellitus. Eur J Clin Nutr. 2016;70:237&#x2013;42. doi: 10.1038/ejcn.2015.145.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ejcn.2015.145</ArticleId><ArticleId IdType="pubmed">26350393</ArticleId></ArticleIdList></Reference><Reference><Citation>Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020;17:e1003053. doi: 10.1371/journal.pmed.1003053.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003053</ArticleId><ArticleId IdType="pmc">PMC7059907</ArticleId><ArticleId IdType="pubmed">32142510</ArticleId></ArticleIdList></Reference><Reference><Citation>Mdoe MB, Kibusi SM, Munyogwa MJ, et al. Prevalence and predictors of gestational diabetes mellitus among pregnant women attending antenatal clinic in Dodoma region, Tanzania: an analytical cross-sectional study. BMJNPH . 2021;4:69&#x2013;79. doi: 10.1136/bmjnph-2020-000149.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjnph-2020-000149</ArticleId><ArticleId IdType="pmc">PMC8258095</ArticleId><ArticleId IdType="pubmed">34308114</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen CL, Pham NM, Lee AH, et al. Physical activity during pregnancy is associated with a lower prevalence of gestational diabetes mellitus in Vietnam. Acta Diabetol. 2018;55:955&#x2013;62. doi: 10.1007/s00592-018-1174-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-018-1174-3</ArticleId><ArticleId IdType="pubmed">29948409</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang C, Wei Y, Zhang X, et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol. 2017;216:340&#x2013;51. doi: 10.1016/j.ajog.2017.01.037.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajog.2017.01.037</ArticleId><ArticleId IdType="pubmed">28161306</ArticleId></ArticleIdList></Reference><Reference><Citation>Ming W-K, Ding W, Zhang CJP, et al. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018;18:440. doi: 10.1186/s12884-018-2068-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-018-2068-7</ArticleId><ArticleId IdType="pmc">PMC6233372</ArticleId><ArticleId IdType="pubmed">30419848</ArticleId></ArticleIdList></Reference><Reference><Citation>Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab. 2013;2013:285948. doi: 10.1155/2013/285948.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/285948</ArticleId><ArticleId IdType="pmc">PMC3649306</ArticleId><ArticleId IdType="pubmed">23691290</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609009</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Implementation strategies for providing optimised tuberculosis and diabetes integrated care in LMICs (POTENTIAL): protocol for a multiphase sequential and concurrent mixed-methods study.</ArticleTitle><Pagination><StartPage>e093747</StartPage><MedlinePgn>e093747</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e093747</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2024-093747</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Almost a quarter of patients with tuberculosis (TB) in Pakistan may also have diabetes, with an additional quarter in a pre-diabetic state. Diabetes is a risk factor for TB. When it co-occurs with TB, it leads to poorer outcomes for both conditions, considerably increasing the burden on individuals, families and the healthcare system. We aim to improve health, quality of life and economic outcomes for people with TB and diabetes by optimising diabetes prevention, screening and management within TB care. The objectives of this study are to: (1) design an integrated optimised tuberculosis-diabetes care package (Opt-TBD) and its implementation strategies; (2) pilot and refine these implementation strategies and (3) implement and evaluate the Opt-TBD care package in 15 TB care facilities in Pakistan.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">We will work with the TB programme across two provinces of Pakistan: Khyber Pakhtunkhwa and Punjab. TB care facilities will be selected from urban and rural settings of these provinces and will include three levels: primary, secondary and tertiary care settings. This multiphase mixed-method study has three sequential phases. Once ready, the care package and its implementation strategies will be piloted to inform further refinement. The package will be implemented in 15 urban and rural TB care facilities and evaluated for its Reach, Effectiveness, Adoption, Implementation and Maintenance, and potential for scale-up. Quantitative data will assess provider adoption and the package's accessibility and effectiveness for patients with TB and with diabetes and pre-diabetes. Qualitative data will explore barriers and facilitators for successful implementation and scale-up. Data will be analysed using statistical methods-including descriptive and inferential statistics-for quantitative data and framework analysis for qualitative data, with triangulation to integrate findings.</AbstractText><AbstractText Label="ETHICS AND DISSEMINATION" NlmCategory="BACKGROUND">Ethics approval was granted by the National Bioethics Committee of Pakistan (NBCR-1010). Findings will be shared through academic publications, conferences and public outreach.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Afaq</LastName><ForeName>Saima</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-9080-2220</Identifier><AffiliationInfo><Affiliation>University of York, York, UK saima.afaq@york.ac.uk.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Imperial College London, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zala</LastName><ForeName>Zala</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aleem</LastName><ForeName>Saima</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-1892-3834</Identifier><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qazi</LastName><ForeName>Fatima Khalid</ForeName><Initials>FK</Initials><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jamal</LastName><ForeName>Syeda Fatima</ForeName><Initials>SF</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khan</LastName><ForeName>Zohaib</ForeName><Initials>Z</Initials><Identifier Source="ORCID">0000-0002-1885-8254</Identifier><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sarfraz</LastName><ForeName>Mariyam</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Health Services Academy, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Niazi</LastName><ForeName>Asima Khan</ForeName><Initials>AK</Initials><AffiliationInfo><Affiliation>Baqai Medical University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Safdar</LastName><ForeName>Nauman</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Freelance Researcher, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Basit</LastName><ForeName>Abdul</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-8041-3360</Identifier><AffiliationInfo><Affiliation>Baqai Medical University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ul-Haq</LastName><ForeName>Zia</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>University of Glasgow, Glasgow, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Iqbal</LastName><ForeName>Romaina</ForeName><Initials>R</Initials><Identifier Source="ORCID">0000-0002-5364-4366</Identifier><AffiliationInfo><Affiliation>Aga Khan University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fatima</LastName><ForeName>Razia</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Common Management Unit AIDS, TB and Malaria, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hewitt</LastName><ForeName>Catherine</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Najma</ForeName><Initials>N</Initials><Identifier Source="ORCID">0000-0003-1794-2152</Identifier><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Hull York Medical School, Hull, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parrott</LastName><ForeName>Steve</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Kamran</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0003-1529-7778</Identifier><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="Y">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention &amp; control</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019033" MajorTopicYN="Y">Delivery of Health Care, Integrated</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization &amp; administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003906" MajorTopicYN="N">Developing Countries</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011788" MajorTopicYN="N">Quality of Life</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Implementation Science</Keyword><Keyword MajorTopicYN="N">Tuberculosis</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609009</ArticleId><ArticleId IdType="pmc">PMC11603734</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2024-093747</ArticleId><ArticleId IdType="pii">bmjopen-2024-093747</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Jarde A, Ma R, Todowede OO, et al. Prevalence, clusters, and burden of complex tuberculosis multimorbidity in low- and middle-income countries: a systematic review and meta-analysis. Public and Global Health. 2022 doi: 10.1101/2022.09.22.22280228. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/2022.09.22.22280228</ArticleId></ArticleIdList></Reference><Reference><Citation>Waheed MS. Tuberculosis. In: World Health Organization - Regional Office for the Eastern Mediterranean. https://www.emro.who.int/pak/programmes/stop-tuberculosis.html Available.</Citation></Reference><Reference><Citation>CMT, TAC, TAG, i-Base  TB cases on the rise in Pakistan. https://www.tbonline.info/posts/2019/4/21/tb-cases-rise-pakistan/ Available.</Citation></Reference><Reference><Citation>Global health estimates: Leading causes of DALYs. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-estimates-leading-causes-of-dalys Available.</Citation></Reference><Reference><Citation>Aamir AH, Ul-Haq Z, Mahar SA, et al. Diabetes Prevalence Survey of Pakistan (DPS-PAK): prevalence of type 2 diabetes mellitus and prediabetes using HbA1c: a population-based survey from Pakistan. BMJ Open. 2019;9:e025300. doi: 10.1136/bmjopen-2018-025300.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2018-025300</ArticleId><ArticleId IdType="pmc">PMC6398762</ArticleId><ArticleId IdType="pubmed">30796126</ArticleId></ArticleIdList></Reference><Reference><Citation>Habib SS, Rafiq S, Jamal WZ, et al. Engagement of private healthcare providers for case finding of tuberculosis and diabetes mellitus in Pakistan. BMC Health Serv Res. 2020;20:328. doi: 10.1186/s12913-020-05217-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-020-05217-2</ArticleId><ArticleId IdType="pmc">PMC7168982</ArticleId><ArticleId IdType="pubmed">32306961</ArticleId></ArticleIdList></Reference><Reference><Citation>Silva DR, Mu&#xf1;oz-Torrico M, Duarte R, et al. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs. J Bras Pneumol. 2018;44:145&#x2013;52. doi: 10.1590/s1806-37562017000000443.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/s1806-37562017000000443</ArticleId><ArticleId IdType="pmc">PMC6044656</ArticleId><ArticleId IdType="pubmed">29791552</ArticleId></ArticleIdList></Reference><Reference><Citation>TB and diabetes. https://www.who.int/publications/digital/global-tuberculosis-report-2021/featured-topics/tb-diabetes Available.</Citation></Reference><Reference><Citation>Nyirenda JLZ, Bockey A, Wagner D, et al. Effect of Tuberculosis (TB) and Diabetes mellitus (DM) integrated healthcare on bidirectional screening and treatment outcomes among TB patients and people living with DM in developing countries: a systematic review. Pathog Glob Health. 2023;117:36&#x2013;51. doi: 10.1080/20477724.2022.2046967.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/20477724.2022.2046967</ArticleId><ArticleId IdType="pmc">PMC9848381</ArticleId><ArticleId IdType="pubmed">35296216</ArticleId></ArticleIdList></Reference><Reference><Citation>Joshi R, Behera D, Di Tanna GL, et al. Integrated Management of Diabetes and Tuberculosis in Rural India &#x2013; Results From a Pilot Study. Front Public Health. 2022;10:766847. doi: 10.3389/fpubh.2022.766847.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2022.766847</ArticleId><ArticleId IdType="pmc">PMC9127505</ArticleId><ArticleId IdType="pubmed">35619802</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Collaborative Framework for Care and Control of Tuberculosis and Diabetes. 2011.</Citation><ArticleIdList><ArticleId IdType="pubmed">26290931</ArticleId></ArticleIdList></Reference><Reference><Citation>Toro N. Who global strategy on integrated people-centred health services (IPCHS) / Estrategia mundial en servicios de salud integrada centrado en las personas (IPCHS) Int J Integr Care. 2015;15 doi: 10.5334/ijic.2413.</Citation><ArticleIdList><ArticleId IdType="doi">10.5334/ijic.2413</ArticleId></ArticleIdList></Reference><Reference><Citation>Basir MS, Habib SS, Zaidi SMA, et al. Operationalization of bi-directional screening for tuberculosis and diabetes in private sector healthcare clinics in Karachi, Pakistan. BMC Health Serv Res. 2019;19:147. doi: 10.1186/s12913-019-3975-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-019-3975-7</ArticleId><ArticleId IdType="pmc">PMC6404337</ArticleId><ArticleId IdType="pubmed">30841929</ArticleId></ArticleIdList></Reference><Reference><Citation>Foo CD, Shrestha P, Wang L, et al. Integrating tuberculosis and noncommunicable diseases care in low- and middle-income countries (LMICs): A systematic review. PLoS Med. 2022;19:e1003899. doi: 10.1371/journal.pmed.1003899.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003899</ArticleId><ArticleId IdType="pmc">PMC8806070</ArticleId><ArticleId IdType="pubmed">35041654</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuchler M, Rauscher M, Rangnow P, et al. Participatory Approaches in Family Health Promotion as an Opportunity for Health Behavior Change-A Rapid Review. Int J Environ Res Public Health. 2022;19:8680. doi: 10.3390/ijerph19148680.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph19148680</ArticleId><ArticleId IdType="pmc">PMC9317372</ArticleId><ArticleId IdType="pubmed">35886532</ArticleId></ArticleIdList></Reference><Reference><Citation>SDG target 3.3 communicable diseases. https://www.who.int/data/gho/data/themes/topics/sdg-target-3_3-communicable-diseases Available.</Citation></Reference><Reference><Citation>United Nations Statistics Division. https://unstats.un.org/sdgs/metadata/files/Metadata-03-03-02 Available.</Citation></Reference><Reference><Citation>Siddiqi K, Siddiqi N, Javaid A. Multimorbidity in people with tuberculosis. Pak J Chest Med. 2020;26:109&#x2013;12.</Citation></Reference><Reference><Citation>Practice guidelines resources. https://professional.diabetes.org/content-page/practice-guidelines-resources Available.</Citation></Reference><Reference><Citation>Health system building blocks. https://extranet.who.int/nhptool/BuildingBlock.aspx Available.</Citation></Reference><Reference><Citation>Kroeze JH, Zyl I. The theme of hermeneutics in IS - the need for a structured literature review. Am Conf Inf Syst. 2015 http://dx.doi.org/ Available.</Citation></Reference><Reference><Citation>Powell BJ, Waltz TJ, Chinman MJ, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:21. doi: 10.1186/s13012-015-0209-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13012-015-0209-1</ArticleId><ArticleId IdType="pmc">PMC4328074</ArticleId><ArticleId IdType="pubmed">25889199</ArticleId></ArticleIdList></Reference><Reference><Citation>Proctor E, Silmere H, Raghavan R, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38:65&#x2013;76. doi: 10.1007/s10488-010-0319-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10488-010-0319-7</ArticleId><ArticleId IdType="pmc">PMC3068522</ArticleId><ArticleId IdType="pubmed">20957426</ArticleId></ArticleIdList></Reference><Reference><Citation>Updated CFIR Constructs. https://cfirguide.org/constructs/ Available.</Citation></Reference><Reference><Citation>National TB Control Programme - Pakistan. 2020. https://ntp.gov.pk Available.</Citation></Reference><Reference><Citation>The Union  Management of diabetes mellitus-tuberculosis - A guide to the essential practice. https://theunion.org/technical-publications/management-of-diabetes-mellitus-tuberculosis-a-guide-to-the-essential-practice Available.</Citation></Reference><Reference><Citation>RE-AIM  Home &#x2013; Reach Effectiveness Adoption Implementation Maintenance. https://re-aim.org/ Available.</Citation></Reference><Reference><Citation>Yorke E, Atiase Y, Akpalu J, et al. The Bidirectional Relationship between Tuberculosis and Diabetes. Tuberc Res Treat. 2017;2017:1702578. doi: 10.1155/2017/1702578.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2017/1702578</ArticleId><ArticleId IdType="pmc">PMC5705893</ArticleId><ArticleId IdType="pubmed">29270319</ArticleId></ArticleIdList></Reference><Reference><Citation>Khalid N, Ahmad F, Qureshi FM. Association amid the comorbidity of Diabetes Mellitus in patients of Active Tuberculosis in Pakistan: A matched case control study. Pak J Med Sci . 2021;37:816&#x2013;20. doi: 10.12669/pjms.37.3.3274.</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.37.3.3274</ArticleId><ArticleId IdType="pmc">PMC8155445</ArticleId><ArticleId IdType="pubmed">34104171</ArticleId></ArticleIdList></Reference><Reference><Citation>Tahir Z, Ahmad M-U-D, Akhtar AM, et al. Diabetes mellitus among tuberculosis patients: a cross sectional study from Pakistan. Afr Health Sci. 2016;16:671&#x2013;6. doi: 10.4314/ahs.v16i3.5.</Citation><ArticleIdList><ArticleId IdType="doi">10.4314/ahs.v16i3.5</ArticleId><ArticleId IdType="pmc">PMC5112000</ArticleId><ArticleId IdType="pubmed">27917198</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Monitoring the Building Blocks of Health Systems: A Handbook of Indicators and Their Measurement Strategies. 2011.</Citation></Reference><Reference><Citation>Yakovchenko V, Chinman MJ, Lamorte C, et al. Refining Expert Recommendations for Implementing Change (ERIC) strategy surveys using cognitive interviews with frontline providers. Implement Sci Commun . 2023;4:42. doi: 10.1186/s43058-023-00409-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s43058-023-00409-3</ArticleId><ArticleId IdType="pmc">PMC10122282</ArticleId><ArticleId IdType="pubmed">37085937</ArticleId></ArticleIdList></Reference><Reference><Citation>Proctor EK, Powell BJ, McMillen JC. Implementation strategies: recommendations for specifying and reporting. Implement Sci. 2013;8:139. doi: 10.1186/1748-5908-8-139.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1748-5908-8-139</ArticleId><ArticleId IdType="pmc">PMC3882890</ArticleId><ArticleId IdType="pubmed">24289295</ArticleId></ArticleIdList></Reference><Reference><Citation>Strategy design. https://cfirguide.org/choosing-strategies/ Available.</Citation></Reference><Reference><Citation>Implementation process domain. https://cfirguide.org/constructs/implementation-process-domain/ Available.</Citation></Reference><Reference><Citation>O&#x2019;Donovan B, Kirke C, Pate M, et al. Mapping the Theoretical Domain Framework to the Consolidated Framework for Implementation Research: do multiple frameworks add value? Implement Sci Commun . 2023;4:100. doi: 10.1186/s43058-023-00466-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s43058-023-00466-8</ArticleId><ArticleId IdType="pmc">PMC10464139</ArticleId><ArticleId IdType="pubmed">37620981</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaw RB, Sweet SN, McBride CB, et al. Operationalizing the reach, effectiveness, adoption, implementation, maintenance (RE-AIM) framework to evaluate the collective impact of autonomous community programs that promote health and well-being. BMC Public Health. 2019;19:803. doi: 10.1186/s12889-019-7131-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-019-7131-4</ArticleId><ArticleId IdType="pmc">PMC6591988</ArticleId><ArticleId IdType="pubmed">31234804</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39608964</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>28</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2530-0180</ISSN><JournalIssue CitedMedium="Internet"><Volume>71</Volume><Issue>9</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Endocrinologia, diabetes y nutricion</Title><ISOAbbreviation>Endocrinol Diabetes Nutr (Engl Ed)</ISOAbbreviation></Journal><ArticleTitle>Predictive value of circulating miR-409-3p for major adverse cardiovascular events in patients with type 2 diabetes mellitus and coronary heart disease.</ArticleTitle><Pagination><StartPage>372</StartPage><EndPage>379</EndPage><MedlinePgn>372-379</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.endien.2024.11.002</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2530-0180(24)00108-2</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To investigate the serum levels of miR-409-3p in patients with type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD) and its effect on high glucose (HG)-induced myocardial cell injury.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 250 patients with T2DM admitted to our hospital from April 2020 through April 2022 were enrolled as the study subjects, and then grouped into T2DM+CHD (group #1) and T2DM (group #2). Real-time quantitative PCR (RT-qPCR) was used to measure the levels of serum miR-409-3p. The clinical performance of miR-409-3p was evaluated. The human cardiomyocyte AC16 cells were cultured in vitro and treated with HG. MTT assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. Bioinformatic analyses were performed to explore the potential mechanism of miR-409-3p in T2DM complicated with CHD.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The expression level of miR-409-3p was increased in the T2DM+CHD group and had a relative high diagnostic value for distinguishing patients with T2DM+CHD from patients with T2DM alone. Correlation analysis showed that serum miR-409-3p was positively associated with the Gensini score and adverse cardiovascular events; miR-409-3p knockdown alleviated HG-induced AC16 cell damage and reduced cell apoptosis. CREB1, BCL2, and SMAD2 were the top 3 hub genes of miR-409-3p.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Serum miR-409-3p may serve as a potential diagnostic and prognostic biomarker for predicting T2DM complicated with CHD and forecast adverse events. Targeting miR-409-3p may be a novel therapeutic strategy to intervene in the development of T2DM+CHD.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 SEEN and SED. Published by Elsevier Espa&#xf1;a, S.L.U. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Cao</LastName><ForeName>Liang</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Beijing University of Chinese Medicine East Hospital, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Xiangrong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department Four of Recuperation, Second Sanatorium of Qingdao Special Recuperation Center of PLA Navy, Qingdao, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Ying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jia</LastName><ForeName>Wei</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, BenQ Medical Center, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Jiayang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China. Electronic address: drliujian_1982@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Spain</Country><MedlineTA>Endocrinol Diabetes Nutr (Engl Ed)</MedlineTA><NlmUniqueID>101717565</NlmUniqueID><ISSNLinking>2530-0180</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C572367">MIRN409 microRNA, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D035683" MajorTopicYN="Y">MicroRNAs</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003327" MajorTopicYN="Y">Coronary Disease</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011237" MajorTopicYN="N">Predictive Value of Tests</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">CC</Keyword><Keyword MajorTopicYN="N">CHD</Keyword><Keyword MajorTopicYN="N">DMT2</Keyword><Keyword MajorTopicYN="N">Funci&#xf3;n</Keyword><Keyword MajorTopicYN="N">Function</Keyword><Keyword MajorTopicYN="N">Prognosis</Keyword><Keyword MajorTopicYN="N">Pron&#xf3;stico</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">miR-409-3p</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>5</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>24</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608964</ArticleId><ArticleId IdType="doi">10.1016/j.endien.2024.11.002</ArticleId><ArticleId IdType="pii">S2530-0180(24)00108-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39608963</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2213-8595</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>The lancet. Diabetes &amp; endocrinology</Title><ISOAbbreviation>Lancet Diabetes Endocrinol</ISOAbbreviation></Journal><ArticleTitle>Time to reframe the disease staging system for type 1 diabetes.</ArticleTitle><Pagination><StartPage>924</StartPage><EndPage>933</EndPage><MedlinePgn>924-933</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S2213-8587(24)00239-0</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2213-8587(24)00239-0</ELocationID><Abstract><AbstractText>In 2015, introduction of a disease staging system offered a framework for benchmarking progression to clinical type 1 diabetes. This model, based on islet autoantibodies (stage 1) and dysglycaemia (stage 2) before type 1 diabetes diagnosis (stage 3), has facilitated screening and identification of people at risk. Yet, there are many limitations to this model as the stages combine a very heterogeneous group of individuals; do not have high specificity for type 1 diabetes; can occur without persistence (ie, reversion to an earlier risk stage); and exclude age and other influential risk factors. The current staging system also infers that individuals at risk of type 1 diabetes progress linearly from stage 1 to stage 2 and subsequently stage 3, whereas such movements are often more complex. With the approval of teplizumab by the US Food and Drug Administration in 2022 to delay type 1 diabetes in people at stage 2, there is a need to refine the definition and accuracy of type 1 diabetes staging. Theoretically, we propose that a type 1 diabetes risk calculator should incorporate any available demographic, genetic, autoantibody, metabolic, and immune data that could be continuously updated. Additionally, we call to action for the field to increase the breadth of knowledge regarding type 1 diabetes risk in non-relatives, adults, and individuals from minority populations.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Jacobsen</LastName><ForeName>Laura M</ForeName><Initials>LM</Initials><AffiliationInfo><Affiliation>Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA. Electronic address: lauraj@ufl.edu.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Atkinson</LastName><ForeName>Mark A</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sosenko</LastName><ForeName>Jay M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, University of Miami, Miami, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gitelman</LastName><ForeName>Stephen E</ForeName><Initials>SE</Initials><AffiliationInfo><Affiliation>Department of Paediatrics, Diabetes Center, University of California San Francisco, San Francisco, California, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Lancet Diabetes Endocrinol</MedlineTA><NlmUniqueID>101618821</NlmUniqueID><ISSNLinking>2213-8587</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001323">Autoantibodies</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018450" MajorTopicYN="Y">Disease Progression</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001323" MajorTopicYN="N">Autoantibodies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of interests No support was provided for this work. LMJ has received grant funding from the US National Institutes of Health (NIH); and participated in an advisory board for Insulet and a data and safety monitoring board (DSMB) for a trial funded by the Juvenile Diabetes Research Foundation. MAA has consulted for Abeta, ActoBio Therapeutics, CodeBio, Diamyd Medical, Endsulin, ForkHead Biotherapeutics, Inspira Therapeutics, Janssen, Nirmindas, Provention Bio, Quell, Repitoire, and Novo Nordisk; has spoken for Provention Bio, Sanofi, and Vertex; participated in a DSMB for IMCYSE; has a fiduciary role in Diamyd Medical; and owns shares in Diamyd Medical, Endsulin, and IM Therapeutics. JMS declares no competing interests. SEG has received grant funding from the NIH, Provention Bio, Sanofi, and IntrexonT1D Partners; has served on advisory boards for Abata, Avotres, Genentech, GentiBio, Provention Bio, SAB Biotherapeutics, Sana Biotechnology, and Sanofi; has participated in a DSMB for Diamyd, INNODIA, and JDRF trials; and owns shares in SAB Biotherapeutics.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>6</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>7</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>19</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608963</ArticleId><ArticleId IdType="doi">10.1016/S2213-8587(24)00239-0</ArticleId><ArticleId IdType="pii">S2213-8587(24)00239-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39608858</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2052-4897</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>28</Day></PubDate></JournalIssue><Title>BMJ open diabetes research &amp; care</Title><ISOAbbreviation>BMJ Open Diabetes Res Care</ISOAbbreviation></Journal><ArticleTitle>Effects of concurrent aerobic and strength training in patients with type 2 diabetes: Bayesian pairwise and dose-response meta-analysis.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e004400</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjdrc-2024-004400</ELocationID><Abstract><AbstractText>This study aimed to investigate the effects of concurrent aerobic and strength training (CT) in patients with type 2 diabetes and determine the most effective dose of CT. From the inception of the databases to March 2024, we conducted a systematic search of four electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) to identify randomized controlled trials (RCTs) on CT intervention in patients with type 2 diabetes. Two independent authors assessed the risk of bias of the study using the Cochrane Risk of Bias Assessment Tools. Results analyzed included glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), body mass index, body fat percentage, blood pressure, and VO<sub>2</sub>max. Pairwise and dose-response meta-analyses using Bayesian hierarchical random-effects modeling were performed to analyze the effects of CT in patients with type 2 diabetes. From the inception of the databases to March 2024, we conducted a systematic search of four electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) to identify randomized controlled trials (RCTs) on CT intervention in patients with type 2 diabetes. Two independent authors assessed the risk of bias of the study using the Cochrane Risk of Bias Assessment Tools. Results analyzed included glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), body mass index, body fat percentage, blood pressure, and VO<sub>2</sub>max. Pairwise and dose-response meta-analyses using Bayesian hierarchical random-effects modeling were performed to analyze the effects of CT in patients with type 2 diabetes. A total of 1948 participants (935 males) were included in 23 RCTs. The male/female ratio of participants was 52/48; the mean age range was 50-65 years. The results show that CT significantly reduced HbA1c levels (MD=-0.48%, 95% CrI: -0.55 to -0.40), with some heterogeneity among different levels (SD=0.31, 95% CrI: 0.17 to 0.51), and the model converged well. Similarly, FBG levels were also significantly improved (MD=-0.48&#x2009;mmol/L, 95% CrI: -0.55 to -0.40), with greater heterogeneity (SD=17.73, 95% CrI: 11.23 to 28.09). Additionally, we found a non-linear dose-response relationship between CT and HbA1c levels, with an optimal dose of 1030 METs-min/week (MD=-0.47%, 95% CrI: -0.68 to -0.26, SE=0.11). CT significantly improves several health indicators in patients with type 2 diabetes. A non-linear dose-response relationship was observed between the training dose of CT and HbA1c, and it is recommended that 270&#x2009;min of moderate-intensity CT or 160&#x2009;min of vigorous-intensity CT be performed weekly.PROSPERO registration number: CRD42024547119.<b>Keywords:</b> meta-analysis; concurrent aerobic and strength training.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Xue</LastName><ForeName>Han</ForeName><Initials>H</Initials><Identifier Source="ORCID">0009-0008-1911-2674</Identifier><AffiliationInfo><Affiliation>Nantong University, Nantong, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zou</LastName><ForeName>Yuehui</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Nantong University, Nantong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Shijie</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Nantong University, Nantong, China 1916551441@qq.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open Diabetes Res Care</MedlineTA><NlmUniqueID>101641391</NlmUniqueID><ISSNLinking>2052-4897</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001499" MajorTopicYN="Y">Bayes Theorem</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055070" MajorTopicYN="Y">Resistance Training</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Exercise</Keyword><Keyword MajorTopicYN="N">Training</Keyword><Keyword MajorTopicYN="N">Type 2 Diabetes</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608858</ArticleId><ArticleId IdType="pmc">PMC11603704</ArticleId><ArticleId IdType="doi">10.1136/bmjdrc-2024-004400</ArticleId><ArticleId IdType="pii">12/6/e004400</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx N, Federici M, Sch&#xfc;tt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44:4043&#x2013;140. doi: 10.1093/eurheartj/ehad192.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehad192</ArticleId><ArticleId IdType="pubmed">37622663</ArticleId></ArticleIdList></Reference><Reference><Citation>Sluik D, Buijsse B, Muckelbauer R, et al. Physical Activity and Mortality in Individuals With Diabetes Mellitus: A Prospective Study and Meta-analysis. Arch Intern Med. 2012;172:1285&#x2013;95. doi: 10.1001/archinternmed.2012.3130.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinternmed.2012.3130</ArticleId><ArticleId IdType="pubmed">22868663</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang J, Tam WWS, Hounsri K, et al. Effectiveness of Combined Aerobic and Resistance Exercise on Cognition, Metabolic Health, Physical Function, and Health-related Quality of Life in Middle-aged and Older Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2024;105:1585&#x2013;99. doi: 10.1016/j.apmr.2023.10.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apmr.2023.10.005</ArticleId><ArticleId IdType="pubmed">37875170</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Mhanna SB, Batrakoulis A, Wan Ghazali WS, et al. Effects of combined aerobic and resistance training on glycemic control, blood pressure, inflammation, cardiorespiratory fitness and quality of life in patients with type 2 diabetes and overweight/obesity: a systematic review and meta-analysis. PeerJ. 2024;12:e17525. doi: 10.7717/peerj.17525.</Citation><ArticleIdList><ArticleId IdType="doi">10.7717/peerj.17525</ArticleId><ArticleId IdType="pmc">PMC11182026</ArticleId><ArticleId IdType="pubmed">38887616</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan B, Ge L, Xun Y-Q, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:72. doi: 10.1186/s12966-018-0703-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-018-0703-3</ArticleId><ArticleId IdType="pmc">PMC6060544</ArticleId><ArticleId IdType="pubmed">30045740</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang Z, Zhang M, Wang C, et al. The Best Exercise Modality and Dose to Reduce Glycosylated Hemoglobin in Patients with Type 2 Diabetes: A Systematic Review with Pairwise, Network, and Dose&#x2013;Response Meta-Analyses. Sports Med . 2024;54:2557&#x2013;70. doi: 10.1007/s40279-024-02057-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40279-024-02057-6</ArticleId><ArticleId IdType="pubmed">38916824</ArticleId></ArticleIdList></Reference><Reference><Citation>Hordern MD, Coombes JS, Cooney LM, et al. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart . 2009;95:1343&#x2013;9. doi: 10.1136/hrt.2009.165571.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/hrt.2009.165571</ArticleId><ArticleId IdType="pubmed">19429570</ArticleId></ArticleIdList></Reference><Reference><Citation>Gram B, Christensen R, Christiansen C, et al. Effects of nordic walking and exercise in type 2 diabetes mellitus: a randomized controlled trial. Clin J Sport Med . 2010;20:355&#x2013;61. doi: 10.1227/NEU.0b013e3181e56e0a.</Citation><ArticleIdList><ArticleId IdType="doi">10.1227/NEU.0b013e3181e56e0a</ArticleId><ArticleId IdType="pubmed">20818193</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun Y, Lu B, Su W, et al. Comprehensive assessment of the effects of concurrent strength and endurance training on lipid profile, glycemic control, and insulin resistance in type 2 diabetes: A meta-analysis. Medicine (Baltimore) 2024;103:e37494. doi: 10.1097/MD.0000000000037494.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000037494</ArticleId><ArticleId IdType="pmc">PMC10957025</ArticleId><ArticleId IdType="pubmed">38517995</ArticleId></ArticleIdList></Reference><Reference><Citation>Gallardo-G&#xf3;mez D, Salazar-Mart&#xed;nez E, Alfonso-Rosa RM, et al. Optimal Dose and Type of Physical Activity to Improve Glycemic Control in People Diagnosed With Type 2 Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2024;47:295&#x2013;303. doi: 10.2337/dc23-0800.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-0800</ArticleId><ArticleId IdType="pubmed">38241499</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.n71</ArticleId><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Higgins J. Cochrane handbook for systematic reviews of interventions version 6.4. 2023</Citation></Reference><Reference><Citation>JP H.  Cochrane Handbook for Systematic Reviews of Interventions Version 5.0. 2: The Cochrane Collaboration. 2009. https://training.cochrane.org/handbook/archive/v5.0.2/ Available.</Citation></Reference><Reference><Citation>Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. doi: 10.1136/bmj.328.7454.1490. Available.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.328.7454.1490</ArticleId><ArticleId IdType="pmc">PMC428525</ArticleId><ArticleId IdType="pubmed">15205295</ArticleId></ArticleIdList></Reference><Reference><Citation>B&#xfc;rkner P-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018;10:395. doi: 10.32614/RJ-2018-017.</Citation><ArticleIdList><ArticleId IdType="doi">10.32614/RJ-2018-017</ArticleId></ArticleIdList></Reference><Reference><Citation>Etzioni RD, Kadane JB. Bayesian statistical methods in public health and medicine. Annu Rev Public Health. 1995;16</Citation><ArticleIdList><ArticleId IdType="pubmed">7639872</ArticleId></ArticleIdList></Reference><Reference><Citation>Williams DR, Rast P, B&#xfc;rkner P-C. Bayesian meta-analysis with weakly informative prior distributions. PsyArXiv . 2018 doi: 10.31234/osf.io/7tbrm. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.31234/osf.io/7tbrm</ArticleId></ArticleIdList></Reference><Reference><Citation>M. J. Betancourt MG. Hamiltonian monte carlo for hierarchical models. 2013</Citation></Reference><Reference><Citation>Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7:434&#x2013;55.</Citation></Reference><Reference><Citation>Sacks DB, Bruns DE, Goldstein DE, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48:436&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">11861436</ArticleId></ArticleIdList></Reference><Reference><Citation>Herrmann SD, Willis EA, Ainsworth BE, et al. 2024 Adult Compendium of Physical Activities: A third update of the energy costs of human activities. J Sport Health Sci. 2024;13:6&#x2013;12. doi: 10.1016/j.jshs.2023.10.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jshs.2023.10.010</ArticleId><ArticleId IdType="pmc">PMC10818145</ArticleId><ArticleId IdType="pubmed">38242596</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferguson B. ACSM&#x2019;s guidelines for exercise testing and prescription. J Can Chiropr Assoc. 2014;58:328</Citation></Reference><Reference><Citation>Bassi D, Mendes RG, Arakelian VM, et al. Potential Effects on Cardiorespiratory and Metabolic Status After a Concurrent Strength and Endurance Training Program in Diabetes Patients - a Randomized Controlled Trial. Sports Med Open. 2015;2:31. doi: 10.1186/s40798-016-0052-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40798-016-0052-1</ArticleId><ArticleId IdType="pmc">PMC4981628</ArticleId><ArticleId IdType="pubmed">27563535</ArticleId></ArticleIdList></Reference><Reference><Citation>Flores-Opazo M, McGee SL, Hargreaves M. Exercise and GLUT4. Exerc Sport Sci Rev. 2020;48:110&#x2013;8. doi: 10.1249/JES.0000000000000224.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/JES.0000000000000224</ArticleId><ArticleId IdType="pubmed">32568924</ArticleId></ArticleIdList></Reference><Reference><Citation>Benham JL, Booth JE, Dunbar MJ, et al. Significant Dose-Response between Exercise Adherence and Hemoglobin A1c Change. Med Sci Sports Exerc. 2020;52:1960&#x2013;5. doi: 10.1249/MSS.0000000000002339.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/MSS.0000000000002339</ArticleId><ArticleId IdType="pubmed">32175973</ArticleId></ArticleIdList></Reference><Reference><Citation>Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451&#x2013;62. doi: 10.1136/bjsports-2020-102955.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsports-2020-102955</ArticleId><ArticleId IdType="pmc">PMC7719906</ArticleId><ArticleId IdType="pubmed">33239350</ArticleId></ArticleIdList></Reference><Reference><Citation>The International Expert Committee International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care. 2009;32:1327&#x2013;34. doi: 10.2337/dc09-9033.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-9033</ArticleId><ArticleId IdType="pmc">PMC2699715</ArticleId><ArticleId IdType="pubmed">19502545</ArticleId></ArticleIdList></Reference><Reference><Citation>Dinas PC, Markati AS, Carrillo AE. Exercise-Induced Biological and Psychological Changes in Overweight and Obese Individuals: A Review of Recent Evidence. ISRN Physiol. 2014;2014:1&#x2013;11. doi: 10.1155/2014/964627.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2014/964627</ArticleId></ArticleIdList></Reference><Reference><Citation>Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11:209&#x2013;16. doi: 10.1249/JSR.0b013e31825dabb8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/JSR.0b013e31825dabb8</ArticleId><ArticleId IdType="pubmed">22777332</ArticleId></ArticleIdList></Reference><Reference><Citation>Dobrosielski DA, Gibbs BB, Ouyang P, et al. Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial. J Gen Intern Med. 2012;27:1453&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3475835</ArticleId><ArticleId IdType="pubmed">22610907</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care. 2010;33:2692&#x2013;6. doi: 10.2337/dc10-1548.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-1548</ArticleId><ArticleId IdType="pmc">PMC2992214</ArticleId><ArticleId IdType="pubmed">21115771</ArticleId></ArticleIdList></Reference><Reference><Citation>Sigal RJ, Kenny GP, Boul&#xe9; NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357&#x2013;69.</Citation><ArticleIdList><ArticleId IdType="pubmed">17876019</ArticleId></ArticleIdList></Reference><Reference><Citation>R&#xf6;hling M, Strom A, B&#xf6;nhof GJ, et al. Cardiorespiratory Fitness and Cardiac Autonomic Function in Diabetes. Curr Diab Rep. 2017;17</Citation><ArticleIdList><ArticleId IdType="pubmed">29063207</ArticleId></ArticleIdList></Reference><Reference><Citation>Larose J, Sigal RJ, Khandwala F, et al. Associations between physical fitness and HbA&#x2081;(c) in type 2 diabetes mellitus. Diabetologia. 2011;54:93&#x2013;102. doi: 10.1007/s00125-010-1941-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-010-1941-3</ArticleId><ArticleId IdType="pubmed">20953579</ArticleId></ArticleIdList></Reference><Reference><Citation>Batrakoulis A, Jamurtas AZ, Fatouros IG. Exercise and Type II Diabetes Mellitus: A Brief Guide for Exercise Professionals. Str &amp; Cond J. 2022;44:64&#x2013;72. doi: 10.1519/SSC.0000000000000731.</Citation><ArticleIdList><ArticleId IdType="doi">10.1519/SSC.0000000000000731</ArticleId></ArticleIdList></Reference><Reference><Citation>Part I. In: Doing bayesian data analysis. Kruschke JK, editor. Boston: Academic Press; 2015. Introduction; p. 13.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle></PubmedArticleSet>
\ No newline at end of file
+RapidMiner . Version 9.8 [Computer software]. Available online at: https://rapidminer.com/ (Accessed June 1, 2023).</Citation></Reference><Reference><Citation>Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. (1997) 16:965&#x2013;80. doi:&#xa0;10.1002/(sici)1097-0258(19970515)16:9&lt;965:aid-sim509&gt;3.0.co;2-o</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/(sici)1097-0258(19970515)16:9&lt;965:aid-sim509&gt;3.0.co;2-o</ArticleId><ArticleId IdType="pubmed">9160492</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoogwerf BJ. Hypoglycemia in older patients. Clinics Geriatr Med. (2020) 36:395&#x2013;406. doi:&#xa0;10.1016/j.cger.2020.04.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cger.2020.04.001</ArticleId><ArticleId IdType="pubmed">32586470</ArticleId></ArticleIdList></Reference><Reference><Citation>Chao G, Zhu Y, Chen L. Evaluation of risk factors and correlation in large sample from the perspective of hypoglycemia. Food Sci Nutr. (2021) 9:6627&#x2013;33. doi:&#xa0;10.1002/fsn3.2608</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/fsn3.2608</ArticleId><ArticleId IdType="pmc">PMC8645704</ArticleId><ArticleId IdType="pubmed">34925792</ArticleId></ArticleIdList></Reference><Reference><Citation>Almomani HY, Pascual CR, Grassby P, Ahmadi K. Effectiveness of the SUGAR intervention on hypoglycaemia in elderly patients with type 2 diabetes: A pragmatic randomised controlled trial. Res Soc Administrative Pharmacy: RSAP. (2023) 19:322&#x2013;31. doi:&#xa0;10.1016/j.sapharm.2022.09.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2022.09.017</ArticleId><ArticleId IdType="pubmed">36253284</ArticleId></ArticleIdList></Reference><Reference><Citation>Chantzaras A, Yfantopoulos J. Evaluating the incidence and risk factors associated with mild and severe hypoglycemia in insulin-treated type 2 diabetes. Value Health Regional Issues. (2022) 30:9&#x2013;17. doi:&#xa0;10.1016/j.vhri.2021.10.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vhri.2021.10.005</ArticleId><ArticleId IdType="pubmed">35033801</ArticleId></ArticleIdList></Reference><Reference><Citation>Aubert CE, Henderson JB, Kerr EA, Holleman R, Klamerus ML, Hofer TP. Type 2 diabetes management, control and outcomes during the COVID-19 pandemic in older US veterans: an observational study. J Gen Internal Med. (2022) 37:870&#x2013;7. doi:&#xa0;10.1007/s11606-021-07301-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11606-021-07301-7</ArticleId><ArticleId IdType="pmc">PMC8735737</ArticleId><ArticleId IdType="pubmed">34993873</ArticleId></ArticleIdList></Reference><Reference><Citation>Hodge M, McArthur E, Garg AX, Tangri N, Clemens KK. Hypoglycemia incidence in older adults by estimated GFR. Am J Kidney Dis: Off J Natl Kidney Foundation. (2017) 70:59&#x2013;68. doi:&#xa0;10.1053/j.ajkd.2016.11.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.ajkd.2016.11.019</ArticleId><ArticleId IdType="pubmed">28139395</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakhleh A, Shehadeh N. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. World J Diabetes. (2021) 12:2036&#x2013;49. doi:&#xa0;10.4239/wjd.v12.i12.2036</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i12.2036</ArticleId><ArticleId IdType="pmc">PMC8696639</ArticleId><ArticleId IdType="pubmed">35047118</ArticleId></ArticleIdList></Reference><Reference><Citation>Meinhardt U, Ammann RA, Fl&#xfc;ck C, Diem P, Mullis PE. Microalbuminuria in diabetes mellitus: efficacy of a new screening method in comparison with timed overnight urine collection. J Diabetes its Complicat. (2003) 17:254&#x2013;7. doi:&#xa0;10.1016/s1056-8727(02)00180-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s1056-8727(02)00180-0</ArticleId><ArticleId IdType="pubmed">12954153</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of dipeptidyl peptidase 4 inhibitors in antidiabetic treatment. Mol (Basel Switzerland). (2022) 27:3055. doi:&#xa0;10.3390/molecules27103055</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules27103055</ArticleId><ArticleId IdType="pmc">PMC9147686</ArticleId><ArticleId IdType="pubmed">35630534</ArticleId></ArticleIdList></Reference><Reference><Citation>Cahn A, Mosenzon O, Wiviott SD, Rozenberg A, Yanuv I, Goodrich EL, et al. . Efficacy and safety of dapagliflozin in the elderly: analysis from the DECLARE-TIMI 58 study. Diabetes Care. (2020) 43:468&#x2013;75. doi:&#xa0;10.2337/dc19-1476</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc19-1476</ArticleId><ArticleId IdType="pubmed">31843945</ArticleId></ArticleIdList></Reference><Reference><Citation>Niu G, Wang G, Lau J, Lang L, Jacobson O, Ma Y, et al. . Antidiabetic effect of abextide, a long-acting exendin-4 analogue in cynomolgus monkeys. Adv Healthc Mater. (2019) 8:e1800686. doi:&#xa0;10.1002/adhm.201800686</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/adhm.201800686</ArticleId><ArticleId IdType="pubmed">30300471</ArticleId></ArticleIdList></Reference><Reference><Citation>Takeishi S, Mori A, Kawai M, Yoshida Y, Hachiya H, Yumura T, et al. . Investigating the relationship between morning glycemic variability and patient characteristics using continuous glucose monitoring data in patients with type 2 diabetes. Internal Med (Tokyo Japan). (2017) 56:1467&#x2013;73. doi:&#xa0;10.2169/internalmedicine.56.7971</Citation><ArticleIdList><ArticleId IdType="doi">10.2169/internalmedicine.56.7971</ArticleId><ArticleId IdType="pmc">PMC5505900</ArticleId><ArticleId IdType="pubmed">28626170</ArticleId></ArticleIdList></Reference><Reference><Citation>Maranta F, Cianfanelli L, Cianflone D. Glycaemic control and vascular complications in diabetes mellitus type 2. Adv Exp Med Biol. (2021) 1307:129&#x2013;52. doi:&#xa0;10.1007/5584_2020_514</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/5584_2020_514</ArticleId><ArticleId IdType="pubmed">32266607</ArticleId></ArticleIdList></Reference><Reference><Citation>Dong F. Analysis of risk factors of hypoglycemia and blood glucose fluctuation in patients with type 2 diabetes mellitus. Contemp Med. (2021) 27:137&#x2013;8. doi:&#xa0;10.3969/j.issn.1009-4393.2021.20.058</Citation><ArticleIdList><ArticleId IdType="doi">10.3969/j.issn.1009-4393.2021.20.058</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan EYF, Fung CSC, Yu EYT, Chin WY, Fong DYT, Chan AKC, et al. . Effect of multifactorial treatment targets and relative importance of hemoglobin A1c, blood pressure, and low-density lipoprotein-cholesterol on cardiovascular diseases in Chinese primary care patients with type 2 diabetes mellitus: A population-based retrospective cohort study. J Am Heart Assoc. (2017) 6:e006400. doi:&#xa0;10.1161/JAHA.117.006400</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.117.006400</ArticleId><ArticleId IdType="pmc">PMC5586469</ArticleId><ArticleId IdType="pubmed">28862945</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaewput W, Thongprayoon C, Varothai N, Sirirungreung A, Rangsin R, Bathini T, et al. . Prevalence and associated factors of hospitalization for dysglycemia among elderly type 2 diabetes patients: A nationwide study. World J Diabetes. (2019) 10:212&#x2013;23. doi:&#xa0;10.4239/wjd.v10.i3.212</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v10.i3.212</ArticleId><ArticleId IdType="pmc">PMC6422861</ArticleId><ArticleId IdType="pubmed">30891156</ArticleId></ArticleIdList></Reference><Reference><Citation>Mantwill S, Fiordelli M, Ludolph R, Schulz PJ. EMPOWER-support of patient empowerment by an intelligent self-management pathway for patients: study protocol. BMC Med Inf Decision Making. (2015) 15:18. doi:&#xa0;10.1186/s12911-015-0142-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12911-015-0142-x</ArticleId><ArticleId IdType="pmc">PMC4372173</ArticleId><ArticleId IdType="pubmed">25890197</ArticleId></ArticleIdList></Reference><Reference><Citation>Criner KE, Kim HN, Ali H, Kumar SJ, Kanter JE, Wang L, et al. . Hypoglycemia symptoms are reduced in hospitalized patients with diabetes. J Diabetes its Complicat. (2021) 35:107976. doi:&#xa0;10.1016/j.jdiacomp.2021.107976</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2021.107976</ArticleId><ArticleId IdType="pmc">PMC8434970</ArticleId><ArticleId IdType="pubmed">34364780</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39610135</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Cardiovascular Disease &amp; Diabetes Statistics in Korea: Nationwide Data 2010 to 2019.</ArticleTitle><Pagination><StartPage>1084</StartPage><EndPage>1092</EndPage><MedlinePgn>1084-1092</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0275</ELocationID><Abstract><AbstractText Label="BACKGRUOUND" NlmCategory="BACKGROUND">This study aimed to provide updated insights into the incidence and management of cardiovascular disease (CVD) in Korean adults with diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Using data from the Korean National Health Insurance Service and Korea National Health and Nutrition Examination Survey, we analyzed the representative national estimates of CVD in adults with diabetes.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The age- and sex-standardized incidence rate of ischemic heart disease (IHD), ischemic stroke, and peripheral artery disease (PAD) decreased from 2010 to 2019 in individuals with type 2 diabetes mellitus (T2DM). However, an increase in the incidence of heart failure (HF) was observed during the same period. Only 4.96% of adults with diabetes and CVD achieved optimal control of all three risk factors (glycemic levels, blood pressure, and lipid control). Additionally, high-intensity statin treatment rates were 8.84% and 9.15% in individuals with IHD and ischemic stroke, respectively. Treatment with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) or a glucagon-like peptide-1 receptor agonist (GLP-1RA) was relatively low in 2019, with only 11.87%, 7.10%, and 11.05% of individuals with IHD, ischemic stroke, and HF, respectively, receiving SGLT2i treatment. Furthermore, only 1.08%, 0.79%, and 1.06% of patients with IHD, ischemic stroke, and HF, respectively, were treated with GLP-1RA.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Jin Hwa</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Junyeop</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Kyungdo</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Jae-Taek</ForeName><Initials>JT</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kwon</LastName><ForeName>Hyuk-Sang</ForeName><Initials>HS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Diabetic Vascular Disease Research Group of the Korean Diabetes Association</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="N">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="N">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiovascular diseases</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Epidemiology</Keyword><Keyword MajorTopicYN="N">Korea</Keyword></KeywordList><CoiStatement>
+<b>CONFLICTS OF INTEREST</b>
+. Hyuk-Sang Kwon has been editor-in-chief of the <i>Diabetes &amp; Metabolism Journal</i> since 2024. He was not involved in the review process of this article. Otherwise, there was no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610135</ArticleId><ArticleId IdType="pmc">PMC11621650</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0275</ArticleId><ArticleId IdType="pii">dmj.2024.0275</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Chan JC, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al. The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet. 2021;396:2019&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pubmed">33189186</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice Committee 10. Cardiovascular disease and risk management: standards of care in diabetes-2024. Diabetes Care. 2024;47(Suppl 1):S179&#x2013;218.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10725811</ArticleId><ArticleId IdType="pubmed">38078592</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Bae JH, Han KD, Ko SH, Yang YS, Choi JH, Choi KM, et al. Diabetes fact sheet in Korea 2021. Diabetes Metab J. 2022;46:417&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9171160</ArticleId><ArticleId IdType="pubmed">35656565</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung CH, Chung JO, Han K, Ko SH, Ko KS, Park JY, et al. Improved trends in cardiovascular complications among subjects with type 2 diabetes in Korea: a nationwide study (2006-2013) Cardiovasc Diabetol. 2017;16:1.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5216535</ArticleId><ArticleId IdType="pubmed">28057001</ArticleId></ArticleIdList></Reference><Reference><Citation>Park JH, Ha KH, Kim BY, Lee JH, Kim DJ. Trends in cardiovascular complications and mortality among patients with diabetes in South Korea. Diabetes Metab J. 2021;45:120&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7850871</ArticleId><ArticleId IdType="pubmed">33290647</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi JH, Lee KA, Moon JH, Chon S, Kim DJ, Kim HJ, et al. 2023 Clinical practice guidelines for diabetes mellitus of the Korean Diabetes Association. Diabetes Metab J. 2023;47:575&#x2013;94.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10555541</ArticleId><ArticleId IdType="pubmed">37793979</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee SE, Nam H, Choi HS, Kim H, Kyoung DS, Kim KA. Comparative effects of sodium-glucose cotransporter 2 inhibitor and thiazolidinedione treatment on risk of stroke among patients with type 2 diabetes mellitus. Diabetes Metab J. 2022;46:567&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9353567</ArticleId><ArticleId IdType="pubmed">35130688</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort profile: the National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol. 2017;46:e15.</Citation><ArticleIdList><ArticleId IdType="pubmed">26822938</ArticleId></ArticleIdList></Reference><Reference><Citation>Oh K, Kim Y, Kweon S, Kim S, Yun S, Park S, et al. Korea National Health and Nutrition Examination Survey, 20th anniversary: accomplishments and future directions. Epidemiol Health. 2021;43:e2021025.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8289475</ArticleId><ArticleId IdType="pubmed">33872484</ArticleId></ArticleIdList></Reference><Reference><Citation>Booth GL, Kapral MK, Fung K, Tu JV. Recent trends in cardiovascular complications among men and women with and without diabetes. Diabetes Care. 2006;29:32&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">16373892</ArticleId></ArticleIdList></Reference><Reference><Citation>Rawshani A, Rawshani A, Franzen S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376:1407&#x2013;18.</Citation><ArticleIdList><ArticleId IdType="pubmed">28402770</ArticleId></ArticleIdList></Reference><Reference><Citation> Centers for Disease Control and Prevention. United States Diabetes Surveillance System. Available from:  https://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html (cited 2024 Oct 31)</Citation></Reference><Reference><Citation>Wu H, Lau ES, Yang A, Ma RC, Kong AP, Chow E, et al. Trends in diabetes-related complications in Hong Kong, 2001-2016: a retrospective cohort study. Cardiovasc Diabetol. 2020;19:60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7218631</ArticleId><ArticleId IdType="pubmed">32398003</ArticleId></ArticleIdList></Reference><Reference><Citation>Armstrong DG, Tan TW, Boulton AJ, Bus SA. Diabetic foot ulcers: a review. JAMA. 2023;330:62&#x2013;75.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10723802</ArticleId><ArticleId IdType="pubmed">37395769</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryu GW, Park YS, Kim J, Yang YS, Ko YG, Choi M. Incidence and prevalence of peripheral arterial disease in South Korea: retrospective analysis of National Claims Data. JMIR Public Health Surveill. 2022;8:e34908.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9719060</ArticleId><ArticleId IdType="pubmed">36399371</ArticleId></ArticleIdList></Reference><Reference><Citation>Park YY, Joh JH, Han SA, Kim SH, Cho S, Park HC, et al. National trends for the treatment of peripheral arterial disease in Korea between 2004 and 2013. Ann Surg Treat Res. 2015;89:319&#x2013;24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4672096</ArticleId><ArticleId IdType="pubmed">26665127</ArticleId></ArticleIdList></Reference><Reference><Citation>The Koran Society of Heart Failure  2022 Korean Heart Failure Fact Sheet.  Available from:  http://khfs.or.kr/news/news_01.php?boardid=ksnotice&amp;mode=view&amp;idx=80&amp;sk=&amp;sw=&amp;offset=40&amp;category= (cited 2024 Oct 31)</Citation></Reference><Reference><Citation>Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425&#x2013;35.</Citation><ArticleIdList><ArticleId IdType="pubmed">32966714</ArticleId></ArticleIdList></Reference><Reference><Citation>Heerspink HJ, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">32970396</ArticleId></ArticleIdList></Reference><Reference><Citation>Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pubmed">28605608</ArticleId></ArticleIdList></Reference><Reference><Citation>Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295&#x2013;306.</Citation><ArticleIdList><ArticleId IdType="pubmed">30990260</ArticleId></ArticleIdList></Reference><Reference><Citation>The EMPA-KIDNEY Collaborative Group. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388:117&#x2013;27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7614055</ArticleId><ArticleId IdType="pubmed">36331190</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pubmed">30415602</ArticleId></ArticleIdList></Reference><Reference><Citation>Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117&#x2013;28.</Citation><ArticleIdList><ArticleId IdType="pubmed">26378978</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pubmed">27633186</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121&#x2013;30.</Citation><ArticleIdList><ArticleId IdType="pubmed">31189511</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4985288</ArticleId><ArticleId IdType="pubmed">27295427</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S140&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810476</ArticleId><ArticleId IdType="pubmed">36507650</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim MK, Ko SH, Kim BY, Kang ES, Noh J, Kim SK, et al. 2019 Clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab J. 2019;43:398&#x2013;406.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6712226</ArticleId><ArticleId IdType="pubmed">31441247</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S90&#x2013;102.</Citation><ArticleIdList><ArticleId IdType="pubmed">30559235</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang YS, Kim NH, Baek JH, Ko SH, Son JW, Lee SH, et al. Realworld treatment patterns according to clinical practice guidelines in patients with type 2 diabetes mellitus and established cardiovascular disease in Korea: multicenter, retrospective, observational study. Diabetes Metab J. 2024;48:279&#x2013;89.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10995487</ArticleId><ArticleId IdType="pubmed">38273793</ArticleId></ArticleIdList></Reference><Reference><Citation>Nelson AJ, O&#x2019;Brien EC, Kaltenbach LA, Green JB, Lopes RD, Morse CG, et al. Use of lipid-, blood pressure-, and glucoselowering pharmacotherapy in patients with type 2 diabetes and atherosclerotic cardiovascular disease. JAMA Netw Open. 2022;5:e2148030.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8855234</ArticleId><ArticleId IdType="pubmed">35175345</ArticleId></ArticleIdList></Reference><Reference><Citation>Shin H, Schneeweiss S, Glynn RJ, Patorno E. Trends in firstline glucose-lowering drug use in adults with type 2 diabetes in light of emerging evidence for SGLT-2i and GLP-1RA. Diabetes Care. 2021;44:1774&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8385465</ArticleId><ArticleId IdType="pubmed">34385345</ArticleId></ArticleIdList></Reference><Reference><Citation>Nargesi AA, Jeyashanmugaraja GP, Desai N, Lipska K, Krumholz H, Khera R. Contemporary national patterns of eligibility and use of novel cardioprotective antihyperglycemic agents in type 2 diabetes mellitus. J Am Heart Assoc. 2021;10:e021084.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8403287</ArticleId><ArticleId IdType="pubmed">33998258</ArticleId></ArticleIdList></Reference><Reference><Citation>Valencia WM, Florez HJ, Palacio AM. Suitable use of injectable agents to overcome hypoglycemia risk, barriers, and clinical inertia in community-dwelling older adults with type 2 diabetes mellitus. Drugs Aging. 2019;36:1083&#x2013;96.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7481154</ArticleId><ArticleId IdType="pubmed">31565780</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim NH, Kim NH. Renoprotective mechanism of sodiumglucose cotransporter 2 inhibitors: focusing on renal hemodynamics. Diabetes Metab J. 2022;46:543&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9353563</ArticleId><ArticleId IdType="pubmed">35929172</ArticleId></ArticleIdList></Reference><Reference><Citation>Oh TJ, Moon JY, Hur KY, Ko SH, Kim HJ, Kim T, et al. Sodium-glucose cotransporter-2 inhibitor for renal function preservation in patients with type 2 diabetes mellitus: a Korean Diabetes Association and Korean Society of Nephrology consensus statement. Diabetes Metab J. 2020;44:489&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7453978</ArticleId><ArticleId IdType="pubmed">32856800</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39610132</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.</ArticleTitle><Pagination><StartPage>1029</StartPage><EndPage>1046</EndPage><MedlinePgn>1029-1046</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0614</ELocationID><Abstract><AbstractText>Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Lu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Calcutt</LastName><ForeName>Nigel A</ForeName><Initials>NA</Initials><AffiliationInfo><Affiliation>Department of Pathology, University of California San Diego, La Jolla, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Xiajun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003929" MajorTopicYN="Y">Diabetic Neuropathies</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006181" MajorTopicYN="Y">H-Reflex</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009437" MajorTopicYN="N">Neuralgia</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004576" MajorTopicYN="N">Electromyography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013116" MajorTopicYN="N">Spinal Cord</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic neuropathies</Keyword><Keyword MajorTopicYN="N">Electrophysiology</Keyword><Keyword MajorTopicYN="N">H-reflex</Keyword><Keyword MajorTopicYN="N">Neural inhibition</Keyword><Keyword MajorTopicYN="N">Neuralgia</Keyword></KeywordList><CoiStatement>
+<b>CONFLICTS OF INTEREST</b>
+. Nigel A. Calcutt has been international editorial board member of the <i>Diabetes &amp; Metabolism Journal</i> since 2024. He was not involved in the review process of this article. Otherwise, there was no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610132</ArticleId><ArticleId IdType="pmc">PMC11621664</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0614</ArticleId><ArticleId IdType="pii">dmj.2024.0614</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Goizueta-San Martin G, Ruiz-Rodriguez G, Gutierrez-Gutierrez G, Gutierrez-Rivas E, Millan-Santos I. Latency values of 248 H reflexes in 124 normal subjects. Rev Neurol. 2010;51:589&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pubmed">21069637</ArticleId></ArticleIdList></Reference><Reference><Citation>Ishikawa K, Ott K, Porter RW, Stuart D. Low frequency depression of the H wave in normal and spinal man. Exp Neurol. 1966;15:140&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pubmed">5934660</ArticleId></ArticleIdList></Reference><Reference><Citation>Piper H. The action currents of human muscles. The methodology of investigation using the string galvanometer and the principles of current curve analysis. Types of differences in voluntary contraction. Ztg Biol Tech Method. 1912;3:3&#x2013;52.</Citation></Reference><Reference><Citation>Hoffman P. On the relationships of tendon reflexes to voluntary movement and tone. Z Biol. 1918;68:351&#x2013;70.</Citation></Reference><Reference><Citation>StatPearls  Treasure island: StatPearls publishing; 2024. Chapter, Monosynaptic reflex [cited 2024 Oct 30]  Available from:  https://www.ncbi.nlm.nih.gov/books/NBK541028.</Citation></Reference><Reference><Citation>Burke D, Gandevia SC, McKeon B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol. 1984;52:435&#x2013;48.</Citation><ArticleIdList><ArticleId IdType="pubmed">6090608</ArticleId></ArticleIdList></Reference><Reference><Citation>Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008;171:1&#x2013;12.</Citation><ArticleIdList><ArticleId IdType="pubmed">18394711</ArticleId></ArticleIdList></Reference><Reference><Citation>Jabre JF. Surface recording of the H-reflex of the flexor carpi radialis. Muscle Nerve. 1981;4:435&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">7290108</ArticleId></ArticleIdList></Reference><Reference><Citation>Doko-Guina F, Jusic A. H-reflex, F-wave, transitional and missed response frequency distribution in limb muscles. Acta Med Croatica. 1997;51:15&#x2013;21.</Citation><ArticleIdList><ArticleId IdType="pubmed">9115098</ArticleId></ArticleIdList></Reference><Reference><Citation>Libonati L, Barone TF, Ceccanti M, Cambieri C, Tartaglia G, Onesti E, et al. Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients. Clin Neurophysiol. 2019;130:1455&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">31164256</ArticleId></ArticleIdList></Reference><Reference><Citation>Teigland OH, Pugdahl K, Fuglsang-Frederiksen A, Tankisi H. Utility of the H-reflex in diagnosing polyneuropathy. Muscle Nerve. 2019;60:424&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">31325167</ArticleId></ArticleIdList></Reference><Reference><Citation>Millan-Guerrero R, Trujillo-Hernandez B, Isais-Millan S, Prieto-Diaz-Chavez E, Vasquez C, Caballero-Hoyos JR, et al. Hreflex and clinical examination in the diagnosis of diabetic polyneuropathy. J Int Med Res. 2012;40:694&#x2013;700.</Citation><ArticleIdList><ArticleId IdType="pubmed">22613432</ArticleId></ArticleIdList></Reference><Reference><Citation>Falco FJ, Hennessey WJ, Goldberg G, Braddom RL. H reflex latency in the healthy elderly. Muscle Nerve. 1994;17:161&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">8114784</ArticleId></ArticleIdList></Reference><Reference><Citation>Bosnjak R, Makovec M. Neurophysiological monitoring of S1 root function during microsurgical posterior discectomy using H-reflex and spinal nerve root potentials. Spine (Phila Pa 1976) 2010;35:423&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">20081562</ArticleId></ArticleIdList></Reference><Reference><Citation>Alrowayeh HN, Sabbahi MA. H-reflex amplitude asymmetry is an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. BMC Res Notes. 2011;4:102.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3078869</ArticleId><ArticleId IdType="pubmed">21466665</ArticleId></ArticleIdList></Reference><Reference><Citation>Emad MR, Gheisi AR. A complementary approach for evaluating S1-root in diabetic neuropathic patients. Electromyogr Clin Neurophysiol. 2010;50:61&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">20349560</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu DQ, Zhu Y, Qiao K, Zheng CJ, Bradley S, Weber R, et al. Proximally evoked soleus H-reflex to S1 nerve root stimulation in sensory neuronopathies (ganglionopathies) Muscle Nerve. 2013;48:814&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">23893555</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng C, Zhu Y, Lu F, Xia X, Jin X, Weber R, et al. Diagnostic advantage of S1 foramen-evoked H-reflex for S1 radiculopathy in patients with diabetes mellitus. Int J Neurosci. 2013;123:770&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">23724973</ArticleId></ArticleIdList></Reference><Reference><Citation>Gordon PH, Wilbourn AJ. Early electrodiagnostic findings in Guillain-Barre syndrome. Arch Neurol. 2001;58:913&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">11405806</ArticleId></ArticleIdList></Reference><Reference><Citation>Rasera A, Romito S, Segatti A, Concon E, Alessandrini L, Basaldella F, et al. Very early and early neurophysiological abnormalities in Guillain-Barr&#xe9; syndrome: a 4-year retrospective study. Eur J Neurol. 2021;28:3768&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8596904</ArticleId><ArticleId IdType="pubmed">34233056</ArticleId></ArticleIdList></Reference><Reference><Citation>Wali A, Kanwar D, Khan SA, Khan S. Early electrophysiological findings in acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barre syndrome in the Pakistani population: a comparison with global data. J Peripher Nerv Syst. 2017;22:451&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">29091318</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuwabara S, Nakata M, Sung JY, Mori M, Kato N, Hattori T, et al. Hyperreflexia in axonal Guillain-Barr&#xe9; syndrome subsequent to Campylobacter jejuni enteritis. J Neurol Sci. 2002;199:89&#x2013;92.</Citation><ArticleIdList><ArticleId IdType="pubmed">12084449</ArticleId></ArticleIdList></Reference><Reference><Citation>Duday H, Dapres G, Georgesco M. Motor conduction velocity and the Hoffman reflex in diabetes. Rev Electroencephalogr Neurophysiol Clin. 1977;7:180&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">594459</ArticleId></ArticleIdList></Reference><Reference><Citation>Tonra JR, Cliffer KD, Carson SR, Lindsay RM, Bodine SC, DiStefano PS. Reduced Ia-afferent-mediated Hoffman reflex in streptozotocin-induced diabetic rats. Exp Neurol. 2001;172:220&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">11681854</ArticleId></ArticleIdList></Reference><Reference><Citation>Gaidina GA, Gol&#x2019;ber LM, Lazareva SP, Mazovetskii AG. Function of the neuromotor apparatus in diabetes mellitus. Probl Endokrinol (Mosk) 1978;24:9&#x2013;14.</Citation><ArticleIdList><ArticleId IdType="pubmed">683980</ArticleId></ArticleIdList></Reference><Reference><Citation>Hallett M, Berardelli A, Delwaide P, Freund HJ, Kimura J, Lucking C, et al. Central EMG and tests of motor control: report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;90:404&#x2013;32.</Citation><ArticleIdList><ArticleId IdType="pubmed">7515784</ArticleId></ArticleIdList></Reference><Reference><Citation>Musaev AV, Guseinova SG, Imamverdieva SS. The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with diabetic polyneuropathy. Neurosci Behav Physiol. 2003;33:745&#x2013;52.</Citation><ArticleIdList><ArticleId IdType="pubmed">14635988</ArticleId></ArticleIdList></Reference><Reference><Citation>Mazzini L, Balzarini C, Gareri F, Brigatti M. H-reflex changes in the course of amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1997;104:411&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">9344077</ArticleId></ArticleIdList></Reference><Reference><Citation>Trontelj JV. H-reflex of single motoneurons in man. Nature. 1968;220:1043&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">5701843</ArticleId></ArticleIdList></Reference><Reference><Citation>Milanov IG. A comparison of methods to assess the excitability of lower motoneurones. Can J Neurol Sci. 1992;19:64&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">1562909</ArticleId></ArticleIdList></Reference><Reference><Citation>Taborikova H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry. 1968;31:354&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC496374</ArticleId><ArticleId IdType="pubmed">5684395</ArticleId></ArticleIdList></Reference><Reference><Citation>Andersen P, Eccles J. Inhibitory phasing of neuronal discharge. Nature. 1962;196:645&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">14012799</ArticleId></ArticleIdList></Reference><Reference><Citation>Trompetto C, Marinelli L, Mori L, Canneva S, Colombano F, Traverso E, et al. The effect of age on post-activation depression of the upper limb H-reflex. Eur J Appl Physiol. 2014;114:359&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pubmed">24292018</ArticleId></ArticleIdList></Reference><Reference><Citation>Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16:302&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">20190766</ArticleId></ArticleIdList></Reference><Reference><Citation>Sperelakis N. Cell physiology source book. 4th ed. . San Diego: Academic Press; 2012. Chapter 32, Synaptic transmission; p.563-78.</Citation></Reference><Reference><Citation>Stampanoni Bassi M, Iezzi E, Gilio L, Centonze D, Buttari F. Synaptic plasticity shapes brain connectivity: implications for network topology. Int J Mol Sci. 2019;20:6193.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6940892</ArticleId><ArticleId IdType="pubmed">31817968</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience. 2014;283:95&#x2013;106.</Citation><ArticleIdList><ArticleId IdType="pubmed">25255936</ArticleId></ArticleIdList></Reference><Reference><Citation>Hashimoto T. GABA receptor chloride ion channel. Nihon Rinsho. 1998;56:1824&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">9702060</ArticleId></ArticleIdList></Reference><Reference><Citation>Kubota H, Katsurabayashi S, Moorhouse AJ, Murakami N, Koga H, Akaike N. GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J Physiol. 2003;551(Pt 1):263&#x2013;76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2343138</ArticleId><ArticleId IdType="pubmed">12815184</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueno T, Okabe A, Akaike N, Fukuda A, Nabekura J. Diversity of neuron-specific K+-Cl-cotransporter expression and inhibitory postsynaptic potential depression in rat motoneurons. J Biol Chem. 2002;277:4945&#x2013;50.</Citation><ArticleIdList><ArticleId IdType="pubmed">11733521</ArticleId></ArticleIdList></Reference><Reference><Citation>Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev. 2023;103:1095&#x2013;135.</Citation><ArticleIdList><ArticleId IdType="pubmed">36302178</ArticleId></ArticleIdList></Reference><Reference><Citation>Come E, Heubl M, Schwartz EJ, Poncer JC, Levi S. Reciprocal regulation of KCC2 trafficking and synaptic activity. Front Cell Neurosci. 2019;13:48.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6391895</ArticleId><ArticleId IdType="pubmed">30842727</ArticleId></ArticleIdList></Reference><Reference><Citation>Viitanen T, Ruusuvuori E, Kaila K, Voipio J. The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol. 2010;588(Pt 9):1527&#x2013;40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2876807</ArticleId><ArticleId IdType="pubmed">20211979</ArticleId></ArticleIdList></Reference><Reference><Citation>Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108:450&#x2013;62.</Citation><ArticleIdList><ArticleId IdType="pubmed">8801125</ArticleId></ArticleIdList></Reference><Reference><Citation>Barolat-Romana G, Davis R. Neurophysiological mechanisms in abnormal reflex activities in cerebral palsy and spinal spasticity. J Neurol Neurosurg Psychiatry. 1980;43:333&#x2013;42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC490537</ArticleId><ArticleId IdType="pubmed">7373332</ArticleId></ArticleIdList></Reference><Reference><Citation>Nielsen J, Petersen N, Ballegaard M, Biering-Sorensen F, Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res. 1993;97:173&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">8131827</ArticleId></ArticleIdList></Reference><Reference><Citation>Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res. 2000;133:233&#x2013;41.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4034370</ArticleId><ArticleId IdType="pubmed">10968224</ArticleId></ArticleIdList></Reference><Reference><Citation>Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. 2006;141:1569&#x2013;83.</Citation><ArticleIdList><ArticleId IdType="pubmed">16797137</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang YJ, Liu YC, Hsu MJ, Fang CY, Wong AM, DeJong SL, et al. Novel human models for elucidating mechanisms of ratesensitive H-reflex depression. Biomed J. 2020;43:44&#x2013;52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7090317</ArticleId><ArticleId IdType="pubmed">32200955</ArticleId></ArticleIdList></Reference><Reference><Citation>Sadlaoud K, Khalki L, Brocard F, Vinay L, Boulenguez P, Bras H. Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury. J Chem Neuroanat. 2020;106:101787.</Citation><ArticleIdList><ArticleId IdType="pubmed">32339654</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahrous A, Birch D, Heckman CJ, Tysseling V. Muscle spasms after spinal cord injury stem from changes in motoneuron excitability and synaptic inhibition, not synaptic excitation. J Neurosci. 2024;44:e1695232023.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10851678</ArticleId><ArticleId IdType="pubmed">37949656</ArticleId></ArticleIdList></Reference><Reference><Citation>Li X, Song X, Fang L, Ding J, Qi L, Wang Q, et al. Body weightsupported treadmill training ameliorates motoneuronal hyperexcitability by increasing GAD-65/67 and KCC2 expression via TrkB signaling in rats with incomplete spinal cord injury. Neurochem Res. 2022;47:1679&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9124175</ArticleId><ArticleId IdType="pubmed">35320460</ArticleId></ArticleIdList></Reference><Reference><Citation>Bose PK, Hou J, Parmer R, Reier PJ, Thompson FJ. Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training. Front Physiol. 2012;3:258.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3429034</ArticleId><ArticleId IdType="pubmed">22934014</ArticleId></ArticleIdList></Reference><Reference><Citation>Sabatier MJ, Wedewer W, Barton B, Henderson E, Murphy JT, Ou K. Slope walking causes short-term changes in soleus Hreflex excitability. Physiol Rep. 2015;3:e12308.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4393150</ArticleId><ArticleId IdType="pubmed">25742955</ArticleId></ArticleIdList></Reference><Reference><Citation>Arvanian VL, Liang L, Tesfa A, Fahmy M, Petrosyan HA. Buprenorphine, a partial opioid agonist, prevents modulation of H-reflex induced by pulsed electromagnetic stimulation in spinal cord injured rats. Neurosci Lett. 2022;777:136583.</Citation><ArticleIdList><ArticleId IdType="pubmed">35318074</ArticleId></ArticleIdList></Reference><Reference><Citation>Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, et al. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol. 2019;597:2201&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6462463</ArticleId><ArticleId IdType="pubmed">30689208</ArticleId></ArticleIdList></Reference><Reference><Citation>Dixon L, Ibrahim MM, Santora D, Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol. 2016;116:904&#x2013;16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5002441</ArticleId><ArticleId IdType="pubmed">27281748</ArticleId></ArticleIdList></Reference><Reference><Citation>Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, et al. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther. 2024;15:29.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10835949</ArticleId><ArticleId IdType="pubmed">38303017</ArticleId></ArticleIdList></Reference><Reference><Citation>Hefferan MP, Kucharova K, Kinjo K, Kakinohana O, Sekerkova G, Nakamura S, et al. Spinal astrocyte glutamate receptor 1 overexpression after ischemic insult facilitates behavioral signs of spasticity and rigidity. J Neurosci. 2007;27:11179&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6673044</ArticleId><ArticleId IdType="pubmed">17942713</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang YX, Zhao Y, Pan S, Qi ZP, Kong WJ, Pan YR, et al. Intramuscular injection of adenoassociated virus encoding human neurotrophic factor 3 and exercise intervention contribute to reduce spasms after spinal cord injury. Neural Plast. 2019;2019:3017678.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6432737</ArticleId><ArticleId IdType="pubmed">30984254</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonnet M, Alluin O, Trimaille T, Gigmes D, Marqueste T, Decherchi P. Delayed injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat contused spinal cord improves functional recovery. ACS Omega. 2020;5:10247&#x2013;59.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7226861</ArticleId><ArticleId IdType="pubmed">32426581</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu H, Skinner RD, Arfaj A, Yates C, Reese NB, Williams K, et al. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection. Brain Res Bull. 2010;83:262&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3416918</ArticleId><ArticleId IdType="pubmed">20637842</ArticleId></ArticleIdList></Reference><Reference><Citation>Bilchak JN, Yeakle K, Caron G, Malloy D, Cote MP. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp Neurol. 2021;338:113605.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7904648</ArticleId><ArticleId IdType="pubmed">33453210</ArticleId></ArticleIdList></Reference><Reference><Citation>Benson CA, Olson KL, Patwa S, Reimer ML, Bangalore L, Hill M, et al. Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep. 2021;11:7838.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8035187</ArticleId><ArticleId IdType="pubmed">33837249</ArticleId></ArticleIdList></Reference><Reference><Citation>Benson CA, Olson KL, Patwa S, Kauer SD, King JF, Waxman SG, et al. Conditional astrocyte Rac1KO attenuates hyperreflexia after spinal cord injury. J Neurosci. 2024;44:e1670222023.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10851682</ArticleId><ArticleId IdType="pubmed">37963762</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol. 2015;113:1598&#x2013;615.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4346729</ArticleId><ArticleId IdType="pubmed">25505110</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, et al. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One. 2017;12:e0171937.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5300247</ArticleId><ArticleId IdType="pubmed">28182676</ArticleId></ArticleIdList></Reference><Reference><Citation>Synowiec S, Lu J, Yu L, Goussakov I, Lieber R, Drobyshevsky A. Spinal hyper-excitability and altered muscle structure contribute to muscle hypertonia in newborns after antenatal hypoxia-ischemia in a rabbit cerebral palsy model. Front Neurol. 2019;9:1183.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6344443</ArticleId><ArticleId IdType="pubmed">30705663</ArticleId></ArticleIdList></Reference><Reference><Citation>Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One. 2014;9:e114328.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4278744</ArticleId><ArticleId IdType="pubmed">25546454</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann&#x2019;s reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis. 2014;5:e1007.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4040693</ArticleId><ArticleId IdType="pubmed">24434515</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamy JC, Wargon I, Mazevet D, Ghanim Z, Pradat-Diehl P, Katz R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain. 2009;132(Pt 3):734&#x2013;48.</Citation><ArticleIdList><ArticleId IdType="pubmed">19036767</ArticleId></ArticleIdList></Reference><Reference><Citation>Pivik RT, Mercier L. Spinal motoneuronal excitability in hyperkinesis: H-reflex recovery function and homosynaptic depression during wakefulness. J Clin Neuropsychol. 1981;3:215&#x2013;36.</Citation><ArticleIdList><ArticleId IdType="pubmed">7328176</ArticleId></ArticleIdList></Reference><Reference><Citation>Sabbahi M, Etnyre B, Al-Jawayed IA, Hasson S, Jankovic J. Methods of H-reflex evaluation in the early stages of Parkinson&#x2019;s disease. J Clin Neurophysiol. 2002;19:67&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">11896355</ArticleId></ArticleIdList></Reference><Reference><Citation>Sabbahi M, Etnyre B, Al-Jawayed I, Jankovic J. H-reflex recovery curves differentiate essential tremor, Parkinson&#x2019;s disease, and the combination of essential tremor and Parkinson&#x2019;s disease. J Clin Neurophysiol. 2002;19:245&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">12226570</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, et al. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci. 2022;43:1831&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">34518934</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Kianmehr H, Zhang P, Luo J, Guo J, Pavkov ME, Bullard KM, et al. Potential gains in life expectancy associated with achieving treatment goals in US adults with type 2 diabetes. JAMA Netw Open. 2022;5:e227705.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10292109</ArticleId><ArticleId IdType="pubmed">35435970</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun J, Wang Y, Zhang X, Zhu S, He H. Prevalence of peripheral neuropathy in patients with diabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2020;14:435&#x2013;44.</Citation><ArticleIdList><ArticleId IdType="pubmed">31917119</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajbhandari SM, Jarratt JA, Griffiths PD, Ward JD. Diabetic neuropathic pain in a leg amputated 44 years previously. Pain. 1999;83:627&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">10568872</ArticleId></ArticleIdList></Reference><Reference><Citation>Singleton JR, Foster-Palmer S, Marcus RL. Exercise as treatment for neuropathy in the setting of diabetes and prediabetic metabolic syndrome: a review of animal models and human trials. Curr Diabetes Rev. 2022;18:e230921196752.</Citation><ArticleIdList><ArticleId IdType="pubmed">34561989</ArticleId></ArticleIdList></Reference><Reference><Citation>Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34:2220&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3177727</ArticleId><ArticleId IdType="pubmed">21852677</ArticleId></ArticleIdList></Reference><Reference><Citation>Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, et al. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol. 2023;30:2177&#x2013;96.</Citation><ArticleIdList><ArticleId IdType="pubmed">37253688</ArticleId></ArticleIdList></Reference><Reference><Citation>Dworkin RH, O&#x2019;Connor AB, Kent J, Mackey SC, Raja SN, Stacey BR, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154:2249&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4484720</ArticleId><ArticleId IdType="pubmed">23748119</ArticleId></ArticleIdList></Reference><Reference><Citation>National Institute for Health and Care Excellence (NICE) Neuropathic pain in adults: pharmacological management in non-specialist settings. London: NICE; 2020.</Citation><ArticleIdList><ArticleId IdType="pubmed">31961628</ArticleId></ArticleIdList></Reference><Reference><Citation>Goodman CW, Brett AS. A clinical overview of off-label use of gabapentinoid drugs. JAMA Intern Med. 2019;179:695&#x2013;701.</Citation><ArticleIdList><ArticleId IdType="pubmed">30907944</ArticleId></ArticleIdList></Reference><Reference><Citation>Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4493167</ArticleId><ArticleId IdType="pubmed">25575710</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathieson S, Lin CC, Underwood M, Eldabe S. Pregabalin and gabapentin for pain. BMJ. 2020;369:m1315.</Citation><ArticleIdList><ArticleId IdType="pubmed">32345589</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiffen PJ, Derry S, Moore RA, Aldington D, Cole P, Rice AS, et al. Antiepileptic drugs for neuropathic pain and fibromyalgia: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2013;2013:CD010567.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6469538</ArticleId><ArticleId IdType="pubmed">24217986</ArticleId></ArticleIdList></Reference><Reference><Citation>Bril V. The perfect clinical trial. Int Rev Neurobiol. 2016;127:27&#x2013;41.</Citation><ArticleIdList><ArticleId IdType="pubmed">27133143</ArticleId></ArticleIdList></Reference><Reference><Citation>Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M, et al. Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol. 2016;6:223&#x2013;55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5023323</ArticleId><ArticleId IdType="pubmed">27584552</ArticleId></ArticleIdList></Reference><Reference><Citation>Zilliox LA, Ruby SK, Singh S, Zhan M, Russell JW. Clinical neuropathy scales in neuropathy associated with impaired glucose tolerance. J Diabetes Complications. 2015;29:372&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4558101</ArticleId><ArticleId IdType="pubmed">25690405</ArticleId></ArticleIdList></Reference><Reference><Citation>Vinik EJ, Hayes RP, Oglesby A, Bastyr E, Barlow P, Ford-Molvik SL, et al. The development and validation of the Norfolk QOL-DN, a new measure of patients&#x2019; perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther. 2005;7:497&#x2013;508.</Citation><ArticleIdList><ArticleId IdType="pubmed">15929681</ArticleId></ArticleIdList></Reference><Reference><Citation>Calcutt NA. Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain. 2020;161(Suppl 1):S65&#x2013;86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7521457</ArticleId><ArticleId IdType="pubmed">32999525</ArticleId></ArticleIdList></Reference><Reference><Citation>Mooshage CM, Tsilingiris D, Schimpfle L, Seebauer L, Eldesouky O, Aziz-Safaie T, et al. A diminished sciatic nerve structural integrity is associated with distinct peripheral sensory phenotypes in individuals with type 2 diabetes. Diabetologia. 2024;67:275&#x2013;89.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10789832</ArticleId><ArticleId IdType="pubmed">38019287</ArticleId></ArticleIdList></Reference><Reference><Citation>Raputova J, Rajdova A, Vollert J, Srotova I, Rebhorn C, Uceyler N, et al. Continuum of sensory profiles in diabetes mellitus patients with and without neuropathy and pain. Eur J Pain. 2022;26:2198&#x2013;212.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9825847</ArticleId><ArticleId IdType="pubmed">36069121</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsilingiris D, Schimpfle L, von Rauchhaupt E, Sulaj A, Seebauer L, Herzig S, et al. Sensory phenotypes provide insight into the natural course of diabetic polyneuropathy. Diabetes. 2024;73:135&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">37862374</ArticleId></ArticleIdList></Reference><Reference><Citation>Soliman N, Kersebaum D, Lawn T, Sachau J, Sendel M, Vollert J. Improving neuropathic pain treatment: by rigorous stratification from bench to bedside. J Neurochem. 2024;168:3699&#x2013;714.</Citation><ArticleIdList><ArticleId IdType="pubmed">36852505</ArticleId></ArticleIdList></Reference><Reference><Citation>Serra J, Duan WR, Locke C, Sola R, Liu W, Nothaft W. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial. Pain. 2015;156:2175&#x2013;83.</Citation><ArticleIdList><ArticleId IdType="pubmed">26035253</ArticleId></ArticleIdList></Reference><Reference><Citation>Austin TM, Delpire E. Inhibition of KCC2 in mouse spinal cord neurons leads to hypersensitivity to thermal stimulation. Anesth Analg. 2011;113:1509&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3224196</ArticleId><ArticleId IdType="pubmed">21965363</ArticleId></ArticleIdList></Reference><Reference><Citation>Velazquez-Flores MA, Sanchez-Chavez G, Morales-Lazaro SL, Ruiz Esparza-Garrido R, Canizales-Ontiveros A, Salceda R. Streptozotocin-induced diabetic rats showed a differential glycine receptor expression in the spinal cord: a GlyR role in diabetic neuropathy. Neurochem Res. 2024;49:684&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10884118</ArticleId><ArticleId IdType="pubmed">38017313</ArticleId></ArticleIdList></Reference><Reference><Citation>Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424:938&#x2013;42.</Citation><ArticleIdList><ArticleId IdType="pubmed">12931188</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu Z, Yu X, Chen P, Jin K, Zhou J, Wang G, et al. BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury. Mol Pain. 2023;19:174480&#x2013;69231185439.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10402286</ArticleId><ArticleId IdType="pubmed">37321969</ArticleId></ArticleIdList></Reference><Reference><Citation>Malmberg AB, O&#x2019;Connor WT, Glennon JC, Cesena R, Calcutt NA. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res. 2006;1115:48&#x2013;53.</Citation><ArticleIdList><ArticleId IdType="pubmed">16920081</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155:250&#x2013;60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3946970</ArticleId><ArticleId IdType="pubmed">24103402</ArticleId></ArticleIdList></Reference><Reference><Citation>Zilliox LA. Diabetes and peripheral nerve disease. Clin Geriatr Med. 2021;37:253&#x2013;67.</Citation><ArticleIdList><ArticleId IdType="pubmed">33858608</ArticleId></ArticleIdList></Reference><Reference><Citation>Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140:48&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2593464</ArticleId><ArticleId IdType="pubmed">18755547</ArticleId></ArticleIdList></Reference><Reference><Citation>Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66:1380&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5399611</ArticleId><ArticleId IdType="pubmed">28202580</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018;18:1.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6876556</ArticleId><ArticleId IdType="pubmed">29362940</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernandez-Reyes JE, Salinas-Abarca AB, Vidal-Cantu GC, Raya-Tafolla G, Elias-Vinas D, Granados-Soto V, et al. &#x3b1;5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain. 2019;160:1448&#x2013;58.</Citation><ArticleIdList><ArticleId IdType="pubmed">31107414</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee-Kubli CA, Zhou X, Jolivalt CG, Calcutt NA. Pharmacological modulation of rate-dependent depression of the spinal H-reflex predicts therapeutic efficacy against painful diabetic neuropathy. Diagnostics (Basel) 2021;11:283.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7917809</ArticleId><ArticleId IdType="pubmed">33670344</ArticleId></ArticleIdList></Reference><Reference><Citation>Jolivalt CG, Rodriguez M, Wahren J, Calcutt NA. Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin-diabetic mice. Diabetes Obes Metab. 2015;17:781&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">25904006</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen GL, Putnam S, Haile M, Raza Z, Bremer M, Wilkinson KA. Diet-induced obesity decreases rate-dependent depression in the Hoffmann&#x2019;s reflex in adult mice. Physiol Rep. 2019;7:e14271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6818099</ArticleId><ArticleId IdType="pubmed">31660698</ArticleId></ArticleIdList></Reference><Reference><Citation>Gilbert D, Franjic-Wurtz C, Funk K, Gensch T, Frings S, Mohrlen F. Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system. Int J Dev Neurosci. 2007;25:479&#x2013;89.</Citation><ArticleIdList><ArticleId IdType="pubmed">17869474</ArticleId></ArticleIdList></Reference><Reference><Citation>Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience. 2001;104:933&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pubmed">11457581</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride: the underrated ion in nociceptors. Front Neurosci. 2020;14:287.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7158864</ArticleId><ArticleId IdType="pubmed">32322187</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee-Hotta S, Uchiyama Y, Kametaka S. Role of the BDNFTrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: a mini review. Neurochem Int. 2019;128:32&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30986502</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith PA. BDNF in neuropathic pain; the culprit that cannot be apprehended. Neuroscience. 2024;543:49&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pubmed">38417539</ArticleId></ArticleIdList></Reference><Reference><Citation>Ge H, Guan S, Shen Y, Sun M, Hao Y, He L, et al. Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Sci Rep. 2019;9:14619.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6787069</ArticleId><ArticleId IdType="pubmed">31601968</ArticleId></ArticleIdList></Reference><Reference><Citation>Miao B, Yin Y, Mao G, Zhao B, Wu J, Shi H, et al. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci. 2021;273:119308.</Citation><ArticleIdList><ArticleId IdType="pubmed">33667520</ArticleId></ArticleIdList></Reference><Reference><Citation>Obata K, Noguchi K. BDNF in sensory neurons and chronic pain. Neurosci Res. 2006;55:1&#x2013;10.</Citation><ArticleIdList><ArticleId IdType="pubmed">16516994</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64:1231&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">7861156</ArticleId></ArticleIdList></Reference><Reference><Citation>Paul J, Zeilhofer HU, Fritschy JM. Selective distribution of GABA(A) receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol. 2012;520:3895&#x2013;911.</Citation><ArticleIdList><ArticleId IdType="pubmed">22522945</ArticleId></ArticleIdList></Reference><Reference><Citation>Lucas O, Hilaire C, Delpire E, Scamps F. KCC3-dependent chloride extrusion in adult sensory neurons. Mol Cell Neurosci. 2012;50:211&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pubmed">22609694</ArticleId></ArticleIdList></Reference><Reference><Citation>Bravo-Hernandez M, Corleto JA, Barragan-Iglesias P, Gonzalez-Ramirez R, Pineda-Farias JB, Felix R, et al. The &#x3b1;5 subunit containing GABAA receptors contribute to chronic pain. Pain. 2016;157:613&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4950669</ArticleId><ArticleId IdType="pubmed">26545088</ArticleId></ArticleIdList></Reference><Reference><Citation>Delgado-Lezama R, Bravo-Hernandez M, Franco-Enzastiga U, De la Luz-Cuellar YE, Alvarado-Cervantes NS, Raya-Tafolla G, et al. The role of spinal cord extrasynaptic &#x3b1;5 GABAA receptors in chronic pain. Physiol Rep. 2021;9:e14984.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8374381</ArticleId><ArticleId IdType="pubmed">34409771</ArticleId></ArticleIdList></Reference><Reference><Citation>Ju YH, Cho J, Park JY, Kim H, Hong EB, Park KD, et al. Tonic excitation by astrocytic GABA causes neuropathic pain by augmenting neuronal activity and glucose metabolism. Exp Mol Med. 2024;56:1193&#x2013;205.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11148027</ArticleId><ArticleId IdType="pubmed">38760512</ArticleId></ArticleIdList></Reference><Reference><Citation>Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med. 2013;19:1524&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4005788</ArticleId><ArticleId IdType="pubmed">24097188</ArticleId></ArticleIdList></Reference><Reference><Citation>Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, et al. Enhancing neuronal chloride extrusion rescues &#x3b1;2/&#x3b1;3 GABAA-mediated analgesia in neuropathic pain. Nat Commun. 2020;11:869.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7018745</ArticleId><ArticleId IdType="pubmed">32054836</ArticleId></ArticleIdList></Reference><Reference><Citation>Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol. 2011;164:159&#x2013;69.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3171868</ArticleId><ArticleId IdType="pubmed">21410686</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Zhu Y, Wang Z, Lin Z, Zhu D, Xie C, et al. Rate-dependent depression: a predictor of the therapeutic efficacy in treating painful diabetic peripheral neuropathy. Diabetes. 2022;71:1272&#x2013;81.</Citation><ArticleIdList><ArticleId IdType="pubmed">35234842</ArticleId></ArticleIdList></Reference><Reference><Citation>Salinas LF, Trujillo-Condes VE, Tecuatl C, Delgado-Lezama R, Cuellar CA. Impaired rate-dependent depression of the H-reflex in type-2 diabetes, prediabetes, overweight and obesity: a cross-sectional study. Medicine (Baltimore) 2022;101:e31046.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9622671</ArticleId><ArticleId IdType="pubmed">36316945</ArticleId></ArticleIdList></Reference><Reference><Citation>Worthington A, Kalteniece A, Ferdousi M, D&#x2019;Onofrio L, Dhage S, Azmi S, et al. Optimal utility of H-reflex RDD as a biomarker of spinal disinhibition in painful and painless diabetic neuropathy. Diagnostics (Basel) 2021;11:1247.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8306975</ArticleId><ArticleId IdType="pubmed">34359330</ArticleId></ArticleIdList></Reference><Reference><Citation>Marshall A, Kalteniece A, Ferdousi M, Azmi S, Jude EB, Adamson C, et al. Spinal disinhibition: evidence for a hyperpathia phenotype in painful diabetic neuropathy. Brain Commun. 2023;5:fcad051.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10016414</ArticleId><ArticleId IdType="pubmed">36938521</ArticleId></ArticleIdList></Reference><Reference><Citation>Worthington A, Kalteniece A, Ferdousi M, D&#x2019;Onofrio L, Dhage S, Azmi S, et al. Spinal inhibitory dysfunction in patients with painful or painless diabetic neuropathy. Diabetes Care. 2021;44:1835&#x2013;41.</Citation><ArticleIdList><ArticleId IdType="pubmed">34385346</ArticleId></ArticleIdList></Reference><Reference><Citation>Alles SR, Smith PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev. 2018;70:315&#x2013;47.</Citation><ArticleIdList><ArticleId IdType="pubmed">29500312</ArticleId></ArticleIdList></Reference><Reference><Citation>Alles SR, Bandet MV, Eppler K, Noh MC, Winship IR, Baker G, et al. Acute anti-allodynic action of gabapentin in dorsal horn and primary somatosensory cortex: correlation of behavioural and physiological data. Neuropharmacology. 2017;113(Pt A):576&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">27856391</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace MS, Rowbotham MC, Katz NP, Dworkin RH, Dotson RM, Galer BS, et al. A randomized, double-blind, placebocontrolled trial of a glycine antagonist in neuropathic pain. Neurology. 2002;59:1694&#x2013;700.</Citation><ArticleIdList><ArticleId IdType="pubmed">12473754</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39610131</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2233-6087</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Diabetes &amp; metabolism journal</Title><ISOAbbreviation>Diabetes Metab J</ISOAbbreviation></Journal><ArticleTitle>Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association.</ArticleTitle><Pagination><StartPage>1015</StartPage><EndPage>1028</EndPage><MedlinePgn>1015-1028</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4093/dmj.2024.0541</ELocationID><Abstract><AbstractText>Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bae</LastName><ForeName>Jaehyun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Eugene</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Hye Won</ForeName><Initials>HW</Initials><AffiliationInfo><Affiliation>Department of Pathology, Keimyung University School of Medicine, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Cheol-Young</ForeName><Initials>CY</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chung</LastName><ForeName>Choon Hee</ForeName><Initials>CH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Dae Ho</ForeName><Initials>DH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cho</LastName><ForeName>Eun-Hee</ForeName><Initials>EH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rhee</LastName><ForeName>Eun-Jung</ForeName><Initials>EJ</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Ji Hee</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Ji Hyun</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bae</LastName><ForeName>Ji-Cheol</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Jung Hwan</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology &amp; Metabolism, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Choi</LastName><ForeName>Kyung Mook</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Kyung-Soo</ForeName><Initials>KS</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Seo</LastName><ForeName>Mi Hae</ForeName><Initials>MH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Minyoung</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Nan-Hee</ForeName><Initials>NH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>So Hun</ForeName><Initials>SH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Won-Young</ForeName><Initials>WY</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Woo Je</ForeName><Initials>WJ</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Choi</LastName><ForeName>Yeon-Kyung</ForeName><Initials>YK</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Yong-Ho</ForeName><Initials>YH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hwang</LastName><ForeName>You-Cheol</ForeName><Initials>YC</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lyu</LastName><ForeName>Young Sang</ForeName><Initials>YS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Byung-Wan</ForeName><Initials>BW</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cha</LastName><ForeName>Bong-Soo</ForeName><Initials>BS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Fatty Liver Research Group of the Korean Diabetes Association</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Korea (South)</Country><MedlineTA>Diabetes Metab J</MedlineTA><NlmUniqueID>101556588</NlmUniqueID><ISSNLinking>2233-6079</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065626" MajorTopicYN="Y">Non-alcoholic Fatty Liver Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="Y">Fatty Liver</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes mellitus, type 2</Keyword><Keyword MajorTopicYN="N">Metabolic dysfunction-associated steatotic liver disease</Keyword><Keyword MajorTopicYN="N">Non-alcoholic fatty liver disease</Keyword></KeywordList><CoiStatement>
+<b>CONFLICTS OF INTEREST</b>
+. Kyung Mook Choi has been honorary editors of the <i>Diabetes &amp; Metabolism Journal</i> since 2022. Kyung-Soo Kim has been associate editors of the <i>Diabetes &amp; Metabolism Journal</i> since 2024. They were not involved in the review process of this article. Otherwise, there was no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>1</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610131</ArticleId><ArticleId IdType="pmc">PMC11621661</ArticleId><ArticleId IdType="doi">10.4093/dmj.2024.0541</ArticleId><ArticleId IdType="pii">dmj.2024.0541</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Eslam M, Sanyal AJ, George J, International Consensus Panel MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999&#x2013;2014.e1.</Citation><ArticleIdList><ArticleId IdType="pubmed">32044314</ArticleId></ArticleIdList></Reference><Reference><Citation>Mendez-Sanchez N, Bugianesi E, Gish RG, Lammert F, Tilg H, Nguyen MH, et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet Gastroenterol Hepatol. 2022;7:388&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">35248211</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79:1542&#x2013;56.</Citation><ArticleIdList><ArticleId IdType="pubmed">37364790</ArticleId></ArticleIdList></Reference><Reference><Citation>Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">7382552</ArticleId></ArticleIdList></Reference><Reference><Citation>Demirtas CO, Yilmaz Y. Metabolic-associated fatty liver disease: time to integrate ground-breaking new terminology to our clinical practice? Hepatol Forum. 2020;1:79&#x2013;81.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9349491</ArticleId><ArticleId IdType="pubmed">35949724</ArticleId></ArticleIdList></Reference><Reference><Citation>Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37 Suppl 1:81&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">28052624</ArticleId></ArticleIdList></Reference><Reference><Citation>The Lancet Gastroenterology Hepatology Redefining non-alcoholic fatty liver disease: what&#x2019;s in a name? Lancet Gastroenterol Hepatol. 2020;5:419.</Citation><ArticleIdList><ArticleId IdType="pubmed">32277896</ArticleId></ArticleIdList></Reference><Reference><Citation>Gofton C, Upendran Y, Zheng MH, George J. MAFLD: how is it different from NAFLD? Clin Mol Hepatol. 2023;29(Suppl):S17&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10029949</ArticleId><ArticleId IdType="pubmed">36443926</ArticleId></ArticleIdList></Reference><Reference><Citation>Ratziu V, Boursier J, AFEF Group for the Study of Liver Fibrosis Confirmatory biomarker diagnostic studies are not needed when transitioning from NAFLD to MASLD. J Hepatol. 2024;80:e51&#x2013;2.</Citation><ArticleIdList><ArticleId IdType="pubmed">37543307</ArticleId></ArticleIdList></Reference><Reference><Citation>Song SJ, Lai JC, Wong GL, Wong VW, Yip TC. Can we use old NAFLD data under the new MASLD definition? J Hepatol. 2024;80:e54&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">37541393</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee CM, Yoon EL, Kim M, Kang BK, Cho S, Nah EH, et al. Prevalence, distribution, and hepatic fibrosis burden of the different subtypes of steatotic liver disease in primary care settings. Hepatology. 2024;79:1393&#x2013;400.</Citation><ArticleIdList><ArticleId IdType="pubmed">38100294</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee BW, Lee YH, Park CY, Rhee EJ, Lee WY, Kim NH, et al. Non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus: a position statement of the fatty liver research group of the Korean Diabetes Association. Diabetes Metab J. 2020;44:382&#x2013;401.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7332334</ArticleId><ArticleId IdType="pubmed">32431115</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee YH, Cho Y, Lee BW, Park CY, Lee DH, Cha BS, et al. Nonalcoholic fatty liver disease in diabetes. Part I: epidemiology and diagnosis. Diabetes Metab J. 2019;43:31&#x2013;45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6387876</ArticleId><ArticleId IdType="pubmed">30793550</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77:1797&#x2013;835.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10735173</ArticleId><ArticleId IdType="pubmed">36727674</ArticleId></ArticleIdList></Reference><Reference><Citation>Haam JH, Kim BT, Kim EM, Kwon H, Kang JH, Park JH, et al. Diagnosis of obesity: 2022 update of clinical practice guidelines for obesity by the Korean Society for the Study of Obesity. J Obes Metab Syndr. 2023;32:121&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10327686</ArticleId><ArticleId IdType="pubmed">37386771</ArticleId></ArticleIdList></Reference><Reference><Citation>Le MH, Yeo YH, Li X, Li J, Zou B, Wu Y, et al. 2019 Global NAFLD prevalence: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2022;20:2809&#x2013;17.e28.</Citation><ArticleIdList><ArticleId IdType="pubmed">34890795</ArticleId></ArticleIdList></Reference><Reference><Citation>Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pubmed">35798021</ArticleId></ArticleIdList></Reference><Reference><Citation>Han E, Lee YH, Kim YD, Kim BK, Park JY, Kim DY, et al. Nonalcoholic fatty liver disease and sarcopenia are independently associated with cardiovascular risk. Am J Gastroenterol. 2020;115:584&#x2013;95.</Citation><ArticleIdList><ArticleId IdType="pubmed">32141917</ArticleId></ArticleIdList></Reference><Reference><Citation>Park SH, Plank LD, Suk KT, Park YE, Lee J, Choi JH, et al. Trends in the prevalence of chronic liver disease in the Korean adult population, 1998-2017. Clin Mol Hepatol. 2020;26:209&#x2013;15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7160351</ArticleId><ArticleId IdType="pubmed">31679316</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Golabi P, Price JK, Owrangi S, Gundu-Rao N, Satchi R, et al. The global epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among patients with type 2 diabetes. Clin Gastroenterol Hepatol. 2024;22:1999&#x2013;2010.e8.</Citation><ArticleIdList><ArticleId IdType="pubmed">38521116</ArticleId></ArticleIdList></Reference><Reference><Citation>En Li Cho E, Ang CZ, Quek J, Fu CE, Lim LK, Heng ZE, et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and metaanalysis. Gut. 2023;72:2138&#x2013;48.</Citation><ArticleIdList><ArticleId IdType="pubmed">37491159</ArticleId></ArticleIdList></Reference><Reference><Citation>Han E, Lee YH, Lee JS, Lee HW, Kim BK, Park JY, et al. Fibrotic burden determines cardiovascular risk among subjects with metabolic dysfunction-associated fatty liver disease. Gut Liver. 2022;16:786&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9474484</ArticleId><ArticleId IdType="pubmed">35321955</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim KS, Hong S, Ahn HY, Park CY. Metabolic dysfunction-associated fatty liver disease and mortality: a population-based cohort study. Diabetes Metab J. 2023;47:220&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10040627</ArticleId><ArticleId IdType="pubmed">36631994</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee H, Lee YH, Kim SU, Kim HC. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: a nationwide cohort study. Clin Gastroenterol Hepatol. 2021;19:2138&#x2013;47.e10.</Citation><ArticleIdList><ArticleId IdType="pubmed">33348045</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayada I, van Kleef LA, Alferink LJ, Li P, de Knegt RJ, Pan Q. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: focusing on the non-overlap groups. Liver Int. 2022;42:277&#x2013;87.</Citation><ArticleIdList><ArticleId IdType="pubmed">34953098</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee HH, Lee HA, Kim EJ, Kim HY, Kim HC, Ahn SH, et al. Metabolic dysfunction-associated steatotic liver disease and risk of cardiovascular disease. Gut. 2024;73:533&#x2013;40.</Citation><ArticleIdList><ArticleId IdType="pubmed">37907259</ArticleId></ArticleIdList></Reference><Reference><Citation>Han E, Chun HS, Lee YH, Lee JS, Lee HW, Kim BK, et al. MAFLD might be better in identifying subjects with sarcopenia or cardiovascular risk than NAFLD: a nationwide study. J Gastroenterol Hepatol. 2023;38:1598&#x2013;609.</Citation><ArticleIdList><ArticleId IdType="pubmed">37321651</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong VW, Wong GL, Chu WC, Chim AM, Ong A, Yeung DK, et al. Hepatitis B virus infection and fatty liver in the general population. J Hepatol. 2012;56:533&#x2013;40.</Citation><ArticleIdList><ArticleId IdType="pubmed">22027575</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho Y, Park S, Park S, Choi W, Kim B, Han H. Real-world epidemiology, treatment patterns, and disease burden of chronic hepatitis B and HDV co-infection in South Korea. Infect Dis Ther. 2023;12:2387&#x2013;403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10600088</ArticleId><ArticleId IdType="pubmed">37768482</ArticleId></ArticleIdList></Reference><Reference><Citation>Ciardullo S, Carbone M, Invernizzi P, Perseghin G. Exploring the landscape of steatotic liver disease in the general US population. Liver Int. 2023;43:2425&#x2013;33.</Citation><ArticleIdList><ArticleId IdType="pubmed">37592856</ArticleId></ArticleIdList></Reference><Reference><Citation>De A, Bhagat N, Mehta M, Taneja S, Duseja A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J Hepatol. 2024;80:e61&#x2013;2.</Citation><ArticleIdList><ArticleId IdType="pubmed">37558135</ArticleId></ArticleIdList></Reference><Reference><Citation>Han E, Lee BW, Kang ES, Cha BS, Ahn SH, Lee YH, et al. Mortality in metabolic dysfunction-associated steatotic liver disease: a nationwide population-based cohort study. Metabolism. 2024;152:155789.</Citation><ArticleIdList><ArticleId IdType="pubmed">38224909</ArticleId></ArticleIdList></Reference><Reference><Citation>Choe HJ, Moon JH, Kim W, Koo BK, Cho NH. Steatotic liver disease predicts cardiovascular disease and advanced liver fibrosis: a community-dwelling cohort study with 20-year follow-up. Metabolism. 2024;153:155800.</Citation><ArticleIdList><ArticleId IdType="pubmed">38266957</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalligeros M, Vassilopoulos A, Vassilopoulos S, Victor DW, Mylonakis E, Noureddin M. Prevalence of steatotic liver disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017-2020. Clin Gastroenterol Hepatol. 2024;22:1330&#x2013;2.e4.</Citation><ArticleIdList><ArticleId IdType="pubmed">37949334</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SY, Kim HJ. Trends in alcohol consumption for Korean adults from 1998 to 2018: Korea National Health and Nutritional Examination Survey. Nutrients. 2021;13:609.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7918354</ArticleId><ArticleId IdType="pubmed">33668462</ArticleId></ArticleIdList></Reference><Reference><Citation>Han E, Han KD, Lee YH, Kim KS, Hong S, Park JH, et al. Fatty liver &amp; diabetes statistics in Korea: nationwide data 2009 to 2017. Diabetes Metab J. 2023;47:347&#x2013;55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10244201</ArticleId><ArticleId IdType="pubmed">36977544</ArticleId></ArticleIdList></Reference><Reference><Citation>Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42:1051&#x2013;63.</Citation><ArticleIdList><ArticleId IdType="pubmed">26304302</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung I, Koo DJ, Lee WY. Insulin resistance, non-alcoholic fatty liver disease and type 2 diabetes mellitus: clinical and experimental perspective. Diabetes Metab J. 2024;48:327&#x2013;39.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11140401</ArticleId><ArticleId IdType="pubmed">38310873</ArticleId></ArticleIdList></Reference><Reference><Citation>Tannapfel A, Denk H, Dienes HP, Langner C, Schirmacher P, Trauner M, et al. Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Arch. 2011;458:511&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pubmed">21442288</ArticleId></ArticleIdList></Reference><Reference><Citation>Sakhuja P. Pathology of alcoholic liver disease, can it be differentiated from nonalcoholic steatohepatitis? World J Gastroenterol. 2014;20:16474&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4248190</ArticleId><ArticleId IdType="pubmed">25469015</ArticleId></ArticleIdList></Reference><Reference><Citation>Leow WQ, Chan AW, Mendoza PG, Lo R, Yap K, Kim H. Nonalcoholic fatty liver disease: the pathologist&#x2019;s perspective. Clin Mol Hepatol. 2023;29(Suppl):S302&#x2013;18.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10029955</ArticleId><ArticleId IdType="pubmed">36384146</ArticleId></ArticleIdList></Reference><Reference><Citation>Cunningham RP, Porat-Shliom N. Liver zonation: revisiting old questions with new technologies. Front Physiol. 2021;12:732929.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8458816</ArticleId><ArticleId IdType="pubmed">34566696</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernandez T, Vinuela M, Vidal C, Barrera F. Lifestyle changes in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. PLoS One. 2022;17:e0263931.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8853532</ArticleId><ArticleId IdType="pubmed">35176096</ArticleId></ArticleIdList></Reference><Reference><Citation>Koutoukidis DA, Koshiaris C, Henry JA, Noreik M, Morris E, Manoharan I, et al. The effect of the magnitude of weight loss on non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism. 2021;115:154455.</Citation><ArticleIdList><ArticleId IdType="pubmed">33259835</ArticleId></ArticleIdList></Reference><Reference><Citation>Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52:79&#x2013;104.</Citation><ArticleIdList><ArticleId IdType="pubmed">20578268</ArticleId></ArticleIdList></Reference><Reference><Citation>Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol. 2012;56:255&#x2013;66.</Citation><ArticleIdList><ArticleId IdType="pubmed">21723839</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi JH, Lee KA, Moon JH, Chon S, Kim DJ, Kim HJ, et al. 2023 Clinical practice guidelines for diabetes mellitus of the Korean Diabetes Association. Diabetes Metab J. 2023;47:575&#x2013;94.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10555541</ArticleId><ArticleId IdType="pubmed">37793979</ArticleId></ArticleIdList></Reference><Reference><Citation>Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomized trials. Diabetologia. 2012;55:885&#x2013;904.</Citation><ArticleIdList><ArticleId IdType="pubmed">22278337</ArticleId></ArticleIdList></Reference><Reference><Citation>Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern Med. 2017;177:633&#x2013;40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5470366</ArticleId><ArticleId IdType="pubmed">28241279</ArticleId></ArticleIdList></Reference><Reference><Citation>Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">26608256</ArticleId></ArticleIdList></Reference><Reference><Citation>Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384:1113&#x2013;24.</Citation><ArticleIdList><ArticleId IdType="pubmed">33185364</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartman ML, Sanyal AJ, Loomba R, Wilson JM, Nikooienejad A, Bray R, et al. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care. 2020;43:1352&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7245348</ArticleId><ArticleId IdType="pubmed">32291277</ArticleId></ArticleIdList></Reference><Reference><Citation>Akuta N, Kawamura Y, Fujiyama S, Saito S, Muraishi N, Sezaki H, et al. Favorable impact of long-term SGLT2 inhibitor for NAFLD complicated by diabetes mellitus: a 5-year follow-up study. Hepatol Commun. 2022;6:2286&#x2013;97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9426401</ArticleId><ArticleId IdType="pubmed">35581956</ArticleId></ArticleIdList></Reference><Reference><Citation>Qi X, Li J, Caussy C, Teng GJ, Loomba R. Epidemiology, screening, and co-management of type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease. Hepatology. 2024 May 8; doi: 10.1097/HEP.0000000000000913. [Epub].</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HEP.0000000000000913</ArticleId><ArticleId IdType="pubmed">38722246</ArticleId></ArticleIdList></Reference><Reference><Citation>Israelsen M, Torp N, Johansen S, Hansen CD, Hansen ED, Thorhauge K, et al. Validation of the new nomenclature of steatotic liver disease in patients with a history of excessive alcohol intake: an analysis of data from a prospective cohort study. Lancet Gastroenterol Hepatol. 2024;9:218&#x2013;28.</Citation><ArticleIdList><ArticleId IdType="pubmed">38218202</ArticleId></ArticleIdList></Reference><Reference><Citation>Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol. 2018;113:175&#x2013;94.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6524956</ArticleId><ArticleId IdType="pubmed">29336434</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Paik JM, Stepanova M, Ong J, Alqahtani S, Henry L. Clinical profiles and mortality rates are similar for metabolic dysfunction-associated steatotic liver disease and non-alcoholic fatty liver disease. J Hepatol. 2024;80:694&#x2013;701.</Citation><ArticleIdList><ArticleId IdType="pubmed">38286339</ArticleId></ArticleIdList></Reference><Reference><Citation>De A, Mehta M, Duseja A; ICOM-D Study Group. Substantial overlap between NAFLD and MASLD with comparable disease severity and non-invasive test performance: an analysis of the Indian Consortium on MASLD (ICOM-D) cohort. J Hepatol. 2024;81:e162&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">38801919</ArticleId></ArticleIdList></Reference><Reference><Citation>European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO) European Association for the Study of the Liver (EASL) EASL-EASDEASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD) J Hepatol. 2024;81:492&#x2013;542.</Citation><ArticleIdList><ArticleId IdType="pubmed">38851997</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335&#x2013;47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10026948</ArticleId><ArticleId IdType="pubmed">36626630</ArticleId></ArticleIdList></Reference><Reference><Citation>Mantovani A, Csermely A, Petracca G, Beatrice G, Corey KE, Simon TG, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6:903&#x2013;13.</Citation><ArticleIdList><ArticleId IdType="pubmed">34555346</ArticleId></ArticleIdList></Reference><Reference><Citation>Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S, Hamaguchi M, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001680.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4106719</ArticleId><ArticleId IdType="pubmed">25050550</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiao J, Ng CH, Chan KE, Fu C, Tay P, Yong JN, et al. Hepatic, extra-hepatic outcomes and causes of mortality in NAFLD: an umbrella overview of systematic review of meta-analysis. J Clin Exp Hepatol. 2023;13:656&#x2013;65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10333954</ArticleId><ArticleId IdType="pubmed">37440949</ArticleId></ArticleIdList></Reference><Reference><Citation>Simon TG, Roelstraete B, Khalili H, Hagstrom H, Ludvigsson JF. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021;70:1375&#x2013;82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8185553</ArticleId><ArticleId IdType="pubmed">33037056</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73&#x2013;84.</Citation><ArticleIdList><ArticleId IdType="pubmed">26707365</ArticleId></ArticleIdList></Reference><Reference><Citation>Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, et al. Fibrosis stage is the strongest predictor for diseasespecific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547&#x2013;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">25125077</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen VH, Le MH, Cheung RC, Nguyen MH. Differential clinical characteristics and mortality outcomes in persons with NAFLD and/or MAFLD. Clin Gastroenterol Hepatol. 2021;19:2172&#x2013;81.e6.</Citation><ArticleIdList><ArticleId IdType="pubmed">34033923</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim H, Lee CJ, Ahn SH, Lee KS, Lee BK, Baik SJ, et al. MAFLD predicts the risk of cardiovascular disease better than NAFLD in asymptomatic subjects with health check-ups. Dig Dis Sci. 2022;67:4919&#x2013;28.</Citation><ArticleIdList><ArticleId IdType="pubmed">35579799</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng YM, Wang CC, Kao JH. Metabolic associated fatty liver disease better identifying patients at risk of liver and cardiovascular complications. Hepatol Int. 2023;17:350&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">36471232</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi Z, Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology. 2016;150:1778&#x2013;85.</Citation><ArticleIdList><ArticleId IdType="pubmed">26980624</ArticleId></ArticleIdList></Reference><Reference><Citation>Iwaki M, Fujii H, Hayashi H, Toyoda H, Oeda S, Hyogo H, et al. Prognosis of biopsy-confirmed metabolic dysfunction-associated steatotic liver disease: a sub-analysis of the CLIONE study. Clin Mol Hepatol. 2024;30:225&#x2013;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11016478</ArticleId><ArticleId IdType="pubmed">38263684</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao Q, Deng Y. Comparison of mortality outcomes in individuals with MASLD and/or MAFLD. J Hepatol. 2024;80:e62&#x2013;4.</Citation><ArticleIdList><ArticleId IdType="pubmed">37574168</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan Z, Al-Busafi SA, Abdulla M, Fouad Y, Sebastiani G, Eslam M. MAFLD identifies patients with significant hepatic fibrosis better than MASLD. Hepatol Int. 2024;18:964&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">38717690</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan Z, Shiha G, Esmat G, Mendez-Sanchez N, Eslam M. MAFLD predicts cardiovascular disease risk better than MASLD. Liver Int. 2024;44:1567&#x2013;74.</Citation><ArticleIdList><ArticleId IdType="pubmed">38641962</ArticleId></ArticleIdList></Reference><Reference><Citation>Seto WK, Yuen MF. Nonalcoholic fatty liver disease in Asia: emerging perspectives. J Gastroenterol. 2017;52:164&#x2013;74.</Citation><ArticleIdList><ArticleId IdType="pubmed">27637587</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011;54:1082&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4197002</ArticleId><ArticleId IdType="pubmed">21618575</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Addendum. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of care in diabetes-2023. Diabetes Care 2023;46(Suppl 1):S49-S67. Diabetes Care. 2023;46:1718&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10552195</ArticleId><ArticleId IdType="pubmed">37356015</ArticleId></ArticleIdList></Reference><Reference><Citation>Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection: comparison with liver biopsy and fibrotest. Hepatology. 2007;46:32&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">17567829</ArticleId></ArticleIdList></Reference><Reference><Citation>Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846&#x2013;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">17393509</ArticleId></ArticleIdList></Reference><Reference><Citation>Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pubmed">12883497</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39610015</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1524-475X</ISSN><JournalIssue CitedMedium="Internet"><Volume>33</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Season>Jan-Feb</Season></PubDate></JournalIssue><Title>Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society</Title><ISOAbbreviation>Wound Repair Regen</ISOAbbreviation></Journal><ArticleTitle>Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing.</ArticleTitle><Pagination><StartPage>e13239</StartPage><MedlinePgn>e13239</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e13239</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1111/wrr.13239</ELocationID><Abstract><AbstractText>Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.</AbstractText><CopyrightInformation>&#xa9; 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mgwenya</LastName><ForeName>Tintswalo N</ForeName><Initials>TN</Initials><AffiliationInfo><Affiliation>Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abrahamse</LastName><ForeName>Heidi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Houreld</LastName><ForeName>Nicolette N</ForeName><Initials>NN</Initials><Identifier Source="ORCID">0000-0002-1515-8260</Identifier><AffiliationInfo><Affiliation>Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, Gauteng, South Africa.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>HLHA24X task ALC-R007</GrantID><Agency>African Laser Centre (ALC)</Agency><Country/></Grant><Grant><Agency>University of Johannesburg (URC)</Agency><Country/></Grant><Grant><GrantID>1293270</GrantID><Agency>National Research Foundation (NRF) of South Africa Competitive Programme for Rated Researchers</Agency><Country/></Grant><Grant><GrantID>98337</GrantID><Agency>South African Research Chairs Initiative of the Department of Science and Technology (DST) and National Research Foundation (NRF) of South Africa</Agency><Country/></Grant><Grant><Agency>Council for Scientific and Industrial Research (CSIR)-National Laser Centre (NLC), Laser Rental Pool Programme</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Wound Repair Regen</MedlineTA><NlmUniqueID>9310939</NlmUniqueID><ISSNLinking>1067-1927</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D014945" MajorTopicYN="Y">Wound Healing</DescriptorName><QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D028022" MajorTopicYN="Y">Low-Level Light Therapy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017719" MajorTopicYN="N">Diabetic Foot</DescriptorName><QualifierName UI="Q000532" MajorTopicYN="N">radiotherapy</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">inflammation</Keyword><Keyword MajorTopicYN="N">laser therapy</Keyword><Keyword MajorTopicYN="N">photobiomodulation</Keyword><Keyword MajorTopicYN="N">wound healing</Keyword></KeywordList><CoiStatement>All authors report no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>8</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39610015</ArticleId><ArticleId IdType="pmc">PMC11628774</ArticleId><ArticleId IdType="doi">10.1111/wrr.13239</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>
+International Diabetes Federation
+. IDF Diabetes Atlas. 10th ed.
+International Diabetes Federation;  Accessed March 01, 2021. https://diabetesatlas.org/atlas/tenth-edition/
+</Citation></Reference><Reference><Citation>
+World Health Organization
+. 
+Diabetes. WHO. Accessed June 28, 2024. https://www.who.int/news-room/fact-sheets/detail/diabetes
+</Citation></Reference><Reference><Citation>Dilworth L, Facey A, Omoruyi F. Diabetes mellitus and its metabolic complications: the role of adipose tissues. Int J Mol Sci. 2021;22:7644.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8305176</ArticleId><ArticleId IdType="pubmed">34299261</ArticleId></ArticleIdList></Reference><Reference><Citation>Haisen L, Hao Z, Ting G, Zhifeng W, Chao W. Mesenchymal stem cell&#x2010;based therapy for diabetes mellitus: enhancement strategies and future perspectives. Stem Cell Rev Rep. 2021;17:1&#x2010;18.</Citation><ArticleIdList><ArticleId IdType="pubmed">33675006</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas NJ, Lynam AL, Hill AV, et al. Type 1 diabetes defined by severe insulin deficiency occurs after 30&#x2009;years of age and is commonly treated as type 2 diabetes. Diabetologia. 2019;62(7):1167&#x2010;1172.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6559997</ArticleId><ArticleId IdType="pubmed">30969375</ArticleId></ArticleIdList></Reference><Reference><Citation>Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus&#x2010;atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21(5):1835.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7084712</ArticleId><ArticleId IdType="pubmed">32155866</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic&#x2010;induced alterations in hepatic glucose and lipid metabolism: the role of type 1 and type 2 diabetes mellitus. Mol Med Rep. 2020;22(2):603&#x2010;611.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7339764</ArticleId><ArticleId IdType="pubmed">32468027</ArticleId></ArticleIdList></Reference><Reference><Citation>Dhillon KK, Gupta S. Biochemistry, Ketogenesis. Updated February 6, 2023. StatPearls [Internet]. StatPearls Publishing; 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">29630231</ArticleId></ArticleIdList></Reference><Reference><Citation>Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the &#x3b2;&#x2010;cell (do not blame the immune system?). Nat Rev Endocrinol. 2021;17(3):150&#x2010;161.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7722981</ArticleId><ArticleId IdType="pubmed">33293704</ArticleId></ArticleIdList></Reference><Reference><Citation>Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev. 2019;16(5):442&#x2010;449.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7475801</ArticleId><ArticleId IdType="pubmed">31657690</ArticleId></ArticleIdList></Reference><Reference><Citation>Galicia&#x2010;Garcia U, Benito&#x2010;Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):1&#x2010;34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7503727</ArticleId><ArticleId IdType="pubmed">32872570</ArticleId></ArticleIdList></Reference><Reference><Citation>Dludla PV, Mabhida SE, Ziqubu K, et al. Pancreatic &#x3b2;&#x2010;cell dysfunction in type 2 diabetes: implications of inflammation and oxidative stress. World J Diabetes. 2023;14(3):130&#x2010;146.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10075035</ArticleId><ArticleId IdType="pubmed">37035220</ArticleId></ArticleIdList></Reference><Reference><Citation>Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:1&#x2010;12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3608918</ArticleId><ArticleId IdType="pubmed">23542897</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramsey DJ, Kwan JT, Sharma A. Keeping an eye on the diabetic foot: the connection between diabetic eye disease and wound healing in the lower extremity. World J Diabetes. 2022;13(12):1035&#x2010;1048.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9791566</ArticleId><ArticleId IdType="pubmed">36578874</ArticleId></ArticleIdList></Reference><Reference><Citation>Oliver TI, Mutluoglu M. Diabetic Foot Ulcer Updated August 8, 2023. StatPearls [Internet]. StatPearls Publishing; 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">30726013</ArticleId></ArticleIdList></Reference><Reference><Citation>McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care. 2023;46(1):209&#x2010;211.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9797649</ArticleId><ArticleId IdType="pubmed">36548709</ArticleId></ArticleIdList></Reference><Reference><Citation>Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015;4(9):560&#x2010;582.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4528992</ArticleId><ArticleId IdType="pubmed">26339534</ArticleId></ArticleIdList></Reference><Reference><Citation>Yazdanpanah L. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37&#x2010;53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4317316</ArticleId><ArticleId IdType="pubmed">25685277</ArticleId></ArticleIdList></Reference><Reference><Citation>Dasari N, Jiang A, Skochdopole A, et al. Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg. 2021;35(3):153&#x2010;158.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8432997</ArticleId><ArticleId IdType="pubmed">34526862</ArticleId></ArticleIdList></Reference><Reference><Citation>Boulton AJ, Armstrong DG, Hardman MJ, et al. Diagnosis and management of diabetic foot infections. Vol 2020. American Diabetes Association; 2020.</Citation><ArticleIdList><ArticleId IdType="pubmed">32105420</ArticleId></ArticleIdList></Reference><Reference><Citation>Brownrigg JRW, Apelqvist J, Bakker K, Schaper NC, Hinchliffe RJ. Evidence&#x2010;based management of PAD &amp; the diabetic foot. Eur J Vasc Endovasc Surg. 2013;45(6):673&#x2010;681.</Citation><ArticleIdList><ArticleId IdType="pubmed">23540807</ArticleId></ArticleIdList></Reference><Reference><Citation>Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1&#x2013;2):81&#x2010;94.</Citation><ArticleIdList><ArticleId IdType="pubmed">27974711</ArticleId></ArticleIdList></Reference><Reference><Citation>Nouira S, Ach T, Bellazreg F, Ben AA. Predictive factors for lower limb amputation in type 2 diabetics. Cureus. 2023;15(6):e39987.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10321308</ArticleId><ArticleId IdType="pubmed">37416023</ArticleId></ArticleIdList></Reference><Reference><Citation>Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):1&#x2010;30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7463929</ArticleId><ArticleId IdType="pubmed">32764269</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalez ACDO, Costa TF, Andrade ZDA, Medrado ARAP. Wound healing &#x2013; a literature review. An Bras Dermatol. 2016;91(5):614&#x2010;620.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5087220</ArticleId><ArticleId IdType="pubmed">27828635</ArticleId></ArticleIdList></Reference><Reference><Citation>Schilrreff P, Alexiev U. Chronic inflammation in non&#x2010;healing skin wounds and promising natural bioactive compounds treatment. Int J Mol Sci. 2022;23(9):4928.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9104327</ArticleId><ArticleId IdType="pubmed">35563319</ArticleId></ArticleIdList></Reference><Reference><Citation>Serra MB, Barroso WA, da Silva NN, et al. From inflammation to current and alternative therapies involved in wound healing. Int J Inflam. 2017;2017:3406215.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5547704</ArticleId><ArticleId IdType="pubmed">28811953</ArticleId></ArticleIdList></Reference><Reference><Citation>Eming SA, Martin P, Tomic&#x2010;Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4973620</ArticleId><ArticleId IdType="pubmed">25473038</ArticleId></ArticleIdList></Reference><Reference><Citation>Periayah MH, Halim AS, Zaharil A, Saad M. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):319&#x2010;327.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5767294</ArticleId><ArticleId IdType="pubmed">29340130</ArticleId></ArticleIdList></Reference><Reference><Citation>Soliman AM, Barreda DR. Acute inflammation in tissue healing. Int J Mol Sci. 2022;24(1):641.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9820461</ArticleId><ArticleId IdType="pubmed">36614083</ArticleId></ArticleIdList></Reference><Reference><Citation>Opneja A, Kapoor S, Stavrou EX. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb Res. 2019;179:56&#x2010;63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6556139</ArticleId><ArticleId IdType="pubmed">31078121</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665&#x2010;706.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6442927</ArticleId><ArticleId IdType="pubmed">30475656</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. StatPearls [Internet]. StatPearls Publishing; 2023:2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">29262065</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7536089</ArticleId><ArticleId IdType="pubmed">32993416</ArticleId></ArticleIdList></Reference><Reference><Citation>Benedick A, Rivera T, Vallier HA. Effect of tourniquet use during ankle fracture fixation on wound healing and infectious complications. Foot Ankle Int. 2020;41(6):714&#x2010;720.</Citation><ArticleIdList><ArticleId IdType="pubmed">32116012</ArticleId></ArticleIdList></Reference><Reference><Citation>Land&#xe9;n NX, Li D, St&#xe5;hle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861&#x2010;3885.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5021733</ArticleId><ArticleId IdType="pubmed">27180275</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmed OM, Mohamed T, Moustafa H, Hamdy H, Ahmed RR, Aboud E. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmacother. 2018;101:58&#x2010;73.</Citation><ArticleIdList><ArticleId IdType="pubmed">29477473</ArticleId></ArticleIdList></Reference><Reference><Citation>Velnar T, Gradisnik L. Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Med Arch. 2018;72(6):444&#x2010;448.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6340622</ArticleId><ArticleId IdType="pubmed">30814778</ArticleId></ArticleIdList></Reference><Reference><Citation>Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209&#x2010;231.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6032665</ArticleId><ArticleId IdType="pubmed">29984112</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh S, Young A, McNaught CE. The physiology of wound healing. Ann Emerg Med. 2017;35(9):473&#x2010;477.</Citation></Reference><Reference><Citation>Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367&#x2010;2375.</Citation><ArticleIdList><ArticleId IdType="pubmed">28614678</ArticleId></ArticleIdList></Reference><Reference><Citation>Chakraborty S, Sampath D, Yu Lin MO, et al. Agrin&#x2010;matrix metalloproteinase&#x2010;12 axis confers a mechanically competent microenvironment in skin wound healing. Nat Commun. 2021;12(1):6349.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8566503</ArticleId><ArticleId IdType="pubmed">34732729</ArticleId></ArticleIdList></Reference><Reference><Citation>Tyavambiza C, Meyer M, Meyer S. Cellular and molecular events of wound healing and the potential of silver based Nanoformulations as wound healing agents. Bioengineering. 2022;9(11):712.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9687874</ArticleId><ArticleId IdType="pubmed">36421113</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8(9):5671&#x2010;5701.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5512621</ArticleId><ArticleId IdType="pubmed">28793529</ArticleId></ArticleIdList></Reference><Reference><Citation>Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35&#x2010;43.</Citation><ArticleIdList><ArticleId IdType="pubmed">22797712</ArticleId></ArticleIdList></Reference><Reference><Citation>Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci. 2017;18(7):1&#x2010;10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5536033</ArticleId><ArticleId IdType="pubmed">28714933</ArticleId></ArticleIdList></Reference><Reference><Citation>Salazar JJ, Ennis WJ, Koh TJ. Diabetes medications: impact on inflammation and wound healing. J Diabetes Complications. 2016;30(4):746&#x2010;752.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4834268</ArticleId><ArticleId IdType="pubmed">26796432</ArticleId></ArticleIdList></Reference><Reference><Citation>Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020;13(4):60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7243111</ArticleId><ArticleId IdType="pubmed">32244718</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajchgot T, Thomas SC, Wang JC, et al. Neurons and microglia; a sickly&#x2010;sweet duo in diabetic pain neuropathy. Front Neurosci. 2019;13:25.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6365454</ArticleId><ArticleId IdType="pubmed">30766472</ArticleId></ArticleIdList></Reference><Reference><Citation>Chaudhuri J, Bains Y, Guha S, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337&#x2010;352.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6355252</ArticleId><ArticleId IdType="pubmed">30184484</ArticleId></ArticleIdList></Reference><Reference><Citation>Nandi SK, Nahomi RB, Rankenberg J, Glomb MA, Nagaraj RH. Glycation&#x2010;mediated inter&#x2010;protein cross&#x2010;linking is promoted by chaperone&#x2010;client complexes of &#x3b1;&#x2010;crystallin: implications for lens aging and presbyopia. J Biol Chem. 2020;295(17):5701&#x2010;5716.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7186181</ArticleId><ArticleId IdType="pubmed">32184356</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114&#x2010;134.</Citation><ArticleIdList><ArticleId IdType="pubmed">35398495</ArticleId></ArticleIdList></Reference><Reference><Citation>Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7085395</ArticleId><ArticleId IdType="pubmed">32215179</ArticleId></ArticleIdList></Reference><Reference><Citation>Galiero R, Caturano A, Vetrano E, et al. Peripheral neuropathy in diabetes mellitus: pathogenetic mechanisms and diagnostic options. Int J Mol Sci. 2023;24(4):3554.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9967934</ArticleId><ArticleId IdType="pubmed">36834971</ArticleId></ArticleIdList></Reference><Reference><Citation>Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress&#x2010;induced disorders and therapeutic exploration. Front Pharmacol. 2023;14:1269581.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10622810</ArticleId><ArticleId IdType="pubmed">37927596</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramanlal R, Gupta V. Physiology, Vasodilation. Updated 2003. StatPearls [Internet]. StatPearls Publishing; 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">32491494</ArticleId></ArticleIdList></Reference><Reference><Citation>Sahakyan G, Vejux A, Sahakyan N. The role of oxidative stress&#x2010;mediated inflammation in the development of T2DM&#x2010;induced diabetic nephropathy: possible preventive action of tannins and other oligomeric polyphenols. Molecules. 2022;27(24):9035.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9786776</ArticleId><ArticleId IdType="pubmed">36558167</ArticleId></ArticleIdList></Reference><Reference><Citation>Lingappan K. NF&#x2010;&#x3ba;B in oxidative stress. Curr Opin Toxicol. 2018;7:81&#x2010;86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5978768</ArticleId><ArticleId IdType="pubmed">29862377</ArticleId></ArticleIdList></Reference><Reference><Citation>Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol. 2019;8(1):72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6549308</ArticleId><ArticleId IdType="pubmed">31164120</ArticleId></ArticleIdList></Reference><Reference><Citation>Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255&#x2010;2273.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7727315</ArticleId><ArticleId IdType="pubmed">33264547</ArticleId></ArticleIdList></Reference><Reference><Citation>Ren X, Ren L, Wei Q, Shao H, Chen L, Liu N. Advanced glycation end&#x2010;products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017;16(1):52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5397770</ArticleId><ArticleId IdType="pubmed">28427390</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu T, Zhang L, Joo D, Sun SC. NF&#x2010;&#x3ba;B signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5661633</ArticleId><ArticleId IdType="pubmed">29158945</ArticleId></ArticleIdList></Reference><Reference><Citation>Khalid KA, Nawi AFM, Zulkifli N, Barkat MA, Hadi H. Aging and wound healing of the skin: a review of clinical and pathophysiological hallmarks. Life. 2022;12(12):2142.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9784880</ArticleId><ArticleId IdType="pubmed">36556508</ArticleId></ArticleIdList></Reference><Reference><Citation>Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A role for advanced glycation end products in molecular ageing. Int J Mol Sci. 2023;24(12):9881.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10298716</ArticleId><ArticleId IdType="pubmed">37373042</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress&#x2010;induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol. 2023;14:1112363.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9941188</ArticleId><ArticleId IdType="pubmed">36824356</ArticleId></ArticleIdList></Reference><Reference><Citation>Chung HY, Kim DH, Lee EK, et al. Redefining chronic inflammation in aging and age&#x2010;related diseases: proposal of the senoinflammation concept. Aging Dis. 2019;10(2):367&#x2010;382.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6457053</ArticleId><ArticleId IdType="pubmed">31011483</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang S, Wang J, Brand DD, Zheng SG. Role of TNF&#x2010;TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;9:9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5916970</ArticleId><ArticleId IdType="pubmed">29725328</ArticleId></ArticleIdList></Reference><Reference><Citation>Lenin R, Nagy PG, Gentry J, Gangaraju R. Featured article: deterioration of visual function mediated by senescence&#x2010;associated endoplasmic reticulum stress in inflammatory tie2&#x2010;TNF mice. Exp Biol Med. 2018;243(12):976&#x2010;984.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6180406</ArticleId><ArticleId IdType="pubmed">30114984</ArticleId></ArticleIdList></Reference><Reference><Citation>Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor&#x2010;alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105&#x2010;110.</Citation><ArticleIdList><ArticleId IdType="pubmed">28569437</ArticleId></ArticleIdList></Reference><Reference><Citation>Malik S, Suchal K, Khan SI, et al. Apigenin ameliorates streptozotocin&#x2010;induced diabetic nephropathy in rats. Am J Physiol Renal Physiol. 2017;313(2):F414&#x2010;F422.</Citation><ArticleIdList><ArticleId IdType="pubmed">28566504</ArticleId></ArticleIdList></Reference><Reference><Citation>Gabay C, Lamacchia C, Palmer G. IL&#x2010;1 pathways in inflammation and human diseases. Nat Rev Rheumatol. 2010;6(4):232&#x2010;241.</Citation><ArticleIdList><ArticleId IdType="pubmed">20177398</ArticleId></ArticleIdList></Reference><Reference><Citation>Banerjee M, Saxena M. Interleukin&#x2010;1 (IL&#x2010;1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15&#x2013;16):1163&#x2010;1170.</Citation><ArticleIdList><ArticleId IdType="pubmed">22521751</ArticleId></ArticleIdList></Reference><Reference><Citation>Aravani D, Foote K, Figg N, et al. Cytokine regulation of apoptosis&#x2010;induced apoptosis and apoptosis&#x2010;induced cell proliferation in vascular smooth muscle cells. Apoptosis. 2020;25(9&#x2013;10):648&#x2010;662.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7527356</ArticleId><ArticleId IdType="pubmed">32627119</ArticleId></ArticleIdList></Reference><Reference><Citation>Cimini FA, Barchetta I, Porzia A, et al. Circulating IL&#x2010;8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile. Acta Diabetol. 2017;54(10):961&#x2010;967.</Citation><ArticleIdList><ArticleId IdType="pubmed">28836077</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhuang Y, Alexander PB, Wang XF. TGF&#x2010;&#x3b2; family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5378054</ArticleId><ArticleId IdType="pubmed">27920038</ArticleId></ArticleIdList></Reference><Reference><Citation>Gjini E, Paup&#xe9;rio FFS, Ganusov VV. Treatment timing shifts the benefits of short and long antibiotic treatment over infection. Evol Med Public Health. 2020;2020(1):249&#x2010;263.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7750949</ArticleId><ArticleId IdType="pubmed">33376597</ArticleId></ArticleIdList></Reference><Reference><Citation>Rezaei M, Valiee S, Tahan M, Ebtekar F, Ghanei GR. Barriers of medication adherence in patients with type&#x2010;2 diabetes: a pilot qualitative study. Diabetes Metab Syndr Obes. 2019;12:589&#x2010;599.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6507070</ArticleId><ArticleId IdType="pubmed">31118722</ArticleId></ArticleIdList></Reference><Reference><Citation>Gunton JE. Hypoxia&#x2010;inducible factors and diabetes. J Clin Invest. 2020;130(10):5063&#x2010;5073.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7524477</ArticleId><ArticleId IdType="pubmed">32809974</ArticleId></ArticleIdList></Reference><Reference><Citation>Suryavanshi SV, Kulkarni YA. NF&#x2010;&#x3ba;&#x3b2;: a potential target in the management of vascular complications of diabetes. Front Pharmacol. 2017;8:1&#x2010;12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5681994</ArticleId><ArticleId IdType="pubmed">29163178</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes &#x2013; an autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta &#x2013; Mol Basis Dis. 2018;1864(11):3805&#x2010;3823.</Citation><ArticleIdList><ArticleId IdType="pubmed">30251697</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin&#x2010;1&#x3b2; induces a healing&#x2010;associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579&#x2010;2587.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3712034</ArticleId><ArticleId IdType="pubmed">23493576</ArticleId></ArticleIdList></Reference><Reference><Citation>Alzamil H. Elevated serum TNF&#x2010;&#x3b1; is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J Obes. 2020;2020:5076858. doi:10.1155/2020/5076858</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2020/5076858</ArticleId><ArticleId IdType="pmc">PMC7013317</ArticleId><ArticleId IdType="pubmed">32089876</ArticleId></ArticleIdList></Reference><Reference><Citation>Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5135788</ArticleId><ArticleId IdType="pubmed">27912756</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14(1):50&#x2010;59.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6523054</ArticleId><ArticleId IdType="pubmed">31131037</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF&#x2010;&#x3ba;B signaling in inflammation and cancer. MedComm. 2021;2(4):618&#x2010;653.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8706767</ArticleId><ArticleId IdType="pubmed">34977871</ArticleId></ArticleIdList></Reference><Reference><Citation>Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6929211</ArticleId><ArticleId IdType="pubmed">31795299</ArticleId></ArticleIdList></Reference><Reference><Citation>Redondo S, Ruiz E, Gordillo&#x2010;Moscoso A, et al. Overproduction of cyclo&#x2010;oxygenase&#x2010;2 (COX&#x2010;2) is involved in the resistance to apoptosis in vascular smooth muscle cells from diabetic patients: a link between inflammation and apoptosis. Diabetologia. 2011;54(1):190&#x2010;199.</Citation><ArticleIdList><ArticleId IdType="pubmed">20957341</ArticleId></ArticleIdList></Reference><Reference><Citation>Kulesza A, Paczek L, Burdzinska A. The role of COX&#x2010;2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells. Biomedicine. 2023;11(2):445. doi:10.3390/biomedicines11020445</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biomedicines11020445</ArticleId><ArticleId IdType="pmc">PMC9952951</ArticleId><ArticleId IdType="pubmed">36830980</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurauti MA, Costa&#x2010;J&#xfa;nior JM, Ferreira SM, et al. Interleukin&#x2010;6 increases the expression and activity of insulin&#x2010;degrading enzyme. Sci Rep. 2017;7:46750.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5399448</ArticleId><ArticleId IdType="pubmed">28429777</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee JH, Chiang MH, Chen PH, Ho ML, Lee HE, Wang YH. Anti&#x2010;inflammatory effects of low&#x2010;level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci. 2018;33(3):469&#x2010;477.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5862948</ArticleId><ArticleId IdType="pubmed">29116611</ArticleId></ArticleIdList></Reference><Reference><Citation>Malenica M, &#x160;ilar M, Duji&#x107; T, et al. Zna&#x10d;aj inflamatornih markera i IL&#x2010;6 u dijagnozi i pra&#x107;enju pacijenata s dijabetes melitusom tipa 2. Med Glas. 2017;14(2):169&#x2010;175.</Citation><ArticleIdList><ArticleId IdType="pubmed">28786970</ArticleId></ArticleIdList></Reference><Reference><Citation>Dinh T, Tecilazich F, Kafanas A, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937&#x2010;2947.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3478547</ArticleId><ArticleId IdType="pubmed">22688339</ArticleId></ArticleIdList></Reference><Reference><Citation>El Ayadi A, Jay JW, Prasai A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci. 2020;21(3):1105.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7037118</ArticleId><ArticleId IdType="pubmed">32046094</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment trategies to pace wound healing. Biomed Pharmacother. 2019;112:108615.</Citation><ArticleIdList><ArticleId IdType="pubmed">30784919</ArticleId></ArticleIdList></Reference><Reference><Citation>Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018;1411(1):153&#x2010;165.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5793889</ArticleId><ArticleId IdType="pubmed">29377202</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang C, Guo M, Zhang N, Wang G. Effectiveness of honey dressing in the treatment of diabetic foot ulcers: a systematic review and meta&#x2010;analysis. Compl Ther Clin Pract. 2019;34:123&#x2010;131.</Citation><ArticleIdList><ArticleId IdType="pubmed">30712715</ArticleId></ArticleIdList></Reference><Reference><Citation>Manna B, Nahirniak P, Morrison CA. Wound Debridement. Updated April 19, 2023. StatPearls [Internet]. StatPearls Publishing; 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">29939659</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramirez&#x2010;Acu&#xf1;a JM, Cardenas&#x2010;Cadena SA, Marquez&#x2010;Salas PA, et al. Diabetic foot ulcers: current advances in antimicrobial therapies and emerging treatments. Antibiotics. 2019;24:193.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6963879</ArticleId><ArticleId IdType="pubmed">31652990</ArticleId></ArticleIdList></Reference><Reference><Citation>Falcone M, De Angelis B, Pea F, et al. Challenges in the management of chronic wound infections. J Glob Antimicrob Resist. 2021;26:140&#x2010;147.</Citation><ArticleIdList><ArticleId IdType="pubmed">34144200</ArticleId></ArticleIdList></Reference><Reference><Citation>Kvarnstr&#xf6;m K, Westerholm A, Airaksinen M, Liira H. Factors contributing to medication adherence in patients with a chronic condition: a scoping review of qualitative research. Pharmaceutics. 2021;13(7):1100.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8309154</ArticleId><ArticleId IdType="pubmed">34371791</ArticleId></ArticleIdList></Reference><Reference><Citation>Dixon D, Edmonds M. Managing diabetic foot ulcers: pharmacotherapy for wound healing. Drugs. 2021;81(1):29&#x2010;56.</Citation><ArticleIdList><ArticleId IdType="pubmed">33382445</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayd&#x131;n E, Ertu&#x11f;rul MB. The role of rehabilitation in the management of diabetic foot wounds. Turk J Phys Med Rehabil. 2021;67(4):389&#x2010;398.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8790253</ArticleId><ArticleId IdType="pubmed">35141478</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu L, Wen B, Xu Z, Lin K. Research progress on negative pressure wound therapy with instillation in the treatment of orthopaedic wounds. Int Wound J. 2022;19(6):1449&#x2010;1455.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9493210</ArticleId><ArticleId IdType="pubmed">35029043</ArticleId></ArticleIdList></Reference><Reference><Citation>Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells. 2022;11(15):2439.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9367945</ArticleId><ArticleId IdType="pubmed">35954282</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith RA. Nanotechnology in the future treatment of diabetic wounds. Rev Diabet Stud. 2020;16(1):1&#x2010;12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9380090</ArticleId><ArticleId IdType="pubmed">32876648</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J, Zhu H, Zhu Y, et al. Injectable self&#x2010;healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration. Bioact Mater. 2021;9:29&#x2010;43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8586437</ArticleId><ArticleId IdType="pubmed">34820553</ArticleId></ArticleIdList></Reference><Reference><Citation>Sajid MI, Moazzam M, Kato S, Cho KY, Tiwari RK. Overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals. 2020;13(10):294.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7600125</ArticleId><ArticleId IdType="pubmed">33036435</ArticleId></ArticleIdList></Reference><Reference><Citation>Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med. 2018;12(1):e296&#x2010;e312.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5813216</ArticleId><ArticleId IdType="pubmed">28482114</ArticleId></ArticleIdList></Reference><Reference><Citation>Lux CT, Scharenberg AM. Therapeutic gene editing safety and specificity. Hematol Oncol Clin North Am. 2017;31(5):787&#x2010;795.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5653273</ArticleId><ArticleId IdType="pubmed">28895847</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh SK, Dwivedi SD, Yadav K, et al. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicine. 2023;11(2):613.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9952895</ArticleId><ArticleId IdType="pubmed">36831151</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu ZH, Ma MH, Li YQ, Li LL, Liu GH. Progress and expectation of stem cell therapy for diabetic wound healing. World J Clin Cases. 2023;11(3):506&#x2010;513.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9923865</ArticleId><ArticleId IdType="pubmed">36793646</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsieh MW, Wang WT, Lin CY, et al. Stem cell&#x2010;based therapeutic strategies in diabetic wound healing. Biomedicine. 2022;10(9):2085.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9495374</ArticleId><ArticleId IdType="pubmed">36140185</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebrahimpour&#x2010;Malekshah R, Amini A, Zare F, et al. Combined therapy of photobiomodulation and adipose&#x2010;derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care. 2020;8(1):e001033.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7206914</ArticleId><ArticleId IdType="pubmed">32098898</ArticleId></ArticleIdList></Reference><Reference><Citation>Heiskanen V, Hamblin MR. Photobiomodulation: lasers: vs. light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003&#x2010;1017.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6091542</ArticleId><ArticleId IdType="pubmed">30044464</ArticleId></ArticleIdList></Reference><Reference><Citation>Prado TP, Zanchetta FC, Barbieri B. Photobiomodulation with blue light on wound healing: a scoping review. Life. 2023;13(2):575.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9959862</ArticleId><ArticleId IdType="pubmed">36836932</ArticleId></ArticleIdList></Reference><Reference><Citation>Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice [in German]. Radiobiol Radiother. 1968;9(5):621&#x2010;626.</Citation><ArticleIdList><ArticleId IdType="pubmed">5732466</ArticleId></ArticleIdList></Reference><Reference><Citation>Grzybowski A, Pietrzak K. From patient to discoverer&#x2014;Niels Ryberg Finsen (1860&#x2010;1904)&#x2014;the founder of phototherapy in dermatology. Clin Dermatol. 2012;30(4):451&#x2010;455.</Citation><ArticleIdList><ArticleId IdType="pubmed">22855977</ArticleId></ArticleIdList></Reference><Reference><Citation>Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493&#x2010;494.</Citation></Reference><Reference><Citation>Steven J. Optical Penetration Depth of Light into Skin Tissue. Oregon Health &amp; Science University (OHSU); 2008.</Citation></Reference><Reference><Citation>Dungel P, Sutalo S, Slezak C, et al. Wavelength&#x2010;dependent effects of photobiomodulation for wound care in diabetic wounds. Int J Mol Sci. 2023;24(6):5895.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10054229</ArticleId><ArticleId IdType="pubmed">36982967</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang H, Salo DC, Kim DM, Komarov S, Tai YC, Berezin MY. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. J Biomed Opt. 2016;21(12):126006.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5147011</ArticleId><ArticleId IdType="pubmed">27930773</ArticleId></ArticleIdList></Reference><Reference><Citation>Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt. 2018;23(12):1&#x2010;17. doi:10.1117/1.JBO.23.12.120901</Citation><ArticleIdList><ArticleId IdType="doi">10.1117/1.JBO.23.12.120901</ArticleId><ArticleId IdType="pmc">PMC8355782</ArticleId><ArticleId IdType="pubmed">30550048</ArticleId></ArticleIdList></Reference><Reference><Citation>Keshri GK, Gupta A, Yadav A, Sharma SK, Singh SB. Photobiomodulation with pulsed and continuous wave near&#x2010;infrared laser (810&#x2009;nm, Al&#x2010;Ga&#x2010;As) augments dermal wound healing in immunosuppressed rats. PLoS One. 2016;11(11):1&#x2010;21.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5115773</ArticleId><ArticleId IdType="pubmed">27861614</ArticleId></ArticleIdList></Reference><Reference><Citation>Houreld NN, Masha RT, Abrahamse H. Low&#x2010;intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med. 2012;44(5):429&#x2010;434.</Citation><ArticleIdList><ArticleId IdType="pubmed">22488690</ArticleId></ArticleIdList></Reference><Reference><Citation>Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94(2):199&#x2010;212.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5844808</ArticleId><ArticleId IdType="pubmed">29164625</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajendran NK, George BP, Chandran R, Tynga IM, Houreld N, Abrahamse H. The influence of light on reactive oxygen species and NF&#x2010;&#x43a;B in disease progression. Antioxidants. 2019;8(12):640.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6943569</ArticleId><ArticleId IdType="pubmed">31842333</ArticleId></ArticleIdList></Reference><Reference><Citation>Mehrvar S, Mostaghimi S, Foomani FH, et al. 670&#x2009;nm Photobiomodulation improves the mitochondrial redox state of diabetic wounds. Quant Imaging Med Surg. 2021;11(1):107&#x2010;118.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7719930</ArticleId><ArticleId IdType="pubmed">33392015</ArticleId></ArticleIdList></Reference><Reference><Citation>Meireles GCS, Santos JN, Chagas PO, Moura AP, Pinheiro ALB. Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third&#x2010;degree burns in diabetic rats. Photomed Laser Surg. 2008;26(1):47&#x2010;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">18248161</ArticleId></ArticleIdList></Reference><Reference><Citation>Houreld N, Sekhejane PR, Abrahamse H. Low intensity laser irradiation stimulates healing in stressed models. Proc 8th Int Congr World Assoc Laser Ther WALT 2010. 2010;1(1):23&#x2010;26.</Citation></Reference><Reference><Citation>Ayuk SM, Houreld NN, Abrahamse H. Collagen production in diabetic wounded fibroblasts in response to low&#x2010;intensity laser irradiation at 660&#x2009;nm. Diabetes Technol Ther. 2012;14(12):1110&#x2010;1117.</Citation><ArticleIdList><ArticleId IdType="pubmed">23057714</ArticleId></ArticleIdList></Reference><Reference><Citation>de Loura Santana C, De F&#xe1;tima Teixeira Silva D, Deana AM, et al. Tissue responses to postoperative laser therapy in diabetic rats submitted to excisional wounds. PLoS One. 2015;10(4):e0122042.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4409316</ArticleId><ArticleId IdType="pubmed">25909480</ArticleId></ArticleIdList></Reference><Reference><Citation>Akyol U, G&#xfc;ng&#xf6;rm&#xfc;&#x15f; M. The effect of low&#x2010;level laser therapy on healing of skin incisions made using a diode laser in diabetic rats. Photomed Laser Surg. 2010;28(1):51&#x2010;55.</Citation><ArticleIdList><ArticleId IdType="pubmed">19754259</ArticleId></ArticleIdList></Reference><Reference><Citation>Asghari M, Kanonisabet A, Safakhah M, et al. The effect of combined photobiomodulation and metformin on open skin wound healing in a non&#x2010;genetic model of type II diabetes. J Photochem Photobiol B Biol. 2017;169:63&#x2010;69.</Citation><ArticleIdList><ArticleId IdType="pubmed">28282557</ArticleId></ArticleIdList></Reference><Reference><Citation>Bagheri M, Mostafavinia A, Abdollahifar MA, et al. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomed Pharmacother. 2020;123:109776.</Citation><ArticleIdList><ArticleId IdType="pubmed">31911295</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruh AC, Frigo L, Cavalcanti MFXB, et al. Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers Med Sci. 2018;33(1):165&#x2010;171.</Citation><ArticleIdList><ArticleId IdType="pubmed">29181642</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee KTD, Chiang MH, Chen PH, et al. The effect of low&#x2010;level laser irradiation on hyperglycemia&#x2010;induced inflammation in human gingival fibroblasts. Lasers Med Sci. 2019;34(5):913&#x2010;920.</Citation><ArticleIdList><ArticleId IdType="pubmed">30456536</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaikh&#x2010;Kader A, Houreld NN, Rajendran NK, Abrahamse H. Levels of cyclooxygenase 2, interleukin&#x2010;6, and tumour necrosis factor&#x2010;&#x3b1; in fibroblast cell culture models after photobiomodulation at 660&#x2009;nm. Oxid Med Cell Longev. 2021;2021:6667812.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7896847</ArticleId><ArticleId IdType="pubmed">33628374</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebrahimpour&#x2010;Malekshah R, Amini A, Mostafavinia A, et al. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose&#x2010;derived stem cells and photobiomodulation. Arch Dermatol Res. 2023;315:0123456789.</Citation><ArticleIdList><ArticleId IdType="pubmed">36808225</ArticleId></ArticleIdList></Reference><Reference><Citation>Moradi A, Zare F, Mostafavinia A, et al. Photobiomodulation plus adipose&#x2010;derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Sci Rep. 2020;10(1):1&#x2010;15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6985227</ArticleId><ArticleId IdType="pubmed">31988386</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen ACH, Arany PR, Huang YY, et al. Low&#x2010;level laser therapy activates NF&#x2010;kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6(7):1&#x2010;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3141042</ArticleId><ArticleId IdType="pubmed">21814580</ArticleId></ArticleIdList></Reference><Reference><Citation>de Farias GA, Wagner VP, Correa C, et al. Photobiomodulation therapy modulates epigenetic events and NF&#x2010;&#x3ba;B expression in oral epithelial wound healing. Lasers Med Sci. 2019;34(7):1465&#x2010;1472.</Citation><ArticleIdList><ArticleId IdType="pubmed">30820776</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell&#x2010;fibroblast co&#x2010;culture. J Photochem Photobiol. 2022;12:100157.</Citation></Reference><Reference><Citation>Burrow JW, Koch JA, Chuang HH, Zhong W, Dean DD, Sylvia VL. Nitric oxide donors selectively reduce the expression of matrix metalloproteinases&#x2010;8 and &#x2010;9 by human diabetic skin fibroblasts. J Surg Res. 2007;140(1):90&#x2010;98.</Citation><ArticleIdList><ArticleId IdType="pubmed">17418871</ArticleId></ArticleIdList></Reference><Reference><Citation>Malone&#x2010;Povolny MJ, Maloney SE, Schoenfisch MH. Nitric oxide therapy for diabetic wound healing. Adv Healthc Mater. 2019;8(12):1&#x2010;18.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6774257</ArticleId><ArticleId IdType="pubmed">30645055</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayuk SM, Houreld NN, Abrahamse H. Laser irradiation alters the expression profile of genes involved in the extracellular matrix in vitro. Int J Photoenergy. 2014;2014:1&#x2010;17.</Citation></Reference><Reference><Citation>Bagheri Tadi F, Mougehi SMN, Moheghi AMA, et al. Photobiomodulation isolated or associated with adipose&#x2010;derived stem cells allograft improves inflammatory and oxidative parameters in the delayed&#x2010;healing wound in streptozotocin&#x2010;induced diabetic rats. Lasers Med Sci. 2022;37:3297&#x2010;3308.</Citation><ArticleIdList><ArticleId IdType="pubmed">36006574</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Q, Yang J, Yin H, et al. Optimization of photo&#x2010;biomodulation therapy for wound healing of diabetic foot ulcers in vitro and in vivo. Biomed Opt Express. 2022;13(4):2450&#x2010;2466.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9045913</ArticleId><ArticleId IdType="pubmed">35519257</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609996</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1819-2718</ISSN><JournalIssue CitedMedium="Internet"><Volume>36</Volume><Issue>2</Issue><PubDate><Year>2024</Year><Season>Apr-Jun</Season></PubDate></JournalIssue><Title>Journal of Ayub Medical College, Abbottabad : JAMC</Title><ISOAbbreviation>J Ayub Med Coll Abbottabad</ISOAbbreviation></Journal><ArticleTitle>A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.</ArticleTitle><Pagination><StartPage>433</StartPage><EndPage>435</EndPage><MedlinePgn>433-435</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.55519/JAMC-02-12379</ELocationID><Abstract><AbstractText Label="ABSTRACT" NlmCategory="UNASSIGNED">Wolfram syndrome is a progressive neurodegenerative disorder caused by an alteration in the WFS-1 gene, located on chromosome 4p16.1 and is characterized by the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). WFS-1 gene encodes for a transmembrane protein termed Wolframin found in the membrane of the endoplasmic reticulum. Although Wolfram Syndrome is generally considered an autosomal recessive disorder, a milder non-classic autosomal dominant form has been reported in association with a single pathogenic or likely pathogenic variant in WFS-1 gene. Objective was to date more than 200 variants have been identified in the WFS-1 gene. This case report aims to highlight and explain a novel de-novo likely pathogenic variant of the WFS-1 gene in a Pakistani child, which is highly plausible to induce non-classic WFS-1 spectrum disorder (MedGen UID: 481988).</AbstractText><AbstractText Label="CASE DISCUSSION" NlmCategory="UNASSIGNED">Our patient, a seven-year-old boy, initially sought medical attention at our endocrine clinic for diabetic control. Besides diabetes, other notable features included short stature, sensorineural deafness and a history of bilateral cataracts. Family history was significant for parental consanguinity. A clinical diagnosis of Wolfram Syndrome was suspected and a multi gene panel test which included the WFS-1 gene was ordered. Initial report noted a variant of uncertain significance in the WFS-1 gene at c.2586G&gt;T (p.Lys862Asn), which was later reclassified as a likely pathogenic variant by the laboratory based on the patient's clinical presentation.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hanif</LastName><ForeName>Misbah Iqbal</ForeName><Initials>MI</Initials><AffiliationInfo><Affiliation>Sindh Institute of Child Health and Neonatology, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Hamza</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Dow International Medical College, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ibrahim</LastName><ForeName>Mohsina Noor</ForeName><Initials>MN</Initials><AffiliationInfo><Affiliation>National Institute of Child Health, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Raza</LastName><ForeName>Syed Jamal</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Sindh Institute of Child Health and Neonatology, Karachi-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Syed Ajaz</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Kaiser Permanente, Riverside, CA-USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Ayub Med Coll Abbottabad</MedlineTA><NlmUniqueID>8910750</NlmUniqueID><ISSNLinking>1025-9589</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C114987">wolframin protein</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008565" MajorTopicYN="Y">Membrane Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014929" MajorTopicYN="Y">Wolfram Syndrome</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">WFS-1; Non-classic WFS-1 spectrum disorder; Pakistan</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>0</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609996</ArticleId><ArticleId IdType="doi">10.55519/JAMC-02-12379</ArticleId><ArticleId IdType="pii">12379/3757</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609972</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>29</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1819-2718</ISSN><JournalIssue CitedMedium="Internet"><Volume>36</Volume><Issue>2</Issue><PubDate><Year>2024</Year><Season>Apr-Jun</Season></PubDate></JournalIssue><Title>Journal of Ayub Medical College, Abbottabad : JAMC</Title><ISOAbbreviation>J Ayub Med Coll Abbottabad</ISOAbbreviation></Journal><ArticleTitle>SELF-REPORTED MULTI-MORBIDITY WITH TUBERCULOSIS: DATA FROM THE KHYBER PAKHTUNKHWA INTEGRATED POPULATION HEALTH SURVEY (KPIPHS) IN PAKISTAN.</ArticleTitle><Pagination><StartPage>316</StartPage><EndPage>322</EndPage><MedlinePgn>316-322</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.55519/JAMC-02-12677</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">With the rise of non-communicable diseases (NCDs) in a country that is already facing high tuberculosis (TB) burden, TB multi-morbidity is likely to pose a significant public health challenge in Pakistan. Data were analysed to determine the prevalence of TB and explore the distribution and determinants of multi-morbidity associated with TB in the population of Khyber Pakhtunkhwa -a province of Pakistan.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This is a secondary analysis of data gathered as part of the KPIPHS survey conducted in 2016-17 in both the rural and urban areas of Khyber Pakhtunkhwa, Pakistan. An interviewer-administered questionnaire was used to collect data, from adults, on demographics, education and socioeconomic status, physical and mental health, reproductive health, child health, health-related quality of life, and self-reported cardiometabolic diseases including Diabetes, hypertension, renal disorders, cardiac failure, angina, and stroke.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 20,715 participants were recruited in the survey including 52.8% (n=10,943) males and 47.2% (n=9,772) females with a mean age of 41 (13.1) years. Data on TB status was available for a total of 14452 participants. The prevalence of TB in Khyber Pakhtunkhwa was found to be 0.49% (n=72) including an almost equal number of males and females [48% (n=34) vs 51% (n=36)], respectively. The mean age of the patients with TB was 47.5 (11.6) years. A higher proportion of people with TB had cardiometabolic diseases compared to people without TB (45.9% vs. 30.9%). Amongst the cardiometabolic disorders, self-reported hypertension (OR: 1.81, 95% CI 1.08-3.02, p=0.02), Diabetes (OR: 3.99, 95% CI 1.95-8.18, p=&lt;0.002), and angina (OR: 3.88 95% CI 1.20-12.49, p=0.02) were positively associated with the occurrence of TB. In the adjusted analysis, only self-reported Diabetes was positively associated with the occurrence of TB (OR: 3.33, 95% CI 1.61-6.88, p=0.001).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">There is a higher burden of self-reported cardiometabolic diseases among people with TB, suggesting that this high-risk group should be screened for cardiometabolic diseases, especially Diabetes.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><CollectiveName>Zia ul Haq</CollectiveName><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Afaq</LastName><ForeName>Saima</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan Department of Health Sciences, University of York, York-United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khattak</LastName><ForeName>Farhad Ali</ForeName><Initials>FA</Initials><AffiliationInfo><Affiliation>Khyber College of Dentistry, Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hussain</LastName><ForeName>Sana</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Gandhara University, Peshawa-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fazid</LastName><ForeName>Sheraz</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, KMU Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rahim</LastName><ForeName>Abid</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Khyber College of Dentistry, Peshawar-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haroon</LastName><ForeName>Muhammad Zeeshan</ForeName><Initials>MZ</Initials><AffiliationInfo><Affiliation>Department of Community Medicine, Ayub Medical College, Abbottabad-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Kamran</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Hull York Medical School, University of York, York-United Kingdom.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Ayub Med Coll Abbottabad</MedlineTA><NlmUniqueID>8910750</NlmUniqueID><ISSNLinking>1025-9589</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057566" MajorTopicYN="Y">Self Report</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006306" MajorTopicYN="Y">Health Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000076322" MajorTopicYN="N">Multimorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiometabolic; South Asia; Low- and middle-income countries; TB-Diabetes comorbidity</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>0</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609972</ArticleId><ArticleId IdType="doi">10.55519/JAMC-02-12677</ArticleId><ArticleId IdType="pii">12677/3733</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39609829</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6823</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>BMC endocrine disorders</Title><ISOAbbreviation>BMC Endocr Disord</ISOAbbreviation></Journal><ArticleTitle>Cognitive changes in people with diabetes with lower extremity complications compared to people with diabetes without lower extremity complications: a systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>258</StartPage><MedlinePgn>258</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">258</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12902-024-01774-3</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Recent evidence suggests that diabetes-related lower-extremity complications (DRLECs) may be associated with cognitive changes in people with diabetes. However, existing literature has produced inconsistent findings, and no systematic reviews have been conducted to investigate whether DRLECs impact the cognition of people with diabetes. This systematic review evaluated existing studies that investigated cognition in people with diabetes with DRLECs and without DRLECs.</AbstractText><AbstractText Label="METHOD" NlmCategory="METHODS">Seven databases; MEDLINE, PubMed, CINAHL, EMBASE, Cochrane, PsycINFO and Web of Science were searched from inception until 22/8/2022 for studies that compared cognition in people with diabetes with and without DRLECs. Results were independently screened for eligibility and assessed for methodological quality by two authors, with key data extracted. Studies were eligible for meta-analysis if the studies reported similar cases, controls, and outcome measures.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Thirteen studies were included in the review, with eleven of medium methodological quality, one of high quality, and one of low quality. Four studies found significant differences in cognition between those with and without DRLECs, four found significant associations between diabetes-related lower-extremity complications and cognition, and five found no differences or associations. One small meta-analysis of eligible studies found that there was no statistically significant difference in cognition in people without, compared to with, peripheral neuropathy (Mean difference = -0.49; 95%CI: -1.59-0.61; N&#x2009;=&#x2009;3; n&#x2009;=&#x2009;215). Leave-one-out sensitivity analyses further confirmed that there was no significant difference in cognition among people with and without peripheral neuropathy (p&#x2009;&gt;&#x2009;0.05).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">DRLECs may be related to cognition in people with diabetes, however, existing evidence is unclear due to variability in used methodologies that may challenge concluding the findings. Future high-quality studies investigating cognition among people with and without DRLECs are needed.</AbstractText><CopyrightInformation>&#xa9; 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Karunathilaka</LastName><ForeName>Nimantha</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Nursing and Midwifery, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia. nimantha.durage@hdr.qut.edu.au.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Christina</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lazzarini</LastName><ForeName>Peter A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Allied Health Research Collaborative, The Prince Charles Hospital, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Pamela</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Joondalup Health Campus, Ramsay Healthcare, Perth, WA, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Katsanos</LastName><ForeName>Chloe</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Podiatry Department, The Alfred, Melbourne, VIC, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>MacAndrew</LastName><ForeName>Margaret</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Finlayson</LastName><ForeName>Kathleen</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Center for Healthcare Transformation, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>QUT Postgraduate Research Award and QUT Higher Degree Research tuition fee scholarships.</GrantID><Agency>Queensland University of Technology</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Endocr Disord</MedlineTA><NlmUniqueID>101088676</NlmUniqueID><ISSNLinking>1472-6823</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D035002" MajorTopicYN="Y">Lower Extremity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D048909" MajorTopicYN="Y">Diabetes Complications</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003071" MajorTopicYN="N">Cognition</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D060825" MajorTopicYN="N">Cognitive Dysfunction</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003929" MajorTopicYN="N">Diabetic Neuropathies</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cognition</Keyword><Keyword MajorTopicYN="N">Diabetes complications</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Diabetic foot</Keyword><Keyword MajorTopicYN="N">Meta-analysis</Keyword><Keyword MajorTopicYN="N">Systematic review</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: Not necessary. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>9</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>23</Hour><Minute>57</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609829</ArticleId><ArticleId IdType="pmc">PMC11605952</ArticleId><ArticleId IdType="doi">10.1186/s12902-024-01774-3</ArticleId><ArticleId IdType="pii">10.1186/s12902-024-01774-3</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616&#x2013;22. 10.1038/nrendo.2016.105.</Citation><ArticleIdList><ArticleId IdType="pubmed">27388988</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr. 2020;60(9):1447&#x2013;74. 10.1080/10408398.2019.1574708.</Citation><ArticleIdList><ArticleId IdType="pubmed">30806077</ArticleId></ArticleIdList></Reference><Reference><Citation>Riandini T, Pang D, Toh MPHS, Tan CS, Liu DYK, Choong AMTL, et al. Diabetes-related lower extremity complications in a multi-ethnic Asian population: a 10 year observational study in Singapore. Diabetologia. 2021;64(7):1538&#x2013;49. 10.1007/s00125-021-05441-3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8187215</ArticleId><ArticleId IdType="pubmed">33885933</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO. Gobal Reports on Diabetes World Health Organisation 2016.</Citation></Reference><Reference><Citation>Lazzarini PA, Pacella RE, Armstrong DG, van Netten JJ. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. Diabet Med. 2018. 10.1111/dme.13680.</Citation><ArticleIdList><ArticleId IdType="pubmed">29791033</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care. 2020;43(5):964&#x2013;74. 10.2337/dc19-1614.</Citation><ArticleIdList><ArticleId IdType="pubmed">32139380</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim HG. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ J Med. 2019;36(3):183&#x2013;91. 10.12701/yujm.2019.00255.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6784656</ArticleId><ArticleId IdType="pubmed">31620632</ArticleId></ArticleIdList></Reference><Reference><Citation>Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GEHM, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 2015;14(3):329&#x2013;40. 10.1016/s1474-4422(14)70249-2.</Citation><ArticleIdList><ArticleId IdType="pubmed">25728442</ArticleId></ArticleIdList></Reference><Reference><Citation>Natovich R, Kushnir T, Harman-Boehm I, Margalit D, Siev-Ner I, Tsalichin D, et al. Cognitive dysfunction: part and parcel of the diabetic foot. Diabetes Care. 2016;39(7):1202&#x2013;7. 10.2337/dc15-2838.</Citation><ArticleIdList><ArticleId IdType="pubmed">27208339</ArticleId></ArticleIdList></Reference><Reference><Citation>Corbett C, Jolley J, Barson E, Wraight P, Perrin B, Fisher C. Cognition and understanding of neuropathy of inpatients admitted to a specialized tertiary diabetic foot unit with diabetes-related foot ulcers. Int J Low Extrem Wounds. 2019;18(3):294&#x2013;300. 10.1177/1534734619862085.</Citation><ArticleIdList><ArticleId IdType="pubmed">31307246</ArticleId></ArticleIdList></Reference><Reference><Citation>Khera T, Rangasamy V. Cognition and pain: A Review. Psychol. 2021;12. https://www.frontiersin.org/article/10.3389/fpsyg.2021.673962</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpsyg.2021.673962</ArticleId><ArticleId IdType="pmc">PMC8175647</ArticleId><ArticleId IdType="pubmed">34093370</ArticleId></ArticleIdList></Reference><Reference><Citation>Burkauskas J, Lang P, Bunevicius A, Neverauskas J, Buciute-Jankauskiene M, Mickuviene N. Cognitive function in patients with coronary artery disease: a literature review. J Int Med Res. 2018;46(10):4019&#x2013;31. 10.1177/0300060517751452.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6166352</ArticleId><ArticleId IdType="pubmed">30157691</ArticleId></ArticleIdList></Reference><Reference><Citation>Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF. Higher baseline inflammatory marker levels predict greater cognitive decline in older people with type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 diabetes study. Diabetologia. 2022;65(3):467&#x2013;76. 10.1007/s00125-021-05634-w.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8803673</ArticleId><ArticleId IdType="pubmed">34932135</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun C, Xiao Y, Li J, Ge B, Chen X, Liu H, et al. Nonenzymatic function of DPP4 in diabetes-associated mitochondrial dysfunction and cognitive impairment. Alzheimer&#x2019;s Dement J Alzheimer&#x2019;s Assoc. 2022;18(5):966&#x2013;87. 10.1002/alz.12437.</Citation><ArticleIdList><ArticleId IdType="pubmed">34374497</ArticleId></ArticleIdList></Reference><Reference><Citation>Anita NZ, Zebarth J, Chan B, Wu C-Y, Syed T, Shahrul D, et al. Inflammatory markers in type 2 diabetes with vs. without cognitive impairment; a systematic review and meta-analysis. Brain Behav Immun. 2022;100:55&#x2013;69. 10.1016/j.bbi.2021.11.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">34808290</ArticleId></ArticleIdList></Reference><Reference><Citation>Siru R, Burkhardt MS, Davis WA, Hiew J, Manning L, Ritter JC, et al. Cognitive impairment in people with diabetes-related foot ulceration. J Clin Med. 2021;10(13). 10.3390/jcm10132808.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8268193</ArticleId><ArticleId IdType="pubmed">34202360</ArticleId></ArticleIdList></Reference><Reference><Citation>Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8(6):535&#x2013;45. 10.1016/s2213-8587(20)30118-2.</Citation><ArticleIdList><ArticleId IdType="pubmed">32445740</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Zhang W, Wang X, Yuan T, Liu P, Wang T, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS ONE. 2018;13(1):e0190699. 10.1371/journal.pone.0190699.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5755882</ArticleId><ArticleId IdType="pubmed">29304099</ArticleId></ArticleIdList></Reference><Reference><Citation>Palomo-Osuna J, De Sola H, Duenas M, Moral-Munoz JA, Failde I. Cognitive function in diabetic persons with peripheral neuropathy: a systematic review and meta-analysis. Expert Rev Neurother. 2022;22(3):269&#x2013;81. 10.1080/14737175.2022.2048649.</Citation><ArticleIdList><ArticleId IdType="pubmed">35232335</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2(3):246&#x2013;55. 10.1016/s2213-8587(13)70088-3.</Citation><ArticleIdList><ArticleId IdType="pubmed">24622755</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia. 2020;63(1):3&#x2013;9. 10.1007/s00125-019-04977-9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6890615</ArticleId><ArticleId IdType="pubmed">31420699</ArticleId></ArticleIdList></Reference><Reference><Citation>Brognara L, Volta I, Cassano VM, Navarro-Flores E, Cauli O. The association between cognitive impairment and diabetic foot care: role of neuropathy and glycated hemoglobin. Pathophysiol. 2020;27(1):14&#x2013;27. 10.3390/pathophysiology27010003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8830443</ArticleId><ArticleId IdType="pubmed">35366252</ArticleId></ArticleIdList></Reference><Reference><Citation>Doucet J, Le Floch JP, Bauduceau B, Verny C, Intergroup SS. GERODIAB: Glycaemic control and 5-year morbidity/mortality of type 2 diabetic patients aged 70 years and older: description of the population at inclusion. Diabetes Metab. 2012;38(6):523&#x2013;30. 10.1016/j.diabet.2012.07.001.</Citation><ArticleIdList><ArticleId IdType="pubmed">23062595</ArticleId></ArticleIdList></Reference><Reference><Citation>Kloos C, Hagen F, Lindloh C, Braun A, Leppert K, Muller N, et al. Cognitive function is not associated with recurrent foot ulcers in patients with diabetes and neuropathy. Diabetes Care. 2009;32(5):894&#x2013;6. 10.2337/dc08-0490.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2671092</ArticleId><ArticleId IdType="pubmed">19244093</ArticleId></ArticleIdList></Reference><Reference><Citation>Marseglia A, Xu W, Rizzuto D, Ferrari C, Whisstock C, Brocco E, et al. Cognitive functioning among patients with diabetic foot. J Diabetes Complications. 2014;28(6):863&#x2013;8. 10.1016/j.jdiacomp.2014.07.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">25127250</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. 10.1136/bmj.n71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu, Wang L, Guo Y, Cao Z, Lu Y, Qin H. Study of the risk and preventive factors for progress of mild cognitive impairment to Dementia. Am J Alzheimer&#x2019;s Dis Other Dement. 2020;35:1533317520925324. 10.1177/1533317520925324.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10624080</ArticleId><ArticleId IdType="pubmed">32567328</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong QNPP, F&#xe0;bregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, Gagnon M-P, GF, Nicolau B, O&#x2019;Cathain A, Rousseau M-C, Vedel I. Mixed methods appraisal tool (MMAT) vRoC, Canadian, Intellectual Property Office IC.</Citation></Reference><Reference><Citation>McCann E, Brown M, Hollins-Martin C, Murray K, McCormick F. The views and experiences of LGBTQ&#x2009;+&#x2009;people regarding midwifery care: a systematic review of the international evidence. Midwifery. 2021;103:103102. 10.1016/j.midw.2021.103102.</Citation><ArticleIdList><ArticleId IdType="pubmed">34333210</ArticleId></ArticleIdList></Reference><Reference><Citation>McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston RV. Chapter 9: summarizing study characteristics and preparing for synthesis. Cochrane; 2021. www.training.cochrane.org/handbook.</Citation></Reference><Reference><Citation>Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785&#x2013;805. 10.1177/0962280216669183.</Citation><ArticleIdList><ArticleId IdType="pubmed">27683581</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. 10.1186/1471-2288-14-135.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4383202</ArticleId><ArticleId IdType="pubmed">25524443</ArticleId></ArticleIdList></Reference><Reference><Citation>Ding X, Fang C, Li X, Cao Y-J, Zhang Q-L, Huang Y, et al. Type 1 diabetes-associated cognitive impairment and diabetic peripheral neuropathy in Chinese adults: results from a prospective cross-sectional study. BMC Endocr Disord. 2019;19(1):34. 10.1186/s12902-019-0359-2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6437981</ArticleId><ArticleId IdType="pubmed">30917808</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang D, Huang Y, Gao J, Lei Y, Ai K, Tang M, et al. Altered functional topological organization in type-2 diabetes mellitus with and without microvascular complications. Front Neurosci. 2021;15. 10.3389/fnins.2021.726350.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8493598</ArticleId><ArticleId IdType="pubmed">34630014</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao L, Mao L, Liu Q, Chen X, Tang X, An D. Cognitive impairment in type 2 diabetes patients with and without diabetic peripheral neuropathy: a mismatch negativity study. NeuroReport. 2021;32(14):1223&#x2013;8. 10.1097/wnr.0000000000001716.</Citation><ArticleIdList><ArticleId IdType="pubmed">34406991</ArticleId></ArticleIdList></Reference><Reference><Citation>Perlmuter LC, Hakami MK, Hodgson-Harrington C. Decreased cognitive function in aging non-insulin-dependent diabetic patients. Am J Med. 1984;77(6):1043&#x2013;8. 10.1016/0002-9343(84)90186-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">6334441</ArticleId></ArticleIdList></Reference><Reference><Citation>El-Tamawy MS, Darwish MH, Mohamed SS, Hegazy M, Basheer MA. Influence of cognitive dysfunction on spatiotemporal gait parameters in patients with diabetic polyneuropathy. Egypt J Neurol Psychiatr Neurosurg. 2016;53(4):253&#x2013;7. 10.4103/1110-1083.202387.</Citation></Reference><Reference><Citation>Brismar T, Maurex L, Cooray G, Juntti-Berggren L, Lindstr&#xf6;m P, Ekberg K, et al. Predictors of cognitive impairment in type 1 diabetes. Psychoneuroendocrinology. 2007;32(8):1041&#x2013;51. 10.1016/j.psyneuen.2007.08.002.</Citation><ArticleIdList><ArticleId IdType="pubmed">17884300</ArticleId></ArticleIdList></Reference><Reference><Citation>Dejgaard A, Gade A, Larsson H, Balle V, Parving A, Parving HH. Evidence for diabetic encephalopathy. Diabet Med. 1991;8(2):162&#x2013;7. 10.1111/j.1464-5491.1991.tb01564.x.</Citation><ArticleIdList><ArticleId IdType="pubmed">1827403</ArticleId></ArticleIdList></Reference><Reference><Citation>de Bresser J, Reijmer YD, van den Berg E, Breedijk MA, Kappelle LJ, Viergever MA, et al. Microvascular determinants of cognitive decline and brain volume change in elderly patients with type 2 diabetes. Dement Geriatr Cogn Disord. 2010;30(5):381&#x2013;6. 10.1159/000321354.</Citation><ArticleIdList><ArticleId IdType="pubmed">20962529</ArticleId></ArticleIdList></Reference><Reference><Citation>Althubaity SK, Lodhi FS, Khan AA. Frequency and determinants of mild cognitive impairment among diabetic type II patients attending a secondary care hospital in Makkah, Saudi Arabia. Clin Anal Med. 2021;12(3):332&#x2013;6. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02274979/full.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/central/CN-02274979/full</ArticleId></ArticleIdList></Reference><Reference><Citation>Blanquisco L, Abejero JE, Buno Ii B, Trajano-Acampado L, Cenina A, Santiago D. Factors associated with mild cognitive impairment among elderly filipinos with type 2 diabetes mellitus. J Asean Fed Endocr Soc. 2017;32(2):145&#x2013;50. 10.15605/jafes.032.02.08.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7784175</ArticleId><ArticleId IdType="pubmed">33442098</ArticleId></ArticleIdList></Reference><Reference><Citation>Roman de Mettelinge T, Delbaere K, Calders P, Gysel T, Van Den Noortgate N, Cambier D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch Phys M. 2013;94(6):1074&#x2013;9. 10.1016/j.apmr.2013.01.018.</Citation><ArticleIdList><ArticleId IdType="pubmed">23385112</ArticleId></ArticleIdList></Reference><Reference><Citation>Moreira RO, Soldera AL, Cury B, Meireles C, Kupfer R. Is cognitive impairment associated with the presence and severity of peripheral neuropathy in patients with type 2 diabetes mellitus? Diabetol Metab Syndr. 2015;7:51. 10.1186/s13098-015-0045-0.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4465619</ArticleId><ArticleId IdType="pubmed">26075029</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrews JS, Desai U, Kirson NY, Zichlin ML, Ball DE, Matthews BR. Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer&#x2019;s disease clinical trials. Alzheimers Dement (N Y). 2019;5:354&#x2013;63. 10.1016/j.trci.2019.06.005.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6690415</ArticleId><ArticleId IdType="pubmed">31417957</ArticleId></ArticleIdList></Reference><Reference><Citation>Ojo O, Brooke J. Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health. 2015;12(7):8281&#x2013;94. 10.3390/ijerph120708281.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4515722</ArticleId><ArticleId IdType="pubmed">26193295</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591&#x2013;604. 10.1038/s41574-018-0048-7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6397437</ArticleId><ArticleId IdType="pubmed">30022099</ArticleId></ArticleIdList></Reference><Reference><Citation>Omura T, Tamura Y, Sakurai T, Umegaki H, Iimuro S, Ohashi Y, et al. Functional categories based on cognition and activities of daily living predict all-cause mortality in older adults with diabetes mellitus: the Japanese Elderly diabetes intervention trial. Geriatr Gerontol Int. 2021;21(6):512&#x2013;8. 10.1111/ggi.14171.</Citation><ArticleIdList><ArticleId IdType="pubmed">33890351</ArticleId></ArticleIdList></Reference><Reference><Citation>Li W, Huang E, Gao S. Type 1 diabetes mellitus and cognitive impairments: a systematic review. J Alzheimer&#x2019;s Dis. 2017;57:29&#x2013;36. 10.3233/JAD-161250.</Citation><ArticleIdList><ArticleId IdType="pubmed">28222533</ArticleId></ArticleIdList></Reference><Reference><Citation>Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189&#x2013;98. 10.1016/0022-3956(75)90026-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">1202204</ArticleId></ArticleIdList></Reference><Reference><Citation>Nasreddine ZS, Phillips NA, B&#xe9;dirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695&#x2013;9. 10.1111/j.1532-5415.2005.53221.x.</Citation><ArticleIdList><ArticleId IdType="pubmed">15817019</ArticleId></ArticleIdList></Reference><Reference><Citation>Grace J, Nadler JD, White DA, Guilmette TJ, Giuliano AJ, Monsch AU, et al. Folstein vs modified mini-mental state examination in geriatric stroke: Stability, validity, and screening utility. Arch Neurol. 1995;52(5):477&#x2013;84. 10.1001/archneur.1995.00540290067019.</Citation><ArticleIdList><ArticleId IdType="pubmed">7733842</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke&#x2019;s cognitive examination III in frontotemporal dementia and alzheimer&#x2019;s disease. Dement Geriatr Cogn Disord. 2013;36(3&#x2013;4):242&#x2013;50. 10.1159/000351671.</Citation><ArticleIdList><ArticleId IdType="pubmed">23949210</ArticleId></ArticleIdList></Reference><Reference><Citation>Bentvelzen A, Aerts L, Seeher K, Wesson J, Brodaty H. A comprehensive review of the quality and feasibility of dementia assessment measures: the dementia outcomes measurement suite. J Am Med Dir Assoc. 2017;18(10):826&#x2013;37. 10.1016/j.jamda.2017.01.006.</Citation><ArticleIdList><ArticleId IdType="pubmed">28283381</ArticleId></ArticleIdList></Reference><Reference><Citation>Au B, Dale-McGrath S, Tierney MC. Sex differences in the prevalence and incidence of mild cognitive impairment: a meta-analysis. Ageing Res Rev. 2017;35:176&#x2013;99. 10.1016/j.arr.2016.09.005.</Citation><ArticleIdList><ArticleId IdType="pubmed">27771474</ArticleId></ArticleIdList></Reference><Reference><Citation>Vatanabe IP, Pedroso RV, Teles RHG, Ribeiro JC, Manzine PR, Pott-Junior H, et al. A systematic review and meta-analysis on cognitive frailty in community-dwelling older adults: risk and associated factors. Aging Ment Health. 2022;26(3):464&#x2013;76. 10.1080/13607863.2021.1884844.</Citation><ArticleIdList><ArticleId IdType="pubmed">33612030</ArticleId></ArticleIdList></Reference><Reference><Citation>Lipnicki DM, Makkar SR, Crawford JD, Thalamuthu A, Kochan NA, Lima-Costa MF, et al. Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study. PLoS Med. 2019;16(7):e1002853. 10.1371/journal.pmed.1002853.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6650056</ArticleId><ArticleId IdType="pubmed">31335910</ArticleId></ArticleIdList></Reference><Reference><Citation>Jia P, Lee HWY, Chan JYC, Yiu KKL, Tsoi KKF. Long-term blood pressure variability increases risks of dementia and cognitive decline: a meta-analysis of longitudinal studies. J Hypertens. 2021;78(4):996&#x2013;1004. 10.1161/HYPERTENSIONAHA.121.17788.</Citation><ArticleIdList><ArticleId IdType="pubmed">34397274</ArticleId></ArticleIdList></Reference><Reference><Citation>Ou Y-N, Tan C-C, Shen X-N, Xu W, Hou X-H, Dong Q, et al. Blood pressure and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 209 prospective studies. J Hypertens. 2020;76(1):217&#x2013;25. 10.1161/HYPERTENSIONAHA.120.14993.</Citation><ArticleIdList><ArticleId IdType="pubmed">32450739</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Zhong X, Shen J, Jiao L, Tong J, Zhao W, et al. Elevated serum TC and LDL-C levels in Alzheimer&#x2019;s disease and mild cognitive impairment: a meta-analysis study. Brain Res. 2020;1727:146554. 10.1016/j.brainres.2019.146554.</Citation><ArticleIdList><ArticleId IdType="pubmed">31765631</ArticleId></ArticleIdList></Reference><Reference><Citation>&#xc1;lvarez-Bueno C, Cavero-Redondo I, Bruno RM, Saz-Lara A, Sequ&#xed;-Dominguez I, Notario-Pacheco B, et al. Intima media thickness and cognitive function among adults: meta-analysis of observational and longitudinal studies. J Am Heart Assoc. 2022;11(5):e021760. 10.1161/JAHA.121.021760.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9075078</ArticleId><ArticleId IdType="pubmed">35179392</ArticleId></ArticleIdList></Reference><Reference><Citation>Anbar R, Sultan SR, Al Saikhan L, Alkharaiji M, Chaturvedi N, Hardy R, et al. Is carotid artery atherosclerosis associated with poor cognitive function assessed using the Mini-mental State examination? A systematic review and meta-analysis. BMJ open. 2022;12(4):e055131. 10.1136/bmjopen-2021-055131.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9020283</ArticleId><ArticleId IdType="pubmed">35440451</ArticleId></ArticleIdList></Reference><Reference><Citation>Hudon C, Escudier F, De Roy J, Croteau J, Cross N, Dang-Vu TT, et al. Behavioral and psychological symptoms that predict cognitive decline or impairment in cognitively normal middle-aged or older adults: a meta-analysis. Neuropsychol Rev. 2020;30(4):558&#x2013;79. 10.1007/s11065-020-09437-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">32394109</ArticleId></ArticleIdList></Reference><Reference><Citation>Rojer AGM, Ramsey KA, Amaral Gomes ES, D&#x2019;Andrea L, Chen C, Szoeke C, et al. Objectively assessed physical activity and sedentary behavior and global cognitive function in older adults: a systematic review. Mech Ageing Dev. 2021;198:111524. 10.1016/j.mad.2021.111524.</Citation><ArticleIdList><ArticleId IdType="pubmed">34181963</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartley P, Gibbins N, Saunders A, Alexander K, Conroy E, Dixon R, et al. The association between cognitive impairment and functional outcome in hospitalised older patients: a systematic review and meta-analysis. Age Ageing. 2017;46(4):559&#x2013;67. 10.1093/ageing/afx007.</Citation><ArticleIdList><ArticleId IdType="pubmed">28119313</ArticleId></ArticleIdList></Reference><Reference><Citation>Mui&#xf1;os M, Ballesteros S. Does dance counteract age-related cognitive and brain declines in middle-aged and older adults? A systematic review. Neurosci Biobehav Rev. 2021;121:259&#x2013;76. 10.1016/j.neubiorev.2020.11.028.</Citation><ArticleIdList><ArticleId IdType="pubmed">33278423</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39609030</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Incidence, prevalence and risk factors for comorbid mental illness among people with hypertension and type 2 diabetes in West Africa: protocol for a systematic review and meta-analysis.</ArticleTitle><Pagination><StartPage>e081824</StartPage><MedlinePgn>e081824</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e081824</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-081824</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Mental illness remains a significant global health concern that affects diverse populations, including individuals living with hypertension and/or type 2 diabetes, predominantly in lower-income to middle-income countries. The association between non-communicable diseases (NCDs) and mental illness is firmly established globally, however, this connection has yet to be comprehensively explored in West Africa. Our systematic review and meta-analysis aim to synthesise existing evidence on the prevalence, incidence, and risk factors for comorbid mental illness with hypertension and/or type 2 diabetes in West Africa. This effort seeks to contribute to bridging the knowledge gap and facilitating the implementation of interventions tailored to this context.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">A comprehensive search will be conducted across multiple databases (PubMed, Google Scholar, PsycINFO, Carin Info and CINAHL), supplemented by searches on the websites of the WHO and various countries' ministries of health, and references cited in relevant papers. Inclusion criteria specify studies conducted in countries from the Economic Community of West African States, reported from January 2000 until date of search, focusing on adults with hypertension and/or type 2 diabetes and mental illness. Exclusion criteria encompass studies outside the specified time frame, involving pregnant women, or lacking relevant outcomes. There will be no language restrictions for inclusion. Study selection, data extraction and risk of bias assessment will be carried out independently by at least two reviewers. We will employ pooled proportions of OR, risk ratio and mean differences to assess prevalence, and incidence of mental illness and heterogeneity will be assessed.</AbstractText><AbstractText Label="ETHICS AND DISSEMINATION" NlmCategory="BACKGROUND">This protocol does not require ethical approval; however, it is a part of a larger study on NCDs, which has received ethical clearance from the Ghana Health Service (ID NO: GHS-ERC 013/02/23). The results will be presented to stakeholders (policymakers and practitioners) and disseminated through conferences and peer-reviewed publications.</AbstractText><AbstractText Label="PROSPERO REGISTRATION NUMBER" NlmCategory="UNASSIGNED">CRD42023450732.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ayiku</LastName><ForeName>Roberta Naa Barkey</ForeName><Initials>RNB</Initials><Identifier Source="ORCID">0009-0009-8076-6092</Identifier><AffiliationInfo><Affiliation>STOP NCD PROJECT, Ghana College of Physicians and Surgeons, Accra, Ghana robbieayiku@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jahan</LastName><ForeName>Yasmin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Global Health and Development, London School of Hygiene &amp; Tropical Medicine, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adjei-Banuah</LastName><ForeName>Nhyira Yaw</ForeName><Initials>NY</Initials><AffiliationInfo><Affiliation>STOP NCD PROJECT, Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Antwi</LastName><ForeName>Edward</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Awini</LastName><ForeName>Elizabeth</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Dodowa Health Research Center, Ghana Health Service Research and Development Division, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ohene</LastName><ForeName>Sammy</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Psychiatry, University of Ghana Medical School, Accra, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Agyepong</LastName><ForeName>Irene Akua</ForeName><Initials>IA</Initials><Identifier Source="ORCID">0000-0002-0193-5882</Identifier><AffiliationInfo><Affiliation>Public Health Faculty, Ghana College of Physicians and Surgeons, Accra, Ghana.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Dodowa Health Research Center, Ghana Health Service Research and Development Division, Dodowa, Ghana.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mirzoev</LastName><ForeName>Tolib</ForeName><Initials>T</Initials><Identifier Source="ORCID">0000-0003-2959-9187</Identifier><AffiliationInfo><Affiliation>Global Health and Development, London School of Hygiene &amp; Tropical Medicine, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amoakoh-Coleman</LastName><ForeName>Mary</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>University of Ghana Noguchi Memorial Institute for Medical Research, Accra, Ghana.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078202" MajorTopicYN="Y">Systematic Reviews as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="Y">Hypertension</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001523" MajorTopicYN="Y">Mental Disorders</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000354" MajorTopicYN="N" Type="Geographic">Africa, Western</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="Y">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015201" MajorTopicYN="N">Meta-Analysis as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DIABETES &amp; ENDOCRINOLOGY</Keyword><Keyword MajorTopicYN="N">EPIDEMIOLOGIC STUDIES</Keyword><Keyword MajorTopicYN="N">Health policy</Keyword><Keyword MajorTopicYN="N">Hypertension</Keyword><Keyword MajorTopicYN="N">MENTAL HEALTH</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609030</ArticleId><ArticleId IdType="pmc">PMC11603740</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-081824</ArticleId><ArticleId IdType="pii">bmjopen-2023-081824</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Moitra M, Santomauro D, Collins PY, et al. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000-2019: A systematic review and Bayesian meta-regression analysis. PLoS Med. 2022;19:e1003901. doi: 10.1371/journal.pmed.1003901.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003901</ArticleId><ArticleId IdType="pmc">PMC8846511</ArticleId><ArticleId IdType="pubmed">35167593</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma M, Grover S, Tripathy JP, et al. Co-existing Non-communicable Diseases and Mental Illnesses Amongst the Elderly in Punjab, India. Eur Endocrinol. 2019;15:106&#x2013;12. doi: 10.17925/EE.2019.15.2.106.</Citation><ArticleIdList><ArticleId IdType="doi">10.17925/EE.2019.15.2.106</ArticleId><ArticleId IdType="pmc">PMC6785953</ArticleId><ArticleId IdType="pubmed">31616502</ArticleId></ArticleIdList></Reference><Reference><Citation>Agyemang C, Nyaaba G, Beune E, et al. Variations in hypertension awareness, treatment, and control among Ghanaian migrants living in Amsterdam, Berlin, London, and nonmigrant Ghanaians living in rural and urban Ghana - the RODAM study. J Hypertens. 2018;36:169&#x2013;77. doi: 10.1097/HJH.0000000000001520.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HJH.0000000000001520</ArticleId><ArticleId IdType="pubmed">28858173</ArticleId></ArticleIdList></Reference><Reference><Citation>Coelho FM da C, Pinheiro RT, Horta BL, et al. Common mental disorders and chronic non-communicable diseases in adults: a population-based study. Cad Sa&#xfa;de P&#xfa;blica. 2009;25:59&#x2013;67. doi: 10.1590/S0102-311X2009000100006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S0102-311X2009000100006</ArticleId><ArticleId IdType="pubmed">19180287</ArticleId></ArticleIdList></Reference><Reference><Citation>Stein DJ, Benjet C, Gureje O, et al. Integrating mental health with other non-communicable diseases. BMJ. 2019;364:l295. doi: 10.1136/bmj.l295.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.l295</ArticleId><ArticleId IdType="pmc">PMC6348425</ArticleId><ArticleId IdType="pubmed">30692081</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Z, Sum G, Qin VM, et al. Associations between mental health disorder and management of physical chronic conditions in China: a pooled cross-sectional analysis. Sci Rep. 2021;11:5731. doi: 10.1038/s41598-021-85126-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-85126-4</ArticleId><ArticleId IdType="pmc">PMC7952541</ArticleId><ArticleId IdType="pubmed">33707604</ArticleId></ArticleIdList></Reference><Reference><Citation>Collins PY, Insel TR, Chockalingam A, et al. Grand challenges in global mental health: integration in research, policy, and practice. PLoS Med . 2013;10:e1001434. doi: 10.1371/journal.pmed.1001434.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1001434</ArticleId><ArticleId IdType="pmc">PMC3640093</ArticleId><ArticleId IdType="pubmed">23637578</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C, Lee I, Su Y, et al. The longitudinal relationship between mental health disorders and chronic disease for older adults: a population&#x2010;based study. Int J Geriat Psychiatry. 2017;32:1017&#x2013;26. doi: 10.1002/gps.4561.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gps.4561</ArticleId><ArticleId IdType="pubmed">27546556</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalez JS, Peyrot M, McCarl LA, et al. Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care. 2008;31:2398&#x2013;403. doi: 10.2337/dc08-1341.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc08-1341</ArticleId><ArticleId IdType="pmc">PMC2584202</ArticleId><ArticleId IdType="pubmed">19033420</ArticleId></ArticleIdList></Reference><Reference><Citation>Egede LE, Ellis C. Diabetes and depression: global perspectives. Diabetes Res Clin Pract. 2010;87:302&#x2013;12. doi: 10.1016/j.diabres.2010.01.024.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2010.01.024</ArticleId><ArticleId IdType="pubmed">20181405</ArticleId></ArticleIdList></Reference><Reference><Citation>Ali S, Stone MA, Peters JL, et al. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23:1165&#x2013;73. doi: 10.1111/j.1464-5491.2006.01943.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2006.01943.x</ArticleId><ArticleId IdType="pubmed">17054590</ArticleId></ArticleIdList></Reference><Reference><Citation>Udedi M, Pence B, Kauye F, et al. The effect of depression management on diabetes and hypertension outcomes in low- and middle-income countries: a systematic review protocol. Syst Rev. 2018;7:223. doi: 10.1186/s13643-018-0896-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-018-0896-1</ArticleId><ArticleId IdType="pmc">PMC6280497</ArticleId><ArticleId IdType="pubmed">30518434</ArticleId></ArticleIdList></Reference><Reference><Citation>Endomba FT, Mazou TN, Bigna JJ. Epidemiology of depressive disorders in people living with hypertension in Africa: a systematic review and meta-analysis. BMJ Open. 2020;10:e037975. doi: 10.1136/bmjopen-2020-037975.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-037975</ArticleId><ArticleId IdType="pmc">PMC7733170</ArticleId><ArticleId IdType="pubmed">33303433</ArticleId></ArticleIdList></Reference><Reference><Citation>Asmare Y, Ali A, Belachew A. Magnitude and associated factors of depression among people with hypertension in Addis Ababa, Ethiopia: a hospital based cross-sectional study. BMC Psychiatry. 2022;22:327. doi: 10.1186/s12888-022-03972-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12888-022-03972-6</ArticleId><ArticleId IdType="pmc">PMC9086661</ArticleId><ArticleId IdType="pubmed">35538447</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization  Depressive disorder (depression WHO) https://www.who.int/news-room/facts-sheets/detail/depression n.d. Available.</Citation></Reference><Reference><Citation>Sartorius N. Translational research. 2018. www.dialogues-cns.org Available.</Citation></Reference><Reference><Citation>Park M, Katon WJ, Wolf FM. Depression and risk of mortality in individuals with diabetes: a meta-analysis and systematic review. Gen Hosp Psychiatry. 2013;35:217&#x2013;25. doi: 10.1016/j.genhosppsych.2013.01.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.genhosppsych.2013.01.006</ArticleId><ArticleId IdType="pmc">PMC3644308</ArticleId><ArticleId IdType="pubmed">23415577</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan Y, Cai W, Cheng Q, et al. Association between anxiety and hypertension: a systematic review and meta-analysis of epidemiological studies. Neuropsychiatr Dis Treat . 2015;11:1121&#x2013;30. doi: 10.2147/NDT.S77710.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/NDT.S77710</ArticleId><ArticleId IdType="pmc">PMC4411016</ArticleId><ArticleId IdType="pubmed">25960656</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim LF, Solmi M, Cortese S. Association between anxiety and hypertension in adults: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2021;131:96&#x2013;119. doi: 10.1016/j.neubiorev.2021.08.031.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.neubiorev.2021.08.031</ArticleId><ArticleId IdType="pubmed">34481847</ArticleId></ArticleIdList></Reference><Reference><Citation>Chaudhary R, Kumar P, Chopra A, et al. Comparative Study of Psychiatric Manifestations among Type I and Type II Diabetic Patients. Indian J Psychol Med. 2017;39:342&#x2013;6. doi: 10.4103/IJPSYM.IJPSYM_35_17.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/IJPSYM.IJPSYM_35_17</ArticleId><ArticleId IdType="pmc">PMC5461847</ArticleId><ArticleId IdType="pubmed">28615771</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang CJ, Hsieh HM, Tu HP, et al. Generalized anxiety disorder in type 2 diabetes mellitus: prevalence and clinical characteristics. Braz J Psychiatry . 2020;42:621&#x2013;9. doi: 10.1590/1516-4446-2019-0605.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1516-4446-2019-0605</ArticleId><ArticleId IdType="pmc">PMC7678902</ArticleId><ArticleId IdType="pubmed">32321059</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith KJ, B&#xe9;land M, Clyde M, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74:89&#x2013;99. doi: 10.1016/j.jpsychores.2012.11.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jpsychores.2012.11.013</ArticleId><ArticleId IdType="pubmed">23332522</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu MY, Li N, Li WA, et al. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res. 2017;39:573&#x2013;80. doi: 10.1080/01616412.2017.1317904.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/01616412.2017.1317904</ArticleId><ArticleId IdType="pubmed">28415916</ArticleId></ArticleIdList></Reference><Reference><Citation>Vedantam D, Poman DS, Motwani L, et al. Stress-Induced Hyperglycemia: Consequences and Management. Cureus. 2022;10 doi: 10.7759/cureus.26714.</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.26714</ArticleId><ArticleId IdType="pmc">PMC9360912</ArticleId><ArticleId IdType="pubmed">35959169</ArticleId></ArticleIdList></Reference><Reference><Citation>Addo J, Agyemang C, Smeeth L, et al. A review of population-based studies on hypertension in Ghana. Ghana Med J. 2012;46:4&#x2013;11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3645150</ArticleId><ArticleId IdType="pubmed">23661811</ArticleId></ArticleIdList></Reference><Reference><Citation>Adeloye D, Basquill C, Aderemi AV, et al. An estimate of the prevalence of hypertension in Nigeria: a systematic review and meta-analysis. J Hypertens. 2015;33:230&#x2013;42. doi: 10.1097/HJH.0000000000000413.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HJH.0000000000000413</ArticleId><ArticleId IdType="pubmed">25380154</ArticleId></ArticleIdList></Reference><Reference><Citation>Dar&#xe9; LO, Bruand P-E, G&#xe9;rard D, et al. Co-morbidities of mental disorders and chronic physical diseases in developing and emerging countries: a meta-analysis. BMC Public Health. 2019;19:304. doi: 10.1186/s12889-019-6623-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-019-6623-6</ArticleId><ArticleId IdType="pmc">PMC6417021</ArticleId><ArticleId IdType="pubmed">30866883</ArticleId></ArticleIdList></Reference><Reference><Citation>JBI Manual for Evidence Synthesis. JBI; 2020. Chapter 5: systematic reviews of prevalence and incidence.</Citation></Reference><Reference><Citation>Wells G, Shea B, O&#x2019;connell D, et al. Newcastle-Ottawa Quality Assessment Scale Cohort Studies. University of Ottawa; 2014.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609024</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Association of overweight and obesity with gestational diabetes mellitus among pregnant women attending antenatal care clinics in Addis Ababa, Ethiopia: a case-control study.</ArticleTitle><Pagination><StartPage>e082539</StartPage><MedlinePgn>e082539</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e082539</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-082539</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">Maternal obesity and gestational diabetes mellitus (GDM) are becoming major public health concerns in developing countries. Understanding their relationship can help in developing contextually appropriate and targeted prevention strategies and interventions to improve maternal and infant health outcomes. This study aimed to determine the association of maternal overweight and obesity with GDM among pregnant women in Ethiopia.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">Case-control study.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">The study was conducted in selected public hospitals in Addis Ababa, Ethiopia, from 10 March to 30 July 2020.</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">159 pregnant women with GDM (cases) and 477 pregnant women without GDM (controls).</AbstractText><AbstractText Label="OUTCOME MEASURES AND DATA ANALYSIS" NlmCategory="UNASSIGNED">Screening and diagnosis of GDM in pregnant women was done by a physician using the 2013 WHO criteria of 1-hour plasma glucose level of 10.0 mmol/L (180&#x2009;mg/dL) or 2-hour plasma glucose level of 8.5-11.0&#x2009;mmol/L (153-199&#x2009;mg/dL) following a 75&#x2009;g oral glucose load. Overweight and obesity were measured using mid-upper arm circumference (MUAC). Binary logistic regression with bivariate and multivariable models was done to measure the association of overweight and obesity with GDM. Adjusted ORs (AORs) with a 95% CI were computed, and statistical significance was determined at a value of p=0.05.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">GDM was associated with obesity (MUAC&#x2265;31) (AOR 2.80; 95% CI 1.58 to 4.90), previous history of caesarean section (AOR 1.91; 95% CI 1.14 to 3.21) and inadequate Minimum Dietary Diversification Score &lt;5 (AOR 3.55; 95% CI 2.15 to 5.86). The AOR for overweight (MUAC&#x2265;28&#x2009;and MUAC&lt;31) was 1.51 (95% CI 0.71 to 3.21). The odds of developing GDM were 72% lower in pregnant women who were engaging in high-level physical activity (AOR 0.28; 95% CI 0.12 to 0.67).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Obesity, but not overweight, was significantly associated with the development of GDM. Screening for GDM is recommended for pregnant women with obesity (MUAC&#x2265;31) for targeted intervention. Antenatal care providers should provide information for women of childbearing age on maintaining a healthy body weight before and in-between pregnancies and the need for healthy, diversified food and high-level physical activity.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Seifu</LastName><ForeName>Yeabsra Mesfin</ForeName><Initials>YM</Initials><Identifier Source="ORCID">0000-0002-9630-8215</Identifier><AffiliationInfo><Affiliation>Department of Public Health, Jigjiga University, Jigjiga, Ethiopia yeabsramesfin@yahoo.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deyessa</LastName><ForeName>Negussie</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Epidemiology and Biostatistics, Addis Ababa University College of Health Sciences, Addis Ababa, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Seid Yimer</LastName><ForeName>Yimer</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Preventive Medicine, Addis Ababa University, Addis Ababa, Ethiopia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016640" MajorTopicYN="Y">Diabetes, Gestational</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005002" MajorTopicYN="N" Type="Geographic">Ethiopia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011295" MajorTopicYN="Y">Prenatal Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050177" MajorTopicYN="Y">Overweight</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016015" MajorTopicYN="N">Logistic Models</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes &amp; endocrinology</Keyword><Keyword MajorTopicYN="N">Diabetes in pregnancy</Keyword><Keyword MajorTopicYN="N">Maternal medicine</Keyword><Keyword MajorTopicYN="N">Obesity</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609024</ArticleId><ArticleId IdType="pmc">PMC11603813</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-082539</ArticleId><ArticleId IdType="pii">bmjopen-2023-082539</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>WHO recommendation on the diagnosis of gestational diabetes in pregnancy. 2018. http://www.who.int/diabetes/publications/Hyperglycaemia_In_Pregnancy/en/ Available.</Citation></Reference><Reference><Citation>Hild&#xe9;n K. Gestational diabetes, obesity and pregnancy outcomes in Sweden. 2018.</Citation></Reference><Reference><Citation>Shostrom DCV, Sun Y, Oleson JJ, et al. History of Gestational Diabetes Mellitus in Relation to Cardiovascular Disease and Cardiovascular Risk Factors in US Women. Front Endocrinol (Lausanne) 2017;8:144. doi: 10.3389/fendo.2017.00144.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2017.00144</ArticleId><ArticleId IdType="pmc">PMC5483836</ArticleId><ArticleId IdType="pubmed">28694789</ArticleId></ArticleIdList></Reference><Reference><Citation>Oros Ruiz M, Perej&#xf3;n L&#xf3;pez D, Serna Arnaiz C, et al. Maternal and foetal complications of pregestational and gestational diabetes: a descriptive, retrospective cohort study. Sci Rep. 2024;14:9017. doi: 10.1038/s41598-024-59465-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-024-59465-x</ArticleId><ArticleId IdType="pmc">PMC11031602</ArticleId><ArticleId IdType="pubmed">38641705</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye W, Luo C, Huang J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 2022;377:e067946. doi: 10.1136/bmj-2021-067946.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj-2021-067946</ArticleId><ArticleId IdType="pmc">PMC9131781</ArticleId><ArticleId IdType="pubmed">35613728</ArticleId></ArticleIdList></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Gestational diabetes mellitus increased the risk of adverse neonatal outcomes: A prospective cohort study in Northwest Ethiopia. Midwifery. 2020;87:S0266-6138(20)30086-3. doi: 10.1016/j.midw.2020.102713.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.midw.2020.102713</ArticleId><ArticleId IdType="pubmed">32447182</ArticleId></ArticleIdList></Reference><Reference><Citation>Vounzoulaki E, Khunti K, Abner SC, et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. doi: 10.1136/bmj.m1361.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m1361</ArticleId><ArticleId IdType="pmc">PMC7218708</ArticleId><ArticleId IdType="pubmed">32404325</ArticleId></ArticleIdList></Reference><Reference><Citation>Moon JH, Jang HC. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab J. 2022;46:3&#x2013;14. doi: 10.4093/dmj.2021.0335.</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2021.0335</ArticleId><ArticleId IdType="pmc">PMC8831816</ArticleId><ArticleId IdType="pubmed">35135076</ArticleId></ArticleIdList></Reference><Reference><Citation>Wakwoya EB, Amante TD, Tesema KF. Gestational diabetes mellitus is a risk for macrosomia: case- control study in eastern ethiopia. Epidemiology. 2018 doi: 10.1101/492355. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/492355</ArticleId></ArticleIdList></Reference><Reference><Citation>Sunar L, Yan Z, Gynaecologist O. Evaluation of Pregnancy Outcomes in Gestational Diabetes Mellitus. Med J Pokhara Acad Health Sci. 2018;1:66&#x2013;9. doi: 10.3126/mjpahs.v1i2.23393.</Citation><ArticleIdList><ArticleId IdType="doi">10.3126/mjpahs.v1i2.23393</ArticleId></ArticleIdList></Reference><Reference><Citation>Fedak&#xe2;r A. Gestational Diabetes and Perinatal Outcomes: 5-Year Neonatal Intensive Care Experience. RPN . 2017;1:1&#x2013;5. doi: 10.31031/RPN.2017.01.000501.</Citation><ArticleIdList><ArticleId IdType="doi">10.31031/RPN.2017.01.000501</ArticleId></ArticleIdList></Reference><Reference><Citation>Domanski G, Lange AE, Ittermann T, et al. Evaluation of neonatal and maternal morbidity in mothers with gestational diabetes: a population-based study. BMC Pregnancy Childbirth. 2018;18:367. doi: 10.1186/s12884-018-2005-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-018-2005-9</ArticleId><ArticleId IdType="pmc">PMC6131836</ArticleId><ArticleId IdType="pubmed">30200916</ArticleId></ArticleIdList></Reference><Reference><Citation>Webber S. International Diabetes Federation. 10th ed. Vol. 10, Diabetes Research and Clinical Practice. 2021;10:147&#x2013;8.</Citation></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and meta-analysis. Arch Public Health . 2019;77:1&#x2013;20. doi: 10.1186/s13690-019-0362-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13690-019-0362-0</ArticleId><ArticleId IdType="pmc">PMC6683510</ArticleId><ArticleId IdType="pubmed">31402976</ArticleId></ArticleIdList></Reference><Reference><Citation>Woticha EW, Deressa W, Reja A. Prevalence of gestational diabetes mellitus and associated factors in Southern Ethiopia. Asian J Med Sci. 2018;10:86&#x2013;91. doi: 10.3126/ajms.v10i1.21331.</Citation><ArticleIdList><ArticleId IdType="doi">10.3126/ajms.v10i1.21331</ArticleId></ArticleIdList></Reference><Reference><Citation>Muche AA, Olayemi OO, Gete YK. Prevalence of gestational diabetes mellitus and associated factors among women attending antenatal care at Gondar town public health facilities, Northwest Ethiopia. BMC Pregnancy Childbirth. 2019;19:334. doi: 10.1186/s12884-019-2492-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-019-2492-3</ArticleId><ArticleId IdType="pmc">PMC6743162</ArticleId><ArticleId IdType="pubmed">31519151</ArticleId></ArticleIdList></Reference><Reference><Citation>Pirjani R, Shirzad N, Qorbani M, et al. Gestational diabetes mellitus its association with obesity: a prospective cohort study. Eat Weight Disord. 2017;22:445&#x2013;50. doi: 10.1007/s40519-016-0332-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40519-016-0332-2</ArticleId><ArticleId IdType="pubmed">27747467</ArticleId></ArticleIdList></Reference><Reference><Citation>Njete HI, John B, Mlay P, et al. Prevalence, predictors and challenges of gestational diabetes mellitus screening among pregnant women in northern Tanzania. Tropical Med Int Health . 2018;23:236&#x2013;42. doi: 10.1111/tmi.13018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/tmi.13018</ArticleId><ArticleId IdType="pubmed">29178236</ArticleId></ArticleIdList></Reference><Reference><Citation>Egbe TO, Tsaku ES, Tchounzou R, et al. Prevalence and risk factors of gestational diabetes mellitus in a population of pregnant women attending three health facilities in Limbe, Cameroon: a cross-sectional study. Pan Afr Med J. 2018;31:195. doi: 10.11604/pamj.2018.31.195.17177.</Citation><ArticleIdList><ArticleId IdType="doi">10.11604/pamj.2018.31.195.17177</ArticleId><ArticleId IdType="pmc">PMC6488967</ArticleId><ArticleId IdType="pubmed">31086639</ArticleId></ArticleIdList></Reference><Reference><Citation>Yong HY, Mohd Shariff Z, Mohd Yusof BN, et al. Independent and combined effects of age, body mass index and gestational weight gain on the risk of gestational diabetes mellitus. Sci Rep. 2020;10:8486. doi: 10.1038/s41598-020-65251-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-65251-2</ArticleId><ArticleId IdType="pmc">PMC7244566</ArticleId><ArticleId IdType="pubmed">32444832</ArticleId></ArticleIdList></Reference><Reference><Citation>Stubert J, Reister F, Hartmann S, et al. The Risks Associated With Obesity in Pregnancy. Dtsch &#xc4;rztebl Int. 2018 doi: 10.3238/arztebl.2018.0276.</Citation><ArticleIdList><ArticleId IdType="doi">10.3238/arztebl.2018.0276</ArticleId><ArticleId IdType="pmc">PMC5954173</ArticleId><ArticleId IdType="pubmed">29739495</ArticleId></ArticleIdList></Reference><Reference><Citation>Fakier A, Petro G, Fawcus S. Mid-upper arm circumference: A surrogate for body mass index in pregnant women. S Afr Med J . 2017;107:606&#x2013;10. doi: 10.7196/SAMJ.2017.v107i7.12255.</Citation><ArticleIdList><ArticleId IdType="doi">10.7196/SAMJ.2017.v107i7.12255</ArticleId><ArticleId IdType="pubmed">29025451</ArticleId></ArticleIdList></Reference><Reference><Citation>Salih Y, Omar SM, AlHabardi N, et al. The Mid-Upper Arm Circumference as a Substitute for Body Mass Index in the Assessment of Nutritional Status among Pregnant Women: A Cross-Sectional Study. Medicina (Kaunas) 2023;59:1001. doi: 10.3390/medicina59061001.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/medicina59061001</ArticleId><ArticleId IdType="pmc">PMC10304801</ArticleId><ArticleId IdType="pubmed">37374205</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma N, Bai L, Niu Z, et al. Mid-upper arm circumference predicts the risk of gestational diabetes in early pregnancy. BMC Pregnancy Childbirth. 2024;24:462. doi: 10.1186/s12884-024-06664-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-024-06664-z</ArticleId><ArticleId IdType="pmc">PMC11225188</ArticleId><ArticleId IdType="pubmed">38965475</ArticleId></ArticleIdList></Reference><Reference><Citation>Chhillar E, Puri M, Sinha RK, et al. Comparison between body mass index and mid upper arm circumference for classifying nutritional status of pregnant women: a prospective cohort study. Int J Community Med Public Health . 2021;8:2293. doi: 10.18203/2394-6040.ijcmph20211748.</Citation><ArticleIdList><ArticleId IdType="doi">10.18203/2394-6040.ijcmph20211748</ArticleId></ArticleIdList></Reference><Reference><Citation>Miele MJ, Souza RT, Calderon I, et al. Proposal of MUAC as a fast tool to monitor pregnancy nutritional status: results from a cohort study in Brazil. BMJ Open. 2021;11:e047463. doi: 10.1136/bmjopen-2020-047463.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-047463</ArticleId><ArticleId IdType="pmc">PMC8149442</ArticleId><ArticleId IdType="pubmed">34031116</ArticleId></ArticleIdList></Reference><Reference><Citation>Suresh M, Jain S, Kaul NB. Evaluation of MUAC as a tool for assessing nutritional status during pregnancy (&gt;20 weeks of gestation) in Delhi India. WN. 2021;12:65&#x2013;72. doi: 10.26596/wn.202112165-72.</Citation><ArticleIdList><ArticleId IdType="doi">10.26596/wn.202112165-72</ArticleId></ArticleIdList></Reference><Reference><Citation>Federal Minsty of Health E . Ethiopian demographic and health survey 2016. Central Statistical Agency (CSA) [Ethiopia] and ICF; 2016.</Citation></Reference><Reference><Citation>Fahim NK, Negida A, Fahim AK. Sample Size Calculation Guide - Part 3: How to Calculate the Sample Size for an Independent Case-control Study. Adv J Emerg Med . 2019;3:e20. doi: 10.22114/AJEM.v0i0.138.</Citation><ArticleIdList><ArticleId IdType="doi">10.22114/AJEM.v0i0.138</ArticleId><ArticleId IdType="pmc">PMC6548115</ArticleId><ArticleId IdType="pubmed">31172131</ArticleId></ArticleIdList></Reference><Reference><Citation>FAO  Minimum Dietary Diversity for Women- A Guide to Measurement. 2010. www.fao.org/publications Available.</Citation></Reference><Reference><Citation>Hagstr&#xf6;mer M, Oja P, Sj&#xf6;str&#xf6;m M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9:755&#x2013;62. doi: 10.1079/phn2005898.</Citation><ArticleIdList><ArticleId IdType="doi">10.1079/phn2005898</ArticleId><ArticleId IdType="pubmed">16925881</ArticleId></ArticleIdList></Reference><Reference><Citation>Forde C. Scoring the International Physical Activity Questionnaire (IPAQ) www.ipaq.ki.se Available.</Citation></Reference><Reference><Citation>Mwanri AW, Kinabo J, Ramaiya K, et al. Prevalence of gestational diabetes mellitus in urban and rural Tanzania. Diabetes Res Clin Pract. 2014;103:71&#x2013;8. doi: 10.1016/j.diabres.2013.11.021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2013.11.021</ArticleId><ArticleId IdType="pubmed">24367971</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy. 2013.</Citation><ArticleIdList><ArticleId IdType="pubmed">24199271</ArticleId></ArticleIdList></Reference><Reference><Citation>Scott AJ, Hosmer DW, Lemeshow S. Applied Logistic Regression. Biometrics. 1991;47:1632. doi: 10.2307/2532419.</Citation><ArticleIdList><ArticleId IdType="doi">10.2307/2532419</ArticleId></ArticleIdList></Reference><Reference><Citation>Kiani F, Saei Ghare Naz M, Sayehmiri F, et al. The Risk Factors of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis Study. Int J Women's Health Reprod Sci. 2017;5:253&#x2013;63. doi: 10.15296/ijwhr.2017.44.</Citation><ArticleIdList><ArticleId IdType="doi">10.15296/ijwhr.2017.44</ArticleId></ArticleIdList></Reference><Reference><Citation>Petrova Genova M, Dimitrova Atanasova B, Nikolova Todorova-Ananieva K. Body Mass Index and Insulin Sensitivity/Resistance: Cross Talks in Gestational Diabetes, Normal Pregnancy and Beyond. BMI Heal. 2019 doi: 10.5772/intechopen.78363.</Citation><ArticleIdList><ArticleId IdType="doi">10.5772/intechopen.78363</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x160;imj&#xe1;k P, Cinkajzlov&#xe1; A, Anderlov&#xe1; K, et al. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol. 2018;238:R63&#x2013;77. doi: 10.1530/JOE-18-0032.</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/JOE-18-0032</ArticleId><ArticleId IdType="pubmed">29743342</ArticleId></ArticleIdList></Reference><Reference><Citation>Feleke BE. Determinants of gestational diabetes mellitus: a case-control study. J Matern Fetal Neonatal Med. 2018;31:2584&#x2013;9. doi: 10.1080/14767058.2017.1347923.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/14767058.2017.1347923</ArticleId><ArticleId IdType="pubmed">28651450</ArticleId></ArticleIdList></Reference><Reference><Citation>Bune GT. Gestational Diabetes Mellitus Risk Factors in Pregnant Women Attending Public Health Institutions in Ethiopia&#x2019;s Sidama Region: An Unmatched Case-Control Study. Diabetes Metab Syndr Obes. 2024;17:2303&#x2013;16. doi: 10.2147/DMSO.S457739.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S457739</ArticleId><ArticleId IdType="pmc">PMC11166162</ArticleId><ArticleId IdType="pubmed">38863518</ArticleId></ArticleIdList></Reference><Reference><Citation>Atlaw D, Sahiledengle B, Assefa T, et al. Incidence and risk factors of gestational diabetes mellitus in Goba town, Southeast Ethiopia: a prospective cohort study. BMJ Open. 2022;12:e060694. doi: 10.1136/bmjopen-2021-060694.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2021-060694</ArticleId><ArticleId IdType="pmc">PMC9516079</ArticleId><ArticleId IdType="pubmed">36167396</ArticleId></ArticleIdList></Reference><Reference><Citation>Mijatovic-Vukas J, Capling L, Cheng S, et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients. 2018;10:698. doi: 10.3390/nu10060698.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu10060698</ArticleId><ArticleId IdType="pmc">PMC6024719</ArticleId><ArticleId IdType="pubmed">29849003</ArticleId></ArticleIdList></Reference><Reference><Citation>Tryggvadottir EA, Medek H, Birgisdottir BE, et al. Association between healthy maternal dietary pattern and risk for gestational diabetes mellitus. Eur J Clin Nutr. 2016;70:237&#x2013;42. doi: 10.1038/ejcn.2015.145.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ejcn.2015.145</ArticleId><ArticleId IdType="pubmed">26350393</ArticleId></ArticleIdList></Reference><Reference><Citation>Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020;17:e1003053. doi: 10.1371/journal.pmed.1003053.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003053</ArticleId><ArticleId IdType="pmc">PMC7059907</ArticleId><ArticleId IdType="pubmed">32142510</ArticleId></ArticleIdList></Reference><Reference><Citation>Mdoe MB, Kibusi SM, Munyogwa MJ, et al. Prevalence and predictors of gestational diabetes mellitus among pregnant women attending antenatal clinic in Dodoma region, Tanzania: an analytical cross-sectional study. BMJNPH . 2021;4:69&#x2013;79. doi: 10.1136/bmjnph-2020-000149.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjnph-2020-000149</ArticleId><ArticleId IdType="pmc">PMC8258095</ArticleId><ArticleId IdType="pubmed">34308114</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen CL, Pham NM, Lee AH, et al. Physical activity during pregnancy is associated with a lower prevalence of gestational diabetes mellitus in Vietnam. Acta Diabetol. 2018;55:955&#x2013;62. doi: 10.1007/s00592-018-1174-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-018-1174-3</ArticleId><ArticleId IdType="pubmed">29948409</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang C, Wei Y, Zhang X, et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol. 2017;216:340&#x2013;51. doi: 10.1016/j.ajog.2017.01.037.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajog.2017.01.037</ArticleId><ArticleId IdType="pubmed">28161306</ArticleId></ArticleIdList></Reference><Reference><Citation>Ming W-K, Ding W, Zhang CJP, et al. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018;18:440. doi: 10.1186/s12884-018-2068-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12884-018-2068-7</ArticleId><ArticleId IdType="pmc">PMC6233372</ArticleId><ArticleId IdType="pubmed">30419848</ArticleId></ArticleIdList></Reference><Reference><Citation>Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab. 2013;2013:285948. doi: 10.1155/2013/285948.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/285948</ArticleId><ArticleId IdType="pmc">PMC3649306</ArticleId><ArticleId IdType="pubmed">23691290</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39609009</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>27</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Implementation strategies for providing optimised tuberculosis and diabetes integrated care in LMICs (POTENTIAL): protocol for a multiphase sequential and concurrent mixed-methods study.</ArticleTitle><Pagination><StartPage>e093747</StartPage><MedlinePgn>e093747</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e093747</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2024-093747</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Almost a quarter of patients with tuberculosis (TB) in Pakistan may also have diabetes, with an additional quarter in a pre-diabetic state. Diabetes is a risk factor for TB. When it co-occurs with TB, it leads to poorer outcomes for both conditions, considerably increasing the burden on individuals, families and the healthcare system. We aim to improve health, quality of life and economic outcomes for people with TB and diabetes by optimising diabetes prevention, screening and management within TB care. The objectives of this study are to: (1) design an integrated optimised tuberculosis-diabetes care package (Opt-TBD) and its implementation strategies; (2) pilot and refine these implementation strategies and (3) implement and evaluate the Opt-TBD care package in 15 TB care facilities in Pakistan.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">We will work with the TB programme across two provinces of Pakistan: Khyber Pakhtunkhwa and Punjab. TB care facilities will be selected from urban and rural settings of these provinces and will include three levels: primary, secondary and tertiary care settings. This multiphase mixed-method study has three sequential phases. Once ready, the care package and its implementation strategies will be piloted to inform further refinement. The package will be implemented in 15 urban and rural TB care facilities and evaluated for its Reach, Effectiveness, Adoption, Implementation and Maintenance, and potential for scale-up. Quantitative data will assess provider adoption and the package's accessibility and effectiveness for patients with TB and with diabetes and pre-diabetes. Qualitative data will explore barriers and facilitators for successful implementation and scale-up. Data will be analysed using statistical methods-including descriptive and inferential statistics-for quantitative data and framework analysis for qualitative data, with triangulation to integrate findings.</AbstractText><AbstractText Label="ETHICS AND DISSEMINATION" NlmCategory="BACKGROUND">Ethics approval was granted by the National Bioethics Committee of Pakistan (NBCR-1010). Findings will be shared through academic publications, conferences and public outreach.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Afaq</LastName><ForeName>Saima</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-9080-2220</Identifier><AffiliationInfo><Affiliation>University of York, York, UK saima.afaq@york.ac.uk.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Imperial College London, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zala</LastName><ForeName>Zala</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aleem</LastName><ForeName>Saima</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-1892-3834</Identifier><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qazi</LastName><ForeName>Fatima Khalid</ForeName><Initials>FK</Initials><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jamal</LastName><ForeName>Syeda Fatima</ForeName><Initials>SF</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khan</LastName><ForeName>Zohaib</ForeName><Initials>Z</Initials><Identifier Source="ORCID">0000-0002-1885-8254</Identifier><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sarfraz</LastName><ForeName>Mariyam</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Health Services Academy, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Niazi</LastName><ForeName>Asima Khan</ForeName><Initials>AK</Initials><AffiliationInfo><Affiliation>Baqai Medical University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Safdar</LastName><ForeName>Nauman</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Freelance Researcher, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Basit</LastName><ForeName>Abdul</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-8041-3360</Identifier><AffiliationInfo><Affiliation>Baqai Medical University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ul-Haq</LastName><ForeName>Zia</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Khyber Medical University, Peshawar, Pakistan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>University of Glasgow, Glasgow, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Iqbal</LastName><ForeName>Romaina</ForeName><Initials>R</Initials><Identifier Source="ORCID">0000-0002-5364-4366</Identifier><AffiliationInfo><Affiliation>Aga Khan University, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fatima</LastName><ForeName>Razia</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Common Management Unit AIDS, TB and Malaria, Islamabad, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hewitt</LastName><ForeName>Catherine</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Najma</ForeName><Initials>N</Initials><Identifier Source="ORCID">0000-0003-1794-2152</Identifier><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Hull York Medical School, Hull, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parrott</LastName><ForeName>Steve</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Kamran</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0003-1529-7778</Identifier><AffiliationInfo><Affiliation>University of York, York, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="Y">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention &amp; control</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019033" MajorTopicYN="Y">Delivery of Health Care, Integrated</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization &amp; administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003906" MajorTopicYN="N">Developing Countries</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011788" MajorTopicYN="N">Quality of Life</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Implementation Science</Keyword><Keyword MajorTopicYN="N">Tuberculosis</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39609009</ArticleId><ArticleId IdType="pmc">PMC11603734</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2024-093747</ArticleId><ArticleId IdType="pii">bmjopen-2024-093747</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Jarde A, Ma R, Todowede OO, et al. Prevalence, clusters, and burden of complex tuberculosis multimorbidity in low- and middle-income countries: a systematic review and meta-analysis. Public and Global Health. 2022 doi: 10.1101/2022.09.22.22280228. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/2022.09.22.22280228</ArticleId></ArticleIdList></Reference><Reference><Citation>Waheed MS. Tuberculosis. In: World Health Organization - Regional Office for the Eastern Mediterranean. https://www.emro.who.int/pak/programmes/stop-tuberculosis.html Available.</Citation></Reference><Reference><Citation>CMT, TAC, TAG, i-Base  TB cases on the rise in Pakistan. https://www.tbonline.info/posts/2019/4/21/tb-cases-rise-pakistan/ Available.</Citation></Reference><Reference><Citation>Global health estimates: Leading causes of DALYs. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-estimates-leading-causes-of-dalys Available.</Citation></Reference><Reference><Citation>Aamir AH, Ul-Haq Z, Mahar SA, et al. Diabetes Prevalence Survey of Pakistan (DPS-PAK): prevalence of type 2 diabetes mellitus and prediabetes using HbA1c: a population-based survey from Pakistan. BMJ Open. 2019;9:e025300. doi: 10.1136/bmjopen-2018-025300.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2018-025300</ArticleId><ArticleId IdType="pmc">PMC6398762</ArticleId><ArticleId IdType="pubmed">30796126</ArticleId></ArticleIdList></Reference><Reference><Citation>Habib SS, Rafiq S, Jamal WZ, et al. Engagement of private healthcare providers for case finding of tuberculosis and diabetes mellitus in Pakistan. BMC Health Serv Res. 2020;20:328. doi: 10.1186/s12913-020-05217-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-020-05217-2</ArticleId><ArticleId IdType="pmc">PMC7168982</ArticleId><ArticleId IdType="pubmed">32306961</ArticleId></ArticleIdList></Reference><Reference><Citation>Silva DR, Mu&#xf1;oz-Torrico M, Duarte R, et al. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs. J Bras Pneumol. 2018;44:145&#x2013;52. doi: 10.1590/s1806-37562017000000443.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/s1806-37562017000000443</ArticleId><ArticleId IdType="pmc">PMC6044656</ArticleId><ArticleId IdType="pubmed">29791552</ArticleId></ArticleIdList></Reference><Reference><Citation>TB and diabetes. https://www.who.int/publications/digital/global-tuberculosis-report-2021/featured-topics/tb-diabetes Available.</Citation></Reference><Reference><Citation>Nyirenda JLZ, Bockey A, Wagner D, et al. Effect of Tuberculosis (TB) and Diabetes mellitus (DM) integrated healthcare on bidirectional screening and treatment outcomes among TB patients and people living with DM in developing countries: a systematic review. Pathog Glob Health. 2023;117:36&#x2013;51. doi: 10.1080/20477724.2022.2046967.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/20477724.2022.2046967</ArticleId><ArticleId IdType="pmc">PMC9848381</ArticleId><ArticleId IdType="pubmed">35296216</ArticleId></ArticleIdList></Reference><Reference><Citation>Joshi R, Behera D, Di Tanna GL, et al. Integrated Management of Diabetes and Tuberculosis in Rural India &#x2013; Results From a Pilot Study. Front Public Health. 2022;10:766847. doi: 10.3389/fpubh.2022.766847.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2022.766847</ArticleId><ArticleId IdType="pmc">PMC9127505</ArticleId><ArticleId IdType="pubmed">35619802</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Collaborative Framework for Care and Control of Tuberculosis and Diabetes. 2011.</Citation><ArticleIdList><ArticleId IdType="pubmed">26290931</ArticleId></ArticleIdList></Reference><Reference><Citation>Toro N. Who global strategy on integrated people-centred health services (IPCHS) / Estrategia mundial en servicios de salud integrada centrado en las personas (IPCHS) Int J Integr Care. 2015;15 doi: 10.5334/ijic.2413.</Citation><ArticleIdList><ArticleId IdType="doi">10.5334/ijic.2413</ArticleId></ArticleIdList></Reference><Reference><Citation>Basir MS, Habib SS, Zaidi SMA, et al. Operationalization of bi-directional screening for tuberculosis and diabetes in private sector healthcare clinics in Karachi, Pakistan. BMC Health Serv Res. 2019;19:147. doi: 10.1186/s12913-019-3975-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-019-3975-7</ArticleId><ArticleId IdType="pmc">PMC6404337</ArticleId><ArticleId IdType="pubmed">30841929</ArticleId></ArticleIdList></Reference><Reference><Citation>Foo CD, Shrestha P, Wang L, et al. Integrating tuberculosis and noncommunicable diseases care in low- and middle-income countries (LMICs): A systematic review. PLoS Med. 2022;19:e1003899. doi: 10.1371/journal.pmed.1003899.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003899</ArticleId><ArticleId IdType="pmc">PMC8806070</ArticleId><ArticleId IdType="pubmed">35041654</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuchler M, Rauscher M, Rangnow P, et al. Participatory Approaches in Family Health Promotion as an Opportunity for Health Behavior Change-A Rapid Review. Int J Environ Res Public Health. 2022;19:8680. doi: 10.3390/ijerph19148680.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph19148680</ArticleId><ArticleId IdType="pmc">PMC9317372</ArticleId><ArticleId IdType="pubmed">35886532</ArticleId></ArticleIdList></Reference><Reference><Citation>SDG target 3.3 communicable diseases. https://www.who.int/data/gho/data/themes/topics/sdg-target-3_3-communicable-diseases Available.</Citation></Reference><Reference><Citation>United Nations Statistics Division. https://unstats.un.org/sdgs/metadata/files/Metadata-03-03-02 Available.</Citation></Reference><Reference><Citation>Siddiqi K, Siddiqi N, Javaid A. Multimorbidity in people with tuberculosis. Pak J Chest Med. 2020;26:109&#x2013;12.</Citation></Reference><Reference><Citation>Practice guidelines resources. https://professional.diabetes.org/content-page/practice-guidelines-resources Available.</Citation></Reference><Reference><Citation>Health system building blocks. https://extranet.who.int/nhptool/BuildingBlock.aspx Available.</Citation></Reference><Reference><Citation>Kroeze JH, Zyl I. The theme of hermeneutics in IS - the need for a structured literature review. Am Conf Inf Syst. 2015 http://dx.doi.org/ Available.</Citation></Reference><Reference><Citation>Powell BJ, Waltz TJ, Chinman MJ, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:21. doi: 10.1186/s13012-015-0209-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13012-015-0209-1</ArticleId><ArticleId IdType="pmc">PMC4328074</ArticleId><ArticleId IdType="pubmed">25889199</ArticleId></ArticleIdList></Reference><Reference><Citation>Proctor E, Silmere H, Raghavan R, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38:65&#x2013;76. doi: 10.1007/s10488-010-0319-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10488-010-0319-7</ArticleId><ArticleId IdType="pmc">PMC3068522</ArticleId><ArticleId IdType="pubmed">20957426</ArticleId></ArticleIdList></Reference><Reference><Citation>Updated CFIR Constructs. https://cfirguide.org/constructs/ Available.</Citation></Reference><Reference><Citation>National TB Control Programme - Pakistan. 2020. https://ntp.gov.pk Available.</Citation></Reference><Reference><Citation>The Union  Management of diabetes mellitus-tuberculosis - A guide to the essential practice. https://theunion.org/technical-publications/management-of-diabetes-mellitus-tuberculosis-a-guide-to-the-essential-practice Available.</Citation></Reference><Reference><Citation>RE-AIM  Home &#x2013; Reach Effectiveness Adoption Implementation Maintenance. https://re-aim.org/ Available.</Citation></Reference><Reference><Citation>Yorke E, Atiase Y, Akpalu J, et al. The Bidirectional Relationship between Tuberculosis and Diabetes. Tuberc Res Treat. 2017;2017:1702578. doi: 10.1155/2017/1702578.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2017/1702578</ArticleId><ArticleId IdType="pmc">PMC5705893</ArticleId><ArticleId IdType="pubmed">29270319</ArticleId></ArticleIdList></Reference><Reference><Citation>Khalid N, Ahmad F, Qureshi FM. Association amid the comorbidity of Diabetes Mellitus in patients of Active Tuberculosis in Pakistan: A matched case control study. Pak J Med Sci . 2021;37:816&#x2013;20. doi: 10.12669/pjms.37.3.3274.</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.37.3.3274</ArticleId><ArticleId IdType="pmc">PMC8155445</ArticleId><ArticleId IdType="pubmed">34104171</ArticleId></ArticleIdList></Reference><Reference><Citation>Tahir Z, Ahmad M-U-D, Akhtar AM, et al. Diabetes mellitus among tuberculosis patients: a cross sectional study from Pakistan. Afr Health Sci. 2016;16:671&#x2013;6. doi: 10.4314/ahs.v16i3.5.</Citation><ArticleIdList><ArticleId IdType="doi">10.4314/ahs.v16i3.5</ArticleId><ArticleId IdType="pmc">PMC5112000</ArticleId><ArticleId IdType="pubmed">27917198</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization Monitoring the Building Blocks of Health Systems: A Handbook of Indicators and Their Measurement Strategies. 2011.</Citation></Reference><Reference><Citation>Yakovchenko V, Chinman MJ, Lamorte C, et al. Refining Expert Recommendations for Implementing Change (ERIC) strategy surveys using cognitive interviews with frontline providers. Implement Sci Commun . 2023;4:42. doi: 10.1186/s43058-023-00409-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s43058-023-00409-3</ArticleId><ArticleId IdType="pmc">PMC10122282</ArticleId><ArticleId IdType="pubmed">37085937</ArticleId></ArticleIdList></Reference><Reference><Citation>Proctor EK, Powell BJ, McMillen JC. Implementation strategies: recommendations for specifying and reporting. Implement Sci. 2013;8:139. doi: 10.1186/1748-5908-8-139.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1748-5908-8-139</ArticleId><ArticleId IdType="pmc">PMC3882890</ArticleId><ArticleId IdType="pubmed">24289295</ArticleId></ArticleIdList></Reference><Reference><Citation>Strategy design. https://cfirguide.org/choosing-strategies/ Available.</Citation></Reference><Reference><Citation>Implementation process domain. https://cfirguide.org/constructs/implementation-process-domain/ Available.</Citation></Reference><Reference><Citation>O&#x2019;Donovan B, Kirke C, Pate M, et al. Mapping the Theoretical Domain Framework to the Consolidated Framework for Implementation Research: do multiple frameworks add value? Implement Sci Commun . 2023;4:100. doi: 10.1186/s43058-023-00466-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s43058-023-00466-8</ArticleId><ArticleId IdType="pmc">PMC10464139</ArticleId><ArticleId IdType="pubmed">37620981</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaw RB, Sweet SN, McBride CB, et al. Operationalizing the reach, effectiveness, adoption, implementation, maintenance (RE-AIM) framework to evaluate the collective impact of autonomous community programs that promote health and well-being. BMC Public Health. 2019;19:803. doi: 10.1186/s12889-019-7131-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-019-7131-4</ArticleId><ArticleId IdType="pmc">PMC6591988</ArticleId><ArticleId IdType="pubmed">31234804</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39608964</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>11</Month><Day>28</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2530-0180</ISSN><JournalIssue CitedMedium="Internet"><Volume>71</Volume><Issue>9</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Endocrinologia, diabetes y nutricion</Title><ISOAbbreviation>Endocrinol Diabetes Nutr (Engl Ed)</ISOAbbreviation></Journal><ArticleTitle>Predictive value of circulating miR-409-3p for major adverse cardiovascular events in patients with type 2 diabetes mellitus and coronary heart disease.</ArticleTitle><Pagination><StartPage>372</StartPage><EndPage>379</EndPage><MedlinePgn>372-379</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.endien.2024.11.002</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2530-0180(24)00108-2</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To investigate the serum levels of miR-409-3p in patients with type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD) and its effect on high glucose (HG)-induced myocardial cell injury.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 250 patients with T2DM admitted to our hospital from April 2020 through April 2022 were enrolled as the study subjects, and then grouped into T2DM+CHD (group #1) and T2DM (group #2). Real-time quantitative PCR (RT-qPCR) was used to measure the levels of serum miR-409-3p. The clinical performance of miR-409-3p was evaluated. The human cardiomyocyte AC16 cells were cultured in vitro and treated with HG. MTT assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. Bioinformatic analyses were performed to explore the potential mechanism of miR-409-3p in T2DM complicated with CHD.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The expression level of miR-409-3p was increased in the T2DM+CHD group and had a relative high diagnostic value for distinguishing patients with T2DM+CHD from patients with T2DM alone. Correlation analysis showed that serum miR-409-3p was positively associated with the Gensini score and adverse cardiovascular events; miR-409-3p knockdown alleviated HG-induced AC16 cell damage and reduced cell apoptosis. CREB1, BCL2, and SMAD2 were the top 3 hub genes of miR-409-3p.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Serum miR-409-3p may serve as a potential diagnostic and prognostic biomarker for predicting T2DM complicated with CHD and forecast adverse events. Targeting miR-409-3p may be a novel therapeutic strategy to intervene in the development of T2DM+CHD.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 SEEN and SED. Published by Elsevier Espa&#xf1;a, S.L.U. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Cao</LastName><ForeName>Liang</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Beijing University of Chinese Medicine East Hospital, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Xiangrong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department Four of Recuperation, Second Sanatorium of Qingdao Special Recuperation Center of PLA Navy, Qingdao, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Ying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jia</LastName><ForeName>Wei</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, BenQ Medical Center, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Jiayang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, The People's Hospital of Suzhou National New&amp;high-tech Development Zone, Suzhou, China. Electronic address: drliujian_1982@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Spain</Country><MedlineTA>Endocrinol Diabetes Nutr (Engl Ed)</MedlineTA><NlmUniqueID>101717565</NlmUniqueID><ISSNLinking>2530-0180</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C572367">MIRN409 microRNA, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D035683" MajorTopicYN="Y">MicroRNAs</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003327" MajorTopicYN="Y">Coronary Disease</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011237" MajorTopicYN="N">Predictive Value of Tests</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">CC</Keyword><Keyword MajorTopicYN="N">CHD</Keyword><Keyword MajorTopicYN="N">DMT2</Keyword><Keyword MajorTopicYN="N">Funci&#xf3;n</Keyword><Keyword MajorTopicYN="N">Function</Keyword><Keyword MajorTopicYN="N">Prognosis</Keyword><Keyword MajorTopicYN="N">Pron&#xf3;stico</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">miR-409-3p</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>5</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>24</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608964</ArticleId><ArticleId IdType="doi">10.1016/j.endien.2024.11.002</ArticleId><ArticleId IdType="pii">S2530-0180(24)00108-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39608963</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2213-8595</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>The lancet. Diabetes &amp; endocrinology</Title><ISOAbbreviation>Lancet Diabetes Endocrinol</ISOAbbreviation></Journal><ArticleTitle>Time to reframe the disease staging system for type 1 diabetes.</ArticleTitle><Pagination><StartPage>924</StartPage><EndPage>933</EndPage><MedlinePgn>924-933</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S2213-8587(24)00239-0</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2213-8587(24)00239-0</ELocationID><Abstract><AbstractText>In 2015, introduction of a disease staging system offered a framework for benchmarking progression to clinical type 1 diabetes. This model, based on islet autoantibodies (stage 1) and dysglycaemia (stage 2) before type 1 diabetes diagnosis (stage 3), has facilitated screening and identification of people at risk. Yet, there are many limitations to this model as the stages combine a very heterogeneous group of individuals; do not have high specificity for type 1 diabetes; can occur without persistence (ie, reversion to an earlier risk stage); and exclude age and other influential risk factors. The current staging system also infers that individuals at risk of type 1 diabetes progress linearly from stage 1 to stage 2 and subsequently stage 3, whereas such movements are often more complex. With the approval of teplizumab by the US Food and Drug Administration in 2022 to delay type 1 diabetes in people at stage 2, there is a need to refine the definition and accuracy of type 1 diabetes staging. Theoretically, we propose that a type 1 diabetes risk calculator should incorporate any available demographic, genetic, autoantibody, metabolic, and immune data that could be continuously updated. Additionally, we call to action for the field to increase the breadth of knowledge regarding type 1 diabetes risk in non-relatives, adults, and individuals from minority populations.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Jacobsen</LastName><ForeName>Laura M</ForeName><Initials>LM</Initials><AffiliationInfo><Affiliation>Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA. Electronic address: lauraj@ufl.edu.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Atkinson</LastName><ForeName>Mark A</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Department of Paediatrics and Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sosenko</LastName><ForeName>Jay M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, University of Miami, Miami, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gitelman</LastName><ForeName>Stephen E</ForeName><Initials>SE</Initials><AffiliationInfo><Affiliation>Department of Paediatrics, Diabetes Center, University of California San Francisco, San Francisco, California, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Lancet Diabetes Endocrinol</MedlineTA><NlmUniqueID>101618821</NlmUniqueID><ISSNLinking>2213-8587</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001323">Autoantibodies</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018450" MajorTopicYN="Y">Disease Progression</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001323" MajorTopicYN="N">Autoantibodies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of interests No support was provided for this work. LMJ has received grant funding from the US National Institutes of Health (NIH); and participated in an advisory board for Insulet and a data and safety monitoring board (DSMB) for a trial funded by the Juvenile Diabetes Research Foundation. MAA has consulted for Abeta, ActoBio Therapeutics, CodeBio, Diamyd Medical, Endsulin, ForkHead Biotherapeutics, Inspira Therapeutics, Janssen, Nirmindas, Provention Bio, Quell, Repitoire, and Novo Nordisk; has spoken for Provention Bio, Sanofi, and Vertex; participated in a DSMB for IMCYSE; has a fiduciary role in Diamyd Medical; and owns shares in Diamyd Medical, Endsulin, and IM Therapeutics. JMS declares no competing interests. SEG has received grant funding from the NIH, Provention Bio, Sanofi, and IntrexonT1D Partners; has served on advisory boards for Abata, Avotres, Genentech, GentiBio, Provention Bio, SAB Biotherapeutics, Sana Biotechnology, and Sanofi; has participated in a DSMB for Diamyd, INNODIA, and JDRF trials; and owns shares in SAB Biotherapeutics.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>6</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>7</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>19</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608963</ArticleId><ArticleId IdType="doi">10.1016/S2213-8587(24)00239-0</ArticleId><ArticleId IdType="pii">S2213-8587(24)00239-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39608858</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>28</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2052-4897</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>28</Day></PubDate></JournalIssue><Title>BMJ open diabetes research &amp; care</Title><ISOAbbreviation>BMJ Open Diabetes Res Care</ISOAbbreviation></Journal><ArticleTitle>Effects of concurrent aerobic and strength training in patients with type 2 diabetes: Bayesian pairwise and dose-response meta-analysis.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e004400</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjdrc-2024-004400</ELocationID><Abstract><AbstractText>This study aimed to investigate the effects of concurrent aerobic and strength training (CT) in patients with type 2 diabetes and determine the most effective dose of CT. From the inception of the databases to March 2024, we conducted a systematic search of four electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) to identify randomized controlled trials (RCTs) on CT intervention in patients with type 2 diabetes. Two independent authors assessed the risk of bias of the study using the Cochrane Risk of Bias Assessment Tools. Results analyzed included glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), body mass index, body fat percentage, blood pressure, and VO<sub>2</sub>max. Pairwise and dose-response meta-analyses using Bayesian hierarchical random-effects modeling were performed to analyze the effects of CT in patients with type 2 diabetes. From the inception of the databases to March 2024, we conducted a systematic search of four electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) to identify randomized controlled trials (RCTs) on CT intervention in patients with type 2 diabetes. Two independent authors assessed the risk of bias of the study using the Cochrane Risk of Bias Assessment Tools. Results analyzed included glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), body mass index, body fat percentage, blood pressure, and VO<sub>2</sub>max. Pairwise and dose-response meta-analyses using Bayesian hierarchical random-effects modeling were performed to analyze the effects of CT in patients with type 2 diabetes. A total of 1948 participants (935 males) were included in 23 RCTs. The male/female ratio of participants was 52/48; the mean age range was 50-65 years. The results show that CT significantly reduced HbA1c levels (MD=-0.48%, 95% CrI: -0.55 to -0.40), with some heterogeneity among different levels (SD=0.31, 95% CrI: 0.17 to 0.51), and the model converged well. Similarly, FBG levels were also significantly improved (MD=-0.48&#x2009;mmol/L, 95% CrI: -0.55 to -0.40), with greater heterogeneity (SD=17.73, 95% CrI: 11.23 to 28.09). Additionally, we found a non-linear dose-response relationship between CT and HbA1c levels, with an optimal dose of 1030 METs-min/week (MD=-0.47%, 95% CrI: -0.68 to -0.26, SE=0.11). CT significantly improves several health indicators in patients with type 2 diabetes. A non-linear dose-response relationship was observed between the training dose of CT and HbA1c, and it is recommended that 270&#x2009;min of moderate-intensity CT or 160&#x2009;min of vigorous-intensity CT be performed weekly.PROSPERO registration number: CRD42024547119.<b>Keywords:</b> meta-analysis; concurrent aerobic and strength training.</AbstractText><CopyrightInformation>&#xa9; Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Xue</LastName><ForeName>Han</ForeName><Initials>H</Initials><Identifier Source="ORCID">0009-0008-1911-2674</Identifier><AffiliationInfo><Affiliation>Nantong University, Nantong, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zou</LastName><ForeName>Yuehui</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Nantong University, Nantong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Shijie</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Nantong University, Nantong, China 1916551441@qq.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open Diabetes Res Care</MedlineTA><NlmUniqueID>101641391</NlmUniqueID><ISSNLinking>2052-4897</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001499" MajorTopicYN="Y">Bayes Theorem</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055070" MajorTopicYN="Y">Resistance Training</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Exercise</Keyword><Keyword MajorTopicYN="N">Training</Keyword><Keyword MajorTopicYN="N">Type 2 Diabetes</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>21</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608858</ArticleId><ArticleId IdType="pmc">PMC11603704</ArticleId><ArticleId IdType="doi">10.1136/bmjdrc-2024-004400</ArticleId><ArticleId IdType="pii">12/6/e004400</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx N, Federici M, Sch&#xfc;tt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44:4043&#x2013;140. doi: 10.1093/eurheartj/ehad192.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehad192</ArticleId><ArticleId IdType="pubmed">37622663</ArticleId></ArticleIdList></Reference><Reference><Citation>Sluik D, Buijsse B, Muckelbauer R, et al. Physical Activity and Mortality in Individuals With Diabetes Mellitus: A Prospective Study and Meta-analysis. Arch Intern Med. 2012;172:1285&#x2013;95. doi: 10.1001/archinternmed.2012.3130.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinternmed.2012.3130</ArticleId><ArticleId IdType="pubmed">22868663</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang J, Tam WWS, Hounsri K, et al. Effectiveness of Combined Aerobic and Resistance Exercise on Cognition, Metabolic Health, Physical Function, and Health-related Quality of Life in Middle-aged and Older Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2024;105:1585&#x2013;99. doi: 10.1016/j.apmr.2023.10.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apmr.2023.10.005</ArticleId><ArticleId IdType="pubmed">37875170</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Mhanna SB, Batrakoulis A, Wan Ghazali WS, et al. Effects of combined aerobic and resistance training on glycemic control, blood pressure, inflammation, cardiorespiratory fitness and quality of life in patients with type 2 diabetes and overweight/obesity: a systematic review and meta-analysis. PeerJ. 2024;12:e17525. doi: 10.7717/peerj.17525.</Citation><ArticleIdList><ArticleId IdType="doi">10.7717/peerj.17525</ArticleId><ArticleId IdType="pmc">PMC11182026</ArticleId><ArticleId IdType="pubmed">38887616</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan B, Ge L, Xun Y-Q, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15:72. doi: 10.1186/s12966-018-0703-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-018-0703-3</ArticleId><ArticleId IdType="pmc">PMC6060544</ArticleId><ArticleId IdType="pubmed">30045740</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang Z, Zhang M, Wang C, et al. The Best Exercise Modality and Dose to Reduce Glycosylated Hemoglobin in Patients with Type 2 Diabetes: A Systematic Review with Pairwise, Network, and Dose&#x2013;Response Meta-Analyses. Sports Med . 2024;54:2557&#x2013;70. doi: 10.1007/s40279-024-02057-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40279-024-02057-6</ArticleId><ArticleId IdType="pubmed">38916824</ArticleId></ArticleIdList></Reference><Reference><Citation>Hordern MD, Coombes JS, Cooney LM, et al. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart . 2009;95:1343&#x2013;9. doi: 10.1136/hrt.2009.165571.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/hrt.2009.165571</ArticleId><ArticleId IdType="pubmed">19429570</ArticleId></ArticleIdList></Reference><Reference><Citation>Gram B, Christensen R, Christiansen C, et al. Effects of nordic walking and exercise in type 2 diabetes mellitus: a randomized controlled trial. Clin J Sport Med . 2010;20:355&#x2013;61. doi: 10.1227/NEU.0b013e3181e56e0a.</Citation><ArticleIdList><ArticleId IdType="doi">10.1227/NEU.0b013e3181e56e0a</ArticleId><ArticleId IdType="pubmed">20818193</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun Y, Lu B, Su W, et al. Comprehensive assessment of the effects of concurrent strength and endurance training on lipid profile, glycemic control, and insulin resistance in type 2 diabetes: A meta-analysis. Medicine (Baltimore) 2024;103:e37494. doi: 10.1097/MD.0000000000037494.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000037494</ArticleId><ArticleId IdType="pmc">PMC10957025</ArticleId><ArticleId IdType="pubmed">38517995</ArticleId></ArticleIdList></Reference><Reference><Citation>Gallardo-G&#xf3;mez D, Salazar-Mart&#xed;nez E, Alfonso-Rosa RM, et al. Optimal Dose and Type of Physical Activity to Improve Glycemic Control in People Diagnosed With Type 2 Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2024;47:295&#x2013;303. doi: 10.2337/dc23-0800.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-0800</ArticleId><ArticleId IdType="pubmed">38241499</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.n71</ArticleId><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Higgins J. Cochrane handbook for systematic reviews of interventions version 6.4. 2023</Citation></Reference><Reference><Citation>JP H.  Cochrane Handbook for Systematic Reviews of Interventions Version 5.0. 2: The Cochrane Collaboration. 2009. https://training.cochrane.org/handbook/archive/v5.0.2/ Available.</Citation></Reference><Reference><Citation>Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. doi: 10.1136/bmj.328.7454.1490. Available.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.328.7454.1490</ArticleId><ArticleId IdType="pmc">PMC428525</ArticleId><ArticleId IdType="pubmed">15205295</ArticleId></ArticleIdList></Reference><Reference><Citation>B&#xfc;rkner P-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018;10:395. doi: 10.32614/RJ-2018-017.</Citation><ArticleIdList><ArticleId IdType="doi">10.32614/RJ-2018-017</ArticleId></ArticleIdList></Reference><Reference><Citation>Etzioni RD, Kadane JB. Bayesian statistical methods in public health and medicine. Annu Rev Public Health. 1995;16</Citation><ArticleIdList><ArticleId IdType="pubmed">7639872</ArticleId></ArticleIdList></Reference><Reference><Citation>Williams DR, Rast P, B&#xfc;rkner P-C. Bayesian meta-analysis with weakly informative prior distributions. PsyArXiv . 2018 doi: 10.31234/osf.io/7tbrm. Preprint.</Citation><ArticleIdList><ArticleId IdType="doi">10.31234/osf.io/7tbrm</ArticleId></ArticleIdList></Reference><Reference><Citation>M. J. Betancourt MG. Hamiltonian monte carlo for hierarchical models. 2013</Citation></Reference><Reference><Citation>Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7:434&#x2013;55.</Citation></Reference><Reference><Citation>Sacks DB, Bruns DE, Goldstein DE, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48:436&#x2013;72.</Citation><ArticleIdList><ArticleId IdType="pubmed">11861436</ArticleId></ArticleIdList></Reference><Reference><Citation>Herrmann SD, Willis EA, Ainsworth BE, et al. 2024 Adult Compendium of Physical Activities: A third update of the energy costs of human activities. J Sport Health Sci. 2024;13:6&#x2013;12. doi: 10.1016/j.jshs.2023.10.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jshs.2023.10.010</ArticleId><ArticleId IdType="pmc">PMC10818145</ArticleId><ArticleId IdType="pubmed">38242596</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferguson B. ACSM&#x2019;s guidelines for exercise testing and prescription. J Can Chiropr Assoc. 2014;58:328</Citation></Reference><Reference><Citation>Bassi D, Mendes RG, Arakelian VM, et al. Potential Effects on Cardiorespiratory and Metabolic Status After a Concurrent Strength and Endurance Training Program in Diabetes Patients - a Randomized Controlled Trial. Sports Med Open. 2015;2:31. doi: 10.1186/s40798-016-0052-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40798-016-0052-1</ArticleId><ArticleId IdType="pmc">PMC4981628</ArticleId><ArticleId IdType="pubmed">27563535</ArticleId></ArticleIdList></Reference><Reference><Citation>Flores-Opazo M, McGee SL, Hargreaves M. Exercise and GLUT4. Exerc Sport Sci Rev. 2020;48:110&#x2013;8. doi: 10.1249/JES.0000000000000224.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/JES.0000000000000224</ArticleId><ArticleId IdType="pubmed">32568924</ArticleId></ArticleIdList></Reference><Reference><Citation>Benham JL, Booth JE, Dunbar MJ, et al. Significant Dose-Response between Exercise Adherence and Hemoglobin A1c Change. Med Sci Sports Exerc. 2020;52:1960&#x2013;5. doi: 10.1249/MSS.0000000000002339.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/MSS.0000000000002339</ArticleId><ArticleId IdType="pubmed">32175973</ArticleId></ArticleIdList></Reference><Reference><Citation>Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451&#x2013;62. doi: 10.1136/bjsports-2020-102955.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsports-2020-102955</ArticleId><ArticleId IdType="pmc">PMC7719906</ArticleId><ArticleId IdType="pubmed">33239350</ArticleId></ArticleIdList></Reference><Reference><Citation>The International Expert Committee International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care. 2009;32:1327&#x2013;34. doi: 10.2337/dc09-9033.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-9033</ArticleId><ArticleId IdType="pmc">PMC2699715</ArticleId><ArticleId IdType="pubmed">19502545</ArticleId></ArticleIdList></Reference><Reference><Citation>Dinas PC, Markati AS, Carrillo AE. Exercise-Induced Biological and Psychological Changes in Overweight and Obese Individuals: A Review of Recent Evidence. ISRN Physiol. 2014;2014:1&#x2013;11. doi: 10.1155/2014/964627.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2014/964627</ArticleId></ArticleIdList></Reference><Reference><Citation>Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11:209&#x2013;16. doi: 10.1249/JSR.0b013e31825dabb8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/JSR.0b013e31825dabb8</ArticleId><ArticleId IdType="pubmed">22777332</ArticleId></ArticleIdList></Reference><Reference><Citation>Dobrosielski DA, Gibbs BB, Ouyang P, et al. Effect of exercise on blood pressure in type 2 diabetes: a randomized controlled trial. J Gen Intern Med. 2012;27:1453&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3475835</ArticleId><ArticleId IdType="pubmed">22610907</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care. 2010;33:2692&#x2013;6. doi: 10.2337/dc10-1548.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-1548</ArticleId><ArticleId IdType="pmc">PMC2992214</ArticleId><ArticleId IdType="pubmed">21115771</ArticleId></ArticleIdList></Reference><Reference><Citation>Sigal RJ, Kenny GP, Boul&#xe9; NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357&#x2013;69.</Citation><ArticleIdList><ArticleId IdType="pubmed">17876019</ArticleId></ArticleIdList></Reference><Reference><Citation>R&#xf6;hling M, Strom A, B&#xf6;nhof GJ, et al. Cardiorespiratory Fitness and Cardiac Autonomic Function in Diabetes. Curr Diab Rep. 2017;17</Citation><ArticleIdList><ArticleId IdType="pubmed">29063207</ArticleId></ArticleIdList></Reference><Reference><Citation>Larose J, Sigal RJ, Khandwala F, et al. Associations between physical fitness and HbA&#x2081;(c) in type 2 diabetes mellitus. Diabetologia. 2011;54:93&#x2013;102. doi: 10.1007/s00125-010-1941-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-010-1941-3</ArticleId><ArticleId IdType="pubmed">20953579</ArticleId></ArticleIdList></Reference><Reference><Citation>Batrakoulis A, Jamurtas AZ, Fatouros IG. Exercise and Type II Diabetes Mellitus: A Brief Guide for Exercise Professionals. Str &amp; Cond J. 2022;44:64&#x2013;72. doi: 10.1519/SSC.0000000000000731.</Citation><ArticleIdList><ArticleId IdType="doi">10.1519/SSC.0000000000000731</ArticleId></ArticleIdList></Reference><Reference><Citation>Part I. In: Doing bayesian data analysis. Kruschke JK, editor. Boston: Academic Press; 2015. Introduction; p. 13.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39608245</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2213-2317</ISSN><JournalIssue CitedMedium="Internet"><Volume>78</Volume><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Redox biology</Title><ISOAbbreviation>Redox Biol</ISOAbbreviation></Journal><ArticleTitle>YAP1 preserves tubular mitochondrial quality control to mitigate diabetic kidney disease.</ArticleTitle><Pagination><StartPage>103435</StartPage><MedlinePgn>103435</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">103435</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2024.103435</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2213-2317(24)00413-0</ELocationID><Abstract><AbstractText>Renal tubule cells act as a primary site of injury in diabetic kidney disease (DKD), with dysfunctional mitochondrial quality control (MQC) closely associated with progressive kidney dysfunction in this context. Our investigation delves into the observed inactivation of yes-associated protein 1 (YAP1) and consequential dysregulation of MQC within renal tubule cells among DKD subjects through bioinformatic analysis of transcriptomics data from the Gene Expression Omnibus (GEO) dataset. Receiver operating characteristic curve analysis unequivocally underscores the robust diagnostic accuracy of YAP1 and MQC-related genes for DKD. Furthermore, we observed YAP1 inactivation, accompanied by perturbed MQC, within cultured tubule cells exposed to high glucose (HG) and palmitic acid (PA). This pattern was also evident in the tubulointerstitial compartment of kidney sections from biopsy-approved DKD patients. Additionally, renal tubule cell-specific Yap1 deletion exacerbated kidney injury in diabetic mice. Mechanistically, Yap1 deletion disrupted MQC, leading to mitochondrial aberrations in mitobiogenesis and mitophagy within tubule cells, ultimately culminating in histologic tubular injury. Notably, Yap1 deletion-induced renal tubule injury promoted the secretion of C-X-C motif chemokine ligand 1 (CXCL1), potentially augmenting M1 macrophage infiltration within the renal microenvironment. These multifaceted events were significantly ameliorated by administrating the YAP1 activator XMU-MP-1 in DKD mice. Consistently, bioinformatic analysis of transcriptomics data from the GEO dataset revealed a noteworthy upregulation of tubule cells-derived chemokine CXCL1 associated with macrophage infiltration among DKD patients. Crucially, overexpression of YAP1 via adenovirus transfection sustained mitochondrial membrane potential, mtDNA copy number, oxygen consumption rate, and activity of mitochondrial respiratory chain complex, but attenuated mitochondrial ROS production, thereby maintaining MQC and subsequently suppressing CXCL1 generation within cultured tubule cells exposed to HG and PA. Collectively, our study establishes a pivotal role of tubule YAP1 inactivation-mediated MQC dysfunction in driving DKD progression, at least in part, facilitated by promoting M1 macrophage polarization through a paracrine-dependent mechanism.</AbstractText><CopyrightInformation>Copyright &#xa9; 2024 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ye</LastName><ForeName>Siyang</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Meng</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zheng</LastName><ForeName>Xunhua</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Suchun</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fan</LastName><ForeName>Yuting</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Yiqin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Peng</LastName><ForeName>Huajing</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Sixiu</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Jiayi</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tan</LastName><ForeName>Li</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Manhuai</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Peichen</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xiaoyan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luo</LastName><ForeName>Ning</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Zhipeng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jin</LastName><ForeName>Leigang</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Xiaoping</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Yong</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Pathophysiology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen, 518000, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fan</LastName><ForeName>Jinjin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Yi</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>Sydney C W</ForeName><Initials>SCW</Initials><AffiliationInfo><Affiliation>Division of Nephrology, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. Electronic address: scwtang@hku.hk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Bin</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China. Electronic address: libin85@mail.sysu.edu.cn.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Wei</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China. Electronic address: chenwei99@mail.sysu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Redox Biol</MedlineTA><NlmUniqueID>101605639</NlmUniqueID><ISSNLinking>2213-2317</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000091102">YAP-Signaling Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C088374">YAP1 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C486223">Yap1 protein, mouse</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000091102" MajorTopicYN="Y">YAP-Signaling Proteins</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008928" MajorTopicYN="Y">Mitochondria</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007684" MajorTopicYN="Y">Kidney Tubules</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D063306" MajorTopicYN="N">Mitophagy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Chemokine</Keyword><Keyword MajorTopicYN="N">Diabetic kidney disease</Keyword><Keyword MajorTopicYN="N">Hippo signaling pathway</Keyword><Keyword MajorTopicYN="N">Macrophage</Keyword><Keyword MajorTopicYN="N">Mitochondria</Keyword><Keyword MajorTopicYN="N">Yes-associated protein 1</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>11</Month><Day>29</Day><Hour>5</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>28</Day><Hour>18</Hour><Minute>8</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>23</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39608245</ArticleId><ArticleId IdType="pmc">PMC11629574</ArticleId><ArticleId IdType="doi">10.1016/j.redox.2024.103435</ArticleId><ArticleId IdType="pii">S2213-2317(24)00413-0</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Tuttle K.R., Agarwal R., Alpers C.E., et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102:248&#x2013;260.</Citation><ArticleIdList><ArticleId IdType="pubmed">35661785</ArticleId></ArticleIdList></Reference><Reference><Citation>Zeni L., Norden A.G.W., Cancarini G., et al. A more tubulocentric view of diabetic kidney disease. J. Nephrol. 2017;30:701&#x2013;717.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5698396</ArticleId><ArticleId IdType="pubmed">28840540</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao L., Liang X., Liu Y., et al. Non-steroidal mineralocorticoid receptor antagonist finerenone ameliorates mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in diabetic tubulopathy. Redox Biol. 2023;68</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10661120</ArticleId><ArticleId IdType="pubmed">37924663</ArticleId></ArticleIdList></Reference><Reference><Citation>Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R1009&#x2013;R1022.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3094037</ArticleId><ArticleId IdType="pubmed">21228342</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu B.C., Tang T.T., Lv L.L., et al. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 2018;93:568&#x2013;579.</Citation><ArticleIdList><ArticleId IdType="pubmed">29361307</ArticleId></ArticleIdList></Reference><Reference><Citation>Jia C., Ke-Hong C., Fei X., et al. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int. 2020;98:645&#x2013;662.</Citation><ArticleIdList><ArticleId IdType="pubmed">32739204</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu F., Jiang H., Li X., et al. Discovery of PRDM16-mediated TRPA1 induction as the mechanism for low tubulo-interstitial fibrosis in diabetic kidney disease. Adv. Sci. 2024;11</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10870028</ArticleId><ArticleId IdType="pubmed">38072665</ArticleId></ArticleIdList></Reference><Reference><Citation>Han Y., Xu X., Tang C., et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 2018;16:32&#x2013;46.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5842313</ArticleId><ArticleId IdType="pubmed">29475133</ArticleId></ArticleIdList></Reference><Reference><Citation>Doke T., Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 2022;32:841&#x2013;853.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9464682</ArticleId><ArticleId IdType="pubmed">35473814</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H., Leung J.C.K., Yiu W.H., et al. Tubular beta-catenin alleviates mitochondrial dysfunction and cell death in acute kidney injury. Cell Death Dis. 2022;13:1061.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9768165</ArticleId><ArticleId IdType="pubmed">36539406</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang C., Cai J., Yin X.M., et al. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 2021;17:299&#x2013;318.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8958893</ArticleId><ArticleId IdType="pubmed">33235391</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu L., Bai F., Song H., et al. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy. Redox Biol. 2022;50</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8844679</ArticleId><ArticleId IdType="pubmed">35152003</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiao L., Xu X., Zhang F., et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 2017;11:297&#x2013;311.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5196243</ArticleId><ArticleId IdType="pubmed">28033563</ArticleId></ArticleIdList></Reference><Reference><Citation>Chung K.W., Dhillon P., Huang S., et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metabol. 2019;30:784&#x2013;799. e785.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7054893</ArticleId><ArticleId IdType="pubmed">31474566</ArticleId></ArticleIdList></Reference><Reference><Citation>Galvan D.L., Green N.H., Danesh F.R. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92:1051&#x2013;1057.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5667560</ArticleId><ArticleId IdType="pubmed">28893420</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu J., Sun Z., Wang X., et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022;102:1291&#x2013;1304.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9691617</ArticleId><ArticleId IdType="pubmed">36108806</ArticleId></ArticleIdList></Reference><Reference><Citation>Haruhara K., Suzuki T., Wakui H., et al. Deficiency of the kidney tubular angiotensin II type1 receptor-associated protein ATRAP exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int. 2022;101:912&#x2013;928.</Citation><ArticleIdList><ArticleId IdType="pubmed">35240129</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang M.Z., Wang X., Wang Y., et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 2017;91:375&#x2013;386.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5548101</ArticleId><ArticleId IdType="pubmed">27745702</ArticleId></ArticleIdList></Reference><Reference><Citation>Anders H.J., Vielhauer V., Schlondorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int. 2003;63:401&#x2013;415.</Citation><ArticleIdList><ArticleId IdType="pubmed">12631106</ArticleId></ArticleIdList></Reference><Reference><Citation>Eardley K.S., Zehnder D., Quinkler M., et al. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 2006;69:1189&#x2013;1197.</Citation><ArticleIdList><ArticleId IdType="pubmed">16609683</ArticleId></ArticleIdList></Reference><Reference><Citation>Tesch G.H. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2008;294:F697&#x2013;F701.</Citation><ArticleIdList><ArticleId IdType="pubmed">18272603</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu Y., Tang W., Liu W., et al. Astragaloside IV alleviates renal tubular epithelial-mesenchymal transition via cx3cl1-RAF/MEK/ERK signaling pathway in diabetic kidney disease. Drug Des. Dev. Ther. 2022;16:1605&#x2013;1620.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9166910</ArticleId><ArticleId IdType="pubmed">35669284</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang T.T., Chen J.W. The role of chemokines and chemokine receptors in diabetic nephropathy. Int. J. Mol. Sci. 2020;21</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7246426</ArticleId><ArticleId IdType="pubmed">32365893</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu M., Hu Y., Lan T., et al. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Targeted Ther. 2022;7:376.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9643504</ArticleId><ArticleId IdType="pubmed">36347846</ArticleId></ArticleIdList></Reference><Reference><Citation>Guerin A., Angebault C., Kinet S., et al. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol. 2022;56</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9420520</ArticleId><ArticleId IdType="pubmed">35988446</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J., Wang X., He Q., et al. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes. 2020;69:2446&#x2013;2457.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7576565</ArticleId><ArticleId IdType="pubmed">32843569</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y., Huang H., Kong Y., et al. Kidney tubular transcription co-activator, Yes-associated protein 1 (YAP), controls the expression of collecting duct aquaporins and water homeostasis. Kidney Int. 2023;103:501&#x2013;513.</Citation><ArticleIdList><ArticleId IdType="pubmed">36328098</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi S., Hong S.P., Bae J.H., et al. Hyperactivation of YAP/TAZ drives alterations in mesangial cells through stabilization of N-myc in diabetic nephropathy. J. Am. Soc. Nephrol. 2023;34:809&#x2013;828.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10125647</ArticleId><ArticleId IdType="pubmed">36724799</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong J.S., Meliambro K., Ray J., et al. Hippo signaling in the kidney: the good and the bad. Am. J. Physiol. Ren. Physiol. 2016;311:F241&#x2013;F248.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5005280</ArticleId><ArticleId IdType="pubmed">27194720</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang M., Wei Q., Dong G., et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 2012;82:1271&#x2013;1283.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3491167</ArticleId><ArticleId IdType="pubmed">22854643</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathers K.E., Staples J.F. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019;317:R262&#x2013;R269.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6732429</ArticleId><ArticleId IdType="pubmed">31067076</ArticleId></ArticleIdList></Reference><Reference><Citation>Peng Y., Liu H., Liu J., et al. Post-translational modifications on mitochondrial metabolic enzymes in cancer. Free Radic. Biol. Med. 2022;179:11&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pubmed">34929314</ArticleId></ArticleIdList></Reference><Reference><Citation>Finley L.W., Haas W., Desquiret-Dumas V., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 2011;6</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3157345</ArticleId><ArticleId IdType="pubmed">21858060</ArticleId></ArticleIdList></Reference><Reference><Citation>Lkhagva B., Kao Y.H., Lee T.I., et al. Activation of Class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics. 2018;13:376&#x2013;385.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6140820</ArticleId><ArticleId IdType="pubmed">29613828</ArticleId></ArticleIdList></Reference><Reference><Citation>Bezawork-Geleta A., Rohlena J., Dong L., et al. Mitochondrial complex II: at the crossroads. Trends Biochem. Sci. 2017;42:312&#x2013;325.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7441821</ArticleId><ArticleId IdType="pubmed">28185716</ArticleId></ArticleIdList></Reference><Reference><Citation>Vercellino I., Sazanov L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022;23:141&#x2013;161.</Citation><ArticleIdList><ArticleId IdType="pubmed">34621061</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma L.K., Lu J., Bai Y. Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr. Med. Chem. 2009;16:1266&#x2013;1277.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4706149</ArticleId><ArticleId IdType="pubmed">19355884</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanchez-Caballero L., Guerrero-Castillo S., Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: a dynamic process. Biochim. Biophys. Acta. 2016;1857:980&#x2013;990.</Citation><ArticleIdList><ArticleId IdType="pubmed">27040506</ArticleId></ArticleIdList></Reference><Reference><Citation>Stroud D.A., Surgenor E.E., Formosa L.E., et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature. 2016;538:123&#x2013;126.</Citation><ArticleIdList><ArticleId IdType="pubmed">27626371</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma R., Ren J.M., Li P., et al. Activated YAP causes renal damage of type 2 diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci. 2019;23:755&#x2013;763.</Citation><ArticleIdList><ArticleId IdType="pubmed">30720184</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Y., Xu J., Cheng Z. YAP1 promotes high glucose-induced inflammation and extracellular matrix deposition in glomerular mesangial cells by modulating NF-kappaB/JMJD3 pathway. Exp. Ther. Med. 2021;22:1349.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8515513</ArticleId><ArticleId IdType="pubmed">34659495</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan H., Wang Y., Pan Q., et al. Quercetin attenuates the proliferation, inflammation, and oxidative stress of high glucose-induced human mesangial cells by regulating the miR-485-5p/YAP1 pathway. Int. J. Immunopathol. Pharmacol. 2022;36</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8832592</ArticleId><ArticleId IdType="pubmed">35129398</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonse J., Wennmann D.O., Kremerskothen J., et al. Nuclear YAP localization as a key regulator of podocyte function. Cell Death Dis. 2018;9:850.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6113334</ArticleId><ArticleId IdType="pubmed">30154411</ArticleId></ArticleIdList></Reference><Reference><Citation>Schwartzman M., Reginensi A., Wong J.S., et al. Podocyte-specific deletion of yes-associated protein causes FSGS and progressive renal failure. J. Am. Soc. Nephrol. 2016;27:216&#x2013;226.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4696566</ArticleId><ArticleId IdType="pubmed">26015453</ArticleId></ArticleIdList></Reference><Reference><Citation>Meliambro K., Wong J.S., Ray J., et al. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J. Biol. Chem. 2017;292:21137&#x2013;21148.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5743086</ArticleId><ArticleId IdType="pubmed">28982981</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhuang Q., Li F., Liu J., et al. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in Adriamycin-induced focal segmental glomerulosclerosis. Lab. Invest. 2021;101:258&#x2013;270.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7815513</ArticleId><ArticleId IdType="pubmed">33203894</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinschen M.M., Grahammer F., Hoppe A.K., et al. YAP-mediated mechanotransduction determines the podocyte's response to damage. Sci. Signal. 2017;10</Citation><ArticleIdList><ArticleId IdType="pubmed">28400537</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J., Harris R.C. Interaction of the EGF receptor and the Hippo pathway in the diabetic kidney. J. Am. Soc. Nephrol. 2016;27:1689&#x2013;1700.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4884112</ArticleId><ArticleId IdType="pubmed">26453611</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang Z., Peng Y., Ke G., et al. CaMKII may regulate renal tubular epithelial cell apoptosis through YAP/NFAT2 in acute kidney injury mice. Ren. Fail. 2023;45</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9891164</ArticleId><ArticleId IdType="pubmed">36718671</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J., You H., Li Y., et al. EGF receptor-dependent YAP activation is important for renal recovery from AKI. J. Am. Soc. Nephrol. 2018;29:2372&#x2013;2385.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6115662</ArticleId><ArticleId IdType="pubmed">30072422</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu J., Li P.X., Wu J., et al. Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector. Clinical science (London, England : 1979) 2016;130:349&#x2013;363.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4727597</ArticleId><ArticleId IdType="pubmed">26574480</ArticleId></ArticleIdList></Reference><Reference><Citation>Broome S.C., Pham T., Braakhuis A.J., et al. MitoQ supplementation augments acute exercise-induced increases in muscle PGC1alpha mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men. Redox Biol. 2022;53</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9142706</ArticleId><ArticleId IdType="pubmed">35623315</ArticleId></ArticleIdList></Reference><Reference><Citation>Sekar P., Hsiao G., Hsu S.H., et al. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol. 2023;64</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10363482</ArticleId><ArticleId IdType="pubmed">37348156</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma H., Guo X., Cui S., et al. Dephosphorylation of AMP-activated protein kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction. Kidney Int. 2022;101:315&#x2013;330.</Citation><ArticleIdList><ArticleId IdType="pubmed">34774556</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y., Chen W., Li C., et al. DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol. 2023;66</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10458997</ArticleId><ArticleId IdType="pubmed">37597421</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun N., Yun J., Liu J., et al. Measuring in vivo mitophagy. Mol. Cell. 2015;60:685&#x2013;696.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4656081</ArticleId><ArticleId IdType="pubmed">26549682</ArticleId></ArticleIdList></Reference><Reference><Citation>Sakai S., Yamamoto T., Takabatake Y., et al. Proximal tubule autophagy differs in type 1 and 2 diabetes. J. Am. Soc. Nephrol. 2019;30:929&#x2013;945.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6551771</ArticleId><ArticleId IdType="pubmed">31040190</ArticleId></ArticleIdList></Reference><Reference><Citation>Forbes J.M., Thorburn D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 2018;14:291&#x2013;312.</Citation><ArticleIdList><ArticleId IdType="pubmed">29456246</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen K., Feng L., Hu W., et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. Faseb. J. 2019;33:4571&#x2013;4585. official publication of the Federation of American Societies for Experimental Biology.</Citation><ArticleIdList><ArticleId IdType="pubmed">30571313</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S., Bai J., Zhang Y.L., et al. CXCL1-CXCR2 signalling mediates hypertensive retinopathy by inducing macrophage infiltration. Redox Biol. 2022;56</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9418605</ArticleId><ArticleId IdType="pubmed">35981418</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao S., Zhou L., Wang Q., et al. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H(2)O(2)-disulfide HMGB1 in macrophages. Redox Biol. 2023;62</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10130699</ArticleId><ArticleId IdType="pubmed">37058999</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle></PubmedArticleSet>
\ No newline at end of file
diff --git a/api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc b/api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..146c874795b91af20feb44496607b1046a14a0ad
GIT binary patch
literal 683
zcmX@j%ge>Uz`&3ZmzrM8#K7<v#DQTJDC4sc0|Uc!h7^Vr#vF!R#wbQc1}277#uTO$
z<~1y<nINj7n9><iSQjxyF{iM#FhsFbvTJg@1W9Q!-r^|8EJ)4C%uB73s7fu$*DcP-
zFVRiTNh~hTOv_A8EXmBztCC1dOioS8&(GFRN-QeT%}FduPu0!M%gNMayv3TEpOTuR
z$$pE&B{MN8wIsFp7MpWoUUF(tm9%q4QGQ-#vO-a6aY1HLVo82cr9w((acW|5YL&Qi
zVo^$FepzC1a%oOt5lp<eiq|(auOu-?!6P*>rzE3_A7-pVNo7H*f+4zqQ8FXQCr}Iu
z7G?$phR<r?U@3vi)i9Jm1A~D97A&=lHH^Uwnv8y$Ot-jTUQR8#C6Jt$my(&1Sdto_
zlbDp6Q>@8!i=#NTurxI<IrSEMQEG8%PDwE+N*ELre#Pr&<maa9XO<=A>AU17m*%GC
zl@#meC8y}7B$g!VCZ?wsrKW?!Q8zI!1ubax6ALo+!6B#*3uC9mq7ola2>a&cWa<@E
z-r|5dt+I%hfq_AQfq|h|gn@yff#D9H#0-fm%Ep)ZOd8xDa0@l~eFg=CpC;=qo|2-(
zyyCR{qTJM?;v!Ip6mc*xFcfiu2#_%=8H)HoY#s&%hFcsqx%nxjIjMF<f(#4{pfD>|
wWnf_Vz|6?V_?3-;QRyMC=mjx@3l>3Fc!L|bJ~45Ka9v;!_$<QAC=50R0H^T4HUIzs

literal 0
HcmV?d00001

diff --git a/api/model/facebookBartLargeMnli.py b/api/model/facebookBartLargeMnli.py
index fe5a7fd08..6c2a64f2b 100644
--- a/api/model/facebookBartLargeMnli.py
+++ b/api/model/facebookBartLargeMnli.py
@@ -3,10 +3,7 @@
 from transformers import pipeline
 
 classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
-
-def classify(sequence):
-    sequence_to_classify = sequence
-    candidate_labels = [
+candidate_labels = [
         "Diabetes",
         "Cancer",
         "Chronic respiratory disease",
@@ -15,8 +12,12 @@ def classify(sequence):
         "Diabetes type 1",
         "Diabetes type 2"
         ]
-    results = classifier(sequence_to_classify, candidate_labels)
+
+def classify(sequence):
+    results = classifier(sequence, candidate_labels)
+
+    return results
 
     # print(f"Sequence: {sequence_to_classify}")
-    print(f"Labels: {results["labels"]}")
-    print(f"Scores: {results["scores"]}")
+    # print(f"Labels: {results["labels"]}")
+    # print(f"Scores: {results["scores"]}")
diff --git a/api/model/facebookBartLargeMnli_results.txt b/api/model/facebookBartLargeMnli_results.txt
deleted file mode 100644
index 37c8d87ca..000000000
--- a/api/model/facebookBartLargeMnli_results.txt
+++ /dev/null
@@ -1,232 +0,0 @@
-Pubmed query: https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term="Diabetes+Mellitus"[Mesh]&retmode=json&mindate=2024/11/29&maxdate=2024/11/29&usehistory=y
-
---------------------------------------------------------
-Index: 0
-PMID: 39612437
-Title: Medicine
-ArticleTitle: Association between serum uric acid and prediabetes in a normal Chinese population: A cross-sectional study.
-Abstract: Cardiovascular events are frequent among individuals with prediabetes. And the relationship between cardiovascular diseases and elevated serum uric acid (SUA) levels has been supported by extensive scientific evidence. However, there remains controversy regarding the correlation between elevated SUA and prediabetes. The aim of this study was to investigate the association between elevated SUA levels and the prevalence of prediabetes and gender differences in the association. A total of 190,891 individuals who participated in health checkups at the Health Promotion Center of Sir Run Run Shaw Hospital of Zhejiang University from January 2017 to December 2021 were included in this cross-sectional study. The health checkups were carried out by trained general practitioners and nurses. The diagnostic criteria for diabetes and prediabetes are defined in the Standards of Medical Care in Diabetes-2022. The association between SUA levels and diabetes and prediabetes was examined based on logistic regression analysis. The dose-response effect between SUA levels and diabetes and prediabetes in both sexes was assessed using a restricted cubic spline (RCS) regression model. Among 190,891 participants, this study included 106,482 males (55.8%) and 84,409 females (44.2%). There were 46,240 (24.2%) patients with prediabetes and 20,792 (10.9%) patients with diabetes. SUA was divided into quartiles (Q). Compared to the SUA Q1 group, the prevalence of prediabetes was elevated in the SUA Q4 group (OR = 1.378, 95% CI = 1.321-1.437), but diabetes risk was decreased in the SUA Q4 group (OR = 0.690, 95% CI = 0.651-0.730). We found that SUA levels were correlated with prediabetes more significantly in male subjects (OR = 1.328, 95% CI = 1.272-1.386) than in female subjects (OR = 1.184, 95% CI = 1.122-1.249) (P for interaction < .001). Higher SUA levels were strongly related to an elevated prevalence of prediabetes but a decreased prevalence of diabetes. The association of SUA in prediabetes was more significant in men.
-['Humans', 'Prediabetic State', 'Male', 'Female', 'Uric Acid', 'Cross-Sectional Studies', 'Middle Aged', 'China', 'Adult', 'Prevalence', 'Sex Factors', 'Risk Factors', 'Aged', 'East Asian People']
-Labels: ['Cardiovascular diseases', 'Diabetes', 'Mental Health', 'Diabetes type 1', 'Diabetes type 2', 'Chronic respiratory disease', 'Cancer']
-Scores: [0.5254083275794983, 0.2596566081047058, 0.06986134499311447, 0.044569212943315506, 0.04057301580905914, 0.03189889341592789, 0.02803259901702404]
---------------------------------------------------------
---------------------------------------------------------
-Index: 1
-PMID: 39612426
-Title: Medicine
-ArticleTitle: Exploring the link between SIRT1 gene variants and depression comorbidity in type 2 diabetes.
-Abstract: This study aims to (1) analyze the clinical characteristics and risk factors of patients with type 2 diabetes and comorbid depression and (2) explore the association between SIRT1 gene single-nucleotide polymorphism sites and this comorbidity. A total of 450 type 2 diabetes patients hospitalized in the General Medicine Department at The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology from July 2022 to September 2023, and 300 healthy individuals from the physical examination department were selected as study subjects. Both groups were assessed using general information surveys and questionnaires. Statistical analyses were performed to compare clinical indicators across 3 groups: individuals with only type 2 diabetes, those with comorbid depression, and healthy controls. The age, gender, disease duration, marital status, income and drug expenditure, employment status, fasting blood glucose level, fasting insulin level difference, insulin resistance index difference, glycated hemoglobin, high-density lipoprotein level, and HCY difference among the 3 groups of patients were risk factors for type 2 diabetes comorbid depression patients. The SIRT1 mRNA level was significantly reduced in type 2 diabetes comorbid depression patients. The SIRT1 gene had 3 sites: rs12415800, rs3758391, and rs932658, which were related to the patient's type 2 diabetes comorbid depression. They were the additive model and dominant model of rs12415800 and rs3758391, respectively. In addition, the GTGGT haplotype composed of rs12415800-rs932658-rs7895833-rs2273773-rs1467568 and the AGACT haplotype composed of rs3758391-rs932658-rs33957861-rs3818292-rs1467568 were significantly associated with type 2 diabetes comorbid depression. Numerous factors influence the presence of depression in patients with type 2 diabetes, with the SIRT1 gene playing a significant role, serving as a potential biomarker for this comorbidity.
-['Humans', 'Diabetes Mellitus, Type 2', 'Sirtuin 1', 'Female', 'Male', 'Middle Aged', 'Polymorphism, Single Nucleotide', 'Depression', 'Comorbidity', 'Risk Factors', 'Case-Control Studies', 'Aged', 'Adult', 'China', 'Genetic Predisposition to Disease']
-Labels: ['Diabetes type 2', 'Diabetes', 'Mental Health', 'Diabetes type 1', 'Chronic respiratory disease', 'Cardiovascular diseases', 'Cancer']
-Scores: [0.37864062190055847, 0.33284738659858704, 0.2171827256679535, 0.021842893213033676, 0.021046964451670647, 0.01726672425866127, 0.011172729544341564]
---------------------------------------------------------
---------------------------------------------------------
-Index: 2
-PMID: 39612420
-Title: Medicine
-ArticleTitle: Effects of genetic variants of organic cation transporters on metformin response in newly diagnosed patients with type 2 diabetes.
-Abstract: Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean ± SD age was 50.4 ± 10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927 ± 1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c < 7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P = .021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.
-['Humans', 'Metformin', 'Diabetes Mellitus, Type 2', 'Female', 'Middle Aged', 'Male', 'Polymorphism, Single Nucleotide', 'Hypoglycemic Agents', 'Prospective Studies', 'Protein Serine-Threonine Kinases', 'Organic Cation Transport Proteins', 'Glycated Hemoglobin', 'Saudi Arabia', 'Adult', 'AMP-Activated Protein Kinase Kinases', 'Ataxia Telangiectasia Mutated Proteins', 'Genotype']
-Labels: ['Diabetes type 2', 'Diabetes', 'Mental Health', 'Chronic respiratory disease', 'Cardiovascular diseases', 'Cancer', 'Diabetes type 1']
-Scores: [0.6502493619918823, 0.3046882450580597, 0.01717311702668667, 0.010871940292418003, 0.007460195105522871, 0.004829618148505688, 0.0047275531105697155]
---------------------------------------------------------
---------------------------------------------------------
-Index: 3
-PMID: 39612398
-Title: Medicine
-ArticleTitle: A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective.
-Abstract: Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
-['Diabetic Nephropathies', 'Humans', 'Bibliometrics', 'Biomarkers', 'Biomedical Research']
-Labels: ['Diabetes', 'Diabetes type 2', 'Diabetes type 1', 'Mental Health', 'Chronic respiratory disease', 'Cancer', 'Cardiovascular diseases']
-Scores: [0.8022783398628235, 0.06183163449168205, 0.049523256719112396, 0.046723224222660065, 0.014934984035789967, 0.013182274997234344, 0.011526266112923622]
---------------------------------------------------------
---------------------------------------------------------
-Index: 4
-PMID: 39612259
-Title: Journal of managed care & specialty pharmacy
-ArticleTitle: Area deprivation index impact on type 2 diabetes outcomes in a regional health plan.
-Abstract: Significant differences were identified between ADI quintiles 1 and 5 for noninsulin diabetes medication adherence, frequency of A1c test claims, all-cause health care service utilization, and total cost of care. There were no statistically significant differences between ADI quintiles for achievement of A1c goal or receipt of comorbidity-focused therapies.
-['Humans', 'Diabetes Mellitus, Type 2', 'Female', 'Middle Aged', 'Male', 'Retrospective Studies', 'Aged', 'Adult', 'Glycated Hemoglobin', 'Medication Adherence', 'Pennsylvania', 'Hypoglycemic Agents', 'Regional Medical Programs', 'Health Care Costs']
-Labels: ['Diabetes type 2', 'Diabetes', 'Diabetes type 1', 'Mental Health', 'Cardiovascular diseases', 'Chronic respiratory disease', 'Cancer']
-Scores: [0.8181418180465698, 0.15041707456111908, 0.008329568430781364, 0.007051474414765835, 0.006902205757796764, 0.005716831423342228, 0.003441012930124998]
---------------------------------------------------------
---------------------------------------------------------
-Index: 5
-PMID: 39612042
-Title: Sleep & breathing = Schlaf & Atmung
-ArticleTitle: The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea.
-Abstract: Higher peripheral chemosensitivity was associated with an increased 10-year T2D risk, as calculated using a risk calculator based on clinical variables. For outcomes that reflect a moderate-to-high 10-year risk of T2D, the severity of OSA did not significantly affect the risk, irrespective of whether patients exhibited relatively low or high chemosensitivity.
-['Humans', 'Sleep Apnea, Obstructive', 'Male', 'Diabetes Mellitus, Type 2', 'Middle Aged', 'Adult', 'Risk Factors', 'Polysomnography']
-Labels: ['Diabetes type 2', 'Diabetes', 'Chronic respiratory disease', 'Mental Health', 'Cardiovascular diseases', 'Cancer', 'Diabetes type 1']
-Scores: [0.7059531807899475, 0.20942182838916779, 0.05455198511481285, 0.01318689901381731, 0.0070249345153570175, 0.00525636738166213, 0.004604842513799667]
---------------------------------------------------------
---------------------------------------------------------
-Index: 6
-PMID: 39612019
-Title: Sleep & breathing = Schlaf & Atmung
-ArticleTitle: The effect of physical activity on sleep quality in people with diabetes: systematic review and meta-analysis.
-Abstract: Preliminary evidence suggests that exercise can be prescribed to manage self-reported sleep quality in this population, although its effects may not surpass those of usual care.
-['Humans', 'Diabetes Mellitus, Type 2', 'Sleep Quality', 'Exercise', 'Exercise Therapy']
-Labels: ['Diabetes', 'Chronic respiratory disease', 'Diabetes type 2', 'Mental Health', 'Diabetes type 1', 'Cardiovascular diseases', 'Cancer']
-Scores: [0.864834189414978, 0.05074859410524368, 0.02586616761982441, 0.01789938285946846, 0.01700207032263279, 0.013817625120282173, 0.009831962175667286]
---------------------------------------------------------
---------------------------------------------------------
-Index: 7
-PMID: 39611987
-Title: Histochemistry and cell biology
-ArticleTitle: Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds.
-Abstract: In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options. One promising candidate is Cramoll (Cratylia mollis seed lectin), known for its immunomodulatory, mitogenic, and healing properties. However, its efficacy in infected diabetic wounds remains unexplored. This study evaluated the effects of topical Cramoll treatment on diabetic wounds infected by S. aureus. Diabetic Swiss mice (induced by streptozotocin) were subjected to an 8-mm wound on the back and subsequently infected with a suspension of multidrug-resistant S. aureus. During the treatment period, the wounds were clinically evaluated for inflammation and the area of injury. After seven days, samples were collected from the wounds to quantify the bacterial load and histopathological and immunological analyses. Wounds infected by S. aureus exhibited more pronounced areas and severity indices, which were significantly reduced by Cramoll treatment (p < 0.05). Histopathological analysis revealed a reduction in inflammatory cells and an increase in revascularization with Cramoll treatment (p < 0.05). Cramoll also promoted greater collagen production compared to controls (p < 0.05). Furthermore, Cramoll treatment significantly reduced the S. aureus load in wounds (p < 0.0001), decreased TNF-α and IL-6 levels in infected wounds, and increased ERK pathway activation (p < 0.05). In conclusion, Cramoll lectin improves the healing of diabetic wounds, and these results contribute to the understanding of Cramoll healing mechanisms, reinforcing its potential as a healing agent in various clinical conditions.
-['Animals', 'Mice', 'Diabetes Mellitus, Experimental', 'Male', 'Inflammation', 'Wound Healing', 'Staphylococcal Infections', 'Staphylococcus aureus', 'Methicillin-Resistant Staphylococcus aureus', 'Plant Lectins']
-Labels: ['Diabetes', 'Diabetes type 2', 'Diabetes type 1', 'Chronic respiratory disease', 'Mental Health', 'Cancer', 'Cardiovascular diseases']
-Scores: [0.7883983254432678, 0.06994659453630447, 0.05965277552604675, 0.023746298626065254, 0.021675268188118935, 0.021635044366121292, 0.014945699833333492]
---------------------------------------------------------
---------------------------------------------------------
-Index: 8
-PMID: 39611704
-Title: Nursing open
-ArticleTitle: Diabetes Education Program for Nursing Students: A Systematic Review and Meta-Analysis.
-Abstract: The literature search identified 464 articles, from which 13 studies were evaluated in the systematic review. Most studies (n = 12, 92.3%) used technology-based teaching methods, such as high-fidelity simulations, mobile applications, and virtual reality simulations. Regarding the evaluation of diabetes education program effectiveness, the majority of studies showed significant improvements in knowledge (n = 8, 61.5%), followed by satisfaction with learning (n = 4, 30.8%), nursing skill performance (n = 3, 23.1%), and self-confidence (n = 3, 23.1%) in nursing students. In meta-analyses, technology-based teaching interventions, compared to traditional education, showed no statistically significant improvement in diabetes knowledge (standard mean difference 9.52, 95% CI [-0.18, 19.21], p = 0.05) and self-efficacy (standard mean difference 24.09, 95% CI [-10.75, 58.92], p = 0.18). Despite this, technology-based methods demonstrated favourable effects on knowledge and self-efficacy against traditional education. Findings highlight the importance of emerging technology-based diabetes education programs tailored for nursing students, crucial for enhancing positive educational outcomes. No Patient or Public Contribution.
-['Humans', 'Students, Nursing', 'Diabetes Mellitus', 'Education, Nursing']
-Labels: ['Diabetes', 'Chronic respiratory disease', 'Mental Health', 'Diabetes type 2', 'Diabetes type 1', 'Cardiovascular diseases', 'Cancer']
-Scores: [0.7048473358154297, 0.06770863384008408, 0.05767152085900307, 0.05063280835747719, 0.043874796479940414, 0.03878471627831459, 0.036480143666267395]
---------------------------------------------------------
---------------------------------------------------------
-Index: 9
-PMID: 39611006
-Title: International journal of nanomedicine
-ArticleTitle: Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro.
-Abstract: The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30 min. In these conditions, the nanoparticles had a particle size of 320.37 ± 2.93 nm, an EE of 85.09 ± 1.43%, and a DL of 15.88 ± 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (<24 μg/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-β1 expression, suggesting their potential role in preventing EMT for DKD treatment.
-['Diabetic Nephropathies', 'Humans', 'Nanoparticles', 'Epithelial-Mesenchymal Transition', 'Particle Size', 'Cell Line', 'Cell Movement', 'Chitosan', 'Drug Liberation', 'Drug Carriers', 'Transforming Growth Factor beta1', 'Cell Survival', 'Polyphosphates']
-Labels: ['Diabetes', 'Diabetes type 2', 'Diabetes type 1', 'Mental Health', 'Cardiovascular diseases', 'Chronic respiratory disease', 'Cancer']
-Scores: [0.816673219203949, 0.06928153336048126, 0.030247803777456284, 0.027082975953817368, 0.020664982497692108, 0.02011018432676792, 0.01593935862183571]
---------------------------------------------------------
---------------------------------------------------------
-Index: 10
-PMID: 39610841
-Title: Frontiers in endocrinology
-ArticleTitle: Predicting hypoglycemia in elderly inpatients with type 2 diabetes: the ADOCHBIU model.
-Abstract: ChiCTR2200062277. Registered on 31 July 2022.
-['Humans', 'Diabetes Mellitus, Type 2', 'Hypoglycemia', 'Male', 'Female', 'Aged', 'Nomograms', 'China', 'Inpatients', 'Blood Glucose', 'Risk Factors', 'Aged, 80 and over', 'Middle Aged', 'Hypoglycemic Agents', 'Incidence', 'Risk Assessment', 'Prognosis']
-Labels: ['Diabetes type 2', 'Diabetes', 'Cancer', 'Diabetes type 1', 'Chronic respiratory disease', 'Mental Health', 'Cardiovascular diseases']
-Scores: [0.7203450798988342, 0.23336085677146912, 0.01148981973528862, 0.010857968591153622, 0.009179418906569481, 0.008347881026566029, 0.006419003009796143]
---------------------------------------------------------
---------------------------------------------------------
-Index: 11
-PMID: 39610135
-Title: Diabetes & metabolism journal
-ArticleTitle: Cardiovascular Disease & Diabetes Statistics in Korea: Nationwide Data 2010 to 2019.
-Abstract: The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.
-['Humans', 'Republic of Korea', 'Male', 'Female', 'Middle Aged', 'Diabetes Mellitus, Type 2', 'Aged', 'Cardiovascular Diseases', 'Incidence', 'Adult', 'Nutrition Surveys', 'Risk Factors', 'Young Adult', 'Sodium-Glucose Transporter 2 Inhibitors', 'Aged, 80 and over']
-Labels: ['Diabetes type 2', 'Cardiovascular diseases', 'Diabetes', 'Chronic respiratory disease', 'Diabetes type 1', 'Cancer', 'Mental Health']
-Scores: [0.35832738876342773, 0.3574276864528656, 0.23260116577148438, 0.026185905560851097, 0.01999022252857685, 0.0028958809562027454, 0.0025717534590512514]
---------------------------------------------------------
---------------------------------------------------------
-Index: 12
-PMID: 39610132
-Title: Diabetes & metabolism journal
-ArticleTitle: Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.
-Abstract: Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.
-['Humans', 'Diabetic Neuropathies', 'H-Reflex', 'Animals', 'Neuralgia', 'Electromyography', 'Spinal Cord']
-Labels: ['Diabetes', 'Diabetes type 2', 'Diabetes type 1', 'Mental Health', 'Cardiovascular diseases', 'Chronic respiratory disease', 'Cancer']
-Scores: [0.7626945972442627, 0.07108766585588455, 0.05964972451329231, 0.04690995067358017, 0.02280718833208084, 0.021296823397278786, 0.015554064884781837]
---------------------------------------------------------
---------------------------------------------------------
-Index: 13
-PMID: 39610131
-Title: Diabetes & metabolism journal
-ArticleTitle: Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association.
-Abstract: Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
-['Humans', 'Diabetes Mellitus, Type 2', 'Non-alcoholic Fatty Liver Disease', 'Fatty Liver', 'Republic of Korea']
-Labels: ['Diabetes type 2', 'Diabetes', 'Cardiovascular diseases', 'Mental Health', 'Chronic respiratory disease', 'Diabetes type 1', 'Cancer']
-Scores: [0.5635377764701843, 0.25183847546577454, 0.06326019763946533, 0.03881198167800903, 0.03723680227994919, 0.02497153729200363, 0.020343242213129997]
---------------------------------------------------------
---------------------------------------------------------
-Index: 14
-PMID: 39609996
-Title: Journal of Ayub Medical College, Abbottabad : JAMC
-ArticleTitle: A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.
-Abstract: Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.
-['Humans', 'Membrane Proteins', 'Wolfram Syndrome', 'Male', 'Child', 'Pakistan']
-Labels: ['Mental Health', 'Cardiovascular diseases', 'Cancer', 'Chronic respiratory disease', 'Diabetes type 2', 'Diabetes', 'Diabetes type 1']
-Scores: [0.42784246802330017, 0.1791149377822876, 0.10112947225570679, 0.09878000617027283, 0.07016517966985703, 0.06629620492458344, 0.056671686470508575]
---------------------------------------------------------
---------------------------------------------------------
-Index: 15
-PMID: 39609972
-Title: Journal of Ayub Medical College, Abbottabad : JAMC
-ArticleTitle: SELF-REPORTED MULTI-MORBIDITY WITH TUBERCULOSIS: DATA FROM THE KHYBER PAKHTUNKHWA INTEGRATED POPULATION HEALTH SURVEY (KPIPHS) IN PAKISTAN.
-Abstract: There is a higher burden of self-reported cardiometabolic diseases among people with TB, suggesting that this high-risk group should be screened for cardiometabolic diseases, especially Diabetes.
-['Humans', 'Pakistan', 'Male', 'Female', 'Adult', 'Middle Aged', 'Tuberculosis', 'Self Report', 'Health Surveys', 'Prevalence', 'Multimorbidity', 'Diabetes Mellitus']
-Labels: ['Diabetes', 'Chronic respiratory disease', 'Cardiovascular diseases', 'Diabetes type 2', 'Mental Health', 'Diabetes type 1', 'Cancer']
-Scores: [0.644888699054718, 0.17205913364887238, 0.04341216757893562, 0.040612392127513885, 0.03942404314875603, 0.035407643765211105, 0.024195870384573936]
---------------------------------------------------------
---------------------------------------------------------
-Index: 16
-PMID: 39609829
-Title: BMC endocrine disorders
-ArticleTitle: Cognitive changes in people with diabetes with lower extremity complications compared to people with diabetes without lower extremity complications: a systematic review and meta-analysis.
-Abstract: DRLECs may be related to cognition in people with diabetes, however, existing evidence is unclear due to variability in used methodologies that may challenge concluding the findings. Future high-quality studies investigating cognition among people with and without DRLECs are needed.
-['Humans', 'Lower Extremity', 'Diabetes Complications', 'Cognition', 'Cognitive Dysfunction', 'Diabetic Neuropathies', 'Diabetes Mellitus']
-Labels: ['Diabetes', 'Mental Health', 'Diabetes type 2', 'Diabetes type 1', 'Chronic respiratory disease', 'Cancer', 'Cardiovascular diseases']
-Scores: [0.6487249732017517, 0.1255451738834381, 0.07055860757827759, 0.04672178626060486, 0.04010753333568573, 0.03765956312417984, 0.030682474374771118]
---------------------------------------------------------
---------------------------------------------------------
-Index: 17
-PMID: 39609030
-Title: BMJ open
-ArticleTitle: Incidence, prevalence and risk factors for comorbid mental illness among people with hypertension and type 2 diabetes in West Africa: protocol for a systematic review and meta-analysis.
-Abstract: CRD42023450732.
-['Humans', 'Diabetes Mellitus, Type 2', 'Systematic Reviews as Topic', 'Hypertension', 'Mental Disorders', 'Prevalence', 'Risk Factors', 'Incidence', 'Africa, Western', 'Comorbidity', 'Research Design', 'Meta-Analysis as Topic']
-Labels: ['Mental Health', 'Diabetes type 2', 'Diabetes', 'Cardiovascular diseases', 'Chronic respiratory disease', 'Diabetes type 1', 'Cancer']
-Scores: [0.4379573464393616, 0.2828061580657959, 0.15691044926643372, 0.06648097932338715, 0.021535687148571014, 0.018548287451267242, 0.01576101966202259]
---------------------------------------------------------
---------------------------------------------------------
-Index: 18
-PMID: 39609024
-Title: BMJ open
-ArticleTitle: Association of overweight and obesity with gestational diabetes mellitus among pregnant women attending antenatal care clinics in Addis Ababa, Ethiopia: a case-control study.
-Abstract: Obesity, but not overweight, was significantly associated with the development of GDM. Screening for GDM is recommended for pregnant women with obesity (MUAC≥31) for targeted intervention. Antenatal care providers should provide information for women of childbearing age on maintaining a healthy body weight before and in-between pregnancies and the need for healthy, diversified food and high-level physical activity.
-['Humans', 'Female', 'Diabetes, Gestational', 'Pregnancy', 'Ethiopia', 'Case-Control Studies', 'Adult', 'Prenatal Care', 'Overweight', 'Young Adult', 'Obesity', 'Risk Factors', 'Logistic Models']
-Labels: ['Diabetes', 'Mental Health', 'Diabetes type 2', 'Cardiovascular diseases', 'Diabetes type 1', 'Chronic respiratory disease', 'Cancer']
-Scores: [0.545982301235199, 0.11471568793058395, 0.08699879795312881, 0.07369286566972733, 0.06716068089008331, 0.06616472452878952, 0.04528484493494034]
---------------------------------------------------------
---------------------------------------------------------
-Index: 19
-PMID: 39609009
-Title: BMJ open
-ArticleTitle: Implementation strategies for providing optimised tuberculosis and diabetes integrated care in LMICs (POTENTIAL): protocol for a multiphase sequential and concurrent mixed-methods study.
-Abstract: Ethics approval was granted by the National Bioethics Committee of Pakistan (NBCR-1010). Findings will be shared through academic publications, conferences and public outreach.
-['Humans', 'Pakistan', 'Diabetes Mellitus', 'Tuberculosis', 'Delivery of Health Care, Integrated', 'Developing Countries', 'Quality of Life', 'Research Design']
-Labels: ['Chronic respiratory disease', 'Diabetes', 'Diabetes type 2', 'Diabetes type 1', 'Mental Health', 'Cancer', 'Cardiovascular diseases']
-Scores: [0.4552350640296936, 0.3796508014202118, 0.048751067370176315, 0.04725024476647377, 0.02879474125802517, 0.025446655228734016, 0.014871370047330856]
---------------------------------------------------------
---------------------------------------------------------
-Index: 20
-PMID: 39608964
-Title: Endocrinologia, diabetes y nutricion
-ArticleTitle: Predictive value of circulating miR-409-3p for major adverse cardiovascular events in patients with type 2 diabetes mellitus and coronary heart disease.
-Abstract: Serum miR-409-3p may serve as a potential diagnostic and prognostic biomarker for predicting T2DM complicated with CHD and forecast adverse events. Targeting miR-409-3p may be a novel therapeutic strategy to intervene in the development of T2DM+CHD.
-['Humans', 'Diabetes Mellitus, Type 2', 'MicroRNAs', 'Coronary Disease', 'Male', 'Female', 'Middle Aged', 'Apoptosis', 'Predictive Value of Tests', 'Myocytes, Cardiac', 'Aged']
-Labels: ['Cardiovascular diseases', 'Diabetes type 2', 'Diabetes', 'Chronic respiratory disease', 'Diabetes type 1', 'Mental Health', 'Cancer']
-Scores: [0.5476639866828918, 0.3511582612991333, 0.08510641753673553, 0.006337893195450306, 0.0035067610442638397, 0.0033269308041781187, 0.002899742219597101]
---------------------------------------------------------
---------------------------------------------------------
-Index: 21
-PMID: 39608963
-Title: The lancet. Diabetes & endocrinology
-ArticleTitle: Time to reframe the disease staging system for type 1 diabetes.
-Abstract: In 2015, introduction of a disease staging system offered a framework for benchmarking progression to clinical type 1 diabetes. This model, based on islet autoantibodies (stage 1) and dysglycaemia (stage 2) before type 1 diabetes diagnosis (stage 3), has facilitated screening and identification of people at risk. Yet, there are many limitations to this model as the stages combine a very heterogeneous group of individuals; do not have high specificity for type 1 diabetes; can occur without persistence (ie, reversion to an earlier risk stage); and exclude age and other influential risk factors. The current staging system also infers that individuals at risk of type 1 diabetes progress linearly from stage 1 to stage 2 and subsequently stage 3, whereas such movements are often more complex. With the approval of teplizumab by the US Food and Drug Administration in 2022 to delay type 1 diabetes in people at stage 2, there is a need to refine the definition and accuracy of type 1 diabetes staging. Theoretically, we propose that a type 1 diabetes risk calculator should incorporate any available demographic, genetic, autoantibody, metabolic, and immune data that could be continuously updated. Additionally, we call to action for the field to increase the breadth of knowledge regarding type 1 diabetes risk in non-relatives, adults, and individuals from minority populations.
-['Diabetes Mellitus, Type 1', 'Humans', 'Disease Progression', 'Autoantibodies']
-Labels: ['Diabetes', 'Diabetes type 1', 'Diabetes type 2', 'Chronic respiratory disease', 'Cardiovascular diseases', 'Cancer', 'Mental Health']
-Scores: [0.5029236078262329, 0.3697020411491394, 0.08296690136194229, 0.018413469195365906, 0.009015290066599846, 0.008764350786805153, 0.008214311674237251]
---------------------------------------------------------
---------------------------------------------------------
-Index: 22
-PMID: 39608858
-Title: BMJ open diabetes research & care
-ArticleTitle: Effects of concurrent aerobic and strength training in patients with type 2 diabetes: Bayesian pairwise and dose-response meta-analysis.
-Abstract: This study aimed to investigate the effects of concurrent aerobic and strength training (CT) in patients with type 2 diabetes and determine the most effective dose of CT. From the inception of the databases to March 2024, we conducted a systematic search of four electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) to identify randomized controlled trials (RCTs) on CT intervention in patients with type 2 diabetes. Two independent authors assessed the risk of bias of the study using the Cochrane Risk of Bias Assessment Tools. Results analyzed included glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), body mass index, body fat percentage, blood pressure, and VO
-['Humans', 'Diabetes Mellitus, Type 2', 'Bayes Theorem', 'Exercise', 'Resistance Training', 'Glycated Hemoglobin', 'Blood Glucose', 'Body Mass Index', 'Randomized Controlled Trials as Topic']
-Labels: ['Diabetes type 2', 'Diabetes', 'Chronic respiratory disease', 'Cardiovascular diseases', 'Mental Health', 'Cancer', 'Diabetes type 1']
-Scores: [0.6217049956321716, 0.3043733239173889, 0.021584780886769295, 0.01824142597615719, 0.01677442342042923, 0.009702042676508427, 0.007619005627930164]
---------------------------------------------------------
diff --git a/api/model/test.json b/api/model/test.json
new file mode 100644
index 000000000..0d6ee9b0a
--- /dev/null
+++ b/api/model/test.json
@@ -0,0 +1,339 @@
+[
+{
+"PMID": 39612437,
+"Title": "Medicine",
+"ArticleTitle": "Association between serum uric acid and prediabetes in a normal Chinese population: A cross-sectional study.",
+"Abstract": "Cardiovascular events are frequent among individuals with prediabetes. And the relationship between cardiovascular diseases and elevated serum uric acid (SUA) levels has been supported by extensive scientific evidence. However, there remains controversy regarding the correlation between elevated SUA and prediabetes. The aim of this study was to investigate the association between elevated SUA levels and the prevalence of prediabetes and gender differences in the association. A total of 190,891 individuals who participated in health checkups at the Health Promotion Center of Sir Run Run Shaw Hospital of Zhejiang University from January 2017 to December 2021 were included in this cross-sectional study. The health checkups were carried out by trained general practitioners and nurses. The diagnostic criteria for diabetes and prediabetes are defined in the Standards of Medical Care in Diabetes-2022. The association between SUA levels and diabetes and prediabetes was examined based on logistic regression analysis. The dose-response effect between SUA levels and diabetes and prediabetes in both sexes was assessed using a restricted cubic spline (RCS) regression model. Among 190,891 participants, this study included 106,482 males (55.8%) and 84,409 females (44.2%). There were 46,240 (24.2%) patients with prediabetes and 20,792 (10.9%) patients with diabetes. SUA was divided into quartiles (Q). Compared to the SUA Q1 group, the prevalence of prediabetes was elevated in the SUA Q4 group (OR = 1.378, 95% CI = 1.321-1.437), but diabetes risk was decreased in the SUA Q4 group (OR = 0.690, 95% CI = 0.651-0.730). We found that SUA levels were correlated with prediabetes more significantly in male subjects (OR = 1.328, 95% CI = 1.272-1.386) than in female subjects (OR = 1.184, 95% CI = 1.122-1.249) (P for interaction < .001). Higher SUA levels were strongly related to an elevated prevalence of prediabetes but a decreased prevalence of diabetes. The association of SUA in prediabetes was more significant in men.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Prediabetic State", "Male", "Female", "Uric Acid", "Cross-Sectional Studies", "Middle Aged", "China", "Adult", "Prevalence", "Sex Factors", "Risk Factors", "Aged", "East Asian People"]
+},
+{
+"PMID": 39612426,
+"Title": "Medicine",
+"ArticleTitle": "Exploring the link between SIRT1 gene variants and depression comorbidity in type 2 diabetes.",
+"Abstract": "This study aims to (1) analyze the clinical characteristics and risk factors of patients with type 2 diabetes and comorbid depression and (2) explore the association between SIRT1 gene single-nucleotide polymorphism sites and this comorbidity. A total of 450 type 2 diabetes patients hospitalized in the General Medicine Department at The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology from July 2022 to September 2023, and 300 healthy individuals from the physical examination department were selected as study subjects. Both groups were assessed using general information surveys and questionnaires. Statistical analyses were performed to compare clinical indicators across 3 groups: individuals with only type 2 diabetes, those with comorbid depression, and healthy controls. The age, gender, disease duration, marital status, income and drug expenditure, employment status, fasting blood glucose level, fasting insulin level difference, insulin resistance index difference, glycated hemoglobin, high-density lipoprotein level, and HCY difference among the 3 groups of patients were risk factors for type 2 diabetes comorbid depression patients. The SIRT1 mRNA level was significantly reduced in type 2 diabetes comorbid depression patients. The SIRT1 gene had 3 sites: rs12415800, rs3758391, and rs932658, which were related to the patient's type 2 diabetes comorbid depression. They were the additive model and dominant model of rs12415800 and rs3758391, respectively. In addition, the GTGGT haplotype composed of rs12415800-rs932658-rs7895833-rs2273773-rs1467568 and the AGACT haplotype composed of rs3758391-rs932658-rs33957861-rs3818292-rs1467568 were significantly associated with type 2 diabetes comorbid depression. Numerous factors influence the presence of depression in patients with type 2 diabetes, with the SIRT1 gene playing a significant role, serving as a potential biomarker for this comorbidity.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Adult", "Aged", "Female", "Humans", "Male", "Middle Aged", "Case-Control Studies", "China", "Comorbidity", "Depression", "Diabetes Mellitus, Type 2", "Genetic Predisposition to Disease", "Polymorphism, Single Nucleotide", "Risk Factors", "Sirtuin 1"]
+},
+{
+"PMID": 39612420,
+"Title": "Medicine",
+"ArticleTitle": "Effects of genetic variants of organic cation transporters on metformin response in newly diagnosed patients with type 2 diabetes.",
+"Abstract": "Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean ± SD age was 50.4 ± 10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927 ± 1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c < 7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P = .021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Metformin", "Diabetes Mellitus, Type 2", "Female", "Middle Aged", "Male", "Polymorphism, Single Nucleotide", "Hypoglycemic Agents", "Prospective Studies", "Protein Serine-Threonine Kinases", "Organic Cation Transport Proteins", "Glycated Hemoglobin", "Saudi Arabia", "Adult", "AMP-Activated Protein Kinase Kinases", "Ataxia Telangiectasia Mutated Proteins", "Genotype"]
+},
+{
+"PMID": 39612398,
+"Title": "Medicine",
+"ArticleTitle": "A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective.",
+"Abstract": "Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Diabetic Nephropathies", "Humans", "Bibliometrics", "Biomarkers", "Biomedical Research"]
+},
+{
+"PMID": 39612259,
+"Title": "Journal of managed care & specialty pharmacy",
+"ArticleTitle": "Area deprivation index impact on type 2 diabetes outcomes in a regional health plan.",
+"Abstract": "Significant differences were identified between ADI quintiles 1 and 5 for noninsulin diabetes medication adherence, frequency of A1c test claims, all-cause health care service utilization, and total cost of care. There were no statistically significant differences between ADI quintiles for achievement of A1c goal or receipt of comorbidity-focused therapies.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Female", "Middle Aged", "Male", "Retrospective Studies", "Aged", "Adult", "Glycated Hemoglobin", "Medication Adherence", "Pennsylvania", "Hypoglycemic Agents", "Regional Medical Programs", "Health Care Costs"]
+},
+{
+"PMID": 39612042,
+"Title": "Sleep & breathing = Schlaf & Atmung",
+"ArticleTitle": "The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea.",
+"Abstract": "Higher peripheral chemosensitivity was associated with an increased 10-year T2D risk, as calculated using a risk calculator based on clinical variables. For outcomes that reflect a moderate-to-high 10-year risk of T2D, the severity of OSA did not significantly affect the risk, irrespective of whether patients exhibited relatively low or high chemosensitivity.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Sleep Apnea, Obstructive", "Male", "Diabetes Mellitus, Type 2", "Middle Aged", "Adult", "Risk Factors", "Polysomnography"]
+},
+{
+"PMID": 39612019,
+"Title": "Sleep & breathing = Schlaf & Atmung",
+"ArticleTitle": "The effect of physical activity on sleep quality in people with diabetes: systematic review and meta-analysis.",
+"Abstract": "Preliminary evidence suggests that exercise can be prescribed to manage self-reported sleep quality in this population, although its effects may not surpass those of usual care.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Sleep Quality", "Exercise", "Exercise Therapy"]
+},
+{
+"PMID": 39611987,
+"Title": "Histochemistry and cell biology",
+"ArticleTitle": "Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds.",
+"Abstract": "In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options. One promising candidate is Cramoll (Cratylia mollis seed lectin), known for its immunomodulatory, mitogenic, and healing properties. However, its efficacy in infected diabetic wounds remains unexplored. This study evaluated the effects of topical Cramoll treatment on diabetic wounds infected by S. aureus. Diabetic Swiss mice (induced by streptozotocin) were subjected to an 8-mm wound on the back and subsequently infected with a suspension of multidrug-resistant S. aureus. During the treatment period, the wounds were clinically evaluated for inflammation and the area of injury. After seven days, samples were collected from the wounds to quantify the bacterial load and histopathological and immunological analyses. Wounds infected by S. aureus exhibited more pronounced areas and severity indices, which were significantly reduced by Cramoll treatment (p < 0.05). Histopathological analysis revealed a reduction in inflammatory cells and an increase in revascularization with Cramoll treatment (p < 0.05). Cramoll also promoted greater collagen production compared to controls (p < 0.05). Furthermore, Cramoll treatment significantly reduced the S. aureus load in wounds (p < 0.0001), decreased TNF-α and IL-6 levels in infected wounds, and increased ERK pathway activation (p < 0.05). In conclusion, Cramoll lectin improves the healing of diabetic wounds, and these results contribute to the understanding of Cramoll healing mechanisms, reinforcing its potential as a healing agent in various clinical conditions.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Animals", "Mice", "Diabetes Mellitus, Experimental", "Male", "Inflammation", "Wound Healing", "Staphylococcal Infections", "Staphylococcus aureus", "Methicillin-Resistant Staphylococcus aureus", "Plant Lectins"]
+},
+{
+"PMID": 39611704,
+"Title": "Nursing open",
+"ArticleTitle": "Diabetes Education Program for Nursing Students: A Systematic Review and Meta-Analysis.",
+"Abstract": "The literature search identified 464 articles, from which 13 studies were evaluated in the systematic review. Most studies (n = 12, 92.3%) used technology-based teaching methods, such as high-fidelity simulations, mobile applications, and virtual reality simulations. Regarding the evaluation of diabetes education program effectiveness, the majority of studies showed significant improvements in knowledge (n = 8, 61.5%), followed by satisfaction with learning (n = 4, 30.8%), nursing skill performance (n = 3, 23.1%), and self-confidence (n = 3, 23.1%) in nursing students. In meta-analyses, technology-based teaching interventions, compared to traditional education, showed no statistically significant improvement in diabetes knowledge (standard mean difference 9.52, 95% CI [-0.18, 19.21], p = 0.05) and self-efficacy (standard mean difference 24.09, 95% CI [-10.75, 58.92], p = 0.18). Despite this, technology-based methods demonstrated favourable effects on knowledge and self-efficacy against traditional education. Findings highlight the importance of emerging technology-based diabetes education programs tailored for nursing students, crucial for enhancing positive educational outcomes. No Patient or Public Contribution.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Students, Nursing", "Diabetes Mellitus", "Education, Nursing"]
+},
+{
+"PMID": 39611006,
+"Title": "International journal of nanomedicine",
+"ArticleTitle": "Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro.",
+"Abstract": "The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30 min. In these conditions, the nanoparticles had a particle size of 320.37 ± 2.93 nm, an EE of 85.09 ± 1.43%, and a DL of 15.88 ± 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (<24 μg/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-β1 expression, suggesting their potential role in preventing EMT for DKD treatment.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Diabetic Nephropathies", "Humans", "Nanoparticles", "Epithelial-Mesenchymal Transition", "Particle Size", "Cell Line", "Cell Movement", "Chitosan", "Drug Liberation", "Drug Carriers", "Transforming Growth Factor beta1", "Cell Survival", "Polyphosphates"]
+},
+{
+"PMID": 39610841,
+"Title": "Frontiers in endocrinology",
+"ArticleTitle": "Predicting hypoglycemia in elderly inpatients with type 2 diabetes: the ADOCHBIU model.",
+"Abstract": "ChiCTR2200062277. Registered on 31 July 2022.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Hypoglycemia", "Male", "Female", "Aged", "Nomograms", "China", "Inpatients", "Blood Glucose", "Risk Factors", "Aged, 80 and over", "Middle Aged", "Hypoglycemic Agents", "Incidence", "Risk Assessment", "Prognosis"]
+},
+{
+"PMID": 39610135,
+"Title": "Diabetes & metabolism journal",
+"ArticleTitle": "Cardiovascular Disease & Diabetes Statistics in Korea: Nationwide Data 2010 to 2019.",
+"Abstract": "The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Republic of Korea", "Male", "Female", "Middle Aged", "Diabetes Mellitus, Type 2", "Aged", "Cardiovascular Diseases", "Incidence", "Adult", "Nutrition Surveys", "Risk Factors", "Young Adult", "Sodium-Glucose Transporter 2 Inhibitors", "Aged, 80 and over"]
+},
+{
+"PMID": 39610132,
+"Title": "Diabetes & metabolism journal",
+"ArticleTitle": "Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.",
+"Abstract": "Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Diabetic Neuropathies", "H-Reflex", "Animals", "Neuralgia", "Electromyography", "Spinal Cord"]
+},
+{
+"PMID": 39610131,
+"Title": "Diabetes & metabolism journal",
+"ArticleTitle": "Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association.",
+"Abstract": "Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Non-alcoholic Fatty Liver Disease", "Fatty Liver", "Republic of Korea"]
+},
+{
+"PMID": 39610015,
+"Title": "Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society",
+"ArticleTitle": "Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing.",
+"Abstract": "Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Wound Healing", "Humans", "Low-Level Light Therapy", "Inflammation", "Diabetic Foot", "Oxidative Stress", "Cytokines"]
+},
+{
+"PMID": 39609996,
+"Title": "Journal of Ayub Medical College, Abbottabad : JAMC",
+"ArticleTitle": "A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.",
+"Abstract": "Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Membrane Proteins", "Wolfram Syndrome", "Male", "Child", "Pakistan"]
+},
+{
+"PMID": 39609972,
+"Title": "Journal of Ayub Medical College, Abbottabad : JAMC",
+"ArticleTitle": "SELF-REPORTED MULTI-MORBIDITY WITH TUBERCULOSIS: DATA FROM THE KHYBER PAKHTUNKHWA INTEGRATED POPULATION HEALTH SURVEY (KPIPHS) IN PAKISTAN.",
+"Abstract": "There is a higher burden of self-reported cardiometabolic diseases among people with TB, suggesting that this high-risk group should be screened for cardiometabolic diseases, especially Diabetes.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Pakistan", "Male", "Female", "Adult", "Middle Aged", "Tuberculosis", "Self Report", "Health Surveys", "Prevalence", "Multimorbidity", "Diabetes Mellitus"]
+},
+{
+"PMID": 39609829,
+"Title": "BMC endocrine disorders",
+"ArticleTitle": "Cognitive changes in people with diabetes with lower extremity complications compared to people with diabetes without lower extremity complications: a systematic review and meta-analysis.",
+"Abstract": "DRLECs may be related to cognition in people with diabetes, however, existing evidence is unclear due to variability in used methodologies that may challenge concluding the findings. Future high-quality studies investigating cognition among people with and without DRLECs are needed.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Lower Extremity", "Diabetes Complications", "Cognition", "Cognitive Dysfunction", "Diabetic Neuropathies", "Diabetes Mellitus"]
+},
+{
+"PMID": 39609030,
+"Title": "BMJ open",
+"ArticleTitle": "Incidence, prevalence and risk factors for comorbid mental illness among people with hypertension and type 2 diabetes in West Africa: protocol for a systematic review and meta-analysis.",
+"Abstract": "CRD42023450732.",
+"Predictions": ["Diabetes", "Diabetes type 2"],
+"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Systematic Reviews as Topic", "Hypertension", "Mental Disorders", "Prevalence", "Risk Factors", "Incidence", "Africa, Western", "Comorbidity", "Research Design", "Meta-Analysis as Topic"]
+},
+{
+"PMID": 39609024,
+"Title": "BMJ open",
+"ArticleTitle": "Association of overweight and obesity with gestational diabetes mellitus among pregnant women attending antenatal care clinics in Addis Ababa, Ethiopia: a case-control study.",
+"Abstract": "Obesity, but not overweight, was significantly associated with the development of GDM. Screening for GDM is recommended for pregnant women with obesity (MUAC≥31) for targeted intervention. Antenatal care providers should provide information for women of childbearing age on maintaining a healthy body weight before and in-between pregnancies and the need for healthy, diversified food and high-level physical activity.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Female", "Diabetes, Gestational", "Pregnancy", "Ethiopia", "Case-Control Studies", "Adult", "Prenatal Care", "Overweight", "Young Adult", "Obesity", "Risk Factors", "Logistic Models"]
+},
+{
+"PMID": 39609009,
+"Title": "BMJ open",
+"ArticleTitle": "Implementation strategies for providing optimised tuberculosis and diabetes integrated care in LMICs (POTENTIAL): protocol for a multiphase sequential and concurrent mixed-methods study.",
+"Abstract": "Ethics approval was granted by the National Bioethics Committee of Pakistan (NBCR-1010). Findings will be shared through academic publications, conferences and public outreach.",
+"Predictions": ["Diabetes"],
+"MeshTerms": ["Humans", "Pakistan", "Diabetes Mellitus", "Tuberculosis", "Delivery of Health Care, Integrated", "Developing Countries", "Quality of Life", "Research Design"]
+},
+
+{
+"PMID": 39612534,
+"Title": "Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy",
+"ArticleTitle": "Multivariate analysis of Raman spectra for discriminating human collagens: In vitro identification of extracellular matrix collagens produced by an osteosarcoma cell line.",
+"Abstract": "This study establishes Raman spectroscopy as a tool for identifying and characterizing human collagens, aiding in the diagnosis of connective tissue disorders. The creation of a spectral reference library for pure human collagen types I - VI holds potential for medical diagnostics, analytical chemistry, and materials science applications.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Spectrum Analysis, Raman", "Osteosarcoma", "Collagen", "Cell Line, Tumor", "Extracellular Matrix", "Multivariate Analysis", "Bone Neoplasms"]
+},
+{
+"PMID": 39612521,
+"Title": "Colloids and surfaces. B, Biointerfaces",
+"ArticleTitle": "Transferrin-targeting pH-responsive and biodegradable mesoporous silica nanohybrid for nitric oxide-sensitized chemotherapy of cancer.",
+"Abstract": "Weakly acidic pH, low oxygen and high glutathione levels are the main characteristics of tumor cells. Taking advantage of the unique acidic microenvironment of tumor cells, acid-responsive mesoporous organosilica nanoparticles (AMON) were designed for nitric oxide (NO)-sensitized chemotherapy of tumors. AMON served as a nanocarrier co-loaded with a nitric oxide donor (NOD) and chemotherapeutic drug doxorubicin (DOX). Transferrin (Tf) was modified on the surface as a targeting ligand to form NOD&DOX@AMON. In vitro experiments showed that AMON could be completely degraded under acidic conditions (pH 5.0) after 48 h. NOD&DOX@AMON entered cells via transferrin receptor-mediated internalization and degraded in the acidic microenvironment to release its payloads. NOD released NO in presence of one-electron reducing substances like Glutathione (GSH) and ascorbic acid, inhibiting P-glycoprotein(P-gp) function and thereby increasing the intracellular concentration of DOX. In vivo distribution studies revealed that the nanohybrids accumulated maximally in tumor tissue 12 h after intravenous injection and exhibited significant inhibitory effects on HepG2 xenograft tumors. Western blot experiments demonstrated that NOD&DOX@AMON could inhibit the expression of drug resistance-associated proteins and was expected to be employed as a therapeutic approach for drug-resistant ttumors.",
+"Predictions": [],
+"MeshTerms": ["Doxorubicin", "Humans", "Nitric Oxide", "Transferrin", "Hydrogen-Ion Concentration", "Animals", "Silicon Dioxide", "Nanoparticles", "Porosity", "Mice", "Hep G2 Cells", "Antibiotics, Antineoplastic", "Mice, Inbred BALB C", "Particle Size", "Surface Properties", "Mice, Nude", "Antineoplastic Agents", "Drug Carriers"]
+},
+{
+"PMID": 39612480,
+"Title": "JMIR research protocols",
+"ArticleTitle": "Ultrasound-Guided High-Intensity Focused Ultrasound Combined With PD-1 Blockade in Patients With Liver Metastases From Lung Cancer: Protocol for a Single-Arm Phase 2 Trial.",
+"Abstract": "DERR1-10.2196/59152.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Liver Neoplasms", "Lung Neoplasms", "High-Intensity Focused Ultrasound Ablation", "Immune Checkpoint Inhibitors", "Male", "Female", "Programmed Cell Death 1 Receptor", "Middle Aged", "Combined Modality Therapy", "Aged", "Adult", "Clinical Trials, Phase II as Topic"]
+},
+{
+"PMID": 39612472,
+"Title": "Cancer control : journal of the Moffitt Cancer Center",
+"ArticleTitle": "Pan-Cancer Analysis of PTBP1 to Identify it as a Prognostic and Immunological Biomarker.",
+"Abstract": "Our study is the first to demonstrate the oncogenic role of PTBP1 in a pan-cancer context. PTBP1 might serve as a new biomarker for prognostic prediction and immune cell infiltration across cancers in the future.",
+"Predictions": [],
+"MeshTerms": ["Polypyrimidine Tract-Binding Protein", "Humans", "Heterogeneous-Nuclear Ribonucleoproteins", "Prognosis", "Biomarkers, Tumor", "Mice", "Animals", "Cell Line, Tumor", "Gene Expression Regulation, Neoplastic", "Neoplasms", "Computational Biology", "Melanoma", "Colonic Neoplasms", "Adenocarcinoma of Lung", "RNA, Messenger"]
+},
+{
+"PMID": 39612465,
+"Title": "Medicine",
+"ArticleTitle": "Association between immune cell attributes, serum metabolites, inflammatory protein factors, and colorectal cancer: A Mendelian randomization study.",
+"Abstract": "Understanding the role of the tumor microenvironment in colorectal cancer (CRC) progression remains a challenge due to its complexity. Investigating the interplay between immune cell characteristics, serum metabolites, inflammatory protein factors, and CRC could unveil novel therapeutic avenues. We used 2-sample Mendelian randomization (MR) on Genome-Wide Association Studies (GWAS) data to explore causal links between 731 immune cell characteristics, 1400 serum metabolites, 91 inflammatory proteins, and CRC. Various MR methods, including inverse variance weighted (IVW) and MR-Egger, were applied to ensure robust analysis. Sensitivity analyses, such as the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis, were performed to check for pleiotropy, heterogeneity, and influential outliers. Following rigorous genetic variation screening, we identified 43 immune cell characteristics associated with CRC. Notably, 7 immunophenotypes, including CD39+ CD4+ T cell Absolute Count, exhibited significant associations as protective factors. Additionally, 36 other immunophenotypes showed significant causal relationships with CRC. Among serum metabolites, 37 were correlated with CRC, with 1-arachidonoyl-gpc (20: 4n6) being the most closely linked as a risk factor. Similarly, 36 serum metabolites displayed significant causal relationships with CRC. Seven inflammatory protein factors exhibited causal relationships with CRC, with 4 posing as risk factors and 3 as protective factors. Our study scrutinized 731 immune cell characteristics, 1400 serum metabolites, and 91 inflammatory protein factors within the tumor microenvironment. We confirmed causal relationships between 43 immune cell characteristics, 37 serum metabolites, and 7 inflammatory protein factors with CRC. These findings offer novel insights into the potential etiology, prevention, and treatment strategies for CRC.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Colorectal Neoplasms", "Mendelian Randomization Analysis", "Genome-Wide Association Study", "Risk Factors", "Tumor Microenvironment", "Polymorphism, Single Nucleotide"]
+},
+{
+"PMID": 39612459,
+"Title": "Medicine",
+"ArticleTitle": "Cost-effectiveness analysis of immune checkpoint inhibitors combined with targeted therapy and chemotherapy for HPV/HIV-related cervical cancer.",
+"Abstract": "Immune checkpoint inhibitors significantly improve survival benefits for patients. However, their addition is costly and unlikely to be cost-effective for HPV/HIV-related metastatic cervical cancer.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Uterine Cervical Neoplasms", "Cost-Benefit Analysis", "Female", "Immune Checkpoint Inhibitors", "Papillomavirus Infections", "Quality-Adjusted Life Years", "HIV Infections", "Antineoplastic Combined Chemotherapy Protocols", "Antibodies, Monoclonal, Humanized", "Bevacizumab", "Adult", "Middle Aged", "Cost-Effectiveness Analysis"]
+},
+{
+"PMID": 39612458,
+"Title": "Medicine",
+"ArticleTitle": "Network pharmacology and molecular docking analysis on the mechanism of Wensan tincture in the treatment of pulmonary nodules: A review.",
+"Abstract": "Network pharmacology and molecular docking methods were applied to elucidate the molecular mechanism of action of Wensan tincture (WST) in the treatment of pulmonary nodules. The Traditional Chinese Medicine Systems Pharmacology and the Traditional Chinese Medicine and Chemical Composition database were used to screen the active ingredients. Potential targets of WST were retrieved using Traditional Chinese Medicine Systems Pharmacology, SwissADME, and SwissTargetPrediction, while pulmonary nodule-associated targets were obtained from GeneCards and Online Mendelian Inheritance in Man databases. An active ingredient-target network was constructed using Cytoscape 3.9.1, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted via the Database for Annotation, Visualization, and Integrated Discovery platform to identify core targets and signaling pathways. Molecular docking studies were performed using AutoDockTools. The results revealed 62 active ingredients and 344 corresponding targets within the tincture, alongside 1005 targets associated with pulmonary nodules. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the potential therapeutic targets of WST include signal transducer and activator of transcription 3, mitogen-activated protein kinase-3, mitogen-activated protein kinase-1, Jun proto-oncogene, tumor protein 53, phosphoinositide-3-kinase regulatory subunit 1, heat shock protein 90 alpha family class A member 1, and AKT serine/threonine kinase 1. The primary pathways were the cancer pathway, mitogen-activated protein kinase signaling, advanced glycation end-products and their receptor signaling, epidermal growth factor receptor signaling, hypoxia-inducible factor-1 signaling, and the programmed cell death-ligand 1/programmed cell death protein 1 checkpoint pathways. Molecular docking demonstrated that quercetin exhibited the strongest binding affinity with mitogen-activated protein kinase-3, with a binding energy of -9.1 kcal/mol. Notably, key components of WST, such as quercetin, demonstrate considerable potential as drug candidates for the treatment of pulmonary nodules.",
+"Predictions": [],
+"MeshTerms": ["Molecular Docking Simulation", "Humans", "Drugs, Chinese Herbal", "Network Pharmacology", "Medicine, Chinese Traditional", "Lung Neoplasms", "Signal Transduction"]
+},
+{
+"PMID": 39612452,
+"Title": "Medicine",
+"ArticleTitle": "Iwilfin (eflornithine) approved by the FDA as the first and only oral maintenance therapy for high-risk neuroblastoma in adult and pediatric patients: Narrative review.",
+"Abstract": "Neural crest progenitor cells give rise to neuroblasts, the growing nerve cells of the sympathetic nervous system. These cells can undergo changes leading to neuroblastoma, a malignancy responsible for 15% of all pediatric cancer-related deaths. The molecular pathogenesis of this pediatric cancer involves complex genetic alterations, such as MYCN amplification, chromosomal abnormalities, and gene expression changes. Despite aggressive therapies, survival rates for children with high-risk neuroblastoma (HRNB) have not improved significantly compared to those with less severe forms of the disease. This highlights the challenge of managing HRNB and underscores the need for new, effective treatments. A comprehensive treatment regimen, including immunotherapy, radiation therapy, myeloablative chemotherapy, and surgical removal, has been employed to achieve remission in HRNB patients. While dinutuximab beta immunotherapy is an effective and widely used treatment, it has several potential side effects that must be carefully monitored. New drugs are being developed to reduce these side effects without compromising efficacy. One such drug is DL-alpha-difluoromethylornithine (DFMO), approved by the FDA under the brand name Iwilfin. Numerous clinical trials have shown that DFMO, when used as maintenance therapy, significantly improves event-free survival and overall survival in neuroblastoma patients. However, DFMO has adverse effects that require continuous monitoring. Further research is needed to minimize these side effects and improve its efficacy, particularly in addressing resistance caused by long-term use.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Neuroblastoma", "Child", "Eflornithine", "United States", "Adult", "Drug Approval", "Antineoplastic Agents", "United States Food and Drug Administration", "Maintenance Chemotherapy", "Administration, Oral"]
+},
+{
+"PMID": 39612448,
+"Title": "Medicine",
+"ArticleTitle": "Multimodal imaging of mixed epithelial and stromal tumor of the kidney: Case series.",
+"Abstract": "MESTK is a rare, mostly benign tumor that appears as a multilocular cystic or cystic solid, with progressive marked enhancement of the septal and solid components on enhanced scans. This imaging feature is helpful for the diagnosis of MESTK.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Female", "Kidney Neoplasms", "Middle Aged", "Multimodal Imaging", "Retrospective Studies", "Adult", "Tomography, X-Ray Computed", "Neoplasms, Complex and Mixed", "Neoplasms, Glandular and Epithelial", "Magnetic Resonance Imaging", "Kidney"]
+},
+{
+"PMID": 39612446,
+"Title": "Medicine",
+"ArticleTitle": "Talus osteoid osteoma misdiagnosed as ankle synovitis: A case report in rehabilitation therapy.",
+"Abstract": "This case highlights the diagnostic complexity of ankle osteoid osteoma and underscores the importance of a multidisciplinary approach. Rehabilitation therapists play a crucial role in managing such conditions, ensuring optimal patient outcomes through functional assessment and progress monitoring. Timely and accurate diagnosis is essential for effective treatment and improved patient quality of life.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Male", "Osteoma, Osteoid", "Adult", "Diagnostic Errors", "Talus", "Bone Neoplasms", "Synovitis", "Ankle Joint", "Magnetic Resonance Imaging"]
+},
+{
+"PMID": 39612443,
+"Title": "Medicine",
+"ArticleTitle": "A new nonsense mutation of PTCH1 gene in mother and daughter with late-onset nevus basal cell carcinoma syndrome: Case report.",
+"Abstract": "We detected a new mutation in PTCH1 gene in 2 patients with NBCCS, and both of them had ovarian mature teratomas, which are related to NM000264: exon14: c.2080C>T: p.Q694X.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Patched-1 Receptor", "Female", "Basal Cell Nevus Syndrome", "Codon, Nonsense", "Ovarian Neoplasms", "Adult", "Teratoma", "Middle Aged", "Skin Neoplasms", "Mothers"]
+},
+{
+"PMID": 39612442,
+"Title": "Medicine",
+"ArticleTitle": "Partial nephrectomy versus radiofrequency ablation in patients with cT1a renal cell carcinoma: A surveillance, epidemiology, end results (SEER) analysis.",
+"Abstract": "Radiofrequency ablation (RFA) has been proposed for T1a renal cell carcinoma (RCC). The present study compared partial nephrectomy (PN) with RFA for T1a RCC stratified by tumor sizes. We selected patients with RCC and underwent PN or RFA through the surveillance, epidemiology, end results (SEER) database. The Kaplan-Meier method and Cox proportional hazards regression model were conducted. Inverse probability of treatment weights was conducted for sensitivity analysis. We enrolled 15,692 patients in the unmatched cohort, 15,392 (98.1%) underwent PN, and 300 (1.9%) underwent RFA. For tumor ≦ 2 cm, PN was equal to RFA in terms of overall survival (OS) (P > .05) and cancer-specific survival (CSS) (P > .05). For tumor size 2 to 3 cm, PN is likely to have a better OS (P < .05)and comparable CSS (P > .05). For > 3 cm tumor, PN might be associated with higher OS (P < .05) and CSS (P < .05) compared with RFA. In conclusion, PN had a similar OS and CSS compared with RFA in tumor size ≦ 2 cm, RFA could be offered for elderly or patients with comorbidity. For > 2 cm tumors, RFA is not recommended. However, further randomized controlled trials are further required to validate our results.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Carcinoma, Renal Cell", "Kidney Neoplasms", "Nephrectomy", "Female", "Male", "SEER Program", "Middle Aged", "Radiofrequency Ablation", "Aged", "Neoplasm Staging", "Kaplan-Meier Estimate", "Proportional Hazards Models"]
+},
+{
+"PMID": 39612440,
+"Title": "Medicine",
+"ArticleTitle": "Sensitivity of major chronic diseases and patients of different ages to the collapse of the healthcare system during the COVID-19 pandemic in China.",
+"Abstract": "This study evaluates the sensitivity of major chronic diseases to the collapse of the healthcare system for developing prevention and control strategies under normal and emergency conditions. Data for the years 2018, 2019, and 2020 (coronavirus disease 2019 [COVID-19] pandemic) were curated from the National Disease Mortality Surveillance System, Chinese Center for Disease Control and Prevention for diseases such as cancer, heart disease (HD), cerebrovascular disease (CVD), and chronic obstructive pulmonary disease (COPD). The yearly death rate change for 2018, 2019, and 2020 were calculated. Similarly, expected and observed death cases, 95% confidence intervals, and Z-score were calculated for the year 2020 (COVID-19 pandemic). Furthermore, linear regression analysis was performed to analyze a correlation between the median age of various groups and the mortality rate. The observed death cases for cerebrovascular, heart, and other chronic diseases, were more than the expected death cases (430,007 vs 421,317, 369,684 vs 368,957, and 302,974 vs 300,366) as well as an upper limit of 95% confidence interval. The observed death cases for COPD and cancer are less than the expected death cases (127,786 vs 140,524, 450,346 vs 463,961) and lower limit of the 95% confidence interval. The highest Z-score was noted for cerebrovascular disease (105.14). The disease impact of severity was CVD, other chronic diseases, and HD in descending order. The unexpected decline in deaths was found for COPD and cancers with Z-scores (-166.45 and -116.32). The severity of impact was CVD, other chronic diseases, HD, cancer, and COPD in descending order. The COVID-19 pandemic has also resulted in an increase in deaths of the relatively young population as shown by the difference in rate of slop. The healthcare system collapsed due to prevention, control measures and increased burden of COVID-19 patients, affected chronic disease treatment/management and as a consequence variation in death rates occurs in different chronic diseases. A marked increase in mortality was observed in cerebrovascular disease. The unexpected decline in deaths from COPD and cancers, and increase in deaths of the relatively young population suggests that there may be opportunities for improvement in chronic disease management.",
+"Predictions": [],
+"MeshTerms": ["Humans", "COVID-19", "China", "Chronic Disease", "Aged", "Middle Aged", "Male", "Adult", "Female", "Delivery of Health Care", "SARS-CoV-2", "Neoplasms", "Pulmonary Disease, Chronic Obstructive", "Cerebrovascular Disorders", "Age Factors", "Pandemics", "Aged, 80 and over"]
+},
+{
+"PMID": 39612436,
+"Title": "Medicine",
+"ArticleTitle": "Comprehensive analysis of rheumatic diseases, comorbidities, and mortality in geriatric population: Real-world data of 515 patients in a single rheumatology clinic.",
+"Abstract": "Rheumatic diseases present unique challenges in the elderly, with changes in the immune system contributing to varied clinical presentations. More individuals are now living with chronic diseases due to greater life expectancy, but there is a lack of real-world data about rheumatic diseases and comorbidities in older people. This study aimed to investigate disease types, comorbidities, treatments, and mortality in geriatric patients in comparison to non-geriatric patients at a rheumatology clinic. This retrospective observational cohort study reviewed the medical records of 2610 patients from January 2021 to January 2024 at 2 branches of a private hospital's rheumatology clinics. Demographic information and data on rheumatic diseases, noninflammatory conditions, treatments, comorbidities, and mortality were collected, and geriatric patients were compared to non-geriatric patients. Geriatric patients (n = 515) had a significantly higher prevalence of rheumatoid arthritis (50.6% vs 28.8%, P < .001), polymyalgia rheumatica (11.1% vs 0.2%, P < .001), and crystal arthritis (19.6% vs 8.8%, P < .001), with more frequent geriatric-onset cases. Osteoarthritis was also more prevalent in geriatric patients (51.2% vs 11.3%, P < .001), while fibromyalgia was more common in the non-geriatric group (15.9% vs 4.1%, P < .001). Geriatric patients experienced higher rates of comorbidities, including hypertension (72.4% vs 17.8%, P < .001), diabetes (33.6% vs 12.1%, P < .001), and osteoporosis (64.9% vs 35.4%, P < .001). These patients used more corticosteroids (74.5% vs 44%, P < .001), and conventional synthetic disease-modifying antirheumatic drugs (62.4% vs 49.4%, P < .001) but fewer biological disease-modifying antirheumatic drugs (9.2% vs 23.1%, P < .001). Mortality rates were significantly higher in geriatric patients (6% vs 0.3%), with cancer (P = .001), ischemic heart disease (P = .04), heart failure (P = .01), chronic kidney disease (P = .02), and interstitial lung disease (P = .01) being associated with increased mortality. Geriatric rheumatology should receive greater focus in future research to help address the anticipated increases in demand and to develop tailored management strategies for elderly patients with rheumatic diseases and comorbidities.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Aged", "Female", "Male", "Rheumatic Diseases", "Retrospective Studies", "Comorbidity", "Aged, 80 and over", "Middle Aged", "Prevalence"]
+},
+{
+"PMID": 39612434,
+"Title": "Medicine",
+"ArticleTitle": "Spermatic cord myxoma: A rare case report.",
+"Abstract": "Although rare, spermatic cord myxomas should be considered in the differential diagnosis of scrotal masses. Surgical excision is both diagnostic and therapeutic, providing a favorable prognosis with minimal risk of recurrence.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Male", "Myxoma", "Middle Aged", "Spermatic Cord", "Genital Neoplasms, Male", "Diagnosis, Differential"]
+},
+{
+"PMID": 39612433,
+"Title": "Medicine",
+"ArticleTitle": "Two case reports of breast cancer combined with synchronous primary intrahepatic cholangiocarcinoma/mixed liver cancer.",
+"Abstract": "The treatment approach adopted in this case report may serve as a favorable reference for the management of similar cases. However, further extensive biological studies are still needed to investigate the biological mechanisms of multiple primary malignant tumors and to discover specific therapeutic approaches to achieve more clinical benefits for patients.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Female", "Cholangiocarcinoma", "Neoplasms, Multiple Primary", "Breast Neoplasms", "Bile Duct Neoplasms", "Liver Neoplasms", "Middle Aged", "Carcinoma, Hepatocellular", "Aged", "Carcinoma, Ductal, Breast"]
+},
+{
+"PMID": 39612432,
+"Title": "Medicine",
+"ArticleTitle": "The role of 1400 plasma metabolites in gastric cancer: A bidirectional Mendelian randomization study and metabolic pathway analysis.",
+"Abstract": "While observational studies have illustrated correlations between plasma metabolites and gastric cancer (GC), the causal association between the 2 is still unclear. Our study aims to delineate the bidirectional relationship between plasma metabolites and GC and find potential metabolic pathways. We undertook a bidirectional 2-sample Mendelian randomization (MR) analysis to investigate the causal relationship, specificity, and direction of association between 1400 plasma metabolites and GC. The GWAS data for metabolites was obtained from a cohort of 8299 European individuals. And the GC's GWAS data was from FinnGen Consortium with 2384 European individuals, and the GWAS catalog with 1029 European ancestry cases for validation. Causal estimates were primarily calculated by the inverse-variance weighted (IVW) method. To ensure robustness, we performed comprehensive sensitivity analyses to assess heterogeneity and address concerns regarding horizontal pleiotropy. We validated the forward relationship between metabolites and GC from another database and implemented meta-analysis. Furthermore, we conducted metabolic enrichment and pathway analysis of these causal metabolites using MetaboAnalyst5.0/6.0 with the database of Kyoto Encyclopedia of Genes and Genomes. All statistical analysis was carried out using R software. Metabolites like 2s, 3R-dihydroxybutyrate, 4-acetamidobutanoate, ferulic acid 4-sulfate and methyl indole-3-acetate was proven positively linked with the development of GC. Asparagine, glucose to maltose ratio, glycohyocholate, Gulonate levels, linoleoyl ethanolamide and Spermidine to (N(1) + N(8))-acetylspermidine ratio was proven to be negatively associated with GC. Moreover, linoleic acid, histidine, glutamine, bilirubin, Succinate to proline ratio were found to be potentially linked to the development of GC. Furthermore, our analysis identified 18 significant metabolic pathways, including Arginine and proline metabolism (P < .009) and Valine, leucine, and isoleucine biosynthesis (P < .031). Our findings offer evidence supporting potential casual relations between multiple plasma metabolites and GC. These findings may offer great potential for future application of these biomarkers in GC screening and clinical prevention strategies.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Mendelian Randomization Analysis", "Stomach Neoplasms", "Genome-Wide Association Study", "Metabolic Networks and Pathways", "Male", "Female"]
+},
+{
+"PMID": 39612428,
+"Title": "Medicine",
+"ArticleTitle": "Correlation between CT spectral quantitative parameters and expression levels of HIF-1α and ALX1 in non-small cell lung cancer.",
+"Abstract": "To detect the expression levels of hypoxia inducible factor-1alpha (HIF-1α) and aristaless-like homeobox 1 (ALX1) in non-small cell lung cancer and analyze the relationship between CT spectral quantitative parameters and immunohistochemical markers, in order to evaluate the biological characteristics of lung cancer by spectral CT. Spectral CT data and paraffin masses of 50 adult patients with lung cancer were collected. CT quantitative parameters including the slope of spectral curve, effective atomic number and iodine concentration in enhanced phases were acquired. Expression levels of HIF-1α and ALX1 were detected by immunohistochemical tests, and compared between different pathological types and differentiation grades of tumor cells. CT quantitative parameters at different expression levels of HIF-1α and ALX1 were compared, respectively. The relationship between CT quantitative parameters and expression levels of HIF-1α and ALX1 were analyzed. There was no significant difference of expression levels of HIF-1α and ALX1 between adenocarcinoma and squamous cell carcinoma. Expression levels of HIF-1α among different differentiation grades of tumor cells had significant difference (χ2 = 27.100, P < .001), while without significant difference in ALX1 expression. CT spectral parameters had significant difference among expression levels of HIF-1α and ALX1 (P < .01). There was a positive correlation between each CT spectral parameter and the expression level of immunohistochemical markers. CT spectral quantitative parameters are significantly different among expression levels of immunohistochemical markers. The positive correlation between CT quantitative parameter and expression level of immunohistochemical markers suggests CT spectral imaging could predict biological characteristics of tumors.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Carcinoma, Non-Small-Cell Lung", "Lung Neoplasms", "Hypoxia-Inducible Factor 1, alpha Subunit", "Male", "Middle Aged", "Female", "Tomography, X-Ray Computed", "Aged", "Homeodomain Proteins", "Adult", "Biomarkers, Tumor", "Immunohistochemistry"]
+},
+{
+"PMID": 39612421,
+"Title": "Medicine",
+"ArticleTitle": "Chemotherapy combined with immunotherapy in a patient with multiple primary gastric and rectal cancers with good prognosis: A case report.",
+"Abstract": "According to the results of NGS testing, the multiple primary cancers' patient received personalized treatment and ultimately achieved clinical complete remission. This case highlights the critical role of genetic testing in accurately identifying multiple primary cancer and the value of personalized guidance for patient treatment using NGS in clinical practice.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Male", "Rectal Neoplasms", "Stomach Neoplasms", "Aged", "Neoplasms, Multiple Primary", "Adenocarcinoma", "Antineoplastic Combined Chemotherapy Protocols", "Immunotherapy", "Chemotherapy, Adjuvant", "Capecitabine", "Neoadjuvant Therapy", "Prognosis", "Oxaloacetates"]
+},
+{
+"PMID": 39612416,
+"Title": "Medicine",
+"ArticleTitle": "High C-reactive protein is associated with the efficacy of neoadjuvant chemotherapy for hormone receptor-positive breast cancer.",
+"Abstract": "C-reactive protein (CRP) is a nonspecific biomarker for systemic inflammatory response and is linked to the prognosis of breast cancer (BC); however, few studies have investigated the correlation between CRP and the effectiveness of neoadjuvant chemotherapy treatment for BC. We recruited 177 patients with BC who underwent neoadjuvant chemotherapy in our clinical trial. the median CRP level (0.24 mg/L), patients were categorized into high and low groups. We examined the relationship between CRP levels and various clinicopathological factors, including pathological complete response (pCR), using the chi-square test or Fisher exact test. Furthermore, we evaluated the predictive capacity of CRP for different molecular subtypes by constructing receiver operating characteristic curves. To identify the independent variables associated with pCR, we conducted logistic regression multivariate analysis. No association was found between C-reactive levels at baseline and pCR rates. CRP level was significantly associated with higher body mass index, and the high CRP group had more overweight patients (47.06% vs. 16.30%, P < .001). In hormone receptor-positive patients, the high CRP group demonstrated a significantly higher pCR rate (OR = 4.115, 95% CI: 1.481-11.36, P = .009). The areas under the curve was 0.670 (95% CI: 0.550-0.792, P < .001). Multivariate logistic analysis showed that the CRP level was a significant independent predictor of pCR (OR = 5.882, 95% CI: 1.470-28.57, P = .017). High CRP levels were found to be associated with a higher pCR rate, indicating their independent predictive value in determining the efficacy of neoadjuvant chemotherapy in hormone receptor-positive BC patients.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Female", "C-Reactive Protein", "Breast Neoplasms", "Neoadjuvant Therapy", "Middle Aged", "Adult", "Aged", "Biomarkers, Tumor", "Receptors, Estrogen", "ROC Curve", "Receptors, Progesterone", "Treatment Outcome", "Chemotherapy, Adjuvant", "Prognosis", "Antineoplastic Combined Chemotherapy Protocols"]
+},
+{
+"PMID": 39612415,
+"Title": "Medicine",
+"ArticleTitle": "Development of a nomogram for predicting cancer pain in lung cancer patients: An observational study.",
+"Abstract": "During the progression of lung cancer, cancer pain is a common complication. Currently, there are no accurate tools or methods to predict the occurrence of cancer pain in lung cancer. Our study aims to construct a predictive model for lung cancer pain to assist in the early diagnosis of cancer pain and improve prognosis. We retrospectively collected clinical data from 300 lung cancer patients between March 2013 and March 2023. First, we compared the clinical data of the groups with and without cancer pain. Significant factors were further screened using random forest analysis (IncMSE% > 2) to identify those with significant differences. Finally, these factors were incorporated into a multifactorial logistic regression model to develop a predictive model for lung cancer pain. The predictive accuracy and performance of the model were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) analysis. Our study collected data from 300 lung cancer patients, including 100 in the pain-free group and 200 in the pain group. Subsequently, we conducted univariate analysis on 22 factors and selected statistically significant factors using random forest methods. Ultimately, lymphocytes(LYM) percentage, bone metastasis, tumor necrosis factor alpha (TNFα), and interleukin-6 (IL6) were identified as key factors. These 4 factors were included in a multivariate logistic regression analysis to construct a predictive model for lung cancer pain. The model demonstrated good predictive ability, with an area under the curve (AUC) of 0.852 (95% CI: 0.806-0.899). The calibration curve indicated that the model has good accuracy in predicting the risk of lung cancer pain. DCA further emphasized the model's high accuracy. The model was finally validated using 5-fold cross-validation. We developed a reliable predictive model for cancer pain in lung cancer. This can provide a theoretical basis for future large-sample, multi-center studies and may also assist in the early prevention and intervention of cancer pain in lung cancer.",
+"Predictions": [],
+"MeshTerms": ["Humans", "Lung Neoplasms", "Female", "Male", "Nomograms", "Cancer Pain", "Middle Aged", "Retrospective Studies", "Aged", "ROC Curve", "Logistic Models", "Prognosis", "Tumor Necrosis Factor-alpha"]
+}
+]
\ No newline at end of file
diff --git a/api/pubmedApi.py b/api/pubmedApi.py
index 3a63534a0..6583ba42c 100644
--- a/api/pubmedApi.py
+++ b/api/pubmedApi.py
@@ -6,6 +6,7 @@ FILENAME = "pubmedData.xml"
 
 # term = "diabetes+type+1+OR+diabetes+type+2+OR+mental+health"
 term = '"Diabetes+Mellitus"[Mesh]'
+# term = 'cancer'
 date_min = "2024/11/29"
 date_max = "2024/11/29"
 
@@ -42,28 +43,71 @@ print(obj["PubmedArticle"][0].get("Title"))
 
 for key in obj.keys():
     if isinstance(obj[key], list):
+
+        i = 0
+
         for entrie in obj[key]:
             print("--------------------------------------------------------")
-            print(f"Index: {obj[key].index(entrie)}")
-            if "Abstract" in entrie["MedlineCitation"]["Article"] :
-                pmid = entrie["MedlineCitation"]["PMID"]
-                title = entrie["MedlineCitation"]["Article"]["Journal"]["Title"]
-                articleTitle = entrie["MedlineCitation"]["Article"]["ArticleTitle"]
-                abstract = entrie["MedlineCitation"]["Article"]["Abstract"]["AbstractText"]
-                print(f"PMID: {pmid}")
-                print(f"Title: {title}")
-                print(f"ArticleTitle: {articleTitle}")
-                print(f"Abstract: {abstract}")
-
-                meshTerms = []
-                for meshTerm in entrie["MedlineCitation"]["MeshHeadingList"]["MeshHeading"]:
-                    meshTerms.append(meshTerm["DescriptorName"])
-
-                print(meshTerms)
-
-                facebookBartLargeMnli.classify(title + " \n " + articleTitle + " \n " + abstract)
-            else:
-                print(f"It has no abstract: {entrie["MedlineCitation"]["PMID"]}")
+
+            if "MedlineCitation" in entrie:
+
+                if "MeshHeadingList" in entrie["MedlineCitation"]:
+                    i+=1
+                    print(f"Index: {obj[key].index(entrie)}")
+                    pmid = entrie["MedlineCitation"]["PMID"]
+                    title = entrie["MedlineCitation"]["Article"]["Journal"]["Title"]
+                    articleTitle = entrie["MedlineCitation"]["Article"]["ArticleTitle"]
+                    print(f"PMID: {pmid}")
+                    print(f"Title: {title}")
+                    print(f"ArticleTitle: {articleTitle}")
+
+                    if "Abstract" in entrie["MedlineCitation"]["Article"] :
+                        abstract = entrie["MedlineCitation"]["Article"]["Abstract"]["AbstractText"]
+                        print(f"Abstract: {abstract}")
+
+                    meshTerms = []
+                    for meshTerm in entrie["MedlineCitation"]["MeshHeadingList"]["MeshHeading"]:
+                        meshTerms.append(meshTerm["DescriptorName"])
+
+                    print(meshTerms)
+
+                    if i > 20:
+                        break
+                
+
+            # print(f"Index: {obj[key].index(entrie)}")
+            # pmid = entrie["MedlineCitation"]["PMID"]
+            # title = entrie["MedlineCitation"]["Article"]["Journal"]["Title"]
+            # articleTitle = entrie["MedlineCitation"]["Article"]["ArticleTitle"]
+            # print(f"PMID: {pmid}")
+            # print(f"Title: {title}")
+            # print(f"ArticleTitle: {articleTitle}")
+
+            # if "Abstract" in entrie["MedlineCitation"]["Article"] :
+            #     abstract = entrie["MedlineCitation"]["Article"]["Abstract"]["AbstractText"]
+            #     print(f"Abstract: {abstract}")
+
+
+
+            # if "Abstract" in entrie["MedlineCitation"]["Article"] :
+            #     pmid = entrie["MedlineCitation"]["PMID"]
+            #     title = entrie["MedlineCitation"]["Article"]["Journal"]["Title"]
+            #     articleTitle = entrie["MedlineCitation"]["Article"]["ArticleTitle"]
+            #     abstract = entrie["MedlineCitation"]["Article"]["Abstract"]["AbstractText"]
+            #     print(f"PMID: {pmid}")
+            #     print(f"Title: {title}")
+            #     print(f"ArticleTitle: {articleTitle}")
+            #     print(f"Abstract: {abstract}")
+
+            #     meshTerms = []
+            #     for meshTerm in entrie["MedlineCitation"]["MeshHeadingList"]["MeshHeading"]:
+            #         meshTerms.append(meshTerm["DescriptorName"])
+
+            #     print(meshTerms)
+
+            #     facebookBartLargeMnli.classify(title + " \n " + articleTitle + " \n " + abstract)
+            # else:
+            #     print(f"It has no abstract: {entrie["MedlineCitation"]["PMID"]}")
             print("--------------------------------------------------------")
 
         
diff --git a/api/test_model.py b/api/test_model.py
new file mode 100644
index 000000000..083c773a9
--- /dev/null
+++ b/api/test_model.py
@@ -0,0 +1,55 @@
+from parser.jsonParser import parseJsonFile
+import time
+import model.facebookBartLargeMnli as facebookBartLargeMnli
+
+def predict(article):
+    pmid = article["PMID"]
+    title = article["Title"]
+    articleTitle = article["ArticleTitle"]
+    abstract = article["Abstract"]
+    meshTerms = article["MeshTerms"]
+    print(f"PMID: {pmid}")
+    print(f"Title: {title}")
+    print(f"ArticleTitle: {articleTitle}")
+    print(f"Abstract: {abstract}")
+    print(f"MeshTerm: {meshTerms}")
+
+    return facebookBartLargeMnli.classify(title + " \n " + articleTitle + " \n " + abstract)
+
+
+
+try:
+    articles = parseJsonFile("./model/test.json")
+    # print(articles)
+except Exception as e:
+    print(f"Error: {e}")
+
+start = time.time()
+
+predictions = 0
+
+for article in articles:
+    results = predict(article)
+
+    print(f"Labels: {results["labels"]}")
+    print(f"Scores: {results["scores"]}")
+
+    predictPresent = False
+
+    for id, score in enumerate(results["scores"]):
+        if score >= 0.6:
+            if results["labels"][id] in article["Predictions"]:
+                predictPresent = True
+                break
+
+    print(f"Prediction: {predictPresent}")
+
+    if predictPresent and len(article["Predictions"]) != 0:
+        predictions += 1
+    elif predictPresent == False and len(article["Predictions"]) == 0:
+        predictions += 1
+
+end = time.time()
+
+print(f"Time to classify all articles: {end-start} seconds")
+print(f"Good classification: {predictions}/{len(articles)}")
\ No newline at end of file
diff --git a/rapport.md b/rapport.md
new file mode 100644
index 000000000..4731f50f4
--- /dev/null
+++ b/rapport.md
@@ -0,0 +1,52 @@
+# Rapport 20.12.2024
+
+## ChatGpt
+
+J'ai exploré comment utiliser curl depuis le terminal pour interagir avec ChatGPT et obtenir des réponses. Jusqu'à présent, il semble que la seule méthode fonctionnelle nécessite l'utilisation de l'API d'OpenAI. Par exemple :
+
+```bash
+curl https://api.openai.com/v1/chat/completions \ 
+    -H "Content-Type: application/json" \ 
+    -H "Authorization: Bearer API_KEY" \ 
+    -d '{
+        "model": "gpt-4",
+        "messages": [{"role": "user", "content": "Bonjour, comment vas-tu ?"}]
+    }'
+```
+
+Pour l'instant, le seul moyen d'utiliser ChatGPT sans clé API est de passer directement par le site web, ce qui implique de faire les tests manuellement. Je vais poursuivre mes recherches pour essayer de trouver une alternative ou d'obtenir une clé API afin de pouvoir automatiser mes tests.
+
+## Teste des models
+
+Nous avons discuté de la nécessité de concevoir une méthode pour évaluer les performances des modèles que je trouve. Pour pouvoir par la suite identifier le modèle qui marcherait le mieux pour notre cas de figure. J'ai commencé à travailler sur une méthode.
+
+J'ai regroupé plusieurs articles pour constituer un ensemble de tests. Pour le moment, ces articles sont divisés en deux catégories : ceux classés comme "Diabète" et ceux qui ne le sont pas. Ces articles sont stockés dans un fichier JSON au format suivant :
+
+```json
+
+{
+"PMID": 0,
+"Title": "...",
+"ArticleTitle": "...",
+"Abstract": "...",
+"Predictions": ["...", "..."],
+"MeshTerms": ["...", "..."]
+},
+
+```
+
+Le champ "Predictions" est rempli manuellement par mes soins. Je précise les classes que le modèle de classification devrait reconnaître en me basant sur les MeshTerms fournis par PubMed.
+
+J'ai également développé un programme qui exécute la classification sur tous les articles pré-sélectionnés et qui :
+- calcule le temps nécessaire au modèle pour classifier les articles.
+- évalue le taux de prédictions correctes en comparant les résultats du modèle avec mes prédictions manuelles.
+
+### A faire
+
+- Ajouter plus d'article. 
+- Ajouter une plus grande variété d'articles : 
+    - plus d'articles sans abstract
+    - des articles vagues, mais qui devraient tout de même être correctement classés
+- Refaire mon calcul de classification correcte. Actuellement, je considère qu'une classe est choisie si son score dépasse 60 %, ce qui ne fonctionne pas forcément. Par exemple dans le cas d'articles qui ont moins de contenu, le modèle pourrai être moins confiant de ces prédictions, donc faudrait prendre ces variations en compte.
+- Ajouter une meilleure séparation dans les résultats pour les rendre plus compréhensibles.
+- Intégrer des articles permettant de tester tous les mots-clés.
\ No newline at end of file
-- 
GitLab