diff --git a/.gitignore b/.gitignore index feb6a08354226ffd35b72ad7080152d958ca4f81..f13d16f8bfa5d49bd05f86666bfc9c8a180d8ef8 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,2 @@ -gptKey -geminiKey -claudeKey +dataSources/PubMed/tmp/* .venv \ No newline at end of file diff --git a/ProjectNotes.md b/ProjectNotes.md deleted file mode 100644 index 53d8874e1176f001508a132c26b8ee7451eeb8d5..0000000000000000000000000000000000000000 --- a/ProjectNotes.md +++ /dev/null @@ -1,22 +0,0 @@ -# NCD: data aggregation and classification - -## Remarks - -- - -## TODO - -### Must -- Trouver en combien de temps les mesh term sont donnée -- Explorer les model non-superviser (classification de texte) - -- ~~Mesh term vs keyword~~ -- ~~Ou il recherche les term (titre, keywords, meshterms, etc...)~~ -- ~~Etudier les operateur (A or B and C) (A or B) and C A or (B and C)~~ -- Service qui tourne en arriere plan qui récupere les données -- Reflechire sur la structure de stockage - -- Créer un ensemble de validation qui permet de tester la qualité d'un modèle (vrai, proche de vrai, proche de vrai mais faux et complettement faux). Donnée provenantente de pubmed et autre part. Source longue et courte. - -- Créer un model de score -- Créer un script de test \ No newline at end of file diff --git a/api/__pycache__/pubmedApi.cpython-313.pyc b/api/__pycache__/pubmedApi.cpython-313.pyc deleted file mode 100644 index de253e32742efc8cd407316ca91d758b1f9d266d..0000000000000000000000000000000000000000 Binary files a/api/__pycache__/pubmedApi.cpython-313.pyc and /dev/null differ diff --git a/api/__pycache__/whoApi.cpython-312.pyc b/api/__pycache__/whoApi.cpython-312.pyc deleted file mode 100644 index c2ccfaa62328b440870f9545706215014d433fd6..0000000000000000000000000000000000000000 Binary files a/api/__pycache__/whoApi.cpython-312.pyc and /dev/null differ diff --git a/api/data/pubmedData.xml b/api/data/pubmedData.xml deleted file mode 100644 index 2084b5c99767517094a46c65aed2eb70f423119b..0000000000000000000000000000000000000000 --- a/api/data/pubmedData.xml +++ /dev/null @@ -1,165 +0,0 @@ -<?xml version="1.0" ?> -<!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle, 1st January 2025//EN" "https://dtd.nlm.nih.gov/ncbi/pubmed/out/pubmed_250101.dtd"> -<PubmedArticleSet> -<PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39674195</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>31</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2542-5196</ISSN><JournalIssue CitedMedium="Internet"><Volume>8</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>The Lancet. Planetary health</Title><ISOAbbreviation>Lancet Planet Health</ISOAbbreviation></Journal><ArticleTitle>The potential for reducing greenhouse gas emissions through disease prevention: a secondary analysis of data from the CREDENCE trial.</ArticleTitle><Pagination><StartPage>e1055</StartPage><EndPage>e1064</EndPage><MedlinePgn>e1055-e1064</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S2542-5196(24)00281-X</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2542-5196(24)00281-X</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The health-care sector is responsible for 5·2% of global emissions, however, little data exist regarding the environmental impact of disease management strategies. SGLT2 inhibitors are now widely used to reduce the risk of hospital admission and kidney failure in people with type 2 diabetes and chronic kidney disease. This study aimed to estimate the impact of SGLT2 inhibitors on greenhouse gas emissions using data from the CREDENCE trial.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">For this modelling analysis, we used data from the randomised, double-blind, placebo-controlled, CREDENCE trial, which compared the effect of canagliflozin versus placebo on kidney and cardiovascular outcomes in patients with type 2 diabetes and albuminuric chronic kidney disease. For this secondary analysis, we included all participants randomly assigned to canagliflozin or placebo at baseline in the CREDENCE trial. Data on greenhouse gas emissions resulting from hospital inpatient days, maintenance dialysis therapy, and SGLT2 inhibitor tablet production were derived from published reports and used to model greenhouse gas emissions from total number of hospital inpatient days, total number of days of maintenance dialysis therapy, and from SGLT2 inhibitor treatment over the course of the CREDENCE trial. We compared greenhouse gas emission estimates for participants in the canagliflozin group and placebo group of the CREDENCE trial. We used bootstrapping analyses to calculate uncertainty estimates and permutation tests to generate p values for the difference in number of days on dialysis and inpatient bed days between treatment groups.</AbstractText><AbstractText Label="FINDINGS" NlmCategory="RESULTS">4401 participants who were randomly assigned to the canagliflozin (n=2202) or placebo group (n=2199) were included in the secondary analyses. During a median follow-up of 2·62 years (IQR 0·02 to 4·53), SGLT2 inhibitor production for 2202 participants resulted in greenhouse gas emissions of 63 tonnes of CO<sub>2</sub> equivalent (CO<sub>2</sub>e; 95% CI 62 to 64). The total number of inpatient bed days was 17 002 days in the placebo group versus 13 672 days in the canagliflozin group; the 3330 fewer inpatient days (95% CI 1037 to 5686; p=0·042) with SGLT2 inhibitor treatment equated to a reduction of approximately 126 tonnes of CO<sub>2</sub>e (95% CI 39 to 216). Participants in the placebo group required 24 877 days of maintenance dialysis compared with 16 605 days in the treatment group; 8272 fewer days of dialysis ( -168 to 16 755; p=0·16), equated to a reduction of 161 tonnes of CO<sub>2</sub>e (-3 to 327). Overall, mean greenhouse gas emissions per-participant-year were reduced from 196 kg of CO<sub>2</sub>e per-participant-year to 157 kg of CO<sub>2</sub>e per-participant-year.</AbstractText><AbstractText Label="INTERPRETATION" NlmCategory="CONCLUSIONS">The addition of an SGLT2 inhibitor to routine therapy for people with type 2 diabetes and chronic kidney disease has the potential to reduce greenhouse gas emissions through the prevention of hospital admissions and need for dialysis.</AbstractText><AbstractText Label="FUNDING" NlmCategory="BACKGROUND">None.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Talbot</LastName><ForeName>Benjamin</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; School of Population Health, University of New South Wales, Sydney, NSW, Australia. Electronic address: btalbot@georgeinstitute.org.au.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fletcher</LastName><ForeName>Robert A</ForeName><Initials>RA</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Department of Public Health and Primary Care, British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Neal</LastName><ForeName>Bruce</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; School of Public Health, Imperial College London, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Oshima</LastName><ForeName>Megumi</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Nephrology and Laboratory Medicine, Kanazawa University, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adshead</LastName><ForeName>Fiona</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Sustainable Healthcare Coalition, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moore</LastName><ForeName>Keith</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Sustainable Healthcare Coalition, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McGain</LastName><ForeName>Forbes</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>The Healthcare Carbon Lab, Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia; Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia; Western Health, Footscray, Melbourne, VIC, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McAlister</LastName><ForeName>Scott</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>The Healthcare Carbon Lab, Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia; Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barraclough</LastName><ForeName>Katherine A</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Department of Nephrology, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine, University of Melbourne, Parkville, VIC, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Knight</LastName><ForeName>John</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Neuen</LastName><ForeName>Brendon L</ForeName><Initials>BL</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Department of Renal Medicine, Royal North Shore Hospital, Sydney, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arnott</LastName><ForeName>Clare</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Lancet Planet Health</MedlineTA><NlmUniqueID>101704339</NlmUniqueID><ISSNLinking>2542-5196</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000074382">Greenhouse Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0SAC974Z85</RegistryNumber><NameOfSubstance UI="D000068896">Canagliflozin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000074382" MajorTopicYN="Y">Greenhouse Gases</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000068896" MajorTopicYN="Y">Canagliflozin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004311" MajorTopicYN="N">Double-Blind Method</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="N">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006760" MajorTopicYN="N">Hospitalization</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of interests BT was in receipt of a Scientia Scholarship from University of New South Wales; has stock ownership in Ellen Medical Devices; and has received consultancy fees for Scientific Leadership with George Clinical. RAF acknowledges receipt of studentship awards from the Health Data Research UK-The Alan Turing Institute Wellcome PhD Programme in Health Data Science (grant number 218529/Z/19/Z). FA is chair of the Sustainable Healthcare Coalition. KM has a leadership role in the Sustainable Healthcare Coalition. FM has received an MRFF grant for COVID-19 related infections disease research and received royalties or licences for Medihood (a portable, protective hood for patient care); has patents issued for Medihood (the McMonty) and ReResp (a reusable N95 mask); and is the College of Intensive Care Medicine Sustainability Committee lead. KAB has received consulting fees from AstraZeneca. JK is an honorary professorial fellow at The George Institute for Global Health; has received fees for travel support, advisory boards, scientific presentations, consultancy, and steering committee roles from The Med Tech Actuator, Organ Transport, and Baymatob; and has stock ownership in Johnson & Johnson and Ellen Medical Devices. BLN is supported by an Australian National Health and Medical Research Council Emerging Leader Investigator Grant (number 2026621) and a Ramaciotti Foundation Health Investment Grant (number 2023HIG69); and has received fees for travel support, advisory boards, scientific presentations, and steering committee roles from AstraZeneca, Alexion, Bayer, Boehringer Ingelheim, Cambridge Healthcare Research, Cornerstone Medical Education, Janssen, the Limbic, Medscape, Novo Nordisk, and Travere Therapeutics, with all honoraria paid to The George Institute for Global Health. CA has received honoraria or sat on advisory boards for AstraZeneca and Novo Nordisk; and is supported by a Medical Research Futures Fund Investigator Grant. BN, MO, and SM declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>18</Hour><Minute>52</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39674195</ArticleId><ArticleId IdType="doi">10.1016/S2542-5196(24)00281-X</ArticleId><ArticleId IdType="pii">S2542-5196(24)00281-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39674193</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2542-5196</ISSN><JournalIssue CitedMedium="Internet"><Volume>8</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>The Lancet. Planetary health</Title><ISOAbbreviation>Lancet Planet Health</ISOAbbreviation></Journal><ArticleTitle>Health outcomes, environmental impacts, and diet costs of adherence to the EAT-Lancet Diet in China in 1997-2015: a health and nutrition survey.</ArticleTitle><Pagination><StartPage>e1030</StartPage><EndPage>e1042</EndPage><MedlinePgn>e1030-e1042</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S2542-5196(24)00285-7</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2542-5196(24)00285-7</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In 2019, the EAT-Lancet Commission proposed a global reference dietary pattern. Although research on the EAT-Lancet reference diet and its associations with mortality, cardiovascular disease, type 2 diabetes, dietary environmental impacts, and cost of diets is increasing, studies done in low-income and middle-income countries remain scarce. This study aimed to assess the health outcomes, environmental impacts, and dietary costs of adherence to the EAT-Lancet reference diet in China.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">In this health and nutrition survey study, 16 029 participants from the China Health and Nutrition Survey cohort (1997-2015) were included at baseline. All-cause mortality was reported by family members and risk of cardiovascular disease and type 2 diabetes was self-reported. 3-day 24 h recall was used to assess adherence to the EAT-Lancet reference diet (Eat-Lancet Diet Index [ELDI]), diet-related environmental impacts (greenhouse-gas emissions [GHGE]), total water use (TWU), land use, and dietary costs in each survey round. Hazard ratios (HRs) for the ELDI-score were obtained by Cox models with time-varying covariates, adjusted for potential confounders. Multilevel mixed-effects linear regression was used to assess the association of environmental impacts and dietary costs to the ELDI score.</AbstractText><AbstractText Label="FINDINGS" NlmCategory="RESULTS">During a median follow-up of 9·86 years, 803 new cases of incident type 2 diabetes, 563 new cases of cardiovascular disease, and 908 cases of all-cause mortality were recorded. At baseline, the ELDI score ranged from 9·4 points to 110·8 points on a scale of 0 to 140, with a mean of 55·3 points (SD 11·8). With each SD increase in the ELDI score, there was an 8% decreased risk of mortality (95% CI 2·2-14·1), a 16·1% decreased risk of cardiovascular disease (9·2-20·3), and a 25·3% decreased risk of type 2 diabetes (19·5- 28·4). Each SD increase in the index was associated with a decrease of 2·2% (95% CI -2·6 to -1·8) in GHGE, 2·3% (-2·6 to -2·0) in land use, no association with TWU, but an increase in diet costs of 3·3% (2·8 to 3·8).</AbstractText><AbstractText Label="INTERPRETATION" NlmCategory="CONCLUSIONS">High adherence to the ELDI was associated with a lower risk of mortality, cardiovascular disease, and type 2 diabetes. However, the association with diet-related GHGE and land use was modest, and adherence was also linked to higher diet costs. The study advocates for the integration of sustainable indicators into future Chinese dietary guidelines. Additionally, policy measures such as agricultural subsidies on fruit and vegetable and carbon taxes on red meat are recommended to increase affordability, reduce environmental impact, and enhance the overall sustainability of dietary practices in China.</AbstractText><AbstractText Label="FUNDING" NlmCategory="BACKGROUND">The China Scholarship Council and the National Natural Science Foundation of China.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Cai</LastName><ForeName>Hongyi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands; Academy of Global Food Economics and Policy, China Agricultural University, Beijing, China; College of Economics and Management, China Agricultural University, Beijing, China. Electronic address: hongyicai@outlook.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Talsma</LastName><ForeName>Elise F</ForeName><Initials>EF</Initials><AffiliationInfo><Affiliation>Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chang</LastName><ForeName>Zhiyao</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands; Academy of Global Food Economics and Policy, China Agricultural University, Beijing, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wen</LastName><ForeName>Xin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fan</LastName><ForeName>Shenggen</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Academy of Global Food Economics and Policy, China Agricultural University, Beijing, China; College of Economics and Management, China Agricultural University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Van't Veer</LastName><ForeName>Pieter</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Biesbroek</LastName><ForeName>Sander</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Lancet Planet Health</MedlineTA><NlmUniqueID>101704339</NlmUniqueID><ISSNLinking>2542-5196</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004032" MajorTopicYN="Y">Diet</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="Y">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of interests We declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>18</Hour><Minute>52</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39674193</ArticleId><ArticleId IdType="doi">10.1016/S2542-5196(24)00285-7</ArticleId><ArticleId IdType="pii">S2542-5196(24)00285-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39656981</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1958-5381</ISSN><JournalIssue CitedMedium="Internet"><Volume>40</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Medecine sciences : M/S</Title><ISOAbbreviation>Med Sci (Paris)</ISOAbbreviation></Journal><ArticleTitle>[From the discovery of incretin hormones to GIP / GLP-1 / glucagon double and triple agonists].</ArticleTitle><Pagination><StartPage>837</StartPage><EndPage>847</EndPage><MedlinePgn>837-847</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1051/medsci/2024153</ELocationID><Abstract><AbstractText>The concept of treating diabetes with gut hormones was proposed in the early days of endocrinology (1902), but was not put into practice until the early 2000s. The discovery of the incretin effect (potentiation of insulin secretion when glucose is taken orally compared to intravenously) led to the discovery of the two main gut hormones responsible for this effect: GIP and GLP-1. The reduction of the incretin effect is directly involved in the pathogenesis of type 2 diabetes, which has led to the development of a series of innovative therapies such as GLP-1 analogues, GLP-1 receptor agonists, GIP/GLP-1 co-agonists and GIP/GLP-1/glucagon tri-agonists. These therapies, with their potent hypoglycaemic and weight-lowering effects, promote optimal control of excess weight and hyperglycaemia, avoiding the escalation of treatment that was once considered inevitable.</AbstractText><CopyrightInformation>© 2024 médecine/sciences – Inserm.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Phan</LastName><ForeName>Franck</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Service de diabétologie, CHU Pitié-Salpêtrière, Paris, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bertrand</LastName><ForeName>Romane</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Université Paris-Diderot, Unité de biologie fonctionnelle et adaptative / CNRS UMR 8251, Paris, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amouyal</LastName><ForeName>Chloé</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Service de diabétologie, CHU Pitié-Salpêtrière, Paris, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Andreelli</LastName><ForeName>Fabrizio</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Service de diabétologie, CHU Pitié-Salpêtrière, Paris, France.</Affiliation></AffiliationInfo></Author></AuthorList><Language>fre</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D016456">Historical Article</PublicationType><PublicationType UI="D004740">English Abstract</PublicationType></PublicationTypeList><VernacularTitle>De la découverte des hormones incrétines aux doubles et triples agonistes GIP / GLP-1 / glucagon.</VernacularTitle><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>France</Country><MedlineTA>Med Sci (Paris)</MedlineTA><NlmUniqueID>8710980</NlmUniqueID><ISSNLinking>0767-0974</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>59392-49-3</RegistryNumber><NameOfSubstance UI="D005749">Gastric Inhibitory Polypeptide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054795">Incretins</NameOfSubstance></Chemical><Chemical><RegistryNumber>89750-14-1</RegistryNumber><NameOfSubstance UI="D052216">Glucagon-Like Peptide 1</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-92-5</RegistryNumber><NameOfSubstance UI="D005934">Glucagon</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005749" MajorTopicYN="Y">Gastric Inhibitory Polypeptide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054795" MajorTopicYN="Y">Incretins</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D052216" MajorTopicYN="Y">Glucagon-Like Peptide 1</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005934" MajorTopicYN="Y">Glucagon</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D049673" MajorTopicYN="N">History, 20th Century</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D049674" MajorTopicYN="N">History, 21st Century</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="N">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="fre"><AbstractText Label="TITLE" NlmCategory="UNASSIGNED">De la découverte des hormones incrétines aux doubles et triples agonistes GIP / GLP-1 / glucagon.</AbstractText><AbstractText Label="ABSTRACT" NlmCategory="UNASSIGNED">L’idée de traiter les diabètes sucrés par des hormones intestinales a été proposée dès les débuts de l’endocrinologie, en 1902, mais ne sera mise en pratique qu’au début des années 2000. La mise en évidence d’une majoration de la sécrétion d’insuline après l’administration de glucose par voie orale par rapport à son administration intraveineuse, connue sous le nom « d’effet incrétine », a été suivie de la découverte des deux principales hormones intestinales responsables de cet effet : le GIP (glucose-dependent insulinotropic polypeptide) et le GLP-1 (glucagon-like peptide-1). La réduction de l’effet incrétine contribue à la pathogenèse du diabète de type 2, ce qui a conduit à développer des thérapies innovantes successives, comme les analogues du GLP-1, les agonistes du récepteur du GLP-1, les co-agonistes GIP / GLP-1 et les triagonistes GIP / GLP-1 / glucagon. Ces médicaments aux effets hypoglycémiants et pondéraux puissants ont modifié radicalement notre prise en charge thérapeutique du diabète de type 2 et de l’obésité.</AbstractText><CopyrightInformation>© 2024 médecine/sciences – Inserm.</CopyrightInformation></OtherAbstract></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>19</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>19</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>15</Hour><Minute>12</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656981</ArticleId><ArticleId IdType="doi">10.1051/medsci/2024153</ArticleId><ArticleId IdType="pii">msc240165</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>https://www.has-sante.fr/jcms/p_3191108/fr/strategie-therapeutique-du-patient-vivant-avec-un-diabete-de-type-2</Citation></Reference><Reference><Citation>Fosse-Edorh S, Fagot-Campagna A, Detournay B, et al. Impact of socio-economic position on health and quality of care in adults with type 2 diabetes in France : the Entred 2007 study. Diabet Med 2015 ; 32 : 1438–44.</Citation></Reference><Reference><Citation>Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26 : Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med 1998 ; 15 : 297–303.</Citation></Reference><Reference><Citation>Bastin M, Andreelli F. Dual GIP-GLP1-receptor agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes Metab Syndr Obes 2019 ; 12 : 1973–85.</Citation></Reference><Reference><Citation>Starling EH. The chemical correlation of the functions of the body. Lancet 1905 ; 2 : 339–41.</Citation></Reference><Reference><Citation>La Barre MJ. Sur les possibilités d’un traitement du diabète par l’incrétine. Bull Mem Acad R Med Belg 1932 ; 12 : 620–34.</Citation></Reference><Reference><Citation>Berson SA, Yalow RS, Bauman A, et al. Insulin-I 131 metabolism in human subjects : demonstration of insulin binding globulin in the circulation of insulin treated subjects. J Clin Invest 1956 ; 35 : 170–90.</Citation></Reference><Reference><Citation>John H. Glucose tolerance and its value in diagnosis. J Metab Res 1992 ; 1 : 497–548.</Citation></Reference><Reference><Citation>McIntryre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet 1964 ; 4 : 20–1.</Citation></Reference><Reference><Citation>Elrick H, Stimmler L, Hlad CJ Jr, Aray Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964 ; 24 : 1076–82.</Citation></Reference><Reference><Citation>Unger RH, Eisentraut AM. Entero-insular axis. Arch Intern Med 1969 ; 123 : 261–6.</Citation></Reference><Reference><Citation>Creutzfeldt W, Ebert R, Nauck M, Strckmann F. Disturbances of the entero-insular axis. Scand J Gastroenterol 1983 ; 18 : 111–9.</Citation></Reference><Reference><Citation>Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986 ; 29 : 46–52.</Citation></Reference><Reference><Citation>Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 2018 ; 27 : 740–56.</Citation></Reference><Reference><Citation>Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes : physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016 ; 4 : 525–36.</Citation></Reference><Reference><Citation>Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na<sup>+</sup>-glucose cotransporter 1. Proc Natl Acad Sci USA 2007 ; 104 : 15075–80.</Citation></Reference><Reference><Citation>Dotson CD, Zhang L, Xu H, et al. Bitter taste receptors influence glucose homeostasis. PLoS One 2008 ; 3 : e3974.</Citation></Reference><Reference><Citation>McLean BA, Wong CK, Campbell JE, et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr Rev 2021 ; 42 : 101–32.</Citation></Reference><Reference><Citation>Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993 ; 133 : 2861–70.</Citation></Reference><Reference><Citation>Holst J. J. The physiology of glucagon-like peptide 1. Physiol Rev 2007 ; 87 : 1409–39.</Citation></Reference><Reference><Citation>D’Alessio D, Lu W, Sun W, et al. Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma : evidence for selective release of GLP-1 in the lymph system. Am J Physiol 2007 ; 293 : R2163–9.</Citation></Reference><Reference><Citation>Bohórquez DV, Liddle RA. The gut connectome : making sense of what you eat. J Clin Invest 2015 ; 125 : 888–90.</Citation></Reference><Reference><Citation>Mussa BM, Verberne AJ. The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp Physiol 2013 ; 98 : 25–37.</Citation></Reference><Reference><Citation>Vahl TP, Tauchi M, Durler TS, et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007 ; 148 : 4965–73.</Citation></Reference><Reference><Citation>Burcelin R, Da Costa A, Drucker D, et al. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 2001 ; 50 : 1720–8.</Citation></Reference><Reference><Citation>Buller S, Blouet C. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. Am J Physiol Endocrinol Metab 2024 ; 326 : E472–80.</Citation></Reference><Reference><Citation>Wan S, Coleman FH, Travagli RA. Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am J Physiol Gastrointest Liver Physiol 2007 ; 292, G1474–82.</Citation></Reference><Reference><Citation>Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019 ; 30 : 72–130.</Citation></Reference><Reference><Citation>Müller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal a-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med 1970 ; 283 : 109–15.</Citation></Reference><Reference><Citation>Gandasi NR, Gao R, Kothegala L, et al. GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion. Diabetologia 2024 ; 67 : 528–46.</Citation></Reference><Reference><Citation>Cheruiyot A, Hollister-Lock J, Sullivan B, et al. Sustained hyperglycemia specifically targets translation of mRNAs for insulin secretion. J Clin Invest 2023 ; 134 : e173280.</Citation></Reference><Reference><Citation>Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993 ; 91 : 301–7.</Citation></Reference><Reference><Citation>Hu EH, Tsai ML, Lin Y, et al. A Review and meta-analysis of the safety and efficacy of using glucagon-like peptide-1 receptor agonists. Medicina (Kaunas) 2024 ; 60 : 357.</Citation></Reference><Reference><Citation>Tricco AC, Antony J, Khan PA, et al. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents : a systematic review and network meta-analysis. BMJ Open 2014 ; 4 : e005752.</Citation></Reference><Reference><Citation>Nathan DM, Schreiber E, Fogel H, et al. Insulinotropic action of glucagon like peptide-I-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 1992 ; 15 : 270–6.</Citation></Reference><Reference><Citation>Eng J. Exendin peptides. Mt. Sinai J Med 1992 ; 59 : 147–9.</Citation></Reference><Reference><Citation>Knop FK, Brønden A, Vilsbøll T. Exenatide : pharmacokinetics, clinical use, and future directions. Expert Opin Pharmacother 2017 ; 18 : 555–71.</Citation></Reference><Reference><Citation>Moon S, Lee J, Chung HS, et al. Efficacy and safety of the new appetite suppressant, Liraglutide : A meta-analysis of randomized controlled trials. Endocrinol Metab (Seoul) 2021 ; 36 : 647–60.</Citation></Reference><Reference><Citation>Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev 2010 ; 26, : 287–96.</Citation></Reference><Reference><Citation>Jendle J, Grunberger G, Blevins T, et al. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes : a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev 2016 ; 32 : 776–90.</Citation></Reference><Reference><Citation>Bonora E, Frias JP, Tinahones FJ, et al. Effect of dulaglutide 3.0 and 4.5 mg on weight in patients with type 2 diabetes : Exploratory analyses of AWARD-11. Diabetes Obes Metab 2021 ; 23 : 2242–50.</Citation></Reference><Reference><Citation>Frias JP, Bonora E, Cox DA, et al. Glycaemic efficacy of an expanded dose range of dulaglutide according to baseline glycated haemoglobin (HbA1c) subgroup : Post hoc analysis of AWARD-11. Diabetes Obes Metab 2021 ; 23 : 2819–24.</Citation></Reference><Reference><Citation>Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne) 2019 ; 10 : 155.</Citation></Reference><Reference><Citation>Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord 2022 ; 23 : 521–39.</Citation></Reference><Reference><Citation>Andersen A, Knop FK, Vilsbøll T. A pharmacological and clinical overview of oral semaglutide for the treatment of type 2 diabetes. Drugs 2021 ; 81 : 1003–30.</Citation></Reference><Reference><Citation>Avgerinos I, Michailidis T, Liakos A, et al. Oral semaglutide for type 2 diabetes : A systematic review and meta-analysis. Diabetes Obes Metab 2020 ; 22 : 335–45.</Citation></Reference><Reference><Citation>Larger E. Un analogue du glucagon-like peptide 1 (GLP1) administré par voie orale : une nouveauté dans le traitement du diabète de type 2. Med Sci (Paris) 2021 ; 37 : 53–8.</Citation></Reference><Reference><Citation>Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996 ; 2 : 1254–8.</Citation></Reference><Reference><Citation>Mroz PA, Finan B, Gelfanov V, et al. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol Metab 2019 ; 20 : 51–62.</Citation></Reference><Reference><Citation>Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 2013 ; 5 : 209ra151.</Citation></Reference><Reference><Citation>Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021 ; 385 : 503–15.</Citation></Reference><Reference><Citation>Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, et al. 100 years of glucagon and 100 more. Diabetologia 2023 ; 66 : 1378–94.</Citation></Reference><Reference><Citation>Urva S, Coskun T, Loh MT, et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes : a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 2022 ; 400 : 1869–81.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39656751</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Cost-utility and budget impact analysis of laparoscopic bariatric surgery for obesity with Type II Diabetes Mellitus in Thailand.</ArticleTitle><Pagination><StartPage>e0315336</StartPage><MedlinePgn>e0315336</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0315336</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0315336</ELocationID><Abstract><AbstractText Label="UNLABELLED">Bariatric surgery is another treatment options for patients with obesity, who cannot achieve weight controlled by conservative non-surgical therapy. Although bariatric surgery provides clinical benefits for these patients, it is costly. This study aims to evaluate the cost-effectiveness of bariatric surgery, as compared to nonbariatric surgery, in patients with body mass index (BMI) ≥32.5 kg/m2 and type 2 diabetes mellitus (T2DM), and to estimate the budget impact of bariatric surgery in Thailand.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A Markov model was developed to estimate and compare total costs incurred and quality-adjusted life years (QALYs) gained between bariatric surgery and nonbariatric surgery over lifetime horizontal. Analysis was conducted under payer and societal perspectives. Costs and outcomes were discounted at an annual rate of 3%. The outcomes were presented as incremental cost- effectiveness ratio (ICER).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Under payer's perspective, bariatric surgery resulted in higher total lifetime cost (676,658.39 baht vs 574,683.38 baht) and QALYs gained (16.08 QALYs vs 14.78 QALYs), as compared to nonbariatric surgery, resulting in an ICER of 78,643.02 baht/QALY. Similarly, under the societal perspective, bariatric surgery resulted in higher total lifetime cost (1,451,923.83 baht vs 1,407,590.49 baht) and QALYs gained (16.08 QALYs vs 14.78 QALYs), as compared to nonbariatric surgery. Under societal perspective, ICER was estimated at 34,189.82 baht/QALY. A 5-year budget impact analysis indicated that bariatric surgery incurred the total budget of 223,821 million baht.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">At the cost-effectiveness threshold of 160,000 baht/QALY, bariatric surgery was a cost-effective strategy and should continue to be included in the benefit package for patients with obesity and T2DM.</AbstractText><CopyrightInformation>Copyright: © 2024 Noparatayaporn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Noparatayaporn</LastName><ForeName>Prapaporn</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thavorncharoensap</LastName><ForeName>Montarat</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0002-8256-2167</Identifier><AffiliationInfo><Affiliation>Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chaikledkaew</LastName><ForeName>Usa</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Looareesuwan</LastName><ForeName>Panu</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shantavasinkul</LastName><ForeName>Prapimporn Chattranukulchai</ForeName><Initials>PC</Initials><AffiliationInfo><Affiliation>Division of Nutrition and Biochemical Medicine, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sumritpradit</LastName><ForeName>Preeda</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Trauma, Acute Care Surgery and Surgical Critical Care Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thakkinstian</LastName><ForeName>Ammarin</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050110" MajorTopicYN="Y">Bariatric Surgery</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013785" MajorTopicYN="N" Type="Geographic">Thailand</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003362" MajorTopicYN="Y">Cost-Benefit Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019057" MajorTopicYN="Y">Quality-Adjusted Life Years</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008390" MajorTopicYN="Y">Markov Chains</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010535" MajorTopicYN="N">Laparoscopy</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002017" MajorTopicYN="N">Budgets</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>19</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>19</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>13</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656751</ArticleId><ArticleId IdType="pmc">PMC11630598</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0315336</ArticleId><ArticleId IdType="pii">PONE-D-24-16476</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Techagumpuch A, Pantanakul S, Chansaenroj P, Boonyagard N, Wittayapairoch J, Poonthananiwatkul T, et al.. Thai Society for Metabolic and Bariatric Surgery Consensus Guideline on Bariatric Surgery for the Treatment of Obese Patient in Thailand. Journal of the medical association of Thailand. 2020;103(3):300–7.</Citation></Reference><Reference><Citation>Committee ADAPP. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes care. 2021;45(Supplement 1):S113–S24.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964843</ArticleId></ArticleIdList></Reference><Reference><Citation>Lakdawala M, Bhasker A. Report: Asian Consensus Meeting on Metabolic Surgery. Recommendations for the use of Bariatric and Gastrointestinal Metabolic Surgery for Treatment of Obesity and Type II Diabetes Mellitus in the Asian Population: August 9th and 10th, 2008, Trivandrum, India. Obesity surgery. 2010;20(7):929–36. doi: 10.1007/s11695-010-0162-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-010-0162-7</ArticleId><ArticleId IdType="pubmed">20422309</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu GZ, Cai B, Yu F, Fang Z, Fu XL, Zhou HS, et al.. Meta-analysis of bariatric surgery versus non-surgical treatment for type 2 diabetes mellitus. Oncotarget. 2016;7(52):87511–22. doi: 10.18632/oncotarget.11961</Citation><ArticleIdList><ArticleId IdType="doi">10.18632/oncotarget.11961</ArticleId><ArticleId IdType="pmc">PMC5350006</ArticleId><ArticleId IdType="pubmed">27626180</ArticleId></ArticleIdList></Reference><Reference><Citation>Yeo D, Yeo C, Low TY, Ahmed S, Phua S, Oo AM, et al.. Outcomes After Metabolic Surgery in Asians-a Meta-analysis. Obesity surgery. 2019;29(1):114–26. doi: 10.1007/s11695-018-3484-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-018-3484-5</ArticleId><ArticleId IdType="pubmed">30196357</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Zeng C. Diabetes remission of bariatric surgery and nonsurgical treatments in type 2 diabetes patients who failure to meet the criteria for surgery: a systematic review and meta-analysis. BMC Endocr Disord. 2023;23(1):46. doi: 10.1186/s12902-023-01283-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-023-01283-9</ArticleId><ArticleId IdType="pmc">PMC9945737</ArticleId><ArticleId IdType="pubmed">36810013</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohta M, Ahn SM, Seki Y, Yang W, Wong SK, Udomsawaengsup S, et al.. Ten Years of Change in Bariatric/Metabolic Surgery in the Asia-Pacific Region with COVID-19 Pandemic: IFSO-APC National Reports 2021. Obesity surgery. 2022;32(9):2994–3004. doi: 10.1007/s11695-022-06182-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-022-06182-x</ArticleId><ArticleId IdType="pmc">PMC9245878</ArticleId><ArticleId IdType="pubmed">35773552</ArticleId></ArticleIdList></Reference><Reference><Citation>Kong APS, Xu G, Brown N, So W-Y, Ma RCW, Chan JCN. Diabetes and its comorbidities—where East meets West. Nature Reviews Endocrinology. 2013;9(9):537–47. doi: 10.1038/nrendo.2013.102</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2013.102</ArticleId><ArticleId IdType="pubmed">23712250</ArticleId></ArticleIdList></Reference><Reference><Citation>Valencia A, Garcia LC, Morton J. The Impact of Ethnicity on Metabolic Outcomes After Bariatric Surgery. Journal of surgical research. 2019;236:345–51. doi: 10.1016/j.jss.2018.09.061</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jss.2018.09.061</ArticleId><ArticleId IdType="pubmed">30694776</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia Q, Campbell JA, Ahmad H, Si L, de Graaff B, Palmer AJ. Bariatric surgery is a cost-saving treatment for obesity-A comprehensive meta-analysis and updated systematic review of health economic evaluations of bariatric surgery. Obesity reviews: an official journal of the International Association for the Study of Obesity. 2020;21(1):e12932. doi: 10.1111/obr.12932</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/obr.12932</ArticleId><ArticleId IdType="pubmed">31733033</ArticleId></ArticleIdList></Reference><Reference><Citation>Noparatayaporn P, Thavorncharoensap M, Chaikledkaew U, Bagepally BS, Thakkinstian A. Incremental Net Monetary Benefit of Bariatric Surgery: Systematic Review and Meta-Analysis of Cost-Effectiveness Evidences. Obesity surgery. 2021;31(7):3279–90. doi: 10.1007/s11695-021-05415-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-021-05415-9</ArticleId><ArticleId IdType="pmc">PMC8175295</ArticleId><ArticleId IdType="pubmed">33893610</ArticleId></ArticleIdList></Reference><Reference><Citation>Viratanapanu I, Romyen C, Chaivanijchaya K, Sornphiphatphong S, Kattipatanapong W, Techagumpuch A, et al.. Cost-Effectiveness Evaluation of Bariatric Surgery for Morbidly Obese with Diabetes Patients in Thailand. Journal of obesity. 2019. doi: 10.1155/2019/5383478</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2019/5383478</ArticleId><ArticleId IdType="pmc">PMC6377984</ArticleId><ArticleId IdType="pubmed">30863633</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan B, Fang N, Guan W, Ding H, Wang Y, Ge X, et al.. Cost-Effectiveness of Bariatric Surgery versus Medication Therapy for Obese Patients with Type 2 Diabetes in China: A Markov Analysis. Journal of diabetes research. 2019:1341963. doi: 10.1155/2019/1341963</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2019/1341963</ArticleId><ArticleId IdType="pmc">PMC6939432</ArticleId><ArticleId IdType="pubmed">31930144</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang Q, Sun Z, Zhang N, Xu G, Song P, Xu L, et al.. Cost-Effectiveness of Bariatric Surgery for Type 2 Diabetes Mellitus: A Randomized Controlled Trial in China. Medicine (Baltimore). 2016;95(20):e3522. doi: 10.1097/MD.0000000000003522</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000003522</ArticleId><ArticleId IdType="pmc">PMC4902396</ArticleId><ArticleId IdType="pubmed">27196454</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu T. -Clinical effectiveness and cost-effectiveness of bariatric surgery among patients with type 2 diabetes mellitus and obesity. Ph.D. Thesis, University of Hong Kong. 2022. Available from: https://hub.hku.hk/handle/10722/323670.</Citation></Reference><Reference><Citation>Ekaphalakorn V. Report of Thai public health survey by physical examination No. 6, Nonthaburi: Health System Research Institute; 2021.</Citation></Reference><Reference><Citation>Ekaphalakorn V. Report of Thai public health survey by physical examination No. 4, Nonthaburi: Health System Research Institute; 2008. –9.</Citation></Reference><Reference><Citation>Official statistics registration systems. Population and housing statistical data divided by age. The Bureau of Registration Administration. [Available from: https://stat.bora.dopa.go.th/stat/statnew/statMenu/newStat/home.php [Accessed May 5, 2023].</Citation></Reference><Reference><Citation>Jitnarin N, Kosulwat V, Rojroongwasinkul N, Boonpraderm A, Haddock CK, Poston WS. Prevalence of overweight and obesity in Thai population: results of the National Thai Food Consumption Survey. Eating and weight disorders. 2011;16(4):e242–9. doi: 10.1007/BF03327467</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF03327467</ArticleId><ArticleId IdType="pmc">PMC5824639</ArticleId><ArticleId IdType="pubmed">22526130</ArticleId></ArticleIdList></Reference><Reference><Citation>Pitayatienanan P, Butchon R, Yothasamut J, Aekplakorn W, Teerawattananon Y, Suksomboon N, et al.. Economic costs of obesity in Thailand: a retrospective cost-of-illness study. BMC health services research. 2014;14:146. doi: 10.1186/1472-6963-14-146</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1472-6963-14-146</ArticleId><ArticleId IdType="pmc">PMC4109797</ArticleId><ArticleId IdType="pubmed">24690106</ArticleId></ArticleIdList></Reference><Reference><Citation>Permsuwan U, Guntawongwan K, Buddhawongsa P. Handling time in economic evaluation studies. Journal of the Medical Association of Thailand. 2014;97 Suppl 5:S50–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">24964699</ArticleId></ArticleIdList></Reference><Reference><Citation>Shukla AP, Ahn SM, Patel RT, Rosenbaum MW, Rubino F. Surgical treatment of type 2 diabetes: the surgeon perspective. Endocrine. 2011;40(2):151–61. doi: 10.1007/s12020-011-9508-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12020-011-9508-8</ArticleId><ArticleId IdType="pubmed">21842289</ArticleId></ArticleIdList></Reference><Reference><Citation>Keating CL, Dixon JB, Moodie ML, Peeters A, Bulfone L, Maglianno DJ, et al.. Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis. Diabetes care. 2009;32(4):567–74. doi: 10.2337/dc08-1749</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc08-1749</ArticleId><ArticleId IdType="pmc">PMC2660478</ArticleId><ArticleId IdType="pubmed">19171720</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmer A, Roze S, Valentine W, Minshall M, Foos V, M Lurati F, et al.. The CORE Diabetes Model: Projecting Long-term Clinical Outcomes, Costs and Costeffectiveness of Interventions in Diabetes Mellitus (Types 1 and 2) to Support Clinical and Reimbursement Decision-making. Current medical research and opinion. 2004;20 Suppl 1:S5–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">15324513</ArticleId></ArticleIdList></Reference><Reference><Citation>Looareesuwan P, Boonmanunt S, Siriyotha S, Lukkunaprasit T, Thammasudjarit R, Pattanaprateep O, et al.. Retinopathy prediction in type 2 diabetes: Time-varying Cox proportional hazards and machine learning models. Informatics in Medicine Unlocked. 2023;40:101285.</Citation></Reference><Reference><Citation>Siriyotha S, Lukkunaprasit T, Looareesuwan P, Nimitphong H, McKay GJ, Attia J, et al.. Effects of second-line antihyperglycemic drugs on the risk of chronic kidney disease: applying a target trial approach to a hospital-based cohort of Thai patients with type 2 diabetes. Cardiovascular diabetology. 2022;21(1):248. doi: 10.1186/s12933-022-01641-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-022-01641-2</ArticleId><ArticleId IdType="pmc">PMC9670521</ArticleId><ArticleId IdType="pubmed">36397062</ArticleId></ArticleIdList></Reference><Reference><Citation>Riddle MC, Cefalu WT, Evans PH, Gerstein HC, Nauck MA, Oh WK, et al.. Consensus Report: Definition and Interpretation of Remission in Type 2 Diabetes. Diabetes care. 2021;40(10):2438–44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8929179</ArticleId><ArticleId IdType="pubmed">34462270</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasebe M, Yoshiji S, Keidai Y, Minamino H, Murakami T, Tanaka D, et al.. Efficacy of antihyperglycemic therapies on cardiovascular and heart failure outcomes: an updated meta-analysis and meta-regression analysis of 35 randomized cardiovascular outcome trials. Cardiovascular diabetology. 2023;22(1):62. doi: 10.1186/s12933-023-01773-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01773-z</ArticleId><ArticleId IdType="pmc">PMC10024854</ArticleId><ArticleId IdType="pubmed">36935489</ArticleId></ArticleIdList></Reference><Reference><Citation>Monami M, Candido R, Pintaudi B, Targher G, Mannucci E. Improvement of glycemic control in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrition, metabolism, and cardiovascular diseases. 2021;31(9):2539–46. doi: 10.1016/j.numecd.2021.05.010</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2021.05.010</ArticleId><ArticleId IdType="pubmed">34158243</ArticleId></ArticleIdList></Reference><Reference><Citation>Nwaneri C, Cooper H, Bowen-Jones D. Mortality in type 2 diabetes mellitus: magnitude of the evidence from a systematic review and meta-analysis. The British Journal of Diabetes & Vascular Disease. 2013;13(4):192–207.</Citation></Reference><Reference><Citation>World Health Organization. Life tables by country Thailand [Internet]. 2023. [cited 2023 April 1]. Available from: https://apps.who.int/gho/data/?theme=main&vid=61640.</Citation></Reference><Reference><Citation>Butsing N, Mawn B, Suwannapong N, Tipayamongkholgul M. Long-term survival of ischemic and hemorrhagic stroke patients: An analysis of national thai data. Southeast Asian Journal of Tropical Medicine and Public Health. 2018;49:322–30.</Citation></Reference><Reference><Citation>Krittayaphong R, Karaketklang K, Yindeengam A, Janwanishstaporn S. Heart failure mortality compared between elderly and non-elderly Thai patients. Journal of geriatric cardiology. 2018;15(12):718–24. doi: 10.11909/j.issn.1671-5411.2018.12.006</Citation><ArticleIdList><ArticleId IdType="doi">10.11909/j.issn.1671-5411.2018.12.006</ArticleId><ArticleId IdType="pmc">PMC6330268</ArticleId><ArticleId IdType="pubmed">30675143</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim DW, Her SH, Park HW, Park MW, Chang K, Chung WS, et al.. Association between body mass index and 1-year outcome after acute myocardial infarction. PloS one. 2019;14(6):e0217525. doi: 10.1371/journal.pone.0217525</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0217525</ArticleId><ArticleId IdType="pmc">PMC6570024</ArticleId><ArticleId IdType="pubmed">31199840</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim KM, Oh HJ, Choi HY, Lee H, Ryu DR. Impact of chronic kidney disease on mortality: A nationwide cohort study. Kidney research and clinical practice. 2019;38(3):382–90. doi: 10.23876/j.krcp.18.0128</Citation><ArticleIdList><ArticleId IdType="doi">10.23876/j.krcp.18.0128</ArticleId><ArticleId IdType="pmc">PMC6727899</ArticleId><ArticleId IdType="pubmed">31382730</ArticleId></ArticleIdList></Reference><Reference><Citation>Permsuwan U, Dilokthornsakul P, Saokaew S, Thavorn K, Chaiyakunapruk N. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand. ClinicoEconomics and outcomes research. 2016;8:521–9. doi: 10.2147/CEOR.S113559</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/CEOR.S113559</ArticleId><ArticleId IdType="pmc">PMC5036830</ArticleId><ArticleId IdType="pubmed">27703387</ArticleId></ArticleIdList></Reference><Reference><Citation>Trerayapiwat K, Jinatongthai P, Vathesatogkit P, Sritara P, Paengsai N, Dilokthornsakul P, et al.. Using real world evidence to generate cost-effectiveness analysis of fibrinolytic therapy in patients with ST-segment elevation myocardial infarction in Thailand. The Lancet regional health Western Pacific. 2022;26:100503. doi: 10.1016/j.lanwpc.2022.100503</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.lanwpc.2022.100503</ArticleId><ArticleId IdType="pmc">PMC9250039</ArticleId><ArticleId IdType="pubmed">35789828</ArticleId></ArticleIdList></Reference><Reference><Citation>Riewpaiboon A, Riewpaiboon W, Ponsoongnern K, Berg B. Economic valuation of informal care in Asia: A case study of care for disabled stroke survivors in Thailand. Social science & medicine. 2009;69(4):648–53.</Citation><ArticleIdList><ArticleId IdType="pubmed">19573969</ArticleId></ArticleIdList></Reference><Reference><Citation>Thongsri W, Bussabawalai T, Leelahavarong P, Wanitkun S, Durongpisitkul K, Chaikledkaew U, et al.. Cost-utility and budget impact analysis of drug treatments in pulmonary arterial hypertension associated with congenital heart diseases in Thailand. Expert review of pharmacoeconomics & outcomes research. 2016;16(4):525–36. doi: 10.1586/14737167.2016.1120672</Citation><ArticleIdList><ArticleId IdType="doi">10.1586/14737167.2016.1120672</ArticleId><ArticleId IdType="pubmed">26566873</ArticleId></ArticleIdList></Reference><Reference><Citation>Thaweethamcharoen T, Sritippayawan S, Noparatayaporn P, Aiyasanon N. Cost-Utility Analysis of Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis for Thai Patients With End-Stage Renal Disease. Value Health Reg Issues. 2020;21:181–7. doi: 10.1016/j.vhri.2019.10.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vhri.2019.10.004</ArticleId><ArticleId IdType="pubmed">32044691</ArticleId></ArticleIdList></Reference><Reference><Citation>Kangwanrattanakul K. Normative profile of the EQ-5D-5L dimensions, EQ-5D-5L index and EQ-VAS scores for the general Thai population. Quality of Life Research. 2023;32(9):2489–502. doi: 10.1007/s11136-023-03420-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11136-023-03420-2</ArticleId><ArticleId IdType="pubmed">37060516</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim MJ, Jeon DS, Gwon HC, Kim SJ, Chang K, Kim HS, et al.. Health-related quality-of-life after percutaneous coronary intervention in patients with UA/NSTEMI and STEMI: the Korean multicenter registry. Journal of Korean medical science. 2013;28(6):848–54. doi: 10.3346/jkms.2013.28.6.848</Citation><ArticleIdList><ArticleId IdType="doi">10.3346/jkms.2013.28.6.848</ArticleId><ArticleId IdType="pmc">PMC3678000</ArticleId><ArticleId IdType="pubmed">23772148</ArticleId></ArticleIdList></Reference><Reference><Citation>Nipaporn Butsing NT, Disya Ratanakorn, Jessada Kheandoungchun, Patcharaporn Sirintaranont. Functional Outcomes and Expectations of Patients on Their Functional Outcomes After Acute Stroke. Journal of Nursing and Health Sciences. 2021;15(2):104–19.</Citation></Reference><Reference><Citation>Sonsri S. -Development of Multidisciplinary Care Pathway for Admitted Patients with Chronic Heart Failure at Surin Hospital. M.Pharm. Thesis, Mahasarakham University. -2018. Available from: http://202.28.34.124/dspace/handle123456789/202.</Citation></Reference><Reference><Citation>Thaweethamcharoen T, Noparatayaporn P, Sritippayawan S, Aiyasanon N. Comparison of EQ-5D-5L, VAS, and SF-6D in Thai Patients on Peritoneal Dialysis. Value in Health Regional Issues. 2019;18:59–64. doi: 10.1016/j.vhri.2018.08.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vhri.2018.08.005</ArticleId><ArticleId IdType="pubmed">30502661</ArticleId></ArticleIdList></Reference><Reference><Citation>Lemeshow S, Hosmer DW, Klar J, Lwanga SK. Adequacy of Sample Size in Health Studies. England: Wiley for the World Health Organization; 1990.</Citation></Reference><Reference><Citation>GNI per capita, Atlas method (current US$)—Thailand [Internet]. 2022. [cited 1 May 2022]. Available from: https://data.worldbank.org/indicator/NY.GNP.PCAP.CD?locations=TH.</Citation></Reference><Reference><Citation>Weighted-average Interbank Exchange Rate [Internet]. 2022. [cited 1 May 2022]. Available from: https://www.bot.or.th/th/statistics/exchange-rate.html.</Citation></Reference><Reference><Citation>World Economic Outlook Database [Internet]. 2019. [cited 14 November 2019]. Available from: https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/download.aspx.</Citation></Reference><Reference><Citation>Riewpaiboon A. Standard Cost List for Health Technology Assessment: Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Thailand; [cited 2020. Available from: http://www.hitap.net/costingmenu/.</Citation></Reference><Reference><Citation>Pattanaphesaj J, Thavorncharoensap M, Ramos-Goñi J, Tongsiri S, Ingsrisawang L, Teerawattananon Y. The EQ-5D-5L Valuation study in Thailand. Expert review of pharmacoeconomics & outcomes research. 2018;18(5):551–8. doi: 10.1080/14737167.2018.1494574</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/14737167.2018.1494574</ArticleId><ArticleId IdType="pubmed">29958008</ArticleId></ArticleIdList></Reference><Reference><Citation>Papier K D’Este C, Bain C, Banwell C, Seubsman S-a, Sleigh A, et al.. Body mass index and type 2 diabetes in Thai adults: defining risk thresholds and population impacts. BMC Public Health. 2017;17(1):707. doi: 10.1186/s12889-017-4708-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-017-4708-7</ArticleId><ArticleId IdType="pmc">PMC5602842</ArticleId><ArticleId IdType="pubmed">28915801</ArticleId></ArticleIdList></Reference><Reference><Citation>Dohayan Al-Dohayan A, Qamhiah DF, Abukhalaf AA, Alomar AA, Almutairi FJ, Alsalame NM, et al.. Cost effectiveness of bariatric surgery in patients with obesity related comorbidities: A retrospective study. Journal of family medicine and primary care. 2021;10(12):4418–22. doi: 10.4103/jfmpc.jfmpc_877_21</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/jfmpc.jfmpc_877_21</ArticleId><ArticleId IdType="pmc">PMC8884307</ArticleId><ArticleId IdType="pubmed">35280632</ArticleId></ArticleIdList></Reference><Reference><Citation>Kovács G, Mohos E, Kis JT, Tabák Á, Gerendy P, Pettkó J, et al.. Cost-Effectiveness of Bariatric Surgery in Patients Living with Obesity and Type 2 Diabetes. Journal of diabetes research. 2023;2023:9686729. doi: 10.1155/2023/9686729</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2023/9686729</ArticleId><ArticleId IdType="pmc">PMC10748723</ArticleId><ArticleId IdType="pubmed">38144444</ArticleId></ArticleIdList></Reference><Reference><Citation>Borgeraas H, Hofsø D, Hertel JK, Hjelmesæth J. Comparison of the effect of Roux-en-Y gastric bypass and sleeve gastrectomy on remission of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Obesity Reviews. 2020;21(6):e13011. doi: 10.1111/obr.13011</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/obr.13011</ArticleId><ArticleId IdType="pmc">PMC7317556</ArticleId><ArticleId IdType="pubmed">32162437</ArticleId></ArticleIdList></Reference><Reference><Citation>Pang WS, Loo GH, Tan GJ, Mardan M, Rajan R, Kosai NR. Comparative evaluation of early diabetic outcomes in southeast asian patients with type 2 diabetes mellitus undergoing Roux-en-Y gastric bypass (RYGB) versus sleeve gastrectomy (LSG). Scientific reports. 2024;14(1):614. doi: 10.1038/s41598-024-51384-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-024-51384-1</ArticleId><ArticleId IdType="pmc">PMC10770027</ArticleId><ArticleId IdType="pubmed">38182725</ArticleId></ArticleIdList></Reference><Reference><Citation>Srisuworanan N, Suwatthanarak T, Chiswangwatanakul V, Methasate A, Akaraviputh T, Swangsri J, et al.. Surgical Outcomes of Bariatric Surgery in Siriraj Hospital for the First 100 Morbidly Obese Patients Treated. Siriraj Medical Journal. 2022;74:769–77.</Citation></Reference><Reference><Citation>Ilyas S, Al-Refai R, Maharjan R, Diaz Bustamante L, Ghattas KN, Khan S. Bariatric Surgery and Type 2 Diabetes Mellitus: Assessing Factors Leading to Remission. A Systematic Review. Cureus. 2020;12(8):e9973.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7510520</ArticleId><ArticleId IdType="pubmed">32983676</ArticleId></ArticleIdList></Reference><Reference><Citation>AbdAlla Salman M, Rabiee A, Salman A, Elewa A, Tourky M, Mahmoud AA, et al.. Predictors of type-2 diabetes remission following bariatric surgery after a two-year follow-up. Asian J Surg. 2022;45(12):2645–50. doi: 10.1016/j.asjsur.2021.12.070</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.asjsur.2021.12.070</ArticleId><ArticleId IdType="pubmed">35256262</ArticleId></ArticleIdList></Reference><Reference><Citation>Borisenko O, Adam D, Funch-Jensen P, Ahmed AR, Zhang R, Colpan Z, et al.. Bariatric Surgery can Lead to Net Cost Savings to Health Care Systems: Results from a Comprehensive European Decision Analytic Model. Obesity surgery. 2015;25(9):1559–68. doi: 10.1007/s11695-014-1567-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-014-1567-5</ArticleId><ArticleId IdType="pmc">PMC4522026</ArticleId><ArticleId IdType="pubmed">25639648</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia Q, Campbell JA, Ahmad H, Si L, de Graaff B, Otahal P, et al.. Health state utilities for economic evaluation of bariatric surgery: A comprehensive systematic review and meta-analysis. Obesity Reviews. 2020;21(8):e13028. doi: 10.1111/obr.13028</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/obr.13028</ArticleId><ArticleId IdType="pubmed">32497417</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39673731</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-7560</ISSN><JournalIssue CitedMedium="Internet"><Volume>41</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes/metabolism research and reviews</Title><ISOAbbreviation>Diabetes Metab Res Rev</ISOAbbreviation></Journal><ArticleTitle>Searching the Crystal Ball for Tailored GLP-1 Receptor Agonists Treatment in Type 2 Diabetes and Obesity.</ArticleTitle><Pagination><StartPage>e70017</StartPage><MedlinePgn>e70017</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/dmrr.70017</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Glucagon-like peptide 1 receptor agonists (RA) are novel agents used in the management of type 2 diabetes (T2D) and obesity. Although highly effective, the response to treatment may vary significantly among patients.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">This perspective review aims to summarise the current knowledge about markers of poor or good response to GLP-1 RA, highlighting the possibility of tailoring treatment strategies and reducing costs associated with T2D and obesity treatment.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A comprehensive literature search was conducted using PubMed, NCBI, and Scopus databases, focussing on studies published between 2016 and 2024 that evaluated factors influencing treatment outcomes with GLP-1 RA.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Several markers, including baseline HbA1c levels, ghrelin and glucose-dependent insulinotropic polypeptide (GIP) levels, specific gut microbiome composition, b-cell function, and genetic markers, were identified as factors associated with treatment response.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Understanding predictive markers of response to therapy can enhance precision-based medicine for the selection of patients eligible for GLP-1 RA, improving clinical outcomes and optimising diabetes management.</AbstractText><CopyrightInformation>© 2024 John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Saturnino</LastName><ForeName>Asia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Campus Bio-Medico University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Maddaloni</LastName><ForeName>Ernesto</ForeName><Initials>E</Initials><Identifier Source="ORCID">0000-0003-3844-9463</Identifier><AffiliationInfo><Affiliation>Sapienza University of Rome, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zampetti</LastName><ForeName>Simona</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Sapienza University of Rome, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Buzzetti</LastName><ForeName>Raffaella</ForeName><Initials>R</Initials><Identifier Source="ORCID">0000-0003-1490-6041</Identifier><AffiliationInfo><Affiliation>Sapienza University of Rome, Rome, Italy.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Metab Res Rev</MedlineTA><NlmUniqueID>100883450</NlmUniqueID><ISSNLinking>1520-7552</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C000593833">GLP1R protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057285" MajorTopicYN="N">Precision Medicine</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>13</Hour><Minute>52</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39673731</ArticleId><ArticleId IdType="doi">10.1002/dmrr.70017</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>L. Collins and R. A. Costello, Glucagon‐like Peptide‐1 Receptor Agonists (Treasure Island, FL: PubMed, 2023), https://www.ncbi.nlm.nih.gov/books/NBK551568/.</Citation></Reference><Reference><Citation>A. J. Garber, “Long‐Acting Glucagon‐Like Peptide 1 Receptor Agonists: A Review of Their Efficacy and Tolerability,” Diabetes Care 34, no. Supplement_2 (2011): S279–S284, https://doi.org/10.2337/dc11‐s231.</Citation></Reference><Reference><Citation>M. H. Davidson, “Cardiovascular Effects of Glucagonlike Peptide–1 Agonists,” American Journal of Cardiology 108, no. 3 (2011): 33B–41B, https://doi.org/10.1016/j.amjcard.2011.03.046.</Citation></Reference><Reference><Citation>N. A. ElSayed, G. Aleppo, V. R. Aroda, et al., “11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2023,” Diabetes Care 46, no. Supplement_1 (2022): S191–S202, https://doi.org/10.2337/dc23‐s011.</Citation></Reference><Reference><Citation>N. A. ElSayed, G. Aleppo, R. R. Bannuru, et al., “8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2024,” Diabetes Care 47, no. Supplement_1 (2023): S145–S157, https://doi.org/10.2337/dc24‐s008.</Citation></Reference><Reference><Citation>American Diabetes Association, “Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2019,” Diabetes Care 42, no. Supplement 1 (2018): S81–S89, https://doi.org/10.2337/dc19‐s008.</Citation></Reference><Reference><Citation>World Health Organization, Obesity (Geneva, Switzerland: World Health Organization, 2024), https://www.who.int/health‐topics/obesity#tab=tab_1.</Citation></Reference><Reference><Citation>M. Davies, L. Færch, O. K. Jeppesen, et al., “Semaglutide 2·4 mg Once a Week in Adults With Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double‐Blind, Double‐Dummy, Placebo‐Controlled, Phase 3 Trial,” Lancet 397, no. 10278 (2021): 971–984, https://doi.org/10.1016/s0140‐6736(21)00213‐0.</Citation></Reference><Reference><Citation>J. Rosenstock, J. Frias, A. M. Jastreboff, et al., “Retatrutide, a GIP, GLP‐1 and Glucagon Receptor Agonist, for People With Type 2 Diabetes: A Randomised, Double‐Blind, Placebo and Active‐Controlled, Parallel‐Group, Phase 2 Trial Conducted in the USA,” Lancet 402, no. 10401 (2023): 529–544. Published Online June 1, 2023, https://doi.org/10.1016/s0140‐6736(23)01053‐x.</Citation></Reference><Reference><Citation>T. Vilsboll, M. Christensen, A. E. Junker, F. K. Knop, and L. L. Gluud, “Effects of Glucagon‐Like Peptide‐1 Receptor Agonists on Weight Loss: Systematic Review and Meta‐Analyses of Randomised Controlled Trials,” BMJ 344, no. jan10 2 (2012): d7771, https://doi.org/10.1136/bmj.d7771.</Citation></Reference><Reference><Citation>A. Y. Babenko, D. A. Savitskaya, Y. A. Kononova, et al., “Predictors of Effectiveness of Glucagon‐Like Peptide‐1 Receptor Agonist Therapy in Patients With Type 2 Diabetes and Obesity,” Journal of Diabetes Research 2019 (2019): 1–12, https://doi.org/10.1155/2019/1365162.</Citation></Reference><Reference><Citation>A. G. Jones, T. J. McDonald, B. M. Shields, et al., “Markers of β‐Cell Failure Predict Poor Glycemic Response to GLP‐1 Receptor Agonist Therapy in Type 2 Diabetes,” Diabetes Care 39 (2015): dc150258. Published Online August 4, 2015, https://doi.org/10.2337/dc15‐0258.</Citation></Reference><Reference><Citation>R. V. Overgaard, C. L. Hertz, S. H. Ingwersen, A. Navarria, and D. J. Drucker, “Levels of Circulating Semaglutide Determine Reductions in HbA1c and Body Weight in People With Type 2 Diabetes,” Cell Reports Medicine 2, no. 9 (2021): 100387, https://doi.org/10.1016/j.xcrm.2021.100387.</Citation></Reference><Reference><Citation>W. Ghusn, A. De la Rosa, D. Sacoto, et al., “Weight Loss Outcomes Associated With Semaglutide Treatment for Patients With Overweight or Obesity,” JAMA Network Open 5, no. 9 (2022): e2231982, https://doi.org/10.1001/jamanetworkopen.2022.31982.</Citation></Reference><Reference><Citation>S. Alenzi, A. Alzahrani, A. Aljaloud, K. Alanazi, and S. J. Alarfaj, “The Effectiveness of 0.5 Mg and 1mg of Semaglutide in Patients With Type Two Diabetes and Predictors of Response: A Retrospective Cohort Study,” Frontiers in Endocrinology 15 (2024): 1395651, https://doi.org/10.3389/fendo.2024.1395651.</Citation></Reference><Reference><Citation>A. Kyriakidou, A. V. Kyriazou, T. Koufakis, et al., “Clinical and Genetic Predictors of Glycemic Control and Weight Loss Response to Liraglutide in Patients With Type 2 Diabetes,” Journal of Personalized Medicine 12, no. 3 (2022): 424, https://doi.org/10.3390/jpm12030424.</Citation></Reference><Reference><Citation>M. O. Bensignor, A. S. Kelly, A. Kunin‐Batson, et al., “Evaluating Appetite/Satiety Hormones and Eating Behaviours as Predictors of Weight Loss Maintenance With GLP‐1RA Therapy in Adolescents With Severe Obesity,” Pediatric Obesity 19, no. 5 (2024): e13105. Published Online February 9, 2024, https://doi.org/10.1111/ijpo.13105.</Citation></Reference><Reference><Citation>P. Cardoso, K. G. Young, A. T. N. Nair, et al., “Phenotype‐Based Targeted Treatment of SGLT2 Inhibitors and GLP‐1 Receptor Agonists in Type 2 Diabetes,” medRxiv (2023). Published Online August 8, 2023, https://doi.org/10.1101/2023.08.04.23293636.</Citation></Reference><Reference><Citation>C. B. Weir and A. Jan, BMI Classification Percentile and Cut Off Points (Treasure Island, FL: PubMed, June 26, 2023), https://www.ncbi.nlm.nih.gov/books/NBK541070/.</Citation></Reference><Reference><Citation>J. Tong, R. L. Prigeon, H. W. Davis, et al., “Ghrelin Suppresses Glucose‐Stimulated Insulin Secretion and Deteriorates Glucose Tolerance in Healthy Humans,” Diabetes 59, no. 9 (2010): 2145–2151, https://doi.org/10.2337/db10‐0504.</Citation></Reference><Reference><Citation>J. R. Greenfield and L. V. Campbell, “Insulin Resistance and Obesity,” Clinics in Dermatology 22, no. 4 (2004): 289–295, https://doi.org/10.1016/j.clindermatol.2004.01.011.</Citation></Reference><Reference><Citation>M. A. Nauck, D. R. Quast, J. Wefers, and J. J. Meier, “GLP‐1 Receptor Agonists in the Treatment of Type 2 Diabetes – State‐Of‐The‐Art,” Molecular Metabolism 46, no. 46 (2021): 101102, https://doi.org/10.1016/j.molmet.2020.101102.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39673670</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1567-2387</ISSN><JournalIssue CitedMedium="Internet"><Volume>56</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>14</Day></PubDate></JournalIssue><Title>Journal of molecular histology</Title><ISOAbbreviation>J Mol Histol</ISOAbbreviation></Journal><ArticleTitle>Protective effects of ghrelin on pancreas in fructose diet and streptozotocin-induced diabetic rats.</ArticleTitle><Pagination><StartPage>43</StartPage><MedlinePgn>43</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s10735-024-10329-8</ELocationID><Abstract><AbstractText>Ghrelin, which is widely expressed in central and peripheral tissues, has several metabolic effects. It has been suggested that these effects may include anti-inflammatory, anti-oxidant, and anti-apoptotic effects. Therefore, we aimed to investigate the effects of ghrelin administered to diabetic rats on DNA repair and apoptosis mechanisms, and differences in oxidative stress (OS) and pancreatic hormone levels in the pancreas. Twenty-one rats were randomly divided into three groups: control, type 2 diabetes mellitus (T2DM), and T2DM treated with ghrelin (T2DM + ghrelin). We examined PCNA and PARP-1 to evaluate the effect of ghrelin on DNA repair, caspase-3 and caspase-9 to evaluate its effect on apoptosis, and insulin and glucagon to evaluate its role in regulating glucose homeostasis by immunohistochemistry in diabetic rats. Malondialdehyde, glutathione, and protein carbonyl levels, as well as catalase, glutathione-S-transferase, and superoxide dismutase (SOD) activities, were measured spectrophotometrically to detect the ghrelin effect on OS. Homeostasis model assessment for insulin resistance (HOMA-IR) and pancreatic insulin levels were assessed by ELISA method. Ghrelin may be a potential regulator of apoptosis as it significantly reduced the number of caspase-3 and caspase-9 immunopositive cells (p < 0.0001). In addition, ghrelin treatment reduced OS by decreasing glutathione (p < 0.001), malondialdehyde, and protein carbonyl, as well as the activity of SOD (p < 0.05) in diabetic rats. The results suggest that ghrelin is a potential apoptotic regulator and may be considered as a therapeutic agent due to its significant ability to suppress OS in T2DM.</AbstractText><CopyrightInformation>© 2024. The Author(s), under exclusive licence to Springer Nature B.V.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Colak</LastName><ForeName>Dilara Kamer</ForeName><Initials>DK</Initials><Identifier Source="ORCID">0000-0003-4968-2826</Identifier><AffiliationInfo><Affiliation>Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Coskun Yazici</LastName><ForeName>Zeynep Mine</ForeName><Initials>ZM</Initials><Identifier Source="ORCID">0000-0003-4791-6537</Identifier><AffiliationInfo><Affiliation>Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Türkiye.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bolkent</LastName><ForeName>Sema</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0001-8463-5561</Identifier><AffiliationInfo><Affiliation>Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Türkiye. bolkent@iuc.edu.tr.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>J Mol Histol</MedlineTA><NlmUniqueID>101193653</NlmUniqueID><ISSNLinking>1567-2379</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054439">Ghrelin</NameOfSubstance></Chemical><Chemical><RegistryNumber>30237-26-4</RegistryNumber><NameOfSubstance UI="D005632">Fructose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.22.-</RegistryNumber><NameOfSubstance UI="D053148">Caspase 3</NameOfSubstance></Chemical><Chemical><RegistryNumber>5W494URQ81</RegistryNumber><NameOfSubstance UI="D013311">Streptozocin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.22.-</RegistryNumber><NameOfSubstance UI="D053453">Caspase 9</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D020011">Protective Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>4Y8F71G49Q</RegistryNumber><NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance></Chemical><Chemical><RegistryNumber>GAN16C9B8O</RegistryNumber><NameOfSubstance UI="D005978">Glutathione</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 1.15.1.1</RegistryNumber><NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-92-5</RegistryNumber><NameOfSubstance UI="D005934">Glucagon</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054439" MajorTopicYN="Y">Ghrelin</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010179" MajorTopicYN="Y">Pancreas</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017209" MajorTopicYN="Y">Apoptosis</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005632" MajorTopicYN="N">Fructose</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D053148" MajorTopicYN="N">Caspase 3</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013311" MajorTopicYN="N">Streptozocin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D053453" MajorTopicYN="N">Caspase 9</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017208" MajorTopicYN="N">Rats, Wistar</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020011" MajorTopicYN="N">Protective Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005934" MajorTopicYN="N">Glucagon</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Apoptosis</Keyword><Keyword MajorTopicYN="N">Ghrelin</Keyword><Keyword MajorTopicYN="N">Oxidative stress</Keyword><Keyword MajorTopicYN="N">Pancreatic hormones</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>Declarations. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>5</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>4</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>11</Hour><Minute>18</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39673670</ArticleId><ArticleId IdType="doi">10.1007/s10735-024-10329-8</ArticleId><ArticleId IdType="pii">10.1007/s10735-024-10329-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Aebi H (1984) Catalase in vitro. In: Packer L (ed) Oxygen radicals in biological systems, Meth Enzymol, Elsevier, pp 121–126.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0076-6879(84)05016-3</ArticleId></ArticleIdList></Reference><Reference><Citation>Alharbi S (2022) Exogenous administration of unacylated ghrelin attenuates hepatic steatosis in high-fat diet-fed rats by modulating glucose homeostasis, lipogenesis, oxidative stress, and endoplasmic reticulum stress. Biomed Pharmacother 151:113095. https://doi.org/10.1016/j.biopha.2022.113095</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2022.113095</ArticleId><ArticleId IdType="pubmed">35594708</ArticleId></ArticleIdList></Reference><Reference><Citation>Babaeenezhad E, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A et al (2021) D-limonene alleviates acute kidney injury following gentamicin administration in rats: role of NF-κB pathway, mitochondrial apoptosis, oxidative stress, and PCNA. Oxid Med Cell Longev 2021:1–16. https://doi.org/10.1155/2021/6670007</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2021/6670007</ArticleId></ArticleIdList></Reference><Reference><Citation>Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390(3):191–214. https://doi.org/10.1515/BC.2009.033</Citation><ArticleIdList><ArticleId IdType="doi">10.1515/BC.2009.033</ArticleId><ArticleId IdType="pubmed">19166318</ArticleId><ArticleId IdType="pmc">2756154</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandeira Sde M, Guedes Gda S, da Fonseca LJ, Pires AS, Gelain DP, Moreira JC et al (2012) Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev 2012:819310. https://doi.org/10.1155/2012/819310</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2012/819310</ArticleId><ArticleId IdType="pubmed">23259029</ArticleId></ArticleIdList></Reference><Reference><Citation>Bastos FF, Lima LM, Tobar SAL, Cunha Bastos VLF, Cunha Bastos J (2022) A typical enzyme activity for glutathione conjugation indicates exposure of pacu to pollutants. Neotrop Ichthyol 20(3):e220025. https://doi.org/10.1590/1982-0224-2022-0025</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1982-0224-2022-0025</ArticleId></ArticleIdList></Reference><Reference><Citation>Beutler E, Duron O, Kelly B (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888. http://www.ncbi.nlm.nih.gov/pubmed/13967893</Citation><ArticleIdList><ArticleId IdType="pubmed">13967893</ArticleId></ArticleIdList></Reference><Reference><Citation>Broglio F, Gottero C, Prodam F, Gauna C, Muccioli G, Papotti M et al (2004) Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab 89(6):3062–3065. https://doi.org/10.1210/jc.2003-031964</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2003-031964</ArticleId><ArticleId IdType="pubmed">15181099</ArticleId></ArticleIdList></Reference><Reference><Citation>Chatterjee K, Pal A, Padhy DS, Saha R, Chatterjee A, Bharadwaj M et al (2024) Vitamin K2 ameliorates diabetes-associated cognitive decline by reducing oxidative stress and neuroinflammation. J Neuroimmune Pharmacol 19(1):56. https://doi.org/10.1007/s11481-024-10156-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11481-024-10156-4</ArticleId><ArticleId IdType="pubmed">39466454</ArticleId></ArticleIdList></Reference><Reference><Citation>Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL (2023) Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Molecules 28(16):5979. https://doi.org/10.3390/molecules28165979</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules28165979</ArticleId><ArticleId IdType="pubmed">37630231</ArticleId><ArticleId IdType="pmc">10457993</ArticleId></ArticleIdList></Reference><Reference><Citation>Coskun ZM, Beydogan AB, Bolkent S (2019) Changes in the expression levels of CB1 and GLP-1R mRNAs and microRNAs 33a and 122 in the liver of type 2 diabetic rats treated with ghrelin. J Biochem Mol Toxicol 33(10):e22388. https://doi.org/10.1002/jbt.22388</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jbt.22388</ArticleId><ArticleId IdType="pubmed">31468622</ArticleId></ArticleIdList></Reference><Reference><Citation>D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.111379</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/cbin.111379</ArticleId><ArticleId IdType="pubmed">30958602</ArticleId></ArticleIdList></Reference><Reference><Citation>Elabadlah H, Hameed R, D’Souza C, Mohsin S, Adeghate EA (2020) Exogenous ghrelin increases plasma insulin level in diabetic rats. Biomolecules 10(4):633. https://doi.org/10.3390/biom10040633</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biom10040633</ArticleId><ArticleId IdType="pubmed">32325912</ArticleId><ArticleId IdType="pmc">7226305</ArticleId></ArticleIdList></Reference><Reference><Citation>Friesen C, Kiess Y, Debatin KM (2004) A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ 11(S1):73–85. https://doi.org/10.1038/sj.cdd.4401431</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/sj.cdd.4401431</ArticleId></ArticleIdList></Reference><Reference><Citation>Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.110.223545</ArticleId><ArticleId IdType="pubmed">21030723</ArticleId><ArticleId IdType="pmc">2996922</ArticleId></ArticleIdList></Reference><Reference><Citation>Gil-Campos M, Aguilera CM, Cañete R, Gil A (2006) Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 96(2):201–226. https://doi.org/10.1079/BJN20061787</Citation><ArticleIdList><ArticleId IdType="doi">10.1079/BJN20061787</ArticleId><ArticleId IdType="pubmed">16923214</ArticleId></ArticleIdList></Reference><Reference><Citation>Godoy-Matos AF (2014) The role of glucagon on type 2 diabetes at a glance. Diabetol Metab Syndr 6(1):91. https://doi.org/10.1186/1758-5996-6-91</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1758-5996-6-91</ArticleId><ArticleId IdType="pubmed">25177371</ArticleId><ArticleId IdType="pmc">4148933</ArticleId></ArticleIdList></Reference><Reference><Citation>Goycheva P, Petkova-Parlapanska K, Georgieva E, Karamalakova Y, Nikolova G (2023) Biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications. Int J Mol Sci 24(17):13541. https://doi.org/10.3390/ijms241713541</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms241713541</ArticleId><ArticleId IdType="pubmed">37686346</ArticleId><ArticleId IdType="pmc">10488183</ArticleId></ArticleIdList></Reference><Reference><Citation>Granata R, Settanni F, Trovato L, Destefanis S, Gallo D, Martinetti M et al (2006) Unacylated as well as acylated ghrelin promotes cell survival and inhibit apoptosis in HIT-T15 pancreatic β -cells. J Endocrinol Invest 29(9):RC19–RC22. https://doi.org/10.1007/BF03347367</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF03347367</ArticleId></ArticleIdList></Reference><Reference><Citation>Granata R, Volante M, Settanni F, Gauna C, Ghé C, Annunziata M et al (2010) Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J Mol Endocrinol 45(1):9–17. https://doi.org/10.1677/JME-09-0141</Citation><ArticleIdList><ArticleId IdType="doi">10.1677/JME-09-0141</ArticleId><ArticleId IdType="pubmed">20382773</ArticleId></ArticleIdList></Reference><Reference><Citation>Gray SM, Page LC, Tong J (2019) Ghrelin regulation of glucose metabolism. J Neuroendocrinol 31(7):e12705. https://doi.org/10.1111/jne.12705</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jne.12705</ArticleId><ArticleId IdType="pubmed">30849212</ArticleId><ArticleId IdType="pmc">6688917</ArticleId></ArticleIdList></Reference><Reference><Citation>Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. In: Jakoby WB (ed) Detoxication and Drug Metabolism: Conjugation and Related Systems. Meth Enzymol, Elsevier, vol 77, pp 398–405. https://doi.org/10.1016/S0076-6879(81)77053-8</Citation></Reference><Reference><Citation>Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B et al (2023) Luteolin protects pancreatic β cells against apoptosis through regulation of autophagy and ROS clearance. Pharmaceuticals 16(7):975. https://doi.org/10.3390/ph16070975</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ph16070975</ArticleId><ArticleId IdType="pubmed">37513887</ArticleId><ArticleId IdType="pmc">10385282</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong SW, Chun J, Kim J, Lee J, Lee HJ, Chung H et al (2020) Efficacy and safety of ghrelin agonists in patients with diabetic gastroparesis: a systematic review and meta-analysis. Gut Liver 14(5):589–600. https://doi.org/10.5009/gnl19103</Citation><ArticleIdList><ArticleId IdType="doi">10.5009/gnl19103</ArticleId><ArticleId IdType="pubmed">31816671</ArticleId></ArticleIdList></Reference><Reference><Citation>Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and Des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279(3):909–913. https://doi.org/10.1006/bbrc.2000.4039</Citation><ArticleIdList><ArticleId IdType="doi">10.1006/bbrc.2000.4039</ArticleId><ArticleId IdType="pubmed">11162448</ArticleId></ArticleIdList></Reference><Reference><Citation>Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajme.2017.09.001</ArticleId></ArticleIdList></Reference><Reference><Citation>Kilanowska A, Ziółkowska A (2022) Apoptosis in type 2 diabetes: can it be prevented? Hippo pathway prospects. Int J Mol Sci 23(2):636. https://doi.org/10.3390/ijms23020636</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms23020636</ArticleId><ArticleId IdType="pubmed">35054822</ArticleId><ArticleId IdType="pmc">8775644</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurowska P, Mlyczynska E, Rak A (2019) Effect of ghrelin on the apoptosis of various cells. A critical review. J Physiol Pharmacol (70)1.  https://doi.org/10.26402/jpp.2019.1.02</Citation><ArticleIdList><ArticleId IdType="doi">10.26402/jpp.2019.1.02</ArticleId><ArticleId IdType="pubmed">32084650</ArticleId></ArticleIdList></Reference><Reference><Citation>Ledwoż;yw A, Michalak J, Stȩpień A, Ka̧dziołka A (1986) The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155(3):275–283. https://doi.org/10.1016/0009-8981(86)90247-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0009-8981(86)90247-0</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee KH, Lee JS, Wang T, Oh JJ, Roh S, Lee HG (2017) Role of ghrelin in the pancreatic exocrine secretion via mitogen-activated protein kinase signaling in rats. J Anim Sci Technol 59(1):16. https://doi.org/10.1186/s40781-017-0141-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40781-017-0141-9</ArticleId><ArticleId IdType="pubmed">28748103</ArticleId><ArticleId IdType="pmc">5523148</ArticleId></ArticleIdList></Reference><Reference><Citation>Lotfi A, Shahryar HA, Ebrahimnezhad Y, Shayegh J (2012) Effect of in ovo ghrelin administration on serum malondialdehyde level in newly-hatched chickens. Asian Pac J Trop Biomed 2(1):47–49. https://doi.org/10.1016/S2221-1691(11)60188-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2221-1691(11)60188-3</ArticleId><ArticleId IdType="pubmed">23569833</ArticleId><ArticleId IdType="pmc">3609205</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma J, Wang X, Lv T, Liu J, Ren Y, Zhang J et al (2019) Effects of ghrelin on the apoptosis of rheumatoid arthritis fibroblast-like synoviocyte MH7A cells. Biol Pharm Bull 42(2):158–163. https://doi.org/10.1248/bpb.b18-00285</Citation><ArticleIdList><ArticleId IdType="doi">10.1248/bpb.b18-00285</ArticleId><ArticleId IdType="pubmed">30429411</ArticleId></ArticleIdList></Reference><Reference><Citation>Mingardi J, Meanti R, Paoli C, Cifani C, Torsello A, Popoli M et al (2024) Ghrelin, neuroinflammation, oxidative stress, and mood disorders: what are the connections? Curr Neuropharmacol 23(2):172–186. https://doi.org/10.2174/1570159X22999240722095039</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1570159X22999240722095039</ArticleId></ArticleIdList></Reference><Reference><Citation>Nazoury M, Hosseini-Zijoud S-M, Soukhtanloo M, Mashkani B, Hashemy SI (2014) Determination of in vitro and in vivo protective effects of ghrelin against oxidative stress: experimental study. J Appl Pharm Sci 4(12):008–013. https://doi.org/10.7324/JAPS.2014.41202</Citation><ArticleIdList><ArticleId IdType="doi">10.7324/JAPS.2014.41202</ArticleId></ArticleIdList></Reference><Reference><Citation>Nehme J, Mesilmany L, Varela-Eirin M, Brandenburg S, Altulea A, Lin Y et al (2024) Converting cell death into senescence by PARP1 inhibition improves recovery from acute oxidative injury. Nat Aging 4(6):771–782. https://doi.org/10.1038/s43587-024-00627-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s43587-024-00627-x</ArticleId><ArticleId IdType="pubmed">38724734</ArticleId></ArticleIdList></Reference><Reference><Citation>Noh JY, Herrera M, Patil BS, Tan XD, Wright GA, Sun Y (2022) The expression and function of growth hormone secretagogue receptor in immune cells: a current perspective. Exp Biol Med 247(24):2184–2191. https://doi.org/10.1177/15353702221121635</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/15353702221121635</ArticleId></ArticleIdList></Reference><Reference><Citation>Ojo OO, Obaidu IM, Obigade OC, Olorunsogo OO (2022) Quercetin and vitamin E ameliorate cardio-apoptotic risks in diabetic rats. Mol Cell Biochem 477(3):793–803. https://doi.org/10.1007/s11010-021-04332-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11010-021-04332-w</ArticleId><ArticleId IdType="pubmed">35048283</ArticleId></ArticleIdList></Reference><Reference><Citation>Overi D, Carpino G, Moretti M, Franchitto A, Nevi L, Onori P et al (2022) Islet regeneration and pancreatic duct glands in human and experimental diabetes. Front Cell Dev Biol 10:814165. https://doi.org/10.3389/fcell.2022.814165</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcell.2022.814165</ArticleId><ArticleId IdType="pubmed">35186929</ArticleId><ArticleId IdType="pmc">8855925</ArticleId></ArticleIdList></Reference><Reference><Citation>Pirinccioglu AG, Gökalp D, Pirinccioglu M, Kizil G, Kizil M (2010) Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43(15):1220–1224. https://doi.org/10.1016/j.clinbiochem.2010.07.022</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.clinbiochem.2010.07.022</ArticleId><ArticleId IdType="pubmed">20691171</ArticleId></ArticleIdList></Reference><Reference><Citation>Raygan F, Ostadmohammadi V, Bahmani F, Reiter RJ, Asemi Z (2019) Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38(1):191–196. https://doi.org/10.1016/j.clnu.2017.12.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.clnu.2017.12.004</ArticleId><ArticleId IdType="pubmed">29275919</ArticleId></ArticleIdList></Reference><Reference><Citation>Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. In: Packer L (ed) Oxygen radicals in Biological systems Part C. Meth Enzymol, vol 233. Elsevier, pp 357–363. https://doi.org/10.1016/S0076-6879(94)33041-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0076-6879(94)33041-7</ArticleId></ArticleIdList></Reference><Reference><Citation>Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM et al (2023) Elevated plasma protein carbonyl concentration is associated with more abnormal white matter in people with HIV. Viruses 15(12):2410. https://doi.org/10.3390/v15122410</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/v15122410</ArticleId><ArticleId IdType="pubmed">38140650</ArticleId><ArticleId IdType="pmc">10747698</ArticleId></ArticleIdList></Reference><Reference><Citation>Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2019.107843</ArticleId><ArticleId IdType="pubmed">31518657</ArticleId></ArticleIdList></Reference><Reference><Citation>Sechi LA, Ceriello A, Griffin CA, Catena C, Amstad P, Schambelan M et al (1997) Renal antioxidant enzyme mRNA levels are increased in rats with experimental diabetes mellitus. Diabetologia 40(1):23–29. https://doi.org/10.1007/s001250050638</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s001250050638</ArticleId><ArticleId IdType="pubmed">9028714</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi T, Zhou Z, Jiang W, Huang T, Si J, Li L (2024) Hyperglycemia-induced oxidative stress exacerbates mitochondrial apoptosis damage to cochlear stria vascularis pericytes via the ROS-mediated Bcl-2/CytC/AIF pathway. Redox Rep 29(1):2382943. https://doi.org/10.1080/13510002.2024.2382943</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/13510002.2024.2382943</ArticleId><ArticleId IdType="pubmed">39092597</ArticleId><ArticleId IdType="pmc">11299461</ArticleId></ArticleIdList></Reference><Reference><Citation>Song X, Fan C, Wei C, Yu W, Tang J, Ma F et al (2024) Mitochondria fission accentuates oxidative stress in hyperglycemia-induced H9c2 cardiomyoblasts in vitro by regulating fatty acid oxidation. Cell Biol Int 48(9):1378–1391. https://doi.org/10.1002/cbin.12204</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/cbin.12204</ArticleId><ArticleId IdType="pubmed">38922770</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500. http://www.ncbi.nlm.nih.gov/pubmed/3349599</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/clinchem/34.3.497</ArticleId><ArticleId IdType="pubmed">3349599</ArticleId></ArticleIdList></Reference><Reference><Citation>Szabó C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93(5):1753–1758. https://doi.org/10.1073/pnas.93.5.1753</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.93.5.1753</ArticleId><ArticleId IdType="pubmed">8700830</ArticleId><ArticleId IdType="pmc">39853</ArticleId></ArticleIdList></Reference><Reference><Citation>Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomark. https://doi.org/10.1155/2013/378790</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/378790</ArticleId><ArticleId IdType="pubmed">26317014</ArticleId><ArticleId IdType="pmc">4437365</ArticleId></ArticleIdList></Reference><Reference><Citation>Tong J, Davis HW, Summer S, Benoit SC, Haque A, Bidlingmaier M et al (2014) Acute administration of unacylated ghrelin has no effect on basal or stimulated insulin secretion in healthy humans. Diabetes 63(7):2309–2319. https://doi.org/10.2337/db13-1598</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db13-1598</ArticleId><ArticleId IdType="pubmed">24550190</ArticleId><ArticleId IdType="pmc">4066344</ArticleId></ArticleIdList></Reference><Reference><Citation>Turk N, Dagistanli FK, Sacan O, Yanardag R, Bolkent S (2012) Obestatin and insulin in pancreas of newborn diabetic rats treated with exogenous ghrelin. Acta Histochem 114(4):349–357. https://doi.org/10.1016/j.acthis.2011.07.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.acthis.2011.07.003</ArticleId><ArticleId IdType="pubmed">21803403</ArticleId></ArticleIdList></Reference><Reference><Citation>Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Koylu E, Yalcin A (2014) Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1–42)-induced rat model of Alzheimer’s disease. Free Radic Res 48(2):146–158. https://doi.org/10.3109/10715762.2013.857018</Citation><ArticleIdList><ArticleId IdType="doi">10.3109/10715762.2013.857018</ArticleId><ArticleId IdType="pubmed">24151909</ArticleId></ArticleIdList></Reference><Reference><Citation>Vestergaard ET, Jessen N, Møller N, Jørgensen JOL (2019) Unacylated ghrelin does not acutely affect substrate metabolism or insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab 104(6):2435–2442. https://doi.org/10.1210/jc.2018-02601</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2018-02601</ArticleId><ArticleId IdType="pubmed">30722063</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang H, Dou S, Zhu J, Shao Z, Wang C, Xu X et al (2021a) Ghrelin protects against rotenone-induced cytotoxicity: involvement of mitophagy and the AMPK/SIRT1/PGC1α pathway. Neuropeptides 87:102134. https://doi.org/10.1016/j.npep.2021.102134</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.npep.2021.102134</ArticleId><ArticleId IdType="pubmed">33639357</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Z, Guo M, Cui Q, Yuan H, Shan-ji F, Liu B et al (2021b) PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice. Redox Biol 46:102084. https://doi.org/10.1016/j.redox.2021.102084</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.redox.2021.102084</ArticleId><ArticleId IdType="pubmed">34364219</ArticleId><ArticleId IdType="pmc">8353360</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilson RD, Islam MS (2012) Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 64(1):129–139. https://doi.org/10.1016/S1734-1140(12)70739-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1734-1140(12)70739-9</ArticleId><ArticleId IdType="pubmed">22580529</ArticleId></ArticleIdList></Reference><Reference><Citation>Yanar K, Coskun ZM, Beydogan AB, Aydin S, Bolkent S (2019) The effects of delta-9‐tetrahydrocannabinol on Krüppel‐like factor‐4 expression, redox homeostasis, and inflammation in the kidney of diabetic rat. J Cell Biochem 120(9):16219–16228. https://doi.org/10.1002/jcb.28903</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jcb.28903</ArticleId><ArticleId IdType="pubmed">31081965</ArticleId></ArticleIdList></Reference><Reference><Citation>You S, Zheng J, Chen Y, Huang H (2022) Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol 13:976465. https://doi.org/10.3389/fendo.2022.976465</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2022.976465</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang CS, Wang LX, Wang R, Liu Y, Song LM, Yuan JH et al (2018) The correlation between circulating ghrelin and insulin resistance in obesity: a meta-analysis. Front Physiol 9:1308. https://doi.org/10.3389/fphys.2018.01308</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2018.01308</ArticleId><ArticleId IdType="pubmed">30298019</ArticleId><ArticleId IdType="pmc">6160589</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39673172</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2044-8287</ISSN><JournalIssue CitedMedium="Internet"><Volume>30</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>British journal of health psychology</Title><ISOAbbreviation>Br J Health Psychol</ISOAbbreviation></Journal><ArticleTitle>A network analysis to explore illness perceptions in Black adults with type 2 diabetes.</ArticleTitle><Pagination><StartPage>e12775</StartPage><MedlinePgn>e12775</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e12775</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1111/bjhp.12775</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">This study explores the structure of beliefs about type 2 diabetes among Black adults and informs potential targets to reframe negative beliefs and enhance diabetes self-management.</AbstractText><AbstractText Label="RESEARCH DESIGN AND METHODS" NlmCategory="METHODS">We applied network analysis to investigate the interrelated structure and clusters of beliefs about diabetes and identify specific items that could serve as behavioural targets. We obtained self-reported survey data from 170 Black adults with type 2 diabetes. Regularised partial correlation networks and a Gaussian graphical model were used to explore and visualise the interrelationship among 21 items of a culturally adapted Illness Perception Questionnaire-Revised.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Overwhelming negative emotions representing the current and long-term effects of diabetes were central to the illness perceptions network among Black adults, with feeling depressed having the highest node strength of centrality indices in the network. Four beliefs had a bridging effect with the central cluster: diabetes taking away the ability to enjoy food, diabetes keeping me away from the job I want, being poor contributed to my having diabetes, and I receive encouragement from friends and family.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In addition to highlighting the overwhelming feeling of diabetes, the illness perception network further differentiated the role of racial identity and social determinants of health as discrete, though both are related sociocultural influence constructs. To enhance self-management for Black adults with type 2 diabetes, this network informs promising intervention targets focused on culturally tailored education related to emotional regulation, internalised stigma and healthy food adaptation, and leveraging support to address social determinants of health.</AbstractText><CopyrightInformation>© 2024 The Author(s). British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wen</LastName><ForeName>Meng-Jung</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Division of Social and Administrative Sciences in Pharmacy, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zou</LastName><ForeName>Tongtong</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Educational Psychology, School of Education, University of Wisconsin-Madison, Madison, Wisconsin, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bolt</LastName><ForeName>Daniel M</ForeName><Initials>DM</Initials><AffiliationInfo><Affiliation>Department of Educational Psychology, School of Education, University of Wisconsin-Madison, Madison, Wisconsin, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shiyanbola</LastName><ForeName>Olayinka O</ForeName><Initials>OO</Initials><Identifier Source="ORCID">0000-0002-6018-2104</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>KL2 TR000428</GrantID><Acronym>TR</Acronym><Agency>NCATS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30 DK092926</GrantID><Acronym>DK</Acronym><Agency>NIDDK NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>UL1 TR000427</GrantID><Acronym>TR</Acronym><Agency>NCATS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Br J Health Psychol</MedlineTA><NlmUniqueID>9605409</NlmUniqueID><ISSNLinking>1359-107X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001741" MajorTopicYN="Y">Black or African American</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000208" MajorTopicYN="N">ethnology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007722" MajorTopicYN="Y">Health Knowledge, Attitudes, Practice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073278" MajorTopicYN="N">Self-Management</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">African Americans</Keyword><Keyword MajorTopicYN="N">Black adults</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">illness perceptions</Keyword><Keyword MajorTopicYN="N">network analysis</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>12</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>7</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>2</Hour><Minute>13</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>14</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39673172</ArticleId><ArticleId IdType="pmc">PMC11645490</ArticleId><ArticleId IdType="doi">10.1111/bjhp.12775</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Abubakari, A.‐R. , Jones, M. C. , Lauder, W. , Kirk, A. , Devendra, D. , & Anderson, J. (2012). Psychometric properties of the revised illness perception questionnaire: Factor structure and reliability among African‐origin populations with type 2 diabetes. International Journal of Nursing Studies, 49(6), 672–681.</Citation><ArticleIdList><ArticleId IdType="pubmed">22142936</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association . (2020). 6. Glycemic targets: Standards of medical Care in Diabetes‐2021. Diabetes Care, 44(Supplement_1), S73–S84.</Citation><ArticleIdList><ArticleId IdType="pubmed">33298417</ArticleId></ArticleIdList></Reference><Reference><Citation>Broadbent, E. , Donkin, L. , & Stroh, J. C. (2011). Illness and treatment perceptions are associated with adherence to medications, diet, and exercise in diabetic patients. Diabetes Care, 34(2), 338–340.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3024345</ArticleId><ArticleId IdType="pubmed">21270191</ArticleId></ArticleIdList></Reference><Reference><Citation>Broadbent, E. , Petrie, K. J. , Main, J. , & Weinman, J. (2006). The brief illness perception questionnaire. Journal of Psychosomatic Research, 60(6), 631–637.</Citation><ArticleIdList><ArticleId IdType="pubmed">16731240</ArticleId></ArticleIdList></Reference><Reference><Citation>Canedo, J. R. , Miller, S. T. , Schlundt, D. , Fadden, M. K. , & Sanderson, M. (2018). Racial/ethnic disparities in diabetes quality of care: The role of healthcare access and socioeconomic status. Journal of Racial and Ethnic Health Disparities, 5(1), 7–14.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5505804</ArticleId><ArticleId IdType="pubmed">28078660</ArticleId></ArticleIdList></Reference><Reference><Citation>Centers for Disease Control and Prevention . (2020). National Diabetes Statistics Report, 2020. Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services.</Citation></Reference><Reference><Citation>Chen, J. , & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.</Citation></Reference><Reference><Citation>Chow, E. A. , Foster, H. , Gonzalez, V. , & McIver, L. (2012). The disparate impact of diabetes on racial/ethnic minority populations. Clinical Diabetes, 30(3), 130–133.</Citation></Reference><Reference><Citation>Committee on the Science of Changing Behavioral Health Social Norms; Board on Behavioral, Cognitive, and Sensory Sciences; Division of Behavioral and Social Sciences and Education; National Academies of Sciences, Engineering, and Medicine . (2016). Ending Discrimination Against People With Mental and Substance Use Disorders: The Evidence for Stigma Change. National Academies Press (US). Copyright 2016 by the National Academy of Sciences. All rights reserved.</Citation><ArticleIdList><ArticleId IdType="pubmed">27631043</ArticleId></ArticleIdList></Reference><Reference><Citation>Corrigan, P. W. , & Watson, A. C. (2002). The paradox of self‐stigma and mental illness. Clinical Psychologist, 9(1), 35–53.</Citation></Reference><Reference><Citation>Egbujie, B. A. , Delobelle, P. A. , Levitt, N. , Puoane, T. , Sanders, D. , & van Wyk, B. (2018). Role of community health workers in type 2 diabetes mellitus self‐management: A scoping review. PLoS One, 13(6), e0198424.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5983553</ArticleId><ArticleId IdType="pubmed">29856846</ArticleId></ArticleIdList></Reference><Reference><Citation>Epskamp, S. , Borsboom, D. , & Fried, E. (2016). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5809547</ArticleId><ArticleId IdType="pubmed">28342071</ArticleId></ArticleIdList></Reference><Reference><Citation>Epskamp, S. , Cramer, A. O. J. , Waldorp, L. J. , Schmittmann, V. D. , & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.</Citation></Reference><Reference><Citation>Epskamp, S. , & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617–634.</Citation><ArticleIdList><ArticleId IdType="pubmed">29595293</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher, L. , Hessler, D. , Polonsky, W. , Strycker, L. , Bowyer, V. , & Masharani, U. (2019). Toward effective interventions to reduce diabetes distress among adults with type 1 diabetes: Enhancing emotion regulation and cognitive skills. Patient Education and Counseling, 102(8), 1499–1505.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6565487</ArticleId><ArticleId IdType="pubmed">30952482</ArticleId></ArticleIdList></Reference><Reference><Citation>Foygel, R. , & Drton, M. (2010). Extended Bayesian Information Criteria for Gaussian Graphical Models. arXiv preprint arXiv:10116640. 23.</Citation></Reference><Reference><Citation>Gary, T. L. , Batts‐Turner, M. , Yeh, H. C. , Hill‐Briggs, F. , Bone, L. R. , Wang, N. Y. , Levine, D. M. , Powe, N. R. , Saudek, C. D. , Hill, M. N. , McGuire, M. , & Brancati, F. L. (2009). The effects of a nurse case manager and a community health worker team on diabetic control, emergency department visits, and hospitalizations among urban African Americans with type 2 diabetes mellitus: A randomized controlled trial. Archives of Internal Medicine, 169(19), 1788–1794.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5675128</ArticleId><ArticleId IdType="pubmed">19858437</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo, J. , Wang, H. , Ge, L. , Valimaki, M. , Wiley, J. , & Whittemore, R. (2022). Effectiveness of a nurse‐led mindfulness stress‐reduction intervention on diabetes distress, diabetes self‐management, and HbA1c levels among people with type 2 diabetes: A pilot randomized controlled trial. Research in Nursing & Health, 45(1), 46–58.</Citation><ArticleIdList><ArticleId IdType="pubmed">34741544</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill‐Briggs, F. , Adler, N. E. , Berkowitz, S. A. , Chin, M. H. , Gary‐Webb, T. L. , Navas‐Acien, A. , Thornton, P. L. , & Haire‐Joshu, D. (2020). Social determinants of health and diabetes: A scientific review. Diabetes Care, 44(1), 258–279.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Jha, A. K. , Aubert, R. E. , Yao, J. , Teagarden, J. R. , & Epstein, R. S. (2012). Greater adherence to diabetes drugs is linked to less hospital use and could save nearly $5 billion annually. Health Affairs (Project Hope), 31(8), 1836–1846.</Citation><ArticleIdList><ArticleId IdType="pubmed">22869663</ArticleId></ArticleIdList></Reference><Reference><Citation>Jones, P. J. , Ma, R. , & McNally, R. J. (2021). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 56(2), 353–367.</Citation><ArticleIdList><ArticleId IdType="pubmed">31179765</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, J. S. , Bainter, S. A. , Carrico, A. W. , Glynn, T. R. , Rogers, B. G. , Albright, C. , O'Cleirigh, C. , Mayer, K. H. , & Safren, S. A. (2020). Connecting the dots: A comparison of network analysis and exploratory factor analysis to examine psychosocial syndemic indicators among HIV‐negative sexual minority men. Journal of Behavioral Medicine, 43(6), 1026–1040.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7606295</ArticleId><ArticleId IdType="pubmed">32361793</ArticleId></ArticleIdList></Reference><Reference><Citation>Leventhal, H. , & Steele, D. (1984). Illness representations and coping with health threats. In Handbook of Psychology and Health Volume IV. Taylor Francis.</Citation></Reference><Reference><Citation>Little, T. V. , Wang, M. L. , Castro, E. M. , Jiménez, J. , & Rosal, M. C. (2014). Community health worker interventions for Latinos with type 2 diabetes: A systematic review of randomized controlled trials. Current Diabetes Reports, 14(12), 558.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6191032</ArticleId><ArticleId IdType="pubmed">25374313</ArticleId></ArticleIdList></Reference><Reference><Citation>Mayberry, L. S. , & Osborn, C. Y. (2012). Family support, medication adherence, and glycemic control among adults with type 2 diabetes. Diabetes Care, 35(6), 1239–1245.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3357235</ArticleId><ArticleId IdType="pubmed">22538012</ArticleId></ArticleIdList></Reference><Reference><Citation>McInerney, A. M. , Lindekilde, N. , Nouwen, A. , Schmitz, N. , & Deschênes, S. S. (2022). Diabetes distress, depressive symptoms, and anxiety symptoms in people with type 2 diabetes: A network analysis approach to understanding comorbidity. Diabetes Care, 45(8), 1715–1723.</Citation><ArticleIdList><ArticleId IdType="pubmed">35704532</ArticleId></ArticleIdList></Reference><Reference><Citation>Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115–132.</Citation></Reference><Reference><Citation>Pamungkas, R. A. , Chamroonsawasdi, K. , & Vatanasomboon, P. (2017). A systematic review: Family support integrated with diabetes self‐management among uncontrolled type II diabetes mellitus patients. Behavioral Sciences (Basel, Switzerland), 7(3), 62.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5618070</ArticleId><ArticleId IdType="pubmed">28914815</ArticleId></ArticleIdList></Reference><Reference><Citation>Perneger, T. V. , Brancati, F. L. , Whelton, P. K. , & Klag, M. J. (1994). End‐stage renal disease attributable to diabetes mellitus. Annals of Internal Medicine, 121(12), 912–918.</Citation><ArticleIdList><ArticleId IdType="pubmed">7978716</ArticleId></ArticleIdList></Reference><Reference><Citation>Persky, S. , Costabile, K. A. , & Telaak, S. H. (2021). Diabetes causal attributions: Pathways to stigma and health. Stigma Health. No Pagination Specified.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11114425</ArticleId><ArticleId IdType="pubmed">38799224</ArticleId></ArticleIdList></Reference><Reference><Citation>Rovner, B. W. , Casten, R. J. , Hegel, M. T. , & Leiby, B. (2018). Preventing cognitive decline in Black individuals with mild cognitive impairment: A randomized clinical trial. JAMA Neurology, 75(12), 1487–1493.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6583200</ArticleId><ArticleId IdType="pubmed">30208380</ArticleId></ArticleIdList></Reference><Reference><Citation>Shenolikar, R. A. , Balkrishnan, R. , Camacho, F. T. , Whitmire, J. T. , & Anderson, R. T. (2006). Race and medication adherence in Medicaid enrollees with type‐2 diabetes. Journal of the National Medical Association, 98(7), 1071–1077.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2569450</ArticleId><ArticleId IdType="pubmed">16895275</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiyanbola, O. O. , Bolt, D. , Tarfa, A. , Brown, C. , & Ward, E. (2019). A content validity and cognitive interview process to evaluate an illness perception questionnaire for African Americans with type 2 diabetes. BMC Research Notes, 12(1), 308.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6543586</ArticleId><ArticleId IdType="pubmed">31146766</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiyanbola, O. O. , Brown, C. M. , & Ward, E. C. (2018). "I did not want to take that medicine": African‐Americans' reasons for diabetes medication nonadherence and perceived solutions for enhancing adherence. Patient Preference and Adherence, 12, 409–421.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5865580</ArticleId><ArticleId IdType="pubmed">29593383</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiyanbola, O. O. , Rao, D. , Kuehl, S. , Bolt, D. , Ward, E. , & Brown, C. (2022). Psychometric evaluation of a culturally adapted illness perception questionnaire for African Americans with type 2 diabetes. BMC Public Health, 22(1), 741.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9007270</ArticleId><ArticleId IdType="pubmed">35418064</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiyanbola, O. O. , Ward, E. , & Brown, C. (2018b). Sociocultural influences on African Americans' representations of type 2 diabetes: A qualitative study. Ethnicity & Disease, 28(1), 25–32.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5794444</ArticleId><ArticleId IdType="pubmed">29467563</ArticleId></ArticleIdList></Reference><Reference><Citation>Shiyanbola, O. O. , Ward, E. C. , & Brown, C. M. (2018a). Utilizing the common sense model to explore African Americans' perception of type 2 diabetes: A qualitative study. PLoS One, 13(11), e0207692.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6248983</ArticleId><ArticleId IdType="pubmed">30462704</ArticleId></ArticleIdList></Reference><Reference><Citation>U.S. Department of Health and Human Services Office of Minority Health . (2023). Diabetes and African Americans.</Citation></Reference><Reference><Citation>Weinman, J. , Petrie, K. , Moss‐Morris, R. , & Horne, R. (1996). The illness perception questionnaire: A new method for assessing the cognitive representation of illness. Psychology & Health, 11, 431–445.</Citation></Reference><Reference><Citation>Williams, I. C. , Utz, S. W. , Hinton, I. , Yan, G. , Jones, R. , & Reid, K. (2014). Enhancing diabetes self‐care among rural African Americans with diabetes: Results of a two‐year culturally tailored intervention. The Diabetes Educator, 40(2), 231–239.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4692724</ArticleId><ArticleId IdType="pubmed">24478047</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39673064</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>30</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2050-6511</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>13</Day></PubDate></JournalIssue><Title>BMC pharmacology & toxicology</Title><ISOAbbreviation>BMC Pharmacol Toxicol</ISOAbbreviation></Journal><ArticleTitle>The effect of vildagliptin versus metformin on hepatic steatosis in type 2 diabetic patients: a randomized controlled trial.</ArticleTitle><Pagination><StartPage>94</StartPage><MedlinePgn>94</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">94</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s40360-024-00818-7</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The risk of hepatic steatosis (HS) is elevated in patients with type 2 diabetes mellitus (T2D). Antidiabetic medications may contribute to the prevention or treatment of HS. This study aimed to compare the effects of vildagliptin and metformin on hepatic steatosis in newly diagnosed T2D patients, using the Hepatic Steatosis Index (HSI) and ultrasound grading.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The study included 246 newly diagnosed T2D patients who were randomly assigned to two groups. The first group (117 patients) received 50 mg of vildagliptin orally twice daily. The second group (129 patients) received 500 mg of metformin orally twice daily with meals, and the dosage could be gradually increased by 500 mg per week, up to a maximum daily dose of 2000 mg. Baseline and 6-month follow-up assessments included fasting blood glucose (FBG), HbA1c, weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), the Hepatic Steatosis Index (HSI), and hepatic steatosis grading via ultrasound.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Both groups showed significant improvements in FBG, HbA1c, weight, BMI, WC, HC, HSI, and ultrasound grading of hepatic steatosis from baseline to the 6-month follow-up (p < 0.001). The metformin group demonstrated significantly greater reductions in weight and BMI compared to the vildagliptin group (p = 0.001 and p = 0.009, respectively). However, there was no significant difference between the two groups in terms of hepatic steatosis improvement on ultrasound. Correlation analysis revealed that HSI was significantly associated with HbA1c, BMI, WC, and HC (p < 0.001 for all), as well as FBG (p = 0.008), but not with age. The lipid profile, particularly total cholesterol and LDL, was identified as a stronger predictor of hepatic steatosis, based on high AUC, sensitivity, and specificity values.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Both vildagliptin and metformin are effective in improving glycemic control in newly diagnosed T2D patients, as evidenced by reductions in FBG and HbA1c levels. Additionally, both drugs significantly reduced the HSI, body weight, and BMI, with metformin showing a more pronounced effect on weight and BMI. Both vildagliptin and metformin effectively decreased hepatic steatosis in T2D patients. Total cholesterol and LDL are important predictors of hepatic steatosis.</AbstractText><AbstractText Label="TRIAL REGISTRATION" NlmCategory="BACKGROUND">Trial Registration ID: UMIN000055121, registered on 30/07/2024 (retrospectively registered).</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mohamed</LastName><ForeName>Asmaa S</ForeName><Initials>AS</Initials><Identifier Source="ORCID">0000-0001-7755-2362</Identifier><AffiliationInfo><Affiliation>Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Port said University, Port said, Egypt. Asmaa.Mohamed@pharm.psu.edu.eg.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmad</LastName><ForeName>Hosam M</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Internal Medicine and Biomedical Chemistry Departments, Egypt Ministry of Health and Population, Minia, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sharawy</LastName><ForeName>Mohammed A</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kamel</LastName><ForeName>Fatma M M</ForeName><Initials>FMM</Initials><AffiliationInfo><Affiliation>Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Pharmacol Toxicol</MedlineTA><NlmUniqueID>101590449</NlmUniqueID><ISSNLinking>2050-6511</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>I6B4B2U96P</RegistryNumber><NameOfSubstance UI="D000077597">Vildagliptin</NameOfSubstance></Chemical><Chemical><RegistryNumber>9100L32L2N</RegistryNumber><NameOfSubstance UI="D008687">Metformin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009570">Nitriles</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011759">Pyrrolidines</NameOfSubstance></Chemical><Chemical><RegistryNumber>PJY633525U</RegistryNumber><NameOfSubstance UI="D000218">Adamantane</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077597" MajorTopicYN="Y">Vildagliptin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008687" MajorTopicYN="Y">Metformin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="Y">Fatty Liver</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009570" MajorTopicYN="N">Nitriles</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011759" MajorTopicYN="N">Pyrrolidines</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000218" MajorTopicYN="N">Adamantane</DescriptorName><QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Hepatic steatosis</Keyword><Keyword MajorTopicYN="N">Metformin</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Vildagliptin</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was approved by the ethics committee of Port Said University. Written informed consent was obtained from the study participants after describing the study’s goals and advantages. All study steps were performed in accordance with the Declaration of Helsinki. Human ethics: All study steps were performed in accordance with the Declaration of Helsinki. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>23</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>13</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39673064</ArticleId><ArticleId IdType="pmc">PMC11645785</ArticleId><ArticleId IdType="doi">10.1186/s40360-024-00818-7</ArticleId><ArticleId IdType="pii">10.1186/s40360-024-00818-7</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Harrison SA, et al. Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort. J Hepatol. 2021;75(2):284–91.</Citation><ArticleIdList><ArticleId IdType="pubmed">33746083</ArticleId></ArticleIdList></Reference><Reference><Citation>Castera L, Cusi K. Diabetes and cirrhosis: current concepts on diagnosis and management. Hepatology. 2023;77(6):2128–46.</Citation><ArticleIdList><ArticleId IdType="pubmed">36631005</ArticleId></ArticleIdList></Reference><Reference><Citation>Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142(4):711–25. e6.</Citation><ArticleIdList><ArticleId IdType="pubmed">22326434</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang DQ, et al. Type 2 diabetes, hepatic decompensation, and hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: an individual participant-level data meta-analysis. Volume 8. The Lancet Gastroenterology & Hepatology 2023(9):829–36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10812844</ArticleId><ArticleId IdType="pubmed">37419133</ArticleId></ArticleIdList></Reference><Reference><Citation>Cusi K, et al. American Association of Clinical Endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the American Association for the study of Liver diseases (AASLD). Endocr Pract. 2022;28(5):528–62.</Citation><ArticleIdList><ArticleId IdType="pubmed">35569886</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinella ME, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77(5):1797–835.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10735173</ArticleId><ArticleId IdType="pubmed">36727674</ArticleId></ArticleIdList></Reference><Reference><Citation>Kanwal F, et al. Clinical care pathway for the risk stratification and management of patients with nonalcoholic fatty liver disease. Gastroenterology. 2021;161(5):1657–69.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8819923</ArticleId><ArticleId IdType="pubmed">34602251</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, et al. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of Care in Diabetes—2023. Diabetes Care. 2023;46(Suppl 1):s49.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810472</ArticleId><ArticleId IdType="pubmed">36507651</ArticleId></ArticleIdList></Reference><Reference><Citation>Paik JM, et al. The impact of modifiable risk factors on the long-term outcomes of non‐alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 2020;51(2):291–304.</Citation><ArticleIdList><ArticleId IdType="pubmed">31782543</ArticleId></ArticleIdList></Reference><Reference><Citation>Cui J, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial. J Hepatol. 2016;65(2):369–76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5081213</ArticleId><ArticleId IdType="pubmed">27151177</ArticleId></ArticleIdList></Reference><Reference><Citation>Hussain M, et al. Vildagliptin ameliorates biochemical, metabolic and fatty changes associated with non alcoholic fatty liver disease. Pakistan J Med Sci. 2016;32(6):1396.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5216289</ArticleId><ArticleId IdType="pubmed">28083033</ArticleId></ArticleIdList></Reference><Reference><Citation>Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol. 2020;11:191.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7212476</ArticleId><ArticleId IdType="pubmed">32425881</ArticleId></ArticleIdList></Reference><Reference><Citation>Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5552828</ArticleId><ArticleId IdType="pubmed">28776086</ArticleId></ArticleIdList></Reference><Reference><Citation>Foretz M, et al. Metformin: from mechanisms of action to therapies. Cell Metabol. 2014;20(6):953–66.</Citation><ArticleIdList><ArticleId IdType="pubmed">25456737</ArticleId></ArticleIdList></Reference><Reference><Citation>Ozturk ZA, Kadayifci A. Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J Hepatol. 2014;6(4):199.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4009475</ArticleId><ArticleId IdType="pubmed">24799988</ArticleId></ArticleIdList></Reference><Reference><Citation>2. Diagnosis and classification of diabetes: standards of care in diabetes—2024. Diabetes Care, 2024. 47(Supplement_1): pp. S20-S42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10725812</ArticleId><ArticleId IdType="pubmed">38078589</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee J-H, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Disease. 2010;42(7):503–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">19766548</ArticleId></ArticleIdList></Reference><Reference><Citation>Marušić M, et al. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021(1):6613827.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7904371</ArticleId><ArticleId IdType="pubmed">33681089</ArticleId></ArticleIdList></Reference><Reference><Citation>Dai W, et al. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a meta-analysis. Medicine. 2017;96(39):e8179.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5626318</ArticleId><ArticleId IdType="pubmed">28953675</ArticleId></ArticleIdList></Reference><Reference><Citation>Carrillo-Larco RM, et al. Mean age and body mass index at type 2 diabetes diagnosis: pooled analysis of 56 health surveys across income groups and world regions. Diabet Med. 2024;41(2):e15174.</Citation><ArticleIdList><ArticleId IdType="pubmed">37422703</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang MC, et al. Age at diagnosis of diabetes by race and ethnicity in the United States from 2011 to 2018. JAMA Intern Med. 2021;181(11):1537–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8424523</ArticleId><ArticleId IdType="pubmed">34491260</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee S-G, et al. Risk of diabetes mellitus in physicians: a nationwide study in Taiwan. BMC Public Health. 2019;19:1–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6683438</ArticleId><ArticleId IdType="pubmed">31383022</ArticleId></ArticleIdList></Reference><Reference><Citation>Carlsson S, et al. Incidence and prevalence of type 2 diabetes by occupation: results from all Swedish employees. Diabetologia. 2020;63:95–103.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6890587</ArticleId><ArticleId IdType="pubmed">31570970</ArticleId></ArticleIdList></Reference><Reference><Citation>Almeida VdCFd, et al. Occupation and risk factors for type 2 diabetes: a study with health workers. Rev Latinoam Enferm. 2011;19:476–84.</Citation></Reference><Reference><Citation>Ramezankhani A, Azizi F, Hadaegh F. Associations of marital status with diabetes, hypertension, cardiovascular disease and all-cause mortality: a long term follow-up study. PLoS ONE. 2019;14(4):e0215593.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6476533</ArticleId><ArticleId IdType="pubmed">31009512</ArticleId></ArticleIdList></Reference><Reference><Citation>Escolar-Pujolar A, et al. The effect of marital status on social and gender inequalities in diabetes mortality in Andalusia. Endocrinología Diabetes Y Nutrición (English ed). 2018;65(1):21–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">29233513</ArticleId></ArticleIdList></Reference><Reference><Citation>Den Braver N, et al. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Med. 2018;16:1–26.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5791730</ArticleId><ArticleId IdType="pubmed">29382337</ArticleId></ArticleIdList></Reference><Reference><Citation>Seiglie JA, et al. Diabetes prevalence and its relationship with Education, Wealth, and BMI in 29 low- and Middle-Income Countries. Diabetes Care. 2020;43(4):767–75.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7085810</ArticleId><ArticleId IdType="pubmed">32051243</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, et al. Cigarette smoking is negatively Associated with the prevalence of type 2 diabetes in Middle-aged men with Normal Weight but positively Associated with Stroke in men. J Diabetes Res. 2019;2019(1):1853018.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6755302</ArticleId><ArticleId IdType="pubmed">31612146</ArticleId></ArticleIdList></Reference><Reference><Citation>Alrashed FA, et al. Investigating the relationship between lifestyle factors, family history, and diabetes mellitus in non-diabetic visitors to primary care centers. Saudi J Biol Sci. 2023;30(9):103777.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10472303</ArticleId><ArticleId IdType="pubmed">37663393</ArticleId></ArticleIdList></Reference><Reference><Citation>Scott RA, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia. 2013;56(1):60–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4038917</ArticleId><ArticleId IdType="pubmed">23052052</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Kuraishy HM, et al. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J Adv Pharm Tech Res. 2020;11(3):142–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7574736</ArticleId><ArticleId IdType="pubmed">33102198</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown K, Donato AA. Type 2 diabetes, early metformin plus vildagliptin reduced treatment failure vs a stepwise approach. Ann Intern Med. 2020;172(4):JC23.</Citation><ArticleIdList><ArticleId IdType="pubmed">32066156</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahrén B, et al. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metabolism. 2004;89(5):2078–84.</Citation><ArticleIdList><ArticleId IdType="pubmed">15126524</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan CY, Wang X. Profile of vildagliptin in type 2 diabetes: efficacy, safety, and patient acceptability. Ther Clin Risk Manag 2013:247–57.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3694507</ArticleId><ArticleId IdType="pubmed">23818788</ArticleId></ArticleIdList></Reference><Reference><Citation>Ji L, et al. Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes: an east Asian perspective. Diabetes Obes Metabolism. 2021;23(1):3–17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7756748</ArticleId><ArticleId IdType="pubmed">32991073</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsapas A, et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis. Ann Intern Med. 2020;173(4):278–86.</Citation><ArticleIdList><ArticleId IdType="pubmed">32598218</ArticleId></ArticleIdList></Reference><Reference><Citation>Macauley M, et al. Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metabolism. 2015;100(4):1578–85.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4399299</ArticleId><ArticleId IdType="pubmed">25664602</ArticleId></ArticleIdList></Reference><Reference><Citation>Pu R, et al. Effects of metformin in obesity treatment in different populations: a meta-analysis. Ther Adv Endocrinol Metab. 2020;11:2042018820926000.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7243386</ArticleId><ArticleId IdType="pubmed">32499908</ArticleId></ArticleIdList></Reference><Reference><Citation>Macauley M, et al. Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metab. 2015;100(4):1578–85.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4399299</ArticleId><ArticleId IdType="pubmed">25664602</ArticleId></ArticleIdList></Reference><Reference><Citation>Horie A, et al. The dipeptidyl peptidase-4 inhibitor vildagliptin has the capacity to repair β-cell dysfunction and insulin resistance. Horm Metab Res. 2014;46(11):814–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">24977657</ArticleId></ArticleIdList></Reference><Reference><Citation>Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013;14(10):20704–28.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3821639</ArticleId><ArticleId IdType="pubmed">24132155</ArticleId></ArticleIdList></Reference><Reference><Citation>Scheen AJ. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes. Postgrad Med. 2013;125(3):7–20.</Citation><ArticleIdList><ArticleId IdType="pubmed">23748503</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, et al. Metformin in non-alcoholic fatty liver disease: a systematic review and meta–analysis. Biomedical Rep. 2013;1(1):57–64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3956897</ArticleId><ArticleId IdType="pubmed">24648894</ArticleId></ArticleIdList></Reference><Reference><Citation>Feng W, et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease: 比较格列齐特, 利拉鲁肽和二甲双胍对糖尿病合并非酒精性脂肪肝的影响的随机研究. J Diabetes. 2017;9(8):800–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">28332301</ArticleId></ArticleIdList></Reference><Reference><Citation>Kita Y, et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE. 2012;7(9):e43056.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3445596</ArticleId><ArticleId IdType="pubmed">23028442</ArticleId></ArticleIdList></Reference><Reference><Citation>Woo S-L, et al. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS ONE. 2014;9(3):e91111.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3956460</ArticleId><ArticleId IdType="pubmed">24638078</ArticleId></ArticleIdList></Reference><Reference><Citation>Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1):S47–64.</Citation><ArticleIdList><ArticleId IdType="pubmed">25920090</ArticleId></ArticleIdList></Reference><Reference><Citation>Ostovaneh MR, et al. Nonalcoholic fatty liver: the association with metabolic abnormalities, body mass index and central obesity—a population-based study. Metab Syndr Relat Disord. 2015;13(7):304–11.</Citation><ArticleIdList><ArticleId IdType="pubmed">26042518</ArticleId></ArticleIdList></Reference><Reference><Citation>Mansour-Ghanaei R, et al. Biochemical markers and lipid profile in nonalcoholic fatty liver disease patients in the PERSIAN Guilan cohort study (PGCS), Iran. J Family Med Prim Care. 2019;8(3):923–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6482810</ArticleId><ArticleId IdType="pubmed">31041226</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39673018</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>09</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1708-0428</ISSN><JournalIssue CitedMedium="Internet"><Volume>35</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Obesity surgery</Title><ISOAbbreviation>Obes Surg</ISOAbbreviation></Journal><ArticleTitle>Prediction Model of Diabetes Remission at 1-Year after Sleeve Gastrectomy and Comparison with other Models.</ArticleTitle><Pagination><StartPage>249</StartPage><EndPage>256</EndPage><MedlinePgn>249-256</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11695-024-07634-2</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Although numerous prediction models are available for diabetes remission following metabolic bariatric surgery, few are based on sleeve gastrectomy (SG). This study aimed to establish a predictive model for type 2 diabetes mellitus (T2DM) remission following SG and evaluate the efficacy of existing predictive models.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Patient data were gathered from a cohort study titled "Longitudinal Study of Bariatric Surgery in Western China." The synthetic minority oversampling technique was implemented, with 70% randomly selected as the training set and the remaining 30% as the testing set. Univariate logistic regression was used to identify factors associated with T2DM remission. These were included in subsequent stepwise multivariate analyses. A nomogram was then constructed. It was evaluated using a receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis. Finally, eight pre-existing predictive models were validated.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Initially, 166 patients were enrolled with a T2DM remission rate of 89.2%. Univariate logistic regression indicated that male patients, T2DM duration exceeding 1 year, elevated fasting blood glucose levels, and higher HbA1c levels were less likely to achieve remission 1 year following SG. A nomogram was constructed using variables, including sex, T2DM duration, and HbA1c levels. The ROC curve indicated that the nomogram had higher accuracy (AUC = 0.826, 95%CI: 0.768-0.884). Moreover, the AUCs were 0.790 (95%CI: 0.692-0.887), 0.865 (95%CI: 0.774-0.956) and 0.813 (95%CI: 0.733-0.893) for the testing, externally validated, and raw datasets, respectively.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The nomogram exhibited high efficacy in predicting T2DM remission in Chinese patients who underwent SG.</AbstractText><CopyrightInformation>© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Hongmei</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Peisen</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Yi</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Xiaolin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Bing</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Huawu</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Jiahui</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>The Third People's Hospital of Chengdu, Chengdu, China. dr_jiahuiyu@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CSY-YV-01-2023-038</GrantID><Agency>The Third People's Hospital of Chengdu</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Obes Surg</MedlineTA><NlmUniqueID>9106714</NlmUniqueID><ISSNLinking>0960-8923</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005743" MajorTopicYN="Y">Gastrectomy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012074" MajorTopicYN="Y">Remission Induction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D049451" MajorTopicYN="Y">Nomograms</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009767" MajorTopicYN="Y">Obesity, Morbid</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050110" MajorTopicYN="N">Bariatric Surgery</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012372" MajorTopicYN="N">ROC Curve</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Prediction model</Keyword><Keyword MajorTopicYN="N">Sleeve gastrectomy</Keyword><Keyword MajorTopicYN="N">T2DM remission</Keyword></KeywordList><CoiStatement>Declarations. Competing Interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>10</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>23</Hour><Minute>24</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39673018</ArticleId><ArticleId IdType="doi">10.1007/s11695-024-07634-2</ArticleId><ArticleId IdType="pii">10.1007/s11695-024-07634-2</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Klein S, Gastaldelli A, Yki-Jarvinen H, et al. Why does obesity cause diabetes? Cell Metab. 2022;34(1):11–20.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2021.12.012</ArticleId><ArticleId IdType="pubmed">34986330</ArticleId><ArticleId IdType="pmc">8740746</ArticleId></ArticleIdList></Reference><Reference><Citation>Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol. 2023;19(3):164–76.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-022-00757-5</ArticleId><ArticleId IdType="pubmed">36289368</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirwan JP, Courcoulas AP, Cummings DE, et al. Diabetes remission in the alliance of randomized trials of medicine versus metabolic surgery in type 2 diabetes (ARMMS-T2D). Diabetes Care. 2022;45(7):1574–83.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-2441</ArticleId><ArticleId IdType="pubmed">35320365</ArticleId><ArticleId IdType="pmc">9490448</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee WJ, Hur KY, Lakadawala M, et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013;9(3):379–84.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.soard.2012.07.015</ArticleId><ArticleId IdType="pubmed">22963817</ArticleId></ArticleIdList></Reference><Reference><Citation>Aron-Wisnewsky J, Sokolovska N, Liu Y, et al. The advanced-DiaRem score improves prediction of diabetes remission 1 year post-Roux-en-Y gastric bypass. Diabetologia. 2017;60(10):1892–902.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-017-4371-7</ArticleId><ArticleId IdType="pubmed">28733906</ArticleId></ArticleIdList></Reference><Reference><Citation>Pucci A, Tymoszuk U, Cheung WH, et al. Type 2 diabetes remission 2 years post Roux-en-Y gastric bypass and sleeve gastrectomy: the role of the weight loss and comparison of DiaRem and DiaBetter scores. Diabet Med. 2018;35(3):360–7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13532</ArticleId><ArticleId IdType="pubmed">29055156</ArticleId></ArticleIdList></Reference><Reference><Citation>Still CD, Wood GC, Benotti P, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2(1):38–45.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(13)70070-6</ArticleId><ArticleId IdType="pubmed">24579062</ArticleId><ArticleId IdType="pmc">3932625</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohta M, Seki Y, Ohyama T, et al. Prediction of long-term diabetes remission after metabolic surgery in obese East Asian patients: A comparison between ABCD and IMS scores. Obes Surg. 2021;31(4):1485–95.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-020-05151-6</ArticleId><ArticleId IdType="pubmed">33411317</ArticleId></ArticleIdList></Reference><Reference><Citation>Plaeke P, Beunis A, Ruppert M, et al. Review, performance comparison, and validation of models predicting type 2 diabetes remission after bariatric surgery in a Western European population. Obes Surg. 2021;31(4):1549–60.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-020-05157-0</ArticleId><ArticleId IdType="pubmed">33398626</ArticleId></ArticleIdList></Reference><Reference><Citation>Eskandaros MS, Abbass A, Ebeid EF, et al. Remission of type II diabetes mellitus 1-year postoperative following one anastomosis gastric bypass in correlation with ABCD, DiaRem, and DRS scores. Obes Surg. 2022;32(2):450–6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-021-05793-0</ArticleId><ArticleId IdType="pubmed">34780027</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirkil C, Aydin I, Yur M, et al. Comparison of the ABCD score’s accuracy in predicting remission of type 2 diabetes mellitus one year after sleeve gastrectomy, one anastomosis gastric bypass, and sleeve gastrectomy with transit bipartition. Obes Surg. 2024;34(1):133–40.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-023-06950-3</ArticleId><ArticleId IdType="pubmed">37985569</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu C, Wang Z, Wuyun Q, et al. Comparison of various prediction models in the effect of Roux-en-Y gastric bypass on type 2 diabetes in the Chinese population 5 years after surgery. Surg Obes Relat Dis. 2023;19(11):1288–95.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.soard.2023.05.012</ArticleId><ArticleId IdType="pubmed">37716844</ArticleId></ArticleIdList></Reference><Reference><Citation>Courcoulas AP, Patti ME, Hu B, et al. Long-term outcomes of medical management vs bariatric surgery in type 2 diabetes. JAMA. 2024;331(8):654–64.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2024.0318</ArticleId><ArticleId IdType="pubmed">38411644</ArticleId><ArticleId IdType="pmc">10900968</ArticleId></ArticleIdList></Reference><Reference><Citation>Svanevik M, Lorentzen J, Borgeraas H, et al. Patient-reported outcomes, weight loss, and remission of type 2 diabetes 3 years after gastric bypass and sleeve gastrectomy (Oseberg); a single-centre, randomised controlled trial. Lancet Diabetes Endocrinol. 2023;11(8):555–66.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(23)00127-4</ArticleId><ArticleId IdType="pubmed">37414071</ArticleId></ArticleIdList></Reference><Reference><Citation>Zou X, Liu Z, Huang Z, et al. Mid-long-term effect of metabolic surgery on type 2 diabetes in nonobese patients: a meta-analysis. Obes Surg. 2023;33(8):2493–508.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-023-06713-0</ArticleId><ArticleId IdType="pubmed">37405632</ArticleId></ArticleIdList></Reference><Reference><Citation>Topart P. Obesity surgery: Which procedure should we choose and why? J Visc Surg. 2023;160(2S):S30–7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jviscsurg.2022.12.010</ArticleId><ArticleId IdType="pubmed">36725449</ArticleId></ArticleIdList></Reference><Reference><Citation>Arterburn D, Wellman R, Emiliano A, et al. Comparative effectiveness and safety of bariatric procedures for weight loss: a PCORnet cohort study. Ann Intern Med. 2018;169(11):741–50.</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/M17-2786</ArticleId><ArticleId IdType="pubmed">30383139</ArticleId><ArticleId IdType="pmc">6652193</ArticleId></ArticleIdList></Reference><Reference><Citation>Riddle MC, Cefalu WT, Evans PH, et al. Consensus report: definition and interpretation of remission in type 2 diabetes. Diabetes Care. 2021;44(10):2438–44.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci21-0034</ArticleId><ArticleId IdType="pubmed">34462270</ArticleId><ArticleId IdType="pmc">8929179</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo Y, Guo Z, He H, et al. Predictive model of type 2 diabetes remission after metabolic surgery in Chinese patients. Int J Endocrinol. 2020;2020:2965175.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2020/2965175</ArticleId><ArticleId IdType="pubmed">33488705</ArticleId><ArticleId IdType="pmc">7787854</ArticleId></ArticleIdList></Reference><Reference><Citation>Dixon JB, Hur KY, Lee WJ, et al. Gastric bypass in Type 2 diabetes with BMI < 30: weight and weight loss have a major influence on outcomes. Diabet Med. 2013;30(4):e127–34.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.12107</ArticleId><ArticleId IdType="pubmed">23278432</ArticleId></ArticleIdList></Reference><Reference><Citation>Hayes MT, Hunt LA, Foo J, et al. A model for predicting the resolution of type 2 diabetes in severely obese subjects following Roux-en Y gastric bypass surgery. Obes Surg. 2011;21(7):910–6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-011-0370-9</ArticleId><ArticleId IdType="pubmed">21336560</ArticleId></ArticleIdList></Reference><Reference><Citation>Panunzi S, Carlsson L, De Gaetano A, et al. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 2016;39(1):166–74.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc15-0575</ArticleId><ArticleId IdType="pubmed">26628418</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramos-Levi AM, Matia P, Cabrerizo L, et al. Statistical models to predict type 2 diabetes remission after bariatric surgery. J Diabetes. 2014;6(5):472–7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/1753-0407.12127</ArticleId><ArticleId IdType="pubmed">24433454</ArticleId></ArticleIdList></Reference><Reference><Citation>Stekhoven DJ, Bühlmann P. MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btr597</ArticleId><ArticleId IdType="pubmed">22039212</ArticleId></ArticleIdList></Reference><Reference><Citation>Waljee AK, Mukherjee A, Singal AG, et al. Comparison of imputation methods for missing laboratory data in medicine. BMJ Open. 2013;3(8):e002847.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2013-002847</ArticleId><ArticleId IdType="pubmed">23906948</ArticleId><ArticleId IdType="pmc">3733317</ArticleId></ArticleIdList></Reference><Reference><Citation>Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-017-2666-x</ArticleId><ArticleId IdType="pubmed">28405878</ArticleId><ArticleId IdType="pmc">5562777</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuan K, Wu B, Zeng R, et al. Construction and validation of a nomogram for predicting diabetes remission at 3 months after bariatric surgery in patients with obesity combined with type 2 diabetes mellitus. Diabetes Obes Metab. 2024;26(1):169–79.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.15303</ArticleId><ArticleId IdType="pubmed">37807830</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho YM. A gut feeling to cure diabetes: potential mechanisms of diabetes remission after bariatric surgery. Diabetes Metab J. 2014;38(6):406–15.</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2014.38.6.406</ArticleId><ArticleId IdType="pubmed">25541603</ArticleId><ArticleId IdType="pmc">4273026</ArticleId></ArticleIdList></Reference><Reference><Citation>Chumakova-Orin M, Vanetta C, Moris DP, et al. Diabetes remission after bariatric surgery. World J Diabetes. 2021;12(7):1093–101.</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i7.1093</ArticleId><ArticleId IdType="pubmed">34326957</ArticleId><ArticleId IdType="pmc">8311476</ArticleId></ArticleIdList></Reference><Reference><Citation>Wysocki M, Mizera M, Karpinska I, et al. Analysis of changes in glucose and lipid metabolism in patients with clinically severe obesity and type 2 diabetes mellitus undergoing laparoscopic sleeve gastrectomy-prospective observational study. Obes Surg. 2024;34(2):467–78.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-023-06991-8</ArticleId><ArticleId IdType="pubmed">38105282</ArticleId></ArticleIdList></Reference><Reference><Citation>Pang WS, Loo GH, Tan GJ, et al. Comparative evaluation of early diabetic outcomes in southeast asian patients with type 2 diabetes mellitus undergoing Roux-en-Y gastric bypass (RYGB) versus sleeve gastrectomy (LSG). Sci Rep. 2024;14(1):614.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-024-51384-1</ArticleId><ArticleId IdType="pubmed">38182725</ArticleId><ArticleId IdType="pmc">10770027</ArticleId></ArticleIdList></Reference><Reference><Citation>Gambardella C, Mongardini FM, Paolicelli M, et al. One Anastomosis Gastric Bypass vs. Sleeve Gastrectomy in the Remission of Type 2 Diabetes Mellitus: A Retrospective Analysis on 3 Years of Follow-Up. J Clin Med. 2024;13(3):899.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm13030899</ArticleId><ArticleId IdType="pubmed">38337593</ArticleId><ArticleId IdType="pmc">10856683</ArticleId></ArticleIdList></Reference><Reference><Citation>Musella M, Apers J, Rheinwalt K, et al. Efficacy of bariatric surgery in type 2 diabetes mellitus remission: the role of mini gastric bypass/one anastomosis gastric bypass and sleeve gastrectomy at 1 year of follow-up. A European survey. Obes Surg. 2016;26(5):933–40.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-015-1865-6</ArticleId><ArticleId IdType="pubmed">26341086</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen SC, Wang W, Tam KW, et al. Validating risk prediction models of diabetes remission after sleeve gastrectomy. Obes Surg. 2019;29(1):221–9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-018-3510-7</ArticleId><ArticleId IdType="pubmed">30251094</ArticleId></ArticleIdList></Reference><Reference><Citation>Kam H, Tu Y, Pan J, et al. Comparison of four risk prediction models for diabetes remission after Roux-en-Y gastric bypass surgery in obese Chinese patients with type 2 diabetes mellitus. Obes Surg. 2020;30(6):2147–57.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-019-04371-9</ArticleId><ArticleId IdType="pubmed">31898049</ArticleId></ArticleIdList></Reference><Reference><Citation>Fatima F, Hjelmesaeth J, Hertel JK, et al. Validation of Ad-DiaRem and ABCD diabetes remission prediction scores at 1-year after Roux-en-Y gastric bypass and sleeve gastrectomy in the randomized controlled oseberg trial. Obes Surg. 2022;32(3):801–9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11695-021-05856-2</ArticleId><ArticleId IdType="pubmed">34982397</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. BMJ. 2024;384:e076410.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj-2023-076410</ArticleId><ArticleId IdType="pubmed">38286487</ArticleId><ArticleId IdType="pmc">10823535</ArticleId></ArticleIdList></Reference><Reference><Citation>Danpanichkul P, Manosroi W, Nilsirisuk T, et al. Predictors of weight reduction effectiveness of SGLT2 inhibitors in diabetes mellitus type 2 patients. Front Endocrinol (Lausanne). 2023;14:1251798.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1251798</ArticleId><ArticleId IdType="pubmed">38327904</ArticleId></ArticleIdList></Reference><Reference><Citation>Jha KK, Adhikari R, Tasdighi E, et al. Transitioning to GLP-1 RAs and SGLT2 inhibitors as the first choice for managing cardiometabolic risk in type 2 diabetes. Curr Atheroscler Rep. 2022;24(12):925–37.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11883-022-01066-y</ArticleId><ArticleId IdType="pubmed">36422789</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu C, Wang L, Xu G, et al. Comparison of various prediction models in the effect of laparoscopic sleeve gastrectomy on type 2 diabetes mellitus in the Chinese population 5 years after surgery. Chin Med J (Engl). 2024;137(3):320–8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/CM9.0000000000002718</ArticleId><ArticleId IdType="pubmed">37341649</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39672583</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>12</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Prevalence and characteristics of liver steatosis and fibrosis in type 2 diabetes mellitus (T2DM) patients: a cross-sectional study in populations of eastern China.</ArticleTitle><Pagination><StartPage>e087550</StartPage><MedlinePgn>e087550</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e087550</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2024-087550</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To describe the prevalence, clinical characteristics and risk factors of liver steatosis and fibrosis in type 2 diabetes mellitus (T2DM) patients in eastern China.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">A cross-sectional, multicentre study based on an ongoing cohort study.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">16 clinics in eastern China, including primary clinics to tertiary hospitals.</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">1816 patients with T2DM diagnosis who met the inclusion criteria were recruited into the study.</AbstractText><AbstractText Label="INTERVENTION" NlmCategory="METHODS">Participants underwent elastography examination.</AbstractText><AbstractText Label="MAIN OUTCOME MEASURES" NlmCategory="METHODS">Descriptive analysis was performed to calculate the prevalence and characteristics of liver steatosis and fibrosis. The correlated factors were analysed using single- and multivariate logistic regression analysis.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The prevalence of liver steatosis in T2DM patients is 69.7%, with 46% moderate to severe steatosis. 34.6% and 6.7% of the patients were detected with liver fibrosis and cirrhosis. Steatosis patients were younger, had higher body mass index (BMI), higher levels of insulin resistance and more severe lipid metabolism disorders. Similar trends of differences were observed in patients with fibrosis. Female gender (OR=0.574, 95% CI 0.381 to 0.865), BMI (OR=1.491, 95% CI 1.375 to 1.616), disease duration, inflammation and serum lipid profile markers were risk factors of steatosis, while BMI (OR=1.204, 95% CI 1.137 to 1.275) and female gender (OR=0.672, 95% CI 0.470 to 0.961) were still the most significant predictors of liver fibrosis.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The prevalence of liver steatosis and fibrosis were high in patients with T2DM. Liver steatosis and fibrosis in these patients appeared to be more associated with lipid metabolism disorders and insulin resistance rather than glucose levels.</AbstractText><AbstractText Label="TRIAL REGISTRATION NUMBER" NlmCategory="BACKGROUND">Clinical trial: NCT05597709.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Yu</LastName><ForeName>Hekai</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Su</LastName><ForeName>Xianghui</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Xinjiang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Tao</LastName><ForeName>Wenxuan</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Weixia</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xiaoyan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Qing</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Southeast University, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Zhuoxiao</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Nanjing Gaochun Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Xiaoqian</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Nanjing Central Hospital, Nanjing, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Xinliang</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jia</LastName><ForeName>Dianrong</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Taizhou Jiangyan Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, China dr_liling@126.com jiadianrong-1111@163.com 15836364293@163.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fang</LastName><ForeName>Li</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Nanjing Gaochun Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China dr_liling@126.com jiadianrong-1111@163.com 15836364293@163.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Ling</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, School of Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China dr_liling@126.com jiadianrong-1111@163.com 15836364293@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><DataBankList CompleteYN="Y"><DataBank><DataBankName>ClinicalTrials.gov</DataBankName><AccessionNumberList><AccessionNumber>NCT05597709</AccessionNumber></AccessionNumberList></DataBank></DataBankList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008103" MajorTopicYN="Y">Liver Cirrhosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054459" MajorTopicYN="Y">Elasticity Imaging Techniques</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="N">Fatty Liver</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016015" MajorTopicYN="N">Logistic Models</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Hepatobiliary disease</Keyword><Keyword MajorTopicYN="N">Lipid disorders</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>12</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39672583</ArticleId><ArticleId IdType="pmc">PMC11647396</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2024-087550</ArticleId><ArticleId IdType="pii">bmjopen-2024-087550</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>European Association for the Study of the Liver. European Association for the Study of Diabetes. European Association for the Study of Obesity. et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD): Executive Summary. Diabetologia. 2024;67:2375–92. doi: 10.1007/s00125-024-06196-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-024-06196-3</ArticleId><ArticleId IdType="pmc">PMC11519095</ArticleId><ArticleId IdType="pubmed">38869512</ArticleId></ArticleIdList></Reference><Reference><Citation>Qiu Y-Y, Zhang J, Zeng F-Y, et al. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) Pharmacol Res. 2023;192:106786. doi: 10.1016/j.phrs.2023.106786.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.phrs.2023.106786</ArticleId><ArticleId IdType="pubmed">37146924</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen H, Tan H, Wan J, et al. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther. 2023;245:108391. doi: 10.1016/j.pharmthera.2023.108391.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pharmthera.2023.108391</ArticleId><ArticleId IdType="pubmed">36963510</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong V-S, Ekstedt M, Wong G-H, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol. 2023;79:842–52. doi: 10.1016/j.jhep.2023.04.036.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2023.04.036</ArticleId><ArticleId IdType="pubmed">37169151</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim D, Konyn P, Sandhu KK, et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol. 2021;75:1284–91. doi: 10.1016/j.jhep.2021.07.035.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2021.07.035</ArticleId><ArticleId IdType="pubmed">34380057</ArticleId></ArticleIdList></Reference><Reference><Citation>Loomba R, Abdelmalek MF, Armstrong MJ, et al. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2023;8:511–22. doi: 10.1016/S2468-1253(23)00068-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2468-1253(23)00068-7</ArticleId><ArticleId IdType="pmc">PMC10792518</ArticleId><ArticleId IdType="pubmed">36934740</ArticleId></ArticleIdList></Reference><Reference><Citation>Targher G, Corey KE, Byrne CD, et al. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18:599–612. doi: 10.1038/s41575-021-00448-y.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41575-021-00448-y</ArticleId><ArticleId IdType="pubmed">33972770</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh A, Garg R, Lopez R, et al. Diabetes Liver Fibrosis Score to Detect Advanced Fibrosis in Diabetics with Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2022;20:e624–6. doi: 10.1016/j.cgh.2021.01.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2021.01.010</ArticleId><ArticleId IdType="pubmed">33434655</ArticleId></ArticleIdList></Reference><Reference><Citation>Diaconu CT, Guja C. Nonalcoholic Fatty Liver Disease and Its Complex Relation with Type 2 Diabetes Mellitus-From Prevalence to Diagnostic Approach and Treatment Strategies. J Clin Med. 2022;11:5144. doi: 10.3390/jcm11175144.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm11175144</ArticleId><ArticleId IdType="pmc">PMC9456683</ArticleId><ArticleId IdType="pubmed">36079070</ArticleId></ArticleIdList></Reference><Reference><Citation>Castera L, Cusi K. Diabetes and cirrhosis: Current concepts on diagnosis and management. Hepatology. 2023;77:2128–46. doi: 10.1097/HEP.0000000000000263.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HEP.0000000000000263</ArticleId><ArticleId IdType="pubmed">36631005</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2021;32:500–14. doi: 10.1016/j.tem.2021.04.008.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tem.2021.04.008</ArticleId><ArticleId IdType="pubmed">33975804</ArticleId></ArticleIdList></Reference><Reference><Citation>Castera L, Laouenan C, Vallet-Pichard A, et al. High Prevalence of NASH and Advanced Fibrosis in Type 2 Diabetes: A Prospective Study of 330 Outpatients Undergoing Liver Biopsies for Elevated ALT, Using a Low Threshold. Diabetes Care. 2023;46:1354–62. doi: 10.2337/dc22-2048.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-2048</ArticleId><ArticleId IdType="pubmed">37043830</ArticleId></ArticleIdList></Reference><Reference><Citation>Ajmera V, Cepin S, Tesfai K, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J Hepatol. 2023;78:471–8. doi: 10.1016/j.jhep.2022.11.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2022.11.010</ArticleId><ArticleId IdType="pmc">PMC9975077</ArticleId><ArticleId IdType="pubmed">36410554</ArticleId></ArticleIdList></Reference><Reference><Citation>Lomonaco R, Godinez Leiva E, Bril F, et al. Advanced Liver Fibrosis Is Common in Patients With Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care. 2021;44:399–406. doi: 10.2337/dc20-1997.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-1997</ArticleId><ArticleId IdType="pmc">PMC7818321</ArticleId><ArticleId IdType="pubmed">33355256</ArticleId></ArticleIdList></Reference><Reference><Citation>Ciardullo S, Monti T, Perseghin G. High Prevalence of Advanced Liver Fibrosis Assessed by Transient Elastography Among U.S. Adults With Type 2 Diabetes. Diabetes Care. 2021;44:519–25. doi: 10.2337/dc20-1778.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-1778</ArticleId><ArticleId IdType="pubmed">33303638</ArticleId></ArticleIdList></Reference><Reference><Citation>Luukkonen PK, Qadri S, Ahlholm N, et al. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2022;76:526–35. doi: 10.1016/j.jhep.2021.10.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2021.10.013</ArticleId><ArticleId IdType="pmc">PMC8852745</ArticleId><ArticleId IdType="pubmed">34710482</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022;10:284–96. doi: 10.1016/S2213-8587(22)00003-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(22)00003-1</ArticleId><ArticleId IdType="pubmed">35183303</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma RCW, Chan JCN. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281:64–91. doi: 10.1111/nyas.12098.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/nyas.12098</ArticleId><ArticleId IdType="pmc">PMC3708105</ArticleId><ArticleId IdType="pubmed">23551121</ArticleId></ArticleIdList></Reference><Reference><Citation>van Valkengoed IGM, Argmann C, Ghauharali-van der Vlugt K, et al. Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin. Nutr Diabetes. 2017;7:300. doi: 10.1038/s41387-017-0003-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41387-017-0003-z</ArticleId><ArticleId IdType="pmc">PMC5865542</ArticleId><ArticleId IdType="pubmed">29259157</ArticleId></ArticleIdList></Reference><Reference><Citation>Hatano Y, VanWagner LB, Carnethon MR, et al. Racial difference in the association between non-alcoholic fatty liver disease and incident type 2 diabetes: findings from the CARDIA study. Diabetologia. 2023;66:1235–46. doi: 10.1007/s00125-023-05903-w.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-023-05903-w</ArticleId><ArticleId IdType="pmc">PMC10286118</ArticleId><ArticleId IdType="pubmed">36941389</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou Q, Wang Y, Wang J, et al. Prevalence and risk factor analysis for the nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Medicine (Baltimore) 2021;100:e24940. doi: 10.1097/MD.0000000000024940.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000024940</ArticleId><ArticleId IdType="pmc">PMC7969325</ArticleId><ArticleId IdType="pubmed">33725855</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo Y, Wang C, Zhang T, et al. Factors Associated with Liver Fibrosis in Chinese Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. Int J Gen Med. 2023;16:293–302. doi: 10.2147/IJGM.S395948.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/IJGM.S395948</ArticleId><ArticleId IdType="pmc">PMC9884006</ArticleId><ArticleId IdType="pubmed">36718143</ArticleId></ArticleIdList></Reference><Reference><Citation>Guan C, Fu S, Zhen D, et al. Metabolic (Dysfunction)-Associated Fatty Liver Disease in Chinese Patients with Type 2 Diabetes from a Subcenter of the National Metabolic Management Center. J Diabetes Res. 2022;2022:8429847. doi: 10.1155/2022/8429847.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2022/8429847</ArticleId><ArticleId IdType="pmc">PMC8816602</ArticleId><ArticleId IdType="pubmed">35127953</ArticleId></ArticleIdList></Reference><Reference><Citation>Han X, Zhang X, Liu Z, et al. Prevalence of nonalcoholic fatty liver disease and liver cirrhosis in Chinese adults with type 2 diabetes mellitus. J Diabetes. 2024;16:e13564. doi: 10.1111/1753-0407.13564.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/1753-0407.13564</ArticleId><ArticleId IdType="pmc">PMC11045916</ArticleId><ArticleId IdType="pubmed">38664879</ArticleId></ArticleIdList></Reference><Reference><Citation>Man S, Deng Y, Ma Y, et al. Prevalence of Liver Steatosis and Fibrosis in the General Population and Various High-Risk Populations: A Nationwide Study With 5.7 Million Adults in China. Gastroenterology. 2023;165:1025–40. doi: 10.1053/j.gastro.2023.05.053.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.gastro.2023.05.053</ArticleId><ArticleId IdType="pubmed">37380136</ArticleId></ArticleIdList></Reference><Reference><Citation>Qu Y, Song Y-Y, Chen C-W, et al. Diagnostic Performance of FibroTouch Ultrasound Attenuation Parameter and Liver Stiffness Measurement in Assessing Hepatic Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Transl Gastroenterol. 2021;12:e00323. doi: 10.14309/ctg.0000000000000323.</Citation><ArticleIdList><ArticleId IdType="doi">10.14309/ctg.0000000000000323</ArticleId><ArticleId IdType="pmc">PMC8049161</ArticleId><ArticleId IdType="pubmed">33848277</ArticleId></ArticleIdList></Reference><Reference><Citation>Pennisi G, Enea M, Pandolfo A, et al. AGILE 3+ Score for the Diagnosis of Advanced Fibrosis and for Predicting Liver-related Events in NAFLD. Clin Gastroenterol Hepatol. 2023;21:1293–302. doi: 10.1016/j.cgh.2022.06.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2022.06.013</ArticleId><ArticleId IdType="pubmed">35842119</ArticleId></ArticleIdList></Reference><Reference><Citation>Ravaioli F, Dajti E, Mantovani A, et al. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: a systematic review and meta-analysis. Gut. 2023;72:1399–409. doi: 10.1136/gutjnl-2022-328689.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/gutjnl-2022-328689</ArticleId><ArticleId IdType="pubmed">36599683</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanyal AJ, Foucquier J, Younossi ZM, et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J Hepatol. 2023;78:247–59. doi: 10.1016/j.jhep.2022.10.034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2022.10.034</ArticleId><ArticleId IdType="pmc">PMC10170177</ArticleId><ArticleId IdType="pubmed">36375686</ArticleId></ArticleIdList></Reference><Reference><Citation>Alfadda AA, Sherbeeni SM, Alqutub AN, et al. Transient elastography for the prevalence of non-alcoholic fatty liver disease in patients with type 2 diabetes. Saudi J Gastroenterol. 2022;28:426–33. doi: 10.4103/sjg.sjg_73_22.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/sjg.sjg_73_22</ArticleId><ArticleId IdType="pmc">PMC9843508</ArticleId><ArticleId IdType="pubmed">35645140</ArticleId></ArticleIdList></Reference><Reference><Citation>Rohm TV, Meier DT, Olefsky JM, et al. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55. doi: 10.1016/j.immuni.2021.12.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.immuni.2021.12.013</ArticleId><ArticleId IdType="pmc">PMC8773457</ArticleId><ArticleId IdType="pubmed">35021057</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci. 2024;25:8731. doi: 10.3390/ijms25168731.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms25168731</ArticleId><ArticleId IdType="pmc">PMC11354927</ArticleId><ArticleId IdType="pubmed">39201418</ArticleId></ArticleIdList></Reference><Reference><Citation>Targher G, Bertolini L, Padovani R, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212–8. doi: 10.2337/dc06-2247.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc06-2247</ArticleId><ArticleId IdType="pubmed">17277038</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hep.28431</ArticleId><ArticleId IdType="pubmed">26707365</ArticleId></ArticleIdList></Reference><Reference><Citation>Yamane R, Yoshioka K, Hayashi K, et al. Prevalence of nonalcoholic fatty liver disease and its association with age in patients with type 2 diabetes mellitus. World J Hepatol. 2022;14:1226–34. doi: 10.4254/wjh.v14.i6.1226.</Citation><ArticleIdList><ArticleId IdType="doi">10.4254/wjh.v14.i6.1226</ArticleId><ArticleId IdType="pmc">PMC9258257</ArticleId><ArticleId IdType="pubmed">35978658</ArticleId></ArticleIdList></Reference><Reference><Citation>Burra P, Bizzaro D, Gonta A, et al. Clinical impact of sexual dimorphism in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) Liver Int. 2021;41:1713–33. doi: 10.1111/liv.14943.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/liv.14943</ArticleId><ArticleId IdType="pubmed">33982400</ArticleId></ArticleIdList></Reference><Reference><Citation>Bilson J, Sethi JK, Byrne CD. Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc Nutr Soc. 2022;81:146–61. doi: 10.1017/S0029665121003815.</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0029665121003815</ArticleId><ArticleId IdType="pubmed">35934688</ArticleId></ArticleIdList></Reference><Reference><Citation>Golabi P, Paik J, Reddy R, et al. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol. 2019;19:56. doi: 10.1186/s12876-019-0972-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12876-019-0972-6</ArticleId><ArticleId IdType="pmc">PMC6469055</ArticleId><ArticleId IdType="pubmed">30991959</ArticleId></ArticleIdList></Reference><Reference><Citation>Succurro E, Marini MA, Fiorentino TV, et al. Sex-specific differences in prevalence of nonalcoholic fatty liver disease in subjects with prediabetes and type 2 diabetes. Diabetes Res Clin Pract. 2022;190:110027. doi: 10.1016/j.diabres.2022.110027.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2022.110027</ArticleId><ArticleId IdType="pubmed">35917992</ArticleId></ArticleIdList></Reference><Reference><Citation>Eguchi Y, Hyogo H, Ono M, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol. 2012;47:586–95. doi: 10.1007/s00535-012-0533-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00535-012-0533-z</ArticleId><ArticleId IdType="pubmed">22328022</ArticleId></ArticleIdList></Reference><Reference><Citation>Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89. doi: 10.1002/hep.23280.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hep.23280</ArticleId><ArticleId IdType="pmc">PMC3575093</ArticleId><ArticleId IdType="pubmed">20041406</ArticleId></ArticleIdList></Reference><Reference><Citation>Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003;289:76–9. doi: 10.1001/jama.289.1.76.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.289.1.76</ArticleId><ArticleId IdType="pubmed">12503980</ArticleId></ArticleIdList></Reference><Reference><Citation>Alexopoulos A-S, Crowley MJ, Wang Y, et al. Glycemic Control Predicts Severity of Hepatocyte Ballooning and Hepatic Fibrosis in Nonalcoholic Fatty Liver Disease. Hepatology. 2021;74:1220–33. doi: 10.1002/hep.31806.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hep.31806</ArticleId><ArticleId IdType="pmc">PMC8518519</ArticleId><ArticleId IdType="pubmed">33724511</ArticleId></ArticleIdList></Reference><Reference><Citation>Hamaguchi E, Takamura T, Sakurai M, et al. Histological course of nonalcoholic fatty liver disease in Japanese patients: tight glycemic control, rather than weight reduction, ameliorates liver fibrosis. Diabetes Care. 2010;33:284–6. doi: 10.2337/dc09-0148.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-0148</ArticleId><ArticleId IdType="pmc">PMC2809266</ArticleId><ArticleId IdType="pubmed">19880582</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Qin M, Zhong W, et al. RAGE promotes dysregulation of iron and lipid metabolism in alcoholic liver disease. Redox Biol. 2023;59:102559. doi: 10.1016/j.redox.2022.102559.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.redox.2022.102559</ArticleId><ArticleId IdType="pmc">PMC9758571</ArticleId><ArticleId IdType="pubmed">36502724</ArticleId></ArticleIdList></Reference><Reference><Citation>Utzschneider KM, Kahn SE. The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab. 2006;91:4753–61. doi: 10.1210/jc.2006-0587.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2006-0587</ArticleId><ArticleId IdType="pubmed">16968800</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefan N, Schick F, Birkenfeld AL, et al. The role of hepatokines in NAFLD. Cell Metab. 2023;35:236–52. doi: 10.1016/j.cmet.2023.01.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2023.01.006</ArticleId><ArticleId IdType="pmc">PMC10157895</ArticleId><ArticleId IdType="pubmed">36754018</ArticleId></ArticleIdList></Reference><Reference><Citation>Gong L, Wei F, Gonzalez FJ, et al. Hepatic fibrosis: Targeting peroxisome proliferator-activated receptor alpha from mechanism to medicines. Hepatology. 2023;78:1625–53. doi: 10.1097/HEP.0000000000000182.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HEP.0000000000000182</ArticleId><ArticleId IdType="pmc">PMC10681123</ArticleId><ArticleId IdType="pubmed">36626642</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39672582</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>12</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Can SGLT-2 inhibitors improve cardiovascular outcomes and ensure safety for patients with type 2 diabetes and heart failure in Thailand? A real-world multicentre retrospective cohort study.</ArticleTitle><Pagination><StartPage>e090226</StartPage><MedlinePgn>e090226</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e090226</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2024-090226</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To assess the real-world effectiveness and safety of sodium-glucose co-transporter-2 inhibitors (SGLT2i) on cardiovascular outcomes in patients with type 2 diabetes mellitus (T2D) and heart failure (HF) and to evaluate the associated risks of adverse events.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">A retrospective cohort study using propensity score analysis to control confounding variables.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">Data were collected from the electronic health records of two large tertiary care hospitals in Thailand over a 12-year period (2010-2022).</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">Adults aged 18 years and older with a diagnosis of T2D and HF were included in the study. Patients who received SGLT2i for a minimum of 3 months were compared with those in a non-SGLT2i group. Participants with a diagnosis of HF that preceded their diagnosis of T2D were excluded from the analysis.</AbstractText><AbstractText Label="PRIMARY AND SECONDARY OUTCOME MEASURES" NlmCategory="METHODS">The primary outcome was heart failure hospitalisation (HFH). Secondary outcomes included non-fatal stroke, non-fatal myocardial infarction (MI), all-cause mortality and adverse events (urinary tract infections, hypoglycaemia and acute kidney injury).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 11 758 patients were included in the study, with a median follow-up of 2.44 (IQR: 0.72-5.02) years. After applying inverse probability of treatment weighting, covariates were balanced, ensuring the validity of the treatment effect model's assumptions. SGLT2i use was associated with a 59% reduction in HFH (HR 0.41, 95% CI 0.28 to 0.61), a 54% reduction in stroke (HR 0.46, 95% CI 0.33 to 0.63), a 51% reduction in MI (HR 0.49, 95% CI 0.36 to 0.67) and a 76% reduction in in-hospital all-cause mortality (HR 0.24, 95% CI 0.14 to 0.42). Additionally, SGLT2i use was associated with fewer adverse events, including lower rates of urinary tract infections and hypoglycaemia, compared with the non-SGLT2i group.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">SGLT2i significantly improved cardiovascular outcomes in patients with T2D and HF in a real-world clinical setting. These findings support the incorporation of SGLT2i in the management of high-risk patients with T2D and HF. Further research is warranted to explore long-term outcomes and barriers to SGLT2i prescription in routine practice.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kongmalai</LastName><ForeName>Tanawan</ForeName><Initials>T</Initials><Identifier Source="ORCID">0000-0002-1192-9267</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Siriraj Health Policy Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Siriraj Research Data Management Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tansawet</LastName><ForeName>Amarit</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-2040-7970</Identifier><AffiliationInfo><Affiliation>Department of Research and Medical Innovation, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pattanaprateep</LastName><ForeName>Oraluck</ForeName><Initials>O</Initials><Identifier Source="ORCID">0000-0001-9570-2635</Identifier><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ratanatharathorn</LastName><ForeName>Cholatid</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amornritvanich</LastName><ForeName>Porntep</ForeName><Initials>P</Initials><Identifier Source="ORCID">0009-0004-2970-4594</Identifier><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Looareesuwan</LastName><ForeName>Panu</ForeName><Initials>P</Initials><Identifier Source="ORCID">0000-0001-8179-9149</Identifier><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Boonwatcharapai</LastName><ForeName>Burin</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Siriraj Informatics and Data Innovation Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khunakorncharatphong</LastName><ForeName>Anon</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Siriraj Health Policy Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nimitphong</LastName><ForeName>Hataikarn</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Srinonprasert</LastName><ForeName>Varalak</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Siriraj Health Policy Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand Varalak.sri@mahidol.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Siriraj Research Data Management Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thakkinstian</LastName><ForeName>Ammarin</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013785" MajorTopicYN="N" Type="Geographic">Thailand</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006760" MajorTopicYN="N">Hospitalization</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057216" MajorTopicYN="N">Propensity Score</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="N">Hypoglycemia</DescriptorName><QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009203" MajorTopicYN="N">Myocardial Infarction</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020521" MajorTopicYN="N">Stroke</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiovascular Disease</Keyword><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Drug Therapy</Keyword><Keyword MajorTopicYN="N">Heart failure</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>12</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39672582</ArticleId><ArticleId IdType="pmc">PMC11647382</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2024-090226</ArticleId><ArticleId IdType="pii">bmjopen-2024-090226</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>IDF Diabetes Atlas Diabetes around the world in 2021. 2021. https://diabetesatlas.org/ Available.</Citation></Reference><Reference><Citation>Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246–58. doi: 10.4239/wjd.v6.i13.1246.</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v6.i13.1246</ArticleId><ArticleId IdType="pmc">PMC4600176</ArticleId><ArticleId IdType="pubmed">26468341</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015;3:105–13. doi: 10.1016/S2213-8587(14)70219-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(14)70219-0</ArticleId><ArticleId IdType="pmc">PMC4303913</ArticleId><ArticleId IdType="pubmed">25466521</ArticleId></ArticleIdList></Reference><Reference><Citation>Birkeland KI, Bodegard J, Eriksson JW, et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study. Diabetes Obes Metab. 2020;22:1607–18. doi: 10.1111/dom.14074.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14074</ArticleId><ArticleId IdType="pmc">PMC7496468</ArticleId><ArticleId IdType="pubmed">32363737</ArticleId></ArticleIdList></Reference><Reference><Citation>Santos-Ferreira D, Gonçalves-Teixeira P, Fontes-Carvalho R. SGLT-2 Inhibitors in Heart Failure and Type-2 Diabetes: Hitting Two Birds with One Stone? Cardiology. 2020;145:311–20. doi: 10.1159/000504694.</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000504694</ArticleId><ArticleId IdType="pubmed">31865310</ArticleId></ArticleIdList></Reference><Reference><Citation>MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29:1377–85. doi: 10.1093/eurheartj/ehn153.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehn153</ArticleId><ArticleId IdType="pubmed">18413309</ArticleId></ArticleIdList></Reference><Reference><Citation>Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–28. doi: 10.1056/NEJMoa1504720.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1504720</ArticleId><ArticleId IdType="pubmed">26378978</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380:347–57. doi: 10.1056/NEJMoa1812389.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1812389</ArticleId><ArticleId IdType="pubmed">30415602</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 2021;384:117–28. doi: 10.1056/NEJMoa2030183.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa2030183</ArticleId><ArticleId IdType="pubmed">33200892</ArticleId></ArticleIdList></Reference><Reference><Citation>Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383:1413–24. doi: 10.1056/NEJMoa2022190.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa2022190</ArticleId><ArticleId IdType="pubmed">32865377</ArticleId></ArticleIdList></Reference><Reference><Citation>Anker SD, Butler J, Usman MS, et al. Efficacy of empagliflozin in heart failure with preserved versus mid-range ejection fraction: a pre-specified analysis of EMPEROR-Preserved. Nat Med. 2022;28:2512–20. doi: 10.1038/s41591-022-02041-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41591-022-02041-5</ArticleId><ArticleId IdType="pmc">PMC9800272</ArticleId><ArticleId IdType="pubmed">36471037</ArticleId></ArticleIdList></Reference><Reference><Citation>Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 2022;387:1089–98. doi: 10.1056/NEJMoa2206286.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa2206286</ArticleId><ArticleId IdType="pubmed">36027570</ArticleId></ArticleIdList></Reference><Reference><Citation>McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1911303</ArticleId><ArticleId IdType="pubmed">31535829</ArticleId></ArticleIdList></Reference><Reference><Citation>Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377:644–57. doi: 10.1056/NEJMoa1611925.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1611925</ArticleId><ArticleId IdType="pubmed">28605608</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguiar-Neves I, Santos-Ferreira D, Fontes-Carvalho R. SGLT2 Inhibition in Heart Failure with Preserved Ejection Fraction - The New Frontier. Rev Cardiovasc Med. 2023;24:1.:1. doi: 10.31083/j.rcm2401001.</Citation><ArticleIdList><ArticleId IdType="doi">10.31083/j.rcm2401001</ArticleId><ArticleId IdType="pmc">PMC11270412</ArticleId><ArticleId IdType="pubmed">39076855</ArticleId></ArticleIdList></Reference><Reference><Citation>Weissman YL, Calvarysky B, Shochat T, et al. Disparities in Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Prescription and Dispensing in the Israeli Population-A Retrospective Cohort Study. Diabetes Care. 2024;47:692–7. doi: 10.2337/dc23-1652.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-1652</ArticleId><ArticleId IdType="pubmed">38377492</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice Committee 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care. 2024;47:S20–42. doi: 10.2337/dc24-S002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc24-S002</ArticleId><ArticleId IdType="pmc">PMC10725812</ArticleId><ArticleId IdType="pubmed">38078589</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu EL. Target Trial Emulation to Improve Causal Inference from Observational Data: What, Why, and How? J Am Soc Nephrol. 2023;34:1305–14. doi: 10.1681/ASN.0000000000000152.</Citation><ArticleIdList><ArticleId IdType="doi">10.1681/ASN.0000000000000152</ArticleId><ArticleId IdType="pmc">PMC10400102</ArticleId><ArticleId IdType="pubmed">37131279</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernán MA, Wang W, Leaf DE. Target Trial Emulation: A Framework for Causal Inference From Observational Data. JAMA. 2022;328:2446–7. doi: 10.1001/jama.2022.21383.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2022.21383</ArticleId><ArticleId IdType="pubmed">36508210</ArticleId></ArticleIdList></Reference><Reference><Citation>Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661–79. doi: 10.1002/sim.6607.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/sim.6607</ArticleId><ArticleId IdType="pmc">PMC4626409</ArticleId><ArticleId IdType="pubmed">26238958</ArticleId></ArticleIdList></Reference><Reference><Citation>Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res. 2011;46:399–424. doi: 10.1080/00273171.2011.568786.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/00273171.2011.568786</ArticleId><ArticleId IdType="pmc">PMC3144483</ArticleId><ArticleId IdType="pubmed">21818162</ArticleId></ArticleIdList></Reference><Reference><Citation>VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med. 2017;167:268–74. doi: 10.7326/M16-2607.</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/M16-2607</ArticleId><ArticleId IdType="pubmed">28693043</ArticleId></ArticleIdList></Reference><Reference><Citation>Kongmalai T, Hadnorntun P, Leelahavarong P, et al. Comparative cardiovascular benefits of individual SGLT2 inhibitors in type 2 diabetes and heart failure: a systematic review and network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023;14:1216160. doi: 10.3389/fendo.2023.1216160.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1216160</ArticleId><ArticleId IdType="pmc">PMC10765518</ArticleId><ArticleId IdType="pubmed">38179304</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang W, Chen LY, Walker RF, et al. SGLT2 Inhibitors Are Associated With Reduced Cardiovascular Disease in Patients With Type 2 Diabetes: An Analysis of Real-World Data. Mayo Clin Proc. 2023;98:985–96. doi: 10.1016/j.mayocp.2023.01.023.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mayocp.2023.01.023</ArticleId><ArticleId IdType="pmc">PMC10348449</ArticleId><ArticleId IdType="pubmed">37419588</ArticleId></ArticleIdList></Reference><Reference><Citation>Marfella R, D’Onofrio N, Trotta MC, et al. Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metab Clin Exp. 2022;127:S0026-0495(21)00236-5. doi: 10.1016/j.metabol.2021.154936.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2021.154936</ArticleId><ArticleId IdType="pubmed">34801581</ArticleId></ArticleIdList></Reference><Reference><Citation>Arnott C, Li Q, Kang A, et al. Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020;9:e014908. doi: 10.1161/JAHA.119.014908.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.119.014908</ArticleId><ArticleId IdType="pmc">PMC7033896</ArticleId><ArticleId IdType="pubmed">31992158</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin T-K, Chen Y-H, Huang J-Y, et al. Sodium-glucose co-transporter-2 inhibitors reduce the risk of new-onset stroke in patients with type 2 diabetes: A population-based cohort study. Front Cardiovasc Med. 2022;9:966708. doi: 10.3389/fcvm.2022.966708.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcvm.2022.966708</ArticleId><ArticleId IdType="pmc">PMC9406283</ArticleId><ArticleId IdType="pubmed">36035934</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosiborod M, Birkeland KI, Cavender MA, et al. Rates of myocardial infarction and stroke in patients initiating treatment with SGLT2-inhibitors versus other glucose-lowering agents in real-world clinical practice: Results from the CVD-REAL study. Diabetes Obes Metab. 2018;20:1983–7. doi: 10.1111/dom.13299.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13299</ArticleId><ArticleId IdType="pmc">PMC6055705</ArticleId><ArticleId IdType="pubmed">29569378</ArticleId></ArticleIdList></Reference><Reference><Citation>Scisciola L, Cataldo V, Taktaz F, et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front Cardiovasc Med. 2022;9:1008922. doi: 10.3389/fcvm.2022.1008922.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcvm.2022.1008922</ArticleId><ArticleId IdType="pmc">PMC9485634</ArticleId><ArticleId IdType="pubmed">36148061</ArticleId></ArticleIdList></Reference><Reference><Citation>Sardu C, Trotta MC, Sasso FC, et al. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol. 2023;22:80. doi: 10.1186/s12933-023-01814-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01814-7</ArticleId><ArticleId IdType="pmc">PMC10067292</ArticleId><ArticleId IdType="pubmed">37005586</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol. 2022;18:867–82. doi: 10.2217/fca-2022-0058.</Citation><ArticleIdList><ArticleId IdType="doi">10.2217/fca-2022-0058</ArticleId><ArticleId IdType="pubmed">36111579</ArticleId></ArticleIdList></Reference><Reference><Citation>Sardu C, Massetti M, Testa N, et al. Effects of Sodium-Glucose Transporter 2 Inhibitors (SGLT2-I) in Patients With Ischemic Heart Disease (IHD) Treated by Coronary Artery Bypass Grafting via MiECC: Inflammatory Burden, and Clinical Outcomes at 5 Years of Follow-Up. Front Pharmacol. 2021;12:777083. doi: 10.3389/fphar.2021.777083.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.777083</ArticleId><ArticleId IdType="pmc">PMC8634684</ArticleId><ArticleId IdType="pubmed">34867407</ArticleId></ArticleIdList></Reference><Reference><Citation>Benfield T, Jensen JS, Nordestgaard BG. Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia. 2007;50:549–54. doi: 10.1007/s00125-006-0570-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-006-0570-3</ArticleId><ArticleId IdType="pubmed">17187246</ArticleId></ArticleIdList></Reference><Reference><Citation>Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab. 2019;21:1237–50. doi: 10.1111/dom.13648.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13648</ArticleId><ArticleId IdType="pubmed">30697905</ArticleId></ArticleIdList></Reference><Reference><Citation>Einarson TR, Acs A, Ludwig C, et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17:83. doi: 10.1186/s12933-018-0728-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-018-0728-6</ArticleId><ArticleId IdType="pmc">PMC5994068</ArticleId><ArticleId IdType="pubmed">29884191</ArticleId></ArticleIdList></Reference><Reference><Citation>Usman MS, Siddiqi TJ, Anker SD, et al. Effect of SGLT2 Inhibitors on Cardiovascular Outcomes Across Various Patient Populations. J Am Coll Cardiol. 2023;81:2377–87. doi: 10.1016/j.jacc.2023.04.034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2023.04.034</ArticleId><ArticleId IdType="pubmed">37344038</ArticleId></ArticleIdList></Reference><Reference><Citation>Rahman H, Khan SU, Lone AN, et al. Sodium-Glucose Cotransporter-2 Inhibitors and Primary Prevention of Atherosclerotic Cardiovascular Disease: A Meta-Analysis of Randomized Trials and Systematic Review. J Am Heart Assoc. 2023;12:e030578. doi: 10.1161/JAHA.123.030578.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.123.030578</ArticleId><ArticleId IdType="pmc">PMC10492958</ArticleId><ArticleId IdType="pubmed">37581396</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30. doi: 10.1016/S0140-6736(19)31149-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(19)31149-3</ArticleId><ArticleId IdType="pubmed">31189511</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375:1834–44. doi: 10.1056/NEJMoa1607141.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1607141</ArticleId><ArticleId IdType="pubmed">27633186</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375:311–22. doi: 10.1056/NEJMoa1603827.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1603827</ArticleId><ArticleId IdType="pmc">PMC4985288</ArticleId><ArticleId IdType="pubmed">27295427</ArticleId></ArticleIdList></Reference><Reference><Citation>World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–4. doi: 10.1001/jama.2013.281053.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2013.281053</ArticleId><ArticleId IdType="pubmed">24141714</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39672547</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>10</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1522-1563</ISSN><JournalIssue CitedMedium="Internet"><Volume>328</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month><Day>01</Day></PubDate></JournalIssue><Title>American journal of physiology. Cell physiology</Title><ISOAbbreviation>Am J Physiol Cell Physiol</ISOAbbreviation></Journal><ArticleTitle>Prevention of cardiovascular disease in women with type 2 diabetes: the role of incretin mimetics and sodium-glucose cotransporter-2 inhibitors.</ArticleTitle><Pagination><StartPage>C315</StartPage><EndPage>C322</EndPage><MedlinePgn>C315-C322</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpcell.00765.2024</ELocationID><Abstract><AbstractText>Cardiovascular disease (CVD) is the leading cause of death among individuals with type 2 diabetes (T2D), with women experiencing a disproportionate risk of events compared with men. Women have an amplified burden of cardiovascular risk factors once T2D is diagnosed. Incretin mimetics now plays a central role in managing cardiovascular risk by improving glycemic control, promoting weight loss, and potentially exerting direct cardioprotective effects. Similarly, sodium-glucose cotransporter-2 inhibitors contribute to CVD prevention through various nonglucose-lowering mechanisms. Both classes of medications are integral to personalized treatment strategies aimed at addressing the heightened cardiovascular risk faced by women with diabetes. This mini-review addresses possible mechanisms underlying the increased cardiovascular risk and explores the role of incretin mimetics and SGLT2 inhibitors in mitigating CVD in women with T2D. Emphasizing personalized and sex-specific approaches in diabetes care is crucial for optimizing treatment outcomes and improving cardiovascular health.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ibrahim</LastName><ForeName>Eiman</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States.</Affiliation><Identifier Source="ROR">https://ror.org/02ymw8z06</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Burken</LastName><ForeName>Mya</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States.</Affiliation><Identifier Source="ROR">https://ror.org/02ymw8z06</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lastra</LastName><ForeName>Guido</ForeName><Initials>G</Initials><Identifier Source="ORCID">0000-0001-9205-1021</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States.</Affiliation><Identifier Source="ROR">https://ror.org/02ymw8z06</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Manrique-Acevedo</LastName><ForeName>Camila</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0001-9341-404X</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States.</Affiliation><Identifier Source="ROR">https://ror.org/02ymw8z06</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>NextGen Precision Health, University of Missouri, Columbia, Missouri, United States.</Affiliation><Identifier Source="ROR">https://ror.org/02ymw8z06</Identifier></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>I01 CX002399</GrantID><Acronym>CX</Acronym><Agency>CSRD VA</Agency><Country>United States</Country></Grant><Grant><GrantID>R01HL142770</GrantID><Agency>HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)</Agency><Country/></Grant><Grant><GrantID>R01AG082413</GrantID><Agency>HHS | NIH | National Institute on Aging (NIA)</Agency><Country/></Grant><Grant><GrantID>1I01CX002399</GrantID><Agency>U.S. Department of Veterans Affairs (VA)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Am J Physiol Cell Physiol</MedlineTA><NlmUniqueID>100901225</NlmUniqueID><ISSNLinking>0363-6143</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054795">Incretins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054795" MajorTopicYN="Y">Incretins</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000082742" MajorTopicYN="N">Heart Disease Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="N">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">SGLT2 inhibitors</Keyword><Keyword MajorTopicYN="N">cardiovascular disease</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">incretin mimetics</Keyword><Keyword MajorTopicYN="N">sex differences</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>10</Day><Hour>18</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39672547</ArticleId><ArticleId IdType="doi">10.1152/ajpcell.00765.2024</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39672082</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>06</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1532-1983</ISSN><JournalIssue CitedMedium="Internet"><Volume>44</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Clinical nutrition (Edinburgh, Scotland)</Title><ISOAbbreviation>Clin Nutr</ISOAbbreviation></Journal><ArticleTitle>Biomarkers of oxidation, inflammation and intestinal permeability in persons with diabetes mellitus with parenteral nutrition: A multicenter randomized trial.</ArticleTitle><Pagination><StartPage>155</StartPage><EndPage>164</EndPage><MedlinePgn>155-164</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.clnu.2024.11.044</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0261-5614(24)00441-2</ELocationID><Abstract><AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Parenteral nutrition (PN) composition could play a role in the management of systemic inflammatory response and intestinal barrier disruption. We aimed to evaluate changes in biomarkers of inflammation, oxidative status and intestinal permeability in patients with type 2 diabetes mellitus (T2DM) who received different PN lipid formulas.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This was a prospective study, including 94 patients with T2DM who received omega (n)-3 polyunsaturated fatty acids (PUFA)-enriched PN, a mixture of medium and long chain triglycerides (MCT/LCT) PN, or an olive oil-based PN. Serum levels of biomarkers of oxidative status, intestinal permeability and inflammation biomarkers were determined at day 1 and day 5 after PN initiation. Registered under ClinicalTrials.gov Identifier no. NCT02706119.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">At day 5 after the onset of PN, the MCT/LCT group had a significant reduction of 2 proinflammatory cytokines [interleukin (IL)-15, IL-17A], elevation of the anti-inflammatory cytokine IL-13 and increase of zonulin and indoxylsulfate. The olive oil group showed a statistically significant reduction of 5 proinflammatory cytokines [IL-1β, IL-17A, IL-6, cytokine-leukemia inhibitory factor (LIF) and tumor necrosis factor alpha (TNF-α)] and reduced concentrations of the anti-inflammatory cytokine IL-1RA, while the n-3 PUFA-enriched group presented a statistically significant reduction of 8 proinflammatory cytokines (interferon-gamma, IL-1β, IL-15, IL-17A, IL-6, LIF, monocyte chemoattractant protein 1, and TNF-α). In the between-group comparisons, indoxylsulfate significantly increased in the MCT/LCT group compared to the n-3 PUFA-enriched group, while 8-isoprostane and indoxylsulfate significantly increased in the MCT/LCT group compared to the other groups and superoxide dismutase significantly decreased in the MCT/LCT group compared to the other groups.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In patients with T2DM, PN lipid composition exerts a profound impact on proinflammatory, prooxidative and intestinal permeability biomarkers.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Soria-Utrilla</LastName><ForeName>Virginia</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain. Electronic address: virginiasoriau@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sasso</LastName><ForeName>Corina Verónica</ForeName><Initials>CV</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain. Electronic address: verosasso86@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Romero-Zerbo</LastName><ForeName>Silvana Yanina</ForeName><Initials>SY</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Human Physiology, Faculty of Medicine, University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain. Electronic address: yaniromero@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adarve-Castro</LastName><ForeName>Antonio</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Radiology, Hospital Universitario Virgen de la Victoria, Málaga, Spain. Electronic address: elaadarve@hotmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>López-Urdiales</LastName><ForeName>Rafael</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Bellvitge, Barcelona, Spain. Electronic address: rlurdiales@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Herranz-Antolín</LastName><ForeName>Sandra</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario de Guadalajara, Guadalajara, Spain. Electronic address: herranzantolin@yahoo.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García-Almeida</LastName><ForeName>José Manuel</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Málaga, Spain. Electronic address: jgarciaalmeida@yahoo.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García-Malpartida</LastName><ForeName>Katherine</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Doctor Peset, Valencia, Spain; School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón, Spain. Electronic address: kathe.garciamalpartida@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ferrer-Gómez</LastName><ForeName>Mercedes</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain. Electronic address: tofly16@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moreno-Borreguero</LastName><ForeName>Alicia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain. Electronic address: aliciamborreguero@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luengo-Pérez</LastName><ForeName>Luis Miguel</ForeName><Initials>LM</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario de Badajoz, Badajoz, Spain. Electronic address: luismiluengo@yahoo.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Álvarez-Hernández</LastName><ForeName>Julia</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain. Electronic address: julia.alvarez@movistar.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aragón-Valera</LastName><ForeName>Carmen</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain. Electronic address: caragonva@fjd.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ocón-Bretón</LastName><ForeName>María Julia</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain. Electronic address: mjocon@salud.aragon.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García-Manzanares</LastName><ForeName>Álvaro</ForeName><Initials>Á</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain. Electronic address: agmanzanares2010@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bretón-Lesmes</LastName><ForeName>Irene</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Gregorio Marañón, Madrid, Spain. Electronic address: irenebreton@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Serrano-Aguayo</LastName><ForeName>Pilar</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Virgen del Rocío, Sevilla, Spain. Electronic address: piagua@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pérez-Ferre</LastName><ForeName>Natalia</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Clínico San Carlos, Madrid, Spain. Electronic address: nataliaferre79@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>López-Gómez</LastName><ForeName>Juan José</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Clínico Universitario de Valladolid, Valladolid, Spain. Electronic address: jjlopez161282@hotmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Olivares-Alcolea</LastName><ForeName>Josefina</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Son Espases, Palma de Mallorca, Spain. Electronic address: jolivares@hsll.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moreno-Martínez</LastName><ForeName>Macarena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Jaén, Jaén, Spain. Electronic address: mmorenomtnez@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tejera-Pérez</LastName><ForeName>Cristina</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Ferrol, A Coruña, Spain; Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain. Electronic address: cristinatejera.mui@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García-Arias</LastName><ForeName>Sara</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital El Bierzo, Ponferrada, León, Spain. Electronic address: sara_ga85@hotmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abad-González</LastName><ForeName>Ángel Luis</ForeName><Initials>ÁL</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital General Universitario Doctor Balmis, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain. Electronic address: angeluis1024@ono.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alhambra-Expósito</LastName><ForeName>María Rosa</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario Reina Sofía, Córdoba, Spain; Instituto Maimónides de investigación biomédica translacional (IMIBIC), Córdoba, Spain. Electronic address: mralhambra@hotamail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zugasti-Murillo</LastName><ForeName>Ana</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Universitario de Navarra, Pamplona, Spain. Electronic address: azugas@hotmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parra-Barona</LastName><ForeName>Juan</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital de Mérida, Mérida, Spain. Electronic address: juanparrabarona@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Torrejón-Jaramillo</LastName><ForeName>Sara</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital de Sant Joan Despí Moisès Broggi, Barcelona, Spain. Electronic address: sara.torrejon@sanitatintegral.org.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abuin</LastName><ForeName>José</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain. Electronic address: jose.abuin.fdez@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fernández-García</LastName><ForeName>José Carlos</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain. Electronic address: jcfernandez@uma.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Olveira</LastName><ForeName>Gabriel</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-BIONAND Platform, Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain. Electronic address: gabolvfus@uma.es.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Nutrition Area of the Spanish Society of Endocrinology and Nutrition (SEEN)</CollectiveName></Author></AuthorList><Language>eng</Language><DataBankList CompleteYN="Y"><DataBank><DataBankName>ClinicalTrials.gov</DataBankName><AccessionNumberList><AccessionNumber>NCT02706119</AccessionNumber></AccessionNumberList></DataBank></DataBankList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Clin Nutr</MedlineTA><NlmUniqueID>8309603</NlmUniqueID><ISSNLinking>0261-5614</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015525">Fatty Acids, Omega-3</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000069463">Olive Oil</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014280">Triglycerides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C408043">zonulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006242">Haptoglobins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011498">Protein Precursors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010288" MajorTopicYN="Y">Parenteral Nutrition</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="Y">Cytokines</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010539" MajorTopicYN="Y">Permeability</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015525" MajorTopicYN="Y">Fatty Acids, Omega-3</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069463" MajorTopicYN="Y">Olive Oil</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014280" MajorTopicYN="Y">Triglycerides</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000095644" MajorTopicYN="N">Intestinal Barrier Function</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006242" MajorTopicYN="N">Haptoglobins</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011498" MajorTopicYN="N">Protein Precursors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Inflammation</Keyword><Keyword MajorTopicYN="N">Intestinal permeability</Keyword><Keyword MajorTopicYN="N">Oxidative status</Keyword><Keyword MajorTopicYN="N">Parenteral nutrition</Keyword></KeywordList><CoiStatement>Conflict of interest The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>18</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39672082</ArticleId><ArticleId IdType="doi">10.1016/j.clnu.2024.11.044</ArticleId><ArticleId IdType="pii">S0261-5614(24)00441-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39671462</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>30</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Glycemic control and bacterial infectious risk in type 2 diabetes: A retrospective cohort from a primary care database.</ArticleTitle><Pagination><StartPage>e0314287</StartPage><MedlinePgn>e0314287</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0314287</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0314287</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">The prevalence of diabetes was estimated at 5.3% of the French population in 2020. People with type 2 diabetes have an increased risk of infection. Currently, there is no consensus on the impact of glycemic control on infectious risk. The objective was to evaluate whether glycemic control and diabetes severity were associated with infectious risk in type 2 diabetes.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">We designed a multicenter retrospective cohort study using data from a French primary care database. Data were collected from January 2012 to January 2022. Glycemic control was estimated by the threshold of glycated hemoglobin and diabetes severity by the number, and the type, of antidiabetic treatments. Infectious risk was evaluated by the mean of antibiotic prescriptions per year.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Among 59,020 patients, 1959 patients were included in the final analysis. The threshold of glycated hemoglobin was not associated with the mean of antibiotic prescriptions per year (ANOVA p = 0.228). Secondary analyses did not show an association between the number, or the type, of antidiabetic treatments and the mean of antibiotic prescriptions per year (p = 0.53 and p = 0.018, respectively). No association was observed between glycemic control, diabetes severity and infectious risk in patients with type 2 diabetes. This is the first European study using data from primary care to examine bacterial infectious risk in patients with type 2 diabetes, demonstrating the possibilities offered by the use of databases in primary care research.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Long-term glycemic control was not associated with bacterial infectious risk in patients with type 2 diabetes.</AbstractText><CopyrightInformation>Copyright: © 2024 Lemoine et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lemoine</LastName><ForeName>Edouard</ForeName><Initials>E</Initials><Identifier Source="ORCID">0009-0006-1120-5492</Identifier><AffiliationInfo><Affiliation>Department of General Practice, UNIROUEN, Normandie Université, Rouen, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dusenne</LastName><ForeName>Mikaël</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medical Information and Informatics, CHU Rouen, Rouen, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schuers</LastName><ForeName>Matthieu</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of General Practice, UNIROUEN, Normandie Université, Rouen, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medical Information and Informatics, CHU Rouen, Rouen, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Medical Informatics and e-Health Knowledge Engineering Laboratory, INSERM, U1142, LIMICS, Sorbonne University, Paris, France.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011320" MajorTopicYN="Y">Primary Health Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016208" MajorTopicYN="Y">Databases, Factual</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005602" MajorTopicYN="N" Type="Geographic">France</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>10</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>7</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>13</Hour><Minute>44</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>13</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39671462</ArticleId><ArticleId IdType="pmc">PMC11642988</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0314287</ArticleId><ArticleId IdType="pii">PONE-D-23-29894</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Home, Resources, diabetes L with, Acknowledgement, FAQs, Contact, et al. IDF Diabetes Atlas 2021 | IDF Diabetes Atlas.</Citation></Reference><Reference><Citation>Santé Publique France. Prevalence and incidence of diabetes 10/11/2021. https://www.santepubliquefrance.fr/maladies-et-traumatismes/diabete/prevalence-et-incidence-du-diabete.</Citation></Reference><Reference><Citation>American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. janv 2021;44(Suppl 1):S111–24.</Citation><ArticleIdList><ArticleId IdType="pubmed">33298420</ArticleId></ArticleIdList></Reference><Reference><Citation>HAS. Extract from the scientific rationale of the RBP: Drug strategy for glycemic control of type 2 diabetes Chapter: Epidemiology and cost of type 2 diabetes in France. 2013.</Citation></Reference><Reference><Citation>Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassaï B, et al.. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 26 juill 2011;343:d4169. doi: 10.1136/bmj.d4169</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.d4169</ArticleId><ArticleId IdType="pmc">PMC3144314</ArticleId><ArticleId IdType="pubmed">21791495</ArticleId></ArticleIdList></Reference><Reference><Citation>Erpeldinger S, Rehman MB, Berkhout C, Pigache C, Zerbib Y, Regnault F, et al.. Efficacy and safety of insulin in type 2 diabetes: meta-analysis of randomised controlled trials. BMC Endocr Disord. 8 juill 2016;16:39. doi: 10.1186/s12902-016-0120-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-016-0120-z</ArticleId><ArticleId IdType="pmc">PMC4939045</ArticleId><ArticleId IdType="pubmed">27391319</ArticleId></ArticleIdList></Reference><Reference><Citation>Rivera PA, Rodríguez-Zúñiga MJM, Caballero-Alvarado J, Fiestas F. Glycated hemoglobin as a surrogate for evaluating the effectiveness of drugs in diabetes mellitus trials: a systematic review and trial-level meta-analysis. International Journal of Technology Assessment in Health Care Cambridge University Press. 2022.</Citation><ArticleIdList><ArticleId IdType="pubmed">34933703</ArticleId></ArticleIdList></Reference><Reference><Citation>Bejan-Angoulvant T, Cornu C, Archambault P, Tudrej B, Audier P, Brabant Y, et al.. Is HbA1c a valid surrogate for macrovascular and microvascular complications in type 2 diabetes? Diabetes Metab. juin 2015;41(3):195–201. doi: 10.1016/j.diabet.2015.04.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2015.04.001</ArticleId><ArticleId IdType="pubmed">25958125</ArticleId></ArticleIdList></Reference><Reference><Citation>Muller L. M. A. J.; Gorter K. J.; Hak E.; Goudzwaard W. L.; Schellevis F. G.; Hoepelman A. I. M.; et al.. (2005). Increased Risk of Common Infections in Patients with Type 1 and Type 2 Diabetes Mellitus. Clinical Infectious Diseases, 41(3), 281–288. doi: 10.1086/431587</Citation><ArticleIdList><ArticleId IdType="doi">10.1086/431587</ArticleId><ArticleId IdType="pubmed">16007521</ArticleId></ArticleIdList></Reference><Reference><Citation>Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. mai 2020;16(5):442–9. doi: 10.2174/1573399815666191024085838</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1573399815666191024085838</ArticleId><ArticleId IdType="pmc">PMC7475801</ArticleId><ArticleId IdType="pubmed">31657690</ArticleId></ArticleIdList></Reference><Reference><Citation>Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: assessing the association with glycaemic control in population-based studies. The Lancet Diabetes & Endocrinology. 1 févr 2016;4(2):148–58. doi: 10.1016/S2213-8587(15)00379-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(15)00379-4</ArticleId><ArticleId IdType="pubmed">26656292</ArticleId></ArticleIdList></Reference><Reference><Citation>Maple-Brown LJ, Ye C, Retnakaran R. Area-under-the-A1c-Curve above the Normal Range and the Prediction of Microvascular Outcomes: An analysis of data from the Diabetes Control and Complications Trial. Diabet Med. janv 2013;30(1): doi: 10.1111/dme.12004</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.12004</ArticleId><ArticleId IdType="pmc">PMC3843010</ArticleId><ArticleId IdType="pubmed">22937915</ArticleId></ArticleIdList></Reference><Reference><Citation>Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci. févr 2016;351(2):201–11. doi: 10.1016/j.amjms.2015.11.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjms.2015.11.011</ArticleId><ArticleId IdType="pubmed">26897277</ArticleId></ArticleIdList></Reference><Reference><Citation>Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–35. doi: 10.2337/dc18-0287</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc18-0287</ArticleId><ArticleId IdType="pubmed">30104296</ArticleId></ArticleIdList></Reference><Reference><Citation>Mor A, Dekkers OM, Nielsen JS, Beck-Nielsen H, Sørensen HT, Thomsen RW. Impact of Glycemic Control on Risk of Infections in Patients with Type 2 Diabetes: A Population-Based Cohort Study. American Journal of Epidemiology. 2017;186(2):227–36. doi: 10.1093/aje/kwx049</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/aje/kwx049</ArticleId><ArticleId IdType="pubmed">28459981</ArticleId></ArticleIdList></Reference><Reference><Citation>Ansari AS, de Lusignan S, Hinton W, Munro N, McGovern A. The association between diabetes, level of glycaemic control and eye infection: Cohort database study. Prim Care Diabetes. oct 2017;11(5):421–9. doi: 10.1016/j.pcd.2017.05.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2017.05.009</ArticleId><ArticleId IdType="pubmed">28648963</ArticleId></ArticleIdList></Reference><Reference><Citation>Hine JL, de Lusignan S, Burleigh D, Pathirannehelage S, McGovern A, Gatenby P, et al.. Association between glycaemic control and common infections in people with Type 2 diabetes: a cohort study. Diabetic Medicine. 2017;34(4):551–7. doi: 10.1111/dme.13205</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13205</ArticleId><ArticleId IdType="pubmed">27548909</ArticleId></ArticleIdList></Reference><Reference><Citation>Godard M. Organization and coding of data in medical records. 20 September 2022.</Citation></Reference><Reference><Citation>Van den Broek d’Obrenan J, Verheij TJM, Numans ME, van der Velden AW. Antibiotic use in Dutch primary care: relation between diagnosis, consultation and treatment. Journal of Antimicrobial Chemotherapy. 1 June 2014;69(6):1701–7. doi: 10.1093/jac/dku005</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jac/dku005</ArticleId><ArticleId IdType="pubmed">24508898</ArticleId></ArticleIdList></Reference><Reference><Citation>Etienne C, Pulcini C. Prospective evaluation of antibiotic prescriptions in a sample of French general practitioners. La Presse Médicale. 1 March 2015;44(3):e59–66.</Citation><ArticleIdList><ArticleId IdType="pubmed">25650299</ArticleId></ArticleIdList></Reference><Reference><Citation>Mor A, Berencsi K, Nielsen JS, Rungby J, Friborg S, Brandslund I, et al.. Rates of Community-based Antibiotic Prescriptions and Hospital-treated Infections in Individuals With and Without Type 2 Diabetes: A Danish Nationwide Cohort Study, 2004–2012. Clin Infect Dis. 15 août 2016;63(4):501–11. doi: 10.1093/cid/ciw345</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/cid/ciw345</ArticleId><ArticleId IdType="pubmed">27353662</ArticleId></ArticleIdList></Reference><Reference><Citation>Siefridt C, Grosjean J, Lefebvre T, Rollin L, Darmoni S, Schuers M. Evaluation of automatic annotation by a multi-terminological concepts extractor within a corpus of data from family medicine consultations. International Journal of Medical Informatics. 1 janv 2020;133:104009. doi: 10.1016/j.ijmedinf.2019.104009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijmedinf.2019.104009</ArticleId><ArticleId IdType="pubmed">31715451</ArticleId></ArticleIdList></Reference><Reference><Citation>Clinical Practice Research Datalink | CPRD Disponible sur: https://www.cprd.com/node/120.</Citation></Reference><Reference><Citation>Kousoulis AA, Rafi I, de Lusignan S. The CPRD and the RCGP: building on research success by enhancing benefits for patients and practices. Br J Gen Pract. févr 2015;65(631):54–5. doi: 10.3399/bjgp15X683353</Citation><ArticleIdList><ArticleId IdType="doi">10.3399/bjgp15X683353</ArticleId><ArticleId IdType="pmc">PMC4325440</ArticleId><ArticleId IdType="pubmed">25624277</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39671339</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1940-087X</ISSN><JournalIssue CitedMedium="Internet"><Issue>213</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>Journal of visualized experiments : JoVE</Title><ISOAbbreviation>J Vis Exp</ISOAbbreviation></Journal><ArticleTitle>Modeling and Evaluation of Murine Diabetic Cardiomyopathy Model.</ArticleTitle><ELocationID EIdType="doi" ValidYN="Y">10.3791/67189</ELocationID><Abstract><AbstractText>The underlying pathophysiological mechanisms of diabetic cardiomyopathy (DbCM), a leading cause of mortality among patients with type 2 diabetes mellitus (T2DM), remain poorly understood. The myocardial toxicity associated with T2DM is attributed to factors such as lipotoxicity, glucotoxicity, oxidative stress, reduced cardiac efficiency, and lipoapoptosis. Compared to rats, mice offer greater accessibility, cost-effectiveness, and broader applicability for animal experiments. Insulin resistance and impaired insulin secretion are crucial factors in the pathophysiology of T2DM. We introduce a novel nongenetic murine model that replicates the progression of human DbCM induced by a combination of high-fat diet (HFD) feeding and streptozotocin (STZ) injection. In this study, we used wild-type C57BL/6J mice, administering an HFD regimen for 12 weeks, followed by intraperitoneal injections of STZ for an additional 12 weeks to induce characteristic manifestations of T2DM. We conducted oral glucose tolerance tests and measured serum insulin concentrations to confirm the development of insulin resistance and insufficient insulin secretion. Cardiac structure and function were rigorously assessed through noninvasive transthoracic echocardiography. Pathological characteristics were evaluated through Masson's trichrome staining and wheat germ agglutinin (WGA) staining, revealing pathological features related to DbCM. Therefore, we provide a robust and versatile method for establishing a nongenetic murine model of DbCM.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Xu</LastName><ForeName>Yanjiani</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Zhang</LastName><ForeName>Jialiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University; zjl094@126.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Jing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yaoyu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Fangyang</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University; fyhuang1989@126.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Mao</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiology, West China Hospital, Sichuan University; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University; Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University; hmaochen@vip.sina.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D059040">Video-Audio Media</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Vis Exp</MedlineTA><NlmUniqueID>101313252</NlmUniqueID><ISSNLinking>1940-087X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>5W494URQ81</RegistryNumber><NameOfSubstance UI="D013311">Streptozocin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D058065" MajorTopicYN="Y">Diabetic Cardiomyopathies</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="Y">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="Y">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013311" MajorTopicYN="N">Streptozocin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>7</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>13</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39671339</ArticleId><ArticleId IdType="doi">10.3791/67189</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39671241</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2050-084X</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><PubDate><Year>2024</Year><Month>Dec</Month><Day>13</Day></PubDate></JournalIssue><Title>eLife</Title><ISOAbbreviation>Elife</ISOAbbreviation></Journal><ArticleTitle>Genetic inactivation of zinc transporter SLC39A5 improves liver function and hyperglycemia in obesogenic settings.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">RP90419</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.90419</ELocationID><Abstract><AbstractText>Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter <i>SLC30A8</i> reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in <i>Solute Carrier Family 39, Member 5</i> (<i>SLC39A5</i>) associated with increased circulating zinc (p=4.9 × 10<sup>-4</sup>). Trans-ancestry meta-analysis across four studies exhibited a nominal association of <i>SLC39A5</i> LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking <i>Slc39a5. Slc39a5<sup>-/-</sup></i> mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), <i>Slc39a5<sup>-/-</sup></i> mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.</AbstractText><CopyrightInformation>© 2023, Chim et al.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Chim</LastName><ForeName>Shek Man</ForeName><Initials>SM</Initials><Identifier Source="ORCID">0000-0002-5116-8394</Identifier><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Howell</LastName><ForeName>Kristen</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dronzek</LastName><ForeName>John</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Weizhen</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Van Hout</LastName><ForeName>Cristopher</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ferreira</LastName><ForeName>Manuel A R</ForeName><Initials>MAR</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ye</LastName><ForeName>Bin</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Alexander</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Brydges</LastName><ForeName>Susannah</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Regeneron Pharmaceuticals, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arunachalam</LastName><ForeName>Vinayagam</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marcketta</LastName><ForeName>Anthony</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Locke</LastName><ForeName>Adam E</ForeName><Initials>AE</Initials><Identifier Source="ORCID">0000-0001-6227-198X</Identifier><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bovijn</LastName><ForeName>Jonas</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verweij</LastName><ForeName>Niek</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>De</LastName><ForeName>Tanima</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lotta</LastName><ForeName>Luca</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mitnaul</LastName><ForeName>Lyndon</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>LeBlanc</LastName><ForeName>Michelle</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Center</LastName><ForeName>Regeneron Genetics</ForeName><Initials>RG</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Carey</LastName><ForeName>David J</ForeName><Initials>DJ</Initials><AffiliationInfo><Affiliation>Geisinger Health System, Danville, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Melander</LastName><ForeName>Olle</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>Department of Clinical Sciences, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shuldiner</LastName><ForeName>Alan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karalis</LastName><ForeName>Katia</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Economides</LastName><ForeName>Aris N</ForeName><Initials>AN</Initials><Identifier Source="ORCID">0000-0002-6508-8942</Identifier><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Regeneron Pharmaceuticals, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nistala</LastName><ForeName>Harikiran</ForeName><Initials>H</Initials><Identifier Source="ORCID">0000-0003-4928-7527</Identifier><AffiliationInfo><Affiliation>Regeneron Genetics Center, New York, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>DiscovEHR collaboration</CollectiveName></Author><Author ValidYN="Y"><CollectiveName>Regeneron Genetics Center</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Elife</MedlineTA><NlmUniqueID>101579614</NlmUniqueID><ISSNLinking>2050-084X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>J41CSQ7QDS</RegistryNumber><NameOfSubstance UI="D015032">Zinc</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="UpdateOf"><RefSource>doi: 10.1101/2021.12.08.21267440</RefSource></CommentsCorrections><CommentsCorrections RefType="UpdateOf"><RefSource>doi: 10.7554/eLife.90419.1</RefSource></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006943" MajorTopicYN="Y">Hyperglycemia</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="Y">Liver</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015032" MajorTopicYN="Y">Zinc</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D027682" MajorTopicYN="Y">Cation Transport Proteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">NAFLD</Keyword><Keyword MajorTopicYN="N">Type II diabetes</Keyword><Keyword MajorTopicYN="N">genetics</Keyword><Keyword MajorTopicYN="N">genomics</Keyword><Keyword MajorTopicYN="N">human</Keyword><Keyword MajorTopicYN="N">mouse</Keyword><Keyword MajorTopicYN="N">zinc transporter</Keyword></KeywordList><CoiStatement>SC, KH, JD, WW, MF, BY, AL, SB, VA, AM, AL, JB, NV, TD, LM, ML, RC, AS, AE, HN full-time employee of the Regeneron Genetics Center or Regeneron Pharmaceuticals Inc and hold stock options/restricted stock as part of compensation, CV, DC, OM, KK No competing interests declared, LL full-time employee of the Regeneron Genetics Center or Regeneron Pharmaceuticals Inc and hold stock options/restricted stock as part of compensation.full-time employee of the Regeneron Genetics Center or Regeneron Pharmaceuticals Inc and hold stock options/restricted stock as part of compensation</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>13</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39671241</ArticleId><ArticleId IdType="pmc">PMC11648992</ArticleId><ArticleId IdType="doi">10.7554/eLife.90419</ArticleId><ArticleId IdType="pii">90419</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA, Beachy PA, Berdnik D, Bilen B, Brownfield D, Cain C, Chan CKF, Chen MB, Clarke MF, Conley SD, Darmanis S, Demers A, Demir K, de Morree A, Divita T, du Bois H, Ebadi H, Espinoza FH, Fish M, Gan Q, George BM, Gillich A, Gòmez-Sjöberg R, Green F, Genetiano G, Gu X, Gulati GS, Hahn O, Haney MS, Hang Y, Harris L, He M, Hosseinzadeh S, Huang A, Huang KC, Iram T, Isobe T, Ives F, Jones RC, Kao KS, Karkanias J, Karnam G, Keller A, Kershner AM, Khoury N, Kim SK, Kiss BM, Kong W, Krasnow MA, Kumar ME, Kuo CS, Lam J, Lee DP, Lee SE, Lehallier B, Leventhal O, Li G, Li Q, Liu L, Lo A, Lu WJ, Lugo-Fagundo MF, Manjunath A, May AP, Maynard A, McGeever A, McKay M, McNerney MW, Merrill B, Metzger RJ, Mignardi M, Min D, Nabhan AN, Neff NF, Ng KM, Nguyen PK, Noh J, Nusse R, Pálovics R, Patkar R, Peng WC, Penland L, Pisco AO, Pollard K, Puccinelli R, Qi Z, Quake SR, Rando TA, Rulifson EJ, Schaum N, Segal JM, Sikandar SS, Sinha R, Sit RV, Sonnenburg J, Staehli D, Szade K, Tan M, Tan W, Tato C, Tellez K, Dulgeroff LBT, Travaglini KJ, Tropini C, Tsui M, Waldburger L, Wang BM, van Weele LJ, Weinberg K, Weissman IL, Wosczyna MN, Wu SM, Wyss-Coray T, Xiang J, Xue S, Yamauchi KA, Yang AC, Yerra LP, Youngyunpipatkul J, Yu B, Zanini F, Zardeneta ME, Zee A, Zhao C, Zhang F, Zhang H, Zhang MJ, Zhou L, Zou J, The Tabula Muris Consortium A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583:590–595. doi: 10.1038/s41586-020-2496-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-020-2496-1</ArticleId><ArticleId IdType="pmc">PMC8240505</ArticleId><ArticleId IdType="pubmed">32669714</ArticleId></ArticleIdList></Reference><Reference><Citation>Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai I. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Systems. 2016;3:346–360. doi: 10.1016/j.cels.2016.08.011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cels.2016.08.011</ArticleId><ArticleId IdType="pmc">PMC5228327</ArticleId><ArticleId IdType="pubmed">27667365</ArticleId></ArticleIdList></Reference><Reference><Citation>Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coordination Chemistry Reviews. 2016;327–328:70–83. doi: 10.1016/j.ccr.2016.07.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ccr.2016.07.002</ArticleId><ArticleId IdType="pmc">PMC5115158</ArticleId><ArticleId IdType="pubmed">27890939</ArticleId></ArticleIdList></Reference><Reference><Citation>Bellomo E, Abro A, Hogstrand C, Maret W, Domene C. Role of zinc and magnesium ions in the modulation of phosphoryl transfer in protein tyrosine phosphatase 1b. Journal of the American Chemical Society. 2018;140:4446–4454. doi: 10.1021/jacs.8b01534.</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/jacs.8b01534</ArticleId><ArticleId IdType="pubmed">29512390</ArticleId></ArticleIdList></Reference><Reference><Citation>Berglund G. The malmo diet and cancer study. Design and Feasibility. J Intern Med. 1993;233:45–51. doi: 10.1111/j.1365-2796.1993.tb00647.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1365-2796.1993.tb00647.x</ArticleId><ArticleId IdType="pubmed">8429286</ArticleId></ArticleIdList></Reference><Reference><Citation>Carr TP, Andresen CJ, Rudel LL. Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clinical Biochemistry. 1993;26:39–42. doi: 10.1016/0009-9120(93)90015-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0009-9120(93)90015-x</ArticleId><ArticleId IdType="pubmed">8448837</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen TC, Benjamin DI, Kuo T, Lee RA, Li ML, Mar DJ, Costello DE, Nomura DK, Wang JC. The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCζ. Science Signaling. 2017;10:eaai7905. doi: 10.1126/scisignal.aai7905.</Citation><ArticleIdList><ArticleId IdType="doi">10.1126/scisignal.aai7905</ArticleId><ArticleId IdType="pmc">PMC6218395</ArticleId><ArticleId IdType="pubmed">28743803</ArticleId></ArticleIdList></Reference><Reference><Citation>Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong E-G, Cho Y-R, Kim JK, Kahn BB, Neel BG, Bence KK. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58:590–599. doi: 10.2337/db08-0913.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db08-0913</ArticleId><ArticleId IdType="pmc">PMC2646057</ArticleId><ArticleId IdType="pubmed">19074988</ArticleId></ArticleIdList></Reference><Reference><Citation>Dempski RE. The cation selectivity of the ZIP transporters. Current Topics in Membranes. 2012;69:221–245. doi: 10.1016/B978-0-12-394390-3.00009-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/B978-0-12-394390-3.00009-4</ArticleId><ArticleId IdType="pubmed">23046653</ArticleId></ArticleIdList></Reference><Reference><Citation>Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. The Journal of Biological Chemistry. 2004;279:49082–49090. doi: 10.1074/jbc.M409962200.</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M409962200</ArticleId><ArticleId IdType="pubmed">15358787</ArticleId></ArticleIdList></Reference><Reference><Citation>Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard A-M, Abaitua F, Beer NL, Grotz A, Prasad RB, Hansson O, Ahlqvist E, Krus U, Artner I, Suoranta A, Gomez D, Baras A, Champon B, Payne AJ, Moralli D, Thomsen SK, Kramer P, Spiliotis I, Ramracheya R, Chabosseau P, Theodoulou A, Cheung R, van de Bunt M, Flannick J, Trombetta M, Bonora E, Wolheim CB, Sarelin L, Bonadonna RC, Rorsman P, Davies B, Brosnan J, McCarthy MI, Otonkoski T, Lagerstedt JO, Rutter GA, Gromada J, Gloyn AL, Tuomi T, Groop L. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics. 2019;51:1596–1606. doi: 10.1038/s41588-019-0513-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-019-0513-9</ArticleId><ArticleId IdType="pmc">PMC6858874</ArticleId><ArticleId IdType="pubmed">31676859</ArticleId></ArticleIdList></Reference><Reference><Citation>Eastwood SV, Mathur R, Atkinson M, Brophy S, Sudlow C, Flaig R, de Lusignan S, Allen N, Chaturvedi N. Algorithms for the capture and adjudication of prevalent and incident diabetes in uk biobank. PLOS ONE. 2016;11:e0162388. doi: 10.1371/journal.pone.0162388.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0162388</ArticleId><ArticleId IdType="pmc">PMC5025160</ArticleId><ArticleId IdType="pubmed">27631769</ArticleId></ArticleIdList></Reference><Reference><Citation>Flannick J, Thorleifsson G, Beer NL, Jacobs SBR, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R, Blangero J, Bowden DW, Brandslund I, Brosnan J, Burslem F, Chambers J, Cho YS, Christensen C, Douglas DA, Duggirala R, Dymek Z, Farjoun Y, Fennell T, Fontanillas P, Forsén T, Gabriel S, Glaser B, Gudbjartsson DF, Hanis C, Hansen T, Hreidarsson AB, Hveem K, Ingelsson E, Isomaa B, Johansson S, Jørgensen T, Jørgensen ME, Kathiresan S, Kong A, Kooner J, Kravic J, Laakso M, Lee J-Y, Lind L, Lindgren CM, Linneberg A, Masson G, Meitinger T, Mohlke KL, Molven A, Morris AP, Potluri S, Rauramaa R, Ribel-Madsen R, Richard A-M, Rolph T, Salomaa V, Segrè AV, Skärstrand H, Steinthorsdottir V, Stringham HM, Sulem P, Tai ES, Teo YY, Teslovich T, Thorsteinsdottir U, Trimmer JK, Tuomi T, Tuomilehto J, Vaziri-Sani F, Voight BF, Wilson JG, Boehnke M, McCarthy MI, Njølstad PR, Pedersen O, Go-T2D Consortium. T2D-GENES Consortium. Groop L, Cox DR, Stefansson K, Altshuler D. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics. 2014;46:357–363. doi: 10.1038/ng.2915.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.2915</ArticleId><ArticleId IdType="pmc">PMC4051628</ArticleId><ArticleId IdType="pubmed">24584071</ArticleId></ArticleIdList></Reference><Reference><Citation>Folch J, Lees M, Sloane stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 1957;226:497–509.</Citation><ArticleIdList><ArticleId IdType="pubmed">13428781</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41591-018-0104-9</ArticleId><ArticleId IdType="pmc">PMC6553468</ArticleId><ArticleId IdType="pubmed">29967350</ArticleId></ArticleIdList></Reference><Reference><Citation>Galbo T, Olsen GS, Quistorff B, Nishimura E. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLOS ONE. 2011;6:e27424. doi: 10.1371/journal.pone.0027424.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0027424</ArticleId><ArticleId IdType="pmc">PMC3210172</ArticleId><ArticleId IdType="pubmed">22087313</ArticleId></ArticleIdList></Reference><Reference><Citation>Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Molecular and Cellular Biology. 2005;25:819–829. doi: 10.1128/MCB.25.2.819-829.2005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1128/MCB.25.2.819-829.2005</ArticleId><ArticleId IdType="pmc">PMC543412</ArticleId><ArticleId IdType="pubmed">15632081</ArticleId></ArticleIdList></Reference><Reference><Citation>Garcia D, Hellberg K, Chaix A, Wallace M, Herzig S, Badur MG, Lin T, Shokhirev MN, Pinto AFM, Ross DS, Saghatelian A, Panda S, Dow LE, Metallo CM, Shaw RJ. Genetic liver-specific ampk activation protects against diet-induced obesity and nafld. Cell Reports. 2019;26:192–208. doi: 10.1016/j.celrep.2018.12.036.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.celrep.2018.12.036</ArticleId><ArticleId IdType="pmc">PMC6344045</ArticleId><ArticleId IdType="pubmed">30605676</ArticleId></ArticleIdList></Reference><Reference><Citation>Geiser J, De Lisle RC, Andrews GK. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLOS ONE. 2013;8:e82149. doi: 10.1371/journal.pone.0082149.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0082149</ArticleId><ArticleId IdType="pmc">PMC3841122</ArticleId><ArticleId IdType="pubmed">24303081</ArticleId></ArticleIdList></Reference><Reference><Citation>Hosui A, Kimura E, Abe S, Tanimoto T, Onishi K, Kusumoto Y, Sueyoshi Y, Matsumoto K, Hirao M, Yamada T, Hiramatsu N. Long-term zinc supplementation improves liver function and decreases the risk of developing hepatocellular carcinoma. Nutrients. 2018;10:1955. doi: 10.3390/nu10121955.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu10121955</ArticleId><ArticleId IdType="pmc">PMC6316561</ArticleId><ArticleId IdType="pubmed">30544767</ArticleId></ArticleIdList></Reference><Reference><Citation>Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD. Metformin inhibits hepatic mtorc1 signaling via dose-dependent mechanisms involving ampk and the tsc complex. Cell Metabolism. 2017;25:463–471. doi: 10.1016/j.cmet.2016.12.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2016.12.009</ArticleId><ArticleId IdType="pmc">PMC5299044</ArticleId><ArticleId IdType="pubmed">28089566</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang B-W, Chiang M-T, Yao H-T, Chiang W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes, Obesity & Metabolism. 2004;6:120–126. doi: 10.1111/j.1462-8902.2004.00323.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1462-8902.2004.00323.x</ArticleId><ArticleId IdType="pubmed">14746577</ArticleId></ArticleIdList></Reference><Reference><Citation>Jackson MJ, Jones DA, Edwards RH. Tissue zinc levels as an index of body zinc status. Clinical Physiology. 1982;2:333–343. doi: 10.1111/j.1475-097x.1982.tb00038.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1475-097x.1982.tb00038.x</ArticleId><ArticleId IdType="pubmed">6889946</ArticleId></ArticleIdList></Reference><Reference><Citation>King AJF. The use of animal models in diabetes research. British Journal of Pharmacology. 2012;166:877–894. doi: 10.1111/j.1476-5381.2012.01911.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1476-5381.2012.01911.x</ArticleId><ArticleId IdType="pmc">PMC3417415</ArticleId><ArticleId IdType="pubmed">22352879</ArticleId></ArticleIdList></Reference><Reference><Citation>Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. The Journal of Biological Chemistry. 2018;293:1517–1525. doi: 10.1074/jbc.C117.819110.</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.C117.819110</ArticleId><ArticleId IdType="pmc">PMC5798283</ArticleId><ArticleId IdType="pubmed">29217773</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. American Journal of Physiology. Heart and Circulatory Physiology. 2009;297:H569–H575. doi: 10.1152/ajpheart.00293.2009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpheart.00293.2009</ArticleId><ArticleId IdType="pmc">PMC2724202</ArticleId><ArticleId IdType="pubmed">19525380</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R, Havekes LM, Kleemann R, van den Hoek AM. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLOS ONE. 2014;9:e115922. doi: 10.1371/journal.pone.0115922.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0115922</ArticleId><ArticleId IdType="pmc">PMC4275274</ArticleId><ArticleId IdType="pubmed">25535951</ArticleId></ArticleIdList></Reference><Reference><Citation>Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2010;298:G1004–G1012. doi: 10.1152/ajpgi.00482.2009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpgi.00482.2009</ArticleId><ArticleId IdType="pmc">PMC3774334</ArticleId><ArticleId IdType="pubmed">20224005</ArticleId></ArticleIdList></Reference><Reference><Citation>Lotta LA, Wittemans LBL, Zuber V, Stewart ID, Sharp SJ, Luan J, Day FR, Li C, Bowker N, Cai L, De Lucia Rolfe E, Khaw K-T, Perry JRB, O’Rahilly S, Scott RA, Savage DB, Burgess S, Wareham NJ, Langenberg C. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA. 2018;320:2553–2563. doi: 10.1001/jama.2018.19329.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2018.19329</ArticleId><ArticleId IdType="pmc">PMC6583513</ArticleId><ArticleId IdType="pubmed">30575882</ArticleId></ArticleIdList></Reference><Reference><Citation>Marreiro DN, Fisberg M, Cozzolino SMF. Zinc nutritional status in obese children and adolescents. Biological Trace Element Research. 2002;86:107–122. doi: 10.1385/bter:86:2:107.</Citation><ArticleIdList><ArticleId IdType="doi">10.1385/bter:86:2:107</ArticleId><ArticleId IdType="pubmed">12008974</ArticleId></ArticleIdList></Reference><Reference><Citation>Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, Benner C, O’Dushlaine C, Barber M, Boutkov B, Habegger L, Ferreira M, Baras A, Reid J, Abecasis G, Maxwell E, Marchini J. Computationally efficient whole-genome regression for quantitative and binary traits. Nature Genetics. 2021;53:1097–1103. doi: 10.1038/s41588-021-00870-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-021-00870-7</ArticleId><ArticleId IdType="pubmed">34017140</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohammad MK, Zhou Z, Cave M, Barve A, McClain CJ. Zinc and liver disease. Nutrition in Clinical Practice. 2012;27:8–20. doi: 10.1177/0884533611433534.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0884533611433534</ArticleId><ArticleId IdType="pmc">PMC6027651</ArticleId><ArticleId IdType="pubmed">22307488</ArticleId></ArticleIdList></Reference><Reference><Citation>Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJP, van Oudenaarden A. A single-cell transcriptome atlas of the human pancreas. Cell Systems. 2016;3:385–394. doi: 10.1016/j.cels.2016.09.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cels.2016.09.002</ArticleId><ArticleId IdType="pmc">PMC5092539</ArticleId><ArticleId IdType="pubmed">27693023</ArticleId></ArticleIdList></Reference><Reference><Citation>Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJO, Walker L, Karpe F, Gloyn AL. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. The New England Journal of Medicine. 2012;367:1002–1011. doi: 10.1056/NEJMoa1113966.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1113966</ArticleId><ArticleId IdType="pmc">PMC4072504</ArticleId><ArticleId IdType="pubmed">22970944</ArticleId></ArticleIdList></Reference><Reference><Citation>Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nature Biotechnology. 2007;25:91–99. doi: 10.1038/nbt1263.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nbt1263</ArticleId><ArticleId IdType="pubmed">17187059</ArticleId></ArticleIdList></Reference><Reference><Citation>Ranasinghe P, Wathurapatha WS, Galappatthy P, Katulanda P, Jayawardena R, Constantine GR. Zinc supplementation in prediabetes: A randomized double-blind placebo-controlled clinical trial. Journal of Diabetes. 2018;10:386–397. doi: 10.1111/1753-0407.12621.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/1753-0407.12621</ArticleId><ArticleId IdType="pubmed">29072815</ArticleId></ArticleIdList></Reference><Reference><Citation>Samari HR, Møller MTN, Holden L, Asmyhr T, Seglen PO. Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. The Biochemical Journal. 2005;386:237–244. doi: 10.1042/BJ20040609.</Citation><ArticleIdList><ArticleId IdType="doi">10.1042/BJ20040609</ArticleId><ArticleId IdType="pmc">PMC1134787</ArticleId><ArticleId IdType="pubmed">15461583</ArticleId></ArticleIdList></Reference><Reference><Citation>Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nature Reviews. Gastroenterology & Hepatology. 2017;14:32–42. doi: 10.1038/nrgastro.2016.147.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrgastro.2016.147</ArticleId><ArticleId IdType="pubmed">27729660</ArticleId></ArticleIdList></Reference><Reference><Citation>Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu W, Li C, Chen H, Monks BR, Chen J, Rabinowitz JD, Birnbaum MJ. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metabolism. 2016;23:1154–1166. doi: 10.1016/j.cmet.2016.04.022.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2016.04.022</ArticleId><ArticleId IdType="pmc">PMC4909537</ArticleId><ArticleId IdType="pubmed">27238637</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsou RC, Bence KK. The genetics of ptpn1 and obesity: Insights from mouse models of tissue-specific ptp1b deficiency. Journal of Obesity. 2012;2012:926857. doi: 10.1155/2012/926857.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2012/926857</ArticleId><ArticleId IdType="pmc">PMC3395189</ArticleId><ArticleId IdType="pubmed">22811891</ArticleId></ArticleIdList></Reference><Reference><Citation>Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nature Biotechnology. 2003;21:652–659. doi: 10.1038/nbt822.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nbt822</ArticleId><ArticleId IdType="pubmed">12730667</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang F, Kim B-E, Petris MJ, Eide DJ. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. The Journal of Biological Chemistry. 2004;279:51433–51441. doi: 10.1074/jbc.M408361200.</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M408361200</ArticleId><ArticleId IdType="pubmed">15322118</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang M, Unger RH. Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. American Journal of Physiology. Endocrinology and Metabolism. 2005;288:E216–E221. doi: 10.1152/ajpendo.00004.2004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00004.2004</ArticleId><ArticleId IdType="pubmed">15367397</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang X, Gao H, Wu W, Xie E, Yu Y, He X, Li J, Zheng W, Wang X, Cao X, Meng Z, Chen L, Min J, Wang F. The zinc transporter Slc39a5 controls glucose sensing and insulin secretion in pancreatic β-cells via Sirt1- and Pgc-1α-mediated regulation of Glut2. Protein & Cell. 2019;10:436–449. doi: 10.1007/s13238-018-0580-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13238-018-0580-1</ArticleId><ArticleId IdType="pmc">PMC6538592</ArticleId><ArticleId IdType="pubmed">30324491</ArticleId></ArticleIdList></Reference><Reference><Citation>Xian L, Hou S, Huang Z, Tang A, Shi P, Wang Q, Song A, Jiang S, Lin Z, Guo S, Gao X. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity. Aging. 2015;7:223–232. doi: 10.18632/aging.100725.</Citation><ArticleIdList><ArticleId IdType="doi">10.18632/aging.100725</ArticleId><ArticleId IdType="pmc">PMC4429087</ArticleId><ArticleId IdType="pubmed">25888638</ArticleId></ArticleIdList></Reference><Reference><Citation>Xin Y, Kim J, Ni M, Wei Y, Okamoto H, Lee J, Adler C, Cavino K, Murphy AJ, Yancopoulos GD, Lin HC, Gromada J. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. PNAS. 2016;113:3293–3298. doi: 10.1073/pnas.1602306113.</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.1602306113</ArticleId><ArticleId IdType="pmc">PMC4812709</ArticleId><ArticleId IdType="pubmed">26951663</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiong Y, Jing X-P, Zhou X-W, Wang X-L, Yang Y, Sun X-Y, Qiu M, Cao F-Y, Lu Y-M, Liu R, Wang J-Z. Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiology of Aging. 2013;34:745–756. doi: 10.1016/j.neurobiolaging.2012.07.003.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.neurobiolaging.2012.07.003</ArticleId><ArticleId IdType="pubmed">22892311</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39671223</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2164-2591</ISSN><JournalIssue CitedMedium="Internet"><Volume>13</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>Translational vision science & technology</Title><ISOAbbreviation>Transl Vis Sci Technol</ISOAbbreviation></Journal><ArticleTitle>Multi-Omics Integration With Machine Learning Identified Early Diabetic Retinopathy, Diabetic Macula Edema and Anti-VEGF Treatment Response.</ArticleTitle><Pagination><StartPage>23</StartPage><MedlinePgn>23</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">23</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1167/tvst.13.12.23</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="UNASSIGNED">Identify optimal metabolic features and pathways across diabetic retinopathy (DR) stages, develop risk models to differentiate diabetic macular edema (DME), and predict anti-vascular endothelial growth factor (anti-VEGF) therapy response.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">We analyzed 108 aqueous humor samples from 78 type 2 diabetes mellitus patients and 30 healthy controls. Ultra-high-performance liquid chromatography-high-resolution-mass-spectrometry detected lipidomics and metabolomics profiles. DME patients received ≥3 anti-VEGF treatments, categorized into strong and weak response groups. Machine learning (ML) screened prospective metabolic features, developing prediction models.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Key metabolic features identified in the metabolomics and lipidomics datasets included n-acetyl isoleucine (odds ratio [OR] = 1.635), cis-aconitic acid (OR = 3.296), and ophthalmic acid (OR = 0.836) for DR. For early-DR, n-acetyl isoleucine (OR = 1.791) and decaethylene glycol (PEG-10) (OR = 0.170) were identified as key markers. L-kynurenine (OR = 0.875), niacinamide (OR = 0.843), and linoleoyl ethanolamine (OR = 0.941) were identified as significant indicators for DME. Trigonelline (OR = 1.441) and 4-methylcatechol-2-sulfate (OR = 1.121) emerged as predictors for strong response to anti-VEGF. Predictive models achieved R² values of 99.9%, 97.7%, 93.9%, and 98.4% for DR, early-DR, DME, and strong response groups in the calibration set, respectively, and validated well with R² values of 96.3%, 96.8%, 79.9%, and 96.3%.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">This research used ML to identify differential metabolic features from metabolomics and lipidomics datasets in DR patients. It implies that metabolic indicators can effectively predict early disease progression and potential weak responders to anti-VEGF therapy in DME eyes.</AbstractText><AbstractText Label="TRANSLATIONAL RELEVANCE" NlmCategory="UNASSIGNED">The identified metabolic indicators may aid in predicting the early progression of DR and optimizing therapeutic strategies for DME.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Pang</LastName><ForeName>Yuhui</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luo</LastName><ForeName>Chaokun</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Qingruo</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xiongze</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liao</LastName><ForeName>Nanying</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ji</LastName><ForeName>Yuying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mi</LastName><ForeName>Lan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gan</LastName><ForeName>Yuhong</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Su</LastName><ForeName>Yongyue</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wen</LastName><ForeName>Feng</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Hui</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Transl Vis Sci Technol</MedlineTA><NlmUniqueID>101595919</NlmUniqueID><ISSNLinking>2164-2591</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D020533">Angiogenesis Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C467484">VEGFA protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003930" MajorTopicYN="Y">Diabetic Retinopathy</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008269" MajorTopicYN="Y">Macular Edema</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020533" MajorTopicYN="Y">Angiogenesis Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D042461" MajorTopicYN="Y">Vascular Endothelial Growth Factor A</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001082" MajorTopicYN="Y">Aqueous Humor</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000081362" MajorTopicYN="N">Lipidomics</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000095028" MajorTopicYN="N">Multiomics</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Disclosure: <b>Y. Pang</b>, None; <b>C. Luo</b>, None; <b>Q. Zhang</b>, None; <b>X. Zhang</b>, None; <b>N. Liao</b>, None; <b>Y. Ji</b>, None; <b>L. Mi</b>, None; <b>Y. Gan</b>, None; <b>Y. Su</b>, None; <b>F. Wen</b>, None; <b>H. Chen</b>, None</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>13</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39671223</ArticleId><ArticleId IdType="pmc">PMC11645727</ArticleId><ArticleId IdType="doi">10.1167/tvst.13.12.23</ArticleId><ArticleId IdType="pii">2802358</ArticleId></ArticleIdList><ReferenceList><Reference><Citation> -International Diabetes Federation. IDF diabetes atlas. Updated 2021, https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.</Citation></Reference><Reference><Citation>Cheung N, Mitchell P, Wong TY.. Diabetic retinopathy. Lancet. 2010; 376(9735): 124–136.</Citation><ArticleIdList><ArticleId IdType="pubmed">20580421</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Busch C, Zur D, et al. .. Dexamethasone implant for diabetic macular edema in naive compared with refractory eyes: the international retina group real-life 24-month multicenter study. the IRGREL-DEX study. Retina. 2019; 39: 44–51.</Citation><ArticleIdList><ArticleId IdType="pubmed">29697589</ArticleId></ArticleIdList></Reference><Reference><Citation>Chou H-D, Wu C-H, Chiang W-Y, et al. .. Optical coherence tomography and imaging biomarkers as outcome predictors in diabetic macular edema treated with dexamethasone implant. Sci Rep. 2022; 12: 3872.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8907275</ArticleId><ArticleId IdType="pubmed">35264625</ArticleId></ArticleIdList></Reference><Reference><Citation>Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A.. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology. 2018; 125: 267–275.</Citation><ArticleIdList><ArticleId IdType="pubmed">28935399</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Khoury M, Donato L, Quispe DJ, Negri HP, Melamud JI.. Comparison of subretinal aflibercept vs. ranibizumab vs. bevacizumab in the context of PPV, pneumatic displacement with subretinal air and subretinal tPA in naïve submacular haemorrhage secondary to nAMD. “The Submarine Study”. Eye (Lond). 2024; 38(2): 292–296.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10810790</ArticleId><ArticleId IdType="pubmed">37537388</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, González DP, Loewenstein A, Zur D.. Next-generation anti-VEGF agents for diabetic macular oedema. Eye (Lond). 2022; 36: 273–277.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8807622</ArticleId><ArticleId IdType="pubmed">34373607</ArticleId></ArticleIdList></Reference><Reference><Citation>Bressler NM, Beaulieu WT, Glassman AR, et al. .. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2018; 136: 257–269.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5885906</ArticleId><ArticleId IdType="pubmed">29392288</ArticleId></ArticleIdList></Reference><Reference><Citation>Mello Filho P, Andrade G, Maia A, et al. .. Effectiveness and safety of intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular edema: a real-world experience. Ophthalmologica. 2019; 241: 9–16.</Citation><ArticleIdList><ArticleId IdType="pubmed">30408801</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Zur D, Busch C, Okada M, Loewenstein A.. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018; 55: 541–547.</Citation><ArticleIdList><ArticleId IdType="pubmed">29497837</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, González DP, Loewenstein A, Zur D.. Longer-acting treatments for neovascular age-related macular degeneration-present and future. Eye (Lond). 2021; 35: 1111–1116.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8115504</ArticleId><ArticleId IdType="pubmed">33432165</ArticleId></ArticleIdList></Reference><Reference><Citation>Zur D, Iglicki M, Loewenstein A.. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019; 62(4): 231–236, doi:10.1159/000499540.</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000499540</ArticleId><ArticleId IdType="pubmed">31048580</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Zur D, Fung A, et al. .. TRActional DIabetic reTInal detachment surgery with co-adjuvant intravitreal dexamethasONe implant: the TRADITION STUDY. Acta Diabetol. 2019; 56: 1141–1147.</Citation><ArticleIdList><ArticleId IdType="pubmed">31089929</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson CH, Ivanisevic J, Siuzdak G.. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016; 17: 451–459.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5729912</ArticleId><ArticleId IdType="pubmed">26979502</ArticleId></ArticleIdList></Reference><Reference><Citation>Xuan Q, Ouyang Y, Wang Y, et al. .. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects. Adv Sci. 2020; 7: 2001714.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7675050</ArticleId><ArticleId IdType="pubmed">33240754</ArticleId></ArticleIdList></Reference><Reference><Citation>Tomita Y, Cagnone G, Fu Z, et al. .. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia. 2021; 64: 70–82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7718434</ArticleId><ArticleId IdType="pubmed">33099660</ArticleId></ArticleIdList></Reference><Reference><Citation>Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: a review. Biotechnol Adv. 2021; 49: 107739.</Citation><ArticleIdList><ArticleId IdType="pubmed">33794304</ArticleId></ArticleIdList></Reference><Reference><Citation>Nezu N, Usui Y, Saito A, et al. .. Machine learning approach for intraocular disease prediction based on aqueous humor immune mediator profiles. Ophthalmology. 2021; 128: 1197–1208.</Citation><ArticleIdList><ArticleId IdType="pubmed">33484732</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association: clinical practice recommendations 2002. Diabetes Care. 2002; 25(Suppl 1): S1–S147.</Citation><ArticleIdList><ArticleId IdType="pubmed">11788484</ArticleId></ArticleIdList></Reference><Reference><Citation>Chalam KV, Bressler SB, Edwards AR, et al. .. Retinal thickness in people with diabetes and minimal or no diabetic retinopathy: heidelberg spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2012; 53: 8154–8161.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3522439</ArticleId><ArticleId IdType="pubmed">23132803</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun JK, Beaulieu WT, Melia M, et al. .. Defining “strong” versus “weak” response to antivascular endothelial growth factor treatment for center-involved diabetic macular edema. Retina. 2023; 43: 616–623.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11040570</ArticleId><ArticleId IdType="pubmed">36728692</ArticleId></ArticleIdList></Reference><Reference><Citation>Yousri NA, Suhre K, Yassin E, et al. .. Metabolic and metabo-clinical signatures of type 2 diabetes, obesity, retinopathy, and dyslipidemia. Diabetes. 2022; 71: 184–205.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8914294</ArticleId><ArticleId IdType="pubmed">34732537</ArticleId></ArticleIdList></Reference><Reference><Citation>Schomakers BV, Jillings SL, van Weeghel M, et al. .. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J. 2024; 291: 3317–3330.</Citation><ArticleIdList><ArticleId IdType="pubmed">38245827</ArticleId></ArticleIdList></Reference><Reference><Citation>Hallan S, Afkarian M, Zelnick LR, et al. .. Metabolomics and gene expression analysis reveal down-regulation of the citric acid (TCA) cycle in non-diabetic CKD patients. EBioMedicine. 2017; 26: 68–77.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5832558</ArticleId><ArticleId IdType="pubmed">29128444</ArticleId></ArticleIdList></Reference><Reference><Citation>Zuo J, Lan Y, Hu H, et al. .. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2021; 9(1): e001443.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7888330</ArticleId><ArticleId IdType="pubmed">33593748</ArticleId></ArticleIdList></Reference><Reference><Citation>Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J.. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008; 19: 863–870.</Citation><ArticleIdList><ArticleId IdType="pubmed">18287557</ArticleId></ArticleIdList></Reference><Reference><Citation>Park W, Kim J, Choi S, et al. .. Human plasminogen-derived N-acetyl-Arg-Leu-Tyr-Glu antagonizes VEGFR-2 to prevent blood-retinal barrier breakdown in diabetic mice. Biomed Pharmacother. 2021; 134: 111110.</Citation><ArticleIdList><ArticleId IdType="pubmed">33338749</ArticleId></ArticleIdList></Reference><Reference><Citation>Sumarriva K, Uppal K, Ma C, et al. .. Arginine and carnitine metabolites are altered in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019; 60: 3119–3126.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6645705</ArticleId><ArticleId IdType="pubmed">31323682</ArticleId></ArticleIdList></Reference><Reference><Citation>Peters KS, Rivera E, Warden C, et al. .. Plasma arginine and citrulline are elevated in diabetic retinopathy. Am J Ophthalmol. 2022; 235: 154–162.</Citation><ArticleIdList><ArticleId IdType="pubmed">34587493</ArticleId></ArticleIdList></Reference><Reference><Citation>Abdelrahman AA, Bunch KL, Sandow PV, Cheng PNM, Caldwell RB, Caldwell RW.. Systemic administration of pegylated Arginase-1 attenuates the progression of diabetic retinopathy. Cells. 2022; 11: 2890.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9497170</ArticleId><ArticleId IdType="pubmed">36139465</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR.. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA. 2003; 100: 4843–4848.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC153643</ArticleId><ArticleId IdType="pubmed">12655043</ArticleId></ArticleIdList></Reference><Reference><Citation>Chaykin S. Nicotinamide coenzymes. Annu Rev Biochem. 1967; 36: 149–170.</Citation><ArticleIdList><ArticleId IdType="pubmed">18257718</ArticleId></ArticleIdList></Reference><Reference><Citation>Das A, McGuire PG, Rangasamy S.. Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology. 2015; 122: 1375–1394.</Citation><ArticleIdList><ArticleId IdType="pubmed">25935789</ArticleId></ArticleIdList></Reference><Reference><Citation>Fan C, Ma Q, Xu M, et al. .. Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the NAD-PARP-SIRT axis in rat retinal capillary endothelial cells. Int J Mol Sci. 2019; 20: 4936.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6801419</ArticleId><ArticleId IdType="pubmed">31590397</ArticleId></ArticleIdList></Reference><Reference><Citation>Nahomi RB, Sampathkumar S, Myers AM, et al. .. The absence of indoleamine 2,3-dioxygenase inhibits retinal capillary degeneration in diabetic mice. Invest Ophthalmol Vis Sci. 2018; 59: 2042–2053.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5908388</ArticleId><ArticleId IdType="pubmed">29677366</ArticleId></ArticleIdList></Reference><Reference><Citation>Tovar R, de Ceglia M, Ubaldi M, et al. .. Administration of linoleoylethanolamide reduced weight gain, dyslipidemia, and inflammation associated with high-fat-diet-induced obesity. Nutrients. 2023; 15: 4448.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10609991</ArticleId><ArticleId IdType="pubmed">37892524</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang Y, Dai X, Cao Y, et al. .. The neuroprotective and antidiabetic effects of trigonelline: a review of signaling pathways and molecular mechanisms. Biochimie. 2023; 206: 93–104.</Citation><ArticleIdList><ArticleId IdType="pubmed">36257493</ArticleId></ArticleIdList></Reference><Reference><Citation>Kikuchi K, Saigusa D, Kanemitsu Y, et al. .. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019; 10: 1835.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6478834</ArticleId><ArticleId IdType="pubmed">31015435</ArticleId></ArticleIdList></Reference><Reference><Citation>Munk MR, Somfai GM, de Smet MD, et al. .. The role of intravitreal corticosteroids in the treatment of DME: predictive OCT biomarkers. Int J Mol Sci. 2022; 23: 7485.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9319632</ArticleId><ArticleId IdType="pubmed">35886930</ArticleId></ArticleIdList></Reference><Reference><Citation>Mookiah MRK, Acharya UR, Fujita H, et al. .. Application of different imaging modalities for diagnosis of diabetic macular edema: a review. Comput Biol Med. 2015; 66: 295–315.</Citation><ArticleIdList><ArticleId IdType="pubmed">26453760</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Busch C, Lanzetta P, et al. .. Vitrectomized vs. non-vitrectomized eyes in DEX implant treatment for DMO-Is there any difference? the VITDEX study. Eye. 2023; 37: 280–284.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9873723</ArticleId><ArticleId IdType="pubmed">35043004</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Khoury M, Melamud JI, et al. .. Naïve subretinal haemorrhage due to neovascular age-related macular degeneration. pneumatic displacement, subretinal air, and tissue plasminogen activator: subretinal vs. intravitreal aflibercept-the native study. Eye. 2023; 37: 1659–1664.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10220048</ArticleId><ArticleId IdType="pubmed">36038720</ArticleId></ArticleIdList></Reference><Reference><Citation>Bressler SB, Melia M, Glassman AR, et al. .. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina. 2015; 35: 2516–2528.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4658280</ArticleId><ArticleId IdType="pubmed">26035510</ArticleId></ArticleIdList></Reference><Reference><Citation>Mitsch C, Lammer J, Karst S, Scholda C, Pablik E, Schmidt-Erfurth UM.. Systematic ultrastructural comparison of swept-source and full-depth spectral domain optical coherence tomography imaging of diabetic macular oedema. Br J Ophthalmol. 2020; 104: 868–873.</Citation><ArticleIdList><ArticleId IdType="pubmed">31473626</ArticleId></ArticleIdList></Reference><Reference><Citation>Moon KY, Choi SY, Song JH.. Changes in subfoveal choroidal thickness after intravitreal dexamethasone implant therapy for diabetic macular edema. Retina. 2021; 41: 1283–1292.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8140662</ArticleId><ArticleId IdType="pubmed">33323903</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Loewenstein A, Barak A, Schwartz S, Zur D.. Outer retinal hyperreflective deposits (ORYD): a new OCT feature in naïve diabetic macular oedema after PPV with ILM peeling. Br J Ophthalmol. 2020; 104: 666–671.</Citation><ArticleIdList><ArticleId IdType="pubmed">31391181</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Lavaque A, Ozimek M, et al. .. Biomarkers and predictors for functional and anatomic outcomes for small gauge pars plana vitrectomy and peeling of the internal limiting membrane in naïve diabetic macular edema: the VITAL study. PLoS One. 2018; 13(7): e0200365.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6040739</ArticleId><ArticleId IdType="pubmed">29995929</ArticleId></ArticleIdList></Reference><Reference><Citation>Zur D, Iglicki M, Sala-Puigdollers A, et al. .. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2020; 98(2): e217–e223.</Citation><ArticleIdList><ArticleId IdType="pubmed">31421028</ArticleId></ArticleIdList></Reference><Reference><Citation>Iglicki M, Busch C, Loewenstein A, et al. .. Underdiagnosed optic disk pit maculopathy: spectral domain optical coherence tomography features for accurate diagnosis. Retina. 2019; 39: 2161–2166.</Citation><ArticleIdList><ArticleId IdType="pubmed">30045135</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang F, Luenam P, Ran AR, et al. .. Detection of diabetic retinopathy from ultra-widefield scanning laser ophthalmoscope images: a multicenter deep learning analysis. Ophthalmol Retina. 2021; 5: 1097–1106.</Citation><ArticleIdList><ArticleId IdType="pubmed">33540169</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39670902</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>16</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1853-0605</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>4</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>13</Day></PubDate></JournalIssue><Title>Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina)</Title><ISOAbbreviation>Rev Fac Cien Med Univ Nac Cordoba</ISOAbbreviation></Journal><ArticleTitle>[Impact of educational intervention in a population with type 2 diabetes mellitus].</ArticleTitle><Pagination><StartPage>752</StartPage><EndPage>767</EndPage><MedlinePgn>752-767</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.31053/1853.0605.v81.n4.44579</ELocationID><Abstract><AbstractText Label="INTRODUCTION">The complications associated with the chronic pathophysiological process of type 2 diabetes mellitus (T2DM) have a significant impact on the affected population. The Diabetes Knowledge Questionnaire (DKQ-24) determines the level of knowledge about diabetes, providing health professionals with information to carry out useful educational interventions and prevent both acute and chronic complications of the disease</AbstractText><AbstractText Label="OBJECTIVE">To assess the long-term effect of implementing a hospital-based therapeutic diabetes education model (self-care and knowledge) on patients with type 2 diabetes mellitus (T2DM) in a population from southern Colombia.</AbstractText><AbstractText Label="MATERIALS AND METHODS">Longitudinal study, prospective type, conducted on 60 hospitalized T2DM patients. The DKQ-24 was used for pre-assessment, and after 90 days, it was administered again, along with the collection of biometric variables. The intervention consisted of 5 sessions of therapeutic diabetes education in hospital settings.</AbstractText><AbstractText Label="RESULTS">The average results according to the DKQ-2 questionnaire pre-intervention (10.13±3.28) and post-intervention (20.13±2.77) showed significant differences (p<0.000). The biometric profile indicated significant differences (p<0.000) during pre and post-intervention, except for systolic blood pressure (p=0.275). The Cronbach's alpha for the DKQ 24 had an adequate value of 0.86. The intraclass correlation coefficient (ICC) for average measures was 0.860, considered "good" (p<0.000).</AbstractText><AbstractText Label="CONCLUSIONS">The diabetes educational intervention demonstrated significant changes in basic knowledge levels regarding the disease, glycemic control, and complication prevention, improving the patient's biometric profile and highlighting its importance.</AbstractText><CopyrightInformation>Universidad Nacional de Córdoba</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Tafurt Cardona</LastName><ForeName>Yaliana</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Fundación Universitaria de Navarra.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ramón Collazos</LastName><ForeName>Rober Andrés</ForeName><Initials>RA</Initials><AffiliationInfo><Affiliation>Fundación Universitaria de Navarra.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Murillo Cumber</LastName><ForeName>Camilo Alexander</ForeName><Initials>CA</Initials><AffiliationInfo><Affiliation>Fundación Universitaria de Navarra.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ortiz Tique</LastName><ForeName>Juan Pablo</ForeName><Initials>JP</Initials><AffiliationInfo><Affiliation>Fundación Universitaria de Navarra.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mendoza Perez</LastName><ForeName>Paul</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Universidad Autónoma de Chiapas.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Peralta-Pineda</LastName><ForeName>Edison</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Universidad Autónoma de Chiapas.</Affiliation></AffiliationInfo></Author></AuthorList><Language>spa</Language><PublicationTypeList><PublicationType UI="D004740">English Abstract</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><VernacularTitle>Impacto de la intervención educativa en una población con Diabetes Mellitus tipo 2.</VernacularTitle><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>Argentina</Country><MedlineTA>Rev Fac Cien Med Univ Nac Cordoba</MedlineTA><NlmUniqueID>8303003</NlmUniqueID><ISSNLinking>0014-6722</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010353" MajorTopicYN="Y">Patient Education as Topic</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003105" MajorTopicYN="N" Type="Geographic">Colombia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007722" MajorTopicYN="Y">Health Knowledge, Attitudes, Practice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012648" MajorTopicYN="N">Self Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="spa"><AbstractText Label="INTRODUCCIÓN">Las complicaciones asociadas al proceso fisiopatológico crónico de la diabetes mellitus tipo 2 (DM2) inciden enormemente en la población que la padece. El Diabetes Knowledge Questionnaire (DKQ-24), determina el nivel de conocimientos sobre diabetes, proporcionando información a los profesionales de la salud, para realizar intervenciones educativas útiles y prevenir complicaciones agudas y crónicas de la enfermedad.</AbstractText><AbstractText Label="OBJETIVOS">Evaluar el efecto de la aplicación de un modelo de educación terapéutica diabetológica hospitalario (autocuidado y conocimiento) a largo plazo en pacientes con diabetes mellitus tipo 2 (DM2) en una población del sur de Colombia.  Materiales y métodos: Estudio longitudinal prospectivo, realizado en 60 pacientes con DM2 hospitalizados. Se utilizó el cuestionario DKQ-24 como evaluación previa y posterior a 90 días se aplicó de nuevo junto con la toma de las variables biométricas. Se realizo la intervención en 5 sesiones educativas de educación terapéutica diabetológica en ámbitos hospitalarios.</AbstractText><AbstractText Label="RESULTADOS">Los resultados promedios según el cuestionario DKQ-2 pre (10,13±3,28) y posintervención (20,13±2,77) presentaron diferencias significativas (p<0.000). Según el perfil biométrico indico diferencias significativas (p<0.000) durante la pre y posintervención, excepto para la presión sistólica (p= 0,275). El alfa de Cronbach para el DKQ 24 tuvo un valor adecuado de 0,86. El coeficiente de correlación intraclase (ICC) para las medidas promedio fue de 0,860, considerado "bueno" (p<0.000).</AbstractText><AbstractText Label="CONCLUSIÓN">La intervención educativa diabetológica mostró cambios importantes en los niveles de conocimiento básico sobre la enfermedad, control glicémico y la prevención de complicaciones, mejorando el perfil biométrico en el paciente, evidenciando su importancia.</AbstractText><CopyrightInformation>Universidad Nacional de Córdoba</CopyrightInformation></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">educational intervention</Keyword><Keyword MajorTopicYN="N">knowledge</Keyword><Keyword MajorTopicYN="N">complications</Keyword><Keyword MajorTopicYN="N">bioimpedance</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>10</Hour><Minute>30</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39670902</ArticleId><ArticleId IdType="doi">10.31053/1853.0605.v81.n4.44579</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39670387</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2335-6936</ISSN><JournalIssue CitedMedium="Internet"><Volume>30</Volume><PubDate><Year>2025</Year></PubDate></JournalIssue><Title>Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing</Title><ISOAbbreviation>Pac Symp Biocomput</ISOAbbreviation></Journal><ArticleTitle>Cross-Species Modeling Identifies Gene Signatures in Type 2 Diabetes Mouse Models Predictive of Inflammatory and Estrogen Signaling Pathways Associated with Alzheimer's Disease Outcomes in Humans.</ArticleTitle><Pagination><StartPage>426</StartPage><EndPage>440</EndPage><MedlinePgn>426-440</MedlinePgn></Pagination><Abstract><AbstractText>Alzheimer's disease (AD), the predominant form of dementia, is influenced by several risk factors, including type 2 diabetes (T2D), a metabolic disorder characterized by the dysregulation of blood sugar levels. Despite mouse and human studies reporting this connection between T2D and AD, the mechanism by which T2D contributes to AD pathobiology is not well understood. A challenge in understanding mechanistic links between these conditions is that evidence between mouse and human experimental models must be synthesized, but translating between these systems is difficult due to evolutionary distance, physiological differences, and human heterogeneity. To address this, we employed a computational framework called translatable components regression (TransComp-R) to overcome discrepancies between pre-clinical and clinical studies using omics data. Here, we developed a novel extension of TransComp-R for multi-disease modeling to analyze transcriptomic data from brain samples of mouse models of AD, T2D, and simultaneous occurrence of both disease (ADxT2D) and postmortem human brain data to identify enriched pathways predictive of human AD status. Our TransComp-R model identified inflammatory and estrogen signaling pathways encoded by mouse principal components derived from models of T2D and ADxT2D, but not AD alone, predicted with human AD outcomes. The same mouse PCs predictive of human AD outcomes were able to capture sex-dependent differences in human AD biology, including significant effects unique to female patients, despite the TransComp-R being derived from data from only male mice. We demonstrated that our approach identifies biological pathways of interest at the intersection of the complex etiologies of AD and T2D which may guide future studies into pathogenesis and therapeutic development for patients with T2D-associated AD.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ball</LastName><ForeName>Brendan K</ForeName><Initials>BK</Initials><AffiliationInfo><Affiliation>Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Proctor</LastName><ForeName>Elizabeth A</ForeName><Initials>EA</Initials></Author><Author ValidYN="Y"><LastName>Brubaker</LastName><ForeName>Douglas K</ForeName><Initials>DK</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Pac Symp Biocomput</MedlineTA><NlmUniqueID>9711271</NlmUniqueID><ISSNLinking>2335-6928</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004967">Estrogens</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000544" MajorTopicYN="Y">Alzheimer Disease</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004967" MajorTopicYN="Y">Estrogens</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>5</Hour><Minute>43</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39670387</ArticleId><ArticleId IdType="pii">9789819807024_0031</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39669492</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Association between waist circumference or weight change after smoking cessation and incidence of cardiovascular disease or all-cause death in Korean adults with type 2 diabetes.</ArticleTitle><Pagination><StartPage>1493663</StartPage><MedlinePgn>1493663</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1493663</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1493663</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To investigate the association among smoking cessation, weight or waist circumference change post-cessation, and cardiovascular disease (CVD) or all-cause death among patients with type 2 Diabetes (T2D).</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="UNASSIGNED">This retrospective cohort study included 32,142 patients with T2D classified according to changes in smoking status, post-cessation weight, and waist circumference. Especially for recent or long-term quitters, participants who changed from current to none/former smoker or from non-smoker to former smoker were defined as recent quitters, and those who changed from former to none/former smoker were defined as long-term quitters. CVD or all-cause death risk was evaluated.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 5,845 participants were newly diagnosed with CVD, and 3,723 died during follow-up. After adjusting for potential confounding factors, compared with current smokers, the hazard ratios (HRs) for CVD were 0.94 (95% confidence interval [CI]: 0.85-1.03), 0.82 (95% CI: 0.74-0.90), and 0.82 (95% CI: 0.75-0.90) for recent quitters, long-term quitters, non-smokers, respectively; 0.88 (95% CI: 0.78-0.99), 0.68 (95% CI: 0.57-0.81), and 0.82 (95% CI: 0.67-1.00) for long-term quitters with no waist circumference gain, long-term quitters with waist circumference gain of 0.1-5.0 cm, and long-term quitters with waist circumference gain ≥5.0 cm, respectively; and 0.79 (95% CI: 0.71-0.89), 0.85 (95% CI: 0.74-0.98), and 0.84 (95% CI: 0.60-1.17) for long-term quitters with no weight gain, long-term quitters with weight gain of 2-5 kg, and long-term quitters with weight gain ≥5 kg, respectively. Similar associations were observed for all-cause death.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Patients with T2D should maintain their weight and waist circumference after long-term smoking cessation to prevent CVD. It is more important for them to maintain weight rather than waist circumference to prevent all-cause death.</AbstractText><CopyrightInformation>Copyright © 2024 Lee, Shin and Choi.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Heajung</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shin</LastName><ForeName>Jaeyong</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Preventive Medicine, Yonsei University, Seoul, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Choi</LastName><ForeName>Jae Woo</ForeName><Initials>JW</Initials><AffiliationInfo><Affiliation>Health Insurance Research Institute, National Health Insurance Service, Wonju, Republic of Korea.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016540" MajorTopicYN="Y">Smoking Cessation</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055105" MajorTopicYN="Y">Waist Circumference</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002423" MajorTopicYN="N">Cause of Death</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012907" MajorTopicYN="N">Smoking</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">cardiovascular disease</Keyword><Keyword MajorTopicYN="N">mortality</Keyword><Keyword MajorTopicYN="N">smoking cessation</Keyword><Keyword MajorTopicYN="N">waist change</Keyword><Keyword MajorTopicYN="N">weight change</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>4</Hour><Minute>57</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39669492</ArticleId><ArticleId IdType="pmc">PMC11634621</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1493663</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Abraham WT. Preventing cardiovascular events in patients with diabetes mellitus. Am J Med. (2004) 116:39–46. doi: 10.1016/j.amjmed.2003.10.019</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjmed.2003.10.019</ArticleId><ArticleId IdType="pubmed">15019862</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. (2022) 21:74. doi: 10.1186/s12933-022-01516-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-022-01516-6</ArticleId><ArticleId IdType="pmc">PMC9107726</ArticleId><ArticleId IdType="pubmed">35568946</ArticleId></ArticleIdList></Reference><Reference><Citation>Unachukwu C, Ofori S. Diabetes mellitus and cardiovascular risk. Internet J Endocrinol. (2012) 7:1–10. doi: 10.5580/2b1d</Citation><ArticleIdList><ArticleId IdType="doi">10.5580/2b1d</ArticleId></ArticleIdList></Reference><Reference><Citation>Lorber D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes. (2014) 7:169–83. doi: 10.2147/dmso.S61438</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/dmso.S61438</ArticleId><ArticleId IdType="pmc">PMC4043722</ArticleId><ArticleId IdType="pubmed">24920930</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu G, Li Y, Hu Y, Zong G, Li S, Rimm EB, et al. . Influence of lifestyle on incident cardiovascular disease and mortality in patients with diabetes mellitus. J Am Coll Cardiol. (2018) 71:2867–76. doi: 10.1016/j.jacc.2018.04.027</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2018.04.027</ArticleId><ArticleId IdType="pmc">PMC6052788</ArticleId><ArticleId IdType="pubmed">29929608</ArticleId></ArticleIdList></Reference><Reference><Citation>Davidson MH. Cardiovascular risk factors in a patient with diabetes mellitus and coronary artery disease: therapeutic approaches to improve outcomes: perspectives of a preventive cardiologist. Am J Cardiol. (2012) 110:43b–9b. doi: 10.1016/j.amjcard.2012.08.033</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2012.08.033</ArticleId><ArticleId IdType="pubmed">23062566</ArticleId></ArticleIdList></Reference><Reference><Citation>Qin R, Chen T, Lou Q, Yu D. Excess risk of mortality and cardiovascular events associated with smoking among patients with diabetes: meta-analysis of observational prospective studies. Int J Cardiol. (2013) 167:342–50. doi: 10.1016/j.ijcard.2011.12.100</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2011.12.100</ArticleId><ArticleId IdType="pubmed">22251416</ArticleId></ArticleIdList></Reference><Reference><Citation>Blomster JI, Woodward M, Zoungas S, Hillis GS, Harrap S, Neal B, et al. . The harms of smoking and benefits of smoking cessation in women compared with men with type 2 diabetes: an observational analysis of the ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron modified release Controlled Evaluation) trial. BMJ Open. (2016) 6:e009668. doi: 10.1136/bmjopen-2015-009668</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2015-009668</ArticleId><ArticleId IdType="pmc">PMC4716176</ArticleId><ArticleId IdType="pubmed">26747037</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan EY, Fong DY, Fung CS, Lam CL. Incidence and predictors for cardiovascular disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study. J Diabetes Complications. (2016) 30:444–50. doi: 10.1016/j.jdiacomp.2015.12.010</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2015.12.010</ArticleId><ArticleId IdType="pubmed">26774791</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Delaimy WK, Manson JE, Solomon CG, Kawachi I, Stampfer MJ, Willett WC, et al. . Smoking and risk of coronary heart disease among women with type 2 diabetes mellitus. Arch Intern Med. (2002) 162:273–9. doi: 10.1001/archinte.162.3.273</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinte.162.3.273</ArticleId><ArticleId IdType="pubmed">11822919</ArticleId></ArticleIdList></Reference><Reference><Citation>Nilsson PM, Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Fagard R, et al. . Smoking as an independent risk factor for myocardial infarction or stroke in type 2 diabetes: a report from the Swedish National Diabetes Register. Eur J Cardiovasc Prev Rehabil. (2009) 16:506–12. doi: 10.1097/HJR.0b013e32832ccc50</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/HJR.0b013e32832ccc50</ArticleId><ArticleId IdType="pubmed">19561510</ArticleId></ArticleIdList></Reference><Reference><Citation>Ding N, Sang Y, Chen J, Ballew SH, Kalbaugh CA, Salameh MJ, et al. . Cigarette smoking, smoking cessation, and long-term risk of 3 major atherosclerotic diseases. J Am Coll Cardiol. (2019) 74:498–507. doi: 10.1016/j.jacc.2019.05.049</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2019.05.049</ArticleId><ArticleId IdType="pmc">PMC6662625</ArticleId><ArticleId IdType="pubmed">31345423</ArticleId></ArticleIdList></Reference><Reference><Citation>Clair C, Rigotti NA, Porneala B, Fox CS, D’Agostino RB, Pencina MJ, et al. . Association of smoking cessation and weight change with cardiovascular disease among adults with and without diabetes. Jama. (2013) 309:1014–21. doi: 10.1001/jama.2013.1644</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2013.1644</ArticleId><ArticleId IdType="pmc">PMC3791107</ArticleId><ArticleId IdType="pubmed">23483176</ArticleId></ArticleIdList></Reference><Reference><Citation>Barengo NC, Teuschl Y, Moltchanov V, Laatikainen T, Jousilahti P, Tuomilehto J. Coronary heart disease incidence and mortality, and all-cause mortality among diabetic and non-diabetic people according to their smoking behavior in Finland. Tob Induc Dis. (2017) 15:12. doi: 10.1186/s12971-017-0113-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12971-017-0113-3</ArticleId><ArticleId IdType="pmc">PMC5288994</ArticleId><ArticleId IdType="pubmed">28184182</ArticleId></ArticleIdList></Reference><Reference><Citation>Joseph JJ, Deedwania P, Acharya T, Aguilar D, Bhatt DL, Chyun DA, et al. . Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: A scientific statement from the American Heart Association. Circulation. (2022) 145:e722–e59. doi: 10.1161/cir.0000000000001040</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/cir.0000000000001040</ArticleId><ArticleId IdType="pubmed">35000404</ArticleId></ArticleIdList></Reference><Reference><Citation>Bush T, Lovejoy JC, Deprey M, Carpenter KM. The effect of tobacco cessation on weight gain, obesity, and diabetes risk. Obes (Silver Spring). (2016) 24:1834–41. doi: 10.1002/oby.21582</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.21582</ArticleId><ArticleId IdType="pmc">PMC5004778</ArticleId><ArticleId IdType="pubmed">27569117</ArticleId></ArticleIdList></Reference><Reference><Citation>Pisinger C, Jorgensen T. Waist circumference and weight following smoking cessation in a general population: the Inter99 study. Prev Med. (2007) 44:290–5. doi: 10.1016/j.ypmed.2006.11.015</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ypmed.2006.11.015</ArticleId><ArticleId IdType="pubmed">17222450</ArticleId></ArticleIdList></Reference><Reference><Citation>Koh-Banerjee P, Chu NF, Spiegelman D, Rosner B, Colditz G, Willett W, et al. . Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16 587 US men. Am J Clin Nutr. (2003) 78:719–27. doi: 10.1093/ajcn/78.4.719</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ajcn/78.4.719</ArticleId><ArticleId IdType="pubmed">14522729</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu T, Yang Z, Li MD. Pharmacological effects and regulatory mechanisms of tobacco smoking effects on food intake and weight control. J Neuroimmune Pharmacol. (2018) 13:453–66. doi: 10.1007/s11481-018-9800-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11481-018-9800-y</ArticleId><ArticleId IdType="pubmed">30054897</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu G, Hu Y, Zong G, Pan A, Manson JE, Rexrode KM, et al. . Smoking cessation and weight change in relation to cardiovascular disease incidence and mortality in people with type 2 diabetes: a population-based cohort study. Lancet Diabetes Endocrinol. (2020) 8:125–33. doi: 10.1016/s2213-8587(19)30413-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2213-8587(19)30413-9</ArticleId><ArticleId IdType="pmc">PMC6986932</ArticleId><ArticleId IdType="pubmed">31924561</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo J, Rossouw J, Margolis KL. Smoking cessation, weight change, and coronary heart disease among postmenopausal women with and without diabetes. Jama. (2013) 310:94–6. doi: 10.1001/jama.2013.6871</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2013.6871</ArticleId><ArticleId IdType="pmc">PMC4903171</ArticleId><ArticleId IdType="pubmed">23821094</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian J, Venn A, Otahal P, Gall S. The association between quitting smoking and weight gain: a systemic review and meta-analysis of prospective cohort studies. Obes Rev. (2016) 17:1014. doi: 10.1111/obr.12448</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/obr.12448</ArticleId><ArticleId IdType="pubmed">27612637</ArticleId></ArticleIdList></Reference><Reference><Citation>Kos K. Cardiometabolic morbidity and mortality with smoking cessation, review of recommendations for people with diabetes and obesity. Curr Diabetes Rep. (2020) 20:82. doi: 10.1007/s11892-020-01352-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11892-020-01352-6</ArticleId><ArticleId IdType="pmc">PMC7722253</ArticleId><ArticleId IdType="pubmed">33289870</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi JW, Kim TH, Han E. Smoking cessation, weight change, diabetes, and hypertension in Korean adults. Am J Prev Med. (2021) 60:205–12. doi: 10.1016/j.amepre.2020.08.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2020.08.024</ArticleId><ArticleId IdType="pubmed">33153837</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim K, Park SM, Lee K. Weight gain after smoking cessation does not modify its protective effect on myocardial infarction and stroke: evidence from a cohort study of men. Eur Heart J. (2018) 39:1523–31. doi: 10.1093/eurheartj/ehx761</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehx761</ArticleId><ArticleId IdType="pmc">PMC5930246</ArticleId><ArticleId IdType="pubmed">29324990</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort profile: the national health insurance service-national sample cohort (NHIS-NSC), South Korea. Int J Epidemiol. (2017) 46:e15. doi: 10.1093/ije/dyv319</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyv319</ArticleId><ArticleId IdType="pubmed">26822938</ArticleId></ArticleIdList></Reference><Reference><Citation>Park I. How to use health insurance data effectively for healthcare research. J Health Info Stat. (2022) 47:S31–S9. doi: 10.21032/jhis.2022.47.S2.S31</Citation><ArticleIdList><ArticleId IdType="doi">10.21032/jhis.2022.47.S2.S31</ArticleId></ArticleIdList></Reference><Reference><Citation>Park S, Jung SY, Kwon JW. Sex differences in the association between asthma incidence and modifiable risk factors in Korean middle-aged and older adults: NHIS-HEALS 10-year cohort. BMC Pulm Med. (2019) 19:248. doi: 10.1186/s12890-019-1023-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12890-019-1023-3</ArticleId><ArticleId IdType="pmc">PMC6916451</ArticleId><ArticleId IdType="pubmed">31842862</ArticleId></ArticleIdList></Reference><Reference><Citation>Ko SH, Han K, Lee YH, Noh J, Park CY, Kim DJ, et al. . Past and current status of adult type 2 diabetes mellitus management in Korea: A national health insurance service database analysis. Diabetes Metab J. (2018) 42:93–100. doi: 10.4093/dmj.2018.42.2.93</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2018.42.2.93</ArticleId><ArticleId IdType="pmc">PMC5911525</ArticleId><ArticleId IdType="pubmed">29676539</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryu KJ, Park H, Kim MS, Jeong HG, Kim T. Risk of cardiocerebrovascular diseases is increased in Korean women with polycystic ovary syndrome: a nationwide cohort study. Sci Rep. (2024) 14:1055. doi: 10.1038/s41598-023-50650-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-023-50650-y</ArticleId><ArticleId IdType="pmc">PMC10784481</ArticleId><ArticleId IdType="pubmed">38212642</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JE, Huh Y, Lee JH, Kim S, Kim HJ, Park HJ, et al. . Association of body mass index and waist circumference with osteoarthritis among Korean adults: A nationwide study. Korean J Fam Med. (2024) 45:157–63. doi: 10.4082/kjfm.23.0178</Citation><ArticleIdList><ArticleId IdType="doi">10.4082/kjfm.23.0178</ArticleId><ArticleId IdType="pmc">PMC11116124</ArticleId><ArticleId IdType="pubmed">38282438</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee HJ, Choi JW. Association between waist circumference change after smoking cessation and incidence of hypertension in Korean adults. Public Health. (2024) 229:73–9. doi: 10.1016/j.puhe.2024.01.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.puhe.2024.01.028</ArticleId><ArticleId IdType="pubmed">38402666</ArticleId></ArticleIdList></Reference><Reference><Citation>Nam GE, Kim YH, Han K, Jung JH, Park YG, Lee KW, et al. . Obesity fact sheet in Korea, 2018: data focusing on waist circumference and obesity-related comorbidities. J Obes Metab Syndr. (2019) 28:236–45. doi: 10.7570/jomes.2019.28.4.236</Citation><ArticleIdList><ArticleId IdType="doi">10.7570/jomes.2019.28.4.236</ArticleId><ArticleId IdType="pmc">PMC6939699</ArticleId><ArticleId IdType="pubmed">31909366</ArticleId></ArticleIdList></Reference><Reference><Citation>Park B. Changes in weight and waist circumference during menopausal transition and postmenopausal breast cancer risk. Int J Cancer. (2022) 150:1431–8. doi: 10.1002/ijc.33906</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ijc.33906</ArticleId><ArticleId IdType="pubmed">34921731</ArticleId></ArticleIdList></Reference><Reference><Citation>Yoon YS, Oh SW. Optimal waist circumference cutoff values for the diagnosis of abdominal obesity in korean adults. Endocrinol Metab (Seoul). (2014) 29:418–26. doi: 10.3803/EnM.2014.29.4.418</Citation><ArticleIdList><ArticleId IdType="doi">10.3803/EnM.2014.29.4.418</ArticleId><ArticleId IdType="pmc">PMC4285028</ArticleId><ArticleId IdType="pubmed">25559570</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JH, Lee JE, Shim SM, Ha EK, Yon DK, Kim OH, et al. . Cohort profile: National Investigation of Birth Cohort in Korea study 2008 (NICKs-2008). Clin Exp Pediatr. (2021) 64:480–8. doi: 10.3345/cep.2020.01284</Citation><ArticleIdList><ArticleId IdType="doi">10.3345/cep.2020.01284</ArticleId><ArticleId IdType="pmc">PMC8426098</ArticleId><ArticleId IdType="pubmed">33445832</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim EH, Lee H, Shin DW, Yun JM, Shin JH, Lim YK, et al. . Association between Weight Changes after Smoking Cessation and Cardiovascular Disease among the Korean Population. Korean J Fam Med. (2017) 38:122–9. doi: 10.4082/kjfm.2017.38.3.122</Citation><ArticleIdList><ArticleId IdType="doi">10.4082/kjfm.2017.38.3.122</ArticleId><ArticleId IdType="pmc">PMC5451445</ArticleId><ArticleId IdType="pubmed">28572887</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamura U, Tanaka T, Okamura T, Kadowaki T, Yamato H, Tanaka H, et al. . Changes in Weight, cardiovascular risk factors and estimated risk of coronary heart disease following smoking cessation in Japanese male workers: HIPOP-OHP study. J Atheroscler Thromb. (2010) 17:12–20. doi: 10.5551/jat.1800</Citation><ArticleIdList><ArticleId IdType="doi">10.5551/jat.1800</ArticleId><ArticleId IdType="pubmed">20081325</ArticleId></ArticleIdList></Reference><Reference><Citation> -Shuji I, Paul Z. The Asia-Pacific perspective: redefining obesity and its treatment. World Health Organization-Regional Office for the Western Pacific; (2000). Available online at: https://iris.who.int/handle/10665/206936.</Citation></Reference><Reference><Citation>Choi Y, Choi JW. Changes in the frequency of moderate-to-vigorous physical activity and subsequent risk of all-cause and cardiovascular disease mortality. Int J Environ Res Public Health. (2022) 19:504. doi: 10.3390/ijerph19010504</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph19010504</ArticleId><ArticleId IdType="pmc">PMC8744773</ArticleId><ArticleId IdType="pubmed">35010764</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim HS, Shin AM, Kim MK, Kim YN. Comorbidity study on type 2 diabetes mellitus using data mining. Korean J Intern Med. (2012) 27:197–202. doi: 10.3904/kjim.2012.27.2.197</Citation><ArticleIdList><ArticleId IdType="doi">10.3904/kjim.2012.27.2.197</ArticleId><ArticleId IdType="pmc">PMC3372804</ArticleId><ArticleId IdType="pubmed">22707892</ArticleId></ArticleIdList></Reference><Reference><Citation>Cox DR. Regression models and life-tables. J R Stat Society: Ser B (Methodological). (1972) 34:187–202. doi: 10.1111/j.2517-6161.1972.tb00899.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.2517-6161.1972.tb00899.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan A, Wang Y, Talaei M, Hu FB. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: A meta-analysis and systematic review. Circulation. (2015) 132:1795–804. doi: 10.1161/circulationaha.115.017926</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/circulationaha.115.017926</ArticleId><ArticleId IdType="pmc">PMC4643392</ArticleId><ArticleId IdType="pubmed">26311724</ArticleId></ArticleIdList></Reference><Reference><Citation>Sahle BW, Chen W, Rawal LB, Renzaho AMN. Weight gain after smoking cessation and risk of major chronic diseases and mortality. JAMA Netw Open. (2021) 4:e217044. doi: 10.1001/jamanetworkopen.2021.7044</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamanetworkopen.2021.7044</ArticleId><ArticleId IdType="pmc">PMC8080225</ArticleId><ArticleId IdType="pubmed">33904915</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho MH, Lee K, Park SM, Chang J, Choi S, Kim K, et al. . Effects of smoking habit change on all-cause mortality and cardiovascular diseases among patients with newly diagnosed diabetes in Korea. Sci Rep. (2018) 8:5316. doi: 10.1038/s41598-018-23729-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-018-23729-0</ArticleId><ArticleId IdType="pmc">PMC5871763</ArticleId><ArticleId IdType="pubmed">29593229</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu Y, Zong G, Liu G, Wang M, Rosner B, Pan A, et al. . Smoking cessation, weight change, type 2 diabetes, and mortality. N Engl J Med. (2018) 379:623–32. doi: 10.1056/NEJMoa1803626</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa1803626</ArticleId><ArticleId IdType="pmc">PMC6165582</ArticleId><ArticleId IdType="pubmed">30110591</ArticleId></ArticleIdList></Reference><Reference><Citation>Ren Z, Sun W, Wang S, Ying J, Liu W, Fan L, et al. . Status and transition of normal-weight central obesity and the risk of cardiovascular diseases: A population-based cohort study in China. Nutr Metab Cardiovasc Dis. (2022) 32:2794–802. doi: 10.1016/j.numecd.2022.07.023</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2022.07.023</ArticleId><ArticleId IdType="pubmed">36319576</ArticleId></ArticleIdList></Reference><Reference><Citation>Yun JE, Kimm H, Choi YJ, Jee SH, Huh KB. Smoking is associated with abdominal obesity, not overall obesity, in men with type 2 diabetes. J Prev Med Public Health. (2012) 45:316–22. doi: 10.3961/jpmph.2012.45.5.316</Citation><ArticleIdList><ArticleId IdType="doi">10.3961/jpmph.2012.45.5.316</ArticleId><ArticleId IdType="pmc">PMC3469814</ArticleId><ArticleId IdType="pubmed">23091657</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim Y, Jeong SM, Yoo B, Oh B, Kang HC. Associations of smoking with overall obesity, and central obesity: a cross-sectional study from the Korea National Health and Nutrition Examination Survey (2010-2013). Epidemiol Health. (2016) 38:e2016020. doi: 10.4178/epih.e2016020</Citation><ArticleIdList><ArticleId IdType="doi">10.4178/epih.e2016020</ArticleId><ArticleId IdType="pmc">PMC4967909</ArticleId><ArticleId IdType="pubmed">27221478</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JH, Shim KW, Yoon YS, Lee SY, Kim SS, Oh SW. Cigarette smoking increases abdominal and visceral obesity but not overall fatness: an observational study. PloS One. (2012) 7:e45815. doi: 10.1371/journal.pone.0045815</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0045815</ArticleId><ArticleId IdType="pmc">PMC3454366</ArticleId><ArticleId IdType="pubmed">23029258</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39668628</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2051-817X</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>23</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Physiological reports</Title><ISOAbbreviation>Physiol Rep</ISOAbbreviation></Journal><ArticleTitle>Health implications of racial differences in serum growth differentiation factor levels among men with obesity.</ArticleTitle><Pagination><StartPage>e70124</StartPage><MedlinePgn>e70124</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70124</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.14814/phy2.70124</ELocationID><Abstract><AbstractText>Growth differentiation factor (GDF15) has been considered a biomarker and recently a hormonal driver for diseases in different populations. However, the role of GDF15 as a biomarker of health outcomes in obese men from different racial/ethnic background has not been evaluated. The objective of this study was to investigate the racial/ethnic differences on the relationship between GDF15 and markers of glucometabolic status, hormonal profile, body composition and bone mineral density (BMD) in obese men. One hundred ninety-three obese men from diverse racial/ethnic backgrounds were enrolled. BMD and body composition were measured by dual energy X-ray absorptiometry. Serum GDF15, osteocalcin, C-terminal telopeptide, sclerostin, adiponectin, leptin, estradiol, testosterone, follicle-stimulating hormone, luteinizing hormone, 25-hydroxyvitamin D, lipid profile, and hemoglobin A1C (A1C) were measured. Non-African Americans (NAA) had significantly higher GDF15 level than African Americans (AA). Level was also higher in patients with type 2 diabetes (T2DM). In both the groups GDF15 correlated with A1C and lean mass. However. GDF15 correlated  with body fat, LDL total cholesterol and femoral neck BMD only in NAA and with appendicular lean mass only in AA. Ethnicity, total cholesterol and T2DM were found to be independent predictors of GDF15. We conclude that GDF15 may influence glucometabolic status, body composition and bone parameters which may affect cardiovascular risk and osteoporosis  between races.</AbstractText><CopyrightInformation>Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bathina</LastName><ForeName>Siresha</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-1092-5600</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lopez</LastName><ForeName>Virginia Fuenmayor</ForeName><Initials>VF</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Prado</LastName><ForeName>Mia</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ballato</LastName><ForeName>Elliot</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Colleluori</LastName><ForeName>Georgia</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tetlay</LastName><ForeName>Maryam</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Villareal</LastName><ForeName>Dennis Tan</ForeName><Initials>DT</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mediwala</LastName><ForeName>Sanjay</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Rui</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qualls</LastName><ForeName>Clifford</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Armamento-Villareal</LastName><ForeName>Reina</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, Texas, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine, Michael E. De Bakey Veterans Affairs (VA) Medical Center, Houston, Texas, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 HD093047</GrantID><Acronym>HD</Acronym><Agency>NICHD NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>HD093047</GrantID><Acronym>GF</Acronym><Agency>NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Physiol Rep</MedlineTA><NlmUniqueID>101607800</NlmUniqueID><ISSNLinking>2051-817X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D055436">Growth Differentiation Factor 15</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C526140">GDF15 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000208" MajorTopicYN="N">ethnology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015519" MajorTopicYN="Y">Bone Density</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055436" MajorTopicYN="Y">Growth Differentiation Factor 15</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001823" MajorTopicYN="N">Body Composition</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000208" MajorTopicYN="N">ethnology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001741" MajorTopicYN="N">Black or African American</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095223" MajorTopicYN="N">White</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">A1C</Keyword><Keyword MajorTopicYN="N">Cardiovascular risk</Keyword><Keyword MajorTopicYN="N">Cholesterol</Keyword><Keyword MajorTopicYN="N">GDF15</Keyword><Keyword MajorTopicYN="N">Obesity</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>11</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>2</Hour><Minute>12</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>12</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39668628</ArticleId><ArticleId IdType="pmc">PMC11638490</ArticleId><ArticleId IdType="doi">10.14814/phy2.70124</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Adela, R. , & Banerjee, S. K. (2015). GDF‐15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective. Journal Diabetes Research, 2015, 490842.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4530250</ArticleId><ArticleId IdType="pubmed">26273671</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguirre, L. E. , Colleluori, G. , Fowler, K. E. , Jan, I. Z. , Villareal, K. , Qualls, C. , Robbins, D. , Villareal, D. T. , & Armamento‐Villareal, R. (2015). High aromatase activity in hypogonadal men is associated with higher spine bone mineral density, increased truncal fat and reduced lean mass. European Journal of Endocrinology, 173, 167–174.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8077967</ArticleId><ArticleId IdType="pubmed">26142101</ArticleId></ArticleIdList></Reference><Reference><Citation>Asrih, M. , Wei, S. , Nguyen, T. T. , Yi, H. S. , Ryu, D. , & Gariani, K. (2023). Overview of growth differentiation factor 15 in metabolic syndrome. Journal of Cellular and Molecular Medicine, 27, 1157–1167.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10148061</ArticleId><ArticleId IdType="pubmed">36992609</ArticleId></ArticleIdList></Reference><Reference><Citation>Assadi, A. , Zahabi, A. , & Hart, R. A. (2020). GDF15, an update of the physiological and pathological roles it plays: a review. Pflügers Archiv, 472, 1535–1546.</Citation><ArticleIdList><ArticleId IdType="pubmed">32936319</ArticleId></ArticleIdList></Reference><Reference><Citation>Barma, M. , Khan, F. , Price, R. J. G. , Donnan, P. T. , Messow, C. M. , Ford, I. , Mcconnachie, A. , Struthers, A. D. , Mcmurdo, M. E. T. , & Witham, M. D. (2017). Association between GDF‐15 levels and changes in vascular and physical function in older patients with hypertension. Aging Clinical and Experimental Research, 29, 1055–1059.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5589783</ArticleId><ArticleId IdType="pubmed">27734214</ArticleId></ArticleIdList></Reference><Reference><Citation>Baumgartner, R. N. , Waters, D. L. , Morley, J. E. , Patrick, P. , Montoya, G. D. , & Garry, P. J. (1999). Age‐related changes in sex hormones affect the sex difference in serum leptin independently of changes in body fat. Metabolism, 48, 378–384.</Citation><ArticleIdList><ArticleId IdType="pubmed">10094117</ArticleId></ArticleIdList></Reference><Reference><Citation>Berezin, A. E. (2016). Diabetes mellitus related biomarker: The predictive role of growth‐differentiation factor‐15. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 10, S154–S157.</Citation><ArticleIdList><ArticleId IdType="pubmed">26482961</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhasin, S. , Brito, J. P. , Cunningham, G. R. , Hayes, F. J. , Hodis, H. N. , Matsumoto, A. M. , Snyder, P. J. , Swerdloff, R. S. , Wu, F. C. , & Yialamas, M. A. (2018). Testosterone therapy in men with hypogonadism: An Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism, 103, 1715–1744.</Citation><ArticleIdList><ArticleId IdType="pubmed">29562364</ArticleId></ArticleIdList></Reference><Reference><Citation>Blüher, M. (2019). Obesity: Global epidemiology and pathogenesis. Nature Reviews. Endocrinology, 15, 288–298.</Citation><ArticleIdList><ArticleId IdType="pubmed">30814686</ArticleId></ArticleIdList></Reference><Reference><Citation>Borner, T. , Shaulson, E. D. , Ghidewon, M. Y. , Barnett, A. B. , Horn, C. C. , Doyle, R. P. , Grill, H. J. , Hayes, M. R. , & De Jonghe, B. C. (2020). GDF15 Induces Anorexia through Nausea and Emesis. Cell Metabolism, 31, 351–362.e5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7161938</ArticleId><ArticleId IdType="pubmed">31928886</ArticleId></ArticleIdList></Reference><Reference><Citation>Breit, S. N. , Brown, D. A. , & Tsai, V. W. (2021). The GDF15‐GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annual Review of Physiology, 83, 127–151.</Citation><ArticleIdList><ArticleId IdType="pubmed">33228454</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang, S. H. , Yu, Y. C. , Carlsson, N. P. , Liu, X. , & Colditz, G. A. (2017). Racial disparity in life expectancies and life years lost associated with multiple obesity‐related chronic conditions. Obesity (Silver Spring), 25, 950–957.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5404943</ArticleId><ArticleId IdType="pubmed">28329429</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, R. , & Armamento‐Villareal, R. (2024). Obesity and skeletal fragility. The Journal of Clinical Endocrinology and Metabolism, 109, e466–e477.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10795939</ArticleId><ArticleId IdType="pubmed">37440585</ArticleId></ArticleIdList></Reference><Reference><Citation>Chiariello, A. , Conte, G. , Rossetti, L. , Trofarello, L. , Salvioli, S. , & Conte, M. (2024). Different roles of circulating and intramuscular GDF15 as markers of skeletal muscle health. Frontiers in Endocrinology, 15, 1404047.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11130406</ArticleId><ArticleId IdType="pubmed">38808117</ArticleId></ArticleIdList></Reference><Reference><Citation>Cimino, I. , Kim, H. , Tung, Y. C. L. , Pedersen, K. , Rimmington, D. , Tadross, J. A. , Kohnke, S. N. , Neves‐Costa, A. , Barros, A. , Joaquim, S. , Bennett, D. , Melvin, A. , Lockhart, S. M. , Rostron, A. J. , Scott, J. , Liu, H. , Burling, K. , Barker, P. , Clatworthy, M. R. , … O'rahilly, S. (2021). Activation of the hypothalamic‐pituitary‐adrenal axis by exogenous and endogenous GDF15. Proceedings of the National Academy of Sciences of the United States of America, 118, e2106868118.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8271778</ArticleId><ArticleId IdType="pubmed">34187898</ArticleId></ArticleIdList></Reference><Reference><Citation>Colleluori, G. , Aguirre, L. , Dorin, R. , Robbins, D. , Blevins, D. , Barnouin, Y. , Chen, R. , Qualls, C. , Villareal, D. T. , & Armamento‐Villareal, R. (2017). Hypogonadal men with type 2 diabetes mellitus have smaller bone size and lower bone turnover. Bone, 99, 14–19.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8312374</ArticleId><ArticleId IdType="pubmed">28323146</ArticleId></ArticleIdList></Reference><Reference><Citation>Colleluori, G. , Chen, R. , Turin, C. G. , Vigevano, F. , Qualls, C. , Johnson, B. , Mediwala, S. , Villareal, D. T. , & Armamento‐Villareal, R. (2020). Aromatase inhibitors plus weight loss improves the hormonal profile of obese hypogonadal men without causing major side effects. Frontiers in Endocrinology, 11, 277.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7243137</ArticleId><ArticleId IdType="pubmed">32499757</ArticleId></ArticleIdList></Reference><Reference><Citation>Conway, J. M. , Yanovski, S. Z. , Avila, N. A. , & Hubbard, V. S. (1995). Visceral adipose tissue differences in black and white women. The American Journal of Clinical Nutrition, 61, 765–771.</Citation><ArticleIdList><ArticleId IdType="pubmed">7702017</ArticleId></ArticleIdList></Reference><Reference><Citation>Daniels, L. B. , Clopton, P. , Laughlin, G. A. , Maisel, A. S. , & Barrett‐Connor, E. (2011). Growth‐differentiation factor‐15 is a robust, independent predictor of 11‐year mortality risk in community‐dwelling older adults: The rancho Bernardo study. Circulation, 123, 2101–2110.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3107013</ArticleId><ArticleId IdType="pubmed">21536998</ArticleId></ArticleIdList></Reference><Reference><Citation>Doshi, R. P. , Aseltine, R. H., Jr. , Sabina, A. B. , & Graham, G. N. (2017). Racial and ethnic disparities in preventable hospitalizations for chronic disease: Prevalence and risk factors. Journal of Racial and Ethnic Health Disparities, 4, 1100–1106.</Citation><ArticleIdList><ArticleId IdType="pubmed">27924622</ArticleId></ArticleIdList></Reference><Reference><Citation>Dostálová, I. , Roubícek, T. , Bártlová, M. , Mráz, M. , Lacinová, Z. , Haluzíková, D. , Kaválková, P. , Matoulek, M. , Kasalicky, M. , & Haluzík, M. (2009). Increased serum concentrations of macrophage inhibitory cytokine‐1 in patients with obesity and type 2 diabetes mellitus: The influence of very low calorie diet. European Journal of Endocrinology, 161, 397–404.</Citation><ArticleIdList><ArticleId IdType="pubmed">19515791</ArticleId></ArticleIdList></Reference><Reference><Citation>Echouffo‐Tcheugui, J. B. , Daya, N. , Matsushita, K. , Wang, D. , Ndumele, C. E. , AL Rifai, M. , Hoogeveen, R. C. , Ballantyne, C. M. , & Selvin, E. (2021). Growth differentiation factor (GDF)‐15 and cardiometabolic outcomes among older adults: The atherosclerosis risk in communities study. Clinical Chemistry, 67, 653–661.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8011530</ArticleId><ArticleId IdType="pubmed">33582779</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferraro, K. F. , Kemp, B. R. , & Williams, M. M. (2017). Diverse aging and health inequality by race and ethnicity. Innovation in Aging, 1, igx002.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5954610</ArticleId><ArticleId IdType="pubmed">29795805</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujita, Y. , Taniguchi, Y. , Shinkai, S. , Tanaka, M. , & Ito, M. (2016). Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age‐related disorders. Geriatrics & Gerontology International, 16(Suppl 1), 17–29.</Citation><ArticleIdList><ArticleId IdType="pubmed">27018280</ArticleId></ArticleIdList></Reference><Reference><Citation>Gates, M. , Pillay, J. , Nuspl, M. , Wingert, A. , Vandermeer, B. , & Hartling, L. (2023). Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: Systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools. Systematic Reviews, 12, 51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10029308</ArticleId><ArticleId IdType="pubmed">36945065</ArticleId></ArticleIdList></Reference><Reference><Citation>He, X. , Su, J. , Ma, X. , Lu, W. , Zhu, W. , Wang, Y. , Bao, Y. , & Zhou, J. (2020). The association between serum growth differentiation factor 15 levels and lower extremity atherosclerotic disease is independent of body mass index in type 2 diabetes. Cardiovascular Diabetology, 19, 40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7103065</ArticleId><ArticleId IdType="pubmed">32222153</ArticleId></ArticleIdList></Reference><Reference><Citation>Jemal, A. , Thun, M. J. , Ward, E. E. , Henley, S. J. , Cokkinides, V. E. , & Murray, T. E. (2008). Mortality from leading causes by education and race in the United States, 2001. Am J Prev Med, 34, 1–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">18083444</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung, E. S. , Choi, E. K. , Park, B. H. , & Chae, S. W. (2020). Serum follicle‐stimulating hormone levels are associated with cardiometabolic risk factors in post‐menopausal Korean women. Journal of Clinical Medicine, 9, 1161.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7230188</ArticleId><ArticleId IdType="pubmed">32325717</ArticleId></ArticleIdList></Reference><Reference><Citation>Kanaley, J. A. , Giannopoulou, I. , Tillapaugh‐Fay, G. , Nappi, J. S. , & Ploutz‐Snyder, L. L. (2003). Racial differences in subcutaneous and visceral fat distribution in postmenopausal black and white women. Metabolism, 52, 186–191.</Citation><ArticleIdList><ArticleId IdType="pubmed">12601630</ArticleId></ArticleIdList></Reference><Reference><Citation>Kempf, T. , Von Haehling, S. , Peter, T. , Allhoff, T. , Cicoira, M. , Doehner, W. , Ponikowski, P. , Filippatos, G. S. , Rozentryt, P. , Drexler, H. , Anker, S. D. , & Wollert, K. C. (2007b). Prognostic utility of growth differentiation factor‐15 in patients with chronic heart failure. Journal of the American College of Cardiology, 50, 1054–1060.</Citation><ArticleIdList><ArticleId IdType="pubmed">17825714</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim, H. , Kim, K. M. , Kang, M. J. , & Lim, S. (2020). Growth differentiation factor‐15 as a biomarker for sarcopenia in aging humans and mice. Experimental Gerontology, 142, 111115.</Citation><ArticleIdList><ArticleId IdType="pubmed">33069782</ArticleId></ArticleIdList></Reference><Reference><Citation>Kington, R. S. , & Smith, J. P. (1997). Socioeconomic status and racial and ethnic differences in functional status associated with chronic diseases. American Journal of Public Health, 87, 805–810.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1381054</ArticleId><ArticleId IdType="pubmed">9184510</ArticleId></ArticleIdList></Reference><Reference><Citation>Klein, S. , Gastaldelli, A. , Yki‐Jarvinen, H. , & Scherer, P. E. (2022). Why does obesity cause diabetes? Cell Metabolism, 34, 11–20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8740746</ArticleId><ArticleId IdType="pubmed">34986330</ArticleId></ArticleIdList></Reference><Reference><Citation>Kralisch, S. , Hoffmann, A. , Estrada‐Kunz, J. , Stumvoll, M. , Fasshauer, M. , Tönjes, A. , & Miehle, K. (2020). Increased growth differentiation factor 15 in patients with Hypoleptinemia‐associated lipodystrophy. International Journal of Molecular Sciences, 21, 7214.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7582938</ArticleId><ArticleId IdType="pubmed">33003626</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurth, T. , Gaziano, J. M. , Berger, K. , Kase, C. S. , Rexrode, K. M. , Cook, N. R. , Buring, J. E. , & Manson, J. E. (2002). Body mass index and the risk of stroke in men. Archives of Internal Medicine, 162, 2557–2562.</Citation><ArticleIdList><ArticleId IdType="pubmed">12456227</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, S. H. , Lee, J. Y. , Lim, K. H. , Lee, Y. S. , & Koh, J. M. (2022). Associations between plasma growth and differentiation Factor‐15 with aging phenotypes in muscle, adipose tissue, and bone. Calcified Tissue International, 110, 236–243.</Citation><ArticleIdList><ArticleId IdType="pubmed">34499185</ArticleId></ArticleIdList></Reference><Reference><Citation>Leisegang, K. , Henkel, R. , & Agarwal, A. (2019). Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. American Journal of Reproductive Immunology, 82, e13178.</Citation><ArticleIdList><ArticleId IdType="pubmed">31373727</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, M. , Duan, L. , Cai, Y.‐. L. , Li, H.‐. Y. , Hao, B.‐. C. , Chen, J.‐. Q. , & Liu, H.‐. B. (2020a). Growth differentiation factor‐15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovascular Diabetology, 19, 120.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7398317</ArticleId><ArticleId IdType="pubmed">32746821</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, W. , Li, C. , Zhou, X. , Jiang, T. , Guo, L. , & Liu, H. (2020b). Relationship between GDF15 level and bone metabolism in postmenopausal Chinese women. Gynecological Endocrinology, 36, 714–717.</Citation><ArticleIdList><ArticleId IdType="pubmed">32436412</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, J. , Hu, X. , Xie, Z. , Li, J. , Huang, C. , & Huang, Y. (2024). Overview of growth differentiation factor 15 (GDF15) in metabolic diseases. Biomedicine & Pharmacotherapy, 176, 116809.</Citation><ArticleIdList><ArticleId IdType="pubmed">38810400</ArticleId></ArticleIdList></Reference><Reference><Citation>Lind, L. , Wallentin, L. , Kempf, T. , Tapken, H. , Quint, A. , Lindahl, B. , Olofsson, S. , Venge, P. , Larsson, A. , Hulthe, J. , Elmgren, A. , & Wollert, K. C. (2009). Growth‐differentiation factor‐15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the prospective investigation of the vasculature in Uppsala seniors (PIVUS) study. European Heart Journal, 30, 2346–2353.</Citation><ArticleIdList><ArticleId IdType="pubmed">19561023</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling, T. , Zhang, J. , Ding, F. , & Ma, L. (2023). Role of growth differentiation factor 15 in cancer cachexia (Review). Oncology Letters, 26, 462.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10534279</ArticleId><ArticleId IdType="pubmed">37780545</ArticleId></ArticleIdList></Reference><Reference><Citation>Livesey, G. , Taylor, R. , Livesey, H. F. , Buyken, A. E. , Jenkins, D. J. A. , Augustin, L. S. A. , Sievenpiper, J. L. , Barclay, A. W. , Liu, S. , Wolever, T. M. S. , Willett, W. C. , Brighenti, F. , Salas‐Salvadó, J. , Björck, I. , Rizkalla, S. W. , Riccardi, G. , Vecchia, C. L. , Ceriello, A. , Trichopoulou, A. , … Brand‐Miller, J. C. (2019). Dietary glycemic index and load and the risk of type 2 diabetes: A systematic review and updated meta‐analyses of prospective cohort studies. Nutrients, 11, 1280.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6627334</ArticleId><ArticleId IdType="pubmed">31195724</ArticleId></ArticleIdList></Reference><Reference><Citation>Lockhart, S. M. , Saudek, V. , & O'rahilly, S. (2020). GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocrine Reviews, 41.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7299427</ArticleId><ArticleId IdType="pubmed">32310257</ArticleId></ArticleIdList></Reference><Reference><Citation>Lopez‐Neyman, S. M. , Davis, K. , Zohoori, N. , Broughton, K. S. , Moore, C. E. , & Miketinas, D. (2022). Racial disparities and prevalence of cardiovascular disease risk factors, cardiometabolic risk factors, and cardiovascular health metrics among US adults: NHANES 2011–2018. Scientific Reports, 12, 19475.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9663590</ArticleId><ArticleId IdType="pubmed">36376533</ArticleId></ArticleIdList></Reference><Reference><Citation>Lovejoy, J. C. , De La Bretonne, J. A. , Klemperer, M. , & Tulley, R. (1996). Abdominal fat distribution and metabolic risk factors: Effects of race. Metabolism, 45, 1119–1124.</Citation><ArticleIdList><ArticleId IdType="pubmed">8781299</ArticleId></ArticleIdList></Reference><Reference><Citation>Malik, V. S. , Willett, W. C. , & Hu, F. B. (2013). Global obesity: trends, risk factors and policy implications. Nature Reviews. Endocrinology, 9, 13–27.</Citation><ArticleIdList><ArticleId IdType="pubmed">23165161</ArticleId></ArticleIdList></Reference><Reference><Citation>Mattia, L. , Gossiel, F. , Walsh, J. S. , & Eastell, R. (2023). Effect of age and gender on serum growth differentiation factor 15 and its relationship to bone density and bone turnover. Bone Reports, 18, 101676.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10113774</ArticleId><ArticleId IdType="pubmed">37090856</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohamed, O. , Freundlich, R. E. , Dakik, H. K. , Grober, E. D. , Najari, B. , Lipshultz, L. I. , & Khera, M. (2010). The quantitative ADAM questionnaire: A new tool in quantifying the severity of hypogonadism. International Journal of Impotence Research, 22, 20–24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2834355</ArticleId><ArticleId IdType="pubmed">19657348</ArticleId></ArticleIdList></Reference><Reference><Citation>Morton, D. J. , Barrett‐Connor, E. , Kritz‐Silverstein, D. , Wingard, D. L. , & Schneider, D. L. (2003). Bone mineral density in postmenopausal Caucasian, Filipina, and Hispanic women. International Journal of Epidemiology, 32, 150–156.</Citation><ArticleIdList><ArticleId IdType="pubmed">12690028</ArticleId></ArticleIdList></Reference><Reference><Citation>Neeland, I. J. , Linge, J. , & Birkenfeld, A. L. (2024). Changes in lean body mass with glucagon‐like peptide‐1‐based therapies and mitigation strategies. Diabetes, Obesity & Metabolism, 26(Suppl 4), 16–27.</Citation><ArticleIdList><ArticleId IdType="pubmed">38937282</ArticleId></ArticleIdList></Reference><Reference><Citation>Niu, Y. , Zhang, W. , Shi, J. , Liu, Y. , Zhang, H. , Lin, N. , Li, X. , Qin, L. , Yang, Z. , & Su, Q. (2021). The relationship between circulating growth differentiation factor 15 levels and diabetic retinopathy in patients with type 2 diabetes. Frontiers in Endocrinology, 12, 627395.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8005561</ArticleId><ArticleId IdType="pubmed">33790859</ArticleId></ArticleIdList></Reference><Reference><Citation>Nunes, C. L. , Casanova, N. , Francisco, R. , Bosy‐Westphal, A. , Hopkins, M. , Sardinha, L. B. , & Silva, A. M. (2022). Does adaptive thermogenesis occur after weight loss in adults? A systematic review. The British Journal of Nutrition, 127, 451–469.</Citation><ArticleIdList><ArticleId IdType="pubmed">33762040</ArticleId></ArticleIdList></Reference><Reference><Citation>Oba, K. , Ishikawa, J. , Tamura, Y. , Fujita, Y. , Ito, M. , Iizuka, A. , Fujiwara, Y. , Kodera, R. , Toba, A. , Toyoshima, K. , Chiba, Y. , Mori, S. , Tanaka, M. , Ito, H. , Harada, K. , & Araki, A. (2020). Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease. Geriatrics & Gerontology International, 20, 980–987.</Citation><ArticleIdList><ArticleId IdType="pubmed">32886834</ArticleId></ArticleIdList></Reference><Reference><Citation>Ortiz, O. , Russell, M. , Daley, T. L. , Baumgartner, R. N. , Waki, M. , Lichtman, S. , Wang, J. , Pierson, R. N., Jr. , & Heymsfield, S. B. (1992). Differences in skeletal muscle and bone mineral mass between black and white females and their relevance to estimates of body composition. The American Journal of Clinical Nutrition, 55, 8–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">1728823</ArticleId></ArticleIdList></Reference><Reference><Citation>Osawa, Y. , Tanaka, T. , Semba, R. D. , Fantoni, G. , Moaddel, R. , Candia, J. , Simonsick, E. M. , Bandinelli, S. , & Ferrucci, L. (2022). Plasma growth and differentiation factor 15 predict longitudinal changes in bone parameters in women, but not in men. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 77, 1951–1958.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9536444</ArticleId><ArticleId IdType="pubmed">35363860</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel, S. , Alvarez‐Guaita, A. , Melvin, A. , Rimmington, D. , Dattilo, A. , Miedzybrodzka, E. L. , Cimino, I. , Maurin, A. C. , Roberts, G. P. , Meek, C. L. , Virtue, S. , Sparks, L. M. , Parsons, S. A. , Redman, L. M. , Bray, G. A. , Liou, A. P. , Woods, R. M. , Parry, S. A. , Jeppesen, P. B. , … O'rahilly, S. (2019). GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metabolism, 29, 707–718.e8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6408327</ArticleId><ArticleId IdType="pubmed">30639358</ArticleId></ArticleIdList></Reference><Reference><Citation>Peiró, Ó. M. , García‐Osuna, Á. , Ordóñez‐Llanos, J. , Cediel, G. , Bonet, G. , Rojas, S. , Quintern, V. , & Bardají, A. (2019). Long‐term prognostic value of growth differentiation factor‐15 in acute coronary syndromes. Clinical Biochemistry, 73, 62–69.</Citation><ArticleIdList><ArticleId IdType="pubmed">31369736</ArticleId></ArticleIdList></Reference><Reference><Citation>Perry, A. C. , Applegate, E. B. , Jackson, M. L. , Deprima, S. , Goldberg, R. B. , Ross, R. , Kempner, L. , & Feldman, B. B. (2000). Racial differences in visceral adipose tissue but not anthropometric markers of health‐related variables. Journal of Applied Physiology, 1985(89), 636–643.</Citation><ArticleIdList><ArticleId IdType="pubmed">10926648</ArticleId></ArticleIdList></Reference><Reference><Citation>Petry, C. J. , Ong, K. K. , Burling, K. A. , Barker, P. , Goodburn, S. F. , Perry, J. R. B. , Acerini, C. L. , Hughes, I. A. , Painter, R. C. , Afink, G. B. , Dunger, D. B. , & O'rahilly, S. (2018). Associations of vomiting and antiemetic use in pregnancy with levels of circulating GDF15 early in the second trimester: A nested case‐control study. Wellcome Open Research, 3, 123.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6171563</ArticleId><ArticleId IdType="pubmed">30345390</ArticleId></ArticleIdList></Reference><Reference><Citation>Price, J. H. , Khubchandani, J. , Mckinney, M. , & Braun, R. (2013). Racial/ethnic disparities in chronic diseases of youths and access to health care in the United States. BioMed Research International, 2013, 787616.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3794652</ArticleId><ArticleId IdType="pubmed">24175301</ArticleId></ArticleIdList></Reference><Reference><Citation>Rochette, L. , Zeller, M. , Cottin, Y. , & Vergely, C. (2020). Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends in Endocrinology and Metabolism, 31, 939–951.</Citation><ArticleIdList><ArticleId IdType="pubmed">33172749</ArticleId></ArticleIdList></Reference><Reference><Citation>Rohm, T. V. , Meier, D. T. , Olefsky, J. M. , & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55, 31–55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8773457</ArticleId><ArticleId IdType="pubmed">35021057</ArticleId></ArticleIdList></Reference><Reference><Citation>Russo, V. , Colleluori, G. , Chen, R. , Mediwala, S. , Qualls, C. , Liebschner, M. , Villareal, D. T. , & Armamento‐Villareal, R. (2021). Testosterone therapy and bone quality in men with diabetes and hypogonadism: Study design and protocol. Contemporary Clinical Trials Communications, 21, 100723.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7933702</ArticleId><ArticleId IdType="pubmed">33718653</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarkar, S. , Legere, S. , Haidl, I. , Marshall, J. , Macleod, J. B. , Aguiar, C. , Lutchmedial, S. , Hassan, A. , Brunt, K. R. , Kienesberger, P. , Pulinilkunnil, T. , & Légaré, J. F. (2020). Serum GDF15, a Promising Biomarker in Obese Patients Undergoing Heart Surgery. Frontiers in Cardiovascular Medicine, 7, 103.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7327098</ArticleId><ArticleId IdType="pubmed">32671100</ArticleId></ArticleIdList></Reference><Reference><Citation>Semba, R. D. , Gonzalez‐Freire, M. , Tanaka, T. , Biancotto, A. , Zhang, P. , Shardell, M. , Moaddel, R. , & Ferrucci, L. (2020). Elevated plasma growth and differentiation factor 15 is associated with slower gait speed and lower physical performance in healthy community‐dwelling adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75, 175–180.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6909888</ArticleId><ArticleId IdType="pubmed">30874790</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi, G. , Yue, L. , Tang, Z. , Wang, Y. , Hu, X. , & Tong, Y. (2024). Serum growth differentiation factor 15 as a biomarker for malnutrition in patients with acute exacerbation of chronic obstructive pulmonary disease. Front Nutr, 11, 1404063.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11267996</ArticleId><ArticleId IdType="pubmed">39050134</ArticleId></ArticleIdList></Reference><Reference><Citation>Sowers, M. R. , Randolph, J., Jr. , Jannausch, M. , Lasley, B. , Jackson, E. , & Mcconnell, D. (2008). Levels of sex steroid and cardiovascular disease measures in premenopausal and hormone‐treated women at midlife: Implications for the "timing hypothesis". Archives of Internal Medicine, 168, 2146–2153.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2727614</ArticleId><ArticleId IdType="pubmed">18955645</ArticleId></ArticleIdList></Reference><Reference><Citation>Teawtrakul, N. , Chansai, S. , Yamsri, S. , Chansung, K. , Wanitpongpun, C. , Lanamtieng, T. , Phiphitaporn, P. , Fucharoen, S. , & Pongchaiyakul, C. (2023). The association of growth differentiation factor‐15 levels and osteoporosis in patients with thalassemia. The American Journal of the Medical Sciences, 366, 96–101.</Citation><ArticleIdList><ArticleId IdType="pubmed">37146903</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsai, V. W. , Macia, L. , Feinle‐Bisset, C. , Manandhar, R. , Astrup, A. , Raben, A. , Lorenzen, J. K. , Schmidt, P. T. , Wiklund, F. , Pedersen, N. L. , Campbell, L. , Kriketos, A. , Xu, A. , Pengcheng, Z. , Jia, W. , Curmi, P. M. , Angstmann, C. N. , Lee‐Ng, K. K. , Zhang, H. P. , … Breit, S. N. (2015). Serum Levels of Human MIC‐1/GDF15 Vary in a Diurnal Pattern, Do Not Display a Profile Suggestive of a Satiety Factor and Are Related to BMI. PLoS One, 10, e0133362.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4514813</ArticleId><ArticleId IdType="pubmed">26207898</ArticleId></ArticleIdList></Reference><Reference><Citation>Valenzuela‐Vallejo, L. , Chrysafi, P. , Bello‐Ramos, J. , Bsata, S. , & Mantzoros, C. S. (2022). Circulating total and intact GDF‐15 levels are not altered in response to weight loss induced by liraglutide or lorcaserin treatment in humans with obesity. Metabolism, 133, 155237.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11426964</ArticleId><ArticleId IdType="pubmed">35700837</ArticleId></ArticleIdList></Reference><Reference><Citation>Vigevano, F. , Gregori, G. , Colleluori, G. , Chen, R. , Autemrongsawat, V. , Napoli, N. , Qualls, C. , Villareal, D. T. , & Armamento‐Villareal, R. (2021). In men with obesity, T2DM is associated with poor trabecular microarchitecture and bone strength and low bone turnover. The Journal of Clinical Endocrinology and Metabolism, 106, 1362–1376.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8063237</ArticleId><ArticleId IdType="pubmed">33537757</ArticleId></ArticleIdList></Reference><Reference><Citation>Vila, G. , Riedl, M. , Anderwald, C. , Resl, M. , Handisurya, A. , Clodi, M. , Prager, G. , Ludvik, B. , Krebs, M. , & Luger, A. (2011). The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor‐15 in obese patients. Clinical Chemistry, 57, 309–316.</Citation><ArticleIdList><ArticleId IdType="pubmed">21164037</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, D. , Day, E. A. , Townsend, L. K. , Djordjevic, D. , Jørgensen, S. B. , & Steinberg, G. R. (2021a). GDF15: Emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nature Reviews. Endocrinology, 17, 592–607.</Citation><ArticleIdList><ArticleId IdType="pubmed">34381196</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, L. , Luo, J. , Liu, W. , Huang, X. , Xu, J. , Zhou, Y. , Jiang, L. , & Yang, J. (2021b). Elevated circulating growth differentiation factor 15 is related to decreased heart rate variability in chronic kidney disease patients. Renal Failure, 43, 340–346.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7889148</ArticleId><ArticleId IdType="pubmed">33567936</ArticleId></ArticleIdList></Reference><Reference><Citation>Westhrin, M. , Moen, S. H. , Holien, T. , Mylin, A. K. , Heickendorff, L. , Olsen, O. E. , Sundan, A. , Turesson, I. , Gimsing, P. , Waage, A. , & Standal, T. (2015). Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica, 100, e511–e514.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4666344</ArticleId><ArticleId IdType="pubmed">26294726</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiklund, F. E. , Bennet, A. M. , Magnusson, P. K. , Eriksson, U. K. , Lindmark, F. , Wu, L. , Yaghoutyfam, N. , Marquis, C. P. , Stattin, P. , Pedersen, N. L. , Adami, H. O. , Gronberg, H. , Breit, S. N. , & Brown, D. A. (2010). Macrophage inhibitory cytokine‐1 (MIC‐1/GDF15): a new marker of all‐cause mortality. Aging Cell, 9, 1057–1064.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4139960</ArticleId><ArticleId IdType="pubmed">20854422</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong, M. D. , Shapiro, M. F. , Boscardin, W. J. , & Ettner, S. L. (2002). Contribution of major diseases to disparities in mortality. The New England Journal of Medicine, 347, 1585–1592.</Citation><ArticleIdList><ArticleId IdType="pubmed">12432046</ArticleId></ArticleIdList></Reference><Reference><Citation>Woolf, S. H. , Chapman, D. A. , Buchanich, J. M. , Bobby, K. J. , Zimmerman, E. B. , & Blackburn, S. M. (2018). Changes in midlife death rates across racial and ethnic groups in the United States: Systematic analysis of vital statistics. BMJ, 362, k3096.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6092678</ArticleId><ArticleId IdType="pubmed">30111554</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39667342</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1934-6069</ISSN><JournalIssue CitedMedium="Internet"><Volume>32</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>11</Day></PubDate></JournalIssue><Title>Cell host & microbe</Title><ISOAbbreviation>Cell Host Microbe</ISOAbbreviation></Journal><ArticleTitle>Guilds as guides for health vs. disease.</ArticleTitle><Pagination><StartPage>2039</StartPage><EndPage>2041</EndPage><MedlinePgn>2039-2041</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chom.2024.11.010</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1931-3128(24)00441-4</ELocationID><Abstract><AbstractText>In a recent Cell paper, Wu et al. identified microbiome guilds based on bacterial co-occurrence among type 2 diabetes patients. Two competing guilds, associated with high-fiber vs. control diets, correlated with healthy biomarkers. The potential of this approach was further verified across 15 diseases in 26 studies.</AbstractText><CopyrightInformation>Copyright © 2024. Published by Elsevier Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Gomes</LastName><ForeName>Antonio L C</ForeName><Initials>ALC</Initials><AffiliationInfo><Affiliation>Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jenq</LastName><ForeName>Robert R</ForeName><Initials>RR</Initials><AffiliationInfo><Affiliation>Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA. Electronic address: rjenq@coh.org.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Cell Host Microbe</MedlineTA><NlmUniqueID>101302316</NlmUniqueID><ISSNLinking>1931-3128</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004043">Dietary Fiber</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D064307" MajorTopicYN="N">Microbiota</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004043" MajorTopicYN="N">Dietary Fiber</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004032" MajorTopicYN="N">Diet</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of interests R.R.J. is part of the scientific advisory board of Seres therapeutics, MaaT Pharma, Prolacta, and Postbiotics Plus. R.R.J. holds patent royalties at Seres therapeutics and stock options at Seres Therapeutics and Postbiotics Plus. A.L.C.G. has stock options for Xbiome Inc.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>11</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>18</Hour><Minute>19</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39667342</ArticleId><ArticleId IdType="doi">10.1016/j.chom.2024.11.010</ArticleId><ArticleId IdType="pii">S1931-3128(24)00441-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39666780</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Analysis of rare coding variants in 470,000 exome-sequenced subjects characterises contributions to risk of type 2 diabetes.</ArticleTitle><Pagination><StartPage>e0311827</StartPage><MedlinePgn>e0311827</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0311827</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0311827</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">To follow up results from an earlier study using an extended sample of 470,000 exome-sequenced subjects to identify genes associated with type 2 diabetes (T2D) and to characterise the distribution of rare variants in these genes.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">Exome sequence data for 470,000 UK Biobank participants was analysed using a combined phenotype for T2D obtained from diagnostic and prescription data. Gene-wise weighted burden analysis of rare coding variants in the new cohort of 270,000 samples was carried out for the 32 genes previously significant with uncorrected p < 0.001 along with 7 other genes previously implicated in T2D. Follow-up studies of GCK, GIGYF1, HNF1A and HNF4A used the full sample of 470,000 to investigate the effects of different categories of variant.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">No novel genes were identified as exome wide significant. Rare loss of function (LOF) variants in GCK exerted a very large effect on T2D risk but more common (though still very rare) nonsynonymous variants classified as probably damaging by PolyPhen on average approximately doubled risk. Rare variants in the other three genes also had large effects on risk.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In spite of the very large sample size, no novel genes are implicated. Coding variants with an identifiable effect are collectively too rare be generally useful for guiding treatment choices for most patients. The finding that some nonsynonymous variants in GCK affect T2D risk is novel but not unexpected and does not have obvious practical implications. This research has been conducted using the UK Biobank Resource.</AbstractText><CopyrightInformation>Copyright: © 2024 David Curtis. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Curtis</LastName><ForeName>David</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0002-4089-9183</Identifier><AffiliationInfo><Affiliation>UCL, UCL Genetics Institute, London, United Kingdom.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="Y">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073359" MajorTopicYN="Y">Exome Sequencing</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059472" MajorTopicYN="Y">Exome</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The author has declared no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>13</Hour><Minute>55</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>12</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39666780</ArticleId><ArticleId IdType="pmc">PMC11637267</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0311827</ArticleId><ArticleId IdType="pii">PONE-D-24-23535</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Curtis D. -Analysis of rare coding variants in 200,000 exome-sequenced subjects reveals novel genetic risk factors for type 2 diabetes. Diabetes Metab Res Rev [Internet]. 2021. [cited 2021 Sep 24]; Available from: https://pubmed.ncbi.nlm.nih.gov/34216101/. doi: 10.1002/dmrr.3482 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.3482</ArticleId><ArticleId IdType="pubmed">34216101</ArticleId></ArticleIdList></Reference><Reference><Citation>Deaton AM, Parker MM, Ward LD, Flynn-Carroll AO, BonDurant L, Hinkle G, et al.. Gene-level analysis of rare variants in 379,066 whole exome sequences identifies an association of GIGYF1 loss of function with type 2 diabetes. Sci Rep [Internet]. 2021. -Nov -3 [cited 2022 May 25];11(1):21565. Available from: https://pubmed.ncbi.nlm.nih.gov/34732801/. doi: 10.1038/s41598-021-99091-5 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-99091-5</ArticleId><ArticleId IdType="pmc">PMC8566487</ArticleId><ArticleId IdType="pubmed">34732801</ArticleId></ArticleIdList></Reference><Reference><Citation>Bishay RH, Greenfield JR. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase‐MODY. -Medical Journal of Australia [Internet]. 2016. -Nov -21 [cited 2021 Jan 6];205(10):480–5. Available from: https://onlinelibrary.wiley.com/doi/abs/10.5694/mja16.00458. -</Citation><ArticleIdList><ArticleId IdType="doi">10.5694/mja16.00458</ArticleId><ArticleId IdType="pubmed">27852188</ArticleId></ArticleIdList></Reference><Reference><Citation>Naylor R, Johnson AK, del Gaudio D. Maturity-Onset Diabetes of the Young Overview. In: Adam M, Ardinger H, Pagon R, Wallace S, Bean L, Stephens K, et al.., editors. GeneReviews [Internet]. Seattle (WA): -University of Washington, Seattle; 2018. [cited 2021 Jan 6]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK500456/.</Citation><ArticleIdList><ArticleId IdType="pubmed">29792621</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Q, Dhindsa RS, Carss K, Harper AR, Nag A, Tachmazidou I, et al.. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature -2021. -597:7877 [Internet]. 2021 Aug 10 [cited 2022 Mar 18];597(7877):527–32. Available from: https://www.nature.com/articles/s41586-021-03855-y.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8458098</ArticleId><ArticleId IdType="pubmed">34375979</ArticleId></ArticleIdList></Reference><Reference><Citation>Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler MD, et al.. Exome sequencing and analysis of 454,787 UK Biobank participants. -Nature [Internet]. 2021. -Nov -25 [cited 2023 Aug 30];599(7886):628–34. Available from: https://pubmed.ncbi.nlm.nih.gov/34662886/. doi: 10.1038/s41586-021-04103-z - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-021-04103-z</ArticleId><ArticleId IdType="pmc">PMC8596853</ArticleId><ArticleId IdType="pubmed">34662886</ArticleId></ArticleIdList></Reference><Reference><Citation>McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al.. The Ensembl Variant Effect Predictor. Genome Biol [Internet]. 2016. -Jun -6 [cited 2017 May 9];17(1):122. Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13059-016-0974-4</ArticleId><ArticleId IdType="pmc">PMC4893825</ArticleId><ArticleId IdType="pubmed">27268795</ArticleId></ArticleIdList></Reference><Reference><Citation>Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet [Internet]. 2013. -Jan [cited 2017 May 17];7 Unit7.20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23315928. doi: 10.1002/0471142905.hg0720s76 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/0471142905.hg0720s76</ArticleId><ArticleId IdType="pmc">PMC4480630</ArticleId><ArticleId IdType="pubmed">23315928</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. -Nat Protoc [Internet]. 2009. -Jun -25 [cited 2017 May 17];4(8):1073–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19561590. doi: 10.1038/nprot.2009.86 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nprot.2009.86</ArticleId><ArticleId IdType="pubmed">19561590</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. -Gigascience [Internet]. 2015. -Dec -25 [cited 2017 Sep 19];4(1):7. Available from: https://academic.oup.com/gigascience/article-lookup/doi/10.1186/s13742-015-0047-8. -</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13742-015-0047-8</ArticleId><ArticleId IdType="pmc">PMC4342193</ArticleId><ArticleId IdType="pubmed">25722852</ArticleId></ArticleIdList></Reference><Reference><Citation>Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, et al.. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J Hum Genet [Internet]. 2016. -Mar -3 [cited 2020 Dec 14];98(3):456–72. Available from: https://pubmed.ncbi.nlm.nih.gov/26924531/. doi: 10.1016/j.ajhg.2015.12.022 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajhg.2015.12.022</ArticleId><ArticleId IdType="pmc">PMC4827102</ArticleId><ArticleId IdType="pubmed">26924531</ArticleId></ArticleIdList></Reference><Reference><Citation>Curtis D. A rapid method for combined analysis of common and rare variants at the level of a region, gene, or pathway. Adv Appl Bioinform Chem. 2012;5:1–9. doi: 10.2147/AABC.S33049</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/AABC.S33049</ArticleId><ArticleId IdType="pmc">PMC3413013</ArticleId><ArticleId IdType="pubmed">22888262</ArticleId></ArticleIdList></Reference><Reference><Citation>Curtis D. -Pathway analysis of whole exome sequence data provides further support for the involvement of histone modification in the aetiology of schizophrenia. Psychiatr Genet [Internet]. 2016;26:223–7. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00041444-900000000-99634. doi: 10.1097/YPG.0000000000000132 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/YPG.0000000000000132</ArticleId><ArticleId IdType="pmc">PMC7172027</ArticleId><ArticleId IdType="pubmed">26981879</ArticleId></ArticleIdList></Reference><Reference><Citation>Curtis D. -Multiple Linear Regression Allows Weighted Burden Analysis of Rare Coding Variants in an Ethnically Heterogeneous Population. Hum Hered [Internet]. 2020. -Jan -7 [cited 2021 Jan 8];1–10. Available from: https://www.karger.com/Article/FullText/512576.</Citation><ArticleIdList><ArticleId IdType="pubmed">33412546</ArticleId></ArticleIdList></Reference><Reference><Citation>Curtis D. -Exploration of weighting schemes based on allele frequency and annotation for weighted burden association analysis of complex phenotypes. Gene [Internet]. 2022. -Jan -30 [cited 2023 Aug 23];809. Available from: https://pubmed.ncbi.nlm.nih.gov/34688815/. doi: 10.1016/j.gene.2021.146039 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gene.2021.146039</ArticleId><ArticleId IdType="pubmed">34688815</ArticleId></ArticleIdList></Reference><Reference><Citation>R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna, Austria.: R Foundation for Statistical Computing; 2014. Available from: http://www.r-project.org.</Citation></Reference><Reference><Citation>Curtis D. -Assessment of ability of AlphaMissense to identify variants affecting susceptibility to common disease. European Journal of Human Genetics -2024. [Internet]. 2024 Aug 3 [cited 2024 Aug 22];1–9. Available from: https://www.nature.com/articles/s41431-024-01675-y. doi: 10.1038/s41431-024-01675-y - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41431-024-01675-y</ArticleId><ArticleId IdType="pmc">PMC11576984</ArticleId><ArticleId IdType="pubmed">39097650</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogunnowo-Bada EO, Heeley N, Brochard L, Evans ML. Brain glucose sensing, glucokinase and neural control of metabolism and islet function. -Diabetes Obes Metab [Internet]. 2014. [cited 2023 Oct 20];16 Suppl 1(Suppl 1):26–32. Available from: https://pubmed.ncbi.nlm.nih.gov/25200293/. doi: 10.1111/dom.12334 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.12334</ArticleId><ArticleId IdType="pmc">PMC4405079</ArticleId><ArticleId IdType="pubmed">25200293</ArticleId></ArticleIdList></Reference><Reference><Citation>McCrimmon RJ. Remembrance of things past: The consequences of recurrent hypoglycaemia in diabetes. Diabet Med [Internet]. 2022. -Dec -1 [cited 2023 Oct 20];39(12). Available from: https://pubmed.ncbi.nlm.nih.gov/36251572/. doi: 10.1111/dme.14973 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14973</ArticleId><ArticleId IdType="pmc">PMC10015985</ArticleId><ArticleId IdType="pubmed">36251572</ArticleId></ArticleIdList></Reference><Reference><Citation>Jurgens SJ, Choi SH, Morrill VN, Chaffin M, Pirruccello JP, Halford JL, et al.. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet [Internet]. 2022. -Mar -1 [cited 2023 Oct 20];54(3):240–50. Available from: https://pubmed.ncbi.nlm.nih.gov/35177841/. doi: 10.1038/s41588-021-01011-w - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-021-01011-w</ArticleId><ArticleId IdType="pmc">PMC8930703</ArticleId><ArticleId IdType="pubmed">35177841</ArticleId></ArticleIdList></Reference><Reference><Citation>Giovannone B, Lee E, Laviola L, Giorgino F, Cleveland KA, Smith RJ. Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. -Journal of Biological Chemistry [Internet]. 2003. -Aug -22 [cited 2021 Jan 6];278(34):31564–73. Available from: https://pubmed.ncbi.nlm.nih.gov/12771153/. doi: 10.1074/jbc.M211572200 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M211572200</ArticleId><ArticleId IdType="pubmed">12771153</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, et al.. The impact of rare protein coding genetic variation on adult cognitive function. Nat Genet. 2023. Jun 1;55(6):927–38. doi: 10.1038/s41588-023-01398-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-023-01398-8</ArticleId><ArticleId IdType="pmc">PMC10260403</ArticleId><ArticleId IdType="pubmed">37231097</ArticleId></ArticleIdList></Reference><Reference><Citation>Xue D, Narisu N, Taylor DL, Zhang M, Grenko C, Taylor HJ, et al.. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab [Internet]. 2023. -Oct [cited 2023 Oct 20]; Available from: https://pubmed.ncbi.nlm.nih.gov/37858332/.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10841752</ArticleId><ArticleId IdType="pubmed">37858332</ArticleId></ArticleIdList></Reference><Reference><Citation>Bioulac-Sage P, Sempoux C, Balabaud C. Hepatocellular adenoma: Classification, variants and clinical relevance. Semin Diagn Pathol. 2017. Mar 1;34(2):112–25. doi: 10.1053/j.semdp.2016.12.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.semdp.2016.12.007</ArticleId><ArticleId IdType="pubmed">28131467</ArticleId></ArticleIdList></Reference><Reference><Citation>Lemaire M. -Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol [Internet]. 2021. -Feb -1 [cited 2023 Oct 20];320(2):F145–60. Available from: https://pubmed.ncbi.nlm.nih.gov/33283647/. doi: 10.1152/ajprenal.00214.2020 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajprenal.00214.2020</ArticleId><ArticleId IdType="pubmed">33283647</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirshahi UL, Colclough K, Wright CF, Wood AR, Beaumont RN, Tyrrell J, et al.. Reduced penetrance of MODY-associated HNF1A/HNF4A variants but not GCK variants in clinically unselected cohorts. Am J Hum Genet [Internet]. 2022. -Nov -3 [cited 2024 Aug 22];109(11):2018–28. Available from: https://pubmed.ncbi.nlm.nih.gov/36257325/. doi: 10.1016/j.ajhg.2022.09.014 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajhg.2022.09.014</ArticleId><ArticleId IdType="pmc">PMC9674944</ArticleId><ArticleId IdType="pubmed">36257325</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh T, The Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. Nature [Internet]. 2022; Available from: 10.1038/s41586-022-04556-w.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-022-04556-w</ArticleId><ArticleId IdType="pmc">PMC9805802</ArticleId><ArticleId IdType="pubmed">35396579</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res [Internet]. 2024. [cited 2024 Aug 21]; Available from: https://pubmed.ncbi.nlm.nih.gov/39106207/. doi: 10.1080/07435800.2024.2388606 - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/07435800.2024.2388606</ArticleId><ArticleId IdType="pubmed">39106207</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39666416</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1669-9106</ISSN><JournalIssue CitedMedium="Internet"><Volume>84</Volume><Issue>6</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Medicina</Title><ISOAbbreviation>Medicina (B Aires)</ISOAbbreviation></Journal><ArticleTitle>[Advances in continuous glucose monitoring: evidence of a new generation technology].</ArticleTitle><Pagination><StartPage>1226</StartPage><EndPage>1234</EndPage><MedlinePgn>1226-1234</MedlinePgn></Pagination><Abstract><AbstractText>Continuous glucose monitoring (CGM) provides comprehensive and dynamic information to guide the management of diabetes mellitus (DM). This paper summarizes the evidence and implications of the use of the new CGM system, FreeStyle Libre 2 (FSL2). A global review of the literature on the use of FSL2 in people with DM was performed. All types of studies were included. The evidence is presented qualitatively together with expert clinical opinion. FSL2 is an integrated CGM system with real-time glucose readings (no scanning required) and customizable alarms. In studies of subjects aged 2 years and older with DM1 or DM2, the overall mean absolute relative difference for FSL2 was 8.2%, with a high degree of clinical accuracy. Compared to blood monitoring in DM1, studies show higher time within range, lower time below range and lower time above range at 4, 8 and 12 weeks of FSL2 use. These results were confirmed in observational studies in DM, where the majority of FSL2 users reported greater satisfaction with treatment and a significant improvement in quality of life. In concluded, Including the FSL2 system in the management of people with DM would also reduce the risks associated with DM complications, improving the prognosis of this population and allowing for the appropriate use of healthcare resources.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Litwak</LastName><ForeName>León</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Servicio de Endocrinología, Metabolismo y Medicina Nuclear, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina. E-mail: leon.litwak@hospitalitaliano.org.ar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ré</LastName><ForeName>Matías</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Unidad de Diabetes, Hospital San Juan de Dios de La Plata, Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Proietti</LastName><ForeName>Adrián</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Servicio de Endocrinología, Diabetes y Tecnología aplicada, Kynet-Integral, Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dain</LastName><ForeName>Alejandro</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Servicio de Diabetes y Nutrición, Clínica Universitaria Reina Fabiola, Córdoba, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Flores</LastName><ForeName>Adriana</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Servicio Nutrición y Diabetes, Fundación Hospitalaria. Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Figueroa</LastName><ForeName>Shairine</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Medical Affairs, Abbott Diabetes Care, Bogotá, Colombia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barbieri</LastName><ForeName>Douglas E</ForeName><Initials>DE</Initials><AffiliationInfo><Affiliation>Medical Affairs, Abbott Diabetes Care, São Paulo, Brasil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>spa</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D004740">English Abstract</PublicationType></PublicationTypeList><VernacularTitle>Avances en el monitoreo continuo de glucosa: evidencia de una nueva generación de tecnología.</VernacularTitle></Article><MedlineJournalInfo><Country>Argentina</Country><MedlineTA>Medicina (B Aires)</MedlineTA><NlmUniqueID>0204271</NlmUniqueID><ISSNLinking>0025-7680</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015190" MajorTopicYN="Y">Blood Glucose Self-Monitoring</DescriptorName><QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011788" MajorTopicYN="N">Quality of Life</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000095583" MajorTopicYN="N">Continuous Glucose Monitoring</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="spa"><AbstractText>El monitoreo continuo de glucosa (MCG) proporciona información completa y dinámica para guiar el tratamiento de la diabetes mellitus (DM). Este documento sintetiza la evidencia e implicancias del uso del FreeStyle Libre 2 (FSL2), un sistema integrado de MCG con lecturas de glucosa en tiempo real (sin necesidad de escaneo) y alarmas personalizables. Se realizó una revisión global de la literatura que incluyó todo tipo de estudios y se presentó la evidencia de manera cualitativa junto con la opinión de expertos clínicos. Se identificaron estudios en sujetos a partir de los 2 años de edad con DM1/DM2, que han registrado una diferencia media relativa absoluta global del 8.2% para FSL2, con un alto grado de exactitud clínica. En comparación con la monitorización sanguínea en DM1, los ensayos muestran mayor tiempo dentro del rango, menor tiempo por debajo del rango y menor tiempo por encima del rango, a 4, 8 y 12 semanas de uso del FSL2. Estos resultados se han confirmado en estudios observacionales en DM, en los que la mayoría de los usuarios de FSL2 reportaron mayor satisfacción con el tratamiento y mejor calidad de vida. En conclusión, la inclusión del sistema FSL2 en el manejo de la DM reduciría los riesgos asociados a las complicaciones de la DM, mejorando el pronóstico de esta población y permitiendo un uso adecuado de los recursos sanitarios.</AbstractText></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">FreeStyle Libre 2</Keyword><Keyword MajorTopicYN="N">alarm</Keyword><Keyword MajorTopicYN="N">blood glucose control</Keyword><Keyword MajorTopicYN="N">continuous glucose monitoring</Keyword><Keyword MajorTopicYN="N">type 1 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>12</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39666416</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39665019</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Threshold effect of atherogenic index of plasma on type 2 diabetes mellitus and modification by uric acid in normal-weight adults with hypertension.</ArticleTitle><Pagination><StartPage>1495340</StartPage><MedlinePgn>1495340</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1495340</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1495340</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">The association between atherogenic index of plasma (AIP) and type 2 diabetes mellitus (T2DM) in normal-weight individuals with hypertension remains unclear. This study seeks to elucidate this relationship in normal-weight adults with hypertension.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">This cross-sectional study included 8,258 normal-weight adults with hypertension from the China Hypertension Registry Study. The AIP was calculated as log10 (triglycerides/high-density lipoprotein cholesterol). The multivariate logistic regression, generalized additive model, smooth fitting curve, sensitivity analyses, two-part logistic regression, and subgroup analyses were conducted to detect the correlation between AIP and T2DM.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The mean age of the study population was 64.89 ± 8.97 years, with an overall prevalence of T2DM of 15.55%. Multivariate logistic regression analyses indicated that there was a positive and independent relationship between AIP and T2DM (OR: 3.73; 95% CI: 2.82, 4.94). Threshold effect analysis identified a J-shaped association between AIP and T2DM, with an inflection point at 0. Additionally, an interaction between hyperuricemia and AIP was observed (<i>P</i> for interaction = 0.034).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">In normal-weight adults with hypertension, there was a J-shaped association between AIP and T2DM, with an inflection point at 0. the correlation between AIP and T2DM was more pronounced in individuals with hyperuricemia compared to those with normal uric acid.</AbstractText><CopyrightInformation>Copyright © 2024 Tao, Wang, Zhou, Zhu, Yu, Bao, Li and Cheng.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Tao</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Tao</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Wei</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Lingjuan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Chao</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bao</LastName><ForeName>Huihui</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Juxiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheng</LastName><ForeName>Xiaoshu</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>268B43MJ25</RegistryNumber><NameOfSubstance UI="D014527">Uric Acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014280">Triglycerides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008076">Cholesterol, HDL</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014527" MajorTopicYN="Y">Uric Acid</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="Y">Hypertension</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050197" MajorTopicYN="Y">Atherosclerosis</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D033461" MajorTopicYN="N">Hyperuricemia</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014280" MajorTopicYN="N">Triglycerides</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008076" MajorTopicYN="N">Cholesterol, HDL</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">atherogenic index of plasma</Keyword><Keyword MajorTopicYN="N">hypertension</Keyword><Keyword MajorTopicYN="N">threshold effect</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">uric acid modification</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>11</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>4</Hour><Minute>59</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39665019</ArticleId><ArticleId IdType="pmc">PMC11631599</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1495340</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Collaborators GBDD . Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet. (2023) 402:203–34. doi: 10.1016/S0140-6736(23)01301-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(23)01301-6</ArticleId><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. . Idf diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. (2012) 380:601–10. doi: 10.1016/S0140-6736(12)60987-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(12)60987-8</ArticleId><ArticleId IdType="pubmed">22883509</ArticleId></ArticleIdList></Reference><Reference><Citation>Balgobin S, Basak S, Teoh CW, Noone D. Hypertension in diabetes. Pediatr Nephrol. (2024) 39:1739–58. doi: 10.1007/s00467-023-06163-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00467-023-06163-x</ArticleId><ArticleId IdType="pubmed">37831122</ArticleId></ArticleIdList></Reference><Reference><Citation>Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: A systematic review and meta-analysis. JAMA. (2015) 313:603–15. doi: 10.1001/jama.2014.18574</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2014.18574</ArticleId><ArticleId IdType="pubmed">25668264</ArticleId></ArticleIdList></Reference><Reference><Citation>ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. . 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care. (2023) 46:S19–40. doi: 10.2337/dc23-S002</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-S002</ArticleId><ArticleId IdType="pmc">PMC9810477</ArticleId><ArticleId IdType="pubmed">36507649</ArticleId></ArticleIdList></Reference><Reference><Citation>Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. (2014) 103:150–60. doi: 10.1016/j.diabres.2013.11.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2013.11.001</ArticleId><ArticleId IdType="pubmed">24300018</ArticleId></ArticleIdList></Reference><Reference><Citation>Hyassat D, Al-Saeksaek S, Naji D, Mahasneh A, Khader Y, Abujbara M, et al. . Dyslipidemia among patients with type 2 diabetes in Jordan: prevalence, pattern, and associated factors. Front Public Health. (2022) 10:1002466. doi: 10.3389/fpubh.2022.1002466</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2022.1002466</ArticleId><ArticleId IdType="pmc">PMC9679519</ArticleId><ArticleId IdType="pubmed">36424970</ArticleId></ArticleIdList></Reference><Reference><Citation>Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. (2015) 58:886–99. doi: 10.1007/s00125-015-3525-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-015-3525-8</ArticleId><ArticleId IdType="pmc">PMC4392164</ArticleId><ArticleId IdType="pubmed">25725623</ArticleId></ArticleIdList></Reference><Reference><Citation>Peng J, Zhao F, Yang X, Pan X, Xin J, Wu M, et al. . Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older chinese adults: A secondary analysis of a nationwide cohort. BMJ Open. (2021) 11:e042821. doi: 10.1136/bmjopen-2020-042821</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-042821</ArticleId><ArticleId IdType="pmc">PMC8154929</ArticleId><ArticleId IdType="pubmed">34035089</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhowmik B, Siddiquee T, Mujumder A, Afsana F, Ahmed T, Mdala IA, et al. . Serum lipid profile and its association with diabetes and prediabetes in a rural Bangladeshi population. Int J Environ Res Public Health. (2018) 15:1944. doi: 10.3390/ijerph15091944</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph15091944</ArticleId><ArticleId IdType="pmc">PMC6165005</ArticleId><ArticleId IdType="pubmed">30200612</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang L, Chen S, Deng A, Liu X, Liang Y, Shao X, et al. . Association between lipid ratios and insulin resistance in a chinese population. PloS One. (2015) 10:e0116110. doi: 10.1371/journal.pone.0116110</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0116110</ArticleId><ArticleId IdType="pmc">PMC4312024</ArticleId><ArticleId IdType="pubmed">25635876</ArticleId></ArticleIdList></Reference><Reference><Citation>Longo S, Cassandra F, Cardolini I, Montagna M, Nucera A, Federici M. Double mutation in genes associated to fh and diabetes. Acta Diabetol. (2024) 61:671–4. doi: 10.1007/s00592-024-02235-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-024-02235-y</ArticleId><ArticleId IdType="pubmed">38424212</ArticleId></ArticleIdList></Reference><Reference><Citation>Dobiásová M, Frohlich J. The plasma parameter log (Tg/hdl-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apob-lipoprotein-depleted plasma (Fer(Hdl)). Clin Biochem. (2001) 34:583–8. doi: 10.1016/s0009-9120(01)00263-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0009-9120(01)00263-6</ArticleId><ArticleId IdType="pubmed">11738396</ArticleId></ArticleIdList></Reference><Reference><Citation>Li YW, Kao TW, Chang PK, Chen WL, Wu LW. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: A 9-year longitudinal study. Sci Rep. (2021) 11:9900. doi: 10.1038/s41598-021-89307-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-89307-z</ArticleId><ArticleId IdType="pmc">PMC8110777</ArticleId><ArticleId IdType="pubmed">33972652</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C, Dai JL. Triglyceride to high-density lipoprotein cholesterol (Hdl-C) ratio and arterial stiffness in Japanese population: A secondary analysis based on a cross-sectional study. Lipids Health Dis. (2018) 17:130. doi: 10.1186/s12944-018-0776-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-018-0776-7</ArticleId><ArticleId IdType="pmc">PMC5975424</ArticleId><ArticleId IdType="pubmed">29843793</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou K, Qin Z, Tian J, Cui K, Yan Y, Lyu S. The atherogenic index of plasma: A powerful and reliable predictor for coronary artery disease in patients with type 2 diabetes. Angiology. (2021) 72:934–41. doi: 10.1177/00033197211012129</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/00033197211012129</ArticleId><ArticleId IdType="pubmed">33949211</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu J, Zhou H, Xiang G. Association of atherogenic index of plasma with retinopathy and nephropathy in adult patients with type 2 diabetes mellitus aged > 18 years. Can J Diabetes. (2022) 46:708–14. doi: 10.1016/j.jcjd.2022.04.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2022.04.008</ArticleId><ArticleId IdType="pubmed">35927171</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin J, Li H, Wan Q. A cross-sectional study of the correlation between the atherogenic index of plasma and nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab Syndr Obes. (2022) 15:2227–34. doi: 10.2147/DMSO.S375300</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S375300</ArticleId><ArticleId IdType="pmc">PMC9348630</ArticleId><ArticleId IdType="pubmed">35936051</ArticleId></ArticleIdList></Reference><Reference><Citation>Duiyimuhan G, Maimaiti N. The association between atherogenic index of plasma and all-cause mortality and cardiovascular disease-specific mortality in hypertension patients: A retrospective cohort study of nhanes. BMC Cardiovasc Disord. (2023) 23:452. doi: 10.1186/s12872-023-03451-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12872-023-03451-0</ArticleId><ArticleId IdType="pmc">PMC10496369</ArticleId><ArticleId IdType="pubmed">37697281</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu X-W, Deng F-Y, Lei S-F. Meta-analysis of atherogenic index of plasma and other lipid parameters in relation to risk of type 2 diabetes mellitus. Primary Care Diabetes. (2015) 9:60–7. doi: 10.1016/j.pcd.2014.03.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2014.03.007</ArticleId><ArticleId IdType="pubmed">24810146</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, et al. . The triglyceride to high-density lipoprotein cholesterol (Tg/hdl-C) ratio as a predictor of insulin resistance but not of beta cell function in a chinese population with different glucose tolerance status. Lipids Health Dis. (2016) 15:104. doi: 10.1186/s12944-016-0270-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-016-0270-z</ArticleId><ArticleId IdType="pmc">PMC4895977</ArticleId><ArticleId IdType="pubmed">27267043</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang T, Liu Y, Li L, Zheng Y, Wang Y, Su J, et al. . Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and type 2 diabetes in patients with coronary heart disease: A rcscd-tcm study in China. Cardiovasc Diabetol. (2022) 21:93. doi: 10.1186/s12933-022-01531-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-022-01531-7</ArticleId><ArticleId IdType="pmc">PMC9166647</ArticleId><ArticleId IdType="pubmed">35659300</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuge H, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, et al. . Triglycerides/hdl cholesterol ratio and type 2 diabetes incidence: panasonic cohort study 10. Cardiovasc Diabetol. (2023) 22:308. doi: 10.1186/s12933-023-02046-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-02046-5</ArticleId><ArticleId IdType="pmc">PMC10634002</ArticleId><ArticleId IdType="pubmed">37940952</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu Y, Hu L, Huang X, Zhou W, Bao H, Cheng X. Bmi modifies the association between serum hdl cholesterol and stroke in a hypertensive population without atrial fibrillation. J Endocrinol Invest. (2020) 44:173–81. doi: 10.1007/s40618-020-01288-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40618-020-01288-4</ArticleId><ArticleId IdType="pubmed">32406023</ArticleId></ArticleIdList></Reference><Reference><Citation>Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. . The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the jnc 7 report. Jama. (2003) 289:2560–72. doi: 10.1001/jama.289.19.2560</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.289.19.2560</ArticleId><ArticleId IdType="pubmed">12748199</ArticleId></ArticleIdList></Reference><Reference><Citation>Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. . A new equation to estimate glomerular filtration rate. Ann Intern Med. (2009) 150:604–12. doi: 10.7326/0003-4819-150-9-200905050-00006</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/0003-4819-150-9-200905050-00006</ArticleId><ArticleId IdType="pmc">PMC2763564</ArticleId><ArticleId IdType="pubmed">19414839</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. . Prevalence of diabetes among men and women in China. N Engl J Med. (2010) 362:1090–101. doi: 10.1056/NEJMoa0908292</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa0908292</ArticleId><ArticleId IdType="pubmed">20335585</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu TT, Gao Y, Zheng YY, Ma YT, Xie X. Atherogenic index of plasma (Aip): A novel predictive indicator for the coronary artery disease in postmenopausal women. Lipids Health Dis. (2018) 17:197. doi: 10.1186/s12944-018-0828-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-018-0828-z</ArticleId><ArticleId IdType="pmc">PMC6106932</ArticleId><ArticleId IdType="pubmed">30134981</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu Y, Lan T, Wang D, Fang W, Tao Y, Li M, et al. . The association of lipid ratios with hyperuricemia in a rural chinese hypertensive population. Lipids Health Dis. (2021) 20:121. doi: 10.1186/s12944-021-01556-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-021-01556-z</ArticleId><ArticleId IdType="pmc">PMC8482679</ArticleId><ArticleId IdType="pubmed">34587966</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin D, Qi Y, Huang C, Wu M, Wang C, Li F, et al. . Associations of lipid parameters with insulin resistance and diabetes: A population-based study. Clin Nutr. (2018) 37:1423–9. doi: 10.1016/j.clnu.2017.06.018</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.clnu.2017.06.018</ArticleId><ArticleId IdType="pubmed">28673690</ArticleId></ArticleIdList></Reference><Reference><Citation>Tohidi M, Asgari S, Chary A, Safiee S, Azizi F, Hadaegh F. Association of triglycerides to high-density lipoprotein cholesterol ratio to identify future prediabetes and type 2 diabetes mellitus: over one-decade follow-up in the Iranian population. Diabetol Metab Syndr. (2023) 15:13. doi: 10.1186/s13098-023-00988-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-023-00988-0</ArticleId><ArticleId IdType="pmc">PMC9893691</ArticleId><ArticleId IdType="pubmed">36732786</ArticleId></ArticleIdList></Reference><Reference><Citation>Yi Q, Ren Z, Bai G, Zhu S, Li S, Li C, et al. . The longitudinal effect of the atherogenic index of plasma on type 2 diabetes in middle-aged and older chinese. Acta Diabetol. (2022) 59:269–79. doi: 10.1007/s00592-021-01801-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-021-01801-y</ArticleId><ArticleId IdType="pubmed">34648090</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang B, Zhuang R, Luo X, Yin L, Pang C, Feng T, et al. . Prevalence of metabolically healthy obese and metabolically obese but normal weight in adults worldwide: A meta-analysis. Horm Metab Res. (2015) 47:839–45. doi: 10.1055/s-0035-1559767</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0035-1559767</ArticleId><ArticleId IdType="pubmed">26340705</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi Y, Wen M. Sex-specific differences in the effect of the atherogenic index of plasma on prediabetes and diabetes in the nhanes 2011-2018 population. Cardiovasc Diabetol. (2023) 22:19. doi: 10.1186/s12933-023-01740-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01740-8</ArticleId><ArticleId IdType="pmc">PMC9887826</ArticleId><ArticleId IdType="pubmed">36717829</ArticleId></ArticleIdList></Reference><Reference><Citation>Hadaegh F, Hatami M, Tohidi M, Sarbakhsh P, Saadat N, Azizi F. Lipid ratios and appropriate cut off values for prediction of diabetes: A cohort of Iranian men and women. Lipids Health Dis. (2010) 9:85. doi: 10.1186/1476-511X-9-85</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1476-511X-9-85</ArticleId><ArticleId IdType="pmc">PMC2933665</ArticleId><ArticleId IdType="pubmed">20712907</ArticleId></ArticleIdList></Reference><Reference><Citation>Cerdas Pérez S. Menopause and diabetes. Climacteric. (2023) 26:216–21. doi: 10.1080/13697137.2023.2184252</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/13697137.2023.2184252</ArticleId><ArticleId IdType="pubmed">37011666</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng M, Zhou J, Tang Z, Xiang J, Yi J, Peng Y, et al. . The correlation between plasma total homocysteine level and gestational diabetes mellitus in a chinese han population. Sci Rep. (2020) 10:18679. doi: 10.1038/s41598-020-75797-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-75797-w</ArticleId><ArticleId IdType="pmc">PMC7596467</ArticleId><ArticleId IdType="pubmed">33122744</ArticleId></ArticleIdList></Reference><Reference><Citation>Lv Q, Meng XF, He FF, Chen S, Su H, Xiong J, et al. . High serum uric acid and increased risk of type 2 diabetes: A systemic review and meta-analysis of prospective cohort studies. PloS One. (2013) 8:e56864. doi: 10.1371/journal.pone.0056864</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0056864</ArticleId><ArticleId IdType="pmc">PMC3577701</ArticleId><ArticleId IdType="pubmed">23437258</ArticleId></ArticleIdList></Reference><Reference><Citation>Durlach V, Vergès B, Al-Salameh A, Bahougne T, Benzerouk F, Berlin I, et al. . Smoking and diabetes interplay: A comprehensive review and joint statement. Diabetes Metab. (2022) 48:101370. doi: 10.1016/j.diabet.2022.101370</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2022.101370</ArticleId><ArticleId IdType="pubmed">35779852</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu T, Nakanishi T, Yoshiji S, Butler-Laporte G, Greenwood CMT, Richards JB. Dose-dependent association of alcohol consumption with obesity and type 2 diabetes: mendelian randomization analyses. J Clin Endocrinol Metab. (2023) 108:3320–9. doi: 10.1210/clinem/dgad324</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgad324</ArticleId><ArticleId IdType="pubmed">37368847</ArticleId></ArticleIdList></Reference><Reference><Citation>Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, et al. . Association between serum uric acid and development of type 2 diabetes. Diabetes Care. (2009) 32:1737–42. doi: 10.2337/dc09-0288</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-0288</ArticleId><ArticleId IdType="pmc">PMC2732137</ArticleId><ArticleId IdType="pubmed">19549729</ArticleId></ArticleIdList></Reference><Reference><Citation>Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. (2008) 31:361–2. doi: 10.2337/dc07-1276</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc07-1276</ArticleId><ArticleId IdType="pubmed">17977935</ArticleId></ArticleIdList></Reference><Reference><Citation>Niskanen L, Laaksonen DE, Lindström J, Eriksson JG, Keinänen-Kiukaanniemi S, Ilanne-Parikka P, et al. . Serum uric acid as a harbinger of metabolic outcome in subjects with impaired glucose tolerance: the finnish diabetes prevention study. Diabetes Care. (2006) 29:709–11. doi: 10.2337/diacare.29.03.06.dc05-1465</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.29.03.06.dc05-1465</ArticleId><ArticleId IdType="pubmed">16505534</ArticleId></ArticleIdList></Reference><Reference><Citation>Ishiro M, Takaya R, Mori Y, Takitani K, Kono Y, Okasora K, et al. . Association of uric acid with obesity and endothelial dysfunction in children and early adolescents. Ann Nutr Metab. (2013) 62:169–76. doi: 10.1159/000346227</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000346227</ArticleId><ArticleId IdType="pubmed">23446318</ArticleId></ArticleIdList></Reference><Reference><Citation>Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: nadph oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. (2007) 293:C584–96. doi: 10.1152/ajpcell.00600.2006</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpcell.00600.2006</ArticleId><ArticleId IdType="pubmed">17428837</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. . Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. (2013) 62:3307–15. doi: 10.2337/db12-1814</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db12-1814</ArticleId><ArticleId IdType="pmc">PMC3781481</ArticleId><ArticleId IdType="pubmed">24065788</ArticleId></ArticleIdList></Reference><Reference><Citation>Quiñones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, et al. . Effect of insulin on uric acid excretion in humans. Am J Physiol. (1995) 268:E1–5. doi: 10.1152/ajpendo.1995.268.1.E1</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.1995.268.1.E1</ArticleId><ArticleId IdType="pubmed">7840165</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang L, Li L, Xu Z, Tang Y, Zhai Y, Fu X, et al. . Non-linear associations of atherogenic index of plasma with prediabetes and type 2 diabetes mellitus among chinese adults aged 45 years and above: A cross-sectional study from charls. Front Endocrinol (Lausanne). (2024) 15:1360874. doi: 10.3389/fendo.2024.1360874</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2024.1360874</ArticleId><ArticleId IdType="pmc">PMC11018972</ArticleId><ArticleId IdType="pubmed">38628590</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin B, Wu Z, Xia Y, Xiao S, Chen L, Li Y. Non-linear association of atherogenic index of plasma with insulin resistance and type 2 diabetes: A cross-sectional study. Cardiovasc Diabetol. (2023) 22:157. doi: 10.1186/s12933-023-01886-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01886-5</ArticleId><ArticleId IdType="pmc">PMC10311747</ArticleId><ArticleId IdType="pubmed">37386500</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Z, Franco OH, Lamballais S, Ikram MA, Schoufour JD, Muka T, et al. . Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: the rotterdam study. Clin Nutr. (2020) 39:242–9. doi: 10.1016/j.clnu.2019.01.021</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.clnu.2019.01.021</ArticleId><ArticleId IdType="pubmed">30739809</ArticleId></ArticleIdList></Reference><Reference><Citation>Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: A high-risk state for diabetes development. Lancet. (2012) 379:2279–90. doi: 10.1016/S0140-6736(12)60283-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(12)60283-9</ArticleId><ArticleId IdType="pmc">PMC3891203</ArticleId><ArticleId IdType="pubmed">22683128</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng X, Zhang X, Han Y, Hu H, Cao C. Nonlinear relationship between atherogenic index of plasma and the risk of prediabetes: A retrospective study based on chinese adults. Cardiovasc Diabetol. (2023) 22:205. doi: 10.1186/s12933-023-01934-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01934-0</ArticleId><ArticleId IdType="pmc">PMC10416492</ArticleId><ArticleId IdType="pubmed">37563588</ArticleId></ArticleIdList></Reference><Reference><Citation>Fox CS, Pencina MJ, Meigs JB, Vasan RS, Levitzky YS, D'Agostino RB, Sr. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the framingham heart study. Circulation. (2006) 113:2914–8. doi: 10.1161/circulationaha.106.613828</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/circulationaha.106.613828</ArticleId><ArticleId IdType="pubmed">16785337</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39664526</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>30</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">2296-2565</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in public health</Title><ISOAbbreviation>Front Public Health</ISOAbbreviation></Journal><ArticleTitle>Socioeconomic and ethnic inequalities increase the risk of type 2 diabetes: an analysis of NHS health check attendees in Birmingham.</ArticleTitle><Pagination><StartPage>1477418</StartPage><MedlinePgn>1477418</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1477418</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fpubh.2024.1477418</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="UNASSIGNED">Birmingham has a significantly higher type-II diabetes prevalence than the national average. This study aimed to investigate the association of socioeconomic deprivation and ethnicity on the risk of diabetes in Birmingham.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Data were included from 108,514 NHS Health Checks conducted in Birmingham between 2018 and 2023. Attributable fraction and multinomial logistic regression were used to estimate the number of events avoidable and the prevalence odds ratios (POR) of determinants respectively.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Attributable fraction analysis estimated that 64% of diabetes and 44% of pre-diabetes cases could be attributed to socioeconomic deprivation. Specifically, if Asian attendees in the least deprived areas had the same risk as White individuals in the least deprived areas, there would have been 1,056 fewer cases of diabetes and 2,226 fewer cases of pre-diabetes. Diabetes was significantly associated with Asian ethnicity (POR = 5.43, <i>p</i> < 0.001), Black ethnicity (POR = 3.15, <i>p</i> < 0.001) and Mixed ethnicity (POR = 2.79, <i>p</i> < 0.001). Pre-diabetes was also significantly associated with Asian ethnicity (POR = 3.06, <i>p</i> < 0.001), Black ethnicity (POR = 2.70, <i>p</i> < 0.001) and Mixed ethnicity (POR = 2.21, <i>p</i> < 0.001). The interaction effects between ethnicity and deprivation posed a greater risk of diabetes, especially for Asian attendees in the first (POR = 9.34, <i>p</i> < 0.001) and second (POR = 6.24, <i>p</i> < 0.001) most deprived quintiles.</AbstractText><AbstractText Label="DISCUSSION" NlmCategory="UNASSIGNED">The present findings demonstrate the association of ethnicity and socioeconomic deprivation on the risk of diabetes and pre-diabetes. It underscores the necessity for targeted interventions and policies to address these inequalities.</AbstractText><CopyrightInformation>Copyright © 2024 Au-Yeung, Ellis, Dallaway, Riley, Varney and Howell-Jones.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Au-Yeung</LastName><ForeName>Chung Him</ForeName><Initials>CH</Initials><AffiliationInfo><Affiliation>Public Health, Birmingham City Council, Birmingham, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ellis</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Public Health, Birmingham City Council, Birmingham, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dallaway</LastName><ForeName>Alexander</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Riley</LastName><ForeName>Jenny</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Public Health, Birmingham City Council, Birmingham, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Varney</LastName><ForeName>Justin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Public Health, Birmingham City Council, Birmingham, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Howell-Jones</LastName><ForeName>Rebecca</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Public Health, Birmingham City Council, Birmingham, United Kingdom.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Public Health</MedlineTA><NlmUniqueID>101616579</NlmUniqueID><ISSNLinking>2296-2565</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012959" MajorTopicYN="Y">Socioeconomic Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013222" MajorTopicYN="Y">State Medicine</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005006" MajorTopicYN="Y">Ethnicity</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054624" MajorTopicYN="N">Health Status Disparities</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">body mass index</Keyword><Keyword MajorTopicYN="N">glycated hemoglobin A1c</Keyword><Keyword MajorTopicYN="N">health inequities</Keyword><Keyword MajorTopicYN="N">logistic models</Keyword><Keyword MajorTopicYN="N">primary health care</Keyword><Keyword MajorTopicYN="N">social determinants of health</Keyword><Keyword MajorTopicYN="N">socioeconomic factors</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>11</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>4</Hour><Minute>52</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39664526</ArticleId><ArticleId IdType="pmc">PMC11631903</ArticleId><ArticleId IdType="doi">10.3389/fpubh.2024.1477418</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Public Health England . Health Matters: Preventing Type 2 Diabetes. (2018). Available at: https://www.gov.uk/government/publications/health-matters-preventing-type-2-diabetes/health-matters-preventing-type-2-diabetes (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Diabetes UK. Diabetes is Serious 2022 report: Recovering diabetes care: preventing the mounting crisis. (2022). Available at: https://diabetes-resources-production.s3.eu-west-1.amazonaws.com/resources-s3/public/2022-04/Diabetes%20is%20Serious%20Report%20Digital_0.pdf (accessed April 08, 2024).</Citation></Reference><Reference><Citation>Trikkalinou A, Papazafiropoulou AK, Melidonis A. Type 2 Diabetes and Quality of Life. World J Diabetes. (2017) 8:120–9. 10.4239/wjd.v8.i4.120</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v8.i4.120</ArticleId><ArticleId IdType="pmc">PMC5394731</ArticleId><ArticleId IdType="pubmed">28465788</ArticleId></ArticleIdList></Reference><Reference><Citation>Office for Health Improvement & Disparities . Review of NHS Health Checks: Terms of Reference. (2021). Available at: https://www.gov.uk/government/publications/nhs-health-check-programme-review/review-of-nhs-health-checks-terms-of-reference (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Office for Health Improvement & Disparities . Fingertips: Diabetes QOF prevalence (17+). (2021). Available at: https://fingertips.phe.org.uk/search/diabetes#page/4/gid/1/pat/15/ati/502/are/E08000025/iid/241/age/187/sex/4/cat/-1/ctp/-1/yrr/1/cid/4/tbm/1 (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Office for Health Improvement & Disparities . Fingertips: Percentage of people with type 2 diabetes aged 40 to 64. (2023). Available at: https://fingertips.phe.org.uk/profile/diabetes-ft/data#page/4/gid/1938133138/pat/159/par/K02000001/ati/15/are/E92000001/iid/93223/age/1/sex/4/cat/-1/ctp/-1/yrr/1/cid/4/tbm/1 (accessed April 10, 2024).</Citation></Reference><Reference><Citation>Junker K, Buckley CM, Millar SR, Flynn S, Harrington JM, Kearney PM, et al. . The prevalence and correlates of pre-diabetes in middle- to older-aged Irish adults using three diagnostic methods. PLoS ONE. (2021) 16:e0253537. 10.1371/journal.pone.0253537</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0253537</ArticleId><ArticleId IdType="pmc">PMC8232457</ArticleId><ArticleId IdType="pubmed">34170932</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia M, Liu K, Feng J, Zheng Z, Xie X. Prevalence and risk factors of type 2 diabetes and prediabetes among 53,288 middle-aged and elderly adults in China: a cross-sectional study. Diabetes Metab Syndr Obes. (2021) 14:1975–85. 10.2147/DMSO.S305919</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S305919</ArticleId><ArticleId IdType="pmc">PMC8104985</ArticleId><ArticleId IdType="pubmed">33976558</ArticleId></ArticleIdList></Reference><Reference><Citation>Amir R, Suhl S, Alexander CM. Renal evaluation and protection. Clin Geriatr Med. (2020) 36:431–45. 10.1016/j.cger.2020.04.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cger.2020.04.004</ArticleId><ArticleId IdType="pubmed">32586473</ArticleId></ArticleIdList></Reference><Reference><Citation>Fong HK, Desai R, Faisaluddin M, Parekh T, Mahmood A, Shah V, et al. . Sex disparities in cardiovascular disease outcomes among geriatric patients with prediabetes. Prim Care Diabetes. (2021) 15:95–100. 10.1016/j.pcd.2020.06.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2020.06.005</ArticleId><ArticleId IdType="pubmed">32631808</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan Z, Cai M, Han X, Chen Q, Lu H. The interaction between age and risk factors for diabetes and prediabetes: a community-based cross-sectional study. Diabetes Metab Syndr Obes. (2023) 16:85–93. 10.2147/DMSO.S390857</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S390857</ArticleId><ArticleId IdType="pmc">PMC9843502</ArticleId><ArticleId IdType="pubmed">36760587</ArticleId></ArticleIdList></Reference><Reference><Citation>Marmot M. Fair Society, Healthy Lives: The Marmot Review (Strategic Review of Health Inequalities in England Post-2010). UCL Institute of Health Inequality (2010). Available at: https://www.parliament.uk/globalassets/documents/fair-society-healthy-lives-full-report.pdf</Citation></Reference><Reference><Citation>Marmot M. Health equity in England: the Marmot review 10 years on. BMJ. (2020) 368:m693. 10.1136/bmj.m693</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m693</ArticleId><ArticleId IdType="pubmed">32094110</ArticleId></ArticleIdList></Reference><Reference><Citation>Office for Health Improvement & Disparities . Public health profiles. (2023). Available at: https://fingertips.phe.org.uk/search/deprivation#page/3/gid/1/pat/6/par/E12000005/ati/401/are/E08000025/iid/1730/age/1/sex/4/cat/-1/ctp/-1/yrr/1/cid/4/tbm/1 (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Birmingham City Council . Birmingham Joint Health and Wellbeing Strategy- Creating a Bolder, Healthier City 2022-2030. Birmingham City Council (2022). Available at: https://www.birmingham.gov.uk/downloads/file/23756/creating_a_bolder_healthier_city_2022_to_2030 (accessed December 14, 2023).</Citation></Reference><Reference><Citation>Clark ML, Utz SW. Social determinants of type 2 diabetes and health in the United States. World J Diabetes. (2014) 5:296–304. 10.4239/wjd.v5.i3.296</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v5.i3.296</ArticleId><ArticleId IdType="pmc">PMC4058734</ArticleId><ArticleId IdType="pubmed">24936251</ArticleId></ArticleIdList></Reference><Reference><Citation>Chizia OS, Bellingham-Young D. Socioeconomic determinants of type 2 diabetes in England. J Health Soc Care Improv. (2017) 1:52–61. Available at: http://hdl.handle.net/2436/620699</Citation></Reference><Reference><Citation>Simpson EH. The interpretation of interaction in contingency tables. J R Stat Soc Series B Stat Methodol. (1951) 13:238–41. 10.1111/j.2517-6161.1951.tb00088.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.2517-6161.1951.tb00088.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Whincup PH, Nightingale CM, Owen CG, Rudnicka AR, Gibb I, McKay CM, et al. . Early emergence of ethnic differences in type 2 diabetes precursors in the UK: the Child Heart and Health Study in England (CHASE Study). PLoS Med. (2010) 7:1–10. 10.1371/journal.pmed.1000263</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1000263</ArticleId><ArticleId IdType="pmc">PMC2857652</ArticleId><ArticleId IdType="pubmed">20421924</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas C, Nightingale CM, Donin AS, Rudnicka AR, Owen CG, Sattar N, et al. . Socio-Economic position and type 2 diabetes risk factors: patterns in UK children of South Asian, Black African-Caribbean and White European origin. PLoS ONE. (2012) 7:1–11. 10.1371/journal.pone.0032619</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0032619</ArticleId><ArticleId IdType="pmc">PMC3296720</ArticleId><ArticleId IdType="pubmed">22412897</ArticleId></ArticleIdList></Reference><Reference><Citation>Cook LA, Sachs J, Weiskopf NG. The quality of social determinants data in the electronic health record: a systematic review. J Am Med Inform Assoc. (2021) 29:187–96. 10.1093/jamia/ocab199</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jamia/ocab199</ArticleId><ArticleId IdType="pmc">PMC8714289</ArticleId><ArticleId IdType="pubmed">34664641</ArticleId></ArticleIdList></Reference><Reference><Citation>Marmot M, Wilkinson R. Social Determinants of Health. Oxford: Oxford University Press. (2005). 10.1093/acprof:oso/9780198565895.001.0001</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/acprof:oso/9780198565895.001.0001</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown EM, Franklin SM, Ryan JL, Canterberry M, Bowe A, Pantell MS, et al. . Assessing area-level deprivation as a proxy for individual-level social risks. Am J Prev Med. (2023) 65:1163–71. 10.1016/j.amepre.2023.06.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2023.06.006</ArticleId><ArticleId IdType="pubmed">37302512</ArticleId></ArticleIdList></Reference><Reference><Citation>Charlton J, Rudisill C, Bhattarai N, Gulliford M. Impact of deprivation on occurrence, outcomes and health care costs of people with multiple morbidity. J Health Serv Res Policy. (2013) 18:215–23. 10.1177/1355819613493772</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1355819613493772</ArticleId><ArticleId IdType="pmc">PMC3808175</ArticleId><ArticleId IdType="pubmed">23945679</ArticleId></ArticleIdList></Reference><Reference><Citation>Gorard S, Boliver V, Siddiqui N, Banerjee P. Which are the most suitable contextual indicators for use in widening participation to HE? Res Pap Educ. (2019) 34:99–129. 10.1080/02671522.2017.1402083</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/02671522.2017.1402083</ArticleId></ArticleIdList></Reference><Reference><Citation>James GD, Baker P, Badrick E, Mathur R, Hull S, Robson J. Ethnic and social disparity in glycaemic control in type 2 diabetes: cohort study in general practice 2004-9. J R Soc Med. (2012) 105:300–8. 10.1258/jrsm.2012.110289</Citation><ArticleIdList><ArticleId IdType="doi">10.1258/jrsm.2012.110289</ArticleId><ArticleId IdType="pmc">PMC3407404</ArticleId><ArticleId IdType="pubmed">22396467</ArticleId></ArticleIdList></Reference><Reference><Citation>Catherine J, Russell M, Peter C. The impact of race and socioeconomic factors on pediatric diabetes. EClinicalMedicine. (2021) 42:101186. 10.1016/j.eclinm.2021.101186</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eclinm.2021.101186</ArticleId><ArticleId IdType="pmc">PMC8585622</ArticleId><ArticleId IdType="pubmed">34805811</ArticleId></ArticleIdList></Reference><Reference><Citation>Nagar SD, Nápoles AM, Jordan IK, Mariño-Ramírez L. Socioeconomic deprivation and genetic ancestry interact to modify type 2 diabetes ethnic disparities in the United Kingdom. EClinicalMedicine. (2021) 37:100960. 10.1016/j.eclinm.2021.100960</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eclinm.2021.100960</ArticleId><ArticleId IdType="pmc">PMC8343245</ArticleId><ArticleId IdType="pubmed">34386746</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. Geneva: World Health Organization; (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">26158184</ArticleId></ArticleIdList></Reference><Reference><Citation>Miller JE. The Chicago Guide to Writing about Multivariate Analysis, Second Edition. Chicago Guides to Writing, Editing, and Publishing. Chicago, IL: University of Chicago Press; (2013), p. 215. 10.7208/chicago/9780226038193.001.0001</Citation><ArticleIdList><ArticleId IdType="doi">10.7208/chicago/9780226038193.001.0001</ArticleId></ArticleIdList></Reference><Reference><Citation>Klenke A. Wahrscheinlichkeitstheorie. Germany: Springer; (2013), p. 100. 10.1007/978-3-642-36018-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/978-3-642-36018-3</ArticleId></ArticleIdList></Reference><Reference><Citation>Loeve M. Probability Theory, 4th Edn. No. 45 in Graduate Texts in Mathematics. New York, NY: Springer-Verlag (1977), p. 246.</Citation></Reference><Reference><Citation>Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc. (1988) 83:1198–202. 10.1080/01621459.1988.10478722</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/01621459.1988.10478722</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenacre M. Compositional data analysis. Annu Rev Stat Appl. (2021) 8:271–99. 10.1146/annurev-statistics-042720-124436</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-statistics-042720-124436</ArticleId></ArticleIdList></Reference><Reference><Citation>Bodner TE. What improves with increased missing data imputations? Struct Equ Modeling. (2008) 15:651–75. 10.1080/10705510802339072</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/10705510802339072</ArticleId></ArticleIdList></Reference><Reference><Citation>White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. (2011) 30:377–99. 10.1002/sim.4067</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/sim.4067</ArticleId><ArticleId IdType="pubmed">21225900</ArticleId></ArticleIdList></Reference><Reference><Citation>Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. (2007) 8:206–13. 10.1007/s11121-007-0070-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11121-007-0070-9</ArticleId><ArticleId IdType="pubmed">17549635</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubin DB. Inference and missing data. Biometrika. (1976) 63:581–92. 10.1093/biomet/63.3.581</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/biomet/63.3.581</ArticleId></ArticleIdList></Reference><Reference><Citation>Benichou J. A review of adjusted estimators of attributable risk. Stat Methods Med Res. (2001) 10:195–216. 10.1177/096228020101000303</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/096228020101000303</ArticleId><ArticleId IdType="pubmed">11446148</ArticleId></ArticleIdList></Reference><Reference><Citation>Gnardellis C, Notara V, Papadakaki M, Gialamas V, Chliaoutakis I. Overestimation of relative risk and prevalence ratio: misuse of logistic modeling. Diagnostics. (2022) 12:2851. 10.3390/diagnostics12112851</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/diagnostics12112851</ArticleId><ArticleId IdType="pmc">PMC9689401</ArticleId><ArticleId IdType="pubmed">36428910</ArticleId></ArticleIdList></Reference><Reference><Citation>Mansournia MA, Altman DG. Population attributable fraction. BMJ. (2018) 360:k757. 10.1136/bmj.k757</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.k757</ArticleId><ArticleId IdType="pubmed">29472187</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenland S, Drescher K. Maximum likelihood estimation of the attributable fraction from logistic models. Biometrics. (1993) 49:865–72. 10.2307/2532206</Citation><ArticleIdList><ArticleId IdType="doi">10.2307/2532206</ArticleId><ArticleId IdType="pubmed">8241375</ArticleId></ArticleIdList></Reference><Reference><Citation>Brady AR. Adjusted population attributable fractions from logistic regression. Stata J. (1998) 7:8–12.</Citation></Reference><Reference><Citation>Agresti A. An Introduction to Categorical Data Analysis, 2nd Edn. Hoboken, NJ: John Wiley & Sons (1996).</Citation></Reference><Reference><Citation>Kleinbaum DG, Klein M. Logistic Regression: A Self Learning Text, 3rd Edn. New York, NY: Springer (2010). 10.1007/978-1-4419-1742-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/978-1-4419-1742-3</ArticleId></ArticleIdList></Reference><Reference><Citation>Long JS. Regression Models for Categorical and Limited Dependent Variables: Advanced Quantitative Techniques in the Social Sciences,Vol. 7. Thousand Oaks, CA: Sage Publications (1997).</Citation></Reference><Reference><Citation>Tamhane AR, Westfall AO, Burkholder GA, Cutter GR. Prevalence odds ratio versus prevalence ratio: choice comes with consequences. Stat Med. (2016) 35:5730–5. Erratum in Stat Med. (2017) 36: 3760. 10.1002/sim.7059</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/sim.7059</ArticleId><ArticleId IdType="pmc">PMC5135596</ArticleId><ArticleId IdType="pubmed">27460748</ArticleId></ArticleIdList></Reference><Reference><Citation>Pham TM, Carpenter JR, Morris TP, Sharma M, Petersen I. Ethnic differences in the prevalence of type 2 diabetes diagnoses in the UK: cross-sectional analysis of the health improvement network primary care database. Clin Epidemiol. (2019) 11:1081–8. 10.2147/CLEP.S227621</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/CLEP.S227621</ArticleId><ArticleId IdType="pmc">PMC6948201</ArticleId><ArticleId IdType="pubmed">32021464</ArticleId></ArticleIdList></Reference><Reference><Citation>Das-Munshi J, Ashworth M, Dewey ME, Gaughran F, Hull S, Morgan C, et al. . Type 2 diabetes mellitus in people with severe mental illness: inequalities by ethnicity and age. Cross-sectional analysis of 588 408 records from the UK. Diabet Med. (2017) 34:916–24. 10.1111/dme.13298</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13298</ArticleId><ArticleId IdType="pmc">PMC5484374</ArticleId><ArticleId IdType="pubmed">27973692</ArticleId></ArticleIdList></Reference><Reference><Citation>Gardner MP, Wang J, Hazlehurst JM, Sainsbury C, Blissett J, Nirantharakumar K, et al. . Risk of progression from pre-diabetes to type 2 diabetes in a large UK adult cohort. Diabet Med. (2023) 40:e14996. 10.1111/dme.14996</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14996</ArticleId><ArticleId IdType="pmc">PMC10099224</ArticleId><ArticleId IdType="pubmed">36308066</ArticleId></ArticleIdList></Reference><Reference><Citation>Hall LML, Sattar N, Gill JMR. Risk of metabolic and vascular disease in South Asians: potential mechanisms for increased insulin resistance. Future Lipidol. (2008) 3:411–24. 10.2217/17460875.3.4.411</Citation><ArticleIdList><ArticleId IdType="doi">10.2217/17460875.3.4.411</ArticleId></ArticleIdList></Reference><Reference><Citation>Yajnik C, Lubree H, Rege S, Naik S, Deshpande J, Deshpande S, et al. . Adiposity and hyperinsulinaemia in Indians are present at birth. J Clin Endocrinol Metab. (2002) 87:5575–80. 10.1210/jc.2002-020434</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2002-020434</ArticleId><ArticleId IdType="pubmed">12466355</ArticleId></ArticleIdList></Reference><Reference><Citation>Gujral UP, Pradeepa R, Weber MB, Narayan KV, Mohan V. Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. Ann N Y Acad Sci. (2013) 1281:51–63. 10.1111/j.1749-6632.2012.06838.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1749-6632.2012.06838.x</ArticleId><ArticleId IdType="pmc">PMC3715105</ArticleId><ArticleId IdType="pubmed">23317344</ArticleId></ArticleIdList></Reference><Reference><Citation>Neel JV. Diabetes mellitus: a ‘thrifty' genotype rendered detrimental by ‘progress'? Am J Hum Genet. (1962) 14:353–62.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1932342</ArticleId><ArticleId IdType="pubmed">13937884</ArticleId></ArticleIdList></Reference><Reference><Citation>Diamond J. The double puzzle of diabetes. Nature. (2003) 423:599–602. 10.1038/423599a</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/423599a</ArticleId><ArticleId IdType="pubmed">12789325</ArticleId></ArticleIdList></Reference><Reference><Citation>Piccinini F, Polidori DC, Gower BA, Fernandez JR, Bergman RN. Dissection of hepatic versus extra-hepatic insulin clearance: Ethnic differences in childhood. Diabetes Obes Metab. (2018) 20:2869–75. 10.1111/dom.13471</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13471</ArticleId><ArticleId IdType="pmc">PMC6482814</ArticleId><ArticleId IdType="pubmed">30019375</ArticleId></ArticleIdList></Reference><Reference><Citation>Ladwa M, Bello O, Hakim O, Boselli ML, Shojaee-Moradie F, Umpleby AM, et al. . Exploring the determinants of ethnic differences in insulin clearance between men of Black African and White European ethnicity. Acta Diabetol. (2022) 59:329–37. 10.1007/s00592-021-01809-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-021-01809-4</ArticleId><ArticleId IdType="pmc">PMC8863750</ArticleId><ArticleId IdType="pubmed">34661756</ArticleId></ArticleIdList></Reference><Reference><Citation>Public Health England . Adult obesity and type 2 diabetes. (2014). Available at: https://assets.publishing.service.gov.uk/media/5a7f069140f0b6230268d059/Adult_obesity_and_type_2_diabetes.pdf (accessed May 24, 2023).</Citation></Reference><Reference><Citation>NHS Health and Social Care Information Centre Public Health Statistics . Health Survey for England - 2004: Health of ethnic minorities, Headline results. (2006). Available at: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2004-health-of-ethnic-minorities-headline-results (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, et al. . Social determinants of health and diabetes: a scientific review. Diabetes Care. (2020) 44:258–79. 10.2337/dci20-0053</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci20-0053</ArticleId><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Public Health England . England's Poorest Areas Are Fast Food Hotspots. (2018). Available at: https://www.gov.uk/government/news/englands-poorest-areas-are-fast-food-hotspots (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. . Association between exposure to low to moderate arsenic levels and incident cardiovascular disease: a prospective cohort study. Ann Intern Med. (2013) 159:649–59. 10.7326/0003-4819-159-10-201311190-00719</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/0003-4819-159-10-201311190-00719</ArticleId><ArticleId IdType="pmc">PMC4157936</ArticleId><ArticleId IdType="pubmed">24061511</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahern M, Brown C, Dukas S. A National study of the association between food environments and county-level health outcomes. J Rural Health. (2011) 27:367–79. 10.1111/j.1748-0361.2011.00378.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1748-0361.2011.00378.x</ArticleId><ArticleId IdType="pubmed">21967380</ArticleId></ArticleIdList></Reference><Reference><Citation>Riley J, Antza C, Kempegowda P, Subramanian A, Chandan JS, Gokhale K, et al. . Social deprivation and incident diabetes-related foot disease in patients with type 2 diabetes: a population-based cohort study. Diabetes Care. (2021) 44:731–9. 10.2337/dc20-1027</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-1027</ArticleId><ArticleId IdType="pubmed">33483358</ArticleId></ArticleIdList></Reference><Reference><Citation>Ministry Ministry of Housing Communities and Local Government . English Indices of Deprivation 2019. (2018). Available at: https://www.ethnicity-facts-figures.service.gov.uk/uk-population-by-ethnicity/demographics/people-living-in-deprived-neighbourhoods/latest/ (accessed May 24, 2023).</Citation></Reference><Reference><Citation>Eibich P, Green A, Hattersley AT, Jennison C, Lonergan M, Pearson ER, et al. . Costs and treatment pathways for type 2 diabetes in the UK: a Mastermind Cohort Study. Diabetes Ther. (2017) 8:1031–45. 10.1007/s13300-017-0296-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-017-0296-x</ArticleId><ArticleId IdType="pmc">PMC5630552</ArticleId><ArticleId IdType="pubmed">28879529</ArticleId></ArticleIdList></Reference><Reference><Citation>Carlsson S, Hammar N, Grill V. Alcohol consumption and type 2 diabetes: meta-analysis of epidemiological studies indicates a U-shaped relationship. Diabetologia. (2005) 48:1051–4. 10.1007/s00125-005-1768-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-005-1768-5</ArticleId><ArticleId IdType="pubmed">15864527</ArticleId></ArticleIdList></Reference><Reference><Citation>Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care. (2005) 28:719–25. 10.2337/diacare.28.3.719</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.28.3.719</ArticleId><ArticleId IdType="pubmed">15735217</ArticleId></ArticleIdList></Reference><Reference><Citation>Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. . Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. (2009) 32:2123–32. 10.2337/dc09-0227</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-0227</ArticleId><ArticleId IdType="pmc">PMC2768203</ArticleId><ArticleId IdType="pubmed">19875607</ArticleId></ArticleIdList></Reference><Reference><Citation>Li XH, Yu Ff, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. Am J Clin Nutr. (2016) 103:818–29. 10.3945/ajcn.115.114389</Citation><ArticleIdList><ArticleId IdType="doi">10.3945/ajcn.115.114389</ArticleId><ArticleId IdType="pubmed">26843157</ArticleId></ArticleIdList></Reference><Reference><Citation>Gérard MJ, Klatsky AL, Siegelaub AB, Friedman GD, Feldman R. Serum glucose levels and alcohol-consumption habits in a large population. Diabetes. (1977) 26:780–5. 10.2337/diab.26.8.780</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.26.8.780</ArticleId><ArticleId IdType="pubmed">885299</ArticleId></ArticleIdList></Reference><Reference><Citation>Scragg R, Metcalf P. Do triglycerides explain the U-shaped relation between alcohol and diabetes risk? Results from a cross-sectional survey of alcohol and plasma glucose. Diabetes Res Clin Pract. (2004) 66:147–56. 10.1016/j.diabres.2004.02.022</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2004.02.022</ArticleId><ArticleId IdType="pubmed">15533582</ArticleId></ArticleIdList></Reference><Reference><Citation>Klop B. do Rego AT, Cabezas MC. Alcohol and plasma triglycerides. Curr Opin Lipidol. (2013) 24:321–6. 10.1097/MOL.0b013e3283606845</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MOL.0b013e3283606845</ArticleId><ArticleId IdType="pubmed">23511381</ArticleId></ArticleIdList></Reference><Reference><Citation>Traversy G, Chaput JP. Alcohol consumption and obesity: an update. Curr Obes Rep. (2015) 4:122–30. 10.1007/s13679-014-0129-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13679-014-0129-4</ArticleId><ArticleId IdType="pmc">PMC4338356</ArticleId><ArticleId IdType="pubmed">25741455</ArticleId></ArticleIdList></Reference><Reference><Citation>Paulson QX, Hong J, Holcomb VB, Nunez NP. Effects of body weight and alcohol consumption on insulin sensitivity. Nutr J. (2010) 9:14. 10.1186/1475-2891-9-14</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1475-2891-9-14</ArticleId><ArticleId IdType="pmc">PMC2859759</ArticleId><ArticleId IdType="pubmed">20307313</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SJ, Kim DJ. Alcoholism and diabetes mellitus. Diabetes Metab J. (2012) 36:108–15. 10.4093/dmj.2012.36.2.108</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2012.36.2.108</ArticleId><ArticleId IdType="pmc">PMC3335891</ArticleId><ArticleId IdType="pubmed">22540046</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsubono Y, Yamada S, Nishino Y, Tsuji I, Hisamichi S. Choice of comparison group in assessing the health effects of moderate alcohol consumption. JAMA. (2001) 286:1177–8. 10.1001/jama.286.10.1177</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.286.10.1177</ArticleId><ArticleId IdType="pubmed">11559261</ArticleId></ArticleIdList></Reference><Reference><Citation>Chikritzhs T, Fillmore K, Stockwell T. A healthy dose of scepticism: four good reasons to think again about protective effects of alcohol on coronary heart disease. Drug Alcohol Rev. (2009) 28:441–4. 10.1111/j.1465-3362.2009.00052.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1465-3362.2009.00052.x</ArticleId><ArticleId IdType="pubmed">19594799</ArticleId></ArticleIdList></Reference><Reference><Citation>Schrieks IC, Heil ALJ, Hendriks HFJ, Mukamal KJ, Beulens JWJ. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. (2015) 38:723–32. 10.2337/dc14-1556</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc14-1556</ArticleId><ArticleId IdType="pubmed">25805864</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiss DA. The relationship between alcohol and glycohemoglobin: a biopsychosocial perspective. Biores Open Access. (2019) 8:146–54. 10.1089/biores.2019.0009</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/biores.2019.0009</ArticleId><ArticleId IdType="pmc">PMC6776959</ArticleId><ArticleId IdType="pubmed">31588381</ArticleId></ArticleIdList></Reference><Reference><Citation>Hellman R. When are HbA1c values misleading? AACE Clin Case Rep. (2016) 2:e377–9. 10.4158/EP161209.CO</Citation><ArticleIdList><ArticleId IdType="doi">10.4158/EP161209.CO</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghazanfari Z, Haghdoost AA, Alizadeh SM, Atapour J, Zolala F. A comparison of HbA1c and fasting blood sugar tests in general population. Int J Prev Med. (2010) 1:187–94.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3075530</ArticleId><ArticleId IdType="pubmed">21566790</ArticleId></ArticleIdList></Reference><Reference><Citation>Karakaya J, Akin S, Karagaoglu E, Gurlek A. The performance of hemoglobin A1c against fasting plasma glucose and oral glucose tolerance test in detecting prediabetes and diabetes. J Res Med Sci. (2014) 19:1051–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4310078</ArticleId><ArticleId IdType="pubmed">25657750</ArticleId></ArticleIdList></Reference><Reference><Citation>Holloszy JO. The biology of aging. Mayo Clin Proc. (2000) 75(Suppl):S3–8. Discussion S8–9. 10.1016/S0025-6196(19)30634-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0025-6196(19)30634-2</ArticleId><ArticleId IdType="pubmed">10959208</ArticleId></ArticleIdList></Reference><Reference><Citation>Melton LJI, Khosla S, Crowson CS, O'Connor MK, O'Fallon WM, Riggs BL. Epidemiology of sarcopenia. J Am Geriatr Soc. (2000) 48:625–30. 10.1111/j.1532-5415.2000.tb04719.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1532-5415.2000.tb04719.x</ArticleId><ArticleId IdType="pubmed">10855597</ArticleId></ArticleIdList></Reference><Reference><Citation>Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull. (2010) 95:139–59. 10.1093/bmb/ldq008</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bmb/ldq008</ArticleId><ArticleId IdType="pubmed">20200012</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenman R, Tennekoon V, Hill LG. Measuring bias in self-reported data. Int J Behav Healthc Res. (2011) 2:320–32. 10.1504/IJBHR.2011.043414</Citation><ArticleIdList><ArticleId IdType="doi">10.1504/IJBHR.2011.043414</ArticleId><ArticleId IdType="pmc">PMC4224297</ArticleId><ArticleId IdType="pubmed">25383095</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39663847</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>20</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1744-7658</ISSN><JournalIssue CitedMedium="Internet"><Volume>33</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Expert opinion on investigational drugs</Title><ISOAbbreviation>Expert Opin Investig Drugs</ISOAbbreviation></Journal><ArticleTitle>Survodutide in MASH: bridging the gap between hepatic and systemic metabolic dysfunction.</ArticleTitle><Pagination><StartPage>1167</StartPage><EndPage>1176</EndPage><MedlinePgn>1167-1176</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1080/13543784.2024.2441865</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="UNASSIGNED">Glucagon-like peptide-1 receptor (GLP-1 R) agonists have demonstrated remarkable effectiveness in the treatment of obesity and type 2 diabetes. Although these agents provide beneficial effects for metabolic dysfunction-associated steatohepatitis (MASH) through their glucose-lowering and weight-reducing properties, their efficacy in promoting fibrosis regression remains unproven. Survodutide, an investigational dual agonist that simultaneously targets both the glucagon receptor (GCGR) and GLP-1 R, has emerged as a promising therapeutic candidate for the comprehensive management of obesity and MASH. By engaging these two critical receptors, this drug has the potential to offer a broad spectrum of metabolic benefits, addressing multiple pathogenic mechanisms underlying these interrelated disorders.</AbstractText><AbstractText Label="AREAS COVERED" NlmCategory="UNASSIGNED">This review examines the pharmacological profile, clinical efficacy, and safety data of survodutide derived from phase 1 and 2 clinical trials.</AbstractText><AbstractText Label="EXPERT OPINION" NlmCategory="UNASSIGNED">Survodutide's dual agonism of the GCGR and GLP-1 R may surpass the efficacy of selective GLP-1 R agonists, demonstrating significant potential in resolving MASH and promoting fibrosis regression. The drug is generally well tolerated, with primarily manageable gastrointestinal adverse effects. As survodutide progresses through phase 3 clinical development, its potential to provide a more effective and holistic approach to treating MASH and its comorbidities may significantly improve patient outcomes and quality of life.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kaya</LastName><ForeName>Eda</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Medicine, Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Hepatology, The Global NASH Council, Washington, DC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yilmaz</LastName><ForeName>Yusuf</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Hepatology, The Global NASH Council, Washington, DC, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Gastroenterology, School of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alkhouri</LastName><ForeName>Naim</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Hepatology, The Global NASH Council, Washington, DC, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>17</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Expert Opin Investig Drugs</MedlineTA><NlmUniqueID>9434197</NlmUniqueID><ISSNLinking>1354-3784</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D018027">Receptors, Glucagon</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C585906">2-(2,6-dimethyl-4-(3-(4-(methylthio)phenyl)-3-oxo-1-propenyl)phenoxyl)-2-methylpropanoic acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011422">Propionates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D047188">Chalcones</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="Y">Fatty Liver</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018027" MajorTopicYN="N">Receptors, Glucagon</DescriptorName><QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000076722" MajorTopicYN="N">Drug Development</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D047188" MajorTopicYN="N">Chalcones</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Metabolic dysfunction-associated steatotic liver disease</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">fibrosis</Keyword><Keyword MajorTopicYN="N">metabolic disorders, comorbidities</Keyword><Keyword MajorTopicYN="N">metabolic dysfunction-associated steatohepatitis</Keyword><Keyword MajorTopicYN="N">obesity</Keyword><Keyword MajorTopicYN="N">survodutide</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>20</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>3</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39663847</ArticleId><ArticleId IdType="doi">10.1080/13543784.2024.2441865</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39663585</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>01</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>01</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1521-0758</ISSN><JournalIssue CitedMedium="Internet"><Volume>49</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month><Day>02</Day></PubDate></JournalIssue><Title>Ultrastructural pathology</Title><ISOAbbreviation>Ultrastruct Pathol</ISOAbbreviation></Journal><ArticleTitle>Metformin ameliorates diabetes-induced hepatic ultrastructural damage and the immune biomarker CD86 and inflammation in rats.</ArticleTitle><Pagination><StartPage>58</StartPage><EndPage>66</EndPage><MedlinePgn>58-66</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1080/01913123.2024.2440479</ELocationID><Abstract><AbstractText>Diabetes is a known inducer of hepatic ultrastructural alterations, and the expression of the immune biomarker that involves in T-cell immunity, cluster of differentiation 86 (CD86) is increased in diabetic patients with liver cirrhosis. The antidiabetic drug metformin has not previously been used to protect against type 2 diabetes mellitus (T2DM)-induced alternations in hepatic ultrastructure and the induction of the hepatic CD86/inflammation axis in diabetic animal models induced by streptozotocin and a high fat diet. To test our hypotheses, T2DM was induced in rats (model group) and the protective animals were treated with the antidiabetic drug metformin (200 mg/kg) until being sacrificed at week 12. A profound ultrastructural damage to the hepatocytes and liver tissue injury was induced by T2DM as demonstrated by hepatocytes with dark shrunken irregular nuclei, rarefied cytoplasm with lipid droplets, mitochondria with disrupted cristae, as well as depletion of glycogen granules and damaged of liver architecture, which were effectively (<i>p</i> < .0001) protected with metformin. Metformin also suppressed diabetes-induced hepatic gene expression of CD86 and inflammation as well as glycemia and liver injury markers. Furthermore, a significant correlation between hepatocyte damage and CD86, inflammation, glycemia, and biomarkers of liver injury was observed. These findings demonstrate that diabetes is associated with the induction of the hepatic CD86/inflammation axis and hepatocyte ultrastructural alterations while being protected by metformin.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Alshahrani</LastName><ForeName>Mohammad Y</ForeName><Initials>MY</Initials><AffiliationInfo><Affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al Amri</LastName><ForeName>Fahad S</ForeName><Initials>FS</Initials><AffiliationInfo><Affiliation>Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Mohammed A</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alshahrani</LastName><ForeName>Abdulaziz S</ForeName><Initials>AS</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, College of Medicine, Najran University, Najran, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abdel Kader</LastName><ForeName>Dina H</ForeName><Initials>DH</Initials><AffiliationInfo><Affiliation>Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Almasabi</LastName><ForeName>Faris</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zafrah</LastName><ForeName>Hind</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dallak</LastName><ForeName>Mohammad</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Osman</LastName><ForeName>Osama M</ForeName><Initials>OM</Initials><AffiliationInfo><Affiliation>Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Ani</LastName><ForeName>Bahjat</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzamil</LastName><ForeName>Norah M</ForeName><Initials>NM</Initials><AffiliationInfo><Affiliation>Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>11</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Ultrastruct Pathol</MedlineTA><NlmUniqueID>8002867</NlmUniqueID><ISSNLinking>0191-3123</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9100L32L2N</RegistryNumber><NameOfSubstance UI="D008687">Metformin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D051940">B7-2 Antigen</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008687" MajorTopicYN="Y">Metformin</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051940" MajorTopicYN="Y">B7-2 Antigen</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="Y">Liver</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017208" MajorTopicYN="N">Rats, Wistar</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">CD86</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">hepatocyte ultrastructure</Keyword><Keyword MajorTopicYN="N">inflammation</Keyword><Keyword MajorTopicYN="N">metformin</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>1</Day><Hour>21</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>0</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39663585</ArticleId><ArticleId IdType="doi">10.1080/01913123.2024.2440479</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39662975</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>20</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>15</Day></DateRevised><Article PubModel="Electronic-Print"><Journal><ISSN IssnType="Electronic">2169-575X</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>20</Day></PubDate></JournalIssue><Title>Global health, science and practice</Title><ISOAbbreviation>Glob Health Sci Pract</ISOAbbreviation></Journal><ArticleTitle>Service Delivery Redesign for Noncommunicable Disease Management: Assessment of Needs and Solutions Through a Co-Creation Process in Argentina.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e2400208</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.9745/GHSP-D-24-00208</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">In Argentina, the implementation of a national strategy to reduce the prevalence of noncommunicable diseases (NCDs) has been hampered by challenges at the provincial level. We aimed to design a new model of care for NCDs at the primary care level by conducting a multimodal system assessment and co-design of potential solutions in the province of Mendoza.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We carried out a mixed-methods study with 7 components: evaluation of patterns of care, patient focus groups, cross-sectional standardized population-based phone survey, an electronic cohort follow-up of patients with type 2 diabetes, in-depth interviews with stakeholders, a knowledge test for health care providers on chronic condition management, and a Delphi consensus to provide recommendations from stakeholders.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Focus group and in-depth interviews revealed access to primary health care for NCDs was associated with problems with long waiting times and time-consuming procedures for referral to laboratory tests, hospital care, and provision of medication. Mental health care services were particularly limited. Survey respondents (N=1,190) were predominantly covered through public (41%) or social security sectors (54%); 41% fell in the lowest income group. Contact with the health system was high (5.7 annual visits), but 19.7% reported unmet health care needs. Public sector providers perceived they provided high-quality care despite insufficient material and human resources. Within the social security sector, the main challenge was insufficient staff, particularly affecting mental health care. Health care providers showed a higher percentage of correct answers to depression-related questions, but worse results were seen in hypertension and diabetes care. Actions supported by evidence and expert agreement were identified for implementation to guide future system changes.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our research highlights the potential for Argentina's primary care system to initiate transformative, system-level changes aimed at improving health outcomes. We propose an innovative methodological assessment and co-design for improving primary care.</AbstractText><CopyrightInformation>© Mazzoni et al.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mazzoni</LastName><ForeName>Agustina</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina. amazzoni@iecs.org.ar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Roberti</LastName><ForeName>Javier</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guglielmino</LastName><ForeName>Marina</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nadal</LastName><ForeName>Ana María</ForeName><Initials>AM</Initials><AffiliationInfo><Affiliation>Ministry of Health of Mendoza Province, Mendoza, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mazzaresi</LastName><ForeName>Yanina</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Ministry of Health of Mendoza Province, Mendoza, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Falaschi</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Ministry of Health of Mendoza Province, Mendoza, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García</LastName><ForeName>Patricia J</ForeName><Initials>PJ</Initials><AffiliationInfo><Affiliation>Universidad Peruana Cayetano Heredia, Lima, Peru.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Espinoza-Pajuelo</LastName><ForeName>Laura</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Universidad Peruana Cayetano Heredia, Lima, Peru.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Medina-Ranilla</LastName><ForeName>Jesús</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Universidad Peruana Cayetano Heredia, Lima, Peru.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Leslie</LastName><ForeName>Hannah H</ForeName><Initials>HH</Initials><AffiliationInfo><Affiliation>Division of Prevention Science, University of California, San Francisco, San Francisco, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Portillo</LastName><ForeName>Juan Manuel Gómez</ForeName><Initials>JMG</Initials><AffiliationInfo><Affiliation>Obra Social de Empleados Públicos de Mendoza, Mendoza, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Masier</LastName><ForeName>María Gabriela</ForeName><Initials>MG</Initials><AffiliationInfo><Affiliation>Obra Social de Empleados Públicos de Mendoza, Mendoza, Argentina.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>García-Elorrio</LastName><ForeName>Ezequiel</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Glob Health Sci Pract</MedlineTA><NlmUniqueID>101624414</NlmUniqueID><ISSNLinking>2169-575X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001118" MajorTopicYN="N" Type="Geographic">Argentina</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073296" MajorTopicYN="Y">Noncommunicable Diseases</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011320" MajorTopicYN="Y">Primary Health Care</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003695" MajorTopicYN="N">Delivery of Health Care</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017144" MajorTopicYN="N">Focus Groups</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019468" MajorTopicYN="N">Disease Management</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006297" MajorTopicYN="N">Health Services Accessibility</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020380" MajorTopicYN="N">Needs Assessment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003697" MajorTopicYN="N">Delphi Technique</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>21</Day><Hour>16</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>20</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>20</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39662975</ArticleId><ArticleId IdType="pmc">PMC11666083</ArticleId><ArticleId IdType="doi">10.9745/GHSP-D-24-00208</ArticleId><ArticleId IdType="pii">GHSP-D-24-00208</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Barış E, Silverman R, Wang H, Zhao F, Pate MA. Reimagined PHC: What will it look like? In: Walking the Talk: Reimagining Primary Health Care after COVID-19. The World Bank; 2022:48–79.</Citation></Reference><Reference><Citation>Kruk ME, Gage AD, Arsenault C, et al. . High-quality health systems in the Sustainable Development Goals era: time for a revolution. Lancet Glob Health. 2018;6(11):e1196–e1252. 10.1016/s2214-109x(18)30386-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2214-109x(18)30386-3</ArticleId><ArticleId IdType="pmc">PMC7734391</ArticleId><ArticleId IdType="pubmed">30196093</ArticleId></ArticleIdList></Reference><Reference><Citation>QuEST LAC: Generando Evidencia de Calidad para la Transformación de los Sistemas de Salud en Latinoamérica y el Caribe. Accessed November 18, 2024. https://www.redquest-lac.org/</Citation></Reference><Reference><Citation>Nimako K, Gage A, Hategeka C, Kruk ME. Maternal and Newborn Health Service Delivery Redesign: Feasibility Assessment Toolkit. Accessed November 18, 2024. https://hwpi.harvard.edu/files/quest/files/sdr_feasibility_assessment_toolkit_final.pdf?m=1617240295</Citation></Reference><Reference><Citation>World Development Indicators. World Bank. Accessed November 18, 2024. https://databank.bancomundial.org/databases</Citation></Reference><Reference><Citation>Maceira D. Caracterización Del Sistema de Salud Argentino. Debate En El Contexto Latinoamericano. [Characterization of the Argentine Health Care System. A Debate in the Latin American Context]. Rev Estado Pol Públ. 2020;14:155–179.</Citation></Reference><Reference><Citation>Belló M, Becerril-Montekio VM. Sistema de salud de Argentina [The health system of Argentina]. Article in Spanish. Salud Publica Mex. 2011;53(2):96–108.</Citation></Reference><Reference><Citation>Macinko J, Guanais FC, Mullachery P, Jimenez G. Gaps in primary care and health system performance in six Latin American and Caribbean countries. Health Aff (Millwood). 2016;35(8):1513–1521. 10.1377/hlthaff.2015.1366.</Citation><ArticleIdList><ArticleId IdType="doi">10.1377/hlthaff.2015.1366</ArticleId><ArticleId IdType="pubmed">27503978</ArticleId></ArticleIdList></Reference><Reference><Citation>Coulter A, Kramer G, Warren T, Salisbury C. Building the House of Care for people with long-term conditions: the foundation of the House of Care framework. Br J Gen Pract. 2016;66(645):e288–e290. 10.3399/bjgp16X684745.</Citation><ArticleIdList><ArticleId IdType="doi">10.3399/bjgp16X684745</ArticleId><ArticleId IdType="pmc">PMC4809714</ArticleId><ArticleId IdType="pubmed">27033503</ArticleId></ArticleIdList></Reference><Reference><Citation>Wagner EH. Chronic disease management: what will it take to improve care for chronic illness? Eff Clin Pract. 1998;1(1):2–4.</Citation><ArticleIdList><ArticleId IdType="pubmed">10345255</ArticleId></ArticleIdList></Reference><Reference><Citation>Batalden M, Batalden P, Margolis P, et al. . Coproduction of healthcare service. BMJ Qual Saf. 2016;25(7):509–517. 10.1136/bmjqs-2015-004315.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjqs-2015-004315</ArticleId><ArticleId IdType="pmc">PMC4941163</ArticleId><ArticleId IdType="pubmed">26376674</ArticleId></ArticleIdList></Reference><Reference><Citation>May CR, Eton DT, Boehmer K, et al. . Rethinking the patient: using Burden of Treatment Theory to understand the changing dynamics of illness. BMC Health Serv Res. 2014;14:281. 10.1186/1472-6963-14-281.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1472-6963-14-281</ArticleId><ArticleId IdType="pmc">PMC4080515</ArticleId><ArticleId IdType="pubmed">24969758</ArticleId></ArticleIdList></Reference><Reference><Citation>Levesque JF, Harris MF, Russell G. Patient-centred access to health care: conceptualising access at the interface of health systems and populations. Int J Equity Health. 2013;12(1):18. 10.1186/1475-9276-12-18.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1475-9276-12-18</ArticleId><ArticleId IdType="pmc">PMC3610159</ArticleId><ArticleId IdType="pubmed">23496984</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavory I, Timmermans S, eds. Abductive Analysis: Theorizing Qualitative Research. University of Chicago Press; 2014.</Citation></Reference><Reference><Citation>Lewis TP, Kapoor NR, Aryal A, et al. . Measuring people’s views on health system performance: design and development of the People’s Voice Survey. PLoS Med. 2023;20(10):e1004294. 10.1371/journal.pmed.1004294.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1004294</ArticleId><ArticleId IdType="pmc">PMC10588880</ArticleId><ArticleId IdType="pubmed">37801441</ArticleId></ArticleIdList></Reference><Reference><Citation>Fitch K, Bernstein S, Aguilar M. The RAND/UCLA Appropriateness Method User’s Manual. RAND; 2001.</Citation></Reference><Reference><Citation>Correia RH, Dash D, Jones A, et al. . Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study. PLoS One. 2024;19(1):e0297505. 10.1371/journal.pone.0297505.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0297505</ArticleId><ArticleId IdType="pmc">PMC10798529</ArticleId><ArticleId IdType="pubmed">38241388</ArticleId></ArticleIdList></Reference><Reference><Citation>Holdsworth LM, Giannitrapani K, Gamboa RC, et al. . Role matters in understanding ‘quality’ in palliative care: a qualitative analysis of patient, caregiver and practitioner perspectives. BMJ Open. 2024;14(1):e076768. 10.1136/bmjopen-2023-076768.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2023-076768</ArticleId><ArticleId IdType="pmc">PMC10806673</ArticleId><ArticleId IdType="pubmed">38233055</ArticleId></ArticleIdList></Reference><Reference><Citation>Lewis TP, Kassa M, Kapoor NR, et al. . User-reported quality of care: findings from the first round of the People’s Voice Survey in 14 countries. Lancet Glob Health. 2024;12(1):e112–e122. 10.1016/S2214-109X(23)00495-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2214-109X(23)00495-3</ArticleId><ArticleId IdType="pmc">PMC10716624</ArticleId><ArticleId IdType="pubmed">38096883</ArticleId></ArticleIdList></Reference><Reference><Citation>Kruk ME, Kapoor NR, Lewis TP, et al. . Population confidence in the health system in 15 countries: results from the first round of the People’s Voice Survey. Lancet Glob Health. 2024;12(1):e100–e111. 10.1016/S2214-109X(23)00499-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2214-109X(23)00499-0</ArticleId><ArticleId IdType="pmc">PMC10716625</ArticleId><ArticleId IdType="pubmed">38096882</ArticleId></ArticleIdList></Reference><Reference><Citation>Kruk ME, Lewis TP. Introduction to The Lancet Global Health’s Series on the People’s Voice Survey on Health System Performance. Lancet Glob Health. 2024;12(1):e14–e15. 10.1016/S2214-109X(23)00512-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2214-109X(23)00512-0</ArticleId><ArticleId IdType="pubmed">38096886</ArticleId></ArticleIdList></Reference><Reference><Citation>Cetrángolo O. Financiamiento Fragmentado, Cobertura Desigual Y Falta De Equidad En El Sistema De Salud Argentino. Rev de Economia Politica de BS. AS. -2014;13:145–183. Accessed November 18, 2024. http://bibliotecadigital.econ.uba.ar/download/ecopoli/ecopoli_v8_n13_05.pdf</Citation></Reference><Reference><Citation>Maceira D. Inequidad en el acceso a la salud en la Argentina. Caudernos del Claeh. -2009:7–17. Accessed November 18, 2024. https://ojs.claeh.edu.uy/publicaciones/index.php/cclaeh/article/view/2/2</Citation></Reference><Reference><Citation>Nievas CM, Moyano DL, Gandini JB. [Social and gender determinants related to health inequities in a community in Argentina]. Rev Fac Cien Med Univ Nac Cordoba. 2021;78(2):103–109. Article Spanish. 10.31053/1853.0605.v78.n2.29769.</Citation><ArticleIdList><ArticleId IdType="doi">10.31053/1853.0605.v78.n2.29769</ArticleId><ArticleId IdType="pmc">PMC8628826</ArticleId><ArticleId IdType="pubmed">34181842</ArticleId></ArticleIdList></Reference><Reference><Citation>Gilardino RE, Valanzasca P, Rifkin SB. Has Latin America achieved universal health coverage yet? Lessons from four countries. Arch Public Health. 2022;80(1):38. 10.1186/s13690-022-00793-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13690-022-00793-7</ArticleId><ArticleId IdType="pmc">PMC8777418</ArticleId><ArticleId IdType="pubmed">35063033</ArticleId></ArticleIdList></Reference><Reference><Citation>Cerqueira RS, Dos Santos HLPC, Prado NMBL, Bittencourt RG, Biscarde DGDS, Dos Santos AM. [Control of cervical cancer in the primary care setting in South American countries: systematic reviewControl del cáncer cervicouterino en los servicios de atención primaria de salud en los países de América del Sur: revisión sistemática]. Article in Portuguese. Rev Panam Salud Publica. 2022;46:e107. 10.26633/rpsp.2022.107.</Citation><ArticleIdList><ArticleId IdType="doi">10.26633/rpsp.2022.107</ArticleId><ArticleId IdType="pmc">PMC9395576</ArticleId><ArticleId IdType="pubmed">36016837</ArticleId></ArticleIdList></Reference><Reference><Citation>Puente Olivera ML, López Llovet A. Impacto de la pandemia COVID-19 en Argentina y en el escenario regional. UNISCI Journal. 2021;19(56):51–71. 10.31439/UNISCI-115</Citation><ArticleIdList><ArticleId IdType="doi">10.31439/UNISCI-115</ArticleId></ArticleIdList></Reference><Reference><Citation>Bozovich GE, Alves De Lima A, Fosco M, et al. . [Collateral damage of COVID-19 pandemic in private healthcare centres of Argentina]. Article in Spanish. Medicina (B Aires). 2020;80(Suppl 3):37–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">32658846</ArticleId></ArticleIdList></Reference><Reference><Citation>Batalden P, Lachman P, von Plessen C, Johnson JK, García-Elorrio E. Coproduction of healthcare services—from concept to implementation. Int J Qual Health Care. 2023;35(4):mzad083. 10.1093/intqhc/mzad083.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/intqhc/mzad083</ArticleId><ArticleId IdType="pubmed">37875010</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39662122</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2212-5353</ISSN><JournalIssue CitedMedium="Internet"><Volume>63</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Respiratory investigation</Title><ISOAbbreviation>Respir Investig</ISOAbbreviation></Journal><ArticleTitle>Sodium-glucose co-transporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors on in-hospital mortality following pneumonia without heart failure: A retrospective cohort study of older adults with diabetes.</ArticleTitle><Pagination><StartPage>88</StartPage><EndPage>93</EndPage><MedlinePgn>88-93</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.resinv.2024.11.016</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2212-5345(24)00185-0</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Sodium-glucose co-transporter-2 inhibitors (SGLT2i) may contribute to better clinical outcomes in adults with diabetes and pneumonia owing to their potential anti-inflammatory effects. To investigate whether SGLT2i are associated with lower in-hospital mortality following pneumonia without heart failure than dipeptidyl peptidase-4 inhibitors (DPP-4i).</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Using the Japanese Diagnosis Procedure Combination database, we retrospectively identified patients with diabetes aged ≥65 years treated with SGLT2i or DPP-4i who were admitted and managed for pneumonia from April 2016 to October 2020. We then compared in-hospital mortality, the need for mechanical ventilation, and discharges to locations (other than home) between the SGLT2i and DPP-4i groups using multivariable logistic regression analyses fitted with generalized estimating equations.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">We analyzed the data of 27,334 patients (mean age, 78.8 years; male, 71.2%), including 535 and 26,799 patients regularly treated with SGLT2i and DPP-4i, respectively. No significant differences were observed between the SGLT2i and DPP-4i groups in in-hospital mortality rate (3.4% vs. 5.9%; odds ratio [OR], 0.64; 95% confidence interval [CI], 0.40-1.05), the need for mechanical ventilation (1.5% vs. 1.8%; OR, 0.78; 95%Cl, 0.39-1.59), and discharge to locations other than home (8.1% vs. 14.1%; OR, 0.72; 95%Cl, 0.51-1.02). The association between the diabetic treatment and in-hospital mortality remained insignificant across weight subgroups (underweight: OR, 0.47; 95%Cl, 0.13-1.67; normal weight: OR, 0.66; 95%Cl, 0.34-1.25; and overweight/obesity: OR 1.06; 95%Cl, 0.43-2.65).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Regular SGLT2i use in patients with diabetes admitted with pneumonia without heart failure may not be associated with improved in-hospital mortality outcomes compared with DPP-4i use.</AbstractText><CopyrightInformation>Copyright © 2024 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Maki</LastName><ForeName>Hiroki</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan; Department of Pharmacy, Kofu City Regional Medical Center, Yamanashi, Japan. Electronic address: makih1210@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Isogai</LastName><ForeName>Toshiaki</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan; Department of Cardiology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Michihata</LastName><ForeName>Nobuaki</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan; Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Matsui</LastName><ForeName>Hiroki</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fushimi</LastName><ForeName>Kiyohide</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate School of Medicine and Dental Science, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yasunaga</LastName><ForeName>Hideo</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>11</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Respir Investig</MedlineTA><NlmUniqueID>101581124</NlmUniqueID><ISSNLinking>2212-5345</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017052" MajorTopicYN="Y">Hospital Mortality</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011014" MajorTopicYN="Y">Pneumonia</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="Y">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="N">Heart Failure</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012121" MajorTopicYN="N">Respiration, Artificial</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DPP-4 inhibitor</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Pneumonia</Keyword><Keyword MajorTopicYN="N">SGLT2 inhibitor</Keyword></KeywordList><CoiStatement>Conflict of interest The authors have no conflict of interest to declare.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>9</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>18</Hour><Minute>32</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39662122</ArticleId><ArticleId IdType="doi">10.1016/j.resinv.2024.11.016</ArticleId><ArticleId IdType="pii">S2212-5345(24)00185-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39661889</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0043-5147</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>10</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Wiadomosci lekarskie (Warsaw, Poland : 1960)</Title><ISOAbbreviation>Wiad Lek</ISOAbbreviation></Journal><ArticleTitle>Effectiveness of the quercetin use in patients with COVID-19 with concomitant type 2 diabetes mellitus.</ArticleTitle><Pagination><StartPage>1962</StartPage><EndPage>1968</EndPage><MedlinePgn>1962-1968</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.36740/WLek/191875</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">Aim: To conduct a comparative analysis of the effectiveness of basic therapy and basic therapy with the inclusion of quercetin in patients with COVID-19 with concomitant type 2 diabetes.</AbstractText><AbstractText Label="PATIENTS AND METHODS" NlmCategory="METHODS">Materials and Methods: There were examined 60 patients with COVID-19 with concomitant T2DM. Upon admission into the hospital and again after 10 days, serum levels of interleukin-6, C-reactive protein, procalcitonin, ferritin, endothelin-1 were determined, and capillaroscopy of the nail plate was performed. Patients of the group I (30) against the background of protocol therapy received 0.5 g of quercetin intravenously once a day for 10 days. Patients of the group II (30) received to basic therapy.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Results: After the treatment in patients of the group I general weakness decreased, body temperature normalized, improved saturation indicators, the level of acute-phase parameters (interleukin-6, CRP and ferritin) significantly decreased, a positive effect of quercetin on the level of D-dimer in blood serum was noted, indices of pericapillary edema and hemosiderin deposition significantly decreased, indices diameter of the arterial part of the capillary and capillary network density significantly increased.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Conclusions: The use of quercetin against the background of basic therapy in patients with COVID-19 and concomitant T2DM reliably reduces the level of acute-phase indices, has an important clinical significance for reducing endothelial dysfunction and for preventing thrombotic complications.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Tylishchak</LastName><ForeName>Zoriana</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pryshliak</LastName><ForeName>Oleksandra</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Boichuk</LastName><ForeName>Oleksandr</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fedorov</LastName><ForeName>Sergiy</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Protsyk</LastName><ForeName>Andrii</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kobryn</LastName><ForeName>Taras</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Miziuk</LastName><ForeName>Ruslan</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Poland</Country><MedlineTA>Wiad Lek</MedlineTA><NlmUniqueID>9705467</NlmUniqueID><ISSNLinking>0043-5147</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9IKM0I5T1E</RegistryNumber><NameOfSubstance UI="D011794">Quercetin</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-41-4</RegistryNumber><NameOfSubstance UI="D002097">C-Reactive Protein</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-73-2</RegistryNumber><NameOfSubstance UI="D005293">Ferritins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015850">Interleukin-6</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011794" MajorTopicYN="Y">Quercetin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000093485" MajorTopicYN="N">COVID-19 Drug Treatment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002097" MajorTopicYN="N">C-Reactive Protein</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015850" MajorTopicYN="N">Interleukin-6</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">respiratory insufficiency</Keyword><Keyword MajorTopicYN="N">D-dimer</Keyword><Keyword MajorTopicYN="N">capillaroscopy</Keyword><Keyword MajorTopicYN="N">endothelin</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>15</Hour><Minute>53</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39661889</ArticleId><ArticleId IdType="doi">10.36740/WLek/191875</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39661800</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1678-4170</ISSN><JournalIssue CitedMedium="Internet"><Volume>121</Volume><Issue>11</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Arquivos brasileiros de cardiologia</Title><ISOAbbreviation>Arq Bras Cardiol</ISOAbbreviation></Journal><ArticleTitle>Cluster of Physical Inactivity and Other Risk Factors and Diabesity in Quilombol Adults.</ArticleTitle><Pagination><StartPage>e20230715</StartPage><MedlinePgn>e20230715</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e20230715</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.36660/abc.20230715</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0066-782X2024001100309</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabesity is a condition characterized by the coexistence of type 02 diabetes and obesity. The causes are multifactorial, resulting from a complex interaction of genetic and behavioral factors. Among the behavioral factors, there are physical inactivity, inadequate eating habits and excessive consumption of alcohol and tobacco.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To investigate the clustering of physical inactivity and other risk factors and the association between risk factor combinations and the presence of diabesity in quilombola adults.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Cross-sectional study involving a sample of 332 middle-aged and older adults (≥ 50 years) selected among participants in the "Epidemiological Profile of Quilombolas in Bahia" study. Data were collected by interview and anthropometric assessment. Descriptive statistics, cluster analysis, and multinomial logistic regression procedures were used for data analysis.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The highest prevalence of clustering was identified for the combinations of regular alcohol consumption in the absence of the other factors (O/E=14.2; 95%CI 0.87-1.15), followed by regular alcohol and tobacco consumption (O/E=10.3; 95%CI 0.64-0.95) and regular consumption of alcohol, tobacco and foods high in sugar and fat (O/E=6.8; 95%CI= 1.31-1.75). Unadjusted analysis revealed an association between physical inactivity in the absence of the other factors (OR=0.82; 95%CI 0.78-0.86) and diabesity.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Alcohol consumption was the most prevalent factor among the largest combinations evaluated. Furthermore, the presence of physical inactivity without the other behaviors analyzed and the absence of all behaviors were associated with diabesity only in unadjusted analysis.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Santana</LastName><ForeName>Poliana Pereira</ForeName><Initials>PP</Initials><Identifier Source="ORCID">0000-0003-1086-4593</Identifier><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Educação Física UESB/UESC, Jequié, BA - Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dos Santos</LastName><ForeName>Clarice Alves</ForeName><Initials>CA</Initials><Identifier Source="ORCID">0000-0002-2730-5117</Identifier><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Educação Física UESB/UESC, Jequié, BA - Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, BA - Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mussi</LastName><ForeName>Ricardo Franklin de Freitas</ForeName><Initials>RFF</Initials><Identifier Source="ORCID">0000-0003-1515-9121</Identifier><AffiliationInfo><Affiliation>Universidade do Estado da Bahia, Programa de Pós-Graduação em Ensino, Linguagem e Sociedade, Caitité, BA - Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Munaro</LastName><ForeName>Hector Luiz Rodrigues</ForeName><Initials>HLR</Initials><Identifier Source="ORCID">0000-0002-6421-1718</Identifier><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Educação Física UESB/UESC, Jequié, BA - Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Departamento de Saúde, Jequié, BA - Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rocha</LastName><ForeName>Saulo Vasconcelos</ForeName><Initials>SV</Initials><Identifier Source="ORCID">0000-0001-8655-5151</Identifier><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Educação Física UESB/UESC, Jequié, BA - Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Universidade Estadual do Sudoeste da Bahia, Departamento de Saúde II, Jequié, BA - Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Saúde Coletiva, Feira de Santana, BA - Brasil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>por</Language><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><VernacularTitle>Cluster de Inatividade Física e Outros Fatores de Risco na Diabesidade em Adultos Quilombolas.</VernacularTitle><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>Brazil</Country><MedlineTA>Arq Bras Cardiol</MedlineTA><NlmUniqueID>0421031</NlmUniqueID><ISSNLinking>0066-782X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057185" MajorTopicYN="Y">Sedentary Behavior</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001938" MajorTopicYN="N" Type="Geographic">Brazil</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000428" MajorTopicYN="Y">Alcohol Drinking</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012959" MajorTopicYN="N">Socioeconomic Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012907" MajorTopicYN="N">Smoking</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D064424" MajorTopicYN="N">Tobacco Use</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="por"><AbstractText Label="FUNDAMENTO" NlmCategory="OBJECTIVE">A diabesidade é uma condição caracterizada pela coexistência de diabetes tipo 02 e obesidade. As causas são multifatoriais, resultantes de uma complexa interação de fatores genéticos e comportamentais. Entre os fatores comportamentais, destacam-se a inatividade física, os hábitos alimentares inadequados e o consumo excessivo de álcool e tabaco.</AbstractText><AbstractText Label="OBJETIVO" NlmCategory="OBJECTIVE">Investigar o agrupamento (clustering) da inatividade física e outros fatores de risco e a associação entre as combinações de fatores de risco e a presença de diabesidade em adultos quilombolas.</AbstractText><AbstractText Label="MÉTODOS" NlmCategory="UNASSIGNED">Trata-se de estudo transversal com amostra composta por 332 adultos de meia idade e idosos (idade ≥ 50 anos), selecionados entre os participantes do estudo "Perfil epidemiológico dos quilombolas baianos". Os dados foram obtidos por meio de entrevistas e avaliação antropométrica. Para a análise dos dados, foram utilizadas estatísticas descritivas, análise de cluster e procedimentos de regressão logística multinominal.</AbstractText><AbstractText Label="RESULTADO" NlmCategory="RESULTS">A maior prevalência de agrupamento foi identificada para as combinações de consumo regular de álcool sem a presença dos demais fatores (O/E=14,2; IC95%= 0,87-1,15), seguido de consumo regular de álcool e tabaco (O/E=10,3; IC95%= 0,64-0,95) e consumo regular de álcool, tabaco e alimentos ricos em açúcar e gorduras (O/E=6,8; IC95%= 1,31-1,75). Na análise bruta, foram observadas associações entre inatividade física sem a presença dos demais fatores (OR= 0,82 IC95%= 0,78-0,86) e diabesidade.</AbstractText><AbstractText Label="CONCLUSÃO" NlmCategory="UNASSIGNED">O consumo de álcool foi o fator mais prevalente nas maiores combinações avaliadas. Além disso, inatividade física, sem os outros comportamentos analisados, e a ausência de todos os comportamentos associaram-se à diabesidade apenas na análise bruta.</AbstractText></OtherAbstract><OtherAbstract Type="Publisher" Language="eng"><AbstractText Label="BACKGROUND:">Diabesity is a condition characterized by the coexistence of type 02 diabetes and obesity. The causes are multifactorial, resulting from a complex interaction of genetic and behavioral factors. Among the behavioral factors, there are physical inactivity, inadequate eating habits and excessive consumption of alcohol and tobacco.</AbstractText><AbstractText Label="OBJECTIVE:">To investigate the clustering of physical inactivity and other risk factors and the association between risk factor combinations and the presence of diabesity in quilombola adults.</AbstractText><AbstractText Label="METHODS:">Cross-sectional study involving a sample of 332 middle-aged and older adults (≥ 50 years) selected among participants in the "Epidemiological Profile of Quilombolas in Bahia" study. Data were collected by interview and anthropometric assessment. Descriptive statistics, cluster analysis, and multinomial logistic regression procedures were used for data analysis.</AbstractText><AbstractText Label="RESULTS:">The highest prevalence of clustering was identified for the combinations of regular alcohol consumption in the absence of the other factors (O/E=14.2; 95%CI 0.87-1.15), followed by regular alcohol and tobacco consumption (O/E=10.3; 95%CI 0.64-0.95) and regular consumption of alcohol, tobacco and foods high in sugar and fat (O/E=6.8; 95%CI= 1.31-1.75). Unadjusted analysis revealed an association between physical inactivity in the absence of the other factors (OR=0.82; 95%CI 0.78-0.86) and diabesity.</AbstractText><AbstractText Label="CONCLUSION:">Alcohol consumption was the most prevalent factor among the largest combinations evaluated. Furthermore, the presence of physical inactivity without the other behaviors analyzed and the absence of all behaviors were associated with diabesity only in unadjusted analysis.</AbstractText></OtherAbstract><CoiStatement><b>Potencial conflito de interesse:</b> Não há conflito com o presente artigo</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>11</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>8</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>15</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>13</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39661800</ArticleId><ArticleId IdType="pmc">PMC11634302</ArticleId><ArticleId IdType="doi">10.36660/abc.20230715</ArticleId><ArticleId IdType="pii">S0066-782X2024001100309</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Guarisco G, Leonetti F. Covid-19 and diabesity: when a pandemia cross another pandemia. Eat Weight Disord. 2021 Jun;26(5):1283–1286. doi: 10.1007/s40519-020-00958-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40519-020-00958-9</ArticleId><ArticleId IdType="pmc">PMC7359919</ArticleId><ArticleId IdType="pubmed">32666376</ArticleId></ArticleIdList></Reference><Reference><Citation>Toplak H, Leitner DR, Harreiter J, Hoppichler F, Wascher TC, Karin Schindler K, et al. „Diabesity" – Adipositas und Typ-2-Diabetes (Atualização 2019) Wien Klin Wochenschr. 2019;131(Supl 1):71–76. doi: 10.1007/s00508-018-1418-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00508-018-1418-9</ArticleId><ArticleId IdType="pubmed">30980154</ArticleId></ArticleIdList></Reference><Reference><Citation>Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021 Apr;18(4):291–304. doi: 10.1038/s41569-020-00465-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41569-020-00465-5</ArticleId><ArticleId IdType="pubmed">33188304</ArticleId></ArticleIdList></Reference><Reference><Citation>Chawla R, Jaggi S. Medical Management of Diabesity. [acesso em 10 out 2022];J Assoc Physicians India. 2019 67(12):52–56. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31801332/</Citation><ArticleIdList><ArticleId IdType="pubmed">31801332</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhupathiraju SN, Hu FB. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ Res. 2016;118(11):1723–1735. doi: 10.1161/CIRCRESAHA.115.306825.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.115.306825</ArticleId><ArticleId IdType="pmc">PMC4887150</ArticleId><ArticleId IdType="pubmed">27230638</ArticleId></ArticleIdList></Reference><Reference><Citation>Malta DC, Bernal RT, de Souza MF, Szwarcwald CL, Lima MG, Barros MB. Social inequalities in the prevalence of self-reported chronic non-communicable diseases in Brazil: national health survey 2013. Int J Equity Health. 2016;15(1):153–153. doi: 10.1186/s12939-016-0427-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12939-016-0427-4</ArticleId><ArticleId IdType="pmc">PMC5112650</ArticleId><ArticleId IdType="pubmed">27852264</ArticleId></ArticleIdList></Reference><Reference><Citation>Pitanga FJG, Matos SMA, Almeida MDCC, Patrão AL, Molina MDCB, Aquino EM. Association between leisure-time physical activity and sedentary behavior with cardiometabolic health in the ELSA-Brazil participants. SAGE Open Med. 2019;7:2050312119827089–2050312119827089. doi: 10.1177/2050312119827089.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2050312119827089</ArticleId><ArticleId IdType="pmc">PMC6354306</ArticleId><ArticleId IdType="pubmed">30728969</ArticleId></ArticleIdList></Reference><Reference><Citation>Pratt M, Ramirez Varela A, Salvo D, Kohl Iii HW, Ding D. Attacking the pandemic of physical inactivity: what is holding us back? Br J Sports Med. 2020 Jul;54(13):760–762. doi: 10.1136/bjsports-2019101392.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsports-2019101392</ArticleId><ArticleId IdType="pubmed">31704698</ArticleId></ArticleIdList></Reference><Reference><Citation>Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity: Beyond "Calories In, Calories Out". JAMA Intern Med. 2018;178(8):1098–1103. doi: 10.1001/jamainternmed.2018.2933.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamainternmed.2018.2933</ArticleId><ArticleId IdType="pmc">PMC6082688</ArticleId><ArticleId IdType="pubmed">29971406</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Global status report on noncommunicable diseases 2014. Geneva: WHO; 2014. [acesso em 12 nov 2022]. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf.</Citation></Reference><Reference><Citation>Faria C da S, Botelho C, Silva RMVG da, Ferreira MG. Tabagismo e obesidade abdominal em doadores de sangue. J bras pneumol. 2012;38(3):356–363. doi: 10.1590/S1806-37132012000300011. Doi:</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1806-37132012000300011</ArticleId><ArticleId IdType="pubmed">22782606</ArticleId></ArticleIdList></Reference><Reference><Citation>Sociedade Brasileira De Diabetes (SBD) Diretrizes da Sociedade Brasileira de Diabetes 2017-2018 / Organização José Egídio Paulo de Oliveira, Renan Magalhães Montenegro Junior, Sérgio Vencio. São Paulo: Editora Clannad; 2017. [acesso em 12 nov 2022]. Disponível em: https://edisciplinas.usp.br/pluginfile.php/4925460/mod_resource/content/1/diretrizes-sbd-2017-2018.pdf.</Citation></Reference><Reference><Citation>Kim JY, Lee DY, Lee YJ, Park KJ, Kim KH, Kim JW, et al. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J Biol Chem. 2015;6(1):1–15. doi: 10.4331/wjbc.v6.i1.1.</Citation><ArticleIdList><ArticleId IdType="doi">10.4331/wjbc.v6.i1.1</ArticleId><ArticleId IdType="pmc">PMC4317634</ArticleId><ArticleId IdType="pubmed">25717351</ArticleId></ArticleIdList></Reference><Reference><Citation>Carvalho AI, Buss PM. In: Políticas e Sistema de Saúde no Brasil. Giaconella L, Scorel S, Lobato LVC, Noronha JC, Carvalho A. I, editors. Rio de Janeiro: FIOCRUZ; 2008. Determinantes Sociais na Saúde, na doença e na intervenção; pp. 125–156. (versão online https://pt.slideshare.net/gersonsouza2016/determinantes-sociais-na-sade-na-doena-e-na-interveno.</Citation></Reference><Reference><Citation>Furtado BNS, Olinda RA de, Costa GMC, Menezes TN de. Fatores relacionados à capacidade física de membros superiores e inferiores de idosos quilombolas. Ciência & Saúde Coletiva. 2021O;26(10):4591–4602. doi: 10.1590/1413-812320212610.11252021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-812320212610.11252021</ArticleId><ArticleId IdType="pubmed">34730646</ArticleId></ArticleIdList></Reference><Reference><Citation>Barros MB, César CLG, Carandina L, Torre GD. Desigualdades sociais na prevalência de doenças crônicas no Brasil, PNAD-2003. Cien Saude Coletiva. 2006;11(4):911–926. doi: 10.1590/S1413-81232006000400014.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1413-81232006000400014</ArticleId><ArticleId IdType="pubmed">21987319</ArticleId></ArticleIdList></Reference><Reference><Citation>Paixão M., Rosseto I., Montovanele F., Carvano LM. Laboratório de Análises Econômicas, Históricas, Sociais, e Estatísticas das Relações Raciais (LAESER) [acesso em 12 nov 2022];Relatório Anual das Desigualdades Raciais; 2009-2010: Constituição Cidadã, seguridade social e seus efeitos sobre as assimetrias de cor ou raça. 2010 Disponível em: https://www.palmares.gov.br/wp-content/uploads/2011/09/desigualdades_raciais_2009-2010.pdf.</Citation></Reference><Reference><Citation>Araújo RLM de S, Araújo EM de, Silva HP de, Santos CA de ST, Nery FS, Santos DB dos S, et al. Condições de vida, saúde e morbidade de comunidades quilombolas do semiárido baiano, Brasil. Rev. Baiana Saúde Pública. 2019;43(1):226–246. doi: 10.22278/2318-2660.2019.v43.n1.a2988.</Citation><ArticleIdList><ArticleId IdType="doi">10.22278/2318-2660.2019.v43.n1.a2988</ArticleId></ArticleIdList></Reference><Reference><Citation>Matos F, Vasconcelos LR, Rocha SV, Mussi RF. Subdiagnóstico da Hipertensão Arterial em adultos quilombolas de região baiana, Brasil. Research, Society and Development. 2021;10(2):e37210211055. doi: 10.33448/rsd-v10i2.11055.</Citation><ArticleIdList><ArticleId IdType="doi">10.33448/rsd-v10i2.11055</ArticleId></ArticleIdList></Reference><Reference><Citation>Miranda S, Oliveira J, Sampaio C, Rodrigues J., Neto Artigos Cartografia das condições de trabalho de a informalidade e a saúde mental. Interface (Botucatu) 2021;25:e200478. doi: 10.1590/interface.200478.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/interface.200478</ArticleId></ArticleIdList></Reference><Reference><Citation>Holmes LJ, Hoissain J, Ward D, Opara F. Racial/ethnic variability in diabetes mellitus among United States residents is unexplained by lifestyle, sociodemographics and prognostic factors. ISRN Public Health. 2012:e408079. doi: 10.5402/2012/408079.</Citation><ArticleIdList><ArticleId IdType="doi">10.5402/2012/408079</ArticleId></ArticleIdList></Reference><Reference><Citation>International Diabetes Federation IDF DIABETES ATLAS Eighth edition 2017. [acesso em 10 out 2022]. Disponível em: http: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf.</Citation></Reference><Reference><Citation>Santos VC, Boery EN, Pereira R, Rosa D de OS, Vilela ABA, Anjos KF dos, et al. Socioeconomic and health conditions associated with quality of life of elderly quilombolas. 2016;25(2):e1300015. doi: 10.1590/0104-07072016001300015.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/0104-07072016001300015</ArticleId></ArticleIdList></Reference><Reference><Citation>Streb AR, Duca GFD, Silva RP da, Benedet J, Malta DC. Simultaneidade de comportamentos de risco para a obesidade em adultos das capitais do Brasil. Ciênc saúde coletiva. 2020 Aug;25(8):2999–3007. doi: 10.1590/1413-81232020258.27752018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-81232020258.27752018</ArticleId><ArticleId IdType="pubmed">32785536</ArticleId></ArticleIdList></Reference><Reference><Citation>Fundação Palmares. 2016. Disponível em http://www.palmares.gov.br.</Citation></Reference><Reference><Citation>Mussi RFF, Queiroz BM, Petrósky BL. Overweight and associated factors in Quilombolas from the middle San Francisco, Bahia, Brazil. Cien Saude Colet. 2018;23(4):1193–1200. doi: 10.1590/1413-81232018234.03662016.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-81232018234.03662016</ArticleId><ArticleId IdType="pubmed">29694569</ArticleId></ArticleIdList></Reference><Reference><Citation>Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário Internacional de Atividade Física (IPAQ): um estudo de validade e reprodutibilidade no Brasil. Revista Brasileira de Atividade Física e Saúde. 2001;6(2):5–18. doi: 10.12820/rbafs.v.6n2p5-18.</Citation><ArticleIdList><ArticleId IdType="doi">10.12820/rbafs.v.6n2p5-18</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalra S. Diabesity. [acesso em 12 nov 2022];J Pak Med Assoc. 2013 63(4):532–534. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23905459/</Citation><ArticleIdList><ArticleId IdType="pubmed">23905459</ArticleId></ArticleIdList></Reference><Reference><Citation>Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis. 2011 Apr;5(2):119–131. doi: 10.1177/1753944711403189.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1753944711403189</ArticleId><ArticleId IdType="pubmed">21406494</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramírez-Manent JI, Altisench Jané B, Tomás Salvà M, Arroyo Bote S, González San Miguel HM, López-González ÁA. Influence of Educational Level and Healthy Habits on the Prevalence of Diabesity in a Spanish Working Population. Nutrients. 2022;14(19):4101–4101. doi: 10.3390/nu14194101.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14194101</ArticleId><ArticleId IdType="pmc">PMC9573222</ArticleId><ArticleId IdType="pubmed">36235753</ArticleId></ArticleIdList></Reference><Reference><Citation>Malta DC, Bernal RTI, Iser BPM, Szwarcwald CL, Duncan BB, Schmidt MI. Factors associated with self-reported diabetes according to the 2013. Rev Saúde Pública. 2017;51(suppl 1):12s–12s. doi: 10.1590/S1518-8787.2017051000011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1518-8787.2017051000011</ArticleId><ArticleId IdType="pmc">PMC5676394</ArticleId><ArticleId IdType="pubmed">28591347</ArticleId></ArticleIdList></Reference><Reference><Citation>Queiroz P de SF, Miranda L de P, Oliveira PSD, Neto JFR, Sampaio CA, Oliveira TL, et al. Obesidade abdominal e fatores associados em comunidades quilombolas do Norte de Minas Gerais, 2019. Epidemiologia e Serviços de Saúde. 2021;30(3) doi: 10.1590/S1679-49742021000300023.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1679-49742021000300023</ArticleId><ArticleId IdType="pubmed">34431957</ArticleId></ArticleIdList></Reference><Reference><Citation>Rehman T, Rajaa S, Kumar G, Jayalakshmy R. Prevalence and Factors Influencing Diabesity among Persons with Type 2 Diabetes Mellitus in Urban Puducherry: A Cross-Sectional Analytical Study. Indian J Community Med. 2020 Jul-Sep;45(3):315–319. doi: 10.4103/ijcm.IJCM_324_19.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ijcm.IJCM_324_19</ArticleId><ArticleId IdType="pmc">PMC7745816</ArticleId><ArticleId IdType="pubmed">33354010</ArticleId></ArticleIdList></Reference><Reference><Citation>Pauli S, Bairros FS de, Nunes LN, Neutzling MB. Prevalência autorreferida de hipertensão e fatores associados em comunidades quilombolas do Rio Grande do Sul, Brasil. Ciênc saúde coletiva. 2019;24(9):3293–3303. doi: 10.1590/1413-81232018249.28002017. Available from:</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-81232018249.28002017</ArticleId><ArticleId IdType="pubmed">31508750</ArticleId></ArticleIdList></Reference><Reference><Citation>Führ NB, Silva YM, Coelho AM, Rutzen AT, Zanatta CM, Portela SN, et al. Avaliação da Prevalência de Diabetes Mellitus tipo 2 e Hipertensão Arterial Sistêmica em uma População Quilombola do Norte do Rio Grande do Sul. VIII Seminário de Ensino, Pesquisa e Extensão da UFFS. [acesso em 12 nov de 2022];Anais do SEPE. 2018 8(1) Disponível em: https://portaleventos.uffs.edu.br/index.php/SEPE-UFFS/article/view/10210.</Citation></Reference><Reference><Citation>Cardoso LGV, Melo APS, Cesar CC. Prevalência do consumo moderado e excessivo de álcool e fatores associados entre residentes de Comunidades Quilombolas de Vitória da Conquista, Bahia, Brasil. Ciênc saúde coletiva. 2015;20(3):809–820. doi: 10.1590/1413-81232015203.12702014.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-81232015203.12702014</ArticleId><ArticleId IdType="pubmed">25760121</ArticleId></ArticleIdList></Reference><Reference><Citation>Almeida N, Filho, Lessa I, Magalhães L, Araújo MJ, Aquino E, James SA, Kawachi I. Social inequality and alcohol consumption-abuse in Bahia, Brazil Interactions of gender, ethnicity and social class. Soc Psychiatry Psychiatr Epidemiol. 2005;40(3):214–222. doi: 10.1007/s00127-005-0883-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00127-005-0883-4</ArticleId><ArticleId IdType="pubmed">15742227</ArticleId></ArticleIdList></Reference><Reference><Citation>Oliveira SKM, Caldeira AP. Fatores de risco para doenças crônicas não transmissíveis em quilombolas do norte de Minas Gerais. Cad Saude Colet. 2016;24(4):420–427. doi: 10.1590/1414-462X201600040093.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1414-462X201600040093</ArticleId></ArticleIdList></Reference><Reference><Citation>Campagna D, Alamo A, Di Pino A, Russo C, Calogero AE, Purrello F, Polosa R. Correction: Smoking and diabetes: dangerous liaisons and confusing relationships. Diabetol Metab Syndr. 2023 Jun 2;15(1):117–117. doi: 10.1186/s13098-023-01099-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-023-01099-6</ArticleId><ArticleId IdType="pmc">PMC10236695</ArticleId><ArticleId IdType="pubmed">37264418</ArticleId></ArticleIdList></Reference><Reference><Citation>Levy-Costa RB, Sichieri R, Pontes NS, Monteiro CA. Disponibilidade domiciliar de alimentos no Brasil: distribuição e evolução (1974-2003) Rev Saúde Pública. 2005;39:530–540. doi: 10.1590/S0034-89102005000400003.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S0034-89102005000400003</ArticleId><ArticleId IdType="pubmed">16113900</ArticleId></ArticleIdList></Reference><Reference><Citation>Bezerra VM, Andrade ACS, Cesar CC, Caiaffa WT. Comunidades quilombolas de Vitória da Conquista, Bahia, Brasil: hipertensão arterial e fatores associados. Cad Saúde Pública. 2013;29(9):1889–1902. doi: 10.1590/0102-311X00164912.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/0102-311X00164912</ArticleId><ArticleId IdType="pubmed">24068233</ArticleId></ArticleIdList></Reference><Reference><Citation>Soares DA, Barreto SM. Indicadores nutricionais combinados e fatores associados em população Quilombola no Sudoeste da Bahia, Brasil. Ciênc saúde coletiva. 2015;20(3):821–832. doi: 10.1590/1413-81232015203.03922014.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/1413-81232015203.03922014</ArticleId><ArticleId IdType="pubmed">25760122</ArticleId></ArticleIdList></Reference><Reference><Citation>Frozi DS. In: Quilombos do Brasil: segurança alimentar e nutricional em territórios titulados. Pinto AR, Borges JC, Novo MP, Pires PS, editors. Brasília, DF: Ministério do Desenvolvimento Social e Combate à Fome; 2005. [acesso em 10 out de 2022]. Multidimensionalidade da pobreza em comunidades quilombolas: aspectos analíticos para a segurança alimentar e nutricional. Disponível em: https://fpabramo.org.br/acervosocial/wp-content/uploads/sites/7/2017/08/326.pdf.</Citation></Reference><Reference><Citation>Freitas DA, Caballero AD, Marques AS, Hernández CIV, Antunes SLNO. Saúde e comunidades quilombolas: uma revisão da literatura. Rev CEFAC [online] 2011;13(5):937–943. doi: 10.1590/S1516-18462011005000033.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1516-18462011005000033</ArticleId></ArticleIdList></Reference><Reference><Citation>Bey L., Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low‐intensity activity. The Journal of Physiology. 2003;551(2):673–682. doi: 10.1113/jphysiol.2003.045591.</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/jphysiol.2003.045591</ArticleId><ArticleId IdType="pmc">PMC2343229</ArticleId><ArticleId IdType="pubmed">12815182</ArticleId></ArticleIdList></Reference><Reference><Citation>Meneguci J, Sasaki JE, da Silva Santos Á, Scatena LM, Damião R. Socio-demographic, clinical and health behavior correlates of sitting time in older adults. BMC Public Health. 2015;31(15):65–65. doi: 10.1186/s12889-015-1426-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-015-1426-x</ArticleId><ArticleId IdType="pmc">PMC4318162</ArticleId><ArticleId IdType="pubmed">25637282</ArticleId></ArticleIdList></Reference><Reference><Citation>Pitanga FJ, Lessa I, Barbosa PJ, Barbosa SJ, Costa MC, Lopes Ada S. Atividade física na prevenção de diabetes em etnia negra: quanto é necessário? [Physical activity in the prevention of diabetes in black ethnicity: how much is required?] Rev Assoc Med Bras (1992) 2010;56(6):697–704. doi: 10.1590/s0104-42302010000600021. Portuguese.</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/s0104-42302010000600021</ArticleId><ArticleId IdType="pubmed">21271139</ArticleId></ArticleIdList></Reference><Reference><Citation>Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. J Aging Res. 2012;2012:243958–243958. doi: 10.1155/2012/243958.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2012/243958</ArticleId><ArticleId IdType="pmc">PMC3395188</ArticleId><ArticleId IdType="pubmed">22811911</ArticleId></ArticleIdList></Reference><Reference><Citation>Wing RR, Look AHEAD Research Group Does Lifestyle Intervention Improve Health of Adults with Overweight/Obesity and Type 2 Diabetes? Findings from the Look AHEAD Randomized Trial. Obesity (Silver Spring) 2021 Aug;29(8):1246–1258. doi: 10.1002/oby.23158.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.23158</ArticleId><ArticleId IdType="pubmed">33988896</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39661017</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1540-8175</ISSN><JournalIssue CitedMedium="Internet"><Volume>41</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Echocardiography (Mount Kisco, N.Y.)</Title><ISOAbbreviation>Echocardiography</ISOAbbreviation></Journal><ArticleTitle>Impact of Diabetes Mellitus on Left Ventricular Mechanics and Long-Term Outcome in Patients with Hypertrophic Cardiomyopathy.</ArticleTitle><Pagination><StartPage>e70048</StartPage><MedlinePgn>e70048</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/echo.70048</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Type 2 diabetes mellitus (T2DM) intensifies the clinical symptoms of heart diseases and leads to a worse prognosis in heart failure patients. Although hypertrophic cardiomyopathy (HCM) and DM rarely co-occur, particularly in older individuals, the impact of DM on cardiac function and outcomes in individuals with HCM remains insufficiently understood.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 421 HCM patients were included and followed up in a prospective cohort study (mean 68.7 months). In the diabetic HCM group (n = 47), patients had a mean age of 47 ± 17 years, and 31 (66%) were male, while the non-diabetic HCM group (n = 374) had a mean age of 44 ± 14 years, and 246 (65%) were male. At study entry, all patients underwent echocardiographic evaluation, encompassing left ventricular (LV) regional and global longitudinal strain (GLS), as well as strain rate (SR) analysis.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">In diabetic HCM, there was a greater prevalence of hypertension (p < 0.0001), while the ratio of septal to posterior wall thickness (PWT) (p < 0.003) and E' value were lower (p < 0.009) compared to non-diabetic HCM. No significant difference between groups in NYHA class or cardiac phenotype. Diabetic HCM exhibited notable reductions in GLS (p < 0.02), systolic SR (SRsys) (p < 0.04), and early diastolic SR (SRe) p < 0.006. Additionally, there was a significant inverse correlation between LVGLS and HbA1c levels (r = -0.58, p < 0.0001), and the duration of diabetes (r = -0.39, p < 0.006). Hospitalization rates were greater in the diabetic HCM than in the non-diabetic group (44.7% vs.19.5%, p < 0.001). Among all demographic characteristics, phenotypic data, conventional echocardiographic measurements, and LV mechanics, diabetes emerged as the sole determinant of hospitalization among HCM patients. The presence of diabetes nearly tripled the odds of hospitalization (odds ratio: 2.813 [1.448-5.465], p < 0.002). However, diabetes did not negatively affect long-term survival, and age remained the only independent predictor of all-cause mortality.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In HCM, T2DM is linked to more deterioration of cardiac mechanics and contributes to unfavorable consequences by frequent hospitalization on its own, independent of age, comorbidities, or phenotype.</AbstractText><CopyrightInformation>© 2024 Wiley Periodicals LLC.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Badran</LastName><ForeName>Hala Mahfouz</ForeName><Initials>HM</Initials><Identifier Source="ORCID">0000-0001-5231-750X</Identifier><AffiliationInfo><Affiliation>Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Helmy</LastName><ForeName>John Anis</ForeName><Initials>JA</Initials><AffiliationInfo><Affiliation>Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Nagalaa Fahem</ForeName><Initials>NF</Initials><AffiliationInfo><Affiliation>Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yacoub</LastName><ForeName>Magdi</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Cardiovascular surgery, Faculty of Medicine, Imperial College, London, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Echocardiography</MedlineTA><NlmUniqueID>8511187</NlmUniqueID><ISSNLinking>0742-2822</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002312" MajorTopicYN="Y">Cardiomyopathy, Hypertrophic</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004452" MajorTopicYN="Y">Echocardiography</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006352" MajorTopicYN="Y">Heart Ventricles</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018487" MajorTopicYN="N">Ventricular Dysfunction, Left</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">hypertrophic cardiomyopathy</Keyword><Keyword MajorTopicYN="N">left ventricular mechanics</Keyword><Keyword MajorTopicYN="N">vector velocity imaging</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>10</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39661017</ArticleId><ArticleId IdType="doi">10.1111/echo.70048</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>B. Adalsteinsdottir, M. Burke, B. J. Maron, et al., “Hypertrophic Cardiomyopathy in Myosin‐Binding Protein C (MYBPC3) Icelandic Founder Mutation Carriers,” Open Heart 7 (2020): e001220.</Citation></Reference><Reference><Citation>‐S. R. Ommen, S. Mital, M. A. Burke, et al., “2020 AHA/ACC Guideline for The Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines,” Circulation 142, no. 25 (2020): e533–e557.</Citation></Reference><Reference><Citation>B. M. Leon and T. M. Maddox, “Diabetes and Cardiovascular Disease: Epidemiology, Biological Mechanisms, Treatment Recommendations and Future Research,” World Journal of Diabetes 60 (2015): 1246–1258.</Citation></Reference><Reference><Citation>B. B. Dokken, “The Pathophysiology of Cardiovascular Disease and Diabetes: Beyond Blood Pressure and Lipids,” Diabetes Spectrum 21 (2008): 160–165.</Citation></Reference><Reference><Citation>P. Kolakalapudi and B. Omar, “Diabetes Mellitus and the Cardiovascular System,” Endocrinology and Metabolism 15 (2015): 313–320.</Citation></Reference><Reference><Citation>A. S. Matheus, L. R. Tannus, R. A. Cobas, et al., “Impact of Diabetes on Cardiovascular Disease: An Update,” International Journal of Hypertension 2013 (2013): 65–89.</Citation></Reference><Reference><Citation>M. Kawaguchi, M. Techigawara, T. Ishihata, et al., “A Comparison of Ultrastructural Changes On Endomyocardial Biopsy Specimens Obtained from Patients With Diabetes Mellitus With and Without Hypertension,” Heart and Vessels 12 (1997): 267–274.</Citation></Reference><Reference><Citation>B. M. Leon and T. M. Maddox, “Diabetes and Cardiovascular Disease: Epidemiology, Biological Mechanisms, Treatment Recommendations and Future Research,” World Journal of Diabetes 6 (2015): 1246–1258.</Citation></Reference><Reference><Citation>B. J. Maron, “Hypertrophic Cardiomyopathy: A Systematic Review,” Journal of the American Medical Association 287 (2002): 1308–1320.</Citation></Reference><Reference><Citation>A. T. F. Members, A. Vahanian, O. Alfieri, et al., “Guidelines on the Management of Valvular Heart Disease (version 2012) The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio‐Thoracic Surgery (EACTS),” European Heart Journal 33 (2012): 2451–2496.</Citation></Reference><Reference><Citation>H. Feigenbaum, R. Mastouri, and S. Sawada, “A Practical Approach to Using Strain Echocardiography to Evaluate the Left Ventricle,” Circle 76 (2012): 1550–1555.</Citation></Reference><Reference><Citation>E. D. Pagourelias, O. Mirea, and J. Duchenne, “Speckle Tracking Deformation Imaging to Detect Regional Fibrosis in Hypertrophic Cardiomyopathy: A Comparison between 2D and 3D Echo Modalities,” European Heart Journal—Cardiovascular Imaging 21, no. 11 (2020): 1262–1272.</Citation></Reference><Reference><Citation>M. David, D. E. Harris Mohrman, and L. J. Heller, “Cardiovascular Function in Pathological Situations,” Cardiovascular Physiology. Chapter 11, 9e (New York, NY: McGraw‐Hill Education, 2018).</Citation></Reference><Reference><Citation>A. J. Marian and E. Braunwald, “Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, Therapy,” Circulation Research 121, no. 7 (2017): 749–770.</Citation></Reference><Reference><Citation>L. R. Lopes, M. A. Losi, N. Sheikh, et al., “Association between Common Cardiovascular Risk Factors and Clinical Phenotype in Patients with Hypertrophic Cardiomyopathy from the European Society of Cardiology (ESC) EurObservational Research Programme (EORP) Cardiomyopathy/Myocarditis Registry,” European Heart Journal ‐ Quality of Care and Clinical Outcomes 9, no. 1 (2022): 42–53.</Citation></Reference><Reference><Citation>N. D. Wong and N. Sattar, “Cardiovascular Risk in Diabetes Mellitus: Epidemiology, Assessment and Prevention,” Nature Reviews Cardiology 20, no. 10 (2023): 685–695.</Citation></Reference><Reference><Citation>T. Salvatore, P. C. Pafundi, R. Galiero, et al., “The Diabeticcardiomyopathy: The Contributing Pathophysiological Mechanisms,” Frontiers in Medicine 8 (2021): 695792.</Citation></Reference><Reference><Citation>N. Jex, A. Chowdhary, S. Thirunavukarasu, et al., “Coexistent Diabetes Is Associated with the Presence of Adverse Phenotypic Features in Patients With Hypertrophic Cardiomyopathy,” Diabetes 45, no. 8 (2022): 1852–1862.</Citation></Reference><Reference><Citation>H. J. Lee, H. K. Kim, B. S. Kim, et al., “Impact of Diabetes Mellitus on the Outcomes of Subjects with Hypertrophic Cardiomyopathy: A Nationwide Cohort Study,” Diabetes Research and Clinical Practice 186 (2022): 109838.</Citation></Reference><Reference><Citation>M. Mekhaimar, M. Al Mohannadi, S. Dargham, et al., “Diabetes Outcomes in Heart Failure Patients with Hypertrophic Cardiomyopathy,” Frontiers in Physiology 13 (2022): 976315.</Citation></Reference><Reference><Citation>S. Wang, H. Cui, K. Ji, et al., “Impact of Type 2 Diabetes Mellitus on Mid‐Term Mortality for Hypertrophic Cardiomyopathy Patients Who Underwent Septal Myectomy,” Cardiovascular Diabetology 19, no. 1 (2020): 64.</Citation></Reference><Reference><Citation>S. Hajouli, A. Belcher, F. Annie, et al., “Is Type 2 Diabetes Mellitus an Independent Risk Factor for Mortality in Hypertrophic Cardiomyopathy?” Cardiology Research 15, no. 3 (2024): 198–204, https://doi.org/10.14740/cr1659.</Citation></Reference><Reference><Citation>H. J. Lee, H. K. Kim, B. S. Kim, et al., “Impact of Diabetes Mellitus on the Outcomes of Subjects with Hypertrophic Cardiomyopathy: A Nationwide Cohort Study,” Diabetes Research and Clinical Practice 186 (2022): 109–112.</Citation></Reference><Reference><Citation>I. Olivotto, B. J. Maron, B. Tomberli, et al., “Obesity and Its Association to Phenotype and Clinical Course in Hypertrophic Cardiomyopathy,” Journal of the American College of Cardiology 62 (2013): 449–457.</Citation></Reference><Reference><Citation>‐ T. F. Haland, V. M. Almaas, N. E. Hasselberg, et al., “Strain Echocardiography Is Related to Fibrosis and Ventricular Arrhythmias in Hypertrophic Cardiomyopathy,” European Heart Journal ‐ Cardiovascular Imaging 17, no. 6 (2016): 613–621.</Citation></Reference><Reference><Citation>L. van Heerebeek, N. Hamdani, and M. L. Handoko, “Diastolic Stiffness of the Failing Diabetic Heart: Importance of Fibrosis, Advanced Glycation End Products, Myocyte Resting Tension,” Circulation 117 (2008): 43–51.</Citation></Reference><Reference><Citation>M. Kru¨ger, K. Babicz, M. von Frieling‐Salewsky, et al., “Insulin Signaling Regulates Cardiac Titin Properties in Heart Development and Diabetic Cardiomyopathy,” Journal of Molecular and Cellular Cardiology 48 (2010): 910–916.</Citation></Reference><Reference><Citation>J. D. Schilling and D. L. Mann, “Diabetic Cardiomyopathy: Bench to Bedside,” Heart Failure Clinics 8 (2012): 619–631.</Citation></Reference><Reference><Citation>‐P. Balakumar and N. K. Sharma, “Healing the Diabetic Heart: Does Myocardial Preconditioning Work?” Cell Signalling 24 (2012): 53–59.</Citation></Reference><Reference><Citation>N. Jex, A. Chowdhary, S. Thirunavukarasu, et al., “Coexistent Diabetes Is Associated with the Presence of Adverse Phenotypic Features in Patients with Hypertrophic Cardiomyopathy,” Diabetes Care 45, no. 8 (2022): 1852–1862.</Citation></Reference><Reference><Citation>P. S. Dhandapany, S. Kang, D. K. Kashyap, et al., “Adiponectin Receptor 1 Variants Contribute to Hypertrophic Cardiomyopathy That Can be Reversed by Rapamycin,” Science Advances 7 (2021): eabb3991.</Citation></Reference><Reference><Citation>A. B. Gonzalez, L. Young, J. A. Doll, et al., “Elevated Neonatal Insulin‐Like Growth Factor I Is Associated With Fetal Hypertrophic Cardiomyopathy in Diabetic Women,” American Journal of Obstetrics and Gynecology 211 (2014): 290.e1–e7.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39661009</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-7290</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Jan</Month></PubDate></JournalIssue><Title>European journal of sport science</Title><ISOAbbreviation>Eur J Sport Sci</ISOAbbreviation></Journal><ArticleTitle>Combined training and hormones/enzymes with insulinotropic actions in individuals with overweight and type 2 diabetes mellitus: A randomized controlled trial.</ArticleTitle><Pagination><StartPage>97</StartPage><EndPage>106</EndPage><MedlinePgn>97-106</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/ejsc.12057</ELocationID><Abstract><AbstractText>The incretins (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]), along with amylin/islet amyloid polypeptide (IAPP) and insulin-degrading enzyme (IDE), are hormones/enzymes that have been pharmacological targets, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, due to their insulinotropic actions. Physical training is recommended as a treatment for type 2 diabetes mellitus (T2DM); however, its effects on the concentrations of these hormones/enzymes are not well known. Thus, the present study aimed to evaluate the effects of combined training (CT) on the concentrations of hormones/enzymes with insulinotropic actions in individuals with T2DM and overweight. Individuals of both sexes with T2DM (age 51.73 ± 4.19 years; body mass index [BMI] 29.46 ± 3.39 kg/m<sup>2</sup>) were randomly distributed in the control group (CG, n = 17) and the combined training group (CTG, n = 17). The CT consisted of strength followed by erobic training, 3 times/week, for 16 weeks. Functional variables, body composition, and serum biochemical analyses (clinical markers, GLP-1, GIP, DPP-4, amylin/IAPP, and IDE) were evaluated. The CTG showed a decrease in GLP-1 (pre: 32.8 ± 12.1, post: 28.4 ± 13.5, and p = 0.04) in the group/time analysis. In the evaluation of the Δ% of variation, CTG presented a decrease for GLP-1 (-9.3%; p = 0.03) and amylin/IAPP (-13.4%; p < 0.01), in addition to an increase for DPP-4 (6.2%; p = 0.04) enzyme. CT decreases the baseline levels of important hormones with insulinotropic actions in individuals with T2DM and overweight. The improvement in overall metabolism provided by CT must be the main reason for these effects. These results broaden the understanding of the effects and relationships between CT and glucose metabolism.</AbstractText><CopyrightInformation>© 2024 The Authors. European Journal of Sport Science published by Wiley‐VCH GmbH on behalf of European College of Sport Science.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bonfante</LastName><ForeName>Ivan Luiz Padilha</ForeName><Initials>ILP</Initials><Identifier Source="ORCID">0000-0001-6278-4611</Identifier><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Federal Institute of Education, Science and Technology of São Paulo, Hortolândia Campus, Hortolândia, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Duft</LastName><ForeName>Renata Garbellini</ForeName><Initials>RG</Initials><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mateus</LastName><ForeName>Keryma Chaves da Silva</ForeName><Initials>KCDS</Initials><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Trombeta</LastName><ForeName>Joice Cristina Dos Santos</ForeName><Initials>JCDS</Initials><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chacon-Mikahil</LastName><ForeName>Mara Patricia Traina</ForeName><Initials>MPT</Initials><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Velloso</LastName><ForeName>Licio Augusto</ForeName><Initials>LA</Initials><AffiliationInfo><Affiliation>Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Obesity and Comorbidities Research Center, University of Campinas, Campinas, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cavaglieri</LastName><ForeName>Cláudia Regina</ForeName><Initials>CR</Initials><AffiliationInfo><Affiliation>Laboratory of Exercise Physiology, Faculty of Physical Education, University of Campinas, Campinas, Brazil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>001</GrantID><Agency>Coordination for the Improvement of Higher Education Personnel</Agency><Country/></Grant><Grant><GrantID>2016/08751-3</GrantID><Agency>São Paulo Research Foundation</Agency><Country/></Grant><Grant><GrantID>303571/2018-7</GrantID><Agency>National Council for Scientific and Technological Development</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Eur J Sport Sci</MedlineTA><NlmUniqueID>101146739</NlmUniqueID><ISSNLinking>1536-7290</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>89750-14-1</RegistryNumber><NameOfSubstance UI="D052216">Glucagon-Like Peptide 1</NameOfSubstance></Chemical><Chemical><RegistryNumber>59392-49-3</RegistryNumber><NameOfSubstance UI="D005749">Gastric Inhibitory Polypeptide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D058228">Islet Amyloid Polypeptide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054795">Incretins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050177" MajorTopicYN="Y">Overweight</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D052216" MajorTopicYN="N">Glucagon-Like Peptide 1</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005749" MajorTopicYN="N">Gastric Inhibitory Polypeptide</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055070" MajorTopicYN="N">Resistance Training</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D058228" MajorTopicYN="N">Islet Amyloid Polypeptide</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054795" MajorTopicYN="N">Incretins</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">amylin/islet amyloid polypeptide (IAPP)</Keyword><Keyword MajorTopicYN="N">combined training</Keyword><Keyword MajorTopicYN="N">dipeptidyl peptidase‐4 (DPP‐4)</Keyword><Keyword MajorTopicYN="N">glucagon‐like peptide‐1 (GLP‐1)</Keyword><Keyword MajorTopicYN="N">glucose‐dependent insulinotropic polypeptide (GIP)</Keyword><Keyword MajorTopicYN="N">insulin‐degrading enzyme (IDE)</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2023</Year><Month>10</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>4</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2023</Year><Month>11</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>10</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>30</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39661009</ArticleId><ArticleId IdType="pmc">PMC11235776</ArticleId><ArticleId IdType="doi">10.1002/ejsc.12057</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ali Ahmad, Manal , Karavetian Mirey, Moubareck Carole Ayoub, Wazz Gabi, Mahdy Tarek, and Venema Koen. 2022. “The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates.” Nutrients 14(6): 1271. 10.3390/nu14061271.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14061271</ArticleId><ArticleId IdType="pmc">PMC8954130</ArticleId><ArticleId IdType="pubmed">35334929</ArticleId></ArticleIdList></Reference><Reference><Citation>Bishoyi, Ajit Kumar , Roham Pratiksha H., Rachineni Kavitha, Save Shreyada, Hazari M. Asrafuddoza, Sharma Shilpy, and Kumar Ashutosh. 2021. “Human Islet Amyloid Polypeptide (hIAPP) ‐ a Curse in Type II Diabetes Mellitus: Insights from Structure and Toxicity Studies.” Biological Chemistry 402(2): 133–153. 10.1515/hsz-2020-0174.</Citation><ArticleIdList><ArticleId IdType="doi">10.1515/hsz-2020-0174</ArticleId><ArticleId IdType="pubmed">33544470</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonfante, Ivan Luiz Padilha , Monfort‐Pires Milena, Duft Renata Garbellini, da Silva Mateus Keryma Chaves, de Lima Júnior José Carlos, dos Santos Trombeta Joice Cristina, Finardi Enrico Antonio Rautenberg, et al. 2022. “Combined Training Increases Thermogenic Fat Activity in Patients with Overweight and Type 2 Diabetes.” International Journal of Obesity 46(6): 1145–1154. 10.1038/s41366-022-01086-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41366-022-01086-3</ArticleId><ArticleId IdType="pubmed">35173278</ArticleId></ArticleIdList></Reference><Reference><Citation>Buchman, A. S. , Boyle P. A., Yu L., Shah R. C., Wilson R. S., and Bennett D. A.. 2012. “Total Daily Physical Activity and the Risk of AD and Cognitive Decline in Older Adults.” Neurology 78(17): 1323–1329. 10.1212/WNL.0b013e3182535d35.</Citation><ArticleIdList><ArticleId IdType="doi">10.1212/WNL.0b013e3182535d35</ArticleId><ArticleId IdType="pmc">PMC3335448</ArticleId><ArticleId IdType="pubmed">22517108</ArticleId></ArticleIdList></Reference><Reference><Citation>Campbell, Jonathan E. , and Drucker Daniel J.. 2013. “Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action.” Cell Metabolism 17(6): 819–837. 10.1016/j.cmet.2013.04.008.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2013.04.008</ArticleId><ArticleId IdType="pubmed">23684623</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg, S. R. , Albright A. L., Blissmer B. J., Braun B., Chasan‐Taber L., Fernhall B., Regensteiner J. G., et al. 2010. “Exercise and Type 2 Diabetes: American College of Sports Medicine and the American Diabetes Association: Joint Position Statement. Exercise and Type 2 Diabetes.” Medicine & Science in Sports & Exercise 42(12): 2282–2303. 10.1249/MSS.0b013e3181eeb61c.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/MSS.0b013e3181eeb61c</ArticleId><ArticleId IdType="pubmed">21084931</ArticleId></ArticleIdList></Reference><Reference><Citation>Deacon, Carolyn F . 2020. “Metabolism of GIP and the Contribution of GIP to the Glucose‐Lowering Properties of DPP‐4 Inhibitors.” Peptides 125: 170196. 10.1016/j.peptides.2019.170196.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.peptides.2019.170196</ArticleId><ArticleId IdType="pubmed">31706956</ArticleId></ArticleIdList></Reference><Reference><Citation>Despa, Sanda , Sharma Savita, Harris Todd R., Dong Hua, Li Ning, Chiamvimonvat Nipavan, Taegtmeyer Heinrich, et al. 2014. “Cardioprotection by Controlling Hyperamylinemia in a "humanized" Diabetic Rat Model.” Journal of American Heart Association 3(4). 10.1161/JAHA.114.001015.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.114.001015</ArticleId><ArticleId IdType="pmc">PMC4310392</ArticleId><ArticleId IdType="pubmed">25146704</ArticleId></ArticleIdList></Reference><Reference><Citation>Ellingsgaard, Helga , Hauselmann Irina, Schuler Beat, Habib Abdella M., Baggio Laurie L., Meier Daniel T., Eppler Elisabeth, et al. 2011. “Interleukin‐6 Enhances Insulin Secretion by Increasing Glucagon‐like Peptide‐1 Secretion from L Cells and Alpha Cells.” Nature Medicine 17(11): 1481–1489. 10.1038/nm.2513.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nm.2513</ArticleId><ArticleId IdType="pmc">PMC4286294</ArticleId><ArticleId IdType="pubmed">22037645</ArticleId></ArticleIdList></Reference><Reference><Citation>Ellingsgaard, Helga , Seelig Eleonora, Timper Katharina, Coslovsky Michael, Soederlund Line, Lyngbaek Mark P., Wewer Albrechtsen Nicolai J., et al. 2020. “GLP‐1 Secretion Is Regulated by IL‐6 Signalling: a Randomised, Placebo‐Controlled Study.” Diabetologia 63(2): 362–373. 10.1007/s00125-019-05045-y.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-019-05045-y</ArticleId><ArticleId IdType="pubmed">31796986</ArticleId></ArticleIdList></Reference><Reference><Citation>Enoki, Seiichi , Mitsukawa Tomohiro, Takemura Jiro, Nakazato Masamitsu, Aburaya Junko, Toshimori Hirotaka, and Matsukara Shigeru. 1992. “Plasma Islet Amyloid Polypeptide Levels in Obesity, Impaired Glucose Tolerance and Non‐insulin‐dependent Diabetes Mellitus.” Diabetes Research and Clinical Practice 15(1): 97–102. 10.1016/0168-8227(92)90074-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0168-8227(92)90074-2</ArticleId><ArticleId IdType="pubmed">1541241</ArticleId></ArticleIdList></Reference><Reference><Citation>Flack, Kyle D. , Ufholz Kelsey, Johnson LuAnn, Fitzgerald John S., and Roemmich James N.. 2018. “Energy Compensation in Response to Aerobic Exercise Training in Overweight Adults.” American Journal of Physiology ‐ Regulatory, Integrative and Comparative Physiology 315(4): R619–R626. 10.1152/ajpregu.00071.2018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpregu.00071.2018</ArticleId><ArticleId IdType="pmc">PMC6230893</ArticleId><ArticleId IdType="pubmed">29897822</ArticleId></ArticleIdList></Reference><Reference><Citation>Gleeson, Michael , Bishop Nicolette C., Stensel David J., Lindley Martin R., Mastana Sarabjit S., and Nimmo Myra A.. 2011. “The Anti‐inflammatory Effects of Exercise: Mechanisms and Implications for the Prevention and Treatment of Disease.” Nature Reviews Immunology 11(9): 607–615. 10.1038/nri3041.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nri3041</ArticleId><ArticleId IdType="pubmed">21818123</ArticleId></ArticleIdList></Reference><Reference><Citation>Grespan, Eleonora , Guolo Annamaria, Muscelli Elza, Ferrannini Ele, and Mari Andrea. 2022. “Loss of the Incretin Effect in Type 2 Diabetes: A Systematic Review and Meta‐Analysis.” Journal of Clinical Endocrinology & Metabolism 107(7): 2092–2100. 10.1210/clinem/dgac213.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgac213</ArticleId><ArticleId IdType="pubmed">35397169</ArticleId></ArticleIdList></Reference><Reference><Citation>Guardado‐Mendoza, Rodolfo , Chávez Alberto O., Jiménez‐Ceja Lilia M., Hansis‐Diarte Andrea, DeFronzo Ralph A., Folli Franco, and Tripathy Devjit. 2017. “Islet Amyloid Polypeptide Response to Maximal Hyperglycemia and Arginine Is Altered in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus.” Acta Diabetologica 54(1): 53–61. 10.1007/s00592-016-0904-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-016-0904-7</ArticleId><ArticleId IdType="pubmed">27624579</ArticleId></ArticleIdList></Reference><Reference><Citation>Hayes, Matthew R. , Mietlicki‐Baase Elizabeth G., Kanoski Scott E., and De Jonghe Bart C.. 2014. “Incretins and Amylin: Neuroendocrine Communication between the Gut, Pancreas, and Brain in Control of Food Intake and Blood Glucose.” Annual Review of Nutrition 34(1): 237–260. 10.1146/annurev-nutr-071812-161201.</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-nutr-071812-161201</ArticleId><ArticleId IdType="pmc">PMC4458367</ArticleId><ArticleId IdType="pubmed">24819325</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernández, Miriam García , Aguilar Ana García, Burillo Jesús, Oca Raquel Gómez, Manca Maria Antonietta, Novials Ana, Alcarraz‐Vizan Gema, Guillén Carlos, Benito Manuel, and Benito M.. 2018. “Pancreatic Beta Cells Overexpressing hIAPP Impaired Mitophagy and Unbalanced Mitochondrial Dynamics.” Cell Death & Disease 9(5): 481. 10.1038/s41419-018-0533-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41419-018-0533-x</ArticleId><ArticleId IdType="pmc">PMC5924657</ArticleId><ArticleId IdType="pubmed">29705815</ArticleId></ArticleIdList></Reference><Reference><Citation>Hindsø, Morten , Kuhlman Anja Birk, Dohlmann Tine Lovsø, Lund Michael Taulo, Hartmann Bolette, Holst Jens Juul, Larsen Steen, Helge Jørn Wulff, and Helge J. W.. 2022. “Effect of 6 Weeks of Very Low‐Volume High‐Intensity Interval Training on Oral Glucose‐Stimulated Incretin Hormone Response.” European Journal of Sport Science 22(3): 381–389. 10.1080/17461391.2021.1877830.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/17461391.2021.1877830</ArticleId><ArticleId IdType="pubmed">33461430</ArticleId></ArticleIdList></Reference><Reference><Citation>Horner, Katy M. , Schubert Matthew M., Desbrow Ben, Byrne Nuala M., and King Neil A.. 2015. “Acute Exercise and Gastric Emptying: a Meta‐Analysis and Implications for Appetite Control.” Sports Medicine 45(5): 659–678. 10.1007/s40279-014-0285-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40279-014-0285-4</ArticleId><ArticleId IdType="pubmed">25398225</ArticleId></ArticleIdList></Reference><Reference><Citation>Janus, Charlotte , Vistisen Dorte, Amadid Hanan, Witte Daniel R., Lauritzen Torsten, Brage Søren, Bjerregaard A.‐Louise, et al. 2019. “Habitual Physical Activity Is Associated with Lower Fasting and Greater Glucose‐Induced GLP‐1 Response in Men.” Endocrine Connections 8(12): 1607–1617. 10.1530/EC-19-0408.</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/EC-19-0408</ArticleId><ArticleId IdType="pmc">PMC6933827</ArticleId><ArticleId IdType="pubmed">31804964</ArticleId></ArticleIdList></Reference><Reference><Citation>Kadoglou, Nikolaos P. , Perrea Despina, Iliadis Fotios, Angelopoulou Nikoleta, Liapis Christos, and Alevizos Miltiadis. 2007. “Exercise Reduces Resistin and Inflammatory Cytokines in Patients with Type 2 Diabetes.” Diabetes Care 30(3): 719–721. 10.2337/dc06-1149.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc06-1149</ArticleId><ArticleId IdType="pubmed">17327348</ArticleId></ArticleIdList></Reference><Reference><Citation>Kluess, Heidi A . 2020. “Dipeptidyl Peptidase IV as a Muscle Myokine.” Frontiers in Physiology 11: 148. 10.3389/fphys.2020.00148.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2020.00148</ArticleId><ArticleId IdType="pmc">PMC7063094</ArticleId><ArticleId IdType="pubmed">32194435</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuhre, Rune Ehrenreich , Wewer Albrechtsen Nicolai Jacob, Hartmann Bolette, Deacon Carolyn F., and Holst Jens Juul. 2015. “Measurement of the Incretin Hormones: Glucagon‐like Peptide‐1 and Glucose‐dependent Insulinotropic Peptide.” Journal of Diabetic Complications 29(3): 445–450. 10.1016/j.jdiacomp.2014.12.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2014.12.006</ArticleId><ArticleId IdType="pubmed">25623632</ArticleId></ArticleIdList></Reference><Reference><Citation>Kullenberg, Helena , Rossen Jenny, Johansson U.‐Britt, Hagströmer Maria, Nyström Thomas, Kumlin Maria, and Svedberg Marie M.. 2022. “Increased Levels of Insulin‐Degrading Enzyme in Patients with Type 2 Diabetes Mellitus.” Endocrine 77(3): 561–565. 10.1007/s12020-022-03123-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12020-022-03123-7</ArticleId><ArticleId IdType="pubmed">35751775</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurauti, Mirian A. , Costa‐Júnior José M., Ferreira Sandra M., Santos Gustavo J., Sponton Carlos H. G., Carneiro Everardo M., Telles Guilherme D., et al. 2017. “Interleukin‐6 Increases the Expression and Activity of Insulin‐Degrading Enzyme.” Scientific Reports 7(1): 46750. 10.1038/srep46750.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/srep46750</ArticleId><ArticleId IdType="pmc">PMC5399448</ArticleId><ArticleId IdType="pubmed">28429777</ArticleId></ArticleIdList></Reference><Reference><Citation>Leszek, Jerzy , Trypka Elzbieta, Tarasov Vadim, Ashraf Ghulam, and Aliev Gjumrakch. 2017. “Type 3 Diabetes Mellitus: A Novel Implication of Alzheimers Disease.” Current Topics in Medicinal Chemistry 17(12): 1331–1335. 10.2174/1568026617666170103163403.</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1568026617666170103163403</ArticleId><ArticleId IdType="pubmed">28049395</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez‐Valbuena, Ivan , Valenti‐Azcarate Rafael, Amat‐Villegas Irene, Riverol Mario, Marcilla Irene, de Andrea Carlos E., Sánchez‐Arias Juan Antonio, et al. 2019. “Amylin as a Potential Link between Type 2 Diabetes and Alzheimer Disease.” Annals of Neurology 86(4): 539–551. 10.1002/ana.25570.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ana.25570</ArticleId><ArticleId IdType="pubmed">31376172</ArticleId></ArticleIdList></Reference><Reference><Citation>Matsuzaki, Juntaro , Suzuki Hidekazu, Masaoka Tatsuhiro, Tanaka Kentaro, Mori Hideki, and Kanai Takanori. 2016. “Influence of Regular Exercise on Gastric Emptying in Healthy Men: a Pilot Study.” Journal of Clinical Biochemistry & Nutrition 59(2): 130–133. 10.3164/jcbn.16-29.</Citation><ArticleIdList><ArticleId IdType="doi">10.3164/jcbn.16-29</ArticleId><ArticleId IdType="pmc">PMC5018576</ArticleId><ArticleId IdType="pubmed">27698540</ArticleId></ArticleIdList></Reference><Reference><Citation>Mulvihill, Erin E. , and Drucker Daniel J.. 2014. “Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase‐4 Inhibitors.” Endocrine Reviews 35(6): 992–1019. 10.1210/er.2014-1035.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/er.2014-1035</ArticleId><ArticleId IdType="pmc">PMC7108477</ArticleId><ArticleId IdType="pubmed">25216328</ArticleId></ArticleIdList></Reference><Reference><Citation>Pedersen, Bente Klarlund . 2006. “The Anti‐inflammatory Effect of Exercise: its Role in Diabetes and Cardiovascular Disease Control.” Essays in Biochemistry 42: 105–117. 10.1042/bse0420105.</Citation><ArticleIdList><ArticleId IdType="doi">10.1042/bse0420105</ArticleId><ArticleId IdType="pubmed">17144883</ArticleId></ArticleIdList></Reference><Reference><Citation>Pedersen, Bente K. , and Febbraio Mark A.. 2008. “Muscle as an Endocrine Organ: Focus on Muscle‐Derived Interleukin‐6.” Physiological Reviews 88(4): 1379–1406. 10.1152/physrev.90100.2007.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/physrev.90100.2007</ArticleId><ArticleId IdType="pubmed">18923185</ArticleId></ArticleIdList></Reference><Reference><Citation>Quist, Jonas Salling , Blond Martin Bæk, Gram Anne Sofie, Steenholt Carina Bjørnskov, Janus Charlotte, Holst Jens Juul, Rehfeld Jens F., et al. 2019. “Effects of Active Commuting and Leisure‐Time Exercise on Appetite in Individuals with Overweight and Obesity.” Journal of Applied Physiology 126(4): 941–951. 10.1152/japplphysiol.00239.2018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/japplphysiol.00239.2018</ArticleId><ArticleId IdType="pubmed">30605397</ArticleId></ArticleIdList></Reference><Reference><Citation>Saltiel, Alan R. , and Olefsky Jerrold M.. 2017. “Inflammatory Mechanisms Linking Obesity and Metabolic Disease.” Journal of Clinical Investigation 127(1): 1–4. 10.1172/JCI92035.</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI92035</ArticleId><ArticleId IdType="pmc">PMC5199709</ArticleId><ArticleId IdType="pubmed">28045402</ArticleId></ArticleIdList></Reference><Reference><Citation>Sardeli, Amanda Veiga , Tomeleri Crisieli Maria, Cyrino Edilson Serpeloni, Fernhall Bo, Cavaglieri Cláudia Regina, and Chacon‐Mikahil Mara Patrícia Traina. 2018. “Effect of Resistance Training on Inflammatory Markers of Older Adults: A Meta‐Analysis.” Experimental Gerontology 111: 188–196. 10.1016/j.exger.2018.07.021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.exger.2018.07.021</ArticleId><ArticleId IdType="pubmed">30071283</ArticleId></ArticleIdList></Reference><Reference><Citation>Simrén, Magnus . 2002. “Physical Activity and the Gastrointestinal Tract.” European Journal of Gastroenterology and Hepatology 14(10): 1053–1056. 10.1097/00042737-200210000-00003.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/00042737-200210000-00003</ArticleId><ArticleId IdType="pubmed">12362093</ArticleId></ArticleIdList></Reference><Reference><Citation>Stinson, Sara E. , Jonsson Anna E., Lund Morten A. V., Frithioff‐Bøjsøe Christine, Aas Holm Louise, Pedersen Oluf, Ängquist Lars, et al. 2021. “Fasting Plasma GLP‐1 Is Associated with Overweight/Obesity and Cardiometabolic Risk Factors in Children and Adolescents.” Journal of Clinical Endocrinology & Metabolism 106(6): 1718–1727. 10.1210/clinem/dgab098.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgab098</ArticleId><ArticleId IdType="pmc">PMC8118577</ArticleId><ArticleId IdType="pubmed">33596309</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueberberg, Sandra , Nauck Michael A., Uhl Waldemar, Montemurro Chiara, Tannapfel Andrea, Clark Anne, and Meier Juris J.. 2020. “Islet Amyloid in Patients with Diabetes Due to Exocrine Pancreatic Disorders, Type 2 Diabetes, and Nondiabetic Patients.” Journal of Clinical Endocrinology & Metabolism 105(8): 2595–2605. 10.1210/clinem/dgaa176.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgaa176</ArticleId><ArticleId IdType="pubmed">32271378</ArticleId></ArticleIdList></Reference><Reference><Citation>Wijesekara, Nadeeja , Ahrens Rosemary, Sabale Miheer, Wu Ling, Ha Kathy, Verdile Giuseppe, and Fraser Paul E.. 2017. “Amyloid‐beta and Islet Amyloid Pathologies Link Alzheimer's Disease and Type 2 Diabetes in a Transgenic Model.” The FASEB Journal 31(12): 5409–5418. 10.1096/fj.201700431R.</Citation><ArticleIdList><ArticleId IdType="doi">10.1096/fj.201700431R</ArticleId><ArticleId IdType="pubmed">28808140</ArticleId></ArticleIdList></Reference><Reference><Citation>Yoo, Y.‐Min , and Joo Seong Soo. 2021. “Human Islet Amyloid Polypeptide Overexpression in INS‐1E Cells Influences Amylin Oligomerization under ER Stress and Oxidative Stress.” International Journal of Molecular Sciences 22(21): 11341. 10.3390/ijms222111341.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms222111341</ArticleId><ArticleId IdType="pmc">PMC8583535</ArticleId><ArticleId IdType="pubmed">34768769</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao, Xue , Han Qing, Gang Xiaokun, Lv You, Liu Yujia, Sun Chenglin, and Wang Guixia. 2017. “The Role of Gut Hormones in Diet‐Induced Weight Change: A Systematic Review.” Hormone and Metabolic Research 49(11): 816–825. 10.1055/s-0043-115646.</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0043-115646</ArticleId><ArticleId IdType="pubmed">28934819</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng, Xiaoya , Ren Wei, Zhang Suhua, Liu Jingjing, Li Sufang, Li Jinchao, Yang Ping, et al. 2010. “Serum Levels of Proamylin and Amylin in Normal Subjects and Patients with Impaired Glucose Regulation and Type 2 Diabetes Mellitus.” Acta Diabetologica 47(3): 265–270. 10.1007/s00592-010-0201-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-010-0201-9</ArticleId><ArticleId IdType="pubmed">20509034</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39660728</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2148-3817</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>25</Day></PubDate></JournalIssue><Title>The journal of international advanced otology</Title><ISOAbbreviation>J Int Adv Otol</ISOAbbreviation></Journal><ArticleTitle>Relation Between Glycated Hemoglobin Level and Hearing Loss in Type 2 Diabetic Patients.</ArticleTitle><Pagination><StartPage>531</StartPage><EndPage>535</EndPage><MedlinePgn>531-535</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.5152/iao.2024.241615</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Glycemic control and the efficacy of therapy in diabetic patients with type 2 diabetes during the previous 2-3 months are usually evaluated by measuring the glycated hemoglobin (HbA1c). Our aim is to study the correlation between serum glycated hemoglobin level (HbA1c) and the hearing thresholds in diabetic patients.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">A case-control study was conducted in the Audio-Vestibular Medicine Unit, xxxx University on 82 subjects. The subjects were divided into 2 groups: the first group consisted of 42 diabetic patients and the second group consisted of 40 healthy subjects. All the participants underwent a pure tone audiogram and speech audiometric evaluation. All participants also underwent diabetes laboratory assessments, including fasting blood glucose serum level and serum HbA1c level. The average hearing threshold at frequencies from 250 Hz to 16 000 Hz in both groups was calculated and correlated to different variables.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Diabetic patients showed higher hearing thresholds than those of the control group, with an increasing tendency of elevation of the hearing threshold levels toward the higher frequencies in both groups. There was no statistically significant difference in the hearing thresholds between patients with diabetes < 5 years (20 subjects) and those with a duration of ≤ 5 years (22 subjects). Also, there was no statistically significant difference in the average hearing thresholds among type 2 diabetic patients based on fasting blood sugar level results, except at 16 000 Hz.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Poor glycemic control status [Hb A1c ≥ 7%] is significantly associated with elevated hearing thresholds.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>ElSherif</LastName><ForeName>Mayada</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Otorhinolaryngology, Audiovestibular Medicine Unit, Alexandria University Faculty of Medicine, Alexandria, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fathey El Sayed Mahfouz</LastName><ForeName>Aya</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Otorhinolaryngology, Audiovestibular Medicine Unit, Alexandria University Faculty of Medicine, Alexandria, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mohamed Gaber Amin</LastName><ForeName>Noha</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Saad Kozou</LastName><ForeName>Hesham</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Otorhinolaryngology, Audiovestibular Medicine Unit, Alexandria University Faculty of Medicine, Alexandria, Egypt.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Turkey</Country><MedlineTA>J Int Adv Otol</MedlineTA><NlmUniqueID>101522982</NlmUniqueID><ISSNLinking>1308-7649</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001301" MajorTopicYN="Y">Audiometry, Pure-Tone</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D034381" MajorTopicYN="N">Hearing Loss</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001309" MajorTopicYN="N">Auditory Threshold</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Hearing loss</Keyword><Keyword MajorTopicYN="N">glycated hemoglobin</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement><b>Declaration of Interests:</b> The authors have no conflicts of interest to declare.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>37</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>7</Hour><Minute>59</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39660728</ArticleId><ArticleId IdType="pmc">PMC11639551</ArticleId><ArticleId IdType="doi">10.5152/iao.2024.241615</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Dosemane D, Bahniwal RK, Manisha N, Khadilkar MN. Association between type 2 diabetes mellitus and hearing loss among patients in a coastal city of South India. Indian J Otolaryngol Head Neck Surg. 2019;71(suppl 2):1422 1425. (10.1007/s12070-018-1499-9)</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12070-018-1499-9</ArticleId><ArticleId IdType="pmc">PMC6841891</ArticleId><ArticleId IdType="pubmed">31750188</ArticleId></ArticleIdList></Reference><Reference><Citation>Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):117 124. (10.2174/1570161117666190502103733)</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1570161117666190502103733</ArticleId><ArticleId IdType="pubmed">31057114</ArticleId></ArticleIdList></Reference><Reference><Citation>Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8):25(8):1987. (10.3390/molecules25081987)</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules25081987</ArticleId><ArticleId IdType="pmc">PMC7221535</ArticleId><ArticleId IdType="pubmed">32340373</ArticleId></ArticleIdList></Reference><Reference><Citation>Gupta S, Eavey RD, Wang M, Curhan SG, Curhan GC. Type 2 diabetes and the risk of incident hearing loss. Diabetologia. 2019;62(2):281 285. (10.1007/s00125-018-4766-0)</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-018-4766-0</ArticleId><ArticleId IdType="pmc">PMC6494103</ArticleId><ArticleId IdType="pubmed">30402776</ArticleId></ArticleIdList></Reference><Reference><Citation>Mustafa IO, Tanko Y, Yusuf R, Musa SA. The use of glycated haemoglobin (HbA1(C)) in determining glycemic control (and relevance of BMI) in diabetic patients in Ahmadu Bello University Teaching Hospital Zaria, Nigeria. Diabetes Metab Syndr. 2019;13(5):2967 2972. (10.1016/j.dsx.2019.07.057)</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2019.07.057</ArticleId><ArticleId IdType="pubmed">31437811</ArticleId></ArticleIdList></Reference><Reference><Citation>Samelli AG, Santos IS, Moreira RR, et al. Diabetes mellitus and sensorineural hearing loss: is there an association? Baseline of the Brazilian longitudinal study of adult health (ELSA-brasil). Clinics (Sao Paulo). 2017;72(1):5 10. (10.6061/clinics/2017(01)02)</Citation><ArticleIdList><ArticleId IdType="doi">10.6061/clinics/2017(01)02</ArticleId><ArticleId IdType="pmc">PMC5251196</ArticleId><ArticleId IdType="pubmed">28226026</ArticleId></ArticleIdList></Reference><Reference><Citation>Khakurel G, Mahato NB. Evaluation of hearing loss by pure tone audiometry in type 2 diabetes mellitus. Nep Med J. 2020;3(1):286 289. (10.3126/nmj.v3i1.28221)</Citation><ArticleIdList><ArticleId IdType="doi">10.3126/nmj.v3i1.28221</ArticleId></ArticleIdList></Reference><Reference><Citation>Abo-Elfetoh NM, Mohamed ES, Tag LM, El-Baz MA, Ez Eldeen ME. Auditory dysfunction in patients with type 2 diabetes mellitus with poo r versus good glycemic control. Egypt J Otolaryngol. 2015;31(3):162 169. (10.4103/1012-5574.161603)</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/1012-5574.161603</ArticleId></ArticleIdList></Reference><Reference><Citation>Gadag R, Nayak P, J T. Clinical Asssessment of sensorineural hearing loss among diabetes mellitus patients. Bengal J Otolaryngol Head Neck Surg. 2020;28:112 119.</Citation></Reference><Reference><Citation>Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: a review. Ageing Res Rev. 2021;71:101423. (10.1016/j.arr.2021.101423)</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.arr.2021.101423</ArticleId><ArticleId IdType="pubmed">34384902</ArticleId></ArticleIdList></Reference><Reference><Citation>Pålbrink AK, Kopietz F, Morén B, et al. Inner ear is a target for insulin signaling and insulin resistance: evidence from mice and auditory HEI-OC1 cells. BMJ Open Diabetes Res Care. 2020;8(1):e000820. (10.1136/bmjdrc-2019-000820)</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2019-000820</ArticleId><ArticleId IdType="pmc">PMC7170413</ArticleId><ArticleId IdType="pubmed">32238362</ArticleId></ArticleIdList></Reference><Reference><Citation>Akinpelu OV, Mujica-Mota M, Daniel SJ. Is type 2 diabetes mellitus associated with alterations in hearing? A systematic review and meta-analysis. Laryngoscope. 2014;124(3):767 776. (10.1002/lary.24354)</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/lary.24354</ArticleId><ArticleId IdType="pubmed">23945844</ArticleId></ArticleIdList></Reference><Reference><Citation>Panchu P. Auditory acuity in type 2 diabetes mellitus. Int J Diabetes Dev Ctries. 2008;28(4):114 120. (10.4103/0973-3930.45270)</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/0973-3930.45270</ArticleId><ArticleId IdType="pmc">PMC2822154</ArticleId><ArticleId IdType="pubmed">20165598</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Rubeaan K, AlMomani M, AlGethami AK, et al. Hearing loss among patients with type 2 diabetes mellitus: a cross-sectional study. Ann Saudi Med. 2021;41(3):171 178. (10.5144/0256-4947.2021.171)</Citation><ArticleIdList><ArticleId IdType="doi">10.5144/0256-4947.2021.171</ArticleId><ArticleId IdType="pmc">PMC8176373</ArticleId><ArticleId IdType="pubmed">34085541</ArticleId></ArticleIdList></Reference><Reference><Citation>Bethiun S. Effect of glycated hemoglobin over auditory acuity in type 2 diabetes mellitus. RGUHS J Med Sci. 2016;6(1):9 13.</Citation></Reference><Reference><Citation>Salvinelli F, Miele A, Casale M, et al. Hearing thresholds in patients with diabetes. Internet J Otorhinolaryngol. 2003;3(1):1 10.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39660687</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1369-7625</ISSN><JournalIssue CitedMedium="Internet"><Volume>27</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Health expectations : an international journal of public participation in health care and health policy</Title><ISOAbbreviation>Health Expect</ISOAbbreviation></Journal><ArticleTitle>Social Determinants as Mediators of the Emotional State of People With Type 2 Diabetes and/or Hypertension During the COVID-19 Pandemic in Ecuador and Spain.</ArticleTitle><Pagination><StartPage>e70123</StartPage><MedlinePgn>e70123</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70123</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1111/hex.70123</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">We aimed to explore the impact of the COVID-19 pandemic and the resulting restrictions on the emotional state of people with type 2 diabetes mellitus (T2DM) and/or hypertension in Ecuador and Spain. Given the differences in sociopolitical and socioeconomic contexts between these two countries, the research focused on how these diverse environments and their management of social policies and pandemic strategies influenced the emotional well-being of individuals with chronic illnesses.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We conducted 36 semi-structured telephone interviews between August and December 2020 with adults diagnosed with T2DM and/or hypertension (19 in Ecuador, 17 in Spain). The interviews were recorded, anonymized and transcribed for thematic analysis. This approach allowed us to systematically identify and analyse themes related to the participants' emotional experiences during the pandemic.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The results revealed a significant deterioration in the emotional state of participants, attributable to the stress generated by the health crisis and concerns related to their chronic illnesses. The situation elicited a range of emotions among participants, from boredom and apathy to fear, uncertainty and depression. The study highlighted how the impact on emotional well-being was shaped by the interplay between conjunctural determinants (measures to control COVID-19 infections) and structural factors driving inequalities (social class, gender, ethnicity).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We developed a conceptual framework illustrating how measures to control COVID-19 infections directly influenced economic, health and social determinants, which interacted with pre-existing inequalities and had a differential impact on individuals' emotional well-being. This framework can be useful for designing more effective and equitable social policies during future health crises, ensuring they address social needs and safeguard psychological and emotional well-being, particularly among vulnerable groups such as those with chronic illnesses.</AbstractText><AbstractText Label="PATIENT AND PUBLIC CONTRIBUTION" NlmCategory="UNASSIGNED">Thirty-six participants diagnosed with T2DM and/or hypertension (19 in Ecuador, 17 in Spain) contributed to the study by sharing their emotional experiences during the pandemic. Their detailed accounts enriched the research by providing valuable insights into how the pandemic affected their emotional well-being. There was no additional involvement or contribution from the public in the design, conduct, analysis or interpretation of the study, nor in the preparation of the manuscript.</AbstractText><CopyrightInformation>© 2024 The Author(s). Health Expectations published by John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sanchís-Ramón</LastName><ForeName>María José</ForeName><Initials>MJ</Initials><Identifier Source="ORCID">0000-0002-2046-4342</Identifier><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chilet-Rosell</LastName><ForeName>Elisa</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Peralta</LastName><ForeName>Andrés</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Instituto de Salud Pública, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Puig-García</LastName><ForeName>Marta</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rivadeneira</LastName><ForeName>María Fernanda</ForeName><Initials>MF</Initials><AffiliationInfo><Affiliation>Instituto de Salud Pública, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Caicedo</LastName><ForeName>Cintia</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Centro de Epidemiologia Comunitaria y Medicina Tropical (CECOMET), Esmeraldas, Ecuador.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Benazizi-Dahbi</LastName><ForeName>Ikram</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lumbreras</LastName><ForeName>Blanca</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nicols</LastName><ForeName>Montse</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Centro de Salud de Alzira, Valencia, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cebrián</LastName><ForeName>Ana</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Centro de Salud Cartagena Casco, Murcia, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ricart</LastName><ForeName>Wifredo</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Fundació Institut d'Investigaciò Biomèdica de Girona- IDIBGI, Girona, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red Obesidad y Nutrición (CIBEROBN), Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lopez-Miras</LastName><ForeName>Ester</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Unitat de Diabetis, Endocrinologia i Nutrició (UDENTG) Departament de Salut Generalitat de Catalunya.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Lucy A</ForeName><Initials>LA</Initials><AffiliationInfo><Affiliation>Departamento de Salud Pública, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><Agency>This work was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant number 804761).</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Health Expect</MedlineTA><NlmUniqueID>9815926</NlmUniqueID><ISSNLinking>1369-6513</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004484" MajorTopicYN="N" Type="Geographic">Ecuador</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013030" MajorTopicYN="N" Type="Geographic">Spain</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D064890" MajorTopicYN="Y">Social Determinants of Health</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="Y">Hypertension</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004644" MajorTopicYN="N">Emotions</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007407" MajorTopicYN="N">Interviews as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D036301" MajorTopicYN="N">Qualitative Research</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">COVID‐19 pandemic</Keyword><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">emotional state</Keyword><Keyword MajorTopicYN="N">social determinants of health</Keyword><Keyword MajorTopicYN="N">social policies</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>38</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>12</Hour><Minute>37</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>7</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>11</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39660687</ArticleId><ArticleId IdType="pmc">PMC11632625</ArticleId><ArticleId IdType="doi">10.1111/hex.70123</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Hernández de Cos P., El impacto del Covid‐19 en la economía Española (Banco de España, 2020).</Citation></Reference><Reference><Citation>Chowdhury T. A., “Diabetes and COVID‐19: Diseases of Racial, Social and Glucose Intolerance,” World Journal of Diabetes 12, no. 3 (2021): 198–205, 10.4239/wjd.v12.i3.198.</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i3.198</ArticleId><ArticleId IdType="pmc">PMC7958476</ArticleId><ArticleId IdType="pubmed">33758642</ArticleId></ArticleIdList></Reference><Reference><Citation>García‐Fernández L., Romero‐Ferreiro V., Padilla S., David López‐Roldán P., Monzó‐García M., and Rodriguez‐Jimenez R., “Gender Differences in Emotional Response to the COVID‐19 Outbreak in Spain,” Brain and Behavior 11, no. 1 (2020): e01935, 10.1002/brb3.1935.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/brb3.1935</ArticleId><ArticleId IdType="pmc">PMC7821629</ArticleId><ArticleId IdType="pubmed">33305891</ArticleId></ArticleIdList></Reference><Reference><Citation>Borrescio‐Higa F. and Valenzuela P., “Gender Inequality and Mental Health During the COVID‐19 Pandemic,” International Journal of Public Health 66 (2021): 1604220, 10.3389/ijph.2021.1604220.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/ijph.2021.1604220</ArticleId><ArticleId IdType="pmc">PMC8698135</ArticleId><ArticleId IdType="pubmed">34955701</ArticleId></ArticleIdList></Reference><Reference><Citation>Del Río‐Lozano M., García‐Calvente M., Elizalde‐Sagardia B., and Maroto‐Navarro G., “Caregiving and Caregiver Health 1 Year Into the COVID‐19 Pandemic (Cuidar‐Se Study): A Gender Analysis,” International Journal of Environmental Research and Public Health 19, no. 3 (2022): 1653, 10.3390/ijerph19031653.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph19031653</ArticleId><ArticleId IdType="pmc">PMC8835117</ArticleId><ArticleId IdType="pubmed">35162675</ArticleId></ArticleIdList></Reference><Reference><Citation>Socioeconomic and Health Perspectives on the Quality of Life of Patients With Non‐Communicable Diseases During the COVID‐19 Pandemic: A Systematic Literature Review,” Journal of Pharmaceutical Negative Results 13, no. 3 (2022): 883–892, 10.47750/pnr.2022.13.03.132.</Citation><ArticleIdList><ArticleId IdType="doi">10.47750/pnr.2022.13.03.132</ArticleId></ArticleIdList></Reference><Reference><Citation>Vilafranca Cartagena M., Tort‐Nasarre G., Romeu‐Labayen M., and Vidal‐Alaball J., “The Experiences of Patients With Diabetes and Strategies for Their Management During the First COVID‐19 Lockdown: A Qualitative Study,” BMC Nursing 21, no. 1 (2022): 124, 10.1186/s12912-022-00911-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12912-022-00911-4</ArticleId><ArticleId IdType="pmc">PMC9126747</ArticleId><ArticleId IdType="pubmed">35610635</ArticleId></ArticleIdList></Reference><Reference><Citation>Singhai K., Swami M. K., Nebhinani N., Rastogi A., and Jude E., “Psychological Adaptive Difficulties and Their Management During COVID‐19 Pandemic in People With Diabetes Mellitus,” Diabetes & Metabolic Syndrome 14, no. 6 (2020): 1603–1605, 10.1016/j.dsx.2020.08.025.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2020.08.025</ArticleId><ArticleId IdType="pmc">PMC7443210</ArticleId><ArticleId IdType="pubmed">32862099</ArticleId></ArticleIdList></Reference><Reference><Citation>Puig‐García M., Rivadeneira M. F., Peralta A., et al., “Access to Health Services for Chronic Disease Care During the COVID‐19 Pandemic in Ecuador: A Qualitative Analysis Using a Social Determinants of Health Approach,” Global Public Health 18, no. 1 (2023): e2224859, 10.1080/17441692.2023.2224859.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/17441692.2023.2224859</ArticleId><ArticleId IdType="pmc">PMC7616628</ArticleId><ArticleId IdType="pubmed">37344363</ArticleId></ArticleIdList></Reference><Reference><Citation>Joensen L. E., Madsen K. P., Holm L., et al., “Diabetes and COVID‐19: Psychosocial Consequences of the COVID‐19 Pandemic in People With Diabetes in Denmark—What Characterizes People With High Levels of COVID‐19‐related Worries,” Diabetic Medicine 37, no. 7 (2020): 1146–1154, 10.1111/dme.14319.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14319</ArticleId><ArticleId IdType="pmc">PMC7273071</ArticleId><ArticleId IdType="pubmed">32392380</ArticleId></ArticleIdList></Reference><Reference><Citation> -Parrado‐González A. and León‐Jariego J. C., “[Covid‐19: Factors Associated With Emotional Distress and Psychological Morbidity in Spanish Population.],” Revista Espanola de Salud Publica -94 (2020): e202006058, https://www.ncbi.nlm.nih.gov/pubmed/32507849. -</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11583131</ArticleId><ArticleId IdType="pubmed">32507849</ArticleId></ArticleIdList></Reference><Reference><Citation>Shinan‐Altman S. and Levkovich I., “Emotional Reactions Towards COVID‐19 Among Persons With Diabetes,” International Health 14, no. 2 (2022): 170–175, 10.1093/inthealth/ihab024.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/inthealth/ihab024</ArticleId><ArticleId IdType="pmc">PMC8136032</ArticleId><ArticleId IdType="pubmed">33974703</ArticleId></ArticleIdList></Reference><Reference><Citation>Vigezzi G. P., Bertuccio P., Bossi C. B., et al., “COVID‐19 Pandemic Impact on People With Diabetes: Results From a Large Representative Sample of Italian Older Adults,” Primary Care Diabetes 16, no. 5 (2022): 650–657, 10.1016/j.pcd.2022.06.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2022.06.001</ArticleId><ArticleId IdType="pmc">PMC9212916</ArticleId><ArticleId IdType="pubmed">35778238</ArticleId></ArticleIdList></Reference><Reference><Citation>Salas Quijada C., López‐Contreras N., López‐Jiménez T., et al., “Social Inequalities in Mental Health and Self‐Perceived Health in the First Wave of COVID‐19 Lockdown in Latin America and Spain: Results of an Online Observational Study,” International Journal of Environmental Research and Public Health 20, no. 9 (2023): 5722, 10.3390/ijerph20095722.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph20095722</ArticleId><ArticleId IdType="pmc">PMC10249008</ArticleId><ArticleId IdType="pubmed">37174240</ArticleId></ArticleIdList></Reference><Reference><Citation>Azzouzi S., Stratton C., Muñoz‐Velasco L. P., et al., “The Impact of the COVID‐19 Pandemic on Healthy Lifestyle Behaviors and Perceived Mental and Physical Health of People Living With Non‐Communicable Diseases: An International Cross‐Sectional Survey,” International Journal of Environmental Research and Public Health 19, no. 13 (2022): 8023, 10.3390/ijerph19138023.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph19138023</ArticleId><ArticleId IdType="pmc">PMC9265593</ArticleId><ArticleId IdType="pubmed">35805680</ArticleId></ArticleIdList></Reference><Reference><Citation>Abdoli S., Silveira M. S. V. M., Doosti‐Irani M., et al., “Cross‐National Comparison of Psychosocial Well‐Being and Diabetes Outcomes in Adults With Type 1 Diabetes During the COVID‐19 Pandemic in US, Brazil, and Iran,” Diabetology & Metabolic Syndrome 13, no. 1 (2021): 63, 10.1186/s13098-021-00681-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-021-00681-0</ArticleId><ArticleId IdType="pmc">PMC8193175</ArticleId><ArticleId IdType="pubmed">34116721</ArticleId></ArticleIdList></Reference><Reference><Citation>Alencar D. C., Ribeiro L. M. S., Carvalho L., Rocha G. S. T., Sousa E. O., and Ibiapina A. R. S., “Saúde Mental De Pessoas Com Diabetes No Período Da Pandemia De COVID‐19: Revisão Integrativa,” Revista Eletrônica de Enfermagem 24 (2022), 10.5216/ree.v24.67537.</Citation><ArticleIdList><ArticleId IdType="doi">10.5216/ree.v24.67537</ArticleId></ArticleIdList></Reference><Reference><Citation>Tunji‐Adepoju O. O., Afolabi Bolarinwa O., Aboagye R. G., and Balogun W. O., “Perception and Coping Mechanisms of Patients With Diabetes Mellitus During the COVID‐19 Pandemic in Ibadan, Nigeria,” PLoS One 19, no. 8 (2024): e0309451, 10.1371/journal.pone.0309451.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0309451</ArticleId><ArticleId IdType="pmc">PMC11349176</ArticleId><ArticleId IdType="pubmed">39190716</ArticleId></ArticleIdList></Reference><Reference><Citation>Moradian S., Teufel M., Jahre L., et al., “Mental Health Burden of Patients With Diabetes Before and After the Initial Outbreak of COVID‐19: Predictors of Mental Health Impairment,” BMC Public Health 21, no. 1 (2021): 2068, 10.1186/s12889-021-12101-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-021-12101-z</ArticleId><ArticleId IdType="pmc">PMC8582238</ArticleId><ArticleId IdType="pubmed">34763688</ArticleId></ArticleIdList></Reference><Reference><Citation>Gobirno de la República del Ecuador. Decreto No. 1017: Declárese el estado de excepción por calamidad pública en todo el territorio nacional, por los casos de coronavirus confirmados y la declaratoria de pandemia de COVID‐19 por parte de la Organización (Mundial de la Salud. Registro Oficial, 2020).</Citation></Reference><Reference><Citation>OECD. Covid‐19 en América Latina y el Caribe: Panorama de las respuestas de los gobiernos a la crisis (2020), 10.1787/7d9f7a2b-es.</Citation><ArticleIdList><ArticleId IdType="doi">10.1787/7d9f7a2b-es</ArticleId></ArticleIdList></Reference><Reference><Citation> -Maurizio R., “Empleo En América Latina: Una Recuperación Insuficiente Y Desigual,” La Republica, September 8, 2021, https://search.proquest.com/docview/2570962679.</Citation></Reference><Reference><Citation>“Real Decreto 463/2020, de 14 de marzo, por el que se declara el estado de alarma para la gestión de la situación de crisis sanitaria ocasionada por el COVID‐19 [in Spanish].” Boletin Oficial del Estado 67 (March 2020): 25390–25400, https://www.boe.es/buscar/doc.php?id=BOE-A-2020-3692.</Citation></Reference><Reference><Citation>Mideros Mora A. and Fernández Mora N., El bienestar como tarea pendiente en Ecuador: hacia nuevos pactos para garantizar la protección social universal (Friedrich‐Ebert‐Stiftung (FES) Ecuador Instituto Latinoamericano de Investigaciones Sociales (ILDIS), 2021).</Citation></Reference><Reference><Citation>Aguirre Andrade and F. Diego. Rotación de las máximas autoridades de la salud pública y la seguridad social en Ecuador (2017–2022). 2023. (4): 41–52.</Citation></Reference><Reference><Citation>Vaccaro Witt G. F., Jurado Ronquillo M. C., Gonzabay Bravo E. M., and Witt Rodríguez P. M., “Desafíos Y Problemas De La Salud Pública En Ecuador,” RECIAMUC 7, no. 2 (2023): 10–21, 10.26820/reciamuc/7.(2).abril.2023.10-21.</Citation><ArticleIdList><ArticleId IdType="doi">10.26820/reciamuc/7.(2).abril.2023.10-21</ArticleId></ArticleIdList></Reference><Reference><Citation>DIAZ Mordillo M. A., “Pasado Y Futuro Del Estado De Bienestar: Reflexiones Desde Una Era Postcovid,” Lan Harremanak ‐ Revista de Relaciones Laborales 46 (2021): 33–59, 10.1387/lan-harremanak.23138.</Citation><ArticleIdList><ArticleId IdType="doi">10.1387/lan-harremanak.23138</ArticleId></ArticleIdList></Reference><Reference><Citation> -International Diabetes Federation, 10th ed., (IDF Diabetes Atlas, 2021), https://diabetesatlas.org/atlas/tenth-edition/.</Citation></Reference><Reference><Citation>R. Ejecutivo, Encuesta Steps Ecuador 2018 MSP, INEC, OPS/OMS Vigilancia de enfermedades no transmisibles y factores de riesgo.</Citation></Reference><Reference><Citation>Banegas J. R., Sánchez‐Martínez M., Gijón‐Conde T., et al., “Cifras E Impacto De La Hipertensión Arterial En España,” Revista española de cardiología 77, no. 9 (2024): 767–778, 10.1016/j.recesp.2024.03.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.recesp.2024.03.002</ArticleId><ArticleId IdType="pubmed">38701882</ArticleId></ArticleIdList></Reference><Reference><Citation> -Charmaz K., “The Power and Potential of Grounded Theory,” Medical Sociology Online -6, no. 3 (2012): 2–15, https://www.epicpeople.org/wp-content/uploads/2023/06/Charmaz-2012.pdf.</Citation></Reference><Reference><Citation>Aspers P. and Corte U., “What Is Qualitative in Qualitative Research,” Qualitative Sociology 42, no. 2 (2019): 139–160, 10.1007/s11133-019-9413-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11133-019-9413-7</ArticleId><ArticleId IdType="pmc">PMC6494783</ArticleId><ArticleId IdType="pubmed">31105362</ArticleId></ArticleIdList></Reference><Reference><Citation>Denzin N. K., The Research Act: A Theoretical Introduction to Sociological Methods (Routledge, 2017).</Citation></Reference><Reference><Citation>Turner C. and Astin F., “Grounded Theory: What Makes a Grounded Theory Study,” European Journal of Cardiovascular Nursing 20, no. 3 (2021): 285–289, 10.1093/eurjcn/zvaa034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurjcn/zvaa034</ArticleId><ArticleId IdType="pubmed">33772270</ArticleId></ArticleIdList></Reference><Reference><Citation>Pérez‐Fuentes M. C., Molero Jurado M. M., Martos Martínez Á., and Gázquez Linares J. J., “Threat of COVID‐19 and Emotional State During Quarantine: Positive and Negative Affect as Mediators in a Cross‐Sectional Study of the Spanish Population,” PLoS One 15, no. 6 (2020): e0235305, 10.1371/journal.pone.0235305.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0235305</ArticleId><ArticleId IdType="pmc">PMC7316299</ArticleId><ArticleId IdType="pubmed">32584897</ArticleId></ArticleIdList></Reference><Reference><Citation>Grabowski D., Meldgaard J., and Hulvej Rod M., “Altered Self‐Observations, Unclear Risk Perceptions and Changes in Relational Everyday Life: A Qualitative Study of Psychosocial Life With Diabetes During the COVID‐19 Lockdown,” Societies 10, no. 3 (2020): 63, 10.3390/soc10030063.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/soc10030063</ArticleId></ArticleIdList></Reference><Reference><Citation>Sadiković S., Branovački B., Oljača M., Mitrović D., Pajić D., and Smederevac S., “Daily Monitoring of Emotional Responses to the Coronavirus Pandemic in Serbia: A Citizen Science Approach,” Frontiers in Psychology 11 (2020): 2133, 10.3389/fpsyg.2020.02133.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpsyg.2020.02133</ArticleId><ArticleId IdType="pmc">PMC7466566</ArticleId><ArticleId IdType="pubmed">32973636</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim M. J., Park C., Sharp L. K., et al., “Impact of Worries Associated With COVID‐19 on Diabetes‐Related Psychological Symptoms in Older Adults With Type 2 Diabetes,” Geriatric Nursing 43 (2022): 58–63, 10.1016/j.gerinurse.2021.11.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gerinurse.2021.11.006</ArticleId><ArticleId IdType="pmc">PMC8585634</ArticleId><ArticleId IdType="pubmed">34823078</ArticleId></ArticleIdList></Reference><Reference><Citation>Barone M. T. U., Villarroel D., de Luca P. V., et al., “COVID‐19 Impact on People With Diabetes in South and Central America (SACA Region),” Diabetes Research and Clinical Practice 166 (2020): 108301, 10.1016/j.diabres.2020.108301.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108301</ArticleId><ArticleId IdType="pmc">PMC7332429</ArticleId><ArticleId IdType="pubmed">32623036</ArticleId></ArticleIdList></Reference><Reference><Citation>Rotărescu V. S., Matei D. B., Mircea I. A., et al., “How Anxious Did You Feel During Lockdown? The Roles Resilience, Living Environment, and Gender Play on the Level of Anxiety State During Pandemic Isolation,” Research in Psychotherapy: Psychopathology, Process and Outcome 23, no. 3 (2021): 496, 10.4081/ripppo.2020.496.</Citation><ArticleIdList><ArticleId IdType="doi">10.4081/ripppo.2020.496</ArticleId><ArticleId IdType="pmc">PMC7875071</ArticleId><ArticleId IdType="pubmed">33585301</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayala Ayala J. P., Correa Marquinez L. C., and Campuzano Vásquez J. A., “Indicador De Pobreza Por Ingreso En Ecuador Y El Efecto Covid‐19, Del 2010 Al 2020,” Sociedad & Tecnología 4, no. 2 (2021): 248–264, 10.51247/st.v4i2.108.</Citation><ArticleIdList><ArticleId IdType="doi">10.51247/st.v4i2.108</ArticleId></ArticleIdList></Reference><Reference><Citation>Mekonnen A., Destaw Z., Derseh D., Gadissa E., and Ali S., “Impact of COVID‐19 on Non‐Communicable Disease Management Services at Selected Government Health Centers in Addis Ababa, Ethiopia,” African Health Sciences 22, no. 3 (2022): 527–534, 10.4314/ahs.v22i3.57.</Citation><ArticleIdList><ArticleId IdType="doi">10.4314/ahs.v22i3.57</ArticleId><ArticleId IdType="pmc">PMC9993267</ArticleId><ArticleId IdType="pubmed">36910376</ArticleId></ArticleIdList></Reference><Reference><Citation>Basu S., “Non‐Communicable Disease Management in Vulnerable Patients During Covid‐19,” Indian Journal of Medical Ethics 05, no. 2 (2020): 103–105, 10.20529/IJME.2020.041.</Citation><ArticleIdList><ArticleId IdType="doi">10.20529/IJME.2020.041</ArticleId><ArticleId IdType="pubmed">32393447</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO. Social Determinants of Health. Report by the Directro‐General (EB 148/24) (World Health Organization, 2021).</Citation></Reference><Reference><Citation>Medina‐Mora M. E., Cordero M., and Rafful C., “Determinantes sociales de la salud mental en la pandemia.” Secretaria de Desarrollo Institucional, ed. La vida emocional en la pandemia (Universidad Nacional Autónoma de México, 2021).</Citation></Reference><Reference><Citation>Block E. S. and Erskine L., “Interviewing by Telephone: Specific Considerations, Opportunities, and Challenges,” International Journal of Qualitative Methods 11, no. 4 (2012): 428–445, 10.1177/160940691201100409.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/160940691201100409</ArticleId></ArticleIdList></Reference><Reference><Citation> -Ibrahim M. and Damasceno A., “Hypertension 3: Hypertension in Developing Countries,” Lancet (British Edition) -380, no. 9841 (2012): 611, https://search.proquest.com/docview/1034724884.</Citation><ArticleIdList><ArticleId IdType="pubmed">22883510</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39659613</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Association of mitochondrial haplogroup H with reduced risk of type 2 Diabetes among Gulf Region Arabs.</ArticleTitle><Pagination><StartPage>1443737</StartPage><MedlinePgn>1443737</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1443737</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1443737</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Numerous studies have linked mitochondrial dysfunction to the development of type 2 diabetes (T2D) by affecting glucose-stimulated insulin secretion in pancreatic beta cells and reducing oxidative phosphorylation in insulin-responsive tissues. Given the strong genetic underpinnings of T2D, research has explored the connection between mitochondrial DNA haplogroups, specific variants, and the risk and comorbidities of T2D. For example, haplogroups F, D, M9, and N9a have been linked to an elevated risk of T2D across various populations. Additionally, specific mitochondrial DNA variants, such as the rare mtDNA 3243 A>G and the more prevalent mtDNA 16189 T>C, have also been implicated in heightened T2D risk. Notably, these associations vary among different populations. Given the high incidence of T2D in the Gulf Cooperation Council countries, this study investigates the correlation between T2D and mitochondrial haplogroups and variants in Arab populations from the Gulf region.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">This analysis involved mitochondrial haplogroup and variant testing in a cohort of 1,112 native Kuwaiti and Qatari individuals, comprising 685 T2D patients and 427 controls. Complete mitochondrial genomes were derived from whole exome sequencing data to examine the associations between T2D and haplogroups and mitochondrial DNA variants.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The analysis revealed a significant protective effect of haplogroup H against T2D (odds ratio [OR] = 0.65; P = 0.022). This protective association persisted when adjusted for age, sex, body mass index (BMI) and population group, with an OR of 0.607 (P = 0.021). Furthermore, specific mitochondrial variants showed significant associations with T2D risk after adjustment for relevant covariates, and some variants were exclusively found in T2D patients.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Our findings confirm that the maternal haplogroup H, previously identified as protective against obesity in Kuwaiti Arabs, also serves as a protective factor against T2D in Arabs from the Gulf region. The study also identifies mitochondrial DNA variants that either increase or decrease the risk of T2D, underscoring their role in cellular energy metabolism.</AbstractText><CopyrightInformation>Copyright © 2024 Dashti, Ali, Alsaleh, John, Nizam, Thanaraj and Al-Mulla.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Dashti</LastName><ForeName>Mohammed</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ali</LastName><ForeName>Naser M</ForeName><Initials>NM</Initials><AffiliationInfo><Affiliation>Department of Medical Laboratories, Ahmadi Hospital, Kuwait Oil Company (KOC), Ahmadi, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alsaleh</LastName><ForeName>Hussain</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Saad Al-Abdullah Academy for Security Sciences, Ministry of Interior, Shuwaikh, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>John</LastName><ForeName>Sumi Elsa</ForeName><Initials>SE</Initials><AffiliationInfo><Affiliation>Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nizam</LastName><ForeName>Rasheeba</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thanaraj</LastName><ForeName>Thangavel Alphonse</ForeName><Initials>TA</Initials><AffiliationInfo><Affiliation>Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Mulla</LastName><ForeName>Fahd</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>26</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018912" MajorTopicYN="Y">Arabs</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006239" MajorTopicYN="Y">Haplotypes</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004272" MajorTopicYN="Y">DNA, Mitochondrial</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011780" MajorTopicYN="N" Type="Geographic">Qatar</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007730" MajorTopicYN="N" Type="Geographic">Kuwait</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Arab</Keyword><Keyword MajorTopicYN="N">haplogroups</Keyword><Keyword MajorTopicYN="N">mitochondria</Keyword><Keyword MajorTopicYN="N">mtDNA variants</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>11</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>4</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39659613</ArticleId><ArticleId IdType="pmc">PMC11628290</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1443737</ArticleId></ArticleIdList><ReferenceList><Reference><Citation> -World Health Organization . The WHO global diabetes compact. Geneva: (2023). Available at: https://www.who.int/initiatives/the-who-global-diabetes-compact.</Citation></Reference><Reference><Citation> -International Diabetes Federation . IDF diabetes atlas. 10th edn. Brussels, Belgium: (2021). Available at: https://www.diabetesatlas.org.</Citation></Reference><Reference><Citation>Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia. (1999) 42:146–50. doi: 10.1007/s001250051132</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s001250051132</ArticleId><ArticleId IdType="pubmed">10064093</ArticleId></ArticleIdList></Reference><Reference><Citation>Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia. (1999) 42:139–45. doi: 10.1007/s001250051131</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s001250051131</ArticleId><ArticleId IdType="pubmed">10064092</ArticleId></ArticleIdList></Reference><Reference><Citation>Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. (2000) 49:2201–7. doi: 10.2337/diabetes.49.12.2201</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.49.12.2201</ArticleId><ArticleId IdType="pubmed">11118026</ArticleId></ArticleIdList></Reference><Reference><Citation>Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. . Finding the missing heritability of complex diseases. Nature. (2009) 461:747–53. doi: 10.1038/nature08494</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature08494</ArticleId><ArticleId IdType="pmc">PMC2831613</ArticleId><ArticleId IdType="pubmed">19812666</ArticleId></ArticleIdList></Reference><Reference><Citation>Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun. (2017) 482:426–31. doi: 10.1016/j.bbrc.2016.11.088</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbrc.2016.11.088</ArticleId><ArticleId IdType="pubmed">28212726</ArticleId></ArticleIdList></Reference><Reference><Citation>Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. (2003) 34:267–73. doi: 10.1038/ng1180</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng1180</ArticleId><ArticleId IdType="pubmed">12808457</ArticleId></ArticleIdList></Reference><Reference><Citation>Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. . Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U.S.A. (2003) 100:8466–71. doi: 10.1073/pnas.1032913100</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.1032913100</ArticleId><ArticleId IdType="pmc">PMC166252</ArticleId><ArticleId IdType="pubmed">12832613</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. (2008) 102:401–14. doi: 10.1161/CIRCRESAHA.107.165472</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.107.165472</ArticleId><ArticleId IdType="pmc">PMC2963150</ArticleId><ArticleId IdType="pubmed">18309108</ArticleId></ArticleIdList></Reference><Reference><Citation>Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM, Lauritzen HPMM, et al. . Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. (2019) 30:735–753.e734. doi: 10.1016/j.cmet.2019.09.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2019.09.003</ArticleId><ArticleId IdType="pmc">PMC7816129</ArticleId><ArticleId IdType="pubmed">31577934</ArticleId></ArticleIdList></Reference><Reference><Citation>Lightowlers RN, Chinnery PF, Turnbull DM, Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. (1997) 13:450–5. doi: 10.1016/s0168-9525(97)01266-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0168-9525(97)01266-3</ArticleId><ArticleId IdType="pubmed">9385842</ArticleId></ArticleIdList></Reference><Reference><Citation>Naue J, Hörer S, Sänger T, Strobl C, Hatzer-Grubwieser P, Parson W, et al. . Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion. (2015) 20:82–94. doi: 10.1016/j.mito.2014.12.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mito.2014.12.002</ArticleId><ArticleId IdType="pubmed">25526677</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernández-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol. (2003) 88:41–56. doi: 10.1113/eph8802514</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/eph8802514</ArticleId><ArticleId IdType="pubmed">12525854</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. (2010) 51:440–50. doi: 10.1002/em.20586</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/em.20586</ArticleId><ArticleId IdType="pubmed">20544884</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace DC. A mitochondrial bioenergetic etiology of disease. J Clin Invest. (2013) 123:1405–12. doi: 10.1172/JCI61398</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI61398</ArticleId><ArticleId IdType="pmc">PMC3614529</ArticleId><ArticleId IdType="pubmed">23543062</ArticleId></ArticleIdList></Reference><Reference><Citation>Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. (2015) 16:530–42. doi: 10.1038/nrg3966</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrg3966</ArticleId><ArticleId IdType="pubmed">26281784</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsukuda K, Suzuki Y, Kameoka K, Osawa N, Goto Y, Katagiri H, et al. . Screening of patients with maternally transmitted diabetes for mitochondrial gene mutations in the tRNA[Leu(UUR)] region. Diabetes Med. (1997) 14:1032–7. doi: 10.1002/(SICI)1096-9136(199712)14:12<1032::AID-DIA504>3.0.CO;2-Y</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/(SICI)1096-9136(199712)14:12<1032::AID-DIA504>3.0.CO;2-Y</ArticleId><ArticleId IdType="pubmed">9455930</ArticleId></ArticleIdList></Reference><Reference><Citation>Saker PJ, Hattersley AT, Barrow B, Hammersley MS, Horton V, Gillmer MD, et al. . UKPDS 21: low prevalence of the mitochondrial transfer RNA gene (tRNA(Leu(UUR))) mutation at position 3243bp in UK Caucasian type 2 diabetic patients. Diabetes Med. (1997) 14:42–5. doi: 10.1002/(SICI)1096-9136(199701)14:1<42::AID-DIA295>3.0.CO;2-T</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/(SICI)1096-9136(199701)14:1<42::AID-DIA295>3.0.CO;2-T</ArticleId><ArticleId IdType="pubmed">9017352</ArticleId></ArticleIdList></Reference><Reference><Citation>Park KS, Chan JC, Chuang LM, Suzuki S, Araki E, Nanjo K, et al. . A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia. (2008) 51:602–8. doi: 10.1007/s00125-008-0933-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-008-0933-z</ArticleId><ArticleId IdType="pubmed">18251004</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang PW, Lin TK, Weng SW, Liou CW. Mitochondrial DNA variants in the pathogenesis of type 2 diabetes - relevance of asian population studies. Rev Diabetes Stud. (2009) 6:237–46. doi: 10.1900/RDS.2009.6.237</Citation><ArticleIdList><ArticleId IdType="doi">10.1900/RDS.2009.6.237</ArticleId><ArticleId IdType="pmc">PMC2836195</ArticleId><ArticleId IdType="pubmed">20043036</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsouna S, Ben Halim N, Lasram K, Arfa I, Jamoussi H, Bahri S, et al. . Association study of mitochondrial DNA polymorphisms with type 2 diabetes in Tunisian population. Mitochondrial DNA. (2015) 26:367–72. doi: 10.3109/19401736.2013.836508</Citation><ArticleIdList><ArticleId IdType="doi">10.3109/19401736.2013.836508</ArticleId><ArticleId IdType="pubmed">24102601</ArticleId></ArticleIdList></Reference><Reference><Citation>Chinnery PF, Elliott HR, Patel S, Lambert C, Keers SM, Durham SE, et al. . Role of the mitochondrial DNA 16184-16193 poly-C tract in type 2 diabetes. Lancet. (2005) 366:1650–1. doi: 10.1016/S0140-6736(05)67492-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(05)67492-2</ArticleId><ArticleId IdType="pubmed">16271646</ArticleId></ArticleIdList></Reference><Reference><Citation>Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, et al. . Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet. (2007) 80:407–15. doi: 10.1086/512202</Citation><ArticleIdList><ArticleId IdType="doi">10.1086/512202</ArticleId><ArticleId IdType="pmc">PMC1821119</ArticleId><ArticleId IdType="pubmed">17273962</ArticleId></ArticleIdList></Reference><Reference><Citation>Liao WQ, Pang Y, Yu CA, Wen JY, Zhang YG, Li XH. Novel mutations of mitochondrial DNA associated with type 2 diabetes in Chinese Han population. Tohoku J Exp Med. (2008) 215:377–84. doi: 10.1620/tjem.215.377</Citation><ArticleIdList><ArticleId IdType="doi">10.1620/tjem.215.377</ArticleId><ArticleId IdType="pubmed">18679013</ArticleId></ArticleIdList></Reference><Reference><Citation>Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, et al. . mtDNA haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes. (2018) 67:1441–53. doi: 10.2337/db17-0974</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db17-0974</ArticleId><ArticleId IdType="pubmed">29735607</ArticleId></ArticleIdList></Reference><Reference><Citation>Fakhro KA, Staudt MR, Ramstetter MD, Robay A, Malek JA, Badii R, et al. . The Qatar genome: a population-specific tool for precision medicine in the Middle East. Hum Genome Var. (2016) 3:16016. doi: 10.1038/hgv.2016.16</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/hgv.2016.16</ArticleId><ArticleId IdType="pmc">PMC4927697</ArticleId><ArticleId IdType="pubmed">27408750</ArticleId></ArticleIdList></Reference><Reference><Citation>O’Beirne SL, Salit J, Rodriguez-Flores JL, Staudt MR, Abi Khalil C, Fakhro KA, et al. . Exome sequencing-based identification of novel type 2 diabetes risk allele loci in the Qatari population. PloS One. (2018) 13:e0199837. doi: 10.1371/journal.pone.0199837</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0199837</ArticleId><ArticleId IdType="pmc">PMC6136697</ArticleId><ArticleId IdType="pubmed">30212457</ArticleId></ArticleIdList></Reference><Reference><Citation>John SE, Antony D, Eaaswarkhanth M, Hebbar P, Channanath AM, Thomas D, et al. . Assessment of coding region variants in Kuwaiti population: implications for medical genetics and population genomics. Sci Rep. (2018) 8:16583. doi: 10.1038/s41598-018-34815-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-018-34815-8</ArticleId><ArticleId IdType="pmc">PMC6224454</ArticleId><ArticleId IdType="pubmed">30409984</ArticleId></ArticleIdList></Reference><Reference><Citation>Hebbar P, Nizam R, Melhem M, Alkayal F, Elkum N, John SE, et al. . Genome-wide association study identifies novel recessive genetic variants for high TGs in an Arab population. J Lipid Res. (2018) 59:1951–66. doi: 10.1194/jlr.P080218</Citation><ArticleIdList><ArticleId IdType="doi">10.1194/jlr.P080218</ArticleId><ArticleId IdType="pmc">PMC6168314</ArticleId><ArticleId IdType="pubmed">30108155</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. (2013), 1303. doi: 10.48550/arXiv.1303.3997</Citation><ArticleIdList><ArticleId IdType="doi">10.48550/arXiv.1303.3997</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. . The sequence alignment/map format and SAMtools. Bioinformatics. (2009) 25:2078–9. doi: 10.1093/bioinformatics/btp352</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btp352</ArticleId><ArticleId IdType="pmc">PMC2723002</ArticleId><ArticleId IdType="pubmed">19505943</ArticleId></ArticleIdList></Reference><Reference><Citation>McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. (2010) 20:1297–303. doi: 10.1101/gr.107524.110</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/gr.107524.110</ArticleId><ArticleId IdType="pmc">PMC2928508</ArticleId><ArticleId IdType="pubmed">20644199</ArticleId></ArticleIdList></Reference><Reference><Citation>McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. . The ensembl variant effect predictor. Genome Biol. (2016) 17:122. doi: 10.1186/s13059-016-0974-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13059-016-0974-4</ArticleId><ArticleId IdType="pmc">PMC4893825</ArticleId><ArticleId IdType="pubmed">27268795</ArticleId></ArticleIdList></Reference><Reference><Citation>Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, et al. . mtDNA variation and analysis using mitomap and mitomaster. Curr Protoc Bioinf. (2013) 44(123):1.23.1–1.23.26. doi: 10.1002/0471250953.bi0123s44</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/0471250953.bi0123s44</ArticleId><ArticleId IdType="pmc">PMC4257604</ArticleId><ArticleId IdType="pubmed">25489354</ArticleId></ArticleIdList></Reference><Reference><Citation>Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et al. . HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. (2016) 44:W58–63. doi: 10.1093/nar/gkw233</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nar/gkw233</ArticleId><ArticleId IdType="pmc">PMC4987869</ArticleId><ArticleId IdType="pubmed">27084951</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohkubo K, Yamano A, Nagashima M, Mori Y, Anzai K, Akehi Y, et al. . Mitochondrial gene mutations in the tRNA(Leu(UUR)) region and diabetes: prevalence and clinical phenotypes in Japan. Clin Chem. (2001) 47:1641–8. doi: 10.1093/clinchem/47.9.1641</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/clinchem/47.9.1641</ArticleId><ArticleId IdType="pubmed">11514398</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang T, Lam CW, Tsang MW, Tong SF, Kam GY, Chan LY, et al. . Novel mitochondrial 16S rRNA mutation 3200T–>C, associated with adult-onset type 2 diabetes. Chin Med J (Engl). (2002) 115:753–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">12133550</ArticleId></ArticleIdList></Reference><Reference><Citation>Loo JH, Trejaut JA, Yen JC, Chen ZS, Ng WM, Huang CY, et al. . Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan. BMC Res Notes. (2014) 7:223. doi: 10.1186/1756-0500-7-223</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1756-0500-7-223</ArticleId><ArticleId IdType="pmc">PMC4108081</ArticleId><ArticleId IdType="pubmed">24713204</ArticleId></ArticleIdList></Reference><Reference><Citation>Tzen CY, Thajeb P, Wu TY, Chen SC. Melas with point mutations involving tRNALeu (A3243G) and tRNAGlu(A14693g). Muscle Nerve. (2003) 28:575–81. doi: 10.1002/mus.10473</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/mus.10473</ArticleId><ArticleId IdType="pubmed">14571459</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Y, Liao WX, Roy AC, Loganath A, Ng SC. Mitochondrial gene mutations in gestational diabetes mellitus. Diabetes Res Clin Pract. (2000) 48:29–35. doi: 10.1016/s0168-8227(99)00138-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0168-8227(99)00138-2</ArticleId><ArticleId IdType="pubmed">10704697</ArticleId></ArticleIdList></Reference><Reference><Citation>Dashti M, Ateyah K, Alroughani R, Al-Temaimi R. Replication analysis of variants associated with multiple sclerosis risk. Sci Rep. (2020) 10:7327. doi: 10.1038/s41598-020-64432-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-64432-3</ArticleId><ArticleId IdType="pmc">PMC7193640</ArticleId><ArticleId IdType="pubmed">32355262</ArticleId></ArticleIdList></Reference><Reference><Citation>Abu-Amero KK, Larruga JM, Cabrera VM, González AM. Mitochondrial DNA structure in the arabian peninsula. BMC Evol Biol. (2008) 8:45. doi: 10.1186/1471-2148-8-45</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2148-8-45</ArticleId><ArticleId IdType="pmc">PMC2268671</ArticleId><ArticleId IdType="pubmed">18269758</ArticleId></ArticleIdList></Reference><Reference><Citation>Eaaswarkhanth M, Melhem M, Sharma P, Nizam R, Al Madhoun A, Chaubey G, et al. . Mitochondrial DNA D-loop sequencing reveals obesity variants in an Arab population. Appl Clin Genet. (2019) 12:63–70. doi: 10.2147/TACG.S198593</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/TACG.S198593</ArticleId><ArticleId IdType="pmc">PMC6541754</ArticleId><ArticleId IdType="pubmed">31213875</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang W, Li R, Zhang Y, Wang P, Wu T, Lin J, et al. . Mitochondrial DNA mutations associated with type 2 diabetes mellitus in chinese uyghur population. Sci Rep. (2017) 7:16989. doi: 10.1038/s41598-017-17086-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-017-17086-7</ArticleId><ArticleId IdType="pmc">PMC5717000</ArticleId><ArticleId IdType="pubmed">29208909</ArticleId></ArticleIdList></Reference><Reference><Citation>Saha SK, Saba AA, Hasib M, Rimon RA, Hasan I, Alam MS, et al. . Evaluation of D-loop hypervariable region I variations, haplogroups and copy number of mitochondrial DNA in Bangladeshi population with type 2 diabetes. Heliyon. (2021) 7:e07573. doi: 10.1016/j.heliyon.2021.e07573</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.heliyon.2021.e07573</ArticleId><ArticleId IdType="pmc">PMC8327661</ArticleId><ArticleId IdType="pubmed">34377852</ArticleId></ArticleIdList></Reference><Reference><Citation>Dashti M, Alsaleh H, Eaaswarkhanth M, John SE, Nizam R, Melhem M, et al. . Delineation of mitochondrial DNA variants from exome sequencing data and association of haplogroups with obesity in Kuwait. Front Genet. (2021) 12:626260. doi: 10.3389/fgene.2021.626260</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fgene.2021.626260</ArticleId><ArticleId IdType="pmc">PMC7920096</ArticleId><ArticleId IdType="pubmed">33659027</ArticleId></ArticleIdList></Reference><Reference><Citation>Mikami E, Fuku N, Takahashi H, Ohiwa N, Scott RA, Pitsiladis YP, et al. . Mitochondrial haplogroups associated with elite Japanese athlete status. Br J Sports Med. (2011) 45:1179–83. doi: 10.1136/bjsm.2010.072371</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsm.2010.072371</ArticleId><ArticleId IdType="pubmed">20551160</ArticleId></ArticleIdList></Reference><Reference><Citation>Fuku N, Oshida Y, Takeyasu T, Guo LJ, Kurata M, Yamada Y, et al. . Mitochondrial ATPase subunit 6 and cytochrome B gene polymorphisms in young obese adults. Biochem Biophys Res Commun. (2002) 290:1199–205. doi: 10.1006/bbrc.2002.6330</Citation><ArticleIdList><ArticleId IdType="doi">10.1006/bbrc.2002.6330</ArticleId><ArticleId IdType="pubmed">11811990</ArticleId></ArticleIdList></Reference><Reference><Citation>Okura T, Koda M, Ando F, Niino N, Tanaka M, Shimokata H. Association of the mitochondrial DNA 15497G/A polymorphism with obesity in a middle-aged and elderly Japanese population. Hum Genet. (2003) 113:432–6. doi: 10.1007/s00439-003-0983-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00439-003-0983-8</ArticleId><ArticleId IdType="pubmed">12905068</ArticleId></ArticleIdList></Reference><Reference><Citation>Crispim D, Canani LH, Gross JL, Tschiedel B, Souto KE, Roisenberg I. The European-specific mitochondrial cluster J/T could confer an increased risk of insulin-resistance and type 2 diabetes: an analysis of the m.4216T > C and m.4917A > G variants. Ann Hum Genet. (2006) 70:488–95. doi: 10.1111/j.1469-1809.2005.00249.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1469-1809.2005.00249.x</ArticleId><ArticleId IdType="pubmed">16759180</ArticleId></ArticleIdList></Reference><Reference><Citation>Nardelli C, Labruna G, Liguori R, Mazzaccara C, Ferrigno M, Capobianco V, et al. . Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. BioMed Res Int. (2013) 2013:631082. doi: 10.1155/2013/631082</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/631082</ArticleId><ArticleId IdType="pmc">PMC3713591</ArticleId><ArticleId IdType="pubmed">23936828</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebner S, Mangge H, Langhof H, Halle M, Siegrist M, Aigner E, et al. . Mitochondrial haplogroup T is associated with obesity in Austrian juveniles and adults. PloS One. (2015) 10:e0135622. doi: 10.1371/journal.pone.0135622</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0135622</ArticleId><ArticleId IdType="pmc">PMC4556186</ArticleId><ArticleId IdType="pubmed">26322975</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JH, Park KS, Cho YM, Kang BS, Kim SK, Jeon HJ, et al. . The prevalence of the mitochondrial DNA 16189 variant in non-diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabetes Med. (2002) 19:681–4. doi: 10.1046/j.1464-5491.2002.00747.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1046/j.1464-5491.2002.00747.x</ArticleId><ArticleId IdType="pubmed">12147150</ArticleId></ArticleIdList></Reference><Reference><Citation>Weng SW, Liou CW, Lin TK, Wei YH, Lee CF, Eng HL, et al. . Association of mitochondrial deoxyribonucleic acid 16189 variant (T->C transition) with metabolic syndrome in Chinese adults. J Clin Endocrinol Metab. (2005) 90:5037–40. doi: 10.1210/jc.2005-0227</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2005-0227</ArticleId><ArticleId IdType="pubmed">15972579</ArticleId></ArticleIdList></Reference><Reference><Citation>Liou CW, Chen JB, Tiao MM, Weng SW, Huang TL, Chuang JH, et al. . Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes. Diabetes. (2012) 61:2642–51. doi: 10.2337/db11-1369</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db11-1369</ArticleId><ArticleId IdType="pmc">PMC3447893</ArticleId><ArticleId IdType="pubmed">22891220</ArticleId></ArticleIdList></Reference><Reference><Citation>Liou CW, Lin TK, Huei Weng H, Lee CF, Chen TL, Wei YH, et al. . A common mitochondrial DNA variant and increased body mass index as associated factors for development of type 2 diabetes: Additive effects of genetic and environmental factors. J Clin Endocrinol Metab. (2007) 92:235–9. doi: 10.1210/jc.2006-0653</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2006-0653</ArticleId><ArticleId IdType="pubmed">17032725</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin TK, Chen SD, Wang PW, Wei YH, Lee CF, Chen TL, et al. . Increased oxidative damage with altered antioxidative status in type 2 diabetic patients harboring the 16189 T to C variant of mitochondrial DNA. Ann N Y Acad Sci. (2005) 1042:64–9. doi: 10.1196/annals.1338.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1196/annals.1338.007</ArticleId><ArticleId IdType="pubmed">15965046</ArticleId></ArticleIdList></Reference><Reference><Citation>van Tilburg MAL, Parisien M, Boles RG, Drury GL, Smith-Voudouris J, Verma V, et al. . A genetic polymorphism that is associated with mitochondrial energy metabolism increases risk of fibromyalgia. Pain. (2020) 161:2860–71. doi: 10.1097/j.pain.0000000000001996</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/j.pain.0000000000001996</ArticleId><ArticleId IdType="pmc">PMC7669626</ArticleId><ArticleId IdType="pubmed">32658146</ArticleId></ArticleIdList></Reference><Reference><Citation>Blagov A, Nedosugova L, Kirichenko T, Sukhorukov V, Melnichenko A, Orekhov A. Mitochondrial dysfunction as a factor of energy metabolism disorders in type 2 diabetes mellitus. Front Biosci (Schol Ed). (2024) 16:5. doi: 10.31083/j.fbs1601005</Citation><ArticleIdList><ArticleId IdType="doi">10.31083/j.fbs1601005</ArticleId><ArticleId IdType="pubmed">38538341</ArticleId></ArticleIdList></Reference><Reference><Citation>Jonckheere AI, Smeitink JA, Rodenburg RJ. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. (2012) 35:211–25. doi: 10.1007/s10545-011-9382-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10545-011-9382-9</ArticleId><ArticleId IdType="pmc">PMC3278611</ArticleId><ArticleId IdType="pubmed">21874297</ArticleId></ArticleIdList></Reference><Reference><Citation>Weiss H, Wester-Rosenloef L, Koch C, Koch F, Baltrusch S, Tiedge M, et al. . The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and β-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology. (2012) 153:4666–76. doi: 10.1210/en.2012-1296</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/en.2012-1296</ArticleId><ArticleId IdType="pubmed">22919063</ArticleId></ArticleIdList></Reference><Reference><Citation>Tabebi M, Mkaouar-Rebai E, Mnif M, Kallabi F, Ben Mahmoud A, Ben Saad W, et al. . A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with severe nephropathy. Biochem Biophys Res Commun. (2015) 459:353–60. doi: 10.1016/j.bbrc.2015.01.151</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbrc.2015.01.151</ArticleId><ArticleId IdType="pubmed">25701779</ArticleId></ArticleIdList></Reference><Reference><Citation>Li W, Zhang W, Li F, Wang C. Mitochondrial genetic analysis in a Chinese family suffering from both mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes and diabetes. Int J Clin Exp Pathol. (2015) 8:7022–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4525927</ArticleId><ArticleId IdType="pubmed">26261593</ArticleId></ArticleIdList></Reference><Reference><Citation>Flaquer A, Baumbach C, Kriebel J, Meitinger T, Peters A, Waldenberger M, et al. . Mitochondrial genetic variants identified to be associated with BMI in adults. PloS One. (2014) 9:e105116. doi: 10.1371/journal.pone.0105116</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0105116</ArticleId><ArticleId IdType="pmc">PMC4143221</ArticleId><ArticleId IdType="pubmed">25153900</ArticleId></ArticleIdList></Reference><Reference><Citation>Crispim D, Estivalet AA, Roisenberg I, Gross JL, Canani LH. Prevalence of 15 mitochondrial DNA mutations among type 2 diabetic patients with or without clinical characteristics of maternally inherited diabetes and deafness. Arq Bras Endocrinol Metabol. (2008) 52:1228–35. doi: 10.1590/s0004-27302008000800005</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/s0004-27302008000800005</ArticleId><ArticleId IdType="pubmed">19169474</ArticleId></ArticleIdList></Reference><Reference><Citation>Tawata M, Ohtaka M, Iwase E, Ikegishi Y, Aida K, Onaya T. New mitochondrial DNA homoplasmic mutations associated with Japanese patients with type 2 diabetes. Diabetes. (1998) 47:276–7. doi: 10.2337/diab.47.2.276</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.47.2.276</ArticleId><ArticleId IdType="pubmed">9519725</ArticleId></ArticleIdList></Reference><Reference><Citation>Tawata M, Hayashi JI, Isobe K, Ohkubo E, Ohtaka M, Chen J, et al. . A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes. Diabetes. (2000) 49:1269–72. doi: 10.2337/diabetes.49.7.1269</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.49.7.1269</ArticleId><ArticleId IdType="pubmed">10909988</ArticleId></ArticleIdList></Reference><Reference><Citation>Voigt A, Jelinek HF. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress. Physiol Rep. (2016) 4(9):e12796. doi: 10.14814/phy2.12796</Citation><ArticleIdList><ArticleId IdType="doi">10.14814/phy2.12796</ArticleId><ArticleId IdType="pmc">PMC4873641</ArticleId><ArticleId IdType="pubmed">27173674</ArticleId></ArticleIdList></Reference><Reference><Citation>Dabravolski SA, Orekhova VA, Baig MS, Bezsonov EE, Starodubova AV, Popkova TV, et al. . he role of mitochondrial mutations and chronic inflammation in diabetes. Int J Mol Sci. (2021) 22(13):6733. doi: 10.3390/ijms22136733</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms22136733</ArticleId><ArticleId IdType="pmc">PMC8268113</ArticleId><ArticleId IdType="pubmed">34201756</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. (2015) 4:7. doi: 10.1186/s13742-015-0047-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13742-015-0047-8</ArticleId><ArticleId IdType="pmc">PMC4342193</ArticleId><ArticleId IdType="pubmed">25722852</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39659577</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1838-7640</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>19</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Theranostics</Title><ISOAbbreviation>Theranostics</ISOAbbreviation></Journal><ArticleTitle>Branched-chain amino acids deficiency promotes diabetic cardiomyopathy by activating autophagy of cardiac fibroblasts.</ArticleTitle><Pagination><StartPage>7333</StartPage><EndPage>7348</EndPage><MedlinePgn>7333-7348</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.7150/thno.102708</ELocationID><Abstract><AbstractText><b>Rationale:</b> More than half of the patients with type II diabetes mellitus (T2D) develop diabetic cardiomyopathy (DCM). Glycemic control alone cannot effectively prevent or alleviate DCM. <b>Methods:</b> Herein, we concentrated on the variations in levels of metabolites between DCM and T2D patients without cardiomyopathy phenotype. In high-fat diet/low-dose streptozotocin-induced T2D and leptin receptor-deficient diabetic mouse models, we investigated the effect of altering branched-chain amino acids (BCAAs) levels on DCM. <b>Results:</b> We discovered that the levels of plasma BCAAs are notably lower in 15 DCM patients compared to 19 T2D patients who do not exhibit cardiomyopathy phenotype, using nuclear magnetic resonance analysis. This finding was further validated in two additional batches of samples, 123 DCM patients and 129 T2D patients based on the BCAA assay kit, and 30 DCM patients and 30 T2D patients based on the LC-MS/MS method, respectively. Moreover, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated cardiomyopathy phenotypes in diabetic mice. Furthermore, BCAA deficiency promoted cardiac fibroblast activation by stimulating autophagy in DCM mice. Mechanistically, BCAA deficiency activated autophagy via the AMPK-ULK1 signaling pathway in cardiac fibroblasts. Using pharmacological approaches, we validated our findings that autophagy inhibition relieved, whereas autophagy activation aggravated, DCM phenotypes. <b>Conclusions:</b> Taken together, we describe a novel perspective wherein BCAA supplementation may serve as a potential therapeutic agent to mitigate DCM and fibrosis. Our findings provide insights for the development of preventive measures for DCM.</AbstractText><CopyrightInformation>© The author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Ze-Yu</ForeName><Initials>ZY</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Song</LastName><ForeName>Kai</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology and Perioperative Medicine, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Zhi-Yan</ForeName><Initials>ZY</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology and Perioperative Medicine, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ke</LastName><ForeName>Yu-Fan</ForeName><Initials>YF</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shi</LastName><ForeName>Yan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cai</LastName><ForeName>Ke</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Rui</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Xin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tao</LastName><ForeName>Hui</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology and Perioperative Medicine, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Jian-Yuan</ForeName><Initials>JY</Initials><AffiliationInfo><Affiliation>Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>International Human Phenome Institutes (Shanghai), Shanghai 200433, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>10</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>Australia</Country><MedlineTA>Theranostics</MedlineTA><NlmUniqueID>101552395</NlmUniqueID><ISSNLinking>1838-7640</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000597">Amino Acids, Branched-Chain</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000597" MajorTopicYN="Y">Amino Acids, Branched-Chain</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D058065" MajorTopicYN="Y">Diabetic Cardiomyopathies</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005347" MajorTopicYN="Y">Fibroblasts</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009206" MajorTopicYN="N">Myocardium</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="N">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Autophagy</Keyword><Keyword MajorTopicYN="N">Branched-chain amino acid</Keyword><Keyword MajorTopicYN="N">Cardiac fibroblasts</Keyword><Keyword MajorTopicYN="N">Cardiac fibrosis</Keyword><Keyword MajorTopicYN="N">Diabetic cardiomyopathy</Keyword></KeywordList><CoiStatement>Competing Interests: The authors have declared that no competing interest exists.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>11</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>4</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39659577</ArticleId><ArticleId IdType="pmc">PMC11626946</ArticleId><ArticleId IdType="doi">10.7150/thno.102708</ArticleId><ArticleId IdType="pii">thnov14p7333</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care. 1998;21:1138–45.</Citation><ArticleIdList><ArticleId IdType="pubmed">9653609</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K. et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8:152.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10086073</ArticleId><ArticleId IdType="pubmed">37037849</ArticleId></ArticleIdList></Reference><Reference><Citation>Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.</Citation><ArticleIdList><ArticleId IdType="pubmed">12517230</ArticleId></ArticleIdList></Reference><Reference><Citation>Thrainsdottir IS, Aspelund T, Thorgeirsson G, Gudnason V, Hardarson T, Malmberg K. et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care. 2005;28:612–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">15735197</ArticleId></ArticleIdList></Reference><Reference><Citation>Albakri A. Diabetic cardiomyopathy: a review of literature on clinical status and meta-analysis of tissue doppler diagnostic method and the clinical value of intensive glycemic control. Open Access Text. 2018.</Citation></Reference><Reference><Citation>Oktay AA, Akturk HK, Paul TK, O'Keefe JH, Ventura HO, Koch CA, Diabetes, Cardiomyopathy, and Heart Failure. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al, editors. Endotext. South Dartmouth (MA) 2000.</Citation></Reference><Reference><Citation>Rosengren A, Vestberg D, Svensson AM, Kosiborod M, Clements M, Rawshani A. et al. Long-term excess risk of heart failure in people with type 1 diabetes: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:876–85.</Citation><ArticleIdList><ArticleId IdType="pubmed">26388415</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosengren A, Edqvist J, Rawshani A, Sattar N, Franzen S, Adiels M. et al. Excess risk of hospitalisation for heart failure among people with type 2 diabetes. Diabetologia. 2018;61:2300–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6182656</ArticleId><ArticleId IdType="pubmed">30094466</ArticleId></ArticleIdList></Reference><Reference><Citation>Nelson AJ, Peterson ED, Pagidipati NJ. Atherosclerotic cardiovascular disease and heart failure: Determinants of risk and outcomes in patients with diabetes. Prog Cardiovasc Dis. 2019;62:306–14.</Citation><ArticleIdList><ArticleId IdType="pubmed">31301314</ArticleId></ArticleIdList></Reference><Reference><Citation>Arneth B, Arneth R, Shams M. Metabolomics of Type 1 and Type 2 Diabetes. Int J Mol Sci. 2019;20:2467.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6566263</ArticleId><ArticleId IdType="pubmed">31109071</ArticleId></ArticleIdList></Reference><Reference><Citation>Palomer X, Pizarro-Delgado J, Vazquez-Carrera M. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Trends Pharmacol Sci. 2018;39:452–67.</Citation><ArticleIdList><ArticleId IdType="pubmed">29605388</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen ZZ, Gerszten RE. Metabolomics and Proteomics in Type 2 Diabetes. Circ Res. 2020;126:1613–27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11118076</ArticleId><ArticleId IdType="pubmed">32437301</ArticleId></ArticleIdList></Reference><Reference><Citation>Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4949205</ArticleId><ArticleId IdType="pubmed">26950361</ArticleId></ArticleIdList></Reference><Reference><Citation>Ouyang C, You J, Xie Z. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol. 2014;71:71–80.</Citation><ArticleIdList><ArticleId IdType="pubmed">24513079</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W. et al. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy. EBioMedicine. 2016;13:157–67.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5264279</ArticleId><ArticleId IdType="pubmed">27843095</ArticleId></ArticleIdList></Reference><Reference><Citation>Ganesan D, Ramaian Santhaseela A, Rajasekaran S, Selvam S, Jayavelu T. Astroglial biotin deprivation under endoplasmic reticulum stress uncouples BCAA-mTORC1 role in lipid synthesis to prolong autophagy inhibition in the aging brain. J Neurochem. 2020;154:562–75.</Citation><ArticleIdList><ArticleId IdType="pubmed">32030764</ArticleId></ArticleIdList></Reference><Reference><Citation>Bai J, Liu T, Tu B, Yuan M, Shu Z, Fan M. et al. Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis. Autophagy. 2023;19:632–43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9851237</ArticleId><ArticleId IdType="pubmed">35786294</ArticleId></ArticleIdList></Reference><Reference><Citation>Li F, Long TY, Bi SS, Sheikh SA, Zhang CL. circPAN3 exerts a profibrotic role via sponging miR-221 through FoxO3/ATG7-activated autophagy in a rat model of myocardial infarction. Life Sci. 2020;257:118015.</Citation><ArticleIdList><ArticleId IdType="pubmed">32629000</ArticleId></ArticleIdList></Reference><Reference><Citation>Gupta SS, Zeglinski MR, Rattan SG, Landry NM, Ghavami S, Wigle JT. et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516–31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5346657</ArticleId><ArticleId IdType="pubmed">27705938</ArticleId></ArticleIdList></Reference><Reference><Citation>Chi J, Wang L, Zhang X, Fu Y, Liu Y, Chen W. et al. Cyclosporin A induces autophagy in cardiac fibroblasts through the NRP-2/WDFY-1 axis. Biochimie. 2018;148:55–62.</Citation><ArticleIdList><ArticleId IdType="pubmed">29501733</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH. et al. Autophagy is a regulator of TGF-beta1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4385916</ArticleId><ArticleId IdType="pubmed">25789971</ArticleId></ArticleIdList></Reference><Reference><Citation>Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X. et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-beta R II during TGF-beta1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep. 2016;6:24747.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4838850</ArticleId><ArticleId IdType="pubmed">27098600</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci U S A. 2018;115:E9707–E16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6187122</ArticleId><ArticleId IdType="pubmed">30242133</ArticleId></ArticleIdList></Reference><Reference><Citation>Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3030664</ArticleId><ArticleId IdType="pubmed">21205641</ArticleId></ArticleIdList></Reference><Reference><Citation>Martin-Rincon M, Perez-Lopez A, Morales-Alamo D, Perez-Suarez I, de Pablos-Velasco P, Perez-Valera M. et al. Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients. 2019;11:2824.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6893734</ArticleId><ArticleId IdType="pubmed">31752260</ArticleId></ArticleIdList></Reference><Reference><Citation>Missiroli S, Bonora M, Patergnani S, Poletti F, Perrone M, Gafa R. et al. PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development. Cell Rep. 2016;16:2415–27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5011426</ArticleId><ArticleId IdType="pubmed">27545895</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamargo-Gomez I, Marino G. AMPK: Regulation of Metabolic Dynamics in the Context of Autophagy. Int J Mol Sci. 2018;19:3812.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6321489</ArticleId><ArticleId IdType="pubmed">30501132</ArticleId></ArticleIdList></Reference><Reference><Citation>Neinast M, Murashige D, Arany Z. Branched Chain Amino Acids. Annu Rev Physiol. 2019;81:139–64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6536377</ArticleId><ArticleId IdType="pubmed">30485760</ArticleId></ArticleIdList></Reference><Reference><Citation>Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10:723–36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4424797</ArticleId><ArticleId IdType="pubmed">25287287</ArticleId></ArticleIdList></Reference><Reference><Citation>White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019;363:582–3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9940269</ArticleId><ArticleId IdType="pubmed">30733403</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiong Y, Jiang L, Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases. Front Cardiovasc Med. 2022;9:965899.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9334649</ArticleId><ArticleId IdType="pubmed">35911554</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang F, Hu G, Chen X, Zhang L, Guo L, Li C. et al. Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduct Target Ther. 2022;7:171.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9163108</ArticleId><ArticleId IdType="pubmed">35654769</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Xiong Z, Yan W, Gao E, Cheng H, Wu G. et al. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-alpha pathway-dependent fatty acid oxidation. Theranostics. 2020;10:5623–40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7196282</ArticleId><ArticleId IdType="pubmed">32373236</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo X, Huang C, Lian K, Wang S, Zhao H, Yan F. et al. BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes. Biochem Biophys Res Commun. 2016;480:106–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">27697526</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H. et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;311:H1160–H9.</Citation><ArticleIdList><ArticleId IdType="pubmed">27542406</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao S, Zhou L, Wang Q, Cao JH, Chen Y, Wang W. et al. Elevated branched-chain amino acid promotes atherosclerosis progression by enhancing mitochondrial-to-nuclear H(2)O(2)-disulfide HMGB1 in macrophages. Redox Biol. 2023;62:102696.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10130699</ArticleId><ArticleId IdType="pubmed">37058999</ArticleId></ArticleIdList></Reference><Reference><Citation>Lohkamp KJ, van den Hoek AM, Sole-Guardia G, Lisovets M, Alves Hoffmann T, Velanaki K. et al. The Preventive Effect of Exercise and Oral Branched-Chain Amino Acid Supplementation on Obesity-Induced Brain Changes in Ldlr-/-.Leiden Mice. Nutrients. 2023;15:1716.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10097391</ArticleId><ArticleId IdType="pubmed">37049556</ArticleId></ArticleIdList></Reference><Reference><Citation>Tarlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M. et al. Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell. 2016;167:1481–94. e18.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5554935</ArticleId><ArticleId IdType="pubmed">27912058</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, Schianchi F, Neumann D, Wong LY, Sun A, van Nieuwenhoven FA. et al. Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis. Mol Metab. 2021;53:101293.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8350375</ArticleId><ArticleId IdType="pubmed">34265467</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo X, Zhu Y, Guo L, Qi Y, Liu X, Wang J. et al. BCAA insufficiency leads to premature ovarian insufficiency via ceramide-induced elevation of ROS. Embo Mol Med. 2023;15:e17450.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10086587</ArticleId><ArticleId IdType="pubmed">36847712</ArticleId></ArticleIdList></Reference><Reference><Citation>Hua S, Lv BM, Qiu ZP, Li ZJ, Wang ZY, Chen YJ. et al. Microbial metabolites in chronic heart failure and its common comorbidities. Embo Mol Med. 2023;15:e16928.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10245034</ArticleId><ArticleId IdType="pubmed">37155563</ArticleId></ArticleIdList></Reference><Reference><Citation>She PX, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol-Endoc M. 2007;293:E1552–E63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2767201</ArticleId><ArticleId IdType="pubmed">17925455</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev. 2021;68:101338.</Citation><ArticleIdList><ArticleId IdType="pubmed">33838320</ArticleId></ArticleIdList></Reference><Reference><Citation>Dossou AS, Basu A. The Emerging Roles of mTORC1 in Macromanaging Autophagy. Cancers (Basel) 2019;11:1422.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6826502</ArticleId><ArticleId IdType="pubmed">31554253</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G. et al. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1973–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">27794418</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang J, Cheng Y, Gu J, Wang S, Zhou S, Wang Y. et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin Sci (Lond) 2016;130:625–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">26795437</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Q, Ren J. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacol Res. 2016;111:357–73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5026602</ArticleId><ArticleId IdType="pubmed">27363949</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo X, Lin H, Liu J, Wang D, Li D, Jiang C. et al. 1,25-Dihydroxyvitamin D attenuates diabetic cardiac autophagy and damage by vitamin D receptor-mediated suppression of FoxO1 translocation. J Nutr Biochem. 2020;80:108380.</Citation><ArticleIdList><ArticleId IdType="pubmed">32299030</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao R, Cai K, Yang JJ, Zhou Q, Cao W, Xiang J. et al. Nuclear ATR lysine-tyrosylation protects against heart failure by activating DNA damage response. Cell Rep. 2023;42:112400.</Citation><ArticleIdList><ArticleId IdType="pubmed">37071536</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Liu L, Chen WC, Wang F, Cheng YR, Liu YM. et al. Gestational Leucylation Suppresses Embryonic T-Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. Adv Sci (Weinh) 2022;9:e2201034.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9130917</ArticleId><ArticleId IdType="pubmed">35320615</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang W, Zhuang N, Liu X, He L, He Y, Mahinthichaichan P. et al. The metabolic regulator Lamtor5 suppresses inflammatory signaling via regulating mTOR-mediated TLR4 degradation. Cell Mol Immunol. 2020;17:1063–76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7608472</ArticleId><ArticleId IdType="pubmed">31467416</ArticleId></ArticleIdList></Reference><Reference><Citation>Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L. et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4854628</ArticleId><ArticleId IdType="pubmed">26982722</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39658979</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0030-9982</ISSN><JournalIssue CitedMedium="Internet"><Volume>74</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>JPMA. The Journal of the Pakistan Medical Association</Title><ISOAbbreviation>J Pak Med Assoc</ISOAbbreviation></Journal><ArticleTitle>Vitamin D status of patients visiting a private endocrinology clinic: a retrospective analysis from Karachi, Pakistan.</ArticleTitle><Pagination><StartPage>2107</StartPage><EndPage>2113</EndPage><MedlinePgn>2107-2113</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.47391/JPMA.11117</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To estimate the burden of vitamin D deficiency and its association with chronic diseases in patients visiting a private endocrinology clinic in an urban setting.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The retrospective study was conducted at the Medicell Institute of Diabetes Endocrinology & Metabolism, Karachi, and comprised medical records of adult patients of either gender between January 2000 and December 2019.Vitamin D status of the patients and its association with various chronic disorders were investigated. Data was analysed using SPSS 21.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Of the 2,854 patients with mean age 40.87±15.1 years, 2,302(80.7%) were females, and 552(19.3%) were males. There were 1055(37%) patients with vitamin D deficiency, 1,040(36.7%) with severe deficiency, 462(16.2%) with insufficiency, 295(10.3%) with normal status, and 2(0.1%) with vitamin D toxicity. Vitamin D deficiency was observed more frequently in those aged<40 years, and the deficiency was significantly related to type 2 diabetes, impaired glucose tolerance, dyslipidaemia and autoimmune disorders (p<0.05).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The burden of vitamin Deficiency was found to be alarmingly high at a private endocrine and medicine clinic serving a middle and upper socioeconomic class population in an urban setting.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ahsan</LastName><ForeName>Tasnim</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), OMI Hospital.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ghaus</LastName><ForeName>Saima</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sohail</LastName><ForeName>Erum</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aijaz</LastName><ForeName>Wasfa</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Erum</LastName><ForeName>Uzma</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jaffri</LastName><ForeName>Samar Abbas</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Medicell Institute of Diabetes, Endocrinology and Metabolism (MIDEM), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Pak Med Assoc</MedlineTA><NlmUniqueID>7501162</NlmUniqueID><ISSNLinking>0030-9982</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>1406-16-2</RegistryNumber><NameOfSubstance UI="D014807">Vitamin D</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014808" MajorTopicYN="Y">Vitamin D Deficiency</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050171" MajorTopicYN="N">Dyslipidemias</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014807" MajorTopicYN="N">Vitamin D</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001327" MajorTopicYN="N">Autoimmune Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="N">Glucose Intolerance</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Vitamin D deficiency, Metabolic disorder, Diabetes mellitus, Hypertension.</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>1</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39658979</ArticleId><ArticleId IdType="doi">10.47391/JPMA.11117</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39658973</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0030-9982</ISSN><JournalIssue CitedMedium="Internet"><Volume>74</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>JPMA. The Journal of the Pakistan Medical Association</Title><ISOAbbreviation>J Pak Med Assoc</ISOAbbreviation></Journal><ArticleTitle>Comparison of ketoacidosis in type 1 and 2 diabetic patients with and without concurrent COVID-19 and determining the factors affecting their treatment and survival: a retrospective cohort study.</ArticleTitle><Pagination><StartPage>2072</StartPage><EndPage>2077</EndPage><MedlinePgn>2072-2077</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.47391/JPMA.9651</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="UNASSIGNED">To assess the incidence of diabetic ketoacidosis in coronavirus disease-2019 patients and their survival rate, and to compare their outcomes with diabetic ketoacidosis patients without coronavirus disease-2019.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The retrospective cohort study was conducted at Aga Khan University Hospital, Karachi, and comprised data March 1, 2020, to March 31, 2021, related to patients. who had diabetic ketoacidosis with coronavirus disease- 2019 in group A, and those who had diabetic ketoacidosis without coronavirus disease-2019 in group B. Data included age, gender, duration and type of diabetes and the final outcome. Data was analysed using SPSS 25.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Of the 120 patients, 40(33.3%) were in group A; 21(52.5%) males and 19(47.5%) females, with 22(55%) aged 45-64 years. There were 80(66.6%) patients in group B; 42(52.5%) males and 38(47.5%) females, with 36(45%) aged <45 years (p>0.05). The mortality was higher in group A patients13(32.5%) compared to those in group B 10(12.5%) (p<0.05). The data analysis was performed with the Statistical Package for Social Sciences (SPSS), V.25. Survival analysis showed that age, dyslipidaemia, history of cardiac revascularisation, acute respiratory distress syndrome, ventilator requirement, and severity of coronavirus disease-2019 were significantly associated with mortality (p<0.05).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Patients of diabetic ketoacidosis with coronavirus disease-2019 had poor survival outcomes compared to diabetic ketoacidosis patients without coronavirus disease-2019.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Asma</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Badini</LastName><ForeName>Kaleemullah</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khalid</LastName><ForeName>Farah</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sohail</LastName><ForeName>Sahlah</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Salik</LastName><ForeName>Muhammad</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Pak Med Assoc</MedlineTA><NlmUniqueID>7501162</NlmUniqueID><ISSNLinking>0030-9982</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016883" MajorTopicYN="Y">Diabetic Ketoacidosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015996" MajorTopicYN="N">Survival Rate</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes mellitus, Diabetic ketoacidosis, COVID-19, Mechanical ventilator, Acidosis.</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>1</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39658973</ArticleId><ArticleId IdType="doi">10.47391/JPMA.9651</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39658957</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0253-9772</ISSN><JournalIssue CitedMedium="Print"><Volume>46</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Yi chuan = Hereditas</Title><ISOAbbreviation>Yi Chuan</ISOAbbreviation></Journal><ArticleTitle>The mechanism and related research progress of GLP-1 receptor agonists in treating Alzheimer's disease.</ArticleTitle><Pagination><StartPage>1017</StartPage><EndPage>1027</EndPage><MedlinePgn>1017-1027</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.16288/j.yczz.24-178</ELocationID><Abstract><AbstractText>GLP-1 receptor agonists are primarily used clinically for the treatment of type 2 diabetes and have the potential for weight loss, while they are currently expanding their horizons in the treatment of hypertension, non-alcoholic liver disease, depression, and neurodegenerative diseases. In particular, in the treatment of Alzheimer's disease, a large number of animal models and a handful of clinical studies have demonstrated the potential efficacy of GLP-1 receptor agonists, making it highly probable that they will become a new entrant in the drug list for Alzheimer's disease. At present, the research on the mechanism of GLP-1 receptor agonist in the treatment of Alzheimer's disease is mainly based on in-depth analysis of the pathogenesis of Alzheimer's disease and exploration of the mechanism of its comorbidity with diabetes. This article mainly reviews the latest advances in the mechanism of GLP-1 receptor agonists in the treatment of Alzheimer's disease, introduces the latest achievements in animal studies and clinical studies, and aims to provide reference for the subsequent relevant basic research and clinical application.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Xiao-Cheng</ForeName><Initials>XC</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Yi-Wen</ForeName><Initials>YW</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Hong-Wen</ForeName><Initials>HW</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>China</Country><MedlineTA>Yi Chuan</MedlineTA><NlmUniqueID>9436478</NlmUniqueID><ISSNLinking>0253-9772</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000544" MajorTopicYN="Y">Alzheimer Disease</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="chi"><AbstractText>GLP-1受体激动剂在临床上主要用于2型糖尿病的降糖治疗,并具有潜在的减重作用,而目前也开始尝试应用于治疗高血压、非酒精性肝病、抑郁症及神经退行性疾病等病症。尤其在阿尔茨海默症的治疗方面,大量的动物模型及一些临床研究已经展现了GLP-1受体激动剂潜在的疗效,它有很大可能成为治疗阿尔茨海默症药物谱的新秀。目前关于GLP-1受体激动剂治疗阿尔茨海默症的机制的研究,主要基于深入剖析阿尔茨海默症的致病机理,以及探索其与糖尿病的共病机制等方面展开。本文主要综述了GLP-1受体激动剂在治疗阿尔茨海默症的机制方面的最新进展,并介绍了目前在动物研究及临床研究中的最新成果,以期为后续GLP-1受体激动剂治疗阿尔茨海默症的基础研究和临床应用提供参考。.</AbstractText></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Alzheimer’s disease</Keyword><Keyword MajorTopicYN="N">GLP-1 receptor agonists</Keyword><Keyword MajorTopicYN="N">pharmacology</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>11</Day><Hour>1</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39658957</ArticleId><ArticleId IdType="doi">10.16288/j.yczz.24-178</ArticleId><ArticleId IdType="pii">24-178</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39656459</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2574-3805</ISSN><JournalIssue CitedMedium="Internet"><Volume>7</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>JAMA network open</Title><ISOAbbreviation>JAMA Netw Open</ISOAbbreviation></Journal><ArticleTitle>Glycemic Control With Layperson-Delivered Telephone Calls vs Usual Care for Patients With Diabetes: A Randomized Clinical Trial.</ArticleTitle><Pagination><StartPage>e2448809</StartPage><MedlinePgn>e2448809</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e2448809</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1001/jamanetworkopen.2024.48809</ELocationID><Abstract><AbstractText Label="IMPORTANCE" NlmCategory="UNASSIGNED">Diabetes is associated with emotional distress and poor mental health, especially for individuals with low income, hindering patients' ability to manage their condition. The health care system's workforce constraints limit its capacity to holistically support patients.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To assess the effectiveness of layperson-delivered empathetic engagement over the telephone in helping improve glycemic management for patients with diabetes.</AbstractText><AbstractText Label="DESIGN, SETTING, AND PARTICIPANTS" NlmCategory="UNASSIGNED">This parallel-arm randomized clinical trial with blinded outcome assessment was conducted from February 12, 2022, to April 15, 2023, with final measurements on November 18, 2023, among 260 patients with uncontrolled diabetes from a federally qualified health center in Austin, Texas, engaging telephonically from home.</AbstractText><AbstractText Label="INTERVENTION" NlmCategory="UNASSIGNED">Patients assigned to the intervention group received empathy-oriented telephone calls by community-hired laypeople for 6 months, while those assigned to the control group received usual care. Patients were stratified by baseline score (≥5 vs <5) on the depressive symptom scale of the 9-item Patient Health Questionnaire (PHQ-9).</AbstractText><AbstractText Label="MAIN OUTCOMES AND MEASURES" NlmCategory="UNASSIGNED">The primary outcome was hemoglobin A1c level at baseline, 3 months, and 6 months, assessed for interaction between time and trial arm. Secondary outcomes were self-perceptions of managing diabetes, diabetes-related behaviors and distress, and mental health symptoms (measured via surveys). Analysis was performed on an intention-to-treat basis.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Of 260 participants (mean [SD] age, 49.5 [10.1] years; 163 of 259 women [62.9%]; 176 of 203 [86.7%] with annual income <$40 000) enrolled, 6 withdrew. At 6 months, 204 of 254 (80.3%; intervention, 109 of 127 [85.8%] and control, 95 of 127 [74.8%]) returned for measurements. Participants in the intervention group had statistically significant mean (SD) decreases in hemoglobin A1c level at 6 months (from 10.0% [1.9%] to 9.3% [2.0%]) compared with those in the control group (from 9.8% [1.6%] to 9.7% [2.3%]) (P = .004). The within-person change in hemoglobin A1c level was -0.7% (95% CI, -1.0% to -0.4%) for the intervention group and 0.02% (95% CI, -0.4% to 0.4%) for the control group. For the subgroup with a PHQ-9 score of 5 or more at baseline (38.1% [99 of 260]), the within-person change in hemoglobin A1c was -1.1% (95% CI, -1.8% to -0.5%) for the intervention group and 0.1% (95% CI, -0.7% to 0.8%; P = .004) for the control group. For the subgroup with a PHQ-9 score less than 5, the within-person change in hemoglobin A1c was -0.4% (95% CI, -0.8% to -0.1%) for the intervention group and -0.02% (95% CI, -0.5% to 0.5%; P = .21) for the control group. At 6 months, 91.7% of the participants (99 of 108) responded that the program was very or extremely beneficial.</AbstractText><AbstractText Label="CONCLUSIONS AND RELEVANCE" NlmCategory="UNASSIGNED">In this randomized clinical trial of telephone-based layperson-delivered empathetic engagement, patients with diabetes and low income achieved clinically meaningful improvements in glycemic control. With workforce constraints, layperson-delivered programs for diabetes show promise.</AbstractText><AbstractText Label="TRIAL REGISTRATION" NlmCategory="UNASSIGNED">ClinicalTrials.gov Identifier: NCT05173675.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kahlon</LastName><ForeName>Maninder K</ForeName><Initials>MK</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aksan</LastName><ForeName>Nazan S</ForeName><Initials>NS</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aubrey</LastName><ForeName>Rhonda</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Clark</LastName><ForeName>Nicole</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cowley-Morillo</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>DuBois</LastName><ForeName>Carolina</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Garcia</LastName><ForeName>Carlos</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guerra</LastName><ForeName>Julia</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pereira</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sither</LastName><ForeName>Mathew</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tomlinson</LastName><ForeName>Steven</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Seminary of the Southwest, Austin, Texas.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Valenzuela</LastName><ForeName>Sandy</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Population Health, Dell Medical School, The University of Texas at Austin.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Valdez</LastName><ForeName>M Renee</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>Lone Star Circle of Care, Georgetown, Texas.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><DataBankList CompleteYN="Y"><DataBank><DataBankName>ClinicalTrials.gov</DataBankName><AccessionNumberList><AccessionNumber>NCT05173675</AccessionNumber></AccessionNumberList></DataBank></DataBankList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>JAMA Netw Open</MedlineTA><NlmUniqueID>101729235</NlmUniqueID><ISSNLinking>2574-3805</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="CommentIn"><RefSource>doi: 10.1001/jamanetworkopen.2024.48740</RefSource></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013689" MajorTopicYN="Y">Telephone</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013781" MajorTopicYN="N" Type="Geographic">Texas</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement><b>Conflict of Interest Disclosures:</b> Dr Kahlon reported receiving grants from the Michael & Susan Dell Foundation and the United Health Foundation outside the submitted work; and being the founder (unpaid) of a Texas LLC, with an active Medicaid contract, to scale the model presented here. Ms Aubrey reported being a cofounder (unpaid) of a Texas LLC, with an active Medicaid contract, to scale the model presented here. Dr Tomlinson reported receiving personal fees from Sandoz, Johnson & Johnson, and 3M outside the submitted work. No other disclosures were reported.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>11</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656459</ArticleId><ArticleId IdType="pmc">PMC11632544</ArticleId><ArticleId IdType="doi">10.1001/jamanetworkopen.2024.48809</ArticleId><ArticleId IdType="pii">2827626</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Browne JL, Ventura A, Mosely K, Speight J. “I call it the blame and shame disease”: a qualitative study about perceptions of social stigma surrounding type 2 diabetes. BMJ Open. 2013;3(11):e003384. doi:10.1136/bmjopen-2013-003384</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2013-003384</ArticleId><ArticleId IdType="pmc">PMC3840338</ArticleId><ArticleId IdType="pubmed">24247325</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalra S, Jena BN, Yeravdekar R. Emotional and psychological needs of people with diabetes. Indian J Endocrinol Metab. 2018;22(5):696-704. doi:10.4103/ijem.IJEM_579_17</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ijem.IJEM_579_17</ArticleId><ArticleId IdType="pmc">PMC6166557</ArticleId><ArticleId IdType="pubmed">30294583</ArticleId></ArticleIdList></Reference><Reference><Citation>Følling IS, Solbjør M, Helvik AS. Previous experiences and emotional baggage as barriers to lifestyle change—a qualitative study of Norwegian Healthy Life Centre participants. BMC Fam Pract. 2015;16:73. doi:10.1186/s12875-015-0292-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12875-015-0292-z</ArticleId><ArticleId IdType="pmc">PMC4476174</ArticleId><ArticleId IdType="pubmed">26100276</ArticleId></ArticleIdList></Reference><Reference><Citation>Holt RIG, de Groot M, Lucki I, Hunter CM, Sartorius N, Golden SH. NIDDK international conference report on diabetes and depression: current understanding and future directions. Diabetes Care. 2014;37(8):2067-2077. doi:10.2337/dc13-2134</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc13-2134</ArticleId><ArticleId IdType="pmc">PMC4113168</ArticleId><ArticleId IdType="pubmed">25061135</ArticleId></ArticleIdList></Reference><Reference><Citation>Ducat L, Philipson LH, Anderson BJ. The mental health comorbidities of diabetes. JAMA. 2014;312(7):691-692. doi:10.1001/jama.2014.8040</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2014.8040</ArticleId><ArticleId IdType="pmc">PMC4439400</ArticleId><ArticleId IdType="pubmed">25010529</ArticleId></ArticleIdList></Reference><Reference><Citation>Gold SM, Köhler-Forsberg O, Moss-Morris R, et al. . Comorbid depression in medical diseases. Nat Rev Dis Primers. 2020;6(1):69. doi:10.1038/s41572-020-0200-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41572-020-0200-2</ArticleId><ArticleId IdType="pubmed">32820163</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmitz N, Gariépy G, Smith KJ, et al. . Recurrent subthreshold depression in type 2 diabetes: an important risk factor for poor health outcomes. Diabetes Care. 2014;37(4):970-978. doi:10.2337/dc13-1832</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc13-1832</ArticleId><ArticleId IdType="pubmed">24198303</ArticleId></ArticleIdList></Reference><Reference><Citation>Shrestha M, Ng A, Al-Ghareeb A, Alenazi F, Gray R. Association between subthreshold depression and self-care behaviors in people with type 2 diabetes: a systematic review of observational studies. Syst Rev. 2020;9(1):45. doi:10.1186/s13643-020-01302-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-020-01302-z</ArticleId><ArticleId IdType="pmc">PMC7049390</ArticleId><ArticleId IdType="pubmed">32113485</ArticleId></ArticleIdList></Reference><Reference><Citation>US Department of Health and Human Services. Health Resources and Services Administration; Bureau of Health Workforce; National Center for Health Workforce Analysis. National projections of supply and demand for selected behavioral health practitioners: 2013-2025. November 2016. Accessed October 27, 2024. https://bhw.hrsa.gov/sites/default/files/bureau-health-workforce/data-research/behavioral-health-2013-2025.pdf</Citation></Reference><Reference><Citation>Mongelli F, Georgakopoulos P, Pato MT. Challenges and opportunities to meet the mental health needs of underserved and disenfranchised populations in the United States. Focus (Am Psychiatr Publ). 2020;18(1):16-24. doi:10.1176/appi.focus.20190028</Citation><ArticleIdList><ArticleId IdType="doi">10.1176/appi.focus.20190028</ArticleId><ArticleId IdType="pmc">PMC7011222</ArticleId><ArticleId IdType="pubmed">32047393</ArticleId></ArticleIdList></Reference><Reference><Citation>Baucom KJW, Bauman T, Gutierrez Chavez M, et al. . Barriers to participation and lifestyle change among lower versus higher income participants in the National Diabetes Prevention Program: lifestyle coach perspectives. Transl Behav Med. 2022;12(8):860-869. doi:10.1093/tbm/ibac032</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/tbm/ibac032</ArticleId><ArticleId IdType="pmc">PMC9385121</ArticleId><ArticleId IdType="pubmed">35554612</ArticleId></ArticleIdList></Reference><Reference><Citation>Reyes J, Tripp-Reimer T, Parker E, Muller B, Laroche H. Factors influencing diabetes self-management among medically underserved patients with type II diabetes. Glob Qual Nurs Res. 2017;4:2333393617713097. doi:10.1177/2333393617713097</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2333393617713097</ArticleId><ArticleId IdType="pmc">PMC5476324</ArticleId><ArticleId IdType="pubmed">28660239</ArticleId></ArticleIdList></Reference><Reference><Citation>Barnett ML, Lau AS, Miranda J. Lay health worker involvement in evidence-based treatment delivery: a conceptual model to address disparities in care. Annu Rev Clin Psychol. 2018;14:185-208. doi:10.1146/annurev-clinpsy-050817-084825</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-clinpsy-050817-084825</ArticleId><ArticleId IdType="pmc">PMC5940491</ArticleId><ArticleId IdType="pubmed">29401043</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi NG, Marti CN, Wilson NL, et al. . Effect of telehealth treatment by lay counselors vs by clinicians on depressive symptoms among older adults who are homebound: a randomized clinical trial. JAMA Netw Open. 2020;3(8):e2015648. doi:10.1001/jamanetworkopen.2020.15648</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamanetworkopen.2020.15648</ArticleId><ArticleId IdType="pmc">PMC7489833</ArticleId><ArticleId IdType="pubmed">32865577</ArticleId></ArticleIdList></Reference><Reference><Citation>Weaver A, Lapidos A. Mental health interventions with community health workers in the United States: a systematic review. J Health Care Poor Underserved. 2018;29(1):159-180. doi:10.1353/hpu.2018.0011</Citation><ArticleIdList><ArticleId IdType="doi">10.1353/hpu.2018.0011</ArticleId><ArticleId IdType="pubmed">29503292</ArticleId></ArticleIdList></Reference><Reference><Citation>An Q, Yu Z, Sun F, Chen J, Zhang A. The effectiveness of cognitive behavioral therapy for depression among individuals with diabetes: a systematic review and meta-analysis. Curr Diab Rep. 2023;23(9):245-252. doi:10.1007/s11892-023-01517-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11892-023-01517-z</ArticleId><ArticleId IdType="pubmed">37329442</ArticleId></ArticleIdList></Reference><Reference><Citation>Vlachou E, Ntikoudi A, Owens DA, Nikolakopoulou M, Chalimourdas T, Cauli O. Effectiveness of cognitive behavioral therapy–based interventions on psychological symptoms in adults with type 2 diabetes mellitus: an update review of randomized controlled trials. J Diabetes Complications. 2022;36(5):108185. doi:10.1016/j.jdiacomp.2022.108185</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2022.108185</ArticleId><ArticleId IdType="pubmed">35367124</ArticleId></ArticleIdList></Reference><Reference><Citation>Ekong G, Kavookjian J. Motivational interviewing and outcomes in adults with type 2 diabetes: a systematic review. Patient Educ Couns. 2016;99(6):944-952. doi:10.1016/j.pec.2015.11.022</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pec.2015.11.022</ArticleId><ArticleId IdType="pubmed">26699083</ArticleId></ArticleIdList></Reference><Reference><Citation>Egbujie BA, Delobelle PA, Levitt N, Puoane T, Sanders D, van Wyk B. Role of community health workers in type 2 diabetes mellitus self-management: a scoping review. PLoS One. 2018;13(6):e0198424. doi:10.1371/journal.pone.0198424</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0198424</ArticleId><ArticleId IdType="pmc">PMC5983553</ArticleId><ArticleId IdType="pubmed">29856846</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Li X, Wang Z, et al. . Trends in prevalence of diabetes and control of risk factors in diabetes among US adults, 1999-2018. JAMA. 2021;326(8):1-13. doi:10.1001/jama.2021.9883</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2021.9883</ArticleId><ArticleId IdType="pmc">PMC8233946</ArticleId><ArticleId IdType="pubmed">34170288</ArticleId></ArticleIdList></Reference><Reference><Citation>Tatulashvili S, Fagherazzi G, Dow C, Cohen R, Fosse S, Bihan H. Socioeconomic inequalities and type 2 diabetes complications: a systematic review. Diabetes Metab. 2020;46(2):89-99. doi:10.1016/j.diabet.2019.11.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2019.11.001</ArticleId><ArticleId IdType="pubmed">31759171</ArticleId></ArticleIdList></Reference><Reference><Citation>Heidemann DL, Joseph NA, Kuchipudi A, Perkins DW, Drake S. Racial and economic disparities in diabetes in a large primary care patient population. Ethn Dis. 2016;26(1):85-90. doi:10.18865/ed.26.1.85</Citation><ArticleIdList><ArticleId IdType="doi">10.18865/ed.26.1.85</ArticleId><ArticleId IdType="pmc">PMC4738859</ArticleId><ArticleId IdType="pubmed">26843800</ArticleId></ArticleIdList></Reference><Reference><Citation>Nelson LA, Ackerman MT, Greevy RA Jr, Wallston KA, Mayberry LS. Beyond race disparities: accounting for socioeconomic status in diabetes self-care. Am J Prev Med. 2019;57(1):111-116. doi:10.1016/j.amepre.2019.02.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2019.02.013</ArticleId><ArticleId IdType="pmc">PMC6589128</ArticleId><ArticleId IdType="pubmed">31130463</ArticleId></ArticleIdList></Reference><Reference><Citation>Kurani SS, Lampman MA, Funni SA, et al. . Association between area-level socioeconomic deprivation and diabetes care quality in US primary care practices. JAMA Netw Open. 2021;4(12):e2138438. doi:10.1001/jamanetworkopen.2021.38438</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamanetworkopen.2021.38438</ArticleId><ArticleId IdType="pmc">PMC8717098</ArticleId><ArticleId IdType="pubmed">34964856</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahlon MK, Aksan N, Aubrey R. Effect of a layperson-delivered telephone program for people with depressive symptoms. Psychiatr Serv. 2023;74(11):1176-1179. doi:10.1176/appi.ps.20220440</Citation><ArticleIdList><ArticleId IdType="doi">10.1176/appi.ps.20220440</ArticleId><ArticleId IdType="pubmed">37042110</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahlon MK, Aksan N, Aubrey R, et al. . Effect of layperson-delivered, empathy-focused program of telephone calls on loneliness, depression, and anxiety among adults during the COVID-19 pandemic: a randomized clinical trial. JAMA Psychiatry. 2021;78(6):616-622. doi:10.1001/jamapsychiatry.2021.0113</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamapsychiatry.2021.0113</ArticleId><ArticleId IdType="pmc">PMC7903319</ArticleId><ArticleId IdType="pubmed">33620417</ArticleId></ArticleIdList></Reference><Reference><Citation>Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606-613. doi:10.1046/j.1525-1497.2001.016009606.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1046/j.1525-1497.2001.016009606.x</ArticleId><ArticleId IdType="pmc">PMC1495268</ArticleId><ArticleId IdType="pubmed">11556941</ArticleId></ArticleIdList></Reference><Reference><Citation>Harris PA, Taylor R, Minor BL, et al. ; REDCap Consortium . The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jbi.2019.103208</ArticleId><ArticleId IdType="pmc">PMC7254481</ArticleId><ArticleId IdType="pubmed">31078660</ArticleId></ArticleIdList></Reference><Reference><Citation>Aubrey R, Kahlon M, Tomlinson S, Valenzuela S. Empathetic lay caller training approach: version 1.0. Texas Data Repository; 2024.</Citation></Reference><Reference><Citation>Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092-1097. doi:10.1001/archinte.166.10.1092</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinte.166.10.1092</ArticleId><ArticleId IdType="pubmed">16717171</ArticleId></ArticleIdList></Reference><Reference><Citation>Lorig K, Ritter PL, Villa FJ, Armas J. Community-based peer-led diabetes self-management: a randomized trial. Diabetes Educ. 2009;35(4):641-651. doi:10.1177/0145721709335006</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721709335006</ArticleId><ArticleId IdType="pubmed">19407333</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallston KA, Rothman RL, Cherrington A. Psychometric properties of the Perceived Diabetes Self-Management Scale (PDSMS). J Behav Med. 2007;30(5):395-401. doi:10.1007/s10865-007-9110-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10865-007-9110-y</ArticleId><ArticleId IdType="pubmed">17522972</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher L, Glasgow RE, Mullan JT, Skaff MM, Polonsky WH. Development of a brief diabetes distress screening instrument. Ann Fam Med. 2008;6(3):246-252. doi:10.1370/afm.842</Citation><ArticleIdList><ArticleId IdType="doi">10.1370/afm.842</ArticleId><ArticleId IdType="pmc">PMC2384991</ArticleId><ArticleId IdType="pubmed">18474888</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan AHY, Horne R, Hankins M, Chisari C. The Medication Adherence Report Scale: a measurement tool for eliciting patients’ reports of nonadherence. Br J Clin Pharmacol. 2020;86(7):1281-1288. doi:10.1111/bcp.14193</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/bcp.14193</ArticleId><ArticleId IdType="pmc">PMC7319010</ArticleId><ArticleId IdType="pubmed">31823381</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritter PL, Lorig K, Laurent DD. Characteristics of the Spanish- and English-Language Self-Efficacy to Manage Diabetes scales. Diabetes Educ. 2016;42(2):167-177. doi:10.1177/0145721716628648</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721716628648</ArticleId><ArticleId IdType="pubmed">26846336</ArticleId></ArticleIdList></Reference><Reference><Citation>Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. 1st ed. Oxford University Press; 2003.</Citation></Reference><Reference><Citation>Song MK, Lin FC, Ward SE, Fine JP. Composite variables: when and how. Nurs Res. 2013;62(1):45-49. doi:10.1097/NNR.0b013e3182741948</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/NNR.0b013e3182741948</ArticleId><ArticleId IdType="pmc">PMC5459482</ArticleId><ArticleId IdType="pubmed">23114795</ArticleId></ArticleIdList></Reference><Reference><Citation>StataCorp . Stata statistical software: release 16. StataCorp LLC; 2019.</Citation></Reference><Reference><Citation>Muthén LK, Muthén BO. In: Muthén M, ed. Mplus User’s Guide. 8th ed. Muthén & Muthén; 2017.</Citation></Reference><Reference><Citation>Little RR, Rohlfing CL, Sacks DB; National Glycohemoglobin Standardization Program (NGSP) Steering Committee . Status of hemoglobin A1c measurement and goals for improvement: from chaos to order for improving diabetes care. Clin Chem. 2011;57(2):205-214. doi:10.1373/clinchem.2010.148841</Citation><ArticleIdList><ArticleId IdType="doi">10.1373/clinchem.2010.148841</ArticleId><ArticleId IdType="pubmed">21148304</ArticleId></ArticleIdList></Reference><Reference><Citation>Stratton IM, Adler AI, Neil HAW, et al. . Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405-412. doi:10.1136/bmj.321.7258.405</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.321.7258.405</ArticleId><ArticleId IdType="pmc">PMC27454</ArticleId><ArticleId IdType="pubmed">10938048</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang X, Li Z, Sun J. Effects of cognitive behavioral therapy–based intervention on improving glycaemic, psychological, and physiological outcomes in adult patients with diabetes mellitus: a meta-analysis of randomized controlled trials. Front Psychiatry. 2020;11:711. doi:10.3389/fpsyt.2020.00711</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpsyt.2020.00711</ArticleId><ArticleId IdType="pmc">PMC7399630</ArticleId><ArticleId IdType="pubmed">32848906</ArticleId></ArticleIdList></Reference><Reference><Citation>Winkley K, Upsher R, Stahl D, et al. . Psychological interventions to improve glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2020;8(1):e001150. doi:10.1136/bmjdrc-2019-001150</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2019-001150</ArticleId><ArticleId IdType="pmc">PMC7254106</ArticleId><ArticleId IdType="pubmed">32273289</ArticleId></ArticleIdList></Reference><Reference><Citation>Berhe KK, Gebru HB, Kahsay HB. Effect of motivational interviewing intervention on HgbA1C and depression in people with type 2 diabetes mellitus (systematic review and meta-analysis). PLoS One. 2020;15(10):e0240839. doi:10.1371/journal.pone.0240839</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0240839</ArticleId><ArticleId IdType="pmc">PMC7584232</ArticleId><ArticleId IdType="pubmed">33095794</ArticleId></ArticleIdList></Reference><Reference><Citation>Atlantis E, Fahey P, Foster J. Collaborative care for comorbid depression and diabetes: a systematic review and meta-analysis. BMJ Open. 2014;4(4):e004706. doi:10.1136/bmjopen-2013-004706</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2013-004706</ArticleId><ArticleId IdType="pmc">PMC3987739</ArticleId><ArticleId IdType="pubmed">24727428</ArticleId></ArticleIdList></Reference><Reference><Citation>Baumeister H, Hutter N, Bengel J. Psychological and pharmacological interventions for depression in patients with diabetes mellitus: an abridged Cochrane review. Diabet Med. 2014;31(7):773-786. doi:10.1111/dme.12452</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.12452</ArticleId><ArticleId IdType="pubmed">24673571</ArticleId></ArticleIdList></Reference><Reference><Citation>Li C, Xu D, Hu M, et al. . A systematic review and meta-analysis of randomized controlled trials of cognitive behavior therapy for patients with diabetes and depression. J Psychosom Res. 2017;95:44-54. doi:10.1016/j.jpsychores.2017.02.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jpsychores.2017.02.006</ArticleId><ArticleId IdType="pubmed">28314548</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Feltz-Cornelis C, Allen SF, Holt RIG, Roberts R, Nouwen A, Sartorius N. Treatment for comorbid depressive disorder or subthreshold depression in diabetes mellitus: systematic review and meta-analysis. Brain Behav. 2021;11(2):e01981. doi:10.1002/brb3.1981</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/brb3.1981</ArticleId><ArticleId IdType="pmc">PMC7882189</ArticleId><ArticleId IdType="pubmed">33274609</ArticleId></ArticleIdList></Reference><Reference><Citation>Turner BJ, Liang Y, Ramachandran A, Poursani R. Telephone or visit-based community health worker care management for uncontrolled diabetes mellitus: a longitudinal study. J Community Health. 2020;45(6):1123-1131. doi:10.1007/s10900-020-00849-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10900-020-00849-1</ArticleId><ArticleId IdType="pmc">PMC7256181</ArticleId><ArticleId IdType="pubmed">32472457</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmas W, March D, Darakjy S, et al. . Community health worker interventions to improve glycemic control in people with diabetes: a systematic review and meta-analysis. J Gen Intern Med. 2015;30(7):1004-1012. doi:10.1007/s11606-015-3247-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11606-015-3247-0</ArticleId><ArticleId IdType="pmc">PMC4471021</ArticleId><ArticleId IdType="pubmed">25735938</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelly CS, Berg CA. Close relationships and diabetes management across the lifespan: the good, the bad, and autonomy. J Health Psychol. 2021;26(2):226-237. doi:10.1177/1359105318805815</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1359105318805815</ArticleId><ArticleId IdType="pubmed">30318922</ArticleId></ArticleIdList></Reference><Reference><Citation>Williams GC, McGregor HA, King D, Nelson CC, Glasgow RE. Variation in perceived competence, glycemic control, and patient satisfaction: relationship to autonomy support from physicians. Patient Educ Couns. 2005;57(1):39-45. doi:10.1016/j.pec.2004.04.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pec.2004.04.001</ArticleId><ArticleId IdType="pubmed">15797151</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee AA, Piette JD, Heisler M, Janevic MR, Rosland AM. Diabetes self-management and glycemic control: the role of autonomy support from informal health supporters. Health Psychol. 2019;38(2):122-132. doi:10.1037/hea0000710</Citation><ArticleIdList><ArticleId IdType="doi">10.1037/hea0000710</ArticleId><ArticleId IdType="pmc">PMC6442463</ArticleId><ArticleId IdType="pubmed">30652911</ArticleId></ArticleIdList></Reference><Reference><Citation>Owens-Gary MD, Zhang X, Jawanda S, Bullard KMK, Allweiss P, Smith BD. The importance of addressing depression and diabetes distress in adults with type 2 diabetes. J Gen Intern Med. 2019;34(2):320-324. doi:10.1007/s11606-018-4705-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11606-018-4705-2</ArticleId><ArticleId IdType="pmc">PMC6374277</ArticleId><ArticleId IdType="pubmed">30350030</ArticleId></ArticleIdList></Reference><Reference><Citation>Leyva B, Zagarins SE, Allen NA, Welch G. The relative impact of diabetes distress vs depression on glycemic control in Hispanic patients following a diabetes self-management education intervention. Ethn Dis. 2011;21(3):322-327.</Citation><ArticleIdList><ArticleId IdType="pubmed">21942165</ArticleId></ArticleIdList></Reference><Reference><Citation>Aikens JE. Prospective associations between emotional distress and poor outcomes in type 2 diabetes. Diabetes Care. 2012;35(12):2472-2478. doi:10.2337/dc12-0181</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc12-0181</ArticleId><ArticleId IdType="pmc">PMC3507577</ArticleId><ArticleId IdType="pubmed">23033244</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher L, Glasgow RE, Strycker LA. The relationship between diabetes distress and clinical depression with glycemic control among patients with type 2 diabetes. Diabetes Care. 2010;33(5):1034-1036. doi:10.2337/dc09-2175</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-2175</ArticleId><ArticleId IdType="pmc">PMC2858170</ArticleId><ArticleId IdType="pubmed">20150291</ArticleId></ArticleIdList></Reference><Reference><Citation>Snoek FJ, Bremmer MA, Hermanns N. Constructs of depression and distress in diabetes: time for an appraisal. Lancet Diabetes Endocrinol. 2015;3(6):450-460. doi:10.1016/S2213-8587(15)00135-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(15)00135-7</ArticleId><ArticleId IdType="pubmed">25995123</ArticleId></ArticleIdList></Reference><Reference><Citation>van Bastelaar KMP, Pouwer F, Geelhoed-Duijvestijn PHLM, et al. . Diabetes-specific emotional distress mediates the association between depressive symptoms and glycaemic control in type 1 and type 2 diabetes. Diabet Med. 2010;27(7):798-803. doi:10.1111/j.1464-5491.2010.03025.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2010.03025.x</ArticleId><ArticleId IdType="pubmed">20636961</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39656379</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1582-4934</ISSN><JournalIssue CitedMedium="Internet"><Volume>28</Volume><Issue>23</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of cellular and molecular medicine</Title><ISOAbbreviation>J Cell Mol Med</ISOAbbreviation></Journal><ArticleTitle>Role of Autophagy in Type 2 Diabetes Mellitus: The Metabolic Clash.</ArticleTitle><Pagination><StartPage>e70240</StartPage><MedlinePgn>e70240</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70240</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1111/jcmm.70240</ELocationID><Abstract><AbstractText>Type 2 diabetes mellitus (T2DM) is developed due to the development of insulin resistance (IR) and pancreatic β cell dysfunction with subsequent hyperglycaemia. Hyperglycaemia-induced oxidative stress and endoplasmic reticulum (ER) stress enhances inflammatory disorders, leading to further pancreatic β cell dysfunction. These changes trigger autophagy activation, which recycles cytoplasmic components and injured organelles. Autophagy regulates pancreatic β cell functions by different mechanisms. Though the exact role of autophagy in T2DM is not completely elucidated, that could be beneficial or detrimental. Therefore, this review aims to discuss the exact role of autophagy in the pathogenesis of T2DM.</AbstractText><CopyrightInformation>© 2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Alanazi</LastName><ForeName>Yousef Abud</ForeName><Initials>YA</Initials><AffiliationInfo><Affiliation>Department of Pediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Kuraishy</LastName><ForeName>Haydar M</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Gareeb</LastName><ForeName>Ali I</ForeName><Initials>AI</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alexiou</LastName><ForeName>Athanasios</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-2206-7236</Identifier><AffiliationInfo><Affiliation>University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Research & Development, Funogen, Athens, Greece.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Papadakis</LastName><ForeName>Marios</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bahaa</LastName><ForeName>Mostafa M</ForeName><Initials>MM</Initials><Identifier Source="ORCID">0000-0003-3332-4573</Identifier><AffiliationInfo><Affiliation>Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Negm</LastName><ForeName>Walaa A</ForeName><Initials>WA</Initials><AffiliationInfo><Affiliation>Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>AlAnazi</LastName><ForeName>Faisal Holil</ForeName><Initials>FH</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alrouji</LastName><ForeName>Mohammed</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Batiha</LastName><ForeName>Gaber El-Saber</ForeName><Initials>GE</Initials><AffiliationInfo><Affiliation>Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><Agency>Universität Witten/Herdecke</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Cell Mol Med</MedlineTA><NlmUniqueID>101083777</NlmUniqueID><ISSNLinking>1582-1838</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="Y">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059865" MajorTopicYN="Y">Endoplasmic Reticulum Stress</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006943" MajorTopicYN="N">Hyperglycemia</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">autophagy</Keyword><Keyword MajorTopicYN="N">pancreatic β cell</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>12</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>11</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656379</ArticleId><ArticleId IdType="pmc">PMC11629865</ArticleId><ArticleId IdType="doi">10.1111/jcmm.70240</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>DeFronzo R. A., Ferrannini E., Groop L., et al., “Type 2 Diabetes Mellitus,” Nature Reviews Disease Primers 1, no. 1 (2015): 1–22.</Citation><ArticleIdList><ArticleId IdType="pubmed">27189025</ArticleId></ArticleIdList></Reference><Reference><Citation>Pesaro A. E., Bittencourt M. S., Franken M., et al., “The Finnish Diabetes Risk Score (FINDRISC), Incident Diabetes and Low‐Grade Inflammation,” Diabetes Research and Clinical Practice 171 (2021): 108558.</Citation><ArticleIdList><ArticleId IdType="pubmed">33242513</ArticleId></ArticleIdList></Reference><Reference><Citation>Hudish L. I., Reusch J. E., and Sussel L., “β Cell Dysfunction During Progression of Metabolic Syndrome to Type 2 Diabetes,” Journal of Clinical Investigation 129, no. 10 (2019): 4001–4008.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6763241</ArticleId><ArticleId IdType="pubmed">31424428</ArticleId></ArticleIdList></Reference><Reference><Citation>Koc M., Šiklová M., Šrámková V., et al., “Signs of Deregulated Gene Expression are Present in Both CD14+ and CD14‐PBMC From Non‐Obese Men With Family History of T2DM,” Frontiers in Endocrinology 11 (2021): 582732.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7917286</ArticleId><ArticleId IdType="pubmed">33658980</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng L., Wang J., Dai H., et al., “Brown and Beige Adipose Tissue: A Novel Therapeutic Strategy for Obesity and Type 2 Diabetes Mellitus,” Adipocytes 10, no. 1 (2021): 48–65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7801117</ArticleId><ArticleId IdType="pubmed">33403891</ArticleId></ArticleIdList></Reference><Reference><Citation>Emamalipour M., Seidi K., Jahanban‐Esfahlan A., and Jahanban‐Esfahlan R., “Implications of Resistin in Type 2 Diabetes Mellitus and Coronary Artery Disease: Impairing Insulin Function and Inducing Pro‐Inflammatory Cytokines,” Journal of Cellular Physiology 234, no. 12 (2019): 21758–21769.</Citation><ArticleIdList><ArticleId IdType="pubmed">31187484</ArticleId></ArticleIdList></Reference><Reference><Citation>Papachristoforou E., Lambadiari V., Maratou E., and Makrilakis K., “Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) With Oxidative Stress and Diabetic Complications,” Journal of Diabetes Research 2020 (2020): 1–17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7585656</ArticleId><ArticleId IdType="pubmed">33123598</ArticleId></ArticleIdList></Reference><Reference><Citation>Pillon N. J., Loos R. J., Marshall S. M., and Zierath J. R., “Metabolic Consequences of Obesity and Type 2 Diabetes: Balancing Genes and Environment for Personalized Care,” Cell 184, no. 6 (2021): 1530–1544.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9191863</ArticleId><ArticleId IdType="pubmed">33675692</ArticleId></ArticleIdList></Reference><Reference><Citation>Vilas‐Boas E. A., Almeida D. C., Roma L. P., Ortis F., and Carpinelli A. R., “Lipotoxicity and β‐Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress,” Cells 10, no. 12 (2021): 3328.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8699655</ArticleId><ArticleId IdType="pubmed">34943836</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee J.‐H. and Lee J., “Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic β‐Cell Dysfunction and Senescence in Type 2 Diabetes,” International Journal of Molecular Sciences 23, no. 9 (2022): 4843.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9104816</ArticleId><ArticleId IdType="pubmed">35563231</ArticleId></ArticleIdList></Reference><Reference><Citation>Li M., Chi X., Wang Y., Setrerrahmane S., Xie W., and Xu H., “Trends in Insulin Resistance: Insights Into Mechanisms and Therapeutic Strategy,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 216.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9259665</ArticleId><ArticleId IdType="pubmed">35794109</ArticleId></ArticleIdList></Reference><Reference><Citation>Sehrawat A., Mishra J., Mastana S. S., et al., “Dysregulated Autophagy: A Key Player in the Pathophysiology of Type 2 Diabetes and Its Complications,” Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1869, no. 4 (2023): 166666.</Citation><ArticleIdList><ArticleId IdType="pubmed">36791919</ArticleId></ArticleIdList></Reference><Reference><Citation>Redza‐Dutordoir M. and Averill‐Bates D. A., “Interactions Between Reactive Oxygen Species and Autophagy: Special Issue: Death Mechanisms in Cellular Homeostasis,” Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 1868, no. 8 (2021): 119041.</Citation><ArticleIdList><ArticleId IdType="pubmed">33872672</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee Y.‐h., Kim J., Park K., and Lee M.‐S., “β‐Cell Autophagy: Mechanism and Role in β‐Cell Dysfunction,” Molecular Metabolism 27 (2019): S92–S103.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6768496</ArticleId><ArticleId IdType="pubmed">31500836</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi S.‐E., Lee S.‐M., Lee Y.‐J., et al., “Protective Role of Autophagy in Palmitate‐Induced INS‐1 β‐Cell Death,” Endocrinology 150, no. 1 (2009): 126–134.</Citation><ArticleIdList><ArticleId IdType="pubmed">18772242</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong S.‐W., Lee J., Kim M. J., et al., “Clusterin Protects Lipotoxicity‐Induced Apoptosis via Upregulation of Autophagy in Insulin‐Secreting Cells,” Endocrinology and Metabolism 35, no. 4 (2020): 943–953.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7803614</ArticleId><ArticleId IdType="pubmed">33261311</ArticleId></ArticleIdList></Reference><Reference><Citation>Las G. and Shirihai O., “The Role of Autophagy in β‐Cell Lipotoxicity and Type 2 Diabetes,” Diabetes, Obesity and Metabolism 12 (2010): 15–19.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3786363</ArticleId><ArticleId IdType="pubmed">21029295</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Z.‐F., Li Y.‐B., Han J.‐Y., et al., “The Double‐Edged Effect of Autophagy in Pancreatic Beta Cells and Diabetes,” Autophagy 7, no. 1 (2011): 12–16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3039729</ArticleId><ArticleId IdType="pubmed">20935505</ArticleId></ArticleIdList></Reference><Reference><Citation>Ktistakis N. T., “In Praise of M. Anselmier Who First Used the Term ‘Autophagie’ in 1859,” Autophagy 13, no. 12 (2017): 2015–2017.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5788564</ArticleId><ArticleId IdType="pubmed">28837378</ArticleId></ArticleIdList></Reference><Reference><Citation>Klionsky D. J., “Autophagy Revisited: A Conversation With Christian de Duve,” Autophagy 4, no. 6 (2008): 740–743.</Citation><ArticleIdList><ArticleId IdType="pubmed">18567941</ArticleId></ArticleIdList></Reference><Reference><Citation>Klionsky D. J., Cueva R., and Yaver D. S., “Aminopeptidase I of Saccharomyces cerevisiae Is Localized to the Vacuole Independent of the Secretory Pathway,” Journal of Cell Biology 119, no. 2 (1992): 287–299.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2289658</ArticleId><ArticleId IdType="pubmed">1400574</ArticleId></ArticleIdList></Reference><Reference><Citation>Harding T. M., Morano K. A., Scott S. V., and Klionsky D. J., “Isolation and Characterization of Yeast Mutants in the Cytoplasm to Vacuole Protein Targeting Pathway,” Journal of Cell Biology 131, no. 3 (1995): 591–602.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2120622</ArticleId><ArticleId IdType="pubmed">7593182</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohsumi Y., Campbell W. C., Ōmura S., and Youyou T., “The Nobel Prize in Physiology or Medicine,” Press Release. 2016.</Citation></Reference><Reference><Citation>Li X., He S., and Ma B., “Autophagy and Autophagy‐Related Proteins in Cancer,” Molecular Cancer 19, no. 1 (2020): 1–16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6975070</ArticleId><ArticleId IdType="pubmed">31969156</ArticleId></ArticleIdList></Reference><Reference><Citation>Abdrakhmanov A., Gogvadze V., and Zhivotovsky B., “To Eat or to Die: Deciphering Selective Forms of Autophagy,” Trends in Biochemical Sciences 45, no. 4 (2020): 347–364.</Citation><ArticleIdList><ArticleId IdType="pubmed">32044127</ArticleId></ArticleIdList></Reference><Reference><Citation>Rong Y., McPhee C. K., Deng S., et al., “Spinster Is Required for Autophagic Lysosome Reformation and mTOR Reactivation Following Starvation,” National Academy of Sciences of the United States of America 108, no. 19 (2011): 7826–7831.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3093520</ArticleId><ArticleId IdType="pubmed">21518918</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Q., Shinozaki D., Luo J., et al., “Autophagy and Nutrients Management in Plants,” Cells 8, no. 11 (2019): 1426.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6912637</ArticleId><ArticleId IdType="pubmed">31726766</ArticleId></ArticleIdList></Reference><Reference><Citation>Vicencio E., Beltrán S., Labrador L., Manque P., Nassif M., and Woehlbier U., “Implications of Selective Autophagy Dysfunction for ALS Pathology,” Cells 9, no. 2 (2020): 381.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7072226</ArticleId><ArticleId IdType="pubmed">32046060</ArticleId></ArticleIdList></Reference><Reference><Citation>Kojima W., Yamano K., Kosako H., et al., “Mammalian BCAS3 and C16orf70 Associate With the Phagophore Assembly Site in Response to Selective and Non‐selective Autophagy,” Autophagy 17, no. 8 (2021): 2011–2036.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8386740</ArticleId><ArticleId IdType="pubmed">33499712</ArticleId></ArticleIdList></Reference><Reference><Citation>Zaffagnini G. and Martens S., “Mechanisms of Selective Autophagy,” Journal of Molecular Biology 428, no. 9 (2016): 1714–1724.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4871809</ArticleId><ArticleId IdType="pubmed">26876603</ArticleId></ArticleIdList></Reference><Reference><Citation>Takáts S., Tóth S., Szenci G., and Juhász G., “Investigating Non‐Selective Autophagy in Drosophila,” Autophagy: Methods and Protocols (2019): 589–600.</Citation><ArticleIdList><ArticleId IdType="pubmed">30610724</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuan Z., Wang S., Tan X., and Wang D., “New Insights Into the Mechanisms of Chaperon‐Mediated Autophagy and Implications for Kidney Diseases,” Cells 11, no. 3 (2022): 406.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8834181</ArticleId><ArticleId IdType="pubmed">35159216</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaushik S. and Cuervo A. M., “The Coming of Age of Chaperone‐Mediated Autophagy,” Nature Reviews Molecular Cell Biology 19, no. 6 (2018): 365–381.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6399518</ArticleId><ArticleId IdType="pubmed">29626215</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou B., Liu J., Kang R., Klionsky D. J., Kroemer G., and Tang D., “Ferroptosis Is a Type of Autophagy‐Dependent Cell Death,” Seminars in Cancer Biology 66 (2020): 89–100.</Citation><ArticleIdList><ArticleId IdType="pubmed">30880243</ArticleId></ArticleIdList></Reference><Reference><Citation>Bernard A., Jin M., Xu Z., and Klionsky D. J., “A Large‐Scale Analysis of Autophagy‐Related Gene Expression Identifies New Regulators of Autophagy,” Autophagy 11, no. 11 (2015): 2114–2122.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4824583</ArticleId><ArticleId IdType="pubmed">26649943</ArticleId></ArticleIdList></Reference><Reference><Citation>Geeraert C., Ratier A., Pfisterer S. G., et al., “Starvation‐Induced Hyperacetylation of Tubulin Is Required for the Stimulation of Autophagy by Nutrient Deprivation,” Journal of Biological Chemistry 285, no. 31 (2010): 24184–24194.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2911293</ArticleId><ArticleId IdType="pubmed">20484055</ArticleId></ArticleIdList></Reference><Reference><Citation>Park M.‐J., Lee S.‐Y., Moon S.‐J., et al., “Metformin Attenuates Graft‐Versus‐Host Disease via Restricting Mammalian Target of Rapamycin/Signal Transducer and Activator of Transcription 3 and Promoting Adenosine Monophosphate–Activated Protein Kinase‐Autophagy for the Balance Between T Helper 17 and Tregs,” Translational Research 173 (2016): 115–130.</Citation><ArticleIdList><ArticleId IdType="pubmed">27126953</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu Y., Zhang J., and Li Q., “Autophagy, an Accomplice or Antagonist of Drug Resistance in HCC?,” Cell Death & Disease 12, no. 3 (2021): 266.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7954824</ArticleId><ArticleId IdType="pubmed">33712559</ArticleId></ArticleIdList></Reference><Reference><Citation>Nascimbeni A. C., Codogno P., and Morel E., “Phosphatidylinositol‐3‐Phosphate in the Regulation of Autophagy Membrane Dynamics,” FEBS Journal 284, no. 9 (2017): 1267–1278.</Citation><ArticleIdList><ArticleId IdType="pubmed">27973739</ArticleId></ArticleIdList></Reference><Reference><Citation>Salminen A. and Kaarniranta K., “SIRT1: Regulation of Longevity via Autophagy,” Cellular Signalling 21, no. 9 (2009): 1356–1360.</Citation><ArticleIdList><ArticleId IdType="pubmed">19249351</ArticleId></ArticleIdList></Reference><Reference><Citation>Gatica D., Chiong M., Lavandero S., and Klionsky D. J., “Molecular Mechanisms of Autophagy in the Cardiovascular System,” Circulation Research 116, no. 3 (2015): 456–467.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4313620</ArticleId><ArticleId IdType="pubmed">25634969</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu L., Chen Y., and Tooze S. A., “Autophagy Pathway: Cellular and Molecular Mechanisms,” Autophagy 14, no. 2 (2018): 207–215.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5902171</ArticleId><ArticleId IdType="pubmed">28933638</ArticleId></ArticleIdList></Reference><Reference><Citation>Shulak L., Beljanski V., Chiang C., et al., “Histone Deacetylase Inhibitors Potentiate Vesicular Stomatitis Virus Oncolysis in Prostate Cancer Cells by Modulating NF‐κB‐Dependent Autophagy,” Journal of Virology 88, no. 5 (2014): 2927–2940.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3958113</ArticleId><ArticleId IdType="pubmed">24371063</ArticleId></ArticleIdList></Reference><Reference><Citation>Montespan C., Marvin S. A., Austin S., et al., “Multi‐Layered Control of Galectin‐8 Mediated Autophagy During Adenovirus Cell Entry Through a Conserved PPxY Motif in the Viral Capsid,” PLoS Pathogens 13, no. 2 (2017): e1006217.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5325606</ArticleId><ArticleId IdType="pubmed">28192531</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S., Wandel M. P., Li F., et al., “Sterical Hindrance Promotes Selectivity of the Autophagy Cargo Receptor NDP52 for the Danger Receptor Galectin‐8 in Antibacterial Autophagy,” Science Signaling 6, no. 261 (2013): ra9‐ra.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3713453</ArticleId><ArticleId IdType="pubmed">23386746</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel S., Caplan J., and Dinesh‐Kumar S., “Autophagy in the Control of Programmed Cell Death,” Current Opinion in Plant Biology 9, no. 4 (2006): 391–396.</Citation><ArticleIdList><ArticleId IdType="pubmed">16713731</ArticleId></ArticleIdList></Reference><Reference><Citation>Naseri F., Sirati‐Sabet M., Sarlaki F., et al., “The Effect of Ghrelin on Apoptosis, Necroptosis and Autophagy Programmed Cell Death Pathways in the Hippocampal Neurons of Amyloid‐β 1–42‐Induced Rat Model of Alzheimer's Disease,” International Journal of Peptide Research and Therapeutics 28, no. 5 (2022): 151.</Citation></Reference><Reference><Citation>Zhang Y., Zhang L., Gao J., and Wen L., “Pro‐Death or Pro‐Survival: Contrasting Paradigms on Nanomaterial‐Induced Autophagy and Exploitations for Cancer Therapy,” Accounts of Chemical Research 52, no. 11 (2019): 3164–3176.</Citation><ArticleIdList><ArticleId IdType="pubmed">31621285</ArticleId></ArticleIdList></Reference><Reference><Citation>Ebato C., Uchida T., Arakawa M., et al., “Autophagy Is Important in Islet Homeostasis and Compensatory Increase of Beta Cell Mass in Response to High‐Fat Diet,” Cell Metabolism 8, no. 4 (2008): 325–332.</Citation><ArticleIdList><ArticleId IdType="pubmed">18840363</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung H. S., Chung K. W., Won Kim J., et al., “Loss of Autophagy Diminishes Pancreatic Beta Cell Mass and Function With Resultant Hyperglycemia,” Cell Metabolism 8, no. 4 (2008): 318–324.</Citation><ArticleIdList><ArticleId IdType="pubmed">18840362</ArticleId></ArticleIdList></Reference><Reference><Citation>Hur K., Jung H., and Lee M. S., “Role of Autophagy in β‐Cell Function and Mass,” Diabetes, Obesity and Metabolism 12 (2010): 20–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">21029296</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim J., Cheon H., Jeong Y. T., et al., “Amyloidogenic Peptide Oligomer Accumulation in Autophagy‐Deficient β Cells Induces Diabetes,” Journal of Clinical Investigation 124, no. 8 (2014): 3311–3324.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4109549</ArticleId><ArticleId IdType="pubmed">25036705</ArticleId></ArticleIdList></Reference><Reference><Citation>Rivera J. F., Costes S., Gurlo T., Glabe C. G., and Butler P. C., “Autophagy Defends Pancreatic β Cells From Human Islet Amyloid Polypeptide‐Induced Toxicity,” Journal of Clinical Investigation 124, no. 8 (2014): 3489–3500.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4109537</ArticleId><ArticleId IdType="pubmed">25036708</ArticleId></ArticleIdList></Reference><Reference><Citation>Khin P. P., Lee J. H., and Jun H.‐S., “Pancreatic Beta‐Cell Dysfunction in Type 2 Diabetes,” European Journal of Inflammation 21 (2023): 1721727X231154152.</Citation></Reference><Reference><Citation>Sekar M. and Thirumurugan K., “Autophagy: A Molecular Switch to Regulate Adipogenesis and Lipolysis,” Molecular and Cellular Biochemistry 477, no. 3 (2022): 727–742.</Citation><ArticleIdList><ArticleId IdType="pubmed">35022960</ArticleId></ArticleIdList></Reference><Reference><Citation>Benito‐Vicente A., Jebari‐Benslaiman S., Galicia‐Garcia U., Larrea‐Sebal A., Uribe K. B., and Martin C., “Molecular Mechanisms of Lipotoxicity‐Induced Pancreatic β‐Cell Dysfunction,” International Review of Cell and Molecular Biology 359 (2021): 357–402.</Citation><ArticleIdList><ArticleId IdType="pubmed">33832653</ArticleId></ArticleIdList></Reference><Reference><Citation>Laybutt D., Preston A., Åkerfeldt M., et al., “Endoplasmic Reticulum Stress Contributes to Beta Cell Apoptosis in Type 2 Diabetes,” Diabetologia 50 (2007): 752–763.</Citation><ArticleIdList><ArticleId IdType="pubmed">17268797</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang H.‐F., Huang Z.‐N., Chen W., Sun L., Liu F.‐Y., and Xiao L., “Research Progress of Reticulophagy and Its Relationship With Diseases,” Medical Journal of Chinese People's Liberation Army 46, no. 12 (2021): 1251–1257.</Citation></Reference><Reference><Citation>Wu J. J., Quijano C., Chen E., et al., “Mitochondrial Dysfunction and Oxidative Stress Mediate the Physiological Impairment Induced by the Disruption of Autophagy,” Aging 1, no. 4 (2009): 425–437.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2806022</ArticleId><ArticleId IdType="pubmed">20157526</ArticleId></ArticleIdList></Reference><Reference><Citation>Watada H. and Fujitani Y., “Minireview: Autophagy in Pancreatic β‐Cells and Its Implication in Diabetes,” Molecular Endocrinology 29, no. 3 (2015): 338–348.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5414755</ArticleId><ArticleId IdType="pubmed">25633274</ArticleId></ArticleIdList></Reference><Reference><Citation>Pearson G. L., Gingerich M. A., Walker E. M., Biden T. J., and Soleimanpour S. A., “A Selective Look at Autophagy in Pancreatic β‐Cells,” Diabetes 70, no. 6 (2021): 1229–1241.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8275885</ArticleId><ArticleId IdType="pubmed">34016598</ArticleId></ArticleIdList></Reference><Reference><Citation>Masini M., Bugliani M., Lupi R., et al., “Autophagy in Human Type 2 Diabetes Pancreatic Beta Cells,” Diabetologia 52 (2009): 1083–1086.</Citation><ArticleIdList><ArticleId IdType="pubmed">19367387</ArticleId></ArticleIdList></Reference><Reference><Citation>Mizukami H., Takahashi K., Inaba W., et al., “Involvement of Oxidative Stress–Induced DNA Damage, Endoplasmic Reticulum Stress, and Autophagy Deficits in the Decline of β‐Cell Mass in Japanese Type 2 Diabetic Patients,” Diabetes Care 37, no. 7 (2014): 1966–1974.</Citation><ArticleIdList><ArticleId IdType="pubmed">24705612</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Q., Tang L., Xin G., et al., “Oxidative Stress Mediated by Lipid Metabolism Contributes to High Glucose‐Induced Senescence in Retinal Pigment Epithelium,” Free Radical Biology and Medicine 130 (2019): 48–58.</Citation><ArticleIdList><ArticleId IdType="pubmed">30339883</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu H.‐Y., Han J., Cao S. Y., et al., “Hepatic Autophagy Is Suppressed in the Presence of Insulin Resistance and Hyperinsulinemia: Inhibition of FoxO1‐Dependent Expression of Key Autophagy Genes by Insulin,” Journal of Biological Chemistry 284, no. 45 (2009): 31484–31492.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2781544</ArticleId><ArticleId IdType="pubmed">19758991</ArticleId></ArticleIdList></Reference><Reference><Citation>Su Z., Zeng K., Feng B., et al., “Kun‐Dan Decoction Ameliorates Insulin Resistance by Activating AMPK/mTOR‐Mediated Autophagy in High‐Fat Diet‐Fed Rats,” Frontiers in Pharmacology 12 (2021): 670151.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8193673</ArticleId><ArticleId IdType="pubmed">34122092</ArticleId></ArticleIdList></Reference><Reference><Citation>Fan Y., Lu J., Liu J., Zhang R., Yu Z., and Guan S., “1, 3‐Dichloro‐2‐Propanol Induced Hepatic Lipid Accumulation by Inhibiting Autophagy via AKT/mTOR/FOXO1 Pathway in Mice,” Food and Chemical Toxicology 157 (2021): 112578.</Citation><ArticleIdList><ArticleId IdType="pubmed">34560177</ArticleId></ArticleIdList></Reference><Reference><Citation>Lloberas N., Cruzado J. M., Franquesa M., et al., “Mammalian Target of Rapamycin Pathway Blockade Slows Progression of Diabetic Kidney Disease in Rats,” Journal of the American Society of Nephrology 17, no. 5 (2006): 1395–1404.</Citation><ArticleIdList><ArticleId IdType="pubmed">16597691</ArticleId></ArticleIdList></Reference><Reference><Citation>Hayashi S.‐i., Yamamoto A., You F., et al., “The Stent‐Eluting Drugs Sirolimus and Paclitaxel Suppress Healing of the Endothelium by Induction of Autophagy,” American Journal of Pathology 175, no. 5 (2009): 2226–2234.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2774084</ArticleId><ArticleId IdType="pubmed">19815708</ArticleId></ArticleIdList></Reference><Reference><Citation>Das A., Durrant D., Koka S., Salloum F. N., Xi L., and Kukreja R. C., “Mammalian Target of Rapamycin (mTOR) Inhibition With Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice: Potential Role of Attenuated Oxidative Stress and Altered Contractile Protein Expression,” Journal of Biological Chemistry 289, no. 7 (2014): 4145–4160.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3924280</ArticleId><ArticleId IdType="pubmed">24371138</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan E. Y., “Regulation and Function of Uncoordinated‐51 Like Kinase Proteins,” Antioxidants & Redox Signaling 17, no. 5 (2012): 775–785.</Citation><ArticleIdList><ArticleId IdType="pubmed">22074133</ArticleId></ArticleIdList></Reference><Reference><Citation>Xing J., Liu H., Yang H., Chen R., Chen Y., and Xu J., “Upregulation of Unc‐51‐Like Kinase 1 by Nitric Oxide Stabilizes SIRT1, Independent of Autophagy,” PLoS One 9, no. 12 (2014): e116165.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4277463</ArticleId><ArticleId IdType="pubmed">25541949</ArticleId></ArticleIdList></Reference><Reference><Citation>Corremans R., Vervaet B. A., D'Haese P. C., Neven E., and Verhulst A., “Metformin: A Candidate Drug for Renal Diseases,” International Journal of Molecular Sciences 20, no. 1 (2018): 42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6337137</ArticleId><ArticleId IdType="pubmed">30583483</ArticleId></ArticleIdList></Reference><Reference><Citation>Chatterjee T., Pattanayak R., Ukil A., Chowdhury S., and Bhattacharyya M., “Autophagy Protects Peripheral Blood Mononuclear Cells Against Inflammation, Oxidative and Nitrosative Stress in Diabetic Dyslipidemia,” Free Radical Biology and Medicine 143 (2019): 309–323.</Citation><ArticleIdList><ArticleId IdType="pubmed">31369843</ArticleId></ArticleIdList></Reference><Reference><Citation>Mir S. U., George N. M., Zahoor L., Harms R., Guinn Z., and Sarvetnick N. E., “Inhibition of Autophagic Turnover in β‐Cells by Fatty Acids and Glucose Leads to Apoptotic Cell Death,” Journal of Biological Chemistry 290, no. 10 (2015): 6071–6085.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4358249</ArticleId><ArticleId IdType="pubmed">25548282</ArticleId></ArticleIdList></Reference><Reference><Citation>Al‐Kuraishy H. M., Al‐Gareeb A. I., Alsayegh A. A., et al., “Insights on Benzodiazepines' Potential in Alzheimer's Disease,” Life Sciences (2023): 121532.</Citation><ArticleIdList><ArticleId IdType="pubmed">36858314</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsiotra P. C. and Tsigos C., “Stress, the Endoplasmic Reticulum, and Insulin Resistance,” Annals of the New York Academy of Sciences 1083, no. 1 (2006): 63–76.</Citation><ArticleIdList><ArticleId IdType="pubmed">17148734</ArticleId></ArticleIdList></Reference><Reference><Citation>Öst A., Svensson K., Ruishalme I., et al., “Attenuated mTOR Signaling and Enhanced Autophagy in Adipocytes From Obese Patients With Type 2 Diabetes,” Molecular Medicine 16 (2010): 235–246.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2896460</ArticleId><ArticleId IdType="pubmed">20386866</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldstein N., Haim Y., Mattar P., et al., “Leptin Stimulates Autophagy/Lysosome‐Related Degradation of Long‐Lived Proteins in Adipocytes,” Adipocytes 8, no. 1 (2019): 51–60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6768270</ArticleId><ArticleId IdType="pubmed">30676227</ArticleId></ArticleIdList></Reference><Reference><Citation>Naguib M. and Rashed L. A., “Serum Level of the Autophagy Biomarker Beclin‐1 in Patients With Diabetic Kidney Disease,” Diabetes Research and Clinical Practice 143 (2018): 56–61.</Citation><ArticleIdList><ArticleId IdType="pubmed">29959950</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang P., Fang J., Zhang J., Ding S., and Gan D., “Curcumin Inhibited Podocyte Cell Apoptosis and Accelerated Cell Autophagy in Diabetic Nephropathy via Regulating Beclin1/UVRAG/Bcl2,” Diabetes, Metabolic Syndrome and Obesity 13 (2020): 641–652.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7060797</ArticleId><ArticleId IdType="pubmed">32184643</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu D., Jeremy Y. Y., Connell A. R., et al., “Beneficial Effects of Berberine on Oxidized LDL‐Induced Cytotoxicity to Human Retinal Müller Cells,” Investigative Ophthalmology & Visual Science 57, no. 7 (2016): 3369–3379.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4961062</ArticleId><ArticleId IdType="pubmed">27367504</ArticleId></ArticleIdList></Reference><Reference><Citation>Demirtas L., Guclu A., Erdur F. M., et al., “Apoptosis, Autophagy & Endoplasmic Reticulum Stress in Diabetes Mellitus,” Indian Journal of Medical Research 144, no. 4 (2016): 515–524.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5345297</ArticleId><ArticleId IdType="pubmed">28256459</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S., Sun Q.‐q., Xiang B., and Li X.‐J., “Pancreatic Islet Cell Autophagy During Aging in Rats,” Clinical and Investigative Medicine 36 (2013): E72–E80.</Citation><ArticleIdList><ArticleId IdType="pubmed">23544608</ArticleId></ArticleIdList></Reference><Reference><Citation>Rocha M., Apostolova N., Diaz‐Rua R., Muntane J., and Victor V. M., “Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome,” Trends in Endocrinology and Metabolism 31, no. 10 (2020): 725–741.</Citation><ArticleIdList><ArticleId IdType="pubmed">32265079</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou L., Zhang J., Fang Q., et al., “Autophagy‐Mediated Insulin Receptor Down‐Regulation Contributes to Endoplasmic Reticulum Stress‐Induced Insulin Resistance,” Molecular Pharmacology 76, no. 3 (2009): 596–603.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2730390</ArticleId><ArticleId IdType="pubmed">19541767</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujimoto K., Hanson P. T., Tran H., et al., “Autophagy Regulates Pancreatic Beta Cell Death in Response to Pdx1 Deficiency and Nutrient Deprivation,” Journal of Biological Chemistry 284, no. 40 (2009): 27664–27673.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2785695</ArticleId><ArticleId IdType="pubmed">19654319</ArticleId></ArticleIdList></Reference><Reference><Citation>Hashemitabar M., Rezaei‐Tazangi F., Khorsandi L., and Mard S. A., “Autophagy Involves in Differentiation of Insulin‐Secreting Cells From Adipose Derived Stem Cells,” Cell Journal (Yakhteh) 23, no. 6 (2021): 619.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8665986</ArticleId><ArticleId IdType="pubmed">34939754</ArticleId></ArticleIdList></Reference><Reference><Citation>Al‐Quobaili F. and Montenarh M., “Pancreatic Duodenal Homeobox Factor‐1 and Diabetes Mellitus Type 2,” International Journal of Molecular Medicine 21, no. 4 (2008): 399–404.</Citation><ArticleIdList><ArticleId IdType="pubmed">18360684</ArticleId></ArticleIdList></Reference><Reference><Citation>Okura T., Nakamura R., Ito Y., et al., “Significance of Pancreatic Duodenal Homeobox‐1 (PDX‐1) Genetic Polymorphism in Insulin Secretion in Japanese Patients With Type 2 Diabetes,” BMJ Open Diabetes Research & Care 10, no. 5 (2022): e002908.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9462127</ArticleId><ArticleId IdType="pubmed">36718853</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai X., Li J., Wang M., et al., “GLP‐1 Treatment Improves Diabetic Retinopathy by Alleviating Autophagy Through GLP‐1R‐ERK1/2‐HDAC6 Signaling Pathway,” International Journal of Medical Sciences 14, no. 12 (2017): 1203–1212.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5666553</ArticleId><ArticleId IdType="pubmed">29104476</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang P., Fang J., Zhang J., Ding S., and Gan D., “Curcumin Inhibited Podocyte Cell Apoptosis and Accelerated Cell Autophagy in Diabetic Nephropathy via Regulating Beclin1/UVRAG/Bcl2,” Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 13 (2020): 641–652.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7060797</ArticleId><ArticleId IdType="pubmed">32184643</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang B., Gan M.‐S., Lin Z.‐Y., and Wang Z.‐F., “Identification of Autophagy‐Related Genes as Potential Biomarkers for Type 1 Diabetes Mellitus,” Annals of Translational Medicine 10, no. 11 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9263783</ArticleId><ArticleId IdType="pubmed">35813322</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang W.‐L., Meng H.‐Z., Yang R.‐F., et al., “Melatonin Suppresses Autophagy in Type 2 Diabetic Osteoporosis,” Oncotarget 7, no. 32 (2016): 52179.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5239543</ArticleId><ArticleId IdType="pubmed">27438148</ArticleId></ArticleIdList></Reference><Reference><Citation>Yousefi S., Perozzo R., Schmid I., et al., “Calpain‐Mediated Cleavage of Atg5 Switches Autophagy to Apoptosis,” Nature Cell Biology 8, no. 10 (2006): 1124–1132.</Citation><ArticleIdList><ArticleId IdType="pubmed">16998475</ArticleId></ArticleIdList></Reference><Reference><Citation>Marchetti P., Suleiman M., De Luca C., et al., “A Direct Look at the Dysfunction and Pathology of the β Cells in Human Type 2 Diabetes,” Seminars in Cell & Developmental Biology 103 (2020): 83–93.</Citation><ArticleIdList><ArticleId IdType="pubmed">32417220</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang N., Zhou Y., Ngowi E. E., and Qiao A., “Autophagy: Playing an Important Role in Diabetes and Its Complications,” Medicine in Drug Discovery 22 (2024): 100188.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39656373</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1708-0428</ISSN><JournalIssue CitedMedium="Internet"><Volume>35</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Obesity surgery</Title><ISOAbbreviation>Obes Surg</ISOAbbreviation></Journal><ArticleTitle>The Impact of Metabolic and Bariatric Surgery on Diabetic Kidney Disease in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis.</ArticleTitle><Pagination><StartPage>329</StartPage><EndPage>340</EndPage><MedlinePgn>329-340</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11695-024-07612-8</ELocationID><Abstract><AbstractText>We aimed to determine the effect of metabolic and bariatric surgery (MBS) on the improvement of diabetic nephropathy (DN) in patients with obesity and type 2 diabetes (T2DM). A systematic search was performed in the PubMed, Embase, Scopus, and Web of Science databases. Meta-analysis of 31 studies with 2594 patients showed that urine albumin-to-creatinine ratio (UACR) was significantly reduced with a mean difference of - 28.19 mg/g (95% CI - 41.17, - 15.21, P-value < 0.001). In addition, subgroup analysis of studies showed a significant decrease after Roux-en-Y gastric bypass (RYGB) but not after sleeve gastrectomy (SG). These results suggest that MBS may lead to better kidney function and improvement in DN.</AbstractText><CopyrightInformation>© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Einafshar</LastName><ForeName>Negar</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Islamic Republic of Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Esparham</LastName><ForeName>Ali</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moghani</LastName><ForeName>Mahta Shari'at</ForeName><Initials>MS</Initials><AffiliationInfo><Affiliation>Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Islamic Republic of Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Radboy</LastName><ForeName>Mahsa</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Islamic Republic of Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ghamari</LastName><ForeName>Mohammad Javad</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Department of General Surgery, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Islamic Republic of Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zandbaf</LastName><ForeName>Tooraj</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of General Surgery, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Islamic Republic of Iran. tooraj.zandbaf@gmail.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Obes Surg</MedlineTA><NlmUniqueID>9106714</NlmUniqueID><ISSNLinking>0960-8923</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>AYI8EX34EU</RegistryNumber><NameOfSubstance UI="D003404">Creatinine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050110" MajorTopicYN="Y">Bariatric Surgery</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009767" MajorTopicYN="N">Obesity, Morbid</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015390" MajorTopicYN="N">Gastric Bypass</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005743" MajorTopicYN="N">Gastrectomy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000419" MajorTopicYN="N">Albuminuria</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003404" MajorTopicYN="N">Creatinine</DescriptorName><QualifierName UI="Q000652" MajorTopicYN="N">urine</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Albuminuria</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Metabolic and bariatric surgery</Keyword><Keyword MajorTopicYN="N">Nephropathy</Keyword><Keyword MajorTopicYN="N">Urinary albumin excretion</Keyword></KeywordList><CoiStatement>Declarations. Competing Interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>10</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>11</Hour><Minute>24</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656373</ArticleId><ArticleId IdType="doi">10.1007/s11695-024-07612-8</ArticleId><ArticleId IdType="pii">10.1007/s11695-024-07612-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;1(92):6–10.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2018.09.005</ArticleId></ArticleIdList></Reference><Reference><Citation>da Silva GB, Bentes ACSN, Daher EDF, et al. Obesidade e doença renal. Brazilian J Nephrol. 2017;39:65–9.</Citation></Reference><Reference><Citation>Hall ME, do Carmo JM, da Silva AA, et al. Obesity, hypertension, and chronic kidney disease. International journal of nephrology and renovascular disease. 2014;75–88.</Citation></Reference><Reference><Citation>Maric-Bilkan C. Obesity and diabetic kidney disease. Med Clin North Am. 2013;97(1):59–74.</Citation><ArticleIdList><ArticleId IdType="pubmed">23290730</ArticleId><ArticleId IdType="doi">10.1016/j.mcna.2012.10.010</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim AKH. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.</Citation><ArticleIdList><ArticleId IdType="pubmed">25342915</ArticleId><ArticleId IdType="pmc">4206379</ArticleId><ArticleId IdType="doi">10.2147/IJNRD.S40172</ArticleId></ArticleIdList></Reference><Reference><Citation>Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4(8):444–52.</Citation><ArticleIdList><ArticleId IdType="pubmed">18607402</ArticleId><ArticleId IdType="doi">10.1038/ncpendmet0894</ArticleId></ArticleIdList></Reference><Reference><Citation>Hovind P, Rossing P, Tarnow L, et al. Progression of diabetic nephropathy. Kidney Int. 2001;59(2):702–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">11168952</ArticleId><ArticleId IdType="doi">10.1046/j.1523-1755.2001.059002702.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Saeed K, Ahmed L, Suman P, et al. Bariatric surgery improves renal function: a large inner-city population outcome study. Obes Surg. 2021;31(1):260–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">32815104</ArticleId><ArticleId IdType="doi">10.1007/s11695-020-04909-2</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang H, Di J, Yu H, et al. The short-term remission of diabetic nephropathy after Roux-en-Y gastric bypass in Chinese patients of T2DM with obesity. Obes Surg. 2015;25(7):1263–70.</Citation><ArticleIdList><ArticleId IdType="pubmed">25925612</ArticleId><ArticleId IdType="pmc">4460269</ArticleId><ArticleId IdType="doi">10.1007/s11695-015-1666-y</ArticleId></ArticleIdList></Reference><Reference><Citation>Navaneethan SD, Kelly KR, Sabbagh F, et al. Urinary albumin excretion, HMW adiponectin, and insulin sensitivity in type 2 diabetic patients undergoing bariatric surgery. Obes Surg. 2010;20(3):308–15.</Citation><ArticleIdList><ArticleId IdType="pubmed">20217955</ArticleId><ArticleId IdType="pmc">2891346</ArticleId><ArticleId IdType="doi">10.1007/s11695-009-0026-1</ArticleId></ArticleIdList></Reference><Reference><Citation>Bashir B, Adam S, Chick W, et al. Microvascular complications of obesity and diabetes — role of bariatric surgery. 2023;(November 2022):1–20.</Citation></Reference><Reference><Citation>Liakopoulos V, Franzén S, Svensson AM, et al. Renal and cardiovascular outcomes after weight loss from gastric bypass surgery in type 2 diabetes: cardiorenal risk reductions exceed atherosclerotic benefits. Diabetes Care. 2020;43(6):1276–84.</Citation><ArticleIdList><ArticleId IdType="pubmed">32152136</ArticleId><ArticleId IdType="doi">10.2337/dc19-1703</ArticleId></ArticleIdList></Reference><Reference><Citation>Davoudi Z, Zahed NS, Tabatabaei SS, et al. The effects of sleeve gastrectomy on renal function in diabetic and non-diabetic morbidly obese patients. J Ren Inj Prev. 2022;11(4).</Citation></Reference><Reference><Citation>Huang H, Lu J, Dai X, et al. Improvement of renal function after bariatric surgery : a systematic review and meta ‑ analysis. 2021;4470–84.</Citation></Reference><Reference><Citation>Chandru S, Pradeepa R, Poonkodi VP, et al. Effects of metabolic surgery on diabetic kidney disease and diabetic retinopathy among obese asian Indians with type 2 diabetes. J Assoc Physicians India. 2022;70(1):68–72.</Citation></Reference><Reference><Citation>Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. In: Annals of Surgery. 2013. p. 628–36.</Citation></Reference><Reference><Citation>Docherty NG, le Roux CW. Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Vol. 16, Nature Reviews Nephrology. 2020. p. 709–20.</Citation></Reference><Reference><Citation>Ahmed MH, Byrne CD. Bariatric surgery and renal function: a precarious balance between benefit and harm. Vol. 25, Nephrology Dialysis Transplantation. 2010. p. 3142–7.</Citation></Reference><Reference><Citation>Albumin : creatinine ratio (U) unit conversion page :: MediCalc ::: ScyMed ::: [Internet]. Available from: http://www.scymed.com/en/smnxps/psdjb222_c.htm . Accessed 25 Sept 2024</Citation></Reference><Reference><Citation>Conversor urea _strong_↔__strong_ BUN. Available form: https://www.rccc.eu/ppc/calculadoras/conversor/ureabun/urea-bun.htm . Accessed 25 Sept 2024</Citation></Reference><Reference><Citation>Creatinine conversion calculator to mmol_l, µmol_l, mg_dl, mg_100ml, mg%, mg_l, µg_ml units, Available form: https://unitslab.com/node/44 . Accessed 25 Sept 2024</Citation></Reference><Reference><Citation>Diagnostic Systems. HbA1c calculator - HbA1c [Internet]. Available from: https://www.hba1cnet.com/hba1c-calculator/ . Accessed 25 Sept 2024</Citation></Reference><Reference><Citation>Convert cholesterol levels measurement units [Internet]. Available from: https://www.omnicalculator.com/health/cholesterol-units . Accessed 25 Sept 2024</Citation></Reference><Reference><Citation>Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805.</Citation><ArticleIdList><ArticleId IdType="pubmed">27683581</ArticleId><ArticleId IdType="doi">10.1177/0962280216669183</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:1–13.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2288-14-135</ArticleId></ArticleIdList></Reference><Reference><Citation>Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:1–10.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2288-5-13</ArticleId></ArticleIdList></Reference><Reference><Citation>Cohen RV, Pereira TV, Aboud CM, et al. Gastric bypass versus best medical treatment for diabetic kidney disease: 5 years follow up of a single-centre open label randomised controlled trial. EClinicalMedicine. 2022;53</Citation></Reference><Reference><Citation>Martin WP, Malmodin D, Pedersen A, et al. Urinary metabolomic changes accompanying albuminuria remission following gastric bypass surgery for type 2 diabetic kidney disease. Metabolites. 2022;12(2):1–31.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/metabo12020139</ArticleId></ArticleIdList></Reference><Reference><Citation>Salman AA, Salman MA, Aon MH, et al. Impact of weight loss on the severity of albuminuria in obese diabetic patients undergoing laparoscopic sleeve gastrectomy and one-anastomosis gastric bypass. Int J Gen Med. 2022;15(July):6405–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">35957758</ArticleId><ArticleId IdType="pmc">9359793</ArticleId><ArticleId IdType="doi">10.2147/IJGM.S365113</ArticleId></ArticleIdList></Reference><Reference><Citation>Watanabe Y, Yamaguchi T, Yamaoka S, et al. Effect of conventional medical therapy or laparoscopic sleeve gastrectomy on urinary albumin in Japanese subjects with severe obesity: an observational study. Obes Facts. 2021;14(6):613–21.</Citation><ArticleIdList><ArticleId IdType="pubmed">34649255</ArticleId><ArticleId IdType="pmc">8740108</ArticleId><ArticleId IdType="doi">10.1159/000519156</ArticleId></ArticleIdList></Reference><Reference><Citation>Adam S, Azmi S, Ho JH, et al. Improvements in diabetic neuropathy and nephropathy after bariatric surgery: a prospective cohort study. Obes Surg. 2021;31(2):554–63.</Citation><ArticleIdList><ArticleId IdType="pubmed">33104989</ArticleId><ArticleId IdType="doi">10.1007/s11695-020-05052-8</ArticleId></ArticleIdList></Reference><Reference><Citation>Soliman A, Soliman H, Naguib M. The effect of bariatric surgery versus intensive medical care on prevention of microalbuminuria in patients with type 2 diabetes: 3 year experience of a prospective study. Open Access Maced J Med Sci. 2021;9(B):202–7.</Citation><ArticleIdList><ArticleId IdType="doi">10.3889/oamjms.2021.5364</ArticleId></ArticleIdList></Reference><Reference><Citation>Alkharaiji M, Anyanwagu U, Donnelly R, et al. Effect of bariatric surgery on diagnosed chronic kidney disease and cardiovascular events in patients with insulin-treated type 2 diabetes: a retrospective cohort study from a large UK primary care database. Obes Surg. 2020;30(5):1685–95.</Citation><ArticleIdList><ArticleId IdType="pubmed">32130651</ArticleId><ArticleId IdType="pmc">7228901</ArticleId><ArticleId IdType="doi">10.1007/s11695-019-04201-y</ArticleId></ArticleIdList></Reference><Reference><Citation>Bjornstad P, Nehus E, Jenkins T, et al. Five-year kidney outcomes of bariatric surgery differ in severely obese adolescents and adults with and without type 2 diabetes. Kidney Int. 2020;97(5):995–1005.</Citation><ArticleIdList><ArticleId IdType="pubmed">32229096</ArticleId><ArticleId IdType="pmc">7183894</ArticleId><ArticleId IdType="doi">10.1016/j.kint.2020.01.016</ArticleId></ArticleIdList></Reference><Reference><Citation>Canney AL, Cohen RV, Elliott JA, et al. Improvements in diabetic albuminuria and podocyte differentiation following Roux-en-Y gastric bypass surgery. Diabetes Vasc Dis Res. 2020;17(1):147916411987903.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1479164119879039</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang YC, Chao SH, Chen CC, et al. The effects of bariatric surgery on renal, neurological, and ophthalmic complications in patients with type 2 diabetes: the Taiwan diabesity study. Obes Surg. 2020;31:117.</Citation><ArticleIdList><ArticleId IdType="pubmed">32683637</ArticleId><ArticleId IdType="pmc">7808993</ArticleId><ArticleId IdType="doi">10.1007/s11695-020-04859-9</ArticleId></ArticleIdList></Reference><Reference><Citation>Young L, Nor Hanipah Z, Brethauer SA, et al. Long-term impact of bariatric surgery in diabetic nephropathy. Surg Endosc. 2019;15(33):1654–60.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00464-018-6458-8</ArticleId></ArticleIdList></Reference><Reference><Citation>Miras AD, Ravindra S, Humphreys A, et al. Metabolic changes and diabetes microvascular complications 5 years after obesity surgery. Obes Surg. 2019;29(12):3907–11.</Citation><ArticleIdList><ArticleId IdType="pubmed">31372874</ArticleId><ArticleId IdType="doi">10.1007/s11695-019-04095-w</ArticleId></ArticleIdList></Reference><Reference><Citation>Elbasan O, Sisman P, Peynirci H, et al. Short term effect of laparoscopic sleeve gastrectomy on clinical, renal parameters and urinary ngal levels in diabetic and non diabetic obesity. Acta Endocrinol (Copenh). 2019;15(3):349–54.</Citation></Reference><Reference><Citation>Friedman AN, Wang J, Wahed AS, et al. The association between kidney disease and diabetes remission in bariatric surgery patients with type 2 diabetes. Am J Kidney Dis. 2019;74(6):761–70.</Citation><ArticleIdList><ArticleId IdType="pubmed">31331758</ArticleId><ArticleId IdType="pmc">7077733</ArticleId><ArticleId IdType="doi">10.1053/j.ajkd.2019.05.013</ArticleId></ArticleIdList></Reference><Reference><Citation>Chao ATL, Chee Fang S, Lam BCC, et al. Effect of bariatric surgery on diabetic nephropathy in obese type 2 diabetes patients in a retrospective 2-year study: a local pilot. Diabetes Vasc Dis Res. 2018;15(2):139–44.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1479164117742315</ArticleId></ArticleIdList></Reference><Reference><Citation>Billeter AT, Kopf S, Zeier M, et al. Renal function in type 2 diabetes following gastric bypass - a prospective cohort study in mildly obese insulin-dependent patients. Dtsch Arztebl Int. 2016;113(49):827–33.</Citation><ArticleIdList><ArticleId IdType="pubmed">28098067</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim EY, Kim YJ. Does bariatric surgery really prevent deterioration of renal function? Surg Obes Relat Dis. 2016;12(4):856–61.</Citation><ArticleIdList><ArticleId IdType="pubmed">26823090</ArticleId><ArticleId IdType="doi">10.1016/j.soard.2015.10.068</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirajkar N, Bellary S, Ahmed M, et al. The impact of bariatric surgery on estimated glomerular filtration rate in patients with type 2 diabetes: a retrospective cohort study. Surg Obes Relat Dis. 2016;12(10):1883–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">27516220</ArticleId><ArticleId IdType="doi">10.1016/j.soard.2016.02.024</ArticleId></ArticleIdList></Reference><Reference><Citation>Miras AD, Chuah LL, Khalil N, et al. Type 2 diabetes mellitus and microvascular complications 1 year after Roux-en-Y gastric bypass: a case–control study. Diabetologia. 2015;58(7):1443–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">25893730</ArticleId><ArticleId IdType="pmc">4473013</ArticleId><ArticleId IdType="doi">10.1007/s00125-015-3595-7</ArticleId></ArticleIdList></Reference><Reference><Citation>Amor A, Jiménez A, Moizé V, et al. Weight loss independently predicts urinary albumin excretion normalization in morbidly obese type 2 diabetic patients undergoing bariatric surgery. Surg Endosc. 2013;27(6):2046–51.</Citation><ArticleIdList><ArticleId IdType="pubmed">23292561</ArticleId><ArticleId IdType="doi">10.1007/s00464-012-2708-3</ArticleId></ArticleIdList></Reference><Reference><Citation>Kota S, Ugale S, Gupta N, et al. Ileal interposition with diverted sleeve gastrectomy for treatment of type 2 diabetes. Indian J Endocrinol Metab. 2012;16(8):458.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/2230-8210.104131</ArticleId></ArticleIdList></Reference><Reference><Citation>Iaconelli A, Panunzi S, De Gaetano A, et al. Effects of bilio-pancreatic diversion on diabetic complications: a 10-year follow-up. Diabetes Care. 2011;34(3):561–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">21282343</ArticleId><ArticleId IdType="pmc">3041181</ArticleId><ArticleId IdType="doi">10.2337/dc10-1761</ArticleId></ArticleIdList></Reference><Reference><Citation>Saliba J, Kasim NR, Tamboli RA, et al. Roux-en-Y gastric bypass reverses renal glomerular but not tubular abnormalities in excessively obese diabetics. Surgery. 2010;147(2):282–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">20004430</ArticleId><ArticleId IdType="doi">10.1016/j.surg.2009.09.017</ArticleId></ArticleIdList></Reference><Reference><Citation>Courcoulas AP, Patti ME, Hu B, et al. Long-term outcomes of medical management vs bariatric surgery in type 2 diabetes. JAMA. 2024;331(8):654–64.</Citation><ArticleIdList><ArticleId IdType="pubmed">38411644</ArticleId><ArticleId IdType="pmc">10900968</ArticleId><ArticleId IdType="doi">10.1001/jama.2024.0318</ArticleId></ArticleIdList></Reference><Reference><Citation>Halperin F, Ding SA, Simonson DC, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">24899464</ArticleId><ArticleId IdType="pmc">4274782</ArticleId><ArticleId IdType="doi">10.1001/jamasurg.2014.514</ArticleId></ArticleIdList></Reference><Reference><Citation>Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes. N Engl J Med. 2017;376(7):641–51.</Citation><ArticleIdList><ArticleId IdType="pubmed">28199805</ArticleId><ArticleId IdType="pmc">5451258</ArticleId><ArticleId IdType="doi">10.1056/NEJMoa1600869</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirwan JP, Courcoulas AP, Cummings DE, et al. Diabetes remission in the alliance of randomized trials of medicine versus metabolic surgery in type 2 diabetes (ARMMS-T2D). Diabetes Care. 2022;45(7):1574–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">35320365</ArticleId><ArticleId IdType="pmc">9490448</ArticleId><ArticleId IdType="doi">10.2337/dc21-2441</ArticleId></ArticleIdList></Reference><Reference><Citation>Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(23)01301-6</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohammedi K, Chalmers J, Herrington W, et al. Associations between body mass index and the risk of renal events in patients with type 2 diabetes. Nutr Diabetes. 2018;8(1):7.</Citation><ArticleIdList><ArticleId IdType="pubmed">29343817</ArticleId><ArticleId IdType="pmc">5851426</ArticleId><ArticleId IdType="doi">10.1038/s41387-017-0012-y</ArticleId></ArticleIdList></Reference><Reference><Citation>Gong X, Zeng X, Fu P. The impact of weight loss on renal function in individuals with obesity and type 2 diabetes: a comprehensive review. Front Endocrinol (Lausanne). 2024;15:1320627.</Citation><ArticleIdList><ArticleId IdType="pubmed">38362272</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1320627</ArticleId></ArticleIdList></Reference><Reference><Citation>Heneghan HM, Cetin D, Navaneethan SD, et al. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9(1):7–14.</Citation><ArticleIdList><ArticleId IdType="pubmed">23211651</ArticleId><ArticleId IdType="doi">10.1016/j.soard.2012.08.016</ArticleId></ArticleIdList></Reference><Reference><Citation>Gong X, Zeng X, Fu P. The impact of weight loss on renal function in individuals with obesity and type 2 diabetes: a comprehensive review. Front Endocrinol (Lausanne). 2024;15(January):1–8.</Citation></Reference><Reference><Citation>Bantle JP, Bertoni AG, Bray GA, et al. Effect of a Long-Term Behavioral Weight Loss Intervention on Nephropathy in Overweight or Obese Adults with Type 2 Diabetes: the Look AHEAD Randomized Clinical Trial. The lancet Diabetes & endocrinology. 2014;2(10):801–9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(14)70156-1</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ, Bergenstal R, Bode B, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.</Citation><ArticleIdList><ArticleId IdType="pubmed">26284720</ArticleId><ArticleId IdType="doi">10.1001/jama.2015.9676</ArticleId></ArticleIdList></Reference><Reference><Citation>Dunkler D, Dehghan M, Teo KK, et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern Med. 2013;173(18):1682–92.</Citation><ArticleIdList><ArticleId IdType="pubmed">23939297</ArticleId></ArticleIdList></Reference><Reference><Citation>Agrawal V, Krause KR, Chengelis DL, et al. Relation between degree of weight loss after bariatric surgery and reduction in albuminuria and C-reactive protein. Surg Obes Relat Dis. 2009;5(1):20–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">18951068</ArticleId><ArticleId IdType="doi">10.1016/j.soard.2008.07.011</ArticleId></ArticleIdList></Reference><Reference><Citation>Neff KJ, Frankel AH, Tam FWK, et al. The effect of bariatric surgery on renal function and disease: a focus on outcomes and inflammation. Nephrol Dial Transplant. 2013;28(SUPPL.4).</Citation></Reference><Reference><Citation>Park S, Kim YJ, Choi C young, et al. Bariatric surgery can reduce albuminuria in patients with severe obesity and normal kidney function by reducing systemic inflammation. Obes Surg. 2018;28(3):831–7.</Citation></Reference><Reference><Citation>Shulman A, Andersson-Assarsson JC, Sjöström CD, et al. Remission and progression of pre-existing micro-and macroalbuminuria over 15 years after bariatric surgery in Swedish obese subjects study. Int J Obes. 2021;45(3):535–46.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41366-020-00707-z</ArticleId></ArticleIdList></Reference><Reference><Citation>Khalil R, Elghadban H, Abdelsalam M, et al. Kidney injury molecule-1: a potential marker of renal recovery after laparoscopic sleeve gastrectomy. Kidney Res Clin Pract. 2020;39(2):162–71.</Citation><ArticleIdList><ArticleId IdType="pubmed">32487784</ArticleId><ArticleId IdType="pmc">7321680</ArticleId><ArticleId IdType="doi">10.23876/j.krcp.19.109</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritter S, Vetter ML, Sarwer DB. Lifestyle modifications and surgical options in the treatment of patients with obesity and type 2 diabetes mellitus. Postgrad Med. 2012;124(4):168–80.</Citation><ArticleIdList><ArticleId IdType="pubmed">22913905</ArticleId><ArticleId IdType="doi">10.3810/pgm.2012.07.2578</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin Y, Lai Y, Lin Y, et al. Effect of weight loss on the estimated glomerular filtration rates of obese patients at risk of chronic kidney disease: the RIGOR-TMU study. J Cachexia Sarcopenia Muscle. 2019;10(4):756–66.</Citation><ArticleIdList><ArticleId IdType="pubmed">30938491</ArticleId><ArticleId IdType="pmc">6711419</ArticleId><ArticleId IdType="doi">10.1002/jcsm.12423</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39656000</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>09</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2165-0497</ISSN><JournalIssue CitedMedium="Internet"><Volume>13</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month><Day>07</Day></PubDate></JournalIssue><Title>Microbiology spectrum</Title><ISOAbbreviation>Microbiol Spectr</ISOAbbreviation></Journal><ArticleTitle>Immunological mechanisms of tuberculosis susceptibility in TB-infected individuals with type 2 diabetes mellitus: insights from mycobacterial growth inhibition assay and cytokine analysis.</ArticleTitle><Pagination><StartPage>e0144524</StartPage><MedlinePgn>e0144524</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e01445-24</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1128/spectrum.01445-24</ELocationID><Abstract><AbstractText Label="UNLABELLED">Several studies have highlighted the increased risk of active tuberculosis (TB) in individuals with diabetes mellitus (DM), especially in TB-endemic regions. This dual burden poses significant challenges for TB control efforts. However, there is a lack of reliable laboratory tools to identify individuals at higher risk, and the immunological mechanisms underlying this susceptibility are poorly understood. In this study, we utilized the mycobacterial growth inhibition assay (MGIA) to assess immune response capacity against <i>Mycobacterium tuberculosis</i> (<i>M.tb</i>) in TB infection (TBI) in individuals with type 2 DM (T2DM) (<i>n</i> = 11) compared to those without type 2 DM (NDM) (<i>n</i> = 23). Additionally, we measured various cytokines using multiplex ELISA to understand the immune profile. Our findings revealed that TBI-T2DM individuals exhibited a lower capacity to inhibit <i>M.tb</i> growth compared to TBI-NDM, as evidenced by MGIA results (<i>P</i> = 0.0029). Cytokine analysis further demonstrated diminished production of key cytokines involved in protection, including type 1 (IFNγ, TNFα, IL-2), type 17 (IL-17A), and proinflammatory (IL-1α, IL-1β, IL-6, IL-12p70) cytokines in the TBI-T2DM group compared to TBI-NDM, upon <i>M.tb</i> infection. These findings suggest that MGIA holds promise as an <i>in vitro</i> marker for assessing <i>M.tb</i> immunological control in TBI individuals, particularly those with T2DM. The observed cytokine profile in TBI-T2DM individuals indicates a compromised immune response against <i>M.tb</i> activation, potentially explaining the heightened risk of active TB in this population.</AbstractText><AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">This study is important because it sheds light on the impaired immune response in individuals with type 2 diabetes mellitus (T2DM) who are infected with Mycobacterium tuberculosis (M.tb), offering critical insights into why they are at higher risk of developing active tuberculosis (TB). By demonstrating that T2DM individuals exhibit a weakened ability to control M.tb growth and a compromised cytokine profile, the research underscores the need for better diagnostic tools, such as the mycobacterial growth inhibition assay (MGIA), to identify those at greater risk of progression to active TB. The findings also highlight the importance of integrated care strategies for managing both T2DM and TB, particularly in TB-endemic regions, and point to the need for further research to develop more effective interventions tailored to this vulnerable population.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Dasan</LastName><ForeName>Bindu</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rajamanickam</LastName><ForeName>Anuradha</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-8143-5502</Identifier><AffiliationInfo><Affiliation>Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pandiarajan</LastName><ForeName>Arul Nancy</ForeName><Initials>AN</Initials><AffiliationInfo><Affiliation>Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shanmugam</LastName><ForeName>Sivakumar</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nott</LastName><ForeName>Sujatha</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Infectious Diseases, Dignity Health, Chandler, Arizona, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Babu</LastName><ForeName>Subash</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0001-9783-8042</Identifier><AffiliationInfo><Affiliation>Department of ICER, National Institute of Health-National Institute of Allergy and Infectious Diseases-International Center for Excellence in Research, Chennai, India.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><Agency>HHS | NIH | NIAID | Division of Intramural Research (DIR, NIAID)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Microbiol Spectr</MedlineTA><NlmUniqueID>101634614</NlmUniqueID><ISSNLinking>2165-0497</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="Y">Cytokines</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009169" MajorTopicYN="Y">Mycobacterium tuberculosis</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004198" MajorTopicYN="N">Disease Susceptibility</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">TB infection</Keyword><Keyword MajorTopicYN="N">cytokines</Keyword><Keyword MajorTopicYN="N">mycobacterial growth inhibition assay</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>9</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>9</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39656000</ArticleId><ArticleId IdType="pmc">PMC11705871</ArticleId><ArticleId IdType="doi">10.1128/spectrum.01445-24</ArticleId></ArticleIdList><ReferenceList><Reference><Citation> -Global Tuberculosis Report 2023. 2023. -Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023</Citation></Reference><Reference><Citation>Kiazyk S, Ball TB. 2017. Latent tuberculosis infection: an overview. Can Commun Dis Rep 43:62–66. doi:10.14745/ccdr.v43i34a01</Citation><ArticleIdList><ArticleId IdType="doi">10.14745/ccdr.v43i34a01</ArticleId><ArticleId IdType="pmc">PMC5764738</ArticleId><ArticleId IdType="pubmed">29770066</ArticleId></ArticleIdList></Reference><Reference><Citation>Heidary M, Shirani M, Moradi M, Goudarzi M, Pouriran R, Rezaeian T, Khoshnood S. 2022. Tuberculosis challenges: resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol (Bp) 12:1–17. doi:10.1556/1886.2021.00021</Citation><ArticleIdList><ArticleId IdType="doi">10.1556/1886.2021.00021</ArticleId><ArticleId IdType="pmc">PMC9036649</ArticleId><ArticleId IdType="pubmed">35420996</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Babu S. 2023. Impact of diabetes mellitus on immunity to latent tuberculosis infection modified title: impact of diabetes mellitus on immunity to latent tuberculosis infection. Front Clin Diabetes Healthc 4:1095467. doi:10.3389/fcdhc.2023.1095467</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcdhc.2023.1095467</ArticleId><ArticleId IdType="pmc">PMC10012073</ArticleId><ArticleId IdType="pubmed">36993821</ArticleId></ArticleIdList></Reference><Reference><Citation>Jeon CY, Murray MB. 2008. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 5:e152. doi:10.1371/journal.pmed.0050152</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.0050152</ArticleId><ArticleId IdType="pmc">PMC2459204</ArticleId><ArticleId IdType="pubmed">18630984</ArticleId></ArticleIdList></Reference><Reference><Citation>Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A. 2011. Immunological biomarkers of tuberculosis. Nat Rev Immunol 11:343–354. doi:10.1038/nri2960</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nri2960</ArticleId><ArticleId IdType="pubmed">21475309</ArticleId></ArticleIdList></Reference><Reference><Citation>Kathamuthu GR, Kumar NP, Moideen K, Menon PA, Babu S. 2022. High dimensionality reduction and immune phenotyping of natural killer and invariant natural killer cells in latent tuberculosis-diabetes comorbidity. J Immunol Res 2022:2422790. doi:10.1155/2022/2422790</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2022/2422790</ArticleId><ArticleId IdType="pmc">PMC8886750</ArticleId><ArticleId IdType="pubmed">35242883</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade BB, Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Nutman TB, Sher A, Babu S. 2014. Heightened plasma levels of heme oxygenase-1 and tissue inhibitor of metalloproteinase-4 as well as elevated peripheral neutrophil counts are associated with TB-diabetes comorbidity.. Chest 145:1244–1254. doi:10.1378/chest.13-1799</Citation><ArticleIdList><ArticleId IdType="doi">10.1378/chest.13-1799</ArticleId><ArticleId IdType="pmc">PMC4042512</ArticleId><ArticleId IdType="pubmed">24458266</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahishale V, Avuthu S, Patil B, Lolly M, Eti A, Khan S. 2017. Effect of poor glycemic control in newly diagnosed patients with smear-positive pulmonary tuberculosis and type-2 diabetes mellitus. Iran J Med Sci 42:144–151.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5366362</ArticleId><ArticleId IdType="pubmed">28360440</ArticleId></ArticleIdList></Reference><Reference><Citation>Tanner R, O’Shea MK, Fletcher HA, McShane H. 2016. In vitro mycobacterial growth inhibition assays: a tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine (Auckl) 34:4656–4665. doi:10.1016/j.vaccine.2016.07.058</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vaccine.2016.07.058</ArticleId><ArticleId IdType="pubmed">27527814</ArticleId></ArticleIdList></Reference><Reference><Citation>Fletcher HA, Tanner R, Wallis RS, Meyer J, Manjaly Z-R, Harris S, Satti I, Silver RF, Hoft D, Kampmann B, Walker KB, Dockrell HM, Fruth U, Barker L, Brennan MJ, McShane H. 2013. Inhibition of mycobacterial growth in vitro following primary but not secondary vaccination with Mycobacterium bovis BCG. Clin Vaccine Immunol 20:1683–1689. doi:10.1128/CVI.00427-13</Citation><ArticleIdList><ArticleId IdType="doi">10.1128/CVI.00427-13</ArticleId><ArticleId IdType="pmc">PMC3837779</ArticleId><ArticleId IdType="pubmed">23986316</ArticleId></ArticleIdList></Reference><Reference><Citation>Pavan Kumar N, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Shanmugam S, Hissar S, Kornfeld H, Babu S. 2019. Plasma eicosanoid levels in tuberculosis and tuberculosis-diabetes co-morbidity are associated with lung pathology and bacterial burden. Front Cell Infect Microbiol 9:335. doi:10.3389/fcimb.2019.00335</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcimb.2019.00335</ArticleId><ArticleId IdType="pmc">PMC6779700</ArticleId><ArticleId IdType="pubmed">31632923</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Hissar S, Kornfeld H, Babu S. 2019. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis 19:1039. doi:10.1186/s12879-019-4648-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12879-019-4648-1</ArticleId><ArticleId IdType="pmc">PMC6902343</ArticleId><ArticleId IdType="pubmed">31818258</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Banurekha VV, Nair D, Sridhar R, Kornfeld H, Nutman TB, Babu S. 2014. Coincident pre-diabetes is associated with dysregulated cytokine responses in pulmonary tuberculosis. PLoS ONE 9:e112108. doi:10.1371/journal.pone.0112108</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0112108</ArticleId><ArticleId IdType="pmc">PMC4230980</ArticleId><ArticleId IdType="pubmed">25393696</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Viswanathan V, Sivakumar S, Hissar S, Kornfeld H, Babu S. 2021. Effect of anti-tuberculosis treatment on the systemic levels of tissue inhibitors of metalloproteinases in tuberculosis - diabetes co-morbidity. J Clin Tuberc Other Mycobact Dis 23:100237. doi:10.1016/j.jctube.2021.100237</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jctube.2021.100237</ArticleId><ArticleId IdType="pmc">PMC8100611</ArticleId><ArticleId IdType="pubmed">33997311</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar N.P, Moideen K, Dolla C, Kumaran P, Babu S. 2017. Prediabetes is associated with the modulation of antigen-specific Th1/Tc1 and Th17/Tc17 responses in latent Mycobacterium tuberculosis infection. PLoS One 12:e0178000. doi:10.1371/journal.pone.0178000</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0178000</ArticleId><ArticleId IdType="pmc">PMC5448753</ArticleId><ArticleId IdType="pubmed">28558065</ArticleId></ArticleIdList></Reference><Reference><Citation>Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K, Ottmani S-E, Goonesekera SD, Murray MB. 2011. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med 9:81. doi:10.1186/1741-7015-9-81</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1741-7015-9-81</ArticleId><ArticleId IdType="pmc">PMC3155828</ArticleId><ArticleId IdType="pubmed">21722362</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Fukutani KF, Shruthi BS, Alves T, Silveira-Mattos PS, Rocha MS, West K, Natarajan M, Viswanathan V, Babu S, Andrade BB, Kornfeld H. 2019. Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity. Elife 8:e46477. doi:10.7554/eLife.46477</Citation><ArticleIdList><ArticleId IdType="doi">10.7554/eLife.46477</ArticleId><ArticleId IdType="pmc">PMC6660216</ArticleId><ArticleId IdType="pubmed">31271354</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Dhakshinraj SD, Banurekha VV, Nair D, Dolla C, Kumaran P, Babu S. 2015. Profiling leucocyte subsets in tuberculosis-diabetes co-morbidity. Immunology 146:243–250. doi:10.1111/imm.12496</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/imm.12496</ArticleId><ArticleId IdType="pmc">PMC4582965</ArticleId><ArticleId IdType="pubmed">26095067</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooper AM. 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422. doi:10.1146/annurev.immunol.021908.132703</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev.immunol.021908.132703</ArticleId><ArticleId IdType="pmc">PMC4298253</ArticleId><ArticleId IdType="pubmed">19302046</ArticleId></ArticleIdList></Reference><Reference><Citation>Pavan Kumar N, Nair D, Banurekha VV, Dolla C, Kumaran P, Sridhar R, Babu S. 2016. Type 2 diabetes mellitus coincident with pulmonary or latent tuberculosis results in modulation of adipocytokines. Cytokine 79:74–81. doi:10.1016/j.cyto.2015.12.026</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cyto.2015.12.026</ArticleId><ArticleId IdType="pmc">PMC4729624</ArticleId><ArticleId IdType="pubmed">26771473</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar N.P, Moideen K, George PJ, Dolla C, Kumaran P, Babu S. 2016. Impaired cytokine but enhanced cytotoxic marker expression in mycobacterium tuberculosis-induced CD8+ T cells in individuals with Type 2 diabetes and latent Mycobacterium tuberculosis infection. J Infect Dis 213:866–870. doi:10.1093/infdis/jiv484</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/infdis/jiv484</ArticleId><ArticleId IdType="pmc">PMC4747616</ArticleId><ArticleId IdType="pubmed">26486635</ArticleId></ArticleIdList></Reference><Reference><Citation>Venkataraman A, Shanmugam S, Balaji S, Mani K, Shanmugavel AK, Muthuramalingam K, Hissar S, Thiruvengadam K, Selladurai E, Smuk M, Hanna LE, Prendergast AJ. 2022. Comparison of two mycobacterial strains in performance of the whole blood mycobacterial growth inhibition assay in Indian children. Tuberculosis (Edinb) 137:102255. doi:10.1016/j.tube.2022.102255</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tube.2022.102255</ArticleId><ArticleId IdType="pubmed">36252397</ArticleId></ArticleIdList></Reference><Reference><Citation>Brennan MJ, Tanner R, Morris S, Scriba TJ, Achkar JM, Zelmer A, Hokey DA, Izzo A, Sharpe S, Williams A, Penn-Nicholson A, Erasmus M, Stylianou E, Hoft DF, McShane H, Fletcher HA. 2017. The cross-species mycobacterial growth inhibition assay (MGIA) project, 2010-2014. Clin Vaccine Immunol 24:e00142-17. doi:10.1128/CVI.00142-17</Citation><ArticleIdList><ArticleId IdType="doi">10.1128/CVI.00142-17</ArticleId><ArticleId IdType="pmc">PMC5585695</ArticleId><ArticleId IdType="pubmed">28701467</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee H, Kim J, Kang YA, Kim DR, Sim B, Zelmer A, Fletcher HA, Dockrell HM, Smith SG, Cho S-N. 2019. In vitro mycobacterial growth inhibition in south korean adults with latent TB infection. Front Immunol 10:896. doi:10.3389/fimmu.2019.00896</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2019.00896</ArticleId><ArticleId IdType="pmc">PMC6497970</ArticleId><ArticleId IdType="pubmed">31105706</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar N.P, Moideen K, George PJ, Dolla C, Kumaran P, Babu S. 2016. Coincident diabetes mellitus modulates Th1-, Th2-, and Th17-cell responses in latent tuberculosis in an IL-10- and TGF-β-dependent manner. Eur J Immunol 46:390–399. doi:10.1002/eji.201545973</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/eji.201545973</ArticleId><ArticleId IdType="pmc">PMC6340057</ArticleId><ArticleId IdType="pubmed">26518995</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar Nathella P, Babu S. 2017. Influence of diabetes mellitus on immunity to human tuberculosis. Immunology 152:13–24. doi:10.1111/imm.12762</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/imm.12762</ArticleId><ArticleId IdType="pmc">PMC5543489</ArticleId><ArticleId IdType="pubmed">28543817</ArticleId></ArticleIdList></Reference><Reference><Citation>Kathamuthu GR, Kumar NP, Moideen K, Menon PA, Babu S. 2021. Decreased frequencies of gamma/delta T cells expressing Th1/Th17 cytokine, cytotoxic, and immune markers in latent tuberculosis-diabetes/pre-diabetes comorbidity. Front Cell Infect Microbiol 11:756854. doi:10.3389/fcimb.2021.756854</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcimb.2021.756854</ArticleId><ArticleId IdType="pmc">PMC8577793</ArticleId><ArticleId IdType="pubmed">34765568</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Banurekha VV, Nair D, Kumaran P, Dolla CK, Babu S. 2015. Type 2 diabetes – Tuberculosis co-morbidity is associated with diminished circulating levels of IL-20 subfamily of cytokines. Tuberculosis (Edinb) 95:707–712. doi:10.1016/j.tube.2015.06.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tube.2015.06.004</ArticleId><ArticleId IdType="pmc">PMC4666794</ArticleId><ArticleId IdType="pubmed">26354610</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Banurekha VV, Nair D, Babu S. 2019. Plasma proinflammatory cytokines are markers of disease severity and bacterial burden in pulmonary tuberculosis. Open Forum Infect Dis 6:fz257. doi:10.1093/ofid/ofz257</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ofid/ofz257</ArticleId><ArticleId IdType="pmc">PMC6602384</ArticleId><ArticleId IdType="pubmed">31281858</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Natarajan M, Kornfeld H, Babu S. 2020. Heterogeneity in the cytokine profile of tuberculosis - diabetes co-morbidity. Cytokine. Cytokine 125:154824. doi:10.1016/j.cyto.2019.154824</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cyto.2019.154824</ArticleId><ArticleId IdType="pubmed">31472402</ArticleId></ArticleIdList></Reference><Reference><Citation>Kathamuthu GR, Pavan Kumar N, Moideen K, Dolla C, Kumaran P, Babu S. 2022. Multi-dimensionality immunophenotyping analyses of MAIT cells expressing Th1/Th17 cytokines and cytotoxic markers in latent tuberculosis diabetes comorbidity. Pathogens 11:87. doi:10.3390/pathogens11010087</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/pathogens11010087</ArticleId><ArticleId IdType="pmc">PMC8777702</ArticleId><ArticleId IdType="pubmed">35056035</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar N.P, George PJ, Kumaran P, Dolla CK, Nutman TB, Babu S. 2014. Diminished systemic and antigen-specific type 1, type 17, and other proinflammatory cytokines in diabetic and prediabetic individuals with latent Mycobacterium tuberculosis infection. J Infect Dis 210:1670–1678. doi:10.1093/infdis/jiu329</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/infdis/jiu329</ArticleId><ArticleId IdType="pmc">PMC4215076</ArticleId><ArticleId IdType="pubmed">24907382</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Fay MP, Nutman TB, Babu S. 2013. Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Ann Am Thorac Soc 10:441–449. doi:10.1513/AnnalsATS.201305-112OC</Citation><ArticleIdList><ArticleId IdType="doi">10.1513/AnnalsATS.201305-112OC</ArticleId><ArticleId IdType="pmc">PMC3960913</ArticleId><ArticleId IdType="pubmed">23987505</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Nutman TB, Babu S. 2013. Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in pulmonary tuberculosis with coincident type 2 diabetes mellitus. J Infect Dis 208:739–748. doi:10.1093/infdis/jit241</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/infdis/jit241</ArticleId><ArticleId IdType="pmc">PMC3733509</ArticleId><ArticleId IdType="pubmed">23715661</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Bhootra Y, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Natarajan M, Kornfeld H, Babu S. 2019. Elevated circulating levels of monocyte activation markers among tuberculosis patients with diabetes co-morbidity. Immunology 156:249–258. doi:10.1111/imm.13023</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/imm.13023</ArticleId><ArticleId IdType="pmc">PMC6376263</ArticleId><ArticleId IdType="pubmed">30427060</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Viswanathan V, Shruthi BS, Sivakumar S, Menon PA, Kornfeld H, Babu S. 2018. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect Dis 18:345. doi:10.1186/s12879-018-3246-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12879-018-3246-y</ArticleId><ArticleId IdType="pmc">PMC6060542</ArticleId><ArticleId IdType="pubmed">30045688</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Banurekha VV, Nair D, Dolla C, Kumaran P, Babu S. 2018. Modulation of iron status biomarkers in tuberculosis-diabetes co-morbidity. Tuberculosis (Edinb) 108:127–135. doi:10.1016/j.tube.2017.11.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tube.2017.11.011</ArticleId><ArticleId IdType="pmc">PMC5846115</ArticleId><ArticleId IdType="pubmed">29523313</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Viswanathan V, Sivakumar S, Menon PA, Kornfeld H, Babu S. 2017. Heightened circulating levels of antimicrobial peptides in tuberculosis-Diabetes co-morbidity and reversal upon treatment. PLoS One 12:e0184753. doi:10.1371/journal.pone.0184753</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0184753</ArticleId><ArticleId IdType="pmc">PMC5599016</ArticleId><ArticleId IdType="pubmed">28910369</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NP, Moideen K, Sivakumar S, Menon PA, Viswanathan V, Kornfeld H, Babu S. 2017. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors. J Infect 74:10–21. doi:10.1016/j.jinf.2016.08.021</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jinf.2016.08.021</ArticleId><ArticleId IdType="pmc">PMC5164955</ArticleId><ArticleId IdType="pubmed">27717783</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmed S, Raqib R, Guðmundsson GH, Bergman P, Agerberth B, Rekha RS. 2020. Host-directed therapy as a novel treatment strategy to overcome tuberculosis: targeting immune modulation. Antibiotics (Basel) 9:21. doi:10.3390/antibiotics9010021</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/antibiotics9010021</ArticleId><ArticleId IdType="pmc">PMC7168302</ArticleId><ArticleId IdType="pubmed">31936156</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39655712</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1098-2299</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>8</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Drug development research</Title><ISOAbbreviation>Drug Dev Res</ISOAbbreviation></Journal><ArticleTitle>Does Metabolic Manager Show Encouraging Outcomes in Alzheimer's?: Challenges and Opportunity for Protein Tyrosine Phosphatase 1b Inhibitors.</ArticleTitle><Pagination><StartPage>e70026</StartPage><MedlinePgn>e70026</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/ddr.70026</ELocationID><Abstract><AbstractText>Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials. Notably, the preclinical studies have shown that recuperating metabolic dysfunction and dyshomeostasis can reverse cognition and could be a possible approach to mitigate multifaceted Alzheimer's disease (AD). PTP1b inhibitor thus has attracted attention in neuroscience, though the development is limited to the preclinical stage, and its exploration in large clinical trials is warranted. This review provides an insight on the development of PTP1b inhibitors from different sources in diabesity. The crosstalk between metabolic dysfunction and insulin insensitivity in AD and type-2 diabetes has also been highlighted. Furthermore, this review presents the significance of PTP1b inhibition in AD based on pathophysiological facets, and recent evidences from preclinical and clinical studies.</AbstractText><CopyrightInformation>© 2024 Wiley Periodicals LLC.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Singh</LastName><ForeName>Ritu</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jain</LastName><ForeName>Smita</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paliwal</LastName><ForeName>Vartika</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verma</LastName><ForeName>Kanika</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center Shreveport, Louisiana, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Paliwal</LastName><ForeName>Sarvesh</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-5247-2021</Identifier><AffiliationInfo><Affiliation>Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sharma</LastName><ForeName>Swapnil</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-2639-7096</Identifier><AffiliationInfo><Affiliation>Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Drug Dev Res</MedlineTA><NlmUniqueID>8204468</NlmUniqueID><ISSNLinking>0272-4391</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 3.1.3.48</RegistryNumber><NameOfSubstance UI="D054562">Protein Tyrosine Phosphatase, Non-Receptor Type 1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.1.3.48</RegistryNumber><NameOfSubstance UI="C516607">PTPN1 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000544" MajorTopicYN="Y">Alzheimer Disease</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054562" MajorTopicYN="Y">Protein Tyrosine Phosphatase, Non-Receptor Type 1</DescriptorName><QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004791" MajorTopicYN="Y">Enzyme Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">metabolic syndrome</Keyword><Keyword MajorTopicYN="N">neurodegeneration</Keyword><Keyword MajorTopicYN="N">neuroinflammation</Keyword><Keyword MajorTopicYN="N">oxidative stress</Keyword><Keyword MajorTopicYN="N">protein tyrosine phosphatase 1b enzyme</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>7</Hour><Minute>4</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39655712</ArticleId><ArticleId IdType="doi">10.1002/ddr.70026</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>Abdel‐Magid, A. F. 2021. “The Inhibitors of Protein Tyrosine Phosphatase Nonreceptor Type 2 (PTPN2) as Potential Enhancers of Cancer Immunotherapy and Type 1 (PTPN1) as Treatment of Metabolic Diseases.” ACS Medicinal Chemistry Letters 13: 19–21. https://doi.org/10.1021/acsmedchemlett.1c00678.</Citation></Reference><Reference><Citation>Akhtar, A., M. Bishnoi, and S. P. Sah. 2020. “Sodium Orthovanadate Improves Learning and Memory in Intracerebroventricular‐Streptozotocin Rat Model of Alzheimer's Disease Through Modulation of Brain Insulin Resistance Induced Tau Pathology.” Brain Research Bulletin 164: 83–97. https://doi.org/10.1016/j.brainresbull.2020.08.001.</Citation></Reference><Reference><Citation>Andrade, L. J. O., L. M. Oliveira, A. M. V. Bittencourt, L. G. C. Lourenço, and G. C. M. Oliveira. 2024. “Brain Insulin Resistance and Alzheimer's Disease: A Systematic Review.” Dementia & Neuropsychologia 18: e20230032. https://doi.org/10.1590/1980-5764-DN-2023-0032.</Citation></Reference><Reference><Citation>Arbizu, J., C. Festari, D. Altomare, et al. 2018. “Clinical Utility of FDG‐PET for the Clinical Diagnosis in MCI.” European Journal of Nuclear Medicine and Molecular Imaging 45, no. 9: 1497–1508. https://doi.org/10.1007/s00259-018-4039-7.</Citation></Reference><Reference><Citation>Arnold, S. E., I. Lucki, B. R. Brookshire, et al. 2014. “High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice.” Neurobiology of Disease 67: 79–87. https://doi.org/10.1016/j.nbd.2014.03.011.</Citation></Reference><Reference><Citation>Ashrafi, G., Z. Wu, R. J. Farrell, and T. A. Ryan. 2017. “Glut4 Mobilization Supports Energetic Demands of Active Synapses.” Neuron 93, no. 3: 606–615.e3. https://doi.org/10.1016/j.neuron.2016.12.020.</Citation></Reference><Reference><Citation>Babapour Mofrad, R., B. M. Tijms, P. Scheltens, et al. 2020. “Sex Differences in CSF Biomarkers Vary by Alzheimer Disease Stage and APOE ε4 Genotype.” Neurology 95, no. 17: e2378–e2388. https://doi.org/10.1212/WNL.0000000000010629.</Citation></Reference><Reference><Citation>Bahar, E., H. Kim, and H. Yoon. 2016. “ER Stress‐Mediated Signaling: Action Potential and Ca2+ as Key Players.” International Journal of Molecular Sciences 17: 1558. https://doi.org/10.3390/ijms17091558.</Citation></Reference><Reference><Citation>Bakke, J., and F. G. Haj. 2015. “Protein‐Tyrosine Phosphatase 1B Substrates and Metabolic Regulation.” Seminars in Cell & Developmental Biology 37: 58–65. https://doi.org/10.1016/j.semcdb.2014.09.020.</Citation></Reference><Reference><Citation>Bakker, W., M. Imbernon, C. G. Salinas, et al. 2022. “Acute Changes in Systemic Glycemia Gate Access and Action of GLP‐1R Agonist on Brain Structures Controlling Energy Homeostasis.” Cell Reports 41, no. 8: 111698. https://doi.org/10.1016/j.celrep.2022.111698.</Citation></Reference><Reference><Citation>Balaramnavar, V. M., R. Srivastava, N. Rahuja, et al. 2014. “Identification of Novel PTP1B Inhibitors by Pharmacophore‐Based Virtual Screening, Scaffold Hopping and Docking.” European Journal of Medicinal Chemistry 87: 578–594. https://doi.org/10.1016/j.ejmech.2014.09.097.</Citation></Reference><Reference><Citation>Banks, W. A., J. B. Owen, and M. A. Erickson. 2012. “Insulin in the Brain: There and Back Again.” Pharmacology & Therapeutics 136: 82–93. https://doi.org/10.1016/j.pharmthera.2012.07.006.</Citation></Reference><Reference><Citation>Bansal, S., S. Mahendiratta, M. Agrawal, et al. 2021. “Role of Protein Tyrosine Phosphatase 1B Inhibitor in Central Insulin Resistance and Associated Cognitive Deficits.” Brain Research Bulletin 171: 113–125. https://doi.org/10.1016/j.brainresbull.2021.02.026.</Citation></Reference><Reference><Citation>Barai, P., N. Raval, S. Acharya, A. Borisa, H. Bhatt, and N. Acharya. 2019. “Neuroprotective Effects of Bergenin in Alzheimer's Disease: Investigation Through Molecular Docking, In Vitro and In Vivo Studies.” Behavioural Brain Research 356: 18–40. https://doi.org/10.1016/j.bbr.2018.08.010.</Citation></Reference><Reference><Citation>Basu, S., U. V. Prasad, D. A. Barawkar, et al. 2012. “Discovery of Novel and Potent Heterocyclic Carboxylic Acid Derivatives as Protein Tyrosine Phosphatase 1B Inhibitors.” Bioorganic & Medicinal Chemistry Letters 22, no. 8: 2843–2849. https://doi.org/10.1016/j.bmcl.2012.02.070.</Citation></Reference><Reference><Citation>Bialecki, J., A. Werner, N. L. Weilinger, et al. 2020. “Suppression of Presynaptic Glutamate Release by Postsynaptic Metabotropic NMDA Receptor Signalling to Pannexin‐1.” Journal of Neuroscience 40, no. 4: 729–742. https://doi.org/10.1523/JNEUROSCI.0257-19.2019.</Citation></Reference><Reference><Citation>Bingham, E. M., D. Hopkins, D. Smith, et al. 2002. “The Role of Insulin in Human Brain Glucose Metabolism.” Diabetes 51, no. 12: 3384–3390. https://doi.org/10.2337/diabetes.51.12.3384.</Citation></Reference><Reference><Citation>Black, E., J. Breed, A. L. Breeze, et al. 2005. “Structure‐Based Design of Protein Tyrosine Phosphatase‐1B Inhibitors.” Bioorganic & Medicinal Chemistry Letters 15: 2503–2507. https://doi.org/10.1016/j.bmcl.2005.03.068.</Citation></Reference><Reference><Citation>Blázquez, E., V. Hurtado‐Carneiro, Y. LeBaut‐Ayuso, et al. 2022. “Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases.” Frontiers in Endocrinology 13: 873301. https://doi.org/10.3389/fendo.2022.873301.</Citation></Reference><Reference><Citation>Blázquez, E., E. Velázquez, V. Hurtado‐Carneiro, and J. M. Ruiz‐Albusac. 2014. “Insulin in the Brain: Its Pathophysiological Implications for States Related With Central Insulin Resistance, Type 2 Diabetes and Alzheimer's Disease.” Frontiers in Endocrinology 5: 161. https://doi.org/10.3389/fendo.2014.00161.</Citation></Reference><Reference><Citation>Bloom, G. S. 2014. “Amyloid‐β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis.” JAMA Neurology 71, no. 4: 505–508. https://doi.org/10.1001/jamaneurol.2013.5847.</Citation></Reference><Reference><Citation>Bogeski, I., M. Bozem, L. Sternfeld, H. W. Hofer, and I. Schulz. 2006. “Inhibition of Protein Tyrosine Phosphatase 1B by Reactive Oxygen Species Leads to Maintenance of Ca2+ Influx Following Store Depletion in HEK 293 Cells.” Cell Calcium 40: 1–10. https://doi.org/10.1016/j.ceca.2006.03.003.</Citation></Reference><Reference><Citation>Bomfim, T. R., L. Forny‐Germano, L. B. Sathler, et al. 2012. “An Anti‐Diabetes Agent Protects the Mouse Brain From Defective Insulin Signaling Caused by Alzheimer's Disease‐ Associated Aβ Oligomers.” Journal of Clinical Investigation 122, no. 4: 1339–1353. https://doi.org/10.1172/JCI57256.</Citation></Reference><Reference><Citation>Bouthillier, D. 2019. “Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Multiple Ascending Doses of KQ‐791 in Diabetes Mellitus.” https://www.clinicaltrials.gov/ct2/show/NCT02445911.</Citation></Reference><Reference><Citation>Brown, M. R., S. E. Radford, and E. W. Hewitt. 2020. “Modulation of β‐Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection.” Frontiers in Molecular Neuroscience 13: 609073. https://doi.org/10.3389/fnmol.2020.609073.</Citation></Reference><Reference><Citation>Bustanji, Y., M. O. Taha, I. M. Al‐Masri, and M. K. Mohammad. 2009. “Docking Simulations and In Vitro Assay Unveil Potent Inhibitory Action of Papaverine Against Protein Tyrosine Phosphatase 1B.” Biological and Pharmaceutical Bulletin 32, no. 4: 640–645. https://doi.org/10.1248/bpb.32.640.</Citation></Reference><Reference><Citation>Bustanji, Y., M. O. Taha, A. M. Yousef, and A. G. Al‐Bakri. 2006. “Berberine Potently Inhibits Protein Tyrosine Phosphatase 1B: Investigation by Docking Simulation and Experimental Validation.” Journal of Enzyme Inhibition and Medicinal Chemistry 21, no. 2: 163–171. https://doi.org/10.1080/14756360500533026.</Citation></Reference><Reference><Citation>Butler, C. A., A. S. Popescu, E. J. A. Kitchener, D. H. Allendorf, M. Puigdellívol, and G. C. Brown. 2021. “Microglial Phagocytosis of Neurons in Neurodegeneration, and Its Regulation.” Journal of Neurochemistry 158: 621–639. https://doi.org/10.1111/jnc.15327.</Citation></Reference><Reference><Citation>Camarena, O. J., and M. G. Ortiz, 2007. “Study of Vanadium Supplement in Patients With Impaired Glucose Tolerance.” https://clinicaltrials.gov/ct2/show/record/NCT00561132.</Citation></Reference><Reference><Citation>Campos‐Almazán, M. I., A. Hernández‐Campos, R. Castillo, et al. 2022. “Computational Methods in Cooperation With Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century.” Pharmaceuticals 15, no. 7: 866. https://doi.org/10.3390/ph15070866.</Citation></Reference><Reference><Citation>Cecon, E., T. Lhomme, T. Maurice, et al. 2021. “Amyloid Beta Peptide is an Endogenous Negative Allosteric Modulator of Leptin Receptor.” Neuroendocrinology 111: 370–387. https://doi.org/10.1159/000508105.</Citation></Reference><Reference><Citation>Chandan, G., U. Ganguly, S. Pal, et al. 2023. “GLUT Inhibitor WZB117 Induces Cytotoxicity With Increased Production of Amyloid‐Beta Peptide in SH‐SY5Y Cells Preventable by Beta‐Hydroxybutyrate: Implications in Alzheimer's Disease.” Pharmacological Reports 75, no. 2: 482–489. https://doi.org/10.1007/s43440-023-00466-4.</Citation></Reference><Reference><Citation>Chang, R., K. L. Yee, and R. K. Sumbria. 2017. “Tumor Necrosis Factor α Inhibition for Alzheimer's Disease.” Journal of Central Nervous System Disease 9: 1179573517709278. https://doi.org/10.1177/1179573517709278.</Citation></Reference><Reference><Citation>Chen, Q. B., X. L. Xin, Y. Yang, S. S. Lee, and H. A. Aisa. 2014. “Highly Conjugated Norditerpenoid and Pyrroloquinoline Alkaloids With Potent PTP1B Inhibitory Activity From Nigella glandulifera.” Journal of Natural Products 77, no. 4: 807–812. https://doi.org/10.1021/np4009078.</Citation></Reference><Reference><Citation>Chen, Z. M., X. Y. Yang, Q. Y. Fan, et al. 2014. “Three Novel Degraded Steroids From Cultures of the Basidiomycete Antrodiella albocinnamomea.” Steroids 87: 21–25. https://doi.org/10.1016/j.steroids.2014.05.008.</Citation></Reference><Reference><Citation>Cheng, L., T. Hu, H. Shi, et al. 2020. “DHA Reduces Hypothalamic Inflammation and Improves Central Leptin Signaling in Mice.” Life Sciences 257: 118036. https://doi.org/10.1016/j.lfs.2020.118036.</Citation></Reference><Reference><Citation>Cheng, W., W. Chen, P. Wang, and J. Chu. 2018. “Asiatic Acid Protects Differentiated PC12 Cells From Aβ 25‐35‐Induced Apoptosis and Tau Hyperphosphorylation via Regulating PI3K/Akt/GSK‐3β Signaling.” Life Sciences 208: 96–101. https://doi.org/10.1016/j.lfs.2018.07.016.</Citation></Reference><Reference><Citation>Choi, J. S., M. N. Islam, M. Y. Ali, et al. 2014. “The Effects of C‐Glycosylation of Luteolin on Its Antioxidant, Anti‐Alzheimer's Disease, Anti‐Diabetic, and Anti‐Inflammatory Activities.” Archives of Pharmacal Research 37: 1354–1363. https://doi.org/10.1007/s12272-014-0351-3.</Citation></Reference><Reference><Citation>Choi, J. Y., M. Na, I. Hyun Hwang, et al. 2009. “Isolation of Betulinic Acid, Its Methyl Ester and Guaiane Sesquiterpenoids With Protein Tyrosine Phosphatase 1B Inhibitory Activity From the Roots of Saussurea lappa CB Clarke.” Molecules 14, no. 1: 266–272. https://doi.org/10.3390/molecules14010266.</Citation></Reference><Reference><Citation>Craft, S., 2012. “SNIFF 120: Study of Nasal Insulin to Fight Forgetfulness (120 Days) (SNIFF 120).” https://clinicaltrials.gov/ct2/show/NCT00438568.</Citation></Reference><Reference><Citation>Csajbók, É. A., and G. Tamás. 2016. “Cerebral Cortex: A Target and Source of Insulin?” Diabetologia 59, no. 8: 1609–1615. https://doi.org/10.1007/s00125-016-3996-2.</Citation></Reference><Reference><Citation>de la Monte, S. M., and J. R. Wands. 2008. “Alzheimer's Disease Is Type 3 Diabetes—Evidence Reviewed.” Journal of Diabetes Science and Technology 2, no. 6: 1101–1113.</Citation></Reference><Reference><Citation>de la Torre, A., S. Granero, E. Mayayo, J. Corbella, and J. L. Domingo. 1999. “Effect of Age on Vanadium Nephrotoxicity in Rats.” Toxicology Letters 105, no. 1: 75–82. https://doi.org/10.1016/s0378-4274(98)00385-3.</Citation></Reference><Reference><Citation>Digenio, A., N. C. Pham, L. M. Watts, et al. 2018. “Antisense Inhibition of Protein Tyrosine Phosphatase 1B With IONIS‐PTP‐1BRx Improves Insulin Sensitivity and Reduces Weight in Overweight Patients With Type 2 Diabetes.” Diabetes Care 41, no. 4: 807–814. https://doi.org/10.2337/dc17-2132.</Citation></Reference><Reference><Citation>Dodington, D. W., H. R. Desai, and M. Woo. 2018. “Jak/stat – Emerging Players in Metabolism.” Trends in Endocrinology & Metabolism 29: 55–65. https://doi.org/10.1016/j.tem.2017.11.001.</Citation></Reference><Reference><Citation>Doody, K. M., A. Bourdeau, and M. L. Tremblay. 2009. “T‐Cell Protein Tyrosine Phosphatase Is a Key Regulator in Immune Cell Signaling: Lessons From the Knockout Mouse Model and Implications in Human Disease.” Immunological Reviews 228, no. 1: 325–341. https://doi.org/10.1111/j.1600-065X.2008.00743.x.</Citation></Reference><Reference><Citation>D'Oria, R., L. Laviola, F. Giorgino, V. Unfer, S. Bettocchi, and M. Scioscia. 2017. “PKB/AKT and MAPK/ERK Phosphorylation Is Highly Induced by Inositols: Novel Potential Insights in Endothelial Dysfunction in Preeclampsia.” Pregnancy Hypertension 10: 107–112. https://doi.org/10.1016/j.preghy.2017.07.001.</Citation></Reference><Reference><Citation>Du, Y., Y. Zhang, H. Ling, Q. Li, and J. Shen. 2018. “Discovery of Novel High Potent and Cellular Active ADC Type PTP1B Inhibitors With Selectivity Over TC‐PTP via Modification Interacting With C Site.” European Journal of Medicinal Chemistry 144: 692–700. https://doi.org/10.1016/j.ejmech.2017.12.064.</Citation></Reference><Reference><Citation>Dubravka, C. D., S. G. Milica, and D. Slobodan. 2001. “Neuropathological Hallmarks of Alzheimer's Disease.” Archive of Oncology 9, no. 3: 195–199.</Citation></Reference><Reference><Citation>Edison, P., 2019. “Evaluating Liraglutide in Alzheimer's Disease (ELAD).” https://clinicaltrials.gov/ct2/show/NCT01843075.</Citation></Reference><Reference><Citation>Erbe, D. V., S. Wang, Y. L. Zhang, et al. 2004. “Ertiprotafib Improves Glycemic Control and Lowers Lipids via Multiple Mechanisms.” Molecular Pharmacology 67: 69–77. https://doi.org/10.1124/mol.104.005553.</Citation></Reference><Reference><Citation>Euser, S. M., N. Sattar, and J. C. M. Witteman, et al. 2010. “A Prospective Analysis of Elevated Fasting Glucose Levels and Cognitive Function in Older People.” Diabetes 59, no. 7: 1601–1607. https://doi.org/10.2337/db09-0568.</Citation></Reference><Reference><Citation>Fang, L., J. Cao, L. Duan, Y. Tang, and Y. Zhao. 2014. “Protein Tyrosine Phosphatase 1B (PTP1B) and α‐Glucosidase Inhibitory Activities of Schisandra chinensis (Turcz.) Baill.” Journal of Functional Foods 9: 264–270. https://doi.org/10.1016/j.jff.2014.04.017.</Citation></Reference><Reference><Citation>Farris, W., S. Mansourian, Y. Chang, et al. 2003. “Insulin‐Degrading Enzyme Regulates the Levels of Insulin, Amyloid β‐Protein, and the β‐Amyloid Precursor Protein Intracellular Domainin Vivo.” Proceedings of the National Academy of Sciences 100: 4162–4167. https://doi.org/10.1073/pnas.0230450100.</Citation></Reference><Reference><Citation>Feldhammer, M., N. Uetani, D. Miranda‐Saavedra, and M. L. Tremblay. 2013. “PTP1B: A Simple Enzyme for a Complex World.” Critical Reviews in Biochemistry and Molecular Biology 48: 430–445. https://doi.org/10.3109/10409238.2013.819830.</Citation></Reference><Reference><Citation>Feng, C. W., N. F. Chen, T. F. Chan, and W. F. Chen. 2020. “Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Anti‐Neuroinflammation and Neuroprotection In Vitro and In Vivo.” Parkinson's Disease 2020, no. 15: 8814236. https://doi.org/10.1155/2020/8814236.</Citation></Reference><Reference><Citation>Ferrari, E., M. Tinti, S. Costa, et al. 2011. “Identification of New Substrates of the Protein‐Tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence.” Journal of Biological Chemistry 286, no. 6: 4173–4185. https://doi.org/10.1074/jbc.M110.157420.</Citation></Reference><Reference><Citation>Flores‐Cordero, J. A., A. Pérez‐Pérez, C. Jiménez‐Cortegana, G. Alba, A. Flores‐Barragán, and V. Sánchez‐Margalet. 2022. “Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin.” International Journal of Molecular Sciences 23: 5202. https://doi.org/10.3390/ijms23095202.</Citation></Reference><Reference><Citation>Frisardi, V., V. Solfrizzi, D. Seripa, et al. 2010. “Metabolic‐Cognitive Syndrome: A Cross‐Talk Between Metabolic Syndrome and Alzheimer's Disease.” Ageing Research Reviews 9, no. 4: 399–417. https://doi.org/10.1016/j.arr.2010.04.007.</Citation></Reference><Reference><Citation>Fukuda, S., T. Ohta, S. Sakata, et al. 2010. “Pharmacological Profiles of a Novel Protein Tyrosine Phosphatase 1B Inhibitor, Jtt‐551.” Diabetes, Obesity and Metabolism 12: 299–306. https://doi.org/10.1111/j.1463-1326.2009.01162.x.</Citation></Reference><Reference><Citation>Ganou, C. A., P. T. Eleftheriou, P. Theodosis‐Nobelos, et al. 2018. “Docking Analysis Targeted to the Whole Enzyme: An Application to the Prediction of Inhibition of PTP1B by Thiomorpholine and Thiazolyl Derivatives.” SAR and QSAR in Environmental Research 29: 133–149. https://doi.org/10.1080/1062936X.2017.1414874.</Citation></Reference><Reference><Citation>García‐Marín, J., M. Griera, R. Alajarín, M. Rodríguez‐Puyol, D. Rodríguez‐Puyol, and J. J. Vaquero. 2021. “A Computer‐Driven Scaffold Hopping Approach Generating New PTP1B Inhibitors From the Pyrrolo [1, 2‐a] Quinoxaline Core.” ChemMedChem 16: 2895–2906. https://doi.org/10.1002/cmdc.202100338.</Citation></Reference><Reference><Citation>Garraway, S. M., and J. R. Huie. 2016. “Spinal Plasticity and Behavior: BDNF‐Induced Neuromodulation in Uninjured and Injured Spinal Cord.” Neural Plasticity 2016, no. 19: 9857201. https://doi.org/10.1155/2016/9857201.</Citation></Reference><Reference><Citation>Geijselaers, S. L. C., P. Aalten, I. H. G. B. Ramakers, et al. 2017. “Association of Cerebrospinal Fluid (CSF) Insulin With Cognitive Performance and CSF Biomarkers of Alzheimer's Disease.” Journal of Alzheimer's Disease 61: 309–320. https://doi.org/10.3233/JAD-170522.</Citation></Reference><Reference><Citation>Ghalayini, J. 2020. “Exploring the Therapeutic Potential of Protein Tyrosine Phosphatase 1B in hAPP‐J20 Mouse Model of Alzheimer's Disease.” Journal of Neuroscience 40, no. 32: 6100–6102. https://doi.org/10.1523/JNEUROSCI.0852-20.2020.</Citation></Reference><Reference><Citation>Gimeno, A., M. J. Ojeda‐Montes, S. Tomás‐Hernández, et al. 2019. “The Light and Dark Sides of Virtual Screening: What Is There to Know?” International Journal of Molecular Sciences 20: 1375. https://doi.org/10.3390/ijms20061375.</Citation></Reference><Reference><Citation>Gold, M., R. A. Hauser, and M. F. Chen. 1998. “Plasma Thiamine Deficiency Associated With Alzheimer's Disease but not Parkinson's Disease.” Metabolic Brain Disease 13, no. 1: 43–53. https://doi.org/10.1023/a:1020678912330.</Citation></Reference><Reference><Citation>Gomes, S., I. Martins, A. C. R. G. Fonseca, C. R. Oliveira, R. Resende, and C. M. F. Pereira. 2014. “Protective Effect of Leptin and Ghrelin Against Toxicity Induced by Amyloid‐β Oligomers in a Hypothalamic Cell Line.” Journal of Neuroendocrinology 26, no. 3: 176–185. https://doi.org/10.1111/jne.12138.</Citation></Reference><Reference><Citation>Grimm, A. 2021. “Impairments in Brain Bioenergetics in Aging and Tau Pathology: A Chicken and Egg Situation?” Cells 10: 2531. https://doi.org/10.3390/cells10102531.</Citation></Reference><Reference><Citation>Hakim, F., Y. Wang, A. Carreras, et al. 2015. “Chronic Sleep Fragmentation During the Sleep Period Induces Hypothalamic Endoplasmic Reticulum Stress and PTP1b‐Mediated Leptin Resistance in Male Mice.” Sleep 38, no. 1: 31–40. https://doi.org/10.5665/sleep.4320.</Citation></Reference><Reference><Citation>He, Z., S. Han, H. Zhu, et al. 2020. “The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice.” Frontiers in Molecular Neuroscience 13: 21. https://doi.org/10.3389/fnmol.2020.00021.</Citation></Reference><Reference><Citation>Heni, M., P. Schöpfer, A. Peter, et al. 2014. “Evidence for Altered Transport of Insulin Across the Blood‐Brain Barrier in Insulinresistant Humans.” Acta Diabetologica 51, no. 4: 679–681. https://doi.org/10.1007/s00592-013-0546-y.</Citation></Reference><Reference><Citation>Ho, L., W. Qin, P. N. Pompl, et al. 2004. “Diet‐Induced Insulin Resistance Promotes Amyloidosis in a Transgenic Mouse Model of Alzheimer's Disease.” FASEB Journal 18, no. 7: 902–904. https://doi.org/10.1096/fj.03-0978fje.</Citation></Reference><Reference><Citation>Hosoi, T., and K. Ozawa. 2016. “Possible Pharmacological Approach Targeting Endoplasmic Reticulum Stress to Ameliorate Leptin Resistance in Obesity.” Frontiers in Endocrinology 7: 59. https://doi.org/10.3389/fendo.2016.00059.</Citation></Reference><Reference><Citation>Hsu, S., A. Schmid, L. Sternfeld, et al. 2003. “Tyrosine Phosphatase PTP1B Modulates Store‐Operated Calcium Influx.” Cellular Signalling 15: 1149–1156. https://doi.org/10.1016/S0898-6568(03)00088-3.</Citation></Reference><Reference><Citation>Huijsduijnen, R. H., S. Wälchli, M. Ibberson, and A. Harrenga. 2002. “Protein Tyrosine Phosphatases as Drug Targets: PTP1B and Beyond.” Expert Opinion on Therapeutic Targets 6, no. 6: 637–647. https://doi.org/10.1517/14728222.6.6.637.</Citation></Reference><Reference><Citation>Ionis Pharmaceuticals, Inc. 2006. “Effects of ISIS 113715 on Insulin Sensitivity, Glucose, and Lipid Metabolism and Energy Expenditure in Type 2 Diabetics.” https://clinicaltrials.gov/ct2/show/NCT00330200.</Citation></Reference><Reference><Citation>Ito, M., S. Fukuda, S. Sakata, H. Morinaga, and T. Ohta. 2014. “Pharmacological Effects of JTT‐551, a Novel Protein Tyrosine Phosphatase 1B Inhibitor, in Diet‐Induced Obesity Mice.” Journal of Diabetes Research 2014: 680348. https://doi.org/10.1155/2014/680348.</Citation></Reference><Reference><Citation>Ito, Y., R. Sun, H. Yagimuma, et al. 2022. “Protein Tyrosine Phosphatase 1B Deficiency Improves Glucose Homeostasis in Type 1 Diabetes Treated With Leptin.” Diabetes 71, no. 9: 1902–1914. https://doi.org/10.2337/db21-0953.</Citation></Reference><Reference><Citation>Jain, S., R. Singh, S. Paliwal, and S. Sharma. 2023. “Targeting Neuroinflammation as Disease Modifying Approach to Alzheimer's Disease: Potential and Challenges.” Mini‐Reviews in Medicinal Chemistry 23: 2097–2116. https://doi.org/10.2174/1389557523666230511122435.</Citation></Reference><Reference><Citation>Jeon, Y. M., S. Lee, S. Kim, et al. 2017. “Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition Against ER Stress‐Induced Toxicity.” Molecules and Cells 40, no. 4: 280–290. https://doi.org/10.14348/molcells.2017.2320.</Citation></Reference><Reference><Citation>Jiao, S. S., L. L. Shen, C. Zhu, et al. 2016. “Brain‐Derived Neurotrophic Factor Protects Against Tau‐Related Neurodegeneration of Alzheimer's Disease.” Translational Psychiatry 6: e907. https://doi.org/10.1038/tp.2016.186.</Citation></Reference><Reference><Citation>Joo, I. L., W. W. Lam, W. Oakden, et al. 2022. “Early Alterations in Brain Glucose Metabolism and Vascular Function in a Transgenic Rat Model of Alzheimer's Disease.” Progress in Neurobiology 217: 102327. https://doi.org/10.1016/j.pneurobio.2022.102327.</Citation></Reference><Reference><Citation>Kandimalla, R., V. Thirumala, and P. H. Reddy. 2017. “Is Alzheimer's Disease a Type 3 Diabetes? A Critical Appraisal.” Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease 1863, no. 5: 1078–1089. https://doi.org/10.1016/j.bbadis.2016.08.018.</Citation></Reference><Reference><Citation>Kanno, T., A. Tsuchiya, A. Tanaka, and T. Nishizaki. 2015. “Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ‐Induced GSK‐3β Activation and Tau Phosphorylation.” Molecular Neurobiology 53: 4787–4797. https://doi.org/10.1007/s12035-015-9405-x.</Citation></Reference><Reference><Citation>Kapogiannis, D. I., 2018. “A Pilot Clinical Trial of Exendin‐4 in Alzheimer's disease.” https://clinicaltrials.gov/ct2/show/NCT01255163.</Citation></Reference><Reference><Citation>Kellar, D., and S. Craft. 2020. “Brain Insulin Resistance in Alzheimer's Disease and Related Disorders: Mechanisms and Therapeutic Approaches.” Lancet Neurology 19: 758–766. https://doi.org/10.1016/S1474-4422(20)30231-3.</Citation></Reference><Reference><Citation>Kern, W., C. Benedict, B. Schultes, et al. 2006. “Low Cerebrospinal Fluid Insulin Levels in Obese Humans.” Diabetologia 49, no. 11: 2790–2792. https://doi.org/10.1007/s00125-006-0409-y.</Citation></Reference><Reference><Citation>Kim, Y. J., S. M. Kim, D. H. Jeong, S. K. Lee, M. E. Ahn, and O. H. Ryu. 2021. “Associations Between Metabolic Syndrome and Type of Dementia: Analysis Based on the National Health Insurance Service Database of Gangwon Province in South Korea.” Diabetology & Metabolic Syndrome 13: 4. https://doi.org/10.1186/s13098-020-00620-5.</Citation></Reference><Reference><Citation>Kim, Y. M., C. A. Bombeck, and T. R. Billiar. 1999. “Nitric Oxide as a Bifunctional Regulator of Apoptosis.” Circulation Research 84: 253–256. https://doi.org/10.1161/01.</Citation></Reference><Reference><Citation>King, A., A. Brain, K. Hanson, J. Dittmann, J. Vickers, and C. Fernandez‐Martos. 2018. “Disruption of Leptin Signalling in a Mouse Model of Alzheimer's Disease.” Metabolic Brain Disease 33, no. 4: 1097–1110. https://doi.org/10.1007/s11011-018-0203-9.</Citation></Reference><Reference><Citation>Kipnes, M., and G. R. Weiner, 2008a. “A Single Dose, Tolerance and Pharmacokinetic Study in Obese or Overweight Type 2 Diabetic Volunteers.” https://clinicaltrials.gov/ct2/show/NCT00606112.</Citation></Reference><Reference><Citation>Kipnes, M., and G. R. Weiner, 2008b. “An Ascending Multi‐Dose, Tolerance and Pharmacokinetic Study in Obese or Overweight Type 2 Diabetic Volunteers.” https://clinicaltrials.gov/ct2/show/NCT00806338.</Citation></Reference><Reference><Citation>Knopman, D. S., H. Amieva, R. C. Petersen, et al. 2021. “Alzheimer Disease.” Nature Reviews Disease Primers 7, no. 1: 33. https://doi.org/10.1038/s41572-021-00269-y.</Citation></Reference><Reference><Citation>Koepsell, H. 2020. “Glucose Transporters in Brain in Health and Disease.” Pflügers Archiv ‐ European Journal of Physiology 472: 1299–1343. https://doi.org/10.1007/s00424-020-02441.</Citation></Reference><Reference><Citation>Koriyama, Y., A. Furukawa, M. Muramatsu, J. Takino, and M. Takeuchi. 2015. “Glyceraldehyde Caused Alzheimer's Disease‐Like Alterations in Diagnostic Marker Levels in SH‐SY5Y Human Neuroblastoma Cells.” Scientific Reports 5: 13313. https://doi.org/10.1038/srep13313.</Citation></Reference><Reference><Citation>Koss, D. J., G. Riedel, K. Bence, and B. Platt. 2013. “Store‐Operated Ca2+ Entry in Hippocampal Neurons: Regulation by Protein Tyrosine Phosphatase PTP1B.” Cell Calcium 53, no. 2: 125–138. https://doi.org/10.1016/j.ceca.2012.11.004.</Citation></Reference><Reference><Citation>Koss, D. J., G. Riedel, and B. Platt. 2009. “Intracellular Ca2+ Stores Modulate SOCCs and NMDA Receptors via Tyrosine Kinases in Rat Hippocampal Neurons.” Cell Calcium 46, no. 1: 39–48. https://doi.org/10.1016/j.ceca.2009.04.001.</Citation></Reference><Reference><Citation>Kuchibhotla, K. V., S. T. Goldman, C. R. Lattarulo, H. Y. Wu, B. T. Hyman, and B. J. Bacskai. 2008. “Aβ Plaques Lead to Aberrant Regulation of Calcium Homeostasis In Vivo Resulting in Structural and Functional Disruption of Neuronal Networks.” Neuron 59, no. 2: 214–225. https://doi.org/10.1016/j.neuron.2008.06.008.</Citation></Reference><Reference><Citation>Kuchibhotla, K. V., C. R. Lattarulo, B. T. Hyman, and B. J. Bacskai. 2009. “Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice.” Science 323, no. 5918: 1211–1215. https://doi.org/10.1126/science.1169096.</Citation></Reference><Reference><Citation>Kuga, G. K., V. R. Muñoz, R. C. Gaspar, et al. 2018. “Impaired Insulin Signaling and Spatial Learning in Middle‐Aged Rats: The Role of PTP1B.” Experimental Gerontology 104: 66–71. https://doi.org/10.1016/j.exger.2018.02.005.</Citation></Reference><Reference><Citation>Kulas, J. A., W. F. Franklin, N. A. Smith, et al. 2019. “Ablation of Amyloid Precursor Protein Increases Insulin‐Degrading Enzyme Levels and Activity in Brain and Peripheral Tissues.” American Journal of Physiology‐Endocrinology and Metabolism 316, no. 1: E106–E120. https://doi.org/10.1152/ajpendo.00279.2018.</Citation></Reference><Reference><Citation>Kumar, A., D. Rana, R. Rana, and R. Bhatia. 2020. “Protein Tyrosine Phosphatase (PTP1B): A Promising Drug Target Against Life‐Threatening Ailments.” Current Molecular Pharmacology 13: 17–30.</Citation></Reference><Reference><Citation>Kumar, G. S., R. Page, and W. Peti. 2020. “The Mode of Action of the Protein Tyrosine Phosphatase 1B Inhibitor Ertiprotafib.” PLoS ONE 15, no. 10: e0240044. https://doi.org/10.1371/journal.pone.0240044.</Citation></Reference><Reference><Citation>Kumar, M., and N. Bansal. 2022. “Implications of Phosphoinositide 3‑Kinase‑Akt (PI3K‑Akt) Pathway in the Pathogenesis of Alzheimer's Disease.” Molecular Neurobiology 59: 354–385. https://doi.org/10.1007/s12035-021-02611-7.</Citation></Reference><Reference><Citation>Kumar, V., S.‐H. Kim, and K. Bishayee. 2022. “Dysfunctional Glucose Metabolism in Alzheimer's Disease Onset and Potential Pharmacological Interventions.” International Journal of Molecular Sciences 23, no. 17: 9540. https://doi.org/10.3390/ijms23179540.</Citation></Reference><Reference><Citation>Kyrtata, N., H. C. A. Emsley, O. Sparasci, L. M. Parkes, and B. R. Dickie. 2021. “A Systematic Review of Glucose Transport Alterations in Alzheimer's Disease.” Frontiers in Neuroscience 15: 626636. https://doi.org/10.3389/fnins.2021.626636.</Citation></Reference><Reference><Citation>Lacampagne, A., X. Liu, S. Reiken, et al. 2017. “Post‐Translational Remodeling of Ryanodine Receptor Induces Calcium Leak Leading to Alzheimer's Disease‐Like Pathologies and Cognitive Deficits.” Acta Neuropathologica 134, no. 5: 749–767. https://doi.org/10.1007/s00401-017-1733-7.</Citation></Reference><Reference><Citation>Lantz, K. A., S. G. E. Hart, S. L. Planey, et al. 2010. “Inhibition of PTP1B by Trodusquemine (MSI‐1436) Causes Fat‐Specific Weight Loss in Diet‐Induced Obese Mice.” Obesity 18: 1516–1523. https://doi.org/10.1038/oby.2009.444.</Citation></Reference><Reference><Citation>Lau, C. K., C. I. Bayly, J. Y. Gauthier, et al. 2004. “Structure Based Design of a Series of Potent and Selective Non Peptidic PTP‐1B Inhibitors.” Bioorganic & Medicinal Chemistry Letters 14: 1043–1048. https://doi.org/10.1016/j.bmcl.2003.11.076.</Citation></Reference><Reference><Citation>Lee, S., S. Kim, H. Y. Kang, et al. 2020. “The Overexpression of TDP‐43 in Astrocytes Causes Neurodegeneration via a PTP1B‐Mediated Inflammatory Response.” Journal of Neuroinflammation 17, no. 1: 299. https://doi.org/10.1186/s12974-020-01963-6.</Citation></Reference><Reference><Citation>Leese, P. A., 2007. “Tolerance and Pharmacokinetic Study of Trodusquemine in Healthy Volunteers.” https://clinicaltrials.gov/ct2/show/NCT00509132.</Citation></Reference><Reference><Citation>Leng, F., and P. Edison. 2021. “Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go From Here?” Nature Reviews Neurology 17: 157–172. https://doi.org/10.1038/s41582-020-00435-y.</Citation></Reference><Reference><Citation>Li, X., L. Wang, and D. Shi. 2016. “The Design Strategy of Selective PTP1B Inhibitors Over TCPTP.” Bioorganic & Medicinal Chemistry 24, no. 16: 3343–3352. https://doi.org/10.1016/j.bmc.2016.06.035.</Citation></Reference><Reference><Citation>Li, Y., Y. Yu, K. Jin, et al. 2014. “Synthesis and Biological Evaluation of Novel Thiadiazole Amides as Potent Cdc25B and PTP1B Inhibitors.” Bioorganic & Medicinal Chemistry Letters 24, no. 17: 4125–4128. https://doi.org/10.1016/j.bmcl.2014.07.055.</Citation></Reference><Reference><Citation>Limbocker, R., S. Chia, F. S. Ruggeri, et al. 2019. “Trodusquemine Enhances Aβ42 Aggregation but Suppresses Its Toxicity by Displacing Oligomers From Cell Membranes.” Nature Communications 10: 225. https://doi.org/10.1038/s41467-018-07699-5.</Citation></Reference><Reference><Citation>Lindeman, R. D., L. J. Romero, and A. LaRue, et al. 2001. “A Biethnic Community Survey of Cognition in Participants With Type 2 Diabetes, Impaired Glucose Tolerance, and Normal Glucose Tolerance.” Diabetes Care 24, no. 9: 1567–1572. https://doi.org/10.2337/diacare.24.9.1567.</Citation></Reference><Reference><Citation>Liu, G., B. G. Szczepankiewicz, Z. Pei, et al. 2003. “Discovery and Structure‐Activity Relationship of Oxalylarylaminobenzoic Acids as Inhibitors of Protein Tyrosine Phosphatase 1B.” Journal of Medicinal Chemistry 46: 2093–2103. https://doi.org/10.1021/jm0205696.</Citation></Reference><Reference><Citation>Liu, J., L. Chang, Y. Song, H. Li, and Y. Wu. 2019. “The Role of NMDA Receptors in Alzheimer's Disease.” Frontiers in Neuroscience 13: 43. https://doi.org/10.3389/fnins.2019.00043.</Citation></Reference><Reference><Citation>Liu, R., C. Mathieu, J. Berthelet, W. Zhang, J. M. Dupret, and F. Rodrigues Lima. 2022. “Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives.” International Journal of Molecular Sciences 23: 7027. https://doi.org/10.3390/ijms23137027.</Citation></Reference><Reference><Citation>Liu, T., L. Zhang, D. Joo, and S. C. Sun. 2017. “NF‐κB Signaling in Inflammation.” Signal Transduction and Targeted Therapy 2: 17023. https://doi.org/10.1038/sigtrans.2017.23.</Citation></Reference><Reference><Citation>Luo, J., M. Zheng, B. Jiang, et al. 2020. “Antidiabetic Activity In Vitro and In Vivo of BDB, a Selective Inhibitor of Protein Tyrosine Phosphatase 1B, From Rhodomela confervoides.” British Journal of Pharmacology 177: 4464–4480. https://doi.org/10.1111/bph.15195.</Citation></Reference><Reference><Citation>Maheshwari, N., C. Karthikeyan, S. V. Bhadada, et al. 2019. “Design, Synthesis and Biological Evaluation of Some Tetrazole Acetamide Derivatives as Novel Non‐Carboxylic PTP1B Inhibitors.” Bioorganic Chemistry 92: 103221. https://doi.org/10.1016/j.bioorg.2019.103221.</Citation></Reference><Reference><Citation>Maioli, S., M. Lodeiro, P. Merino‐Serrais, et al. 2015. “Alterations in Brain Leptin Signalling in Spite of Unchanged CSF Leptin Levels in Alzheimer's Disease.” Aging cell 14, no. 1: 122–129. https://doi.org/10.1111/acel.12281.</Citation></Reference><Reference><Citation>Mammucari, C., A. Raffaello, D. Vecellio Reane, G. Gherardi, A. De Mario, and R. Rizzuto. 2018. “Mitochondrial Calcium Uptake in Organ Physiology: From Molecular Mechanism to Animal Models.” Pflügers Archiv ‐ European Journal of Physiology 470: 1165–1179. https://doi.org/10.1007/s00424-018-2123-2.</Citation></Reference><Reference><Citation>Marambaud, P., U. Dreses‐Werringloer, and V. Vingtdeux. 2009. “Calcium Signaling in Neurodegeneration.” Molecular Neurodegeneration 4: 20. https://doi.org/10.1186/1750-1326-4-20.</Citation></Reference><Reference><Citation>Marchi, S., M. Marinello, A. Bononi, et al. 2012. “Selective Modulation of Subtype III IP₃R by Akt Regulates ER Ca²⁺ Release and Apoptosis.” Cell Death & Disease 3, no. 5: e304. https://doi.org/10.1038/cddis.2012.45.</Citation></Reference><Reference><Citation>Margolis, R. U., and N. Altszuler. 1967. “Insulin in the Cerebrospinal Fluid.” Nature 215, no. 5108: 1375–1376. https://doi.org/10.1038/2151375a0.</Citation></Reference><Reference><Citation>Marks, J. L., D. Porte, Jr., W. L. Stahl, and D. G. Baskin. 1990. “Localization of Insulin Receptor mRNA in Rat Brain by In Situ Hybridization.” Endocrinology 127, no. 6: 3234–3236. https://doi.org/10.1210/endo-127-6-3234.</Citation></Reference><Reference><Citation>Marosi, K., and M. P. Mattson. 2014. “BDNF Mediates Adaptive Brain and Body Responses to Energetic Challenges.” Trends in Endocrinology & Metabolism 25, no. 2: 89–98. https://doi.org/10.1016/j.tem.2013.10.006.</Citation></Reference><Reference><Citation>Matioli, M. N. P. D. S., C. K. Suemoto, R. D. Rodriguez, et al. 2017. “Diabetes is not Associated With Alzheimer's Disease Neuropathology.” Journal of Alzheimer's Disease 60, no. 3: 1035–1043. https://doi.org/10.3233/JAD-170179.</Citation></Reference><Reference><Citation>Matsuda, S., Y. Nakagawa, A. Tsuji, Y. Kitagishi, A. Nakanishi, and T. Murai. 2018. “Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease.” Diseases 6: 28. https://doi.org/10.3390/diseases6020028.</Citation></Reference><Reference><Citation>Mazucanti, C. H., Q. R. Liu, D. Lang, et al. 2019. “Release of Insulin Produced by the Choroid Plexis is Regulated by Serotonergic Signaling.” JCI Insight 4, no. 23: e131682. https://doi.org/10.1172/jci.insight.131682.</Citation></Reference><Reference><Citation>Mekahli, D., G. Bultynck, J. B. Parys, H. De Smedt, and L. Missiaen. 2011. “Endoplasmic‐Reticulum Calcium Depletion and Disease.” Cold Spring Harbor Perspectives in Biology 3: a004317. https://doi.org/10.1101/cshperspect.a004317.</Citation></Reference><Reference><Citation>Michailidis, M., D. Moraitou, D. A. Tata, K. Kalinderi, T. Papamitsou, and V. Papaliagkas. 2022. “Alzheimer's Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms Between Alzheimer's Disease and Type 2 Diabetes.” International Journal of Molecular Sciences 23: 2687. https://doi.org/10.3390/ijms23052687.</Citation></Reference><Reference><Citation>Miklossy, J., H. Qing, A. Radenovic, et al. 2010. “Beta‐Amyloid and Hyperphosphorylated Tau Deposits in the Pancreas in Type 2 Diabetes.” Neurobiology of Aging 31, no. 9: 1503–1515. https://doi.org/10.1016/j.neurobiolaging.2008.08.019.</Citation></Reference><Reference><Citation>Milstein, J. L., and H. A. Ferris. 2021. “The Brain as an Insulin‐Sensitive Metabolic Organ.” Molecular Metabolism 52: 101234. https://doi.org/10.1016/j.molmet.2021.101234.</Citation></Reference><Reference><Citation>Mitra, S., A. Banik, S. Saurabh, M. Maulik, and S. N. Khatri. 2022. “Neuroimmunometabolism: A New Pathological Nexus Underlying Neurodegenerative Disorders.” Journal of Neuroscience 42, no. 10: 1888–1907. https://doi.org/10.1523/JNEUROSCI.0998-21.2022.</Citation></Reference><Reference><Citation>Molina, J. A., F. J. Jiménez‐Jiménez, C. Vargas, et al. 2002. “Cerebrospinal Fluid Levels of Insulin in Patients With Alzheimer's Disease: Insulin and Alzheimer's Disease.” Acta Neurologica Scandinavica 106: 347–350. https://doi.org/10.1034/j.1600-0404.2002.01326.x.</Citation></Reference><Reference><Citation>Moloney, A. M., R. J. Griffin, S. Timmons, R. O'Connor, R. Ravid, and C. O'Neill. 2010. “Defects in IGF‐1 Receptor, Insulin Receptor and IRS‐1/2 in Alzheimer's Disease Indicate Possible Resistance to IGF‐1 and Insulin Signalling.” Neurobiology of Aging 31, no. 2: 224–243. https://doi.org/10.1016/j.neurobiolaging.2008.04.002.</Citation></Reference><Reference><Citation>Monte, S. M., M. Tong, and J. R. Wands. 2018. “The 20‐Year Voyage Aboard the Journal of Alzheimer's Disease: Docking at ‘Type 3 Diabetes', Environmental/Exposure Factors, Pathogenic Mechanisms, and Potential Treatments.” Journal of Alzheimer's Disease 62, no. 3: 1381–1390. https://doi.org/10.3233/JAD-170829.</Citation></Reference><Reference><Citation>Mosconi, L., A. Pupi, and M. J. De Leon. 2008. “Brain Glucose Hypometabolism and Oxidative Stress in Preclinical Alzheimer's Disease.” Annals of the New York Academy of Sciences 1147: 180–195. https://doi.org/10.1196/annals.1427.007.</Citation></Reference><Reference><Citation>Murray, J., W. H. Tsui, Y. Li, et al. 2014. “FDG and Amyloid PET in Cognitively Normal Individuals at Risk for Late‐Onset Alzheimer's Disease.” Advances in Molecular Imaging 04, no. 2: 15–26. https://doi.org/10.4236/ami.2014.42003.</Citation></Reference><Reference><Citation>Nair, K. S., 2023. “Metformin Effect on Brain Function in Insulin Resistant Elderly People.” https://clinicaltrials.gov/ct2/show/NCT03733132.</Citation></Reference><Reference><Citation>Nedelska, Z., C. G. Schwarz, B. F. Boeve, et al. 2015. “White Matter Integrity in Dementia With Lewy Bodies: A Voxel‐Based Analysis of Diffusion Tensor Imaging.” Neurobiology of Aging 36, no. 6: 2010–2017. https://doi.org/10.1016/j.neurobiolaging.2015.03.007.</Citation></Reference><Reference><Citation>Niu, T., P. Wang, C. Li, et al. 2021. “5‐Aryl‐furan Derivatives Bearing a Phenylalanine‐or Isoleucine‐Derived Rhodanine Moiety as Potential PTP1B Inhibitors.” Bioorganic Chemistry 106: 104483. https://doi.org/10.1016/j.bioorg.2020.104483.</Citation></Reference><Reference><Citation>Novo Nordisk A/S. 2023. “A Research Study Investigating Semaglutide in People With Early Alzheimer's Disease (EVOKE).” https://clinicaltrials.gov/ct2/show/record/NCT04777396.</Citation></Reference><Reference><Citation>Olloquequi, J., A. Cano, E. Sanchez‐López, et al. 2022. “Protein Tyrosine Phosphatase 1B (PTP1B) as a Potential Therapeutic Target for Neurological Disorders.” Biomedicine & Pharmacotherapy 155: 113709. https://doi.org/10.1016/j.biopha.2022.113709.</Citation></Reference><Reference><Citation>Ozek, C., S. E. Kanoski, Z. Y. Zhang, H. J. Grill, and K. K. Bence. 2014. “Protein‐Tyrosine Phosphatase 1B (PTP1B) Is a Novel Regulator of Central Brain‐Derived Neurotrophic Factor and Tropomyosin Receptor Kinase B (TrkB) Signaling.” Journal of Biological Chemistry 289, no. 46: 31682–31692. https://doi.org/10.1074/jbc.M114.603621.</Citation></Reference><Reference><Citation>Paranjpe, M. D., X. Chen, and M. Liu, et al. 2019. “The Effect of ApoE ε4 on Longitudinal Brain Region‐Specific Glucose Metabolism in Patients With Mild Cognitive Impairment: A FDG‐PET Study.” NeuroImage: Clinical 22: 101795. https://doi.org/10.1016/j.nicl.2019.101795.</Citation></Reference><Reference><Citation>Patel, A. D., T. Y. Pasha, P. Lunagariya, U. Shah, T. Bhambharoliya, and R. K. P. Tripathi. 2020. “A Library of Thiazolidin‐4‐one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt to Discover Novel Antidiabetic Agents.” ChemMedChem 15, no. 13: 1229–1242. https://doi.org/10.1002/cmdc.202000055.</Citation></Reference><Reference><Citation>Patro, S., S. Ratna, H. A. Yamamoto, et al. 2021. “ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer's Disease.” International Journal of Molecular Sciences 22: 11185. https://doi.org/10.3390/ijms222011185.</Citation></Reference><Reference><Citation>Paul, R. F., M. Hassan, H. S. Nazar, S. Gillani, N. Afzal, and I. Qayyum. 2011. “Effect of Body Mass Index on Serum Leptin Levels.” Journal of Ayub Medical College, Abbottabad: JAMC 23, no. 3: 40–43.</Citation></Reference><Reference><Citation>Pomytkin, I., J. P. Costa‐Nunes, V. Kasatkin, et al. 2018. “Insulin Receptor in the Brain: Mechanisms of Activation and the Role in the CNS Pathology and Treatment.” CNS Neuroscience & Therapeutics 24, no. 9: 763–774. https://doi.org/10.1111/cns.12866.</Citation></Reference><Reference><Citation>Pratap, A. A., and R. M. D. Holsinger. 2020. “Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease.” Pharmaceuticals 13, no. 11: 401. https://doi.org/10.3390/ph13110401.</Citation></Reference><Reference><Citation>Qin, Z., L. Zhang, S. A. Cruz, A. F. R. Stewart, and H. H. Chen. 2020. “Activation of Tyrosine Phosphatase PTP1B in Pyramidal Neurons Impairs Endocannabinoid Signaling by Tyrosine Receptor Kinase TrkB and Causes Schizophrenia‐Like Behaviors in Mice.” Neuropsychopharmacology 45, no. 11: 1884–1895. https://doi.org/10.1038/s41386-020-0755-3.</Citation></Reference><Reference><Citation>Qin, Z., L. Zhang, M. A. Zasloff, A. F. R. Stewart, and H. H. Chen. 2021. “Ketamine's Schizophrenia‐Like Effects Are Prevented by Targeting PTP1B.” Neurobiology of Disease 155: 105397. https://doi.org/10.1016/j.nbd.2021.105397.</Citation></Reference><Reference><Citation>Qin, Z., X. Zhou, N. R. Pandey, et al. 2015. “Chronic Stress Induces Anxiety via an Amygdalar Intracellular Cascade That Impairs Endocannabinoid Signaling.” Neuron 85: 1319–1331. https://doi.org/10.1016/j.neuron.2015.02.015.</Citation></Reference><Reference><Citation>Rajmohan, R., and P. H. Reddy. 2017. “Amyloid Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's Disease Neurons.” Journal of Alzheimer's Disease 57, no. 4: 975–999. https://doi.org/10.3233/JAD-160612.</Citation></Reference><Reference><Citation>Rakse, M., C. Karthikeyan, G. S. Deora, et al. 2013. “Design, Synthesis and Molecular Modelling Studies of Novel 3‐acetamido‐4‐methyl Benzoic Acid Derivatives as Inhibitors of Protein Tyrosine Phosphatase 1B.” European Journal of Medicinal Chemistry 70: 469–476. https://doi.org/10.1016/j.ejmech.2013.10.030.</Citation></Reference><Reference><Citation>Raut, S., A. Bhalerao, M. Powers, M. Gonzalez, S. Mancuso, and L. Cucullo. 2023. “Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview.” Cells 12, no. 16: 2019. https://doi.org/10.3390/cells12162019.</Citation></Reference><Reference><Citation>Razay, G., A. Vreugdenhil, and G. Wilcock. 2007. “The Metabolic Syndrome and Alzheimer Disease.” Archives of Neurology 64: 93–96. https://doi.org/10.1001/archneur.64.1.93.</Citation></Reference><Reference><Citation>Reddy, M., C. Ghadiyaram, S. Panigrahi, S. Hosahalli, and L. Mangamoori. 2013. “Diphenylether Derivative as Selective Inhibitor of Protein Tyrosine Phosphatase 1B (PTP1B) Over T‐Cell Protein Tyrosine Phosphatase (TCPTP) Identified Through Virtual Screening.” Mini‐Reviews in Medicinal Chemistry 13: 1602–1606. https://doi.org/10.2174/1389557511313110006.</Citation></Reference><Reference><Citation>Reger, M. A., G. S. Watson, P. S. Green, et al. 2008. “Intranasal Insulin Improves Cognition and Modulates β‐amyloid in Early AD.” Neurology 70, no. 6: 440–448. https://doi.org/10.1212/01.WNL.0000265401.62434.36.</Citation></Reference><Reference><Citation>Ricke, K. M., S. A. Cruz, Z. Qin, et al. 2020. “Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid Associated Alzheimer's Disease in Mice.” Journal of Neuroscience 40, no. 7: 1581–1593. https://doi.org/10.1523/JNEUROSCI.2120-19.2019.</Citation></Reference><Reference><Citation>Rocha, S., M. Lucas, V. L. M. Silva, et al. 2021. “Pyrazoles as Novel Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An In Vitro and In Silico Study.” International Journal of Biological Macromolecules 181: 1171–1182. https://doi.org/10.1016/j.ijbiomac.2021.04.061.</Citation></Reference><Reference><Citation>Rojas, M., M. Chávez‐Castillo, D. Pirela, et al. 2021. “Metabolic Syndrome: Is It Time to Add the Central Nervous System?” Nutrients 13: 2254. https://doi.org/10.3390/nu13072254.</Citation></Reference><Reference><Citation>Rossi, A., P. Pizzo, and R. Filadi. 2019. “Calcium, Mitochondria and Cell Metabolism: A Functional Triangle in Bioenergetics.” Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research 1866: 1068–1078. https://doi.org/10.1016/j.bbamcr.2018.10.016.</Citation></Reference><Reference><Citation>Ryan, K. C., Z. Ashkavand, and K. R. Norman. 2020. “The Role of Mitochondrial Calcium Homeostasis in Alzheimer's and Related Diseases.” International Journal of Molecular Sciences 21: 9153. https://doi.org/10.3390/ijms21239153.</Citation></Reference><Reference><Citation>Sadrolashrafi, K., S. Craft, B. Decourt, et al. 2021. “Is Diabetes Associated With Increased Pathological Burden in Alzheimer's Disease?” Alzheimer's & Dementia 13, no. 1: e12248.</Citation></Reference><Reference><Citation>Sagües‐Sesé, E., J. Rioja, F. J. Garzón‐Maldonado, M. Narváez, J. A. García‐Arnés, and N. García‐Casares. 2022. “Insulin‐Related Biomarkers in Cerebrospinal Fluid in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review.” Journal of Alzheimer's Disease 90, no. 1: 1–13. https://doi.org/10.3233/JAD-220688.</Citation></Reference><Reference><Citation>Salas, I. H., and B. De Strooper. 2019. “Diabetes and Alzheimer's Disease: A Link Not as Simple as It Seems.” Neurochemical Research 44, no. 6: 1271–1278. https://doi.org/10.1007/s11064-018-2690-9.</Citation></Reference><Reference><Citation>Salas, I. H., A. Weerasekera, T. Ahmed, et al. 2018. “High Fat Diet Treatment Impairs Hippocampal Long‐Term Potentiation Without Alterations of the Core Neuropathological Features of Alzheimer Disease.” Neurobiology of Disease 113: 82–96. https://doi.org/10.1016/j.nbd.2018.02.001.</Citation></Reference><Reference><Citation>Samanta, S., M. Ramesh, and T. Govindaraju. 2022. “Chapter 1: Alzheimer's Is a Multifactorial Disease.” In Alzheimer's Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities, edited by T. Govindaraju, 1–34. Croydon, UK: The Royal Society of Chemistry. https://doi.org/10.1039/9781839162732-00001.</Citation></Reference><Reference><Citation>Santoso, N. G., L. Cebotaru, and W. B. Guggino. 2011. “Polycystin‐1, 2, and STIM1 Interact With IP3R to Modulate ER Ca2+ Release Through the PI3K/Akt Pathway.” Cellular Physiology and Biochemistry 27, no. 6: 715–726. https://doi.org/10.1159/000330080.</Citation></Reference><Reference><Citation>Saraya, A. W., C. Tunvirachaisakul, C. Sonpee, et al. 2023. “Serum Proinsulin Levels as Peripheral Blood Biomarkers in Patients With Cognitive Impairment.” Scientific Reports 13: 22436. https://doi.org/10.1038/s41598-023-49479-2.</Citation></Reference><Reference><Citation>Sasaki, T., W. Li, K. Higai, T. Quang, Y. Kim, and K. Koike. 2014. “Protein Tyrosine Phosphatase 1B Inhibitory Activity of Lavandulyl Flavonoids From Roots of Sophora flavescens.” Planta Medica 80, no. 07: 557–560. https://doi.org/10.1055/s-0034-1368400.</Citation></Reference><Reference><Citation>Saura, C. A., and J. Valero. 2011. “The Role of CREB Signaling in Alzheimer's Disease and Other Cognitive Disorders.” Reviews in the Neurosciences 22, no. 2: 153–169. https://doi.org/10.1515/RNS.2011.018.</Citation></Reference><Reference><Citation>Scheen, A. J., and L. F. Van Gaal. 2014. “Combating the Dual Burden: Therapeutic Targeting of Common Pathways in Obesity and Type 2 Diabetes.” Lancet Diabetes & Endocrinology 2, no. 11: 911–922. https://doi.org/10.1016/S2213-8587(14)70004-X.</Citation></Reference><Reference><Citation>Scior, T., J. Guevara‐Garcia, Q. T. Do, P. Bernard, and S. Laufer. 2016. “Why Antidiabetic Vanadium Complexes Are not in the Pipeline of ‘Big Pharma’ Drug Research? A Critical Review.” Current Medicinal Chemistry 23, no. 25: 2874–2891. https://doi.org/10.2174/0929867323666160321121138.</Citation></Reference><Reference><Citation>Sharma, B., L. Xie, F. Yang, et al. 2020. “Recent Advance on PTP1B Inhibitors and Their Biomedical Applications.” European Journal of Medicinal Chemistry 199: 112376. https://doi.org/10.1016/j.ejmech.2020.112376.</Citation></Reference><Reference><Citation>Shim, Y. S., K. C. Kim, K. A. Lee, et al. 2005. “Formylchromone Derivatives as Irreversible and Selective Inhibitors of Human Protein Tyrosine Phosphatase 1B. Kinetic and Modeling Studies.” Bioorganic & Medicinal Chemistry 13: 1325–1332. https://doi.org/10.1016/j.bmc.2004.11.006.</Citation></Reference><Reference><Citation>Shinde, R. N., G. S. Kumar, S. Eqbal, and M. E. Sobhia. 2018. “Screening and Identification of Potential PTP1B Allosteric Inhibitors Using In Silico and In Vitro Approaches.” PLoS ONE 13: e0199020. https://doi.org/10.1371/journal.pone.0199020.</Citation></Reference><Reference><Citation>Shrestha, S., B. R. Bhattarai, H. Cho, J. K. Choi, and H. Cho. 2007. “PTP1B Inhibitor Ertiprotafib Is Also a Potent Inhibitor of IκB Kinase β (Ikk‐Β).” Bioorganic & Medicinal Chemistry Letters 17, no. 10: 2728–2730. https://doi.org/10.1016/j.bmcl.2007.03.001.</Citation></Reference><Reference><Citation>Shu, Y., H. Zhang, T. Kang, et al. 2013. “PI3K/Akt Signal Pathway Involved in the Cognitive Impairment Caused by Chronic Cerebral Hypoperfusion in Rats.” PLoS ONE 8, no. 12: e81901. https://doi.org/10.1371/journal.pone.0081901.</Citation></Reference><Reference><Citation>Simpson, D. S. A., and P. L. Oliver. 2020. “ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease.” Antioxidants 9: 743. https://doi.org/10.3390/antiox9080743.</Citation></Reference><Reference><Citation>Smith, I. F., B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla. 2005. “Enhanced Caffeine‐Induced Ca2+ Release in the 3xTg‐AD Mouse Model of Alzheimer's Disease.” Journal of Neurochemistry 94, no. 6: 1711–1718. https://doi.org/10.1111/j.1471-4159.2005.03332.x.</Citation></Reference><Reference><Citation>Song, G. J., M. Jung, J. H. Kim, et al. 2016. “A Novel Role for Protein Tyrosine Phosphatase 1B as a Positive Regulator of Neuroinflammation.” Journal of Neuroinflammation 13, no. 1: 86. https://doi.org/10.1186/s12974-016-0545-3.</Citation></Reference><Reference><Citation>Song, G. J., J. Kim, J. H. Kim, et al. 2016. “Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation.” Experimental Neurobiology 25, no. 5: 252–261. https://doi.org/10.5607/en.2016.25.5.252.</Citation></Reference><Reference><Citation>Song, J., J. Lan, J. Tang, and N. Luo. 2022. “PTPN2 in the Immunity and Tumor Immunotherapy: A Concise Review.” International Journal of Molecular Sciences 23, no. 17: 10025. https://doi.org/10.3390/ijms231710025.</Citation></Reference><Reference><Citation>Stanley, M., S. L. Macauley, and D. M. Holtzman. 2016. “Changes in Insulin and Insulin Signaling in Alzheimer's Disease: Cause or Consequence?” Journal of Experimental Medicine 213, no. 8: 1375–1385. https://doi.org/10.1084/jem.20160493.</Citation></Reference><Reference><Citation>Stewart, R. A., and H. H. Chen. 2022. “N‐Methyl‐d‐Aspartate Receptor Functions Altered by Neuronal PTP1B Activation in Alzheimer's Disease and Schizophrenia Models.” Neural Regeneration Research 17, no. 10: 2208–2210. https://doi.org/10.4103/1673-5374.335793.</Citation></Reference><Reference><Citation>Swarbrick, M. M., P. J. Havel, A. A. Levin, et al. 2009. “Inhibition of Protein Tyrosine Phosphatase‐1b With Antisense Oligonucleotides Improves Insulin Sensitivity and Increases Adiponectin Concentrations in Monkeys.” Endocrinology 150, no. 4: 1670–1679. https://doi.org/10.1210/en.2008-0885.</Citation></Reference><Reference><Citation>Swerdlow, R. H., S. Koppe, I. Weidling, C. Hayley, Y. Ji, and H. M. Wilkins. 2017. “Mitochondria, Cybrids, Aging, and Alzheimer's Disease.” Progress in Molecular Biology and Translational Science 146: 259–302. https://doi.org/10.1016/bs.pmbts.2016.12.017.</Citation></Reference><Reference><Citation>Taha, M. O., Y. Bustanji, A. G. Al‐Bakri, et al. 2007. “Discovery of New Potent Human Protein Tyrosine Phosphatase Inhibitors via Pharmacophore and QSAR Analysis Followed by In Silico Screening.” Journal of Molecular Graphics and Modelling 25: 870–884. https://doi.org/10.1016/j.jmgm.2006.08.008.</Citation></Reference><Reference><Citation>Talbot, K., H. Y. Wang, H. Kazi, et al. 2012. “Demonstrated Brain Insulin Resistance in Alzheimer's Disease Patients Is Associated With IGF‐1 Resistance, IRS‐1 Dysregulation, and Cognitive Decline.” Journal of Clinical Investigation 122, no. 4: 1316–1338. https://doi.org/10.1172/JCI59903.</Citation></Reference><Reference><Citation>Thompson, K. H., J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill, and C. Orvig. 2009. “Vanadium Treatment of Type 2 Diabetes: A View to the Future.” Journal of Inorganic Biochemistry 103, no. 4: 554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003.</Citation></Reference><Reference><Citation>Tiganis, T. 2013. “PTP1B and TCPTP – Nonredundant Phosphatases in Insulin Signaling and Glucose Homeostasis.” FEBS Journal 280: 445–458. https://doi.org/10.1111/j.1742-4658.2012.08563.x.</Citation></Reference><Reference><Citation>Tiganis, T., and A. M. Bennett. 2007. “Protein Tyrosine Phosphatase Function: The Substrate Perspective.” Biochemical Journal 402: 1–15. https://doi.org/10.1042/BJ20061548.</Citation></Reference><Reference><Citation>Tonks, N. K. 2003. “PTP1B: From the Sidelines to the Frontlines!.” FEBS Letters 546, no. 1: 140–148. https://doi.org/10.1016/s0014-5793(03)00603-3.</Citation></Reference><Reference><Citation>Tonks, N. K., C. D. Diltz, and E. H. Fischer. 1988. “Purification of the Major Protein‐Tyrosine‐Phosphatases of Human Placenta.” Journal of Biological Chemistry 263, no. 14: 6722–6730.</Citation></Reference><Reference><Citation>Treviño, S., A. Díaz, E. Sánchez‐Lara, B. L. Sanchez‐Gaytan, J. M. Perez‐Aguilar, and E. González‐Vergara. 2019. “Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus.” Biological Trace Element Research 188: 68–98. https://doi.org/10.1007/s12011-018-1540-6.</Citation></Reference><Reference><Citation>Tsunekawa, T., R. Banno, A. Mizoguchi, et al. 2017. “Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2‐STAT3 Pathway in Microglia.” EBioMedicine 16: 172–183. https://doi.org/10.1016/j.ebiom.2017.01.007.</Citation></Reference><Reference><Citation>Vandal, M., P. J. White, C. Tremblay, et al. 2014. “Insulin Reverses the High‐Fat Diet‐Induced Increase in Brain A and Improves Memory in an Animal Model of Alzheimer Disease.” Diabetes 63, no. 12: 4291–4301. https://doi.org/10.2337/db14-0375.</Citation></Reference><Reference><Citation>Vieira, M. N. N., N. M. Lyra e Silva, S. T. Ferreira, and F. G. De Felice. 2017. “Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?” Frontiers in Aging Neuroscience 9, no. 7. https://doi.org/10.3389/fnagi.2017.00007.</Citation></Reference><Reference><Citation>Wallum, B. J., G. J. Taborsky, D. Porte, Jr., et al. 1987. “Cerebrospinal Fluid Insulin Levels Increase During Intravenous Insulin Infusions in Man.” Journal of Clinical Endocrinology & Metabolism 64, no. 1: 190–194. https://doi.org/10.1210/jcem-64-1-190.</Citation></Reference><Reference><Citation>Wang, H., X. Sun, N. Zhang, et al. 2017. “Ferulic Acid Attenuates Diabetes‐Induced Cognitive Impairment in Rats via Regulation of PTP1B and Insulin Signaling Pathway.” Physiology & Behavior 182: 93–100. https://doi.org/10.1016/j.physbeh.2017.10.001.</Citation></Reference><Reference><Citation>Wang, J. R., Q. Shen, L. Fang, et al. 2011. “Structural and Stereochemical Studies of Five New Pregnane Steroids From the Stem Bark of Toona ciliata var. Pubescens.” Steroids 76, no. 6: 571–576. https://doi.org/10.1016/j.steroids.2011.02.007.</Citation></Reference><Reference><Citation>Wang, L. J., B. Jiang, N. Wu, S. Y. Wang, and D. Y. Shi. 2015. “Natural and Semisynthetic Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors as Anti‐Diabetic Agents.” RSC Advances 5, no. 60: 48822–48834. https://doi.org/10.1039/C5RA01754H.</Citation></Reference><Reference><Citation>Wang, W., F. Zhao, X. Ma, G. Perry, and X. Zhu. 2020. “Mitochondria Dysfunction in the Pathogenesis of Alzheimer's Disease: Recent Advances.” Molecular Neurodegeneration 15: 30. https://doi.org/10.1186/s13024-020-00376-6.</Citation></Reference><Reference><Citation>Wang, Y., F. Yan, Q. Ye, X. Wu, and F. Jiang. 2016. “PTP1B Inhibitor Promotes Endothelial Cell Motility by Activating the DOCK180/Rac1 Pathway.” Scientific Reports 6: 24111. https://doi.org/10.1038/srep24111.</Citation></Reference><Reference><Citation>Wedel, M. K., 2006. “Safety, Tolerability, and Activity of ISIS 113715 in People With Type 2 Diabetes Mellitus Being Treated With Sulfonylurea.” https://clinicaltrials.gov/ct2/show/NCT00327626.</Citation></Reference><Reference><Citation>Wegierski, T., and J. Kuznicki. 2018. “Neuronal Calcium Signaling via Store‐Operated Channels in Health and Disease.” Cell Calcium 74: 102–111. https://doi.org/10.1016/j.ceca.2018.07.001.</Citation></Reference><Reference><Citation>Wilkinson, T. 2000. “Is Thiamine Deficiency in Elderly People Related to Age or Co‐Morbidity?” Age and Ageing 29: 111–116.</Citation></Reference><Reference><Citation>Willette, A. A., S. C. Johnson, A. C. Birdsill, et al. 2015. “Insulin Resistance Predicts Brain Amyloid Deposition in Late Middle‐Aged Adults.” Alzheimer's & Dementia 11, no. 5: 504–510. https://doi.org/10.1016/j.jalz.2014.03.011.</Citation></Reference><Reference><Citation>Winkler, E. A., Y. Nishida, A. P. Sagare, et al. 2015. “GLUT1 Reductions Exacerbate Alzheimer's Disease Vasculo‐Neuronal Dysfunction and Degeneration.” Nature Neuroscience 18: 521–530. https://doi.org/10.1038/nn.3966.</Citation></Reference><Reference><Citation>Wu, W. B., H. Zhang, S. H. Dong, et al. 2014. “New Triterpenoids With Protein Tyrosine Phosphatase 1B Inhibition From Cedrela odorata.” Journal of Asian Natural Products Research 16, no. 7: 709–716. https://doi.org/10.1080/10286020.2014.919281.</Citation></Reference><Reference><Citation>Xin, Z., G. Liu, C. Abad‐Zapatero, et al. 2003. “Identification of a Monoacid‐Based, Cell‐Permeable, Selective Inhibitor of Protein Tyrosine Phosphatase 1B.” Bioorganic & Medicinal Chemistry Letters 13: 3947–3950. https://doi.org/10.1016/j.bmcl.2003.08.064.</Citation></Reference><Reference><Citation>Yang, Y., J. Y. Tian, F. Ye, and Z. Xiao. 2020. “Identification of Natural Products as Selective PTP1B Inhibitors via Virtual Screening.” Bioorganic Chemistry 98: 103706. https://doi.org/10.1016/j.bioorg.2020.103706.</Citation></Reference><Reference><Citation>You‐Ten, K. E., E. S. Muise, A. Itié, et al. 1997. “Impaired Bone Marrow Microenvironment and Immune Function in T Cell Protein Tyrosine Phosphatase‐Deficient Mice.” Journal of Experimental Medicine 186, no. 5: 683–693. https://doi.org/10.1084/jem.186.5.683.</Citation></Reference><Reference><Citation>Yu, H. J., and S. H. Koh. 2017. “The Role of PI3K/AKT Pathway and Its Therapeutic Possibility in Alzheimer's Disease.” Hanyang Medical Reviews 37: 18–24. https://doi.org/10.7599/hmr.2017.37.1.18.</Citation></Reference><Reference><Citation>Zhang, L., Z. Qin, F. Sharmin, et al. 2021. “Tyrosine Phosphatase PTP1B Impairs Presynaptic NMDA Receptor‐Mediated Plasticity in a Mouse Model of Alzheimer's Disease.” Neurobiology of Disease 156: 105402. https://doi.org/10.1016/j.nbd.2021.105402.</Citation></Reference><Reference><Citation>Zhao, H., G. Liu, Z. Xin, et al. 2004. “Isoxazole Carboxylic Acids as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors.” Bioorganic & Medicinal Chemistry Letters 14: 5543–5546. https://doi.org/10.1016/j.bmcl.2004.08.063.</Citation></Reference><Reference><Citation>Zhu, X. H., H. Qiao, F. Du, et al. 2012. “Quantitative Imaging of Energy Expenditure in Human Brain.” NeuroImage 60, no. 4: 2107–2117. https://doi.org/10.1016/j.neuroimage.2012.02.013.</Citation></Reference><Reference><Citation>Zinker, B. A., C. M. Rondinone, J. M. Trevillyan, et al. 2002. “PTP1B Antisense Oligonucleotide Lowers PTP1B Protein, Normalizes Blood Glucose, and Improves Insulin Sensitivity in Diabetic Mice.” Proceedings of the National Academy of Sciences 99, no. 17: 11357–11362. https://doi.org/10.1073/pnas.142298199.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39655684</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-7560</ISSN><JournalIssue CitedMedium="Internet"><Volume>41</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes/metabolism research and reviews</Title><ISOAbbreviation>Diabetes Metab Res Rev</ISOAbbreviation></Journal><ArticleTitle>Circulating Proneurotensin Levels Predict Impaired Bone Mineralisation in Postmenopausal Women With Type 2 Diabetes Mellitus.</ArticleTitle><Pagination><StartPage>e70018</StartPage><MedlinePgn>e70018</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70018</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1002/dmrr.70018</ELocationID><Abstract><AbstractText Label="CONTEXT" NlmCategory="BACKGROUND">The mechanisms underlying bone fragility and increased fracture risk observed in individuals with type 2 diabetes (T2D) are not yet fully elucidated. Previous research has suggested a role for neuropeptides in regulating bone metabolism; however, the contribution of the neuropeptide Neurotensin (NT), which is thoroughly implicated in T2D and cardiovascular disease, has not been investigated in this context.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To study the relationship between circulating levels of the NT precursor proneurotensin (proNT) and bone mineralisation in T2D women.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">This is a cross-sectional investigation with a longitudinal prospective phase, involving 126 women with T2D who underwent bone density scans and had proNT levels measured. Biomarkers of bone metabolism and inflammation were also assessed. Data on bone mineral density (BMD) after 12 months were available for 49 patients.</AbstractText><AbstractText Label="MAIN OUTCOME MEASURE" NlmCategory="METHODS">Plasma proNT levels in relation to BMD.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">32% of the participants had osteopenia/osteoporosis and exhibited higher proNT than those with normal BMD (200.8 ± 113.7 vs. 161.6 ± 108.8 pg/mL; p = 0.013). ProNT inversely correlated with femur BMD and T-score (p < 0.01) and was associated with degraded bone architecture (TBS, p = 0.02), and higher OPN, P1NP, TNF-α and IL-1β levels. Baseline proNT correlated with further BMD reduction at the 12-month follow-up, independently of potential confounders (p = 0.02).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In women with T2D, greater proNT levels are associated with impaired bone mineralisation and predict mineral density decline overtime. ProNT could potentially serve as a diagnostic tool for identifying patients at higher risk of osteopenia/osteoporosis, suggesting a significant connection between this neuropeptide and bone metabolism in diabetes.</AbstractText><CopyrightInformation>© 2024 The Author(s). Diabetes/Metabolism Research and Reviews published by John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Barchetta</LastName><ForeName>Ilaria</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dule</LastName><ForeName>Sara</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-5089-6963</Identifier><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cimini</LastName><ForeName>Flavia Agata</ForeName><Initials>FA</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sentinelli</LastName><ForeName>Federica</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, L'Aquila, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Oldani</LastName><ForeName>Alessandro</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Passarella</LastName><ForeName>Giulia</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Filardi</LastName><ForeName>Tiziana</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Venditti</LastName><ForeName>Vittorio</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bleve</LastName><ForeName>Enrico</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Romagnoli</LastName><ForeName>Elisabetta</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Morano</LastName><ForeName>Susanna</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lenzi</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Melander</LastName><ForeName>Olle</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Baroni</LastName><ForeName>Marco Giorgio</ForeName><Initials>MG</Initials><AffiliationInfo><Affiliation>Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, L'Aquila, Italy.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cavallo</LastName><ForeName>Maria Gisella</ForeName><Initials>MG</Initials><Identifier Source="ORCID">0000-0001-6630-8049</Identifier><AffiliationInfo><Affiliation>Department of Experimental Medicine, Sapienza University, Rome, Italy.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><Agency>Agenzia Italian Medicines Agency, Ministero della Salute</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Metab Res Rev</MedlineTA><NlmUniqueID>100883450</NlmUniqueID><ISSNLinking>1520-7552</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>39379-15-2</RegistryNumber><NameOfSubstance UI="D009496">Neurotensin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C411471">proneurotensin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011498">Protein Precursors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015519" MajorTopicYN="Y">Bone Density</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017698" MajorTopicYN="Y">Postmenopause</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009496" MajorTopicYN="Y">Neurotensin</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011498" MajorTopicYN="Y">Protein Precursors</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015663" MajorTopicYN="N">Osteoporosis, Postmenopausal</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001851" MajorTopicYN="N">Bone Diseases, Metabolic</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">bone fragility</Keyword><Keyword MajorTopicYN="N">bone metabolism</Keyword><Keyword MajorTopicYN="N">gut peptides</Keyword><Keyword MajorTopicYN="N">neuropeptides</Keyword><Keyword MajorTopicYN="N">neurotensin</Keyword><Keyword MajorTopicYN="N">osteoporosis</Keyword></KeywordList><CoiStatement>The authors declare no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>55</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>10</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39655684</ArticleId><ArticleId IdType="pmc">PMC11629440</ArticleId><ArticleId IdType="doi">10.1002/dmrr.70018</ArticleId></ArticleIdList><ReferenceList><Reference><Citation> -IDF Diabetes Atlas, accessed on April 4, 2024, https://diabetesatlas.org/.</Citation></Reference><Reference><Citation>Salari N., Ghasemi H., Mohammadi L., et al., “The Global Prevalence of Osteoporosis in the World: A Comprehensive Systematic Review and Meta‐Analysis,” Journal of Orthopaedic Surgery and Research 16, no. 1 (2021): 609, PMID: 34657598; PMCID: PMC8522202, 10.1186/s13018-021-02772-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13018-021-02772-0</ArticleId><ArticleId IdType="pmc">PMC8522202</ArticleId><ArticleId IdType="pubmed">34657598</ArticleId></ArticleIdList></Reference><Reference><Citation>Napoli N., Chandran M., Pierroz D., Abrahamsen B., Schwartz A. V., and Ferrari S. L., “Mechanisms of Diabetes Mellitus‐Induced Bone Fragility,” Nature Reviews Endocrinology 13, no. 4 (2017): 208–219, 10.1038/nrendo.2016.153.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2016.153</ArticleId><ArticleId IdType="pubmed">27658727</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Klaauw A. A., “Neuropeptides in Obesity and Metabolic Disease,” Clinical Chemistry 64, no. 1 (2018): 173–182, Epub 2017 Nov 2. PMID: 29097517, 10.1373/clinchem.2017.281568.</Citation><ArticleIdList><ArticleId IdType="doi">10.1373/clinchem.2017.281568</ArticleId><ArticleId IdType="pubmed">29097517</ArticleId></ArticleIdList></Reference><Reference><Citation>Goto T., Nakao K., Gunjigake K. K., Kido M. A., Kobayashi S., and Tanaka T., “Substance P Stimulates Late‐Stage Rat Osteoblastic Bone Formation Through Neurokinin‐1 Receptors,” Neuropeptides 41, no. 1 (2007): 25–31, Epub 2007 Jan 3. PMID: 17204323, 10.1016/j.npep.2006.11.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.npep.2006.11.002</ArticleId><ArticleId IdType="pubmed">17204323</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Q., Qin H., Deng J., et al., “Research Progress in Calcitonin Gene‐Related Peptide and Bone Repair,” Biomolecules 13, no. 5 (2023): 838, PMID: 37238709; PMCID: PMC10216440, 10.3390/biom13050838.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biom13050838</ArticleId><ArticleId IdType="pmc">PMC10216440</ArticleId><ArticleId IdType="pubmed">37238709</ArticleId></ArticleIdList></Reference><Reference><Citation>Qu H., Zhuang Y., Zhu L., Zhao Z., and Wang K., “The Effects of Vasoactive Intestinal Peptide on RANKL‐Induced Osteoclast Formation,” Annals of Translational Medicine 9, no. 2 (2021): 127, PMID: 33569429; PMCID: PMC7867916, 10.21037/atm-20-7607.</Citation><ArticleIdList><ArticleId IdType="doi">10.21037/atm-20-7607</ArticleId><ArticleId IdType="pmc">PMC7867916</ArticleId><ArticleId IdType="pubmed">33569429</ArticleId></ArticleIdList></Reference><Reference><Citation>Horsnell H. and Baldock P. A., “Osteoblastic Actions of the Neuropeptide Y System to Regulate Bone and Energy Homeostasis,” Current Osteoporosis Reports 14, no. 1 (2016): 26–31, PMID: 26872458, 10.1007/s11914-016-0300-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11914-016-0300-9</ArticleId><ArticleId IdType="pubmed">26872458</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X., Liu H., Xiong Y., et al., “Postmenopausal Osteoporosis Is Associated With the Regulation of SP, CGRP, VIP, and NPY,” Biomedicine & Pharmacotherapy 104 (2018): 742–750, Epub 2018 May 29. PMID: 29807224, 10.1016/j.biopha.2018.04.044.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2018.04.044</ArticleId><ArticleId IdType="pubmed">29807224</ArticleId></ArticleIdList></Reference><Reference><Citation>Barchetta I., Baroni M. G., Melander O., and Cavallo M. G., “New Insights in the Control of Fat Homeostasis: The Role of Neurotensin,” International Journal of Molecular Sciences 23, no. 4 (2022): 2209, PMID: 35216326; PMCID: PMC8876516, 10.3390/ijms23042209.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms23042209</ArticleId><ArticleId IdType="pmc">PMC8876516</ArticleId><ArticleId IdType="pubmed">35216326</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldman R., Bar‐Shavit Z., and Romeo D., “Neurotensin Modulates Human Neutrophil Locomotion and Phagocytic Capability,” FEBS Letters 159, no. 1‐2 (1983): 63–67, PMID: 6873304, 10.1016/0014-5793(83)80417-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0014-5793(83)80417-7</ArticleId><ArticleId IdType="pubmed">6873304</ArticleId></ArticleIdList></Reference><Reference><Citation>Theoharides T. C., Alysandratos K. D., Angelidou A., et al., “Mast Cells and Inflammation,” Biochimica et Biophysica Acta 1822, no. 1 (2012): 21–33, Epub 2010 Dec 23. PMID: 21185371; PMCID: PMC3318920, 10.1016/j.bbadis.2010.12.014.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbadis.2010.12.014</ArticleId><ArticleId IdType="pmc">PMC3318920</ArticleId><ArticleId IdType="pubmed">21185371</ArticleId></ArticleIdList></Reference><Reference><Citation>Fawad A., Bergmann A., Struck J., Nilsson P. M., Orho‐Melander M., and Melander O., “Proneurotensin Predicts Cardiovascular Disease in an Elderly Population,” Journal of Clinical Endocrinology and Metabolism 103, no. 5 (2018): 1940–1947, PMID: 29546332, 10.1210/jc.2017-02424.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2017-02424</ArticleId><ArticleId IdType="pubmed">29546332</ArticleId></ArticleIdList></Reference><Reference><Citation>Barchetta I., Cimini F. A., Leonetti F., et al., “Increased Plasma Proneurotensin Levels Identify NAFLD in Adults With and Without Type 2 Diabetes,” Journal of Clinical Endocrinology and Metabolism 103, no. 6 (2018): 2253–2260, PMID: 29590379, 10.1210/jc.2017-02751.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2017-02751</ArticleId><ArticleId IdType="pubmed">29590379</ArticleId></ArticleIdList></Reference><Reference><Citation>Barchetta I., Cimini F. A., Capoccia D., et al., “Neurotensin Is a Lipid‐Induced Gastrointestinal Peptide Associated With Visceral Adipose Tissue Inflammation in Obesity,” Nutrients 10, no. 4 (2018): 526, PMID: 29690638; PMCID: PMC5946311, 10.3390/nu10040526.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu10040526</ArticleId><ArticleId IdType="pmc">PMC5946311</ArticleId><ArticleId IdType="pubmed">29690638</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghaemimanesh F., Mehravar M., Milani S., Poursani E. M., and Saliminejad K., “The Multifaceted Role of Sortilin/Neurotensin Receptor 3 in Human Cancer Development,” Journal of Cellular Physiology 236, no. 9 (2021): 6271–6281, Epub 2021 Feb 26. PMID: 33634506, 10.1002/jcp.30344.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jcp.30344</ArticleId><ArticleId IdType="pubmed">33634506</ArticleId></ArticleIdList></Reference><Reference><Citation>Tscharre M., Farhan S., Freynhofer M. K., et al., “Neurotensin and Adverse Cardiovascular Outcomes in Patients Undergoing Percutaneous Coronary Intervention,” Frontiers in Cardiovascular Medicine 9 (2022): 782602, PMID: 35345492; PMCID: PMC8957262, 10.3389/fcvm.2022.782602.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcvm.2022.782602</ArticleId><ArticleId IdType="pmc">PMC8957262</ArticleId><ArticleId IdType="pubmed">35345492</ArticleId></ArticleIdList></Reference><Reference><Citation>Wettersten N., Cushman M., Howard V. J., et al., “Usefulness of Proneurotensin to Predict Cardiovascular and All‐Cause Mortality in a United States Population (From the Reasons for Geographic and Racial Differences in Stroke Study),” American Journal of Cardiology 122, no. 1 (2018): 26–32, Epub 2018 Mar 28. PMID: 29866581; PMCID: PMC7856682, 10.1016/j.amjcard.2018.03.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2018.03.009</ArticleId><ArticleId IdType="pmc">PMC7856682</ArticleId><ArticleId IdType="pubmed">29866581</ArticleId></ArticleIdList></Reference><Reference><Citation>Melander O., Maisel A. S., Almgren P., et al., “Plasma Proneurotensin and Incidence of Diabetes, Cardiovascular Disease, Breast Cancer, and Mortality,” JAMA 308, no. 14 (2012): 1469–1475, PMID: 23047361, 10.1001/jama.2012.12998.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2012.12998</ArticleId><ArticleId IdType="pubmed">23047361</ArticleId></ArticleIdList></Reference><Reference><Citation>Barchetta I., Bertoccini L., Sentinelli F., et al., “Circulating Pro‐Neurotensin Levels Predict Bodyweight Gain and Metabolic Alterations in Children,” Nutrition, Metabolism, and Cardiovascular Diseases 31, no. 3 (2021): 902–910, Epub 2020 Dec 5. PMID: 33549442, 10.1016/j.numecd.2020.11.025.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2020.11.025</ArticleId><ArticleId IdType="pubmed">33549442</ArticleId></ArticleIdList></Reference><Reference><Citation>Bello A. R., Hernández G., González M., et al., “Immunoreactive Neurotensin in Gonadotrophs and Thyrotrophs Is Regulated by Sex Steroid Hormones in the Female Rat,” Journal of Neuroendocrinology 11, no. 10 (1999): 785–794, PMID: 10520127, 10.1046/j.1365-2826.1999.00393.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1046/j.1365-2826.1999.00393.x</ArticleId><ArticleId IdType="pubmed">10520127</ArticleId></ArticleIdList></Reference><Reference><Citation>O'Halloran D. J., Jones P. M., Ghatei M. A., Domin J., and Bloom S. R., “The Regulation of Neuropeptide Expression in Rat Anterior Pituitary Following Chronic Manipulation of Estrogen Status: A Comparison Between Substance P, Neuropeptide Y, Neurotensin, and Vasoactive Intestinal Peptide,” Endocrinology 127, no. 3 (1990): 1463–1469, PMID: 1696887, 10.1210/endo-127-3-1463.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/endo-127-3-1463</ArticleId><ArticleId IdType="pubmed">1696887</ArticleId></ArticleIdList></Reference><Reference><Citation>Murdaca G., Allegra A., Tonacci A., Musolino C., Ricciardi L., and Gangemi S., “Mast Cells and Vitamin D Status: A Clinical and Biological Link in the Onset of Allergy and Bone Diseases,” Biomedicines 10, no. 8 (2022): 1877, PMID: 36009422; PMCID: PMC9405764, 10.3390/biomedicines10081877.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biomedicines10081877</ArticleId><ArticleId IdType="pmc">PMC9405764</ArticleId><ArticleId IdType="pubmed">36009422</ArticleId></ArticleIdList></Reference><Reference><Citation>Mortensen M. B., Kjolby M., Gunnersen S., et al., “Targeting Sortilin in Immune Cells Reduces Proinflammatory Cytokines and Atherosclerosis,” Journal of Clinical Investigation 124, no. 12 (2014): 5317–5322, Epub 2014 Nov 17. PMID: 25401472; PMCID: PMC4348947, 10.1172/JCI76002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI76002</ArticleId><ArticleId IdType="pmc">PMC4348947</ArticleId><ArticleId IdType="pubmed">25401472</ArticleId></ArticleIdList></Reference><Reference><Citation>Ernst A., Hellmich S., and Bergmann A., “Proneurotensin 1–117, a Stable Neurotensin Precursor Fragment Identified in Human Circulation,” Peptides 27, no. 7 (2006): 1787–1793, 10.1016/j.peptides.2006.01.021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.peptides.2006.01.021</ArticleId><ArticleId IdType="pubmed">16519961</ArticleId></ArticleIdList></Reference><Reference><Citation>Prevention and Management of Osteoporosis: Report of a WHO Scientific Group, accessed on 15 February 2023.</Citation></Reference><Reference><Citation>McCloskey E. V., Oden A., Harvey N. C., et al., “A Meta‐Analysis Oftrabecular Bone Score in Fracture Risk Prediction and its Relationship to FRAX,” Journal of Bone and Mineral Research 31, no. 5 (2016): 940–948, 10.1002/jbmr.2734.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jbmr.2734</ArticleId><ArticleId IdType="pubmed">26498132</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosner B., Fundamentals of Biostatistics. 7th ed. (Boston. MA: Brooks/Cole, 2011).</Citation></Reference><Reference><Citation>Idelevich A. and Baron R., “Brain to Bone: What Is the Contribution of the Brain to Skeletal Homeostasis?,” Bone 115 (2018): 31–42, 10.1016/j.bone.2018.05.018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bone.2018.05.018</ArticleId><ArticleId IdType="pmc">PMC6110971</ArticleId><ArticleId IdType="pubmed">29777919</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang F., Qiao W., Wei J. A., et al., “Secretin‐Dependent Signals in the Ventromedial Hypothalamus Regulate Energy Metabolism and Bone Homeostasis in Mice,” Nature Communications 15, no. 1 (2024): 1030, PMID: 38310104; PMCID: PMC10838336, 10.1038/s41467-024-45436-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-024-45436-3</ArticleId><ArticleId IdType="pmc">PMC10838336</ArticleId><ArticleId IdType="pubmed">38310104</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Q. C. and Zhang Y., “The Role of NPY in the Regulation of Bone Metabolism,” Frontiers in Endocrinology 13 (2022): 833485, PMID: 35273572; PMCID: PMC8902412, 10.3389/fendo.2022.833485.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2022.833485</ArticleId><ArticleId IdType="pmc">PMC8902412</ArticleId><ArticleId IdType="pubmed">35273572</ArticleId></ArticleIdList></Reference><Reference><Citation>Fawad A., Fernandez C., Bergmann A., et al., “Magnitude of Rise in Proneurotensin Is Related to Amount of Triglyceride Appearance in Blood After Standardized Oral Intake of Both Saturated and Unsaturated Fat,” Lipids in Health and Disease 19, no. 1 (2020): 191, PMID: 32825823; PMCID: PMC7441720, 10.1186/s12944-020-01361-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-020-01361-0</ArticleId><ArticleId IdType="pmc">PMC7441720</ArticleId><ArticleId IdType="pubmed">32825823</ArticleId></ArticleIdList></Reference><Reference><Citation>Grunddal K. V., Ratner C. F., Svendsen B., et al., “Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP‐1 and PYY in Enteroendocrine Control of Metabolism,” Endocrinology 157, no. 1 (2016): 176–194, Epub 2015 Oct 15. PMID: 26469136, 10.1210/en.2015-1600.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/en.2015-1600</ArticleId><ArticleId IdType="pubmed">26469136</ArticleId></ArticleIdList></Reference><Reference><Citation>Sentinelli F., Barchetta I., Cimini F. A., et al., “Neurotensin Gene Rs2234762 C>G Variant Associates With Reduced Circulating Pro‐NT Levels and Predicts Lower Insulin Resistance in Overweight/Obese Children,” International Journal of Molecular Sciences 24, no. 7 (2023): 6460, PMID: 37047432; PMCID: PMC10095103, 10.3390/ijms24076460.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms24076460</ArticleId><ArticleId IdType="pmc">PMC10095103</ArticleId><ArticleId IdType="pubmed">37047432</ArticleId></ArticleIdList></Reference><Reference><Citation>Lauritano D., Mastrangelo F., D'Ovidio C., et al., “Activation of Mast Cells by Neuropeptides: The Role of Pro‐Inflammatory and Anti‐Inflammatory Cytokines,” International Journal of Molecular Sciences 24, no. 5 (2023): 4811, PMID: 36902240; PMCID: PMC10002992, 10.3390/ijms24054811.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms24054811</ArticleId><ArticleId IdType="pmc">PMC10002992</ArticleId><ArticleId IdType="pubmed">36902240</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J., Song J., Zaytseva Y. Y., et al., “An Obligatory Role for Neurotensin in High‐Fat‐Diet‐Induced Obesity,” Nature 533, no. 7603 (2016): 411–415, Epub 2016 May 11. PMID: 27193687; PMCID: PMC5484414, 10.1038/nature17662.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature17662</ArticleId><ArticleId IdType="pmc">PMC5484414</ArticleId><ArticleId IdType="pubmed">27193687</ArticleId></ArticleIdList></Reference><Reference><Citation>Richter E., Lohmann C. H., Dell'Accio F., Goettsch C., and Bertrand J., “Sortilin Is Upregulated in Osteoarthritis‐Dependent Cartilage Calcification and Associated With Cellular Senescence,” International Journal of Molecular Sciences 24, no. 15 (2023): 12343, PMID: 37569721; PMCID: PMC10418692, 10.3390/ijms241512343.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms241512343</ArticleId><ArticleId IdType="pmc">PMC10418692</ArticleId><ArticleId IdType="pubmed">37569721</ArticleId></ArticleIdList></Reference><Reference><Citation>Tumurbaatar T., Kanasaki H., Oride A., et al., “Action of Neurotensin. CRH. And RFRP‐3 in E2‐Induced Negative Feedback Control: Studies Using a Mouse ARC Hypothalamic Cell Model,” Biology of Reproduction 99, no. 6 (2018): 1216–1226, 10.1093/biolre/ioy145.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/biolre/ioy145</ArticleId><ArticleId IdType="pubmed">29961889</ArticleId></ArticleIdList></Reference><Reference><Citation>Li C. I., Liu C. S., Lin W. Y., et al., “Glycated Hemoglobin Level and Risk of Hip Fracture in Older People With Type 2 Diabetes: A Competing Risk Analysis of Taiwan Diabetes Cohort Study,” Journal of Bone and Mineral Research 30, no. 7 (2015): 1338–1346, 10.1002/jbmr.2462.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jbmr.2462</ArticleId><ArticleId IdType="pubmed">25598134</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39655346</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Association between advanced lung cancer inflammation index and osteoporosis in patients with type 2 diabetes mellitus: evidence from NHANES.</ArticleTitle><Pagination><StartPage>1421696</StartPage><MedlinePgn>1421696</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1421696</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1421696</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Previous studies have shown a significantly increased prevalence of osteoporosis (OP) in patients with type 2 diabetes mellitus (T2DM), which is closely associated with inflammation and nutrition. This study aimed to investigate the relationship between the advanced lung cancer inflammation index (ALI) and OP in patients with T2DM.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">This cross-sectional analysis was conducted based on data from middle-aged and older adults aged 50 years and older with T2DM from the National Health and Nutrition Examination Survey (NHANES).Weighted multivariable logistic regression and linear regression were utilized to investigate the correlation between the ALI and OP with femur bone mineral density (BMD) in individuals with T2DM. Restricted cubic splines (RCS) were employed to assess potential nonlinear relationships, and receiver operating characteristic (ROC) curves were used to evaluate diagnostic accuracy.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 1596 patients with T2DM were included in this study, among whom 736 had OP. After adjusting for covariates, the multivariable logistic regression model showed that compared to participants in the fourth quartile of log2-transformed ALI, those in the first quartile had an increased prevalence of OP in T2DM (OR = 1.95, 95% CI=1.28-2.96, p < 0.01). The multivariable linear regression model indicated that a low log2-transformed ALI is associated with a low femur BMD.RCS demonstrated a linear dose-response relationship between the ALI index and OP in T2DM (p = 0.686), with the area under the ROC curve being 0.57 (95% CI: 0.54-0.60, p < 0.001), and the optimal cutoff value was 6.04.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Our findings indicate that low levels of ALI are independently associated with an increased prevalence of OP in middle-aged and older adults with T2DM in the United States. ALI may serve as a potential biomarker for assessing the prevalence of OP in middle-aged and older adults with T2DM.</AbstractText><CopyrightInformation>Copyright © 2024 Xu, Yan and Liu.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Xu</LastName><ForeName>Yifeng</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Zhaoqi</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Liangji</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>25</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010024" MajorTopicYN="Y">Osteoporosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="Y">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015519" MajorTopicYN="Y">Bone Density</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008175" MajorTopicYN="N">Lung Neoplasms</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">NHANES</Keyword><Keyword MajorTopicYN="N">advanced lung cancer inflammation index</Keyword><Keyword MajorTopicYN="N">cross-sectional study</Keyword><Keyword MajorTopicYN="N">osteoporosis</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>4</Hour><Minute>40</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39655346</ArticleId><ArticleId IdType="pmc">PMC11625538</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1421696</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. (2022) 399:1080–92. doi: 10.1016/S0140-6736(21)02646-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(21)02646-5</ArticleId><ArticleId IdType="pubmed">35279261</ArticleId></ArticleIdList></Reference><Reference><Citation>Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein D, Goulis DG. Type 2 diabetes and osteoporosis: A guide to optimal management. J Clin Endocrinol Metab. (2017) 102:3621–34. doi: 10.1210/jc.2017-00042</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2017-00042</ArticleId><ArticleId IdType="pubmed">28938433</ArticleId></ArticleIdList></Reference><Reference><Citation>Leslie WD, Morin SN. New developments in fracture risk assessment for current osteoporosis reports. Curr Osteoporos Rep. (2020) 18:115–29. doi: 10.1007/s11914-020-00590-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11914-020-00590-7</ArticleId><ArticleId IdType="pubmed">32285250</ArticleId></ArticleIdList></Reference><Reference><Citation>Carlson BC, Robinson WA, Wanderman NR, Sebastian AS, Nassr A, Freedman BA, et al. . A review and clinical perspective of the impact of osteoporosis on the spine. Geriatr Orthop Surg Rehabil. (2019) 10:2151459319861591. doi: 10.1177/2151459319861591</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2151459319861591</ArticleId><ArticleId IdType="pmc">PMC6637832</ArticleId><ArticleId IdType="pubmed">31360592</ArticleId></ArticleIdList></Reference><Reference><Citation>Holman N, Young B, Gadsby R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabetes Med. (2015) 32:1119–20. doi: 10.1111/dme.2015.32.issue-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.2015.32.issue-9</ArticleId><ArticleId IdType="pubmed">25962518</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X, Chen F, Liu L, Zhang Q. Prevalence of osteoporosis in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. BMC Endocr Disord. (2023) 23:1. doi: 10.1186/s12902-022-01260-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-022-01260-8</ArticleId><ArticleId IdType="pmc">PMC9809067</ArticleId><ArticleId IdType="pubmed">36597121</ArticleId></ArticleIdList></Reference><Reference><Citation>Bao J, Yan Y, Zuo D, Zhuo Z, Sun T, Lin H, et al. . Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy. Front Nutr. (2023) 10:1178573. doi: 10.3389/fnut.2023.1178573</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnut.2023.1178573</ArticleId><ArticleId IdType="pmc">PMC10196368</ArticleId><ArticleId IdType="pubmed">37215218</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int. (2018) 29:1721–36. doi: 10.1007/s00198-018-4532-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00198-018-4532-7</ArticleId><ArticleId IdType="pubmed">29736760</ArticleId></ArticleIdList></Reference><Reference><Citation>Sellmeyer DE, Civitelli R, Hofbauer LC, Khosla S, Lecka-Czernik B, Schwartz AV. Skeletal metabolism, fracture risk, and fracture outcomes in type 1 and type 2 diabetes. Diabetes. (2016) 65:1757–66. doi: 10.2337/db16-0063</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db16-0063</ArticleId><ArticleId IdType="pmc">PMC4915586</ArticleId><ArticleId IdType="pubmed">27329951</ArticleId></ArticleIdList></Reference><Reference><Citation>Koh WP, Wang R, Ang LW, Heng D, Yuan JM, Yu MC. Diabetes and risk of hip fracture in the Singapore Chinese Health Study. Diabetes Care. (2010) 33:1766–70. doi: 10.2337/dc10-0067</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-0067</ArticleId><ArticleId IdType="pmc">PMC2909059</ArticleId><ArticleId IdType="pubmed">20504896</ArticleId></ArticleIdList></Reference><Reference><Citation>Mills ES, Hah RJ, Fresquez Z, Mertz K, Buser Z, Alluri RK, et al. . Secondary fracture rate after vertebral osteoporotic compression fracture is decreased by anti-osteoporotic medication but not increased by cement augmentation. J Bone Joint Surg Am. (2022) 104:2178–85. doi: 10.2106/JBJS.22.00469</Citation><ArticleIdList><ArticleId IdType="doi">10.2106/JBJS.22.00469</ArticleId><ArticleId IdType="pubmed">36223482</ArticleId></ArticleIdList></Reference><Reference><Citation>Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, et al. . Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci. (2023) 24:3772. doi: 10.3390/ijms24043772</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms24043772</ArticleId><ArticleId IdType="pmc">PMC9963528</ArticleId><ArticleId IdType="pubmed">36835184</ArticleId></ArticleIdList></Reference><Reference><Citation>Ji Y, Geng N, Niu Y, Zhao H, Fei W, Chen S, et al. . Relationship between geriatric nutritional risk index and osteoporosis in type 2 diabetes in Northern China. BMC Endocr Disord. (2022) 22:308. doi: 10.1186/s12902-022-01215-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-022-01215-z</ArticleId><ArticleId IdType="pmc">PMC9733244</ArticleId><ArticleId IdType="pubmed">36494810</ArticleId></ArticleIdList></Reference><Reference><Citation>Papadopoulou SK, Papadimitriou K, Voulgaridou G, Georgaki E, Tsotidou E, Zantidou O, et al. . Exercise and nutrition impact on osteoporosis and sarcopenia-the incidence of osteosarcopenia: A narrative review. Nutrients. (2021) 13:4499. doi: 10.3390/nu13124499</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu13124499</ArticleId><ArticleId IdType="pmc">PMC8705961</ArticleId><ArticleId IdType="pubmed">34960050</ArticleId></ArticleIdList></Reference><Reference><Citation>Romagnoli C, Marcucci G, Favilli F, Zonefrati R, Mavilia C, Galli G, et al. . Role of GSH/GSSG redox couple in osteogenic activity and osteoclastogenic markers of human osteoblast-like SaOS-2 cells. FEBS J. (2013) 280:867–79. doi: 10.1111/febs.2013.280.issue-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/febs.2013.280.issue-3</ArticleId><ArticleId IdType="pubmed">23176170</ArticleId></ArticleIdList></Reference><Reference><Citation>Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, et al. . Veis D et al: Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res. (2020) 35:1174–87. doi: 10.1002/jbmr.3966</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jbmr.3966</ArticleId><ArticleId IdType="pmc">PMC8061311</ArticleId><ArticleId IdType="pubmed">31995253</ArticleId></ArticleIdList></Reference><Reference><Citation>Salamanna F, Maglio M, Borsari V, Landini MP, Fini M. Blood factors as biomarkers in osteoporosis: points from the COVID-19 era. Trends Endocrinol Metab. (2021) 32:672–9. doi: 10.1016/j.tem.2021.05.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tem.2021.05.005</ArticleId><ArticleId IdType="pmc">PMC8261630</ArticleId><ArticleId IdType="pubmed">34246532</ArticleId></ArticleIdList></Reference><Reference><Citation>Jafri SH, Shi R, Mills G. Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer. (2013) 13:158. doi: 10.1186/1471-2407-13-158</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2407-13-158</ArticleId><ArticleId IdType="pmc">PMC3618002</ArticleId><ArticleId IdType="pubmed">23530866</ArticleId></ArticleIdList></Reference><Reference><Citation>Tu J, Wu B, Xiu J, Deng J, Lin S, Lu J, et al. . Advanced lung cancer inflammation index is associated with long-term cardiovascular death in hypertensive patients: national health and nutrition examination study, 1999-2018. Front Physiol. (2023) 14:1074672. doi: 10.3389/fphys.2023.1074672</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2023.1074672</ArticleId><ArticleId IdType="pmc">PMC10189044</ArticleId><ArticleId IdType="pubmed">37206362</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuan X, Huang B, Wang R, Tie H, Luo S. The prognostic value of advanced lung cancer inflammation index (ALI) in elderly patients with heart failure. Front Cardiovasc Med. (2022) 9:934551. doi: 10.3389/fcvm.2022.934551</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcvm.2022.934551</ArticleId><ArticleId IdType="pmc">PMC9697177</ArticleId><ArticleId IdType="pubmed">36440019</ArticleId></ArticleIdList></Reference><Reference><Citation>Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. (1994) 4:368–81. doi: 10.1007/BF01622200</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF01622200</ArticleId><ArticleId IdType="pubmed">7696835</ArticleId></ArticleIdList></Reference><Reference><Citation>Looker AC, Orwoll ES, Johnston CC, Jr., Lindsay RL, Wahner HW, Dunn WL, et al. . Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. (1997) 12:1761–8. doi: 10.1359/jbmr.1997.12.11.1761</Citation><ArticleIdList><ArticleId IdType="doi">10.1359/jbmr.1997.12.11.1761</ArticleId><ArticleId IdType="pubmed">9383679</ArticleId></ArticleIdList></Reference><Reference><Citation>Janssen I, Carson V, Lee IM, Katzmarzyk PT, Blair SN. Years of life gained due to leisure-time physical activity in the U.S. Am J Prev Med. (2013) 44:23–9. doi: 10.1016/j.amepre.2012.09.056</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2012.09.056</ArticleId><ArticleId IdType="pmc">PMC3798023</ArticleId><ArticleId IdType="pubmed">23253646</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan B, Zhao Y, Chen C, Cai J, Li K, Wang Y, et al. . The relationship between advanced liver fibrosis and osteoporosis in type 2 diabetes patients with MAFLD. Endocrine. (2024) 85:206–21. doi: 10.1007/s12020-024-03724-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12020-024-03724-4</ArticleId><ArticleId IdType="pubmed">38367145</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, Tang Y, Feng Z, Chen Y, Zhang X, Xia Y, et al. . Metabolic associated fatty liver disease and bone mineral density: a cross-sectional study of the National Health and Nutrition Examination Survey 2017-2018. Osteoporos Int. (2023) 34:713–24. doi: 10.1007/s00198-023-06687-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00198-023-06687-w</ArticleId><ArticleId IdType="pubmed">36719471</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: mechanism, molecular target and current status on drug development. Curr Med Chem. (2021) 28:1489–507. doi: 10.2174/0929867327666200330142432</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/0929867327666200330142432</ArticleId><ArticleId IdType="pmc">PMC7665836</ArticleId><ArticleId IdType="pubmed">32223730</ArticleId></ArticleIdList></Reference><Reference><Citation>Kimball JS, Johnson JP, Carlson DA. Oxidative stress and osteoporosis. J Bone Joint Surg Am. (2021) 103:1451–61. doi: 10.2106/JBJS.20.00989</Citation><ArticleIdList><ArticleId IdType="doi">10.2106/JBJS.20.00989</ArticleId><ArticleId IdType="pubmed">34014853</ArticleId></ArticleIdList></Reference><Reference><Citation>Conaway HH, Henning P, Lie A, Tuckermann J, Lerner UH. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone. (2016) 93:43–54. doi: 10.1016/j.bone.2016.08.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bone.2016.08.024</ArticleId><ArticleId IdType="pubmed">27596806</ArticleId></ArticleIdList></Reference><Reference><Citation>Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: role of innate immune cells in osteoporosis. Front Immunol. (2021) 12:687037. doi: 10.3389/fimmu.2021.687037</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2021.687037</ArticleId><ArticleId IdType="pmc">PMC8374941</ArticleId><ArticleId IdType="pubmed">34421899</ArticleId></ArticleIdList></Reference><Reference><Citation>Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. . Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. (2000) 141:3956–64. doi: 10.1210/endo.141.11.7739</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/endo.141.11.7739</ArticleId><ArticleId IdType="pubmed">11089525</ArticleId></ArticleIdList></Reference><Reference><Citation>Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. (2003) 10:1165–77. doi: 10.1038/sj.cdd.4401285</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/sj.cdd.4401285</ArticleId><ArticleId IdType="pubmed">14502240</ArticleId></ArticleIdList></Reference><Reference><Citation>Palui R, Pramanik S, Mondal S, Ray S. Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus. World J Diabetes. (2021) 12:706–29. doi: 10.4239/wjd.v12.i6.706</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i6.706</ArticleId><ArticleId IdType="pmc">PMC8192255</ArticleId><ArticleId IdType="pubmed">34168723</ArticleId></ArticleIdList></Reference><Reference><Citation>Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, et al. . Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. (2017) 13:208–19. doi: 10.1038/nrendo.2016.153</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2016.153</ArticleId><ArticleId IdType="pubmed">27658727</ArticleId></ArticleIdList></Reference><Reference><Citation>Neumann T, Lodes S, Kastner B, Franke S, Kiehntopf M, Lehmann T, et al. . High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. (2014) 25:1527–33. doi: 10.1007/s00198-014-2631-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00198-014-2631-7</ArticleId><ArticleId IdType="pubmed">24599273</ArticleId></ArticleIdList></Reference><Reference><Citation>Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, et al. . Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int. (2012) 91:286–96. doi: 10.1007/s00223-012-9641-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00223-012-9641-2</ArticleId><ArticleId IdType="pubmed">22903508</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JH, Kim YY, Kim SJ. High glucose inhibits gene expression of tyrosyl-tRNA synthetase in osteoblast cells. Methods Find Exp Clin Pharmacol. (2009) 31:639–44. doi: 10.1358/mf.2009.31.10.1441114</Citation><ArticleIdList><ArticleId IdType="doi">10.1358/mf.2009.31.10.1441114</ArticleId><ArticleId IdType="pubmed">20140272</ArticleId></ArticleIdList></Reference><Reference><Citation>Hein GE. Glycation endproducts in osteoporosis–is there a pathophysiologic importance? Clin Chim Acta. (2006) 371:32–6. doi: 10.1016/j.cca.2006.03.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cca.2006.03.017</ArticleId><ArticleId IdType="pubmed">16777084</ArticleId></ArticleIdList></Reference><Reference><Citation>Merker M, Felder M, Gueissaz L, Bolliger R, Tribolet P, Kagi-Braun N, et al. . Bilz S et al: Association of Baseline Inflammation With Effectiveness of Nutritional Support Among Patients With Disease-Related Malnutrition: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open. (2020) 3:e200663. doi: 10.1001/jamanetworkopen.2020.0663</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamanetworkopen.2020.0663</ArticleId><ArticleId IdType="pmc">PMC7064875</ArticleId><ArticleId IdType="pubmed">32154887</ArticleId></ArticleIdList></Reference><Reference><Citation>Aldhwayan MM, Al-Najim W, Ruban A, Glaysher MA, Johnson B, Chhina N, et al. . Byrne JP et al: Does Bypass of the Proximal Small Intestine Impact Food Intake, Preference, and Taste Function in Humans? An Experimental Medicine Study Using the Duodenal-Jejunal Bypass Liner. Nutrients. (2022) 14:2141. doi: 10.3390/nu14102141</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14102141</ArticleId><ArticleId IdType="pmc">PMC9145649</ArticleId><ArticleId IdType="pubmed">35631283</ArticleId></ArticleIdList></Reference><Reference><Citation>Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. (2004) 17:432–7. doi: 10.1111/j.0894-0959.2004.17603.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.0894-0959.2004.17603.x</ArticleId><ArticleId IdType="pubmed">15660573</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. . Odegard PS et al: Diabetes in older adults. Diabetes Care. (2012) 35:2650–64. doi: 10.2337/dc12-1801</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc12-1801</ArticleId><ArticleId IdType="pmc">PMC3507610</ArticleId><ArticleId IdType="pubmed">23100048</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian X, Qu Z, Sun Y, Zhang B. Association between the advanced lung cancer inflammation index and all-cause and cardiovascular mortality in patients with RA: Insights from NHANES data analysis. Heliyon. (2024) 10:e33673. doi: 10.1016/j.heliyon.2024.e33673</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.heliyon.2024.e33673</ArticleId><ArticleId IdType="pmc">PMC11283113</ArticleId><ArticleId IdType="pubmed">39071694</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Y, Guan M, Wang R, Wang X. Relationship between advanced lung cancer inflammation index and long-term all-cause, cardiovascular, and cancer mortality among type 2 diabetes mellitus patients: NHANES, 1999-2018. Front Endocrinol (Lausanne). (2023) 14:1298345. doi: 10.3389/fendo.2023.1298345</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1298345</ArticleId><ArticleId IdType="pmc">PMC10726345</ArticleId><ArticleId IdType="pubmed">38111710</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang G, Chen X, Chen Y, Liu W, Chen C, Song W, et al. . Causal relationship between type 2 diabetes mellitus and bone mineral density: a Mendelian randomization study in an East Asian population. Osteoporos Int. (2023) 34:1719–27. doi: 10.1007/s00198-023-06807-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00198-023-06807-6</ArticleId><ArticleId IdType="pmc">PMC10511588</ArticleId><ArticleId IdType="pubmed">37306802</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheu A, Greenfield JR, White CP, Center JR. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab. (2022) 33:333–44. doi: 10.1016/j.tem.2022.02.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tem.2022.02.006</ArticleId><ArticleId IdType="pubmed">35307247</ArticleId></ArticleIdList></Reference><Reference><Citation>Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. (2014) 9:181–218. doi: 10.1146/annurev-pathol-020712-164023</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-pathol-020712-164023</ArticleId><ArticleId IdType="pmc">PMC4277181</ArticleId><ArticleId IdType="pubmed">24050624</ArticleId></ArticleIdList></Reference><Reference><Citation>Wirsdorfer F, Jendrossek V. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung. Front Immunol. (2016) 7:591. doi: 10.3389/fimmu.2016.00591</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2016.00591</ArticleId><ArticleId IdType="pmc">PMC5155013</ArticleId><ArticleId IdType="pubmed">28018357</ArticleId></ArticleIdList></Reference><Reference><Citation>Nie YZ, Yan ZQ, Yin H, Shan LH, Wang JH, Wu QH. Osteosarcopenic obesity and its components-osteoporosis, sarcopenia, and obesity-are associated with blood cell count-derived inflammation indices in older Chinese people. BMC Geriatr. (2022) 22:532. doi: 10.1186/s12877-022-03225-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12877-022-03225-x</ArticleId><ArticleId IdType="pmc">PMC9238016</ArticleId><ArticleId IdType="pubmed">35764967</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen S, Sun X, Jin J, Zhou G, Li Z. Association between inflammatory markers and bone mineral density: a cross-sectional study from NHANES 2007-2010. J Orthop Surg Res. (2023) 18:305. doi: 10.1186/s13018-023-03795-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13018-023-03795-5</ArticleId><ArticleId IdType="pmc">PMC10108543</ArticleId><ArticleId IdType="pubmed">37069682</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu YC, Yang TI, Huang SW, Kuo YJ, Chen YP. Associations of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with osteoporosis: A meta-analysis. Diagnostics (Basel). (2022) 12:2968. doi: 10.3390/diagnostics12122968</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/diagnostics12122968</ArticleId><ArticleId IdType="pmc">PMC9776713</ArticleId><ArticleId IdType="pubmed">36552975</ArticleId></ArticleIdList></Reference><Reference><Citation>Lechner J, Rudi T, von Baehr V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: a review of known and poorly understood inflammatory patterns in osteonecrosis. Clin Cosmet Investig Dent. (2018) 10:251–62. doi: 10.2147/CCIDE.S184498</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/CCIDE.S184498</ArticleId><ArticleId IdType="pmc">PMC6233471</ArticleId><ArticleId IdType="pubmed">30519117</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu D, Zhu Y, Chen W, Li J, Zhao K, Zhang J, et al. . Relationship between the inflammation/immune indexes and deep venous thrombosis (DVT) incidence rate following tibial plateau fractures. J Orthop Surg Res. (2020) 15:241. doi: 10.1186/s13018-020-01765-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13018-020-01765-9</ArticleId><ArticleId IdType="pmc">PMC7331237</ArticleId><ArticleId IdType="pubmed">32616051</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee SH, Ryu SY, Park J, Shin MH, Han MA, Choi SW. The relationship of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio with bone mineral density in korean postmenopausal women. Chonnam Med J. (2019) 55:150–5. doi: 10.4068/cmj.2019.55.3.150</Citation><ArticleIdList><ArticleId IdType="doi">10.4068/cmj.2019.55.3.150</ArticleId><ArticleId IdType="pmc">PMC6769246</ArticleId><ArticleId IdType="pubmed">31598472</ArticleId></ArticleIdList></Reference><Reference><Citation>Iking-Konert C, Ostendorf B, Sander O, Jost M, Wagner C, Joosten L, et al. . Transdifferentiation of polymorphonuclear neutrophils to dendritic-like cells at the site of inflammation in rheumatoid arthritis: evidence for activation by T cells. Ann Rheum Dis. (2005) 64:1436–42. doi: 10.1136/ard.2004.034132</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/ard.2004.034132</ArticleId><ArticleId IdType="pmc">PMC1755243</ArticleId><ArticleId IdType="pubmed">15778239</ArticleId></ArticleIdList></Reference><Reference><Citation>Afshinnia F, Wong KK, Sundaram B, Ackermann RJ, Pennathur S. Hypoalbuminemia and osteoporosis: reappraisal of a controversy. J Clin Endocrinol Metab. (2016) 101:167–75. doi: 10.1210/jc.2015-3212</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2015-3212</ArticleId><ArticleId IdType="pmc">PMC4701840</ArticleId><ArticleId IdType="pubmed">26600169</ArticleId></ArticleIdList></Reference><Reference><Citation>Afshinnia F, Pennathur S. Association of hypoalbuminemia with osteoporosis: analysis of the national health and nutrition examination survey. J Clin Endocrinol Metab. (2016) 101:2468–74. doi: 10.1210/jc.2016-1099</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2016-1099</ArticleId><ArticleId IdType="pmc">PMC4891797</ArticleId><ArticleId IdType="pubmed">27144935</ArticleId></ArticleIdList></Reference><Reference><Citation>Abu-Amer Y. NF-kappaB signaling and bone resorption. Osteoporos Int. (2013) 24:2377–86. doi: 10.1007/s00198-013-2313-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00198-013-2313-x</ArticleId><ArticleId IdType="pmc">PMC3884829</ArticleId><ArticleId IdType="pubmed">23468073</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng CM, Wu CC, Lu CL, Hou YC, Wu MS, Hsu YH, et al. . Hypoalbuminemia differently affects the serum bone turnover markers in hemodialysis patients. Int J Med Sci. (2019) 16:1583–92. doi: 10.7150/ijms.39158</Citation><ArticleIdList><ArticleId IdType="doi">10.7150/ijms.39158</ArticleId><ArticleId IdType="pmc">PMC6909808</ArticleId><ArticleId IdType="pubmed">31839746</ArticleId></ArticleIdList></Reference><Reference><Citation>Coin A, Sergi G, Beninca P, Lupoli L, Cinti G, Ferrara L, et al. . Bone mineral density and body composition in underweight and normal elderly subjects. Osteoporos Int. (2000) 11:1043–50. doi: 10.1007/s001980070026</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s001980070026</ArticleId><ArticleId IdType="pubmed">11256896</ArticleId></ArticleIdList></Reference><Reference><Citation>Li K, Cao B, Wang X, Chai T, Ke J, Zhao D. Sex differences in the non-linear association between BMI and LDL cholesterol in type 2 diabetes. Front Endocrinol (Lausanne). (2023) 14:1180012. doi: 10.3389/fendo.2023.1180012</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1180012</ArticleId><ArticleId IdType="pmc">PMC10360932</ArticleId><ArticleId IdType="pubmed">37484947</ArticleId></ArticleIdList></Reference><Reference><Citation>Khosla S, Samakkarnthai P, Monroe DG, Farr JN. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol. (2021) 17:685–97. doi: 10.1038/s41574-021-00555-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-021-00555-5</ArticleId><ArticleId IdType="pmc">PMC8605611</ArticleId><ArticleId IdType="pubmed">34518671</ArticleId></ArticleIdList></Reference><Reference><Citation>Popov SS, Kryl’skii ED, Shulgin KK, Raskina EA, Popova TN, Pashkov AN, et al. . Inflammation is associated with impairment of oxidative status, carbohydrate and lipid metabolism in type 2 diabetes complicated by non-alcoholic fatty liver disease. Minerva Endocrinol (Torino). (2022) 47:304–13. doi: 10.23736/S2724-6507.20.03257-5</Citation><ArticleIdList><ArticleId IdType="doi">10.23736/S2724-6507.20.03257-5</ArticleId><ArticleId IdType="pubmed">35195377</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. Naunyn Schmiedebergs Arch Pharmacol. (2024) 397:8421–43. doi: 10.1007/s00210-024-03204-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00210-024-03204-6</ArticleId><ArticleId IdType="pubmed">38861011</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. (2020) 152:116–41. doi: 10.1016/j.freeradbiomed.2020.02.025</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.freeradbiomed.2020.02.025</ArticleId><ArticleId IdType="pubmed">32156524</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in bone remodeling: A regulator of oxidative stress. Front Endocrinol (Lausanne). (2022) 13:898634. doi: 10.3389/fendo.2022.898634</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2022.898634</ArticleId><ArticleId IdType="pmc">PMC9279723</ArticleId><ArticleId IdType="pubmed">35846332</ArticleId></ArticleIdList></Reference><Reference><Citation>Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int. (2008) 28:317–21. doi: 10.1007/s00296-007-0452-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00296-007-0452-0</ArticleId><ArticleId IdType="pubmed">17823800</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39655344</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>The causal relationship between type 2 diabetes mellitus and isolated REM sleep behavior disorder: results from multivariable and network Mendelian randomization analysis.</ArticleTitle><Pagination><StartPage>1408053</StartPage><MedlinePgn>1408053</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1408053</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1408053</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="UNASSIGNED">To investigate the causal relationship between type 2 diabetes mellitus (T2DM, exposure) and isolated REM sleep behavior disorder (iRBD, outcome).</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Genome-wide association study (GWAS) data for iRBD comprised 9,447 samples, including 1,061 iRBD cases from the International RBD Study Group. Initially, we performed linkage disequilibrium score regression (LDSC) to explore the genetic correlation between T2DM and iRBD. Then the two-sample univariate MR (UVMR) analysis was conducted to examine the effects of T2DM and blood sugar metabolism-related factors on iRBD. Subsequently, we applied multivariable MR (MVMR) methods to further adjust for confounders. Lastly, we executed a network MR analysis, with cytokines and immune cell characteristics as potential mediators, aiming to investigate indirect effect of T2DM on iRBD.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Results from LDSC suggest a genetic correlation between T2DM and iRBD (rg=0.306, P=0.029). UVMR analysis indicates that both T2DM (Odds Ratio [95% Confidence Interval] = 1.19 [1.03, 1.37], P = 0.017) and high blood glucose levels (1.55 [1.04, 2.30], P = 0.032) are risk factors for iRBD. Even after adjusting for confounders in MVMR, the association between T2DM and iRBD remains robust. Finally, results from network MR analysis suggest that T2DM may indirectly promote the development of iRBD by reducing levels of Stromal Cell-Derived Factor 2 in circulation and by increasing BAFF-receptor expression in IgD- CD38- B cells.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">T2DM may promote the onset of iRBD by influencing immune-inflammatory responses. Our findings provide valuable insights and directions for understanding the pathogenesis of iRBD, identifying high-risk groups, and discovering new therapeutic targets.</AbstractText><CopyrightInformation>Copyright © 2024 Zhang, Li, Liu, Zhang, Zhao and Li.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Ru-Yu</ForeName><Initials>RY</Initials><AffiliationInfo><Affiliation>Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jin-Yu</ForeName><Initials>JY</Initials><AffiliationInfo><Affiliation>Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yu-Ning</ForeName><Initials>YN</Initials><AffiliationInfo><Affiliation>Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Zi-Xuan</ForeName><Initials>ZX</Initials><AffiliationInfo><Affiliation>Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Jie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Fu-Jia</ForeName><Initials>FJ</Initials><AffiliationInfo><Affiliation>Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>25</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="Y">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020187" MajorTopicYN="Y">REM Sleep Behavior Disorder</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Mendelian randomization</Keyword><Keyword MajorTopicYN="N">causal association</Keyword><Keyword MajorTopicYN="N">genetic correlation</Keyword><Keyword MajorTopicYN="N">isolated REM sleep behavior disorder</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>4</Hour><Minute>40</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39655344</ArticleId><ArticleId IdType="pmc">PMC11625559</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1408053</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, et al. . REM sleep behaviour disorder. Nat Rev Dis Primers. (2018) 4:19. doi: 10.1038/s41572-018-0016-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41572-018-0016-5</ArticleId><ArticleId IdType="pubmed">30166532</ArticleId></ArticleIdList></Reference><Reference><Citation>Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med. (2013) 14:744–8. doi: 10.1016/j.sleep.2012.10.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sleep.2012.10.009</ArticleId><ArticleId IdType="pubmed">23347909</ArticleId></ArticleIdList></Reference><Reference><Citation>Iranzo A, Fernández-Arcos A, Tolosa E, Serradell M, Molinuevo JL, Valldeoriola F, et al. . Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PloS One. (2014) 9:e89741. doi: 10.1371/journal.pone.0089741</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0089741</ArticleId><ArticleId IdType="pmc">PMC3935943</ArticleId><ArticleId IdType="pubmed">24587002</ArticleId></ArticleIdList></Reference><Reference><Citation>Postuma RB, Gagnon JF, Bertrand JA, Génier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology. (2015) 84:1104–13. doi: 10.1212/WNL.0000000000001364</Citation><ArticleIdList><ArticleId IdType="doi">10.1212/WNL.0000000000001364</ArticleId><ArticleId IdType="pmc">PMC4371408</ArticleId><ArticleId IdType="pubmed">25681454</ArticleId></ArticleIdList></Reference><Reference><Citation>De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: A record-linkage cohort study. Neurology. (2018) 91:e139–42. doi: 10.1212/WNL.0000000000005771</Citation><ArticleIdList><ArticleId IdType="doi">10.1212/WNL.0000000000005771</ArticleId><ArticleId IdType="pubmed">29898968</ArticleId></ArticleIdList></Reference><Reference><Citation>Chung SJ, Jeon S, Yoo HS, Kim G, Oh JS, Kim JS, et al. . Detrimental effect of type 2 diabetes mellitus in a large case series of Parkinson's disease. Parkinsonism Relat Disord. (2019) 64:54–9. doi: 10.1016/j.parkreldis.2018.08.023</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.parkreldis.2018.08.023</ArticleId><ArticleId IdType="pubmed">30193817</ArticleId></ArticleIdList></Reference><Reference><Citation>Yue X, Li H, Yan H, Zhang P, Chang L, Li T. Risk of parkinson disease in diabetes mellitus: an updated meta-analysis of population-based cohort studies. Med (Baltimore). (2016) 95:e3549. doi: 10.1097/MD.0000000000003549</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000003549</ArticleId><ArticleId IdType="pmc">PMC4863785</ArticleId><ArticleId IdType="pubmed">27149468</ArticleId></ArticleIdList></Reference><Reference><Citation>Ray Dorsey E, Elbaz A, Nichols E, Abbasi N, Abd-Allah F, Abdelalim A, et al. . Global, regional, and national burden of Parkinson's disease 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. (2018) 17:939–53. doi: 10.1016/S1474-4422(18)30295-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1474-4422(18)30295-3</ArticleId><ArticleId IdType="pmc">PMC6191528</ArticleId><ArticleId IdType="pubmed">30287051</ArticleId></ArticleIdList></Reference><Reference><Citation>Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. . Prevalence of Parkinson's disease across North America. NPJ Parkinsons Dis. (2018) 4:21. doi: 10.1038/s41531-018-0058-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41531-018-0058-0</ArticleId><ArticleId IdType="pmc">PMC6039505</ArticleId><ArticleId IdType="pubmed">30003140</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng CK, Tsao YC, Su YC, Sung FC, Tai HC, Kung WM. Metabolic risk factors of alzheimer's disease, dementia with lewy bodies, and normal elderly: A population-based study. Behav Neurol. (2018) 2018:8312346. doi: 10.1155/2018/8312346</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2018/8312346</ArticleId><ArticleId IdType="pmc">PMC6008802</ArticleId><ArticleId IdType="pubmed">29971140</ArticleId></ArticleIdList></Reference><Reference><Citation>Javanshiri K, Haglund M, Englund E. Cardiovascular disease, diabetes mellitus, and hypertension in lewy body disease: A comparison with other dementia disorders. J Alzheimers Dis. (2019) 71:851–9. doi: 10.3233/JAD-190485</Citation><ArticleIdList><ArticleId IdType="doi">10.3233/JAD-190485</ArticleId><ArticleId IdType="pmc">PMC6839595</ArticleId><ArticleId IdType="pubmed">31450500</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez-Valbuena I, Amat-Villegas I, Valenti-Azcarate R, Carmona-Abellan MDM, Marcilla I, Tuñon MT, et al. . Interaction of amyloidogenic proteins in pancreatic β cells from subjects with synucleinopathies. Acta Neuropathol. (2018) 135:877–86. doi: 10.1007/s00401-018-1832-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00401-018-1832-0</ArticleId><ArticleId IdType="pubmed">29536165</ArticleId></ArticleIdList></Reference><Reference><Citation>Horvath I, Wittung-Stafshede P. Cross-talk between amyloidogenic proteins in type-2 diabetes and Parkinson's disease. Proc Natl Acad Sci U.S.A. (2016) 113:12473–7. doi: 10.1073/pnas.1610371113</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.1610371113</ArticleId><ArticleId IdType="pmc">PMC5098634</ArticleId><ArticleId IdType="pubmed">27791129</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A new treatment strategy for parkinson's disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. (2017) 26:1560–71. doi: 10.1177/0963689717721234</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0963689717721234</ArticleId><ArticleId IdType="pmc">PMC5680957</ArticleId><ArticleId IdType="pubmed">29113464</ArticleId></ArticleIdList></Reference><Reference><Citation>Lv YQ, Yuan L, Sun Y, Dou HW, Su JH, Hou ZP, et al. . Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in a Parkinson's disease mouse model. Transl Neurodegener. (2022) 11:14. doi: 10.1186/s40035-022-00288-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40035-022-00288-z</ArticleId><ArticleId IdType="pmc">PMC8900445</ArticleId><ArticleId IdType="pubmed">35255986</ArticleId></ArticleIdList></Reference><Reference><Citation>Krohn L, Heilbron K, Blauwendraat C, Reynolds RH, Yu E, Senkevich K, et al. . Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat Commun. (2022) 13:7496. doi: 10.1038/s41467-022-34732-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-022-34732-5</ArticleId><ArticleId IdType="pmc">PMC9722930</ArticleId><ArticleId IdType="pubmed">36470867</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong JC, Li J, Pavlova M, Chen S, Wu A, Wu S, et al. . Risk factors for probable REM sleep behavior disorder: A community-based study. Neurology. (2016) 86:1306–12. doi: 10.1212/WNL.0000000000002414</Citation><ArticleIdList><ArticleId IdType="doi">10.1212/WNL.0000000000002414</ArticleId><ArticleId IdType="pmc">PMC4826335</ArticleId><ArticleId IdType="pubmed">26819459</ArticleId></ArticleIdList></Reference><Reference><Citation>Haba-Rubio J, Frauscher B, Marques-Vidal P, Toriel J, Tobback N, Andries D, et al. . Prevalence and determinants of rapid eye movement sleep behavior disorder in the general population. Sleep. (2018) 41(2):zsx197. doi: 10.1093/sleep/zsx197</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/sleep/zsx197</ArticleId><ArticleId IdType="pubmed">29216391</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. (2003) 32:1–22.doi: 10.1093/ije/dyg070</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyg070</ArticleId><ArticleId IdType="pubmed">12689998</ArticleId></ArticleIdList></Reference><Reference><Citation>Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. (2008) 27:1133–63. doi: 10.1002/sim.v27:8</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/sim.v27:8</ArticleId><ArticleId IdType="pubmed">17886233</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. (2015) 30:543–52. doi: 10.1007/s10654-015-0011-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10654-015-0011-z</ArticleId><ArticleId IdType="pmc">PMC4516908</ArticleId><ArticleId IdType="pubmed">25773750</ArticleId></ArticleIdList></Reference><Reference><Citation>Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology. (2020) 28:345–62. doi: 10.1007/s10787-019-00663-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10787-019-00663-9</ArticleId><ArticleId IdType="pubmed">31707555</ArticleId></ArticleIdList></Reference><Reference><Citation>Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol. (2020) 11:1582. doi: 10.3389/fimmu.2020.01582</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2020.01582</ArticleId><ArticleId IdType="pmc">PMC7387426</ArticleId><ArticleId IdType="pubmed">32793223</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Yang Y, Zhao A, Luo N, Niu M, Kang W, et al. . Parkinson's disease peripheral immune biomarker profile: a multicentre, cross-sectional and longitudinal study. J Neuroinflamm. (2022) 19:116. doi: 10.1186/s12974-022-02481-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12974-022-02481-3</ArticleId><ArticleId IdType="pmc">PMC9131564</ArticleId><ArticleId IdType="pubmed">35610646</ArticleId></ArticleIdList></Reference><Reference><Citation>Stokholm MG, Iranzo A, Østergaard K, Serradell M, Otto M, Svendsen KB, et al. . Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol. (2017) 16:789–96. doi: 10.1016/S1474-4422(17)30173-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1474-4422(17)30173-4</ArticleId><ArticleId IdType="pubmed">28684245</ArticleId></ArticleIdList></Reference><Reference><Citation>Farmen K, Nissen SK, Stokholm MG, Iranzo A, Østergaard K, Serradell M, et al. . Monocyte markers correlate with immune and neuronal brain changes in REM sleep behavior disorder. Proc Natl Acad Sci U.S.A. (2021) 118. doi: 10.1073/pnas.2020858118</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.2020858118</ArticleId><ArticleId IdType="pmc">PMC7958435</ArticleId><ArticleId IdType="pubmed">33658371</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng Y, Li Y, Cai H, Kou W, Yang C, Li S, et al. . Alterations of peripheral lymphocyte subsets in isolated rapid eye movement sleep behavior disorder. Mov Disord. (2024) 39:1179–89. doi: 10.1002/mds.29798</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/mds.29798</ArticleId><ArticleId IdType="pubmed">38529776</ArticleId></ArticleIdList></Reference><Reference><Citation>Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, Vanderweele TJ, et al. . Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. Bmj. (2021) 375:n2233. doi: 10.1136/bmj.n2233</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.n2233</ArticleId><ArticleId IdType="pmc">PMC8546498</ArticleId><ArticleId IdType="pubmed">34702754</ArticleId></ArticleIdList></Reference><Reference><Citation>Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. . Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. (2018) 9:2941. doi: 10.1038/s41467-018-04951-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-018-04951-w</ArticleId><ArticleId IdType="pmc">PMC6063971</ArticleId><ArticleId IdType="pubmed">30054458</ArticleId></ArticleIdList></Reference><Reference><Citation>Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. . LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. (2015) 47:291–5. doi: 10.1038/ng.3211</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3211</ArticleId><ArticleId IdType="pmc">PMC4495769</ArticleId><ArticleId IdType="pubmed">25642630</ArticleId></ArticleIdList></Reference><Reference><Citation>Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. . An atlas of genetic correlations across human diseases and traits. Nat Genet. (2015) 47:1236–41. doi: 10.1038/ng.3406</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3406</ArticleId><ArticleId IdType="pmc">PMC4797329</ArticleId><ArticleId IdType="pubmed">26414676</ArticleId></ArticleIdList></Reference><Reference><Citation>Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. . Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. (2015) 47:1228–35. doi: 10.1038/ng.3404</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3404</ArticleId><ArticleId IdType="pmc">PMC4626285</ArticleId><ArticleId IdType="pubmed">26414678</ArticleId></ArticleIdList></Reference><Reference><Citation>Gazal S, Finucane HK, Furlotte NA, Loh PR, Palamara PF, Liu X, et al. . Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat Genet. (2017) 49:1421–7. doi: 10.1038/ng.3954</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3954</ArticleId><ArticleId IdType="pmc">PMC6133304</ArticleId><ArticleId IdType="pubmed">28892061</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. . LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. (2017) 33:272–9. doi: 10.1093/bioinformatics/btw613</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btw613</ArticleId><ArticleId IdType="pmc">PMC5542030</ArticleId><ArticleId IdType="pubmed">27663502</ArticleId></ArticleIdList></Reference><Reference><Citation>Park S. A causal and inverse relationship between plant-based diet intake and in a two-sample mendelian randomization study. Foods. (2023) 12. doi: 10.3390/foods12030545</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/foods12030545</ArticleId><ArticleId IdType="pmc">PMC9914273</ArticleId><ArticleId IdType="pubmed">36766075</ArticleId></ArticleIdList></Reference><Reference><Citation>Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. . Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. (2013) 45:427e1–2. doi: 10.1038/ng.2528</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.2528</ArticleId><ArticleId IdType="pmc">PMC4006270</ArticleId><ArticleId IdType="pubmed">23535734</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. . Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. (2012) 21:223–42. doi: 10.1177/0962280210394459</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0962280210394459</ArticleId><ArticleId IdType="pmc">PMC3917707</ArticleId><ArticleId IdType="pubmed">21216802</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang M, Yan W, Zhang Y, Lu Z, Lu T, Zhang D, et al. . Phosphodiesterase and psychiatric disorders: a two-sample Mendelian randomization study. J Transl Med. (2023) 21:560. doi: 10.1186/s12967-023-04368-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12967-023-04368-0</ArticleId><ArticleId IdType="pmc">PMC10441701</ArticleId><ArticleId IdType="pubmed">37605207</ArticleId></ArticleIdList></Reference><Reference><Citation>Kang SH, Yoon IY, Lee SD, Han JW, Kim TH, Kim KW. REM sleep behavior disorder in the Korean elderly population: prevalence and clinical characteristics. Sleep. (2013) 36:1147–52. doi: 10.5665/sleep.2874</Citation><ArticleIdList><ArticleId IdType="doi">10.5665/sleep.2874</ArticleId><ArticleId IdType="pmc">PMC3700711</ArticleId><ArticleId IdType="pubmed">23904674</ArticleId></ArticleIdList></Reference><Reference><Citation>Postuma RB, Gagnon JF, Tuineaig M, Bertrand JA, Latreille V, Desjardins C, et al. . Antidepressants and REM sleep behavior disorder: isolated side effect or neurodegenerative signal? Sleep. (2013) 36:1579–85. doi: 10.5665/sleep.3102</Citation><ArticleIdList><ArticleId IdType="doi">10.5665/sleep.3102</ArticleId><ArticleId IdType="pmc">PMC3792373</ArticleId><ArticleId IdType="pubmed">24179289</ArticleId></ArticleIdList></Reference><Reference><Citation>Frauscher B, Jennum P, Ju YE, Postuma RB, Arnulf I, Cochen De Cock V, et al. . Comorbidity and medication in REM sleep behavior disorder: a multicenter case-control study. Neurology. (2014) 82:1076–9. doi: 10.1212/WNL.0000000000000247</Citation><ArticleIdList><ArticleId IdType="doi">10.1212/WNL.0000000000000247</ArticleId><ArticleId IdType="pmc">PMC3962997</ArticleId><ArticleId IdType="pubmed">24553425</ArticleId></ArticleIdList></Reference><Reference><Citation>Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. (2013) 42:1497–501. doi: 10.1093/ije/dyt179</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyt179</ArticleId><ArticleId IdType="pmc">PMC3807619</ArticleId><ArticleId IdType="pubmed">24159078</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. (2017) 28:30–42. doi: 10.1097/EDE.0000000000000559</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/EDE.0000000000000559</ArticleId><ArticleId IdType="pmc">PMC5133381</ArticleId><ArticleId IdType="pubmed">27749700</ArticleId></ArticleIdList></Reference><Reference><Citation>Xue H, Shen X, Pan W. Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. Am J Hum Genet. (2021) 108:1251–69. doi: 10.1016/j.ajhg.2021.05.014</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajhg.2021.05.014</ArticleId><ArticleId IdType="pmc">PMC8322939</ArticleId><ArticleId IdType="pubmed">34214446</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.2016.40.issue-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gepi.2016.40.issue-4</ArticleId><ArticleId IdType="pmc">PMC4849733</ArticleId><ArticleId IdType="pubmed">27061298</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. (2017) 46:1985–98. doi: 10.1093/ije/dyx102</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyx102</ArticleId><ArticleId IdType="pmc">PMC5837715</ArticleId><ArticleId IdType="pubmed">29040600</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyv080</ArticleId><ArticleId IdType="pmc">PMC4469799</ArticleId><ArticleId IdType="pubmed">26050253</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu J, Zhang S, Tian Y, Si H, Zeng Y, Wu Y, et al. . Genetic causal association between iron status and osteoarthritis: A two-sample mendelian randomization. Nutrients. (2022) 14. doi: 10.3390/nu14183683</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14183683</ArticleId><ArticleId IdType="pmc">PMC9501024</ArticleId><ArticleId IdType="pubmed">36145059</ArticleId></ArticleIdList></Reference><Reference><Citation>Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. (2018) 50:693–8. doi: 10.1038/s41588-018-0099-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-018-0099-7</ArticleId><ArticleId IdType="pmc">PMC6083837</ArticleId><ArticleId IdType="pubmed">29686387</ArticleId></ArticleIdList></Reference><Reference><Citation>Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, et al. . Understanding the consequences of education inequality on cardiovascular disease: mendelian randomisation study. Bmj. (2019) 365:l1855. doi: 10.1136/bmj.l1855</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.l1855</ArticleId><ArticleId IdType="pmc">PMC6529852</ArticleId><ArticleId IdType="pubmed">31122926</ArticleId></ArticleIdList></Reference><Reference><Citation>Bassil F, Canron MH, Vital A, Bezard E, Li Y, Greig NH, et al. . Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain. (2017) 140:1420–36. doi: 10.1093/brain/awx044</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/brain/awx044</ArticleId><ArticleId IdType="pmc">PMC6248513</ArticleId><ArticleId IdType="pubmed">28334990</ArticleId></ArticleIdList></Reference><Reference><Citation>Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr. (2017) 147:1468s–75s. doi: 10.3945/jn.116.240754</Citation><ArticleIdList><ArticleId IdType="doi">10.3945/jn.116.240754</ArticleId><ArticleId IdType="pmc">PMC5483960</ArticleId><ArticleId IdType="pubmed">28615382</ArticleId></ArticleIdList></Reference><Reference><Citation>Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. (2012) 30:49–59. doi: 10.1111/j.1755-5922.2010.00218.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1755-5922.2010.00218.x</ArticleId><ArticleId IdType="pubmed">20718759</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci. (2018) 12:930. doi: 10.3389/fnins.2018.00930</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnins.2018.00930</ArticleId><ArticleId IdType="pmc">PMC6297847</ArticleId><ArticleId IdType="pubmed">30618559</ArticleId></ArticleIdList></Reference><Reference><Citation>Nayak S, Soon SQ, Kunjal R, Ramadoo R, Baptiste O, Persad J, et al. . Relationship between adiponectin, inflammatory markers and obesity in type 2 diabetic and non-diabetic Trinidadians. Arch Physiol Biochem. (2009) 115:28–33. doi: 10.1080/13813450902758785</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/13813450902758785</ArticleId><ArticleId IdType="pubmed">19267280</ArticleId></ArticleIdList></Reference><Reference><Citation>Thundyil J, Lim KL. DAMPs and neurodegeneration. Ageing Res Rev. (2015) 24:17–28. doi: 10.1016/j.arr.2014.11.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.arr.2014.11.003</ArticleId><ArticleId IdType="pubmed">25462192</ArticleId></ArticleIdList></Reference><Reference><Citation>Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. (2018) 21:1359–69. doi: 10.1038/s41593-018-0242-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41593-018-0242-x</ArticleId><ArticleId IdType="pmc">PMC6817969</ArticleId><ArticleId IdType="pubmed">30258234</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun Y, Guo C, Yuan L, Li W, Wang ZY, Yue F, et al. . Cynomolgus monkeys with spontaneous type-2-diabetes-mellitus-like pathology develop alpha-synuclein alterations reminiscent of prodromal parkinson's disease and related diseases. Front Neurosci. (2020) 14:63. doi: 10.3389/fnins.2020.00063</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnins.2020.00063</ArticleId><ArticleId IdType="pmc">PMC7019001</ArticleId><ArticleId IdType="pubmed">32116510</ArticleId></ArticleIdList></Reference><Reference><Citation>Boeve BF. REM sleep behavior disorder: Updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann N Y Acad Sci. (2010) 1184:15–54. doi: 10.1111/j.1749-6632.2009.05115.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1749-6632.2009.05115.x</ArticleId><ArticleId IdType="pmc">PMC2902006</ArticleId><ArticleId IdType="pubmed">20146689</ArticleId></ArticleIdList></Reference><Reference><Citation>Gong W, Martin TA, Sanders AJ, Jiang A, Sun P, Jiang WG. Location, function and role of stromal cell−derived factors and possible implications in cancer (Review). Int J Mol Med. (2021) 47:435–43. doi: 10.3892/ijmm.2020.4811</Citation><ArticleIdList><ArticleId IdType="doi">10.3892/ijmm.2020.4811</ArticleId><ArticleId IdType="pmc">PMC7797432</ArticleId><ArticleId IdType="pubmed">33416125</ArticleId></ArticleIdList></Reference><Reference><Citation>Siragusa M, Fröhlich F, Park EJ, Schleicher M, Walther TC, Sessa WC. Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation. Sci Signal. (2015) 8:ra81. doi: 10.1126/scisignal.aaa2819</Citation><ArticleIdList><ArticleId IdType="doi">10.1126/scisignal.aaa2819</ArticleId><ArticleId IdType="pmc">PMC4790114</ArticleId><ArticleId IdType="pubmed">26286023</ArticleId></ArticleIdList></Reference><Reference><Citation>Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. (2013) 131:959–71. doi: 10.1016/j.jaci.2013.01.046</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jaci.2013.01.046</ArticleId><ArticleId IdType="pubmed">23465663</ArticleId></ArticleIdList></Reference><Reference><Citation>Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. (2018) 9:2285. doi: 10.3389/fimmu.2018.02285</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2018.02285</ArticleId><ArticleId IdType="pmc">PMC6186824</ArticleId><ArticleId IdType="pubmed">30349534</ArticleId></ArticleIdList></Reference><Reference><Citation>Lai H, Li Y, Zhang H, Hu J, Liao J, Su Y, et al. . exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res. (2022) 50:D118–d128. doi: 10.1093/nar/gkab1085</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nar/gkab1085</ArticleId><ArticleId IdType="pmc">PMC8728150</ArticleId><ArticleId IdType="pubmed">34918744</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, He X, Li Q, Lai H, Zhang H, Hu Z, et al. . EV-origin: Enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct Biotechnol J. (2020) 18:2851–9. doi: 10.1016/j.csbj.2020.10.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.csbj.2020.10.002</ArticleId><ArticleId IdType="pmc">PMC7588739</ArticleId><ArticleId IdType="pubmed">33133426</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, et al. . exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. (2018) 46:D106–d112. doi: 10.1093/nar/gkx891</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nar/gkx891</ArticleId><ArticleId IdType="pmc">PMC5753357</ArticleId><ArticleId IdType="pubmed">30053265</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39655252</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">2296-2565</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in public health</Title><ISOAbbreviation>Front Public Health</ISOAbbreviation></Journal><ArticleTitle>The practice, nature, and impact of nurse-led type 2 diabetic foot prevention services and educational programs in Sub-Saharan Africa: a scoping review.</ArticleTitle><Pagination><StartPage>1465750</StartPage><MedlinePgn>1465750</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1465750</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fpubh.2024.1465750</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">The objective of this study is to assess the scope of existing practice, nature, and impact of nurse-led type 2 diabetic foot prevention services and educational programmes in Sub-Saharan Africa (SSA).</AbstractText><AbstractText Label="INTRODUCTION" NlmCategory="UNASSIGNED">Type 2 diabetes mellitus (T2DM) in SSA imposes a heavy burden on current healthcare services. Complications such as foot ulcers can have a significant impact on patient care and healthcare resources. It is imperative to identify patients at risk of developing diabetic foot complications and empower them with diabetes self-management education and support from specialised foot clinics is crucial. However, the availability of such programmes and services in SSA is limited.</AbstractText><AbstractText Label="INCLUSION CRITERIA" NlmCategory="UNASSIGNED">Studies of nurse-led diabetic foot prevention services and/or educational programmes in low- or middle-income countries in SSA for adults with T2DM, written in English, between August 2013 and March 2024 were considered.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Following the standard Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for conducting and reporting scoping reviews, searches were conducted on four electronic databases (CINAHL, ProQuest, MEDLINE, and Scopus) and Google Scholar. The titles and abstracts were scrutinised. All eligible papers were retrieved and screened for full text.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The review included ten studies (across 14 papers), all of which focused on nurse-led diabetes self-management education (DSME) programmes in SSA. There are no specific educational programmes or services led by nurses that focus exclusively on diabetic foot prevention. The analysis highlighted the components of successful nurse-led DSMEs that led to positive glycaemic control and self-care behaviors, including the focus on behavior change and the DSME should be co-produced with service users. The theoretical aspects of the DSME include evidence-based, structured, interactive, culturally and linguistically appropriate group-based activities. The DSME should be delivered over a period of several weeks, and sessions should last between 1.5 and 2 h. Barriers to delivery and participation include the rainy season, stockouts, time and resources needed, and a DSME that meets diverse levels of literacy and education.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">There is a heightened need for nurse-led, co-produced, culturally congruent, frugal, and sustainable education interventions or programmes. There is also a need for diabetic foot screening and foot ulcer prevention services that can operate sustainably alongside these educational interventions through task-shifted, simple, and frugal initiatives.</AbstractText><CopyrightInformation>Copyright © 2024 Sajith, Ackers, Ackers-Johnson, Parker and Stephens.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sajith</LastName><ForeName>Rincy</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>School of Health and Society, University of Salford, Salford, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ackers</LastName><ForeName>Louise</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>School of Health and Society, University of Salford, Salford, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ackers-Johnson</LastName><ForeName>Simona</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Wear Rivers Trust, Durham, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Daniel J</ForeName><Initials>DJ</Initials><AffiliationInfo><Affiliation>School of Health and Society, University of Salford, Salford, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stephens</LastName><ForeName>Melanie</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Health and Society, University of Salford, Salford, United Kingdom.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>25</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Public Health</MedlineTA><NlmUniqueID>101616579</NlmUniqueID><ISSNLinking>2296-2565</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D017719" MajorTopicYN="Y">Diabetic Foot</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017954" MajorTopicYN="N" Type="Geographic">Africa South of the Sahara</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010353" MajorTopicYN="N">Patient Education as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057184" MajorTopicYN="N">Practice Patterns, Nurses'</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">LMIC</Keyword><Keyword MajorTopicYN="N">Sub-Saharan Africa</Keyword><Keyword MajorTopicYN="N">chronic disease management</Keyword><Keyword MajorTopicYN="N">diabetes self-management education (DSME)</Keyword><Keyword MajorTopicYN="N">foot prevention</Keyword><Keyword MajorTopicYN="N">nurse-led</Keyword><Keyword MajorTopicYN="N">public health</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>11</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>4</Hour><Minute>38</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39655252</ArticleId><ArticleId IdType="pmc">PMC11625785</ArticleId><ArticleId IdType="doi">10.3389/fpubh.2024.1465750</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>World Health Organisation (2023) Non-Communicable Diseases. Accessed 3 April 2024. Available at: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases</Citation></Reference><Reference><Citation>Federation ID. IDF Diabetes Atlas Brussels. Belgium: International Diabetes Federation; (2021).</Citation></Reference><Reference><Citation>Rigato M, Pizzol D, Tiago A, Putoto G, Avogaro A, Fadini GP. Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes Res Clin Pract. (2018) 142:63–73. doi: 10.1016/j.diabres.2018.05.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2018.05.016</ArticleId><ArticleId IdType="pubmed">29807105</ArticleId></ArticleIdList></Reference><Reference><Citation>Manne-Goehler J, Geldsetzer P, Agoudavi K, Andall-Brereton G, Aryal KK, Bicaba BW, et al. . Health system performance for people with diabetes in 28 low-and middle-income countries: a cross-sectional study of nationally representative surveys. PLoS Med. (2019) 16:e1002751. doi: 10.1371/journal.pmed.1002751, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1002751</ArticleId><ArticleId IdType="pmc">PMC6396901</ArticleId><ArticleId IdType="pubmed">30822339</ArticleId></ArticleIdList></Reference><Reference><Citation>Abbas ZG, Lutale JK, Bakker K, Baker N, Archibald LK. The ‘step by Step’Diabetic foot project in Tanzania: a model for improving patient outcomes in less-developed countries. Int Wound J. (2011) 8:169–75. doi: 10.1111/j.1742-481X.2010.00764.x, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1742-481X.2010.00764.x</ArticleId><ArticleId IdType="pmc">PMC7950840</ArticleId><ArticleId IdType="pubmed">21266010</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao F-F, Suhonen R, Koskinen S, Leino-Kilpi H. Theory-based self-management educational interventions on patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Adv Nurs. (2017) 73:812–33. doi: 10.1111/jan.13163, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jan.13163</ArticleId><ArticleId IdType="pubmed">27681948</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Robben MP, Amoakoh-Coleman M, Boateng D, Grobbee DE, Davies MJ, et al. . Structured diabetes self-management education and glycaemic control in low- and middle-income countries: a systematic review. Diabet Med. (2022) 39:e14812. doi: 10.1111/dme.14812, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14812</ArticleId><ArticleId IdType="pmc">PMC9539947</ArticleId><ArticleId IdType="pubmed">35179792</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Amoakoh-Coleman M, Barker MM, Iddi S, Hadjiconstantinou M, Davies M, et al. . Change in glycaemic control with structured diabetes self-management education in urban low-resource settings: multicentre randomised trial of effectiveness. BMC Health Serv Res. (2023) 23:199. doi: 10.1186/s12913-023-09188-y, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-023-09188-y</ArticleId><ArticleId IdType="pmc">PMC9957611</ArticleId><ArticleId IdType="pubmed">36829179</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Treat train retrain In: Task shifting: Global recommendations and guidelines. Geneva, Switzerland: WHO; (2007)</Citation></Reference><Reference><Citation>Kosgei RJ, Wools-Kaloustian KK, Braitstein P, Sidle JE, Sang E, Gitau JN, et al. . Task shifting in HIV clinics, Western Kenya. East Afr Med J. (2010) 87:299–303.</Citation><ArticleIdList><ArticleId IdType="pubmed">23451549</ArticleId></ArticleIdList></Reference><Reference><Citation>Zachariah R, Ford N, Philips M, Lynch S, Massaquoi M, Janssens V, et al. . Task shifting in HIV/AIDS: opportunities, challenges and proposed actions for Sub-Saharan Africa. Trans R Soc Trop Med Hyg. (2009) 103:549–58. doi: 10.1016/j.trstmh.2008.09.019, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.trstmh.2008.09.019</ArticleId><ArticleId IdType="pubmed">18992905</ArticleId></ArticleIdList></Reference><Reference><Citation>Some D, Edwards JK, Reid T, Van den Bergh R, Kosgei RJ, Wilkinson E, et al. . Task shifting the management of non-communicable diseases to nurses in Kibera, Kenya: does it work? PLoS One. (2016) 11:e0145634. doi: 10.1371/journal.pone.0145634, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0145634</ArticleId><ArticleId IdType="pmc">PMC4727908</ArticleId><ArticleId IdType="pubmed">26812079</ArticleId></ArticleIdList></Reference><Reference><Citation>Kavita K, Thakur JS, Ghai S, Narang T, Kaur R. Nurse-led interventions for prevention and control of noncommunicable diseases in low-and middle-income countries: a systematic review and meta-analysis. Int J Noncomm Dis. (2023) 8:4–13. doi: 10.4103/jncd.jncd_74_22</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/jncd.jncd_74_22</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumah E, Afriyie EK, Abuosi AA, Ankomah SE, Fusheini A, Otchere G. Influence of the model of care on the outcomes of diabetes self-management education program: a scoping review. J Diabetes Res. (2021) 2021:1–12. doi: 10.1155/2021/2969243, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2021/2969243</ArticleId><ArticleId IdType="pmc">PMC7914106</ArticleId><ArticleId IdType="pubmed">33688505</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Task shifting: Rational redistribution of tasks among health workforce teams. Global Recommendations and Guidelines: (2008) Available at: http://www.who.int.salford.idm.oclc.org/healthsystems/TTR-TaskShifting.pdf.</Citation></Reference><Reference><Citation>World Health Organization . (2007). Taks Shifting to Tackle Health Worker Shortages [Booklet no WHO/HSS/2007.03]. Available at: http://www.who.int/healthsystems/task_shifting_booklet.pdf</Citation></Reference><Reference><Citation>World Health Organization . (2012). WHO Recommendations: Optimizing Health Worker Roles to Improve Access to Key Maternal and Newborn Health Interventions through Task Shifting. Available at: http://apps.who.int/iris/bitstream/10665/77764/1/9789241504843_eng.pdf</Citation><ArticleIdList><ArticleId IdType="pubmed">23844452</ArticleId></ArticleIdList></Reference><Reference><Citation>Hall K.K., Nkya S.J. Diabetes Foot Screening in Rural Tanzania: Nurse-led Intervention Retrieved 10 July 2024. Available at: https://columbuspublishers.com/uploads/articles/202109042138472575849_ijnhcs_2021_68.pdf</Citation></Reference><Reference><Citation>Kuguyo O, Chirenda J, Chikwasha V, Mukona DM, Mageza A, Gwanzura L, et al. . Needs assessment of diabetic foot services in Zimbabwe. Diabetes Res Clin Pract. (2022) 188:109925. doi: 10.1016/j.diabres.2022.109925, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2022.109925</ArticleId><ArticleId IdType="pubmed">35577036</ArticleId></ArticleIdList></Reference><Reference><Citation>Manickuma P, Madiba T, Ramklass S. The effectiveness of diabetic foot-care education in a south African regional hospital: a randomised controlled trial. J Endocrinol Metab Diabetes S Afr. (2022) 27:20–31. doi: 10.1080/16089677.2021.1980972</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/16089677.2021.1980972</ArticleId></ArticleIdList></Reference><Reference><Citation>Bako KR, Reynolds AN, Sika-Paotonu D, Signal L, Mohammadnezhad M. Identifying factors which enhance the self-management of type 2 diabetes: a systematic review with thematic analysis. Global. J Health Sci. (2022) 15:1. doi: 10.5539/gjhs.v15n1p1</Citation><ArticleIdList><ArticleId IdType="doi">10.5539/gjhs.v15n1p1</ArticleId></ArticleIdList></Reference><Reference><Citation>Mokaya M, Kyallo F, Vangoitsenhoven R, Matthys C. Clinical and patient-centered implementation outcomes of mHealth interventions for type 2 diabetes in low-and-middle income countries: a systematic review. Int J Behav Nutr Phys Act. (2022) 19:1. doi: 10.1186/s12966-021-01238-0, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-021-01238-0</ArticleId><ArticleId IdType="pmc">PMC8734304</ArticleId><ArticleId IdType="pubmed">34991593</ArticleId></ArticleIdList></Reference><Reference><Citation>Correia JC, Lachat S, Lagger G, Chappuis F, Golay A, Beran D, et al. . Interventions targeting hypertension and diabetes mellitus at community and primary healthcare level in low-and middle-income countries: a scoping review. BMC Public Health. (2019) 19:1–20. doi: 10.1186/s12889-019-7842-6, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-019-7842-6</ArticleId><ArticleId IdType="pmc">PMC6873661</ArticleId><ArticleId IdType="pubmed">31752801</ArticleId></ArticleIdList></Reference><Reference><Citation>Munn Z, Pollock D, Khalil H, Alexander L, Mclnerney P, Godfrey C, et al. . What are scoping reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evid Synth. (2022) 20:950–2. doi: 10.11124/JBIES-21-00483, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.11124/JBIES-21-00483</ArticleId><ArticleId IdType="pubmed">35249995</ArticleId></ArticleIdList></Reference><Reference><Citation>Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Scoping reviews In: Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z, editors. JBI manual for evidence synthesis, vol. 2024: JBI; (2020)</Citation></Reference><Reference><Citation>Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. . PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. (2018) 169:467–73. doi: 10.7326/M18-0850, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/M18-0850</ArticleId><ArticleId IdType="pubmed">30178033</ArticleId></ArticleIdList></Reference><Reference><Citation>Dobrescu AI, Nussbaumer-Streit B, Klerings I, Wagner G, Persad E, Sommer I, et al. . Restricting evidence syntheses of interventions to English-language publications is a viable methodological shortcut for most medical topics: a systematic review. J Clin Epidemiol. (2021) 137:209–17. doi: 10.1016/j.jclinepi.2021.04.012, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jclinepi.2021.04.012</ArticleId><ArticleId IdType="pubmed">33933579</ArticleId></ArticleIdList></Reference><Reference><Citation>Afemikhe J, Chipps J. An evaluation of a multidisciplinary patient centred type 2 diabetes self-management education programme in Edo state, Nigeria. Africa J Nurs Midw. (2015) 17:165–79.</Citation></Reference><Reference><Citation>Amendezo E, Timothy DW, Karamuka V, Robinson B, Kavabushi P, Ntirenganya C, et al. . Effects of a lifestyle education program on glycemic control among patients with diabetes at Kigali university hospital, Rwanda: a randomized controlled trial. Diabetes Res Clin Pract. (2017) 126:129–37. doi: 10.1016/j.diabres.2017.02.001, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2017.02.001</ArticleId><ArticleId IdType="pubmed">28237859</ArticleId></ArticleIdList></Reference><Reference><Citation>Alaofè H, Yeo S, Okechukwu A, Magrath P, Amoussa Hounkpatin W, Ehiri J, et al. . Cultural considerations for the adaptation of a Diabetes self-management education program in Cotonou, Benin: lessons learned from a qualitative study. Int J Environ Res Public Health. (2021) 18:8376. doi: 10.3390/ijerph18168376, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph18168376</ArticleId><ArticleId IdType="pmc">PMC8393923</ArticleId><ArticleId IdType="pubmed">34444125</ArticleId></ArticleIdList></Reference><Reference><Citation>Bamuya C, Correia JC, Brady EM, Beran D, Harrington D, Damasceno A, et al. . Use of the socio-ecological model to explore factors that influence the implementation of a diabetes structured education programme (EXTEND project) inLilongwe, Malawi and Maputo, Mozambique: a qualitative study. BMC Public Health. (2021) 21:1355. doi: 10.1186/s12889-021-11338-y, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-021-11338-y</ArticleId><ArticleId IdType="pmc">PMC8268266</ArticleId><ArticleId IdType="pubmed">34238258</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Leung DYP, Suen LKP. Cultural adaptation and psychometric properties of the Diabetes quality of life scale in Afaan Oromoo among people living with type 2 Diabetes in Ethiopia. Int J Environ Res Public Health. (2021) 18:7435. doi: 10.3390/ijerph18147435, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph18147435</ArticleId><ArticleId IdType="pmc">PMC8305769</ArticleId><ArticleId IdType="pubmed">34299884</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Davies MJ, Khunti K, Schreder S, Stribling B, Hadjiconstantinou M. Cultural adaptation of a diabetes self-management education and support (DSMES) programme for two low resource urban settings in Ghana, during the COVID-19 era. BMC Health Serv Res. (2022) 22:996. doi: 10.1186/s12913-022-08390-8, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-022-08390-8</ArticleId><ArticleId IdType="pmc">PMC9354422</ArticleId><ArticleId IdType="pubmed">35932063</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Leung DYP, Suen LKP. Effects of family-based diabetes self-management education and support programme on support behaviour amongst adults with type 2 diabetes in Western Ethiopia. Sci Rep. (2023) 13:20867. doi: 10.1038/s41598-023-48049-w, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-023-48049-w</ArticleId><ArticleId IdType="pmc">PMC10682375</ArticleId><ArticleId IdType="pubmed">38012247</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Leung DYP, Suen LKP. Factors predicted quality of life of people with type 2 diabetes in western Ethiopia. PLoS One. (2023) 18:e0281716. doi: 10.1371/journal.pone.0281716, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0281716</ArticleId><ArticleId IdType="pmc">PMC9931092</ArticleId><ArticleId IdType="pubmed">36791135</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Suen LKP, Leung DYP. Effects of a culturally tailored, family-supported, community-based self management education and support programme on clinical outcomes among adults with type 2 diabetes in Western Ethiopia: a pilot randomised controlled trial. Diabet Med. (2023) 40:e15094. doi: 10.1111/dme.15094, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.15094</ArticleId><ArticleId IdType="pubmed">36995364</ArticleId></ArticleIdList></Reference><Reference><Citation>Brady EM, Collaborative E, Bamuya C, Beran D, Correia J, Crampin A, et al. . EXTending availability of self-management structured EducatioN programmes for people with type 2 Diabetes in low-to-middle income countries (EXTEND)-a feasibility study in Mozambique and Malawi. BMJ Open. (2021) 11:e047425. doi: 10.1136/bmjopen-2020-047425, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-047425</ArticleId><ArticleId IdType="pmc">PMC8458338</ArticleId><ArticleId IdType="pubmed">34548349</ArticleId></ArticleIdList></Reference><Reference><Citation>Essien O, Otu A, Umoh V, Enang O, Hicks JP, Walley J. Intensive patient education improves Glycaemic control in Diabetes compared to conventional education: a randomised controlled trial in a Nigerian tertiary care hospital. PLoS One. (2017) 12:e0168835. doi: 10.1371/journal.pone.0168835, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0168835</ArticleId><ArticleId IdType="pmc">PMC5207750</ArticleId><ArticleId IdType="pubmed">28045979</ArticleId></ArticleIdList></Reference><Reference><Citation>Emmanuel O, Chinonye N, Folasade A, Oluwatosin O, Mary A. Effect of nurse-led training on self-management of Diabetes among diabetic patients attending medical outpatient Clinic in General Hospital Odan, Lagos state, Nigeria. J Adv Med Med Res. (2017) 24:1–8. doi: 10.9734/JAMMR/2017/37694</Citation><ArticleIdList><ArticleId IdType="doi">10.9734/JAMMR/2017/37694</ArticleId></ArticleIdList></Reference><Reference><Citation>Lubega M, Ogwok J, Nabunya B, Mbalinda SN. Role of community-based health clubs in promoting patients’ health education for diabetes self-care management: an interventional qualitative study in a Ugandan urban setting. BMJ Open Quality. (2023) 12:e002473. doi: 10.1136/bmjoq-2023-002473, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjoq-2023-002473</ArticleId><ArticleId IdType="pmc">PMC10749056</ArticleId><ArticleId IdType="pubmed">38135300</ArticleId></ArticleIdList></Reference><Reference><Citation>Okafor C, Ezenduka P, Onyenekwe C, Ani K, Odira C. Effect of education-al intervention Programme on self-management practices of individuals with type 2 Diabetes mellitus in south-east. Nigeria Int J Diabetes Clin Res. (2021) 8:145. doi: 10.23937/2377-3634/1410145</Citation><ArticleIdList><ArticleId IdType="doi">10.23937/2377-3634/1410145</ArticleId></ArticleIdList></Reference><Reference><Citation>Okafor CN, Akosile CO, Nkechi CE, Okonkwo UP, Nwankwo CM, Okoronkwo IL, et al. . Effect of educational intervention programme on the health-related quality of life (HRQOL) of individuals with type 2 diabetes mellitus in south-east, Nigeria. BMC Endocr Disord. (2023) 23:75. doi: 10.1186/s12902-023-01329-y, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-023-01329-y</ArticleId><ArticleId IdType="pmc">PMC10080927</ArticleId><ArticleId IdType="pubmed">37029340</ArticleId></ArticleIdList></Reference><Reference><Citation>Okafor CN, Onyenekwe CC, Okonkwo UP, Umunnah JO, Okoro CC, Mbanuzuru AV, et al. . Effect of educational intervention program on self-efficacy of individuals with type 2 Diabetes mellitus in south-east, Nigeria. Nutr Metab Insights. (2023) 16:11786388231181965. doi: 10.1177/11786388231181965, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/11786388231181965</ArticleId><ArticleId IdType="pmc">PMC10291853</ArticleId><ArticleId IdType="pubmed">37377489</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamiru S, Dugassa M, Amsalu B, Bidira K, Bacha L, Tsegaye D. Effects of nurse-led diabetes self-management education on self-care knowledge and self-care behavior among adult patients with type 2 diabetes mellitus attending diabetes follow up clinic: a quasi-experimental study design. Int J Africa Nurs Sci. (2023) 18:100548. doi: 10.1016/j.ijans.2023.100548</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijans.2023.100548</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Leung DYP, Suen LKP. Nurse-led self-management education and support programme on self-management behaviour and quality of life among adults with type 2 diabetes: a pilot randomized controlled trial. Int J Nurs Pract. (2024) 30:e13245. doi: 10.1111/ijn.13245, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ijn.13245</ArticleId><ArticleId IdType="pubmed">38351899</ArticleId></ArticleIdList></Reference><Reference><Citation>Hailu FB, Hjortdahl P, Moen A. Nurse-led Diabetes self-management education improves clinical parameters in Ethiopia. Front Public Health. (2018) 6:302. doi: 10.3389/fpubh.2018.00302, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2018.00302</ArticleId><ArticleId IdType="pmc">PMC6206899</ArticleId><ArticleId IdType="pubmed">30406070</ArticleId></ArticleIdList></Reference><Reference><Citation>Hailu FB, Moen A, Hjortdahl P. Diabetes self-management education (DSME)—effect on knowledge, self-care behavior, and self-efficacy among type 2 Diabetes patients in Ethiopia: a controlled clinical trial. Diab Metab Syndr Obes. (2019) 12:2489–99. doi: 10.2147/DMSO.S223123, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S223123</ArticleId><ArticleId IdType="pmc">PMC6890192</ArticleId><ArticleId IdType="pubmed">31819574</ArticleId></ArticleIdList></Reference><Reference><Citation>Adams NN. Salami slicing: clarifying common misconceptions for social science early-career researchers. SN Soc Sci. (2022) 2:88. doi: 10.1007/s43545-022-00389-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s43545-022-00389-6</ArticleId></ArticleIdList></Reference><Reference><Citation>Bett S. J. (2019). Effectiveness of educational intervention on diabetic knowledge & HbA1c levels on Kenyan adults with T2DM (order no. 22587244). ProQuest Central; ProQuest Dissertations & Theses Global. (2291450186). Available at: https://www.proquest.com/dissertations-theses/effectiveness-educational-intervention-on/docview/2291450186/se-2</Citation></Reference><Reference><Citation>Pollock D, Peters MD, Khalil H, McInerney P, Alexander L, Tricco AC, et al. . Recommendations for the extraction, analysis, and presentation of results in scoping reviews. JBI Evid Synth. (2023) 21:520–32. doi: 10.11124/JBIES-22-00123</Citation><ArticleIdList><ArticleId IdType="doi">10.11124/JBIES-22-00123</ArticleId><ArticleId IdType="pubmed">36081365</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Amoakoh-Coleman M, Djobalar B, Grobbee DE, Adjei GO, Klipstein-Grobusch K. Diabetes self-management education interventions and self-management in low-resource settings; a mixed methods study. PLoS One. (2023) 18:e0286974. doi: 10.1371/journal.pone.0286974, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0286974</ArticleId><ArticleId IdType="pmc">PMC10348576</ArticleId><ArticleId IdType="pubmed">37450431</ArticleId></ArticleIdList></Reference><Reference><Citation>Skinner TC, Carey ME, Cradock S, Daly H, Davies MJ, Doherty Y, et al. . Diabetes education and self-management for ongoing and newly diagnosed (DESMOND): process modelling of pilot study. Patient Educ Couns. (2006) 64:369–77. doi: 10.1016/j.pec.2006.04.007, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pec.2006.04.007</ArticleId><ArticleId IdType="pubmed">17011154</ArticleId></ArticleIdList></Reference><Reference><Citation>Krichbaum K, Aarestad V, Buethe M. Exploring the connection between self-efficacy and effective diabetes self-f management. Diabetes Educ. (2003) 29:653–62. doi: 10.1177/014572170302900411</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/014572170302900411</ArticleId><ArticleId IdType="pubmed">13677176</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandura A, Walters RH. Social learning theory, vol. 1. Prentice hall: Englewood Cliffs, NJ; (1977).</Citation></Reference><Reference><Citation>Anderson R, Funnell M, Carlson A, Saleh-Statin N, Cradock S, Skinner TC. Facilitating self-care through empowerment. Psychol Diab Care. (2000):69–97. doi: 10.1002/0470846569.ch4</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/0470846569.ch4</ArticleId></ArticleIdList></Reference><Reference><Citation>Leventhal H, Brissette I, Leventhal EA. The common-sense model of self-regulation of health and illness In: The self-regulation of health and illness behaviour: Routledge; (2012). 43–66.</Citation></Reference><Reference><Citation>Rosenstock IM. The health belief model and preventive health behavior. Health Educ Monogr. (1974) 2:354–86. doi: 10.1177/109019817400200405</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/109019817400200405</ArticleId></ArticleIdList></Reference><Reference><Citation>Wagner EH, Austin BT, Davis C, Hindmarsh M, Schaefer J, Bonomi A. Improving chronic illness care: translating evidence into action. Health Aff. (2001) 20:64–78. doi: 10.1377/hlthaff.20.6.64</Citation><ArticleIdList><ArticleId IdType="doi">10.1377/hlthaff.20.6.64</ArticleId><ArticleId IdType="pubmed">11816692</ArticleId></ArticleIdList></Reference><Reference><Citation>International Diabetes Foundation (2006). Diabetes education training manual for sub Saharan Africa. International Diabetes Federation Africa region. Accessed 29 May 2024. Available at: https://www.worlddiabetesfoundation.org/what-we-do/projects/wdf02-0006/</Citation></Reference><Reference><Citation>American Diabetes, A . Standards of medical Care in Diabetes-2018 abridged for primary care providers. Clin Diabetes. (2018) 36:14–37. doi: 10.2337/cd17-0119, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/cd17-0119</ArticleId><ArticleId IdType="pmc">PMC5775000</ArticleId><ArticleId IdType="pubmed">29382975</ArticleId></ArticleIdList></Reference><Reference><Citation>Powers MA, Bardsley J, Cypress M, Duker P, Funnell MM, Hess Fischl A, et al. . Diabetes self-management education and support in type 2 Diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the academy of nutrition and dietetics. Diabetes Care. (2015) 38:1372–82. doi: 10.2337/dc15-0730, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc15-0730</ArticleId><ArticleId IdType="pubmed">26048904</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ. Management of hyperglycaemia in type 2 diabetes: the 2018 consensus report by ADA/EASD insights from one of the authors. British J Diab. (2018) 18:137–40. doi: 10.15277/bjd.2018.193</Citation><ArticleIdList><ArticleId IdType="doi">10.15277/bjd.2018.193</ArticleId></ArticleIdList></Reference><Reference><Citation>National Institute for Health and Care Excellence . (2015). Type 2 diabetes in adults quality statement 2: structured education programme | Type 2 diabetes in adults | quality standards. NICE. Accessed 10 July 2024. Available at: https://www.nice.org.uk/guidance/qs209/chapter/Quality-statement-2-Structured-education-programme</Citation></Reference><Reference><Citation>American Association of Diabetes, E . Cultural sensitivity and diabetes education. Diabetes Educ. (2012) 38:137–41. doi: 10.1177/0145721711431928</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721711431928</ArticleId><ArticleId IdType="pubmed">22328041</ArticleId></ArticleIdList></Reference><Reference><Citation>Ingenhoff R, Munana R, Weswa I, Gaal J, Sekitoleko I, Mutabazi H, et al. . Principles for task shifting hypertension and diabetes screening and referral: a qualitative study exploring patient, community health worker and healthcare professional perceptions in rural Uganda. BMC Public Health. (2023) 23:881. doi: 10.1186/s12889-023-15704-w, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-023-15704-w</ArticleId><ArticleId IdType="pmc">PMC10176286</ArticleId><ArticleId IdType="pubmed">37173687</ArticleId></ArticleIdList></Reference><Reference><Citation>Azami G, Soh KL, Sazlina SG, Salmiah MS, Aazami S, Mozafari M, et al. . Effect of a nurse-led Diabetes self-management education program on glycosylated hemoglobin among adults with type 2 Diabetes. J Diabetes Res. (2018) 2018:4930157–12. doi: 10.1155/2018/4930157, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2018/4930157</ArticleId><ArticleId IdType="pmc">PMC6129337</ArticleId><ArticleId IdType="pubmed">30225268</ArticleId></ArticleIdList></Reference><Reference><Citation>Tshiananga JK, Kocher S, Weber C, Erny-Albrecht K, Berndt K, Neeser K. The effect of nurse-led diabetes self-management education on glycosylated hemoglobin and cardiovascular risk factors: a meta-analysis. Diabetes Educ. (2012) 38:108–23. doi: 10.1177/0145721711423978, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721711423978</ArticleId><ArticleId IdType="pubmed">22116473</ArticleId></ArticleIdList></Reference><Reference><Citation>Okoroafor SC, Christmals CD. Task shifting and task sharing implementation in Africa: a scoping review on rationale and scope. Healthcare. (2023) 11:1200. doi: 10.3390/healthcare11081200, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/healthcare11081200</ArticleId><ArticleId IdType="pmc">PMC10138489</ArticleId><ArticleId IdType="pubmed">37108033</ArticleId></ArticleIdList></Reference><Reference><Citation>Beck J, Greenwood DA, Blanton L, Bollinger ST, Butcher MK, Condon JE, et al. . National Standards for Diabetes self-management education and support. Diabetes Care. (2017) 40:1409–19. doi: 10.2337/dci17-0025</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci17-0025</ArticleId><ArticleId IdType="pubmed">28754780</ArticleId></ArticleIdList></Reference><Reference><Citation>Abbas ZG, Boulton AJM. Diabetic foot ulcer disease in African continent: 'From clinical care to implementation'—review of diabetic foot in last 60 years −1960 to 2020. Diabetes Res Clin Pract. (2022) 183:109155. doi: 10.1016/j.diabres.2021.109155, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109155</ArticleId><ArticleId IdType="pubmed">34838640</ArticleId></ArticleIdList></Reference><Reference><Citation>Olowo S, Iramiot JS, Ssenyonga LV. Knowledge of diabetic foot complication, self-care beliefs and practices among patients attending a tertiary hospital in eastern Uganda. Int J Africa Nurs Sci. (2022) 16:100402. doi: 10.1016/j.ijans.2022.100402</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijans.2022.100402</ArticleId></ArticleIdList></Reference><Reference><Citation>Stephani V, Opoku D, Beran D. Self-management of diabetes in Sub-Saharan Africa: a systematic review. BMC Public Health. (2018) 18:1148. doi: 10.1186/s12889-018-6050-0, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-018-6050-0</ArticleId><ArticleId IdType="pmc">PMC6162903</ArticleId><ArticleId IdType="pubmed">30268115</ArticleId></ArticleIdList></Reference><Reference><Citation>Atun R, Davies JI, Gale EAM, Barnighausen T, Beran D, Kengne AP, et al. . Diabetes in Sub-Saharan Africa: from clinical care to health policy. Lancet Diabetes Endocrinol. (2017) 5:622–67. doi: 10.1016/S2213-8587(17)30181-X</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(17)30181-X</ArticleId><ArticleId IdType="pubmed">28688818</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice, C . 5. Facilitating positive health behaviors and well-being to improve health outcomes: standards of Care in Diabetes-2024. Diabetes Care. (2024) 47:S77–S110. doi: 10.2337/dc24-S005, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc24-S005</ArticleId><ArticleId IdType="pmc">PMC10725816</ArticleId><ArticleId IdType="pubmed">38078584</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: Abbreviated report of a WHO consultation (no. WHO/NMH/CHP/CPM/11.1). Switzerland: World Health Organization; (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">26158184</ArticleId></ArticleIdList></Reference><Reference><Citation>Diriba DC, Leung DYP, Suen LKP. The effects of diabetes self-management interventions on physiological outcomes in people living with diabetes in Africa: a systematic review and meta-analysis. Diabet Med. (2021) 38:e14501. doi: 10.1111/dme.14501, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14501</ArticleId><ArticleId IdType="pubmed">33341999</ArticleId></ArticleIdList></Reference><Reference><Citation>Chrvala CA, Sherr D, Lipman RD. Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns. (2016) 99:926–43. doi: 10.1016/j.pec.2015.11.003, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pec.2015.11.003</ArticleId><ArticleId IdType="pubmed">26658704</ArticleId></ArticleIdList></Reference><Reference><Citation>Abbas ZG. Preventive foot care and reducing amputation: a step in the right direction for diabetes care. Diab Manag. (2013) 3:427–35. doi: 10.2217/dmt.13.32</Citation><ArticleIdList><ArticleId IdType="doi">10.2217/dmt.13.32</ArticleId></ArticleIdList></Reference><Reference><Citation>Chowdhury HA, Harrison CL, Siddiquea BN, Tissera S, Afroz A, Ali L, et al. . The effectiveness of diabetes self-management education intervention on glycaemic control and cardiometabolic risk in adults with type 2 diabetes in low- and middle-income countries: a systematic review and meta-analysis. PLoS One. (2024) 19:e0297328. doi: 10.1371/journal.pone.0297328</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0297328</ArticleId><ArticleId IdType="pmc">PMC10836683</ArticleId><ArticleId IdType="pubmed">38306363</ArticleId></ArticleIdList></Reference><Reference><Citation>Bedwell C, Lavender T. Giving patients a voice: implementing patient and public involvement to strengthen research in Sub-Saharan Africa. J Epidemiol Community Health. (2020) 74:307–10. doi: 10.1136/jech-2019-212525</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/jech-2019-212525</ArticleId><ArticleId IdType="pmc">PMC7079186</ArticleId><ArticleId IdType="pubmed">32005647</ArticleId></ArticleIdList></Reference><Reference><Citation>Ankomah SE, Fusheini A, Ballard C, Kumah E, Gurung G, Derrett S. Patient-public engagement interventions for health system improvement in Sub-Saharan Africa: a systematic scoping review protocol. Int J Health Plann Manag. (2021) 36:273–81. doi: 10.1002/hpm.3087</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hpm.3087</ArticleId><ArticleId IdType="pubmed">33051932</ArticleId></ArticleIdList></Reference><Reference><Citation>Olajide E, Chinonye N, Folasade A, Oluwatosin O, Mary A. Effect of Nurse-led Training on Self-management of Diabetes among Diabetic Patients Attending Medical Outpatient Clinic in General Hospital Odan, Lagos State, Nigeria. Journal of Advances in Medicine and Medical Research. (2017) 24:1–8.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39654602</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1177-8881</ISSN><JournalIssue CitedMedium="Internet"><Volume>18</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Drug design, development and therapy</Title><ISOAbbreviation>Drug Des Devel Ther</ISOAbbreviation></Journal><ArticleTitle>Effects of Oltipraz on the Glycolipid Metabolism and the Nrf2/HO-1 Pathway in Type 2 Diabetic Mice.</ArticleTitle><Pagination><StartPage>5685</StartPage><EndPage>5700</EndPage><MedlinePgn>5685-5700</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.2147/DDDT.S485729</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="UNASSIGNED">Oltipraz has various applications, including for treating cancer, liver fibrosis, and cirrhosis. However, its role in regulating metabolic processes, inflammation, oxidative stress, and insulin resistance in STZ-induced T2DM remains unclear. Hence, a comprehensive understanding of how oltipraz ameliorates diabetes, particularly inflammation and oxidative stress, is imperative.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">The negative control (NC), T2DM model (T2DM), and T2DM models treated with oltipraz (OLTI) and metformin (MET) were constructed. The RNA sequencing (RNA-Seq) was performed on the pancreatic tissues. H&E staining was conducted on the liver and pancreatic tissues. The intraperitoneal glucose tolerance test (IPGTT), blood glucose and lipids, inflammatory factors, and oxidative stress indexes were measured. qPCR and Western blotting examined the nuclear factor erythroid-derived 2-like 2 (Nrf2)<i>/</i> hemoglobin-1 (HO-1) signaling pathway, cell apoptosis-related genes, and Reg3g levels. Immunofluorescence (IF) analysis of the pancreas was performed to measure insulin secretion.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 256 DEGs were identified in OLTI_vs_T2DM, and they were mainly enriched in circadian rhythm, cAMP, AMPK, insulin, and MAPK signaling pathways. Moreover, Reg3g exhibits reduced expression in T2DM_vs_NC, and elevated expression in OLTI_vs_T2DM, yet remains unchanged in MET_vs_T2DM. OLTI reduced fasting blood glucose and alleviated T2DM-induced weight loss. It improved blood glucose and insulin resistance, decreased blood lipid metabolism, reduced inflammation and oxidative stress through the Nrf2/HO-1 signaling pathway, mitigated pancreatic and liver tissue injury, and enhanced pancreatic β-cell insulin secretion. OLTI exhibited anti-apoptosis effects in T2DM. Moreover, OLTI exhibits superior antioxidant activity than metformin.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">In summary, OLTI improves blood glucose and insulin resistance, decreases blood lipid metabolism, reduces inflammation and apoptosis, suppresses oxidative stress through the Nrf2/HO-1 signaling pathway, mitigates pancreatic and liver tissue injury, and enhances pancreatic β-cell insulin secretion, thereby mitigating T2DM symptoms. Moreover, Reg3g could be an important target for OLTI treatment of T2DM.</AbstractText><CopyrightInformation>© 2024 Luo et al.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Luo</LastName><ForeName>Yunfei</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Sun</LastName><ForeName>Shaohua</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Metabolism and Endocrinology, XinSteel Center Hospital, Xinyu, Jiangxi, 338000, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Zhang</LastName><ForeName>Yuying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Shuang</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeng</LastName><ForeName>Haixia</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jin-E</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Jiadian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fang</LastName><ForeName>Lixuan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Shiqi</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Peng</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jianping</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, 330031, People's Republic of China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>New Zealand</Country><MedlineTA>Drug Des Devel Ther</MedlineTA><NlmUniqueID>101475745</NlmUniqueID><ISSNLinking>1177-8881</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance></Chemical><Chemical><RegistryNumber>6N510JUL1Y</RegistryNumber><NameOfSubstance UI="C026209">oltipraz</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013876">Thiophenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013871">Thiones</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C495636">Nfe2l2 protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006017">Glycolipids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>5W494URQ81</RegistryNumber><NameOfSubstance UI="D013311">Streptozocin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011719">Pyrazines</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 1.14.14.18</RegistryNumber><NameOfSubstance UI="C496542">Hmox1 protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 1.14.14.18</RegistryNumber><NameOfSubstance UI="D051547">Heme Oxygenase-1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D051267" MajorTopicYN="Y">NF-E2-Related Factor 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013876" MajorTopicYN="Y">Thiophenes</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013871" MajorTopicYN="Y">Thiones</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006017" MajorTopicYN="Y">Glycolipids</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013311" MajorTopicYN="N">Streptozocin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011719" MajorTopicYN="N">Pyrazines</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051547" MajorTopicYN="N">Heme Oxygenase-1</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Nrf2</Keyword><Keyword MajorTopicYN="N">Oltipraz</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">inflammation</Keyword><Keyword MajorTopicYN="N">oxidation stress</Keyword></KeywordList><CoiStatement>No competing financial interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>4</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39654602</ArticleId><ArticleId IdType="pmc">PMC11626977</ArticleId><ArticleId IdType="doi">10.2147/DDDT.S485729</ArticleId><ArticleId IdType="pii">485729</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Prasad M, Chen EW, Toh S-A, Gascoigne NR. Autoimmune responses and inflammation in type 2 diabetes. J Leukocyte Biol. 2020;107(5):739–748. doi:10.1002/JLB.3MR0220-243R</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/JLB.3MR0220-243R</ArticleId><ArticleId IdType="pubmed">32202348</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2017.151</ArticleId><ArticleId IdType="pubmed">29219149</ArticleId></ArticleIdList></Reference><Reference><Citation>Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‑associated pathologies. Int J Mol Med. 2017;39(2):243–252. doi:10.3892/ijmm.2017.2855</Citation><ArticleIdList><ArticleId IdType="doi">10.3892/ijmm.2017.2855</ArticleId><ArticleId IdType="pmc">PMC5358714</ArticleId><ArticleId IdType="pubmed">28075451</ArticleId></ArticleIdList></Reference><Reference><Citation>Azarova I, Klyosova E, Polonikov A. The link between type 2 diabetes mellitus and the polymorphisms of glutathione-metabolizing genes suggests a new hypothesis explaining disease initiation and progression. Life. 2021;11(9):886. doi:10.3390/life11090886</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/life11090886</ArticleId><ArticleId IdType="pmc">PMC8466482</ArticleId><ArticleId IdType="pubmed">34575035</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H, Zhao K, Li Y. Gasdermin D influence mouse podocytes against high-glucose-induced inflammation and apoptosis via the C-Jun N-Terminal Kinase (JNK) pathway. Med Sci Monit. 2021;27:e928411. doi:10.12659/MSM.928411</Citation><ArticleIdList><ArticleId IdType="doi">10.12659/MSM.928411</ArticleId><ArticleId IdType="pmc">PMC7955578</ArticleId><ArticleId IdType="pubmed">33690262</ArticleId></ArticleIdList></Reference><Reference><Citation>Fang Y, Ma J, Lei P, et al. Konjac glucomannan: an emerging specialty medical food to aid in the treatment of type 2 diabetes mellitus. Foods. 2023;12(2):363. doi:10.3390/foods12020363</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/foods12020363</ArticleId><ArticleId IdType="pmc">PMC9858196</ArticleId><ArticleId IdType="pubmed">36673456</ArticleId></ArticleIdList></Reference><Reference><Citation>McIntyre TM, Hazen SL. Lipid oxidation and cardiovascular disease: introduction to a review series. Circ Res. 2010;107(10):1167–1169. doi:10.1161/CIRCRESAHA.110.224618</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.110.224618</ArticleId><ArticleId IdType="pubmed">21071714</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Liu Y, Liu X, et al. Exercise and metformin intervention prevents lipotoxicity-induced hepatocyte apoptosis by alleviating oxidative and ER stress and activating the AMPK/Nrf2/HO-1 signaling pathway in db/db mice. Oxid Med Cell Long. 2022;2022:2297268.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9481363</ArticleId><ArticleId IdType="pubmed">36120597</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–518. doi:10.1089/ars.2016.6755</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/ars.2016.6755</ArticleId><ArticleId IdType="pmc">PMC5372767</ArticleId><ArticleId IdType="pubmed">27225690</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukocyte Biol. 2016;99(6):1131–1140. doi:10.1189/jlb.3A0815-371RRR</Citation><ArticleIdList><ArticleId IdType="doi">10.1189/jlb.3A0815-371RRR</ArticleId><ArticleId IdType="pubmed">26667474</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Zhou H, Xie M, et al. Regenerating islet-derived protein 3 gamma (Reg3g) ameliorates tacrolimus-induced pancreatic β-cell dysfunction in mice by restoring mitochondrial function. Br J Pharmacol. 2022;179(12):3078–3095. doi:10.1111/bph.15803</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/bph.15803</ArticleId><ArticleId IdType="pubmed">35060126</ArticleId></ArticleIdList></Reference><Reference><Citation>Butt SM. Management and treatment of type 2 diabetes. Int J Comput Integr Manuf. 2022;2(1).</Citation></Reference><Reference><Citation>Zhou YQ, Liu DQ, Chen SP, et al. PPARγ activation mitigates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of Nrf2/HO-1 signaling pathway. Biomed Pharmacother. 2020;129:110356. doi:10.1016/j.biopha.2020.110356</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2020.110356</ArticleId><ArticleId IdType="pubmed">32535388</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SG, Kim YM, Choi JY, et al. Oltipraz therapy in patients with liver fibrosis or cirrhosis: a randomized, double-blind, placebo-controlled phase II trial. J Pharm Pharmacol. 2011;63(5):627–635. doi:10.1111/j.2042-7158.2011.01259.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.2042-7158.2011.01259.x</ArticleId><ArticleId IdType="pubmed">21492164</ArticleId></ArticleIdList></Reference><Reference><Citation>Masubuchi Y, Mikami K. Efficacy of oltipraz in preventing acetaminophen-induced liver injury in mice. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;397(2):923–930. doi:10.1007/s00210-023-02649-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00210-023-02649-5</ArticleId><ArticleId IdType="pubmed">37535075</ArticleId></ArticleIdList></Reference><Reference><Citation>Nelson KC, Armstrong JS, Moriarty S, et al. Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent. Invest Ophthalmol Visual Sci. 2002;43(11):3550–3554.</Citation><ArticleIdList><ArticleId IdType="pubmed">12407167</ArticleId></ArticleIdList></Reference><Reference><Citation>Rooney JP, Chorley B, Hiemstra S, et al. Mining a human transcriptome database for chemical modulators of NRF2. PLoS One. 2020;15(9):e0239367. doi:10.1371/journal.pone.0239367</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0239367</ArticleId><ArticleId IdType="pmc">PMC7521735</ArticleId><ArticleId IdType="pubmed">32986742</ArticleId></ArticleIdList></Reference><Reference><Citation>de Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes. 2011;60(11):2683–2684. doi:10.2337/db11-1072</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db11-1072</ArticleId><ArticleId IdType="pmc">PMC3198074</ArticleId><ArticleId IdType="pubmed">22025774</ArticleId></ArticleIdList></Reference><Reference><Citation>Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–2293. doi:10.1089/ars.2007.1782</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/ars.2007.1782</ArticleId><ArticleId IdType="pubmed">17979528</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Zhang Y, Zhou M, et al. DPHC from Alpinia officinarum ameliorates oxidative stress and insulin resistance via activation of Nrf2/ARE pathway in db/db mice and high glucose-treated HepG2 cells. Front Pharmacol. 2021;12:792977. doi:10.3389/fphar.2021.792977</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.792977</ArticleId><ArticleId IdType="pmc">PMC8801804</ArticleId><ArticleId IdType="pubmed">35111058</ArticleId></ArticleIdList></Reference><Reference><Citation>Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current landscape of NRF2 biomarkers in clinical trials. Antioxidants. 2020;9(8):716. doi:10.3390/antiox9080716</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/antiox9080716</ArticleId><ArticleId IdType="pmc">PMC7464243</ArticleId><ArticleId IdType="pubmed">32784785</ArticleId></ArticleIdList></Reference><Reference><Citation>Merrell MD, Jackson JP, Augustine LM, et al. The Nrf2 activator oltipraz also activates the constitutive androstane receptor. Drug Metab Dispos. 2008;36(8):1716–1721. doi:10.1124/dmd.108.020867</Citation><ArticleIdList><ArticleId IdType="doi">10.1124/dmd.108.020867</ArticleId><ArticleId IdType="pmc">PMC3693743</ArticleId><ArticleId IdType="pubmed">18474683</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou Y-Q, Liu D-Q, Chen S-P, et al. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol Sin. 2020;41(8):1041–1048. doi:10.1038/s41401-020-0394-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41401-020-0394-6</ArticleId><ArticleId IdType="pmc">PMC7470811</ArticleId><ArticleId IdType="pubmed">32203087</ArticleId></ArticleIdList></Reference><Reference><Citation>Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: effects on mitochondria and leukocyte-endothelium interactions. Redox Biol. 2020;34:101517. doi:10.1016/j.redox.2020.101517</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.redox.2020.101517</ArticleId><ArticleId IdType="pmc">PMC7296337</ArticleId><ArticleId IdType="pubmed">32535544</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun CC, Lai YN, Wang WH, et al. Metformin ameliorates gestational diabetes mellitus-induced endothelial dysfunction via downregulation of p65 and upregulation of Nrf2. Front Pharmacol. 2020;11:575390. doi:10.3389/fphar.2020.575390</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2020.575390</ArticleId><ArticleId IdType="pmc">PMC7581851</ArticleId><ArticleId IdType="pubmed">33162888</ArticleId></ArticleIdList></Reference><Reference><Citation>Trovato FM, Catalano D, Musumeci G, Trovato GM. 4Ps medicine of the fatty liver: the research model of predictive, preventive, personalized and participatory medicine-recommendations for facing obesity, fatty liver and fibrosis epidemics. EPMA J. 2014;5(1):21. doi:10.1186/1878-5085-5-21</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1878-5085-5-21</ArticleId><ArticleId IdType="pmc">PMC4417534</ArticleId><ArticleId IdType="pubmed">25937854</ArticleId></ArticleIdList></Reference><Reference><Citation>Darnaud M, Dos Santos A, Gonzalez P, et al. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology. 2018;154(4):1009–1023.e14. doi:10.1053/j.gastro.2017.11.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.gastro.2017.11.003</ArticleId><ArticleId IdType="pubmed">29133078</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenhill C. REG3G—a potential link between the intestinal microbiome and host physiology. Nat Rev Endocrinol. 2023;19(1):5. doi:10.1038/s41574-022-00774-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-022-00774-4</ArticleId><ArticleId IdType="pubmed">36319759</ArticleId></ArticleIdList></Reference><Reference><Citation>Shin JH, Bozadjieva-Kramer N, Shao Y, et al. The gut peptide Reg3g links the small intestine microbiome to the regulation of energy balance, glucose levels, and gut function. Cell Metab. 2022;34(11):1765–1778.e6. doi:10.1016/j.cmet.2022.09.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2022.09.024</ArticleId><ArticleId IdType="pmc">PMC9633559</ArticleId><ArticleId IdType="pubmed">36240758</ArticleId></ArticleIdList></Reference><Reference><Citation>Ke J, Hu X, Wang C, Zhang Y. Identification of the hub susceptibility genes and related common transcription factors in the skeletal muscle of type 2 diabetes mellitus. BMC Endocr Disord. 2022;22(1):276. doi:10.1186/s12902-022-01195-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-022-01195-0</ArticleId><ArticleId IdType="pmc">PMC9652898</ArticleId><ArticleId IdType="pubmed">36368953</ArticleId></ArticleIdList></Reference><Reference><Citation>Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic beta-cell functions and oxidative stress. Ann Rev Nutr. 2016;36:241–273. doi:10.1146/annurev-nutr-071715-050939</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-nutr-071715-050939</ArticleId><ArticleId IdType="pubmed">27146016</ArticleId></ArticleIdList></Reference><Reference><Citation>Lei P, Chen H, Ma J, et al. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr. 2022;9:952147. doi:10.3389/fnut.2022.952147</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnut.2022.952147</ArticleId><ArticleId IdType="pmc">PMC9414081</ArticleId><ArticleId IdType="pubmed">36034890</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia T, Zhang B, Li S, et al. Vinegar extract ameliorates alcohol-induced liver damage associated with the modulation of gut microbiota in mice. Food Funct. 2020;11(4):2898–2909. doi:10.1039/c9fo03015h</Citation><ArticleIdList><ArticleId IdType="doi">10.1039/c9fo03015h</ArticleId><ArticleId IdType="pubmed">32242560</ArticleId></ArticleIdList></Reference><Reference><Citation>Aslam M, Ladilov Y. Emerging role of cAMP/AMPK signaling. Cells. 2022;11(2):308. doi:10.3390/cells11020308</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cells11020308</ArticleId><ArticleId IdType="pmc">PMC8774420</ArticleId><ArticleId IdType="pubmed">35053423</ArticleId></ArticleIdList></Reference><Reference><Citation>Marušić M, Paić M, Knobloch M, Liberati Pršo A-M. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021:1–9. doi:10.1155/2021/6613827</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2021/6613827</ArticleId><ArticleId IdType="pmc">PMC7904371</ArticleId><ArticleId IdType="pubmed">33681089</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846. doi:10.1038/nature05482</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature05482</ArticleId><ArticleId IdType="pubmed">17167471</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Z, Zhao G, Zhang Y, Shen G, Xu Y, Xu N. Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. 2017;21(17):3900–3905.</Citation><ArticleIdList><ArticleId IdType="pubmed">28975973</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarkar PD, Choudhury AB. Relationship of serum osteocalcin levels with blood glucose, insulin resistance and lipid profile in central Indian men with type 2 diabetes. Arch Phys Biochem. 2012;118(5):260–264. doi:10.3109/13813455.2012.715651</Citation><ArticleIdList><ArticleId IdType="doi">10.3109/13813455.2012.715651</ArticleId><ArticleId IdType="pubmed">22978420</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu Z, Shao W, Chiang Y, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2010;54(4):922–934. doi:10.1007/s00125-010-2001-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-010-2001-8</ArticleId><ArticleId IdType="pubmed">21161163</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan J, Wang C, Jin Y, et al. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacol Res. 2018;130:466–480. doi:10.1016/j.phrs.2017.12.026</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.phrs.2017.12.026</ArticleId><ArticleId IdType="pubmed">29284152</ArticleId></ArticleIdList></Reference><Reference><Citation>Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6628012</ArticleId><ArticleId IdType="pubmed">31333808</ArticleId></ArticleIdList></Reference><Reference><Citation>Caturano A, D’Angelo M, Mormone A, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651–6666. doi:10.3390/cimb45080420</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cimb45080420</ArticleId><ArticleId IdType="pmc">PMC10453126</ArticleId><ArticleId IdType="pubmed">37623239</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang Z, Bian M, Wu J, Li D, Ding L, Zeng Q. Oltipraz prevents high glucose-induced oxidative stress and apoptosis in RSC96 cells through the Nrf2/NQO1 signalling pathway. Biomed Res Int. 2020;2020:1–8. doi:10.1155/2020/5939815</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2020/5939815</ArticleId><ArticleId IdType="pmc">PMC7333049</ArticleId><ArticleId IdType="pubmed">32685505</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang Y, Guo M, Ma X-Y, Sun W-P, Hao M-H, Zhu H-Y. Oltipraz attenuates the progression of heart failure in rats through inhibiting oxidative stress and inflammatory response. Eur Rev Med Pharmacol Sci. 2018;22(24).</Citation><ArticleIdList><ArticleId IdType="pubmed">30575935</ArticleId></ArticleIdList></Reference><Reference><Citation>Silva-Palacios A, Ostolga-Chavarría M, Zazueta C, Königsberg M. Nrf2: molecular and epigenetic regulation during aging. Ageing Res Rev. 2018;47:31–40. doi:10.1016/j.arr.2018.06.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.arr.2018.06.003</ArticleId><ArticleId IdType="pubmed">29913211</ArticleId></ArticleIdList></Reference><Reference><Citation>Li B, Nasser M, Masood M, et al. Efficiency of traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother. 2020;126:110074. doi:10.1016/j.biopha.2020.110074</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2020.110074</ArticleId><ArticleId IdType="pubmed">32163746</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X-F, Zhou -D-D, Xie T, et al. The Nrf2 signaling in retinal ganglion cells under oxidative stress in ocular neurodegenerative diseases. Int J Bio Sci. 2018;14(9):1090. doi:10.7150/ijbs.25996</Citation><ArticleIdList><ArticleId IdType="doi">10.7150/ijbs.25996</ArticleId><ArticleId IdType="pmc">PMC6036726</ArticleId><ArticleId IdType="pubmed">29989056</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang BP, Lin CH, Chen HM, Lin JT, Cheng YF, Kao SH. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA Cell Biol. 2015;34(2):133–141. doi:10.1089/dna.2014.2630</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/dna.2014.2630</ArticleId><ArticleId IdType="pubmed">25536376</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Z, Wang S, Zhou S, et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 2014;77:42–52. doi:10.1016/j.yjmcc.2014.09.022</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.yjmcc.2014.09.022</ArticleId><ArticleId IdType="pubmed">25268649</ArticleId></ArticleIdList></Reference><Reference><Citation>Li X, Wu D, Tian Y. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway. Biochem Biophys Res Commun. 2018;502(1):62–68. doi:10.1016/j.bbrc.2018.05.121</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbrc.2018.05.121</ArticleId><ArticleId IdType="pubmed">29778534</ArticleId></ArticleIdList></Reference><Reference><Citation>Peng M, Qiang L, Xu Y, Li C, Li T, Wang J. Inhibition of JNK and activation of the AMPK-Nrf2 axis by corosolic acid suppress osteolysis and oxidative stress. Nitric Oxide. 2019;82:12–24. doi:10.1016/j.niox.2018.11.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.niox.2018.11.002</ArticleId><ArticleId IdType="pubmed">30453049</ArticleId></ArticleIdList></Reference><Reference><Citation>Xiong GF, Li DW, Zheng MB, Liu SC. The effects of Lycium Barbarum Polysaccharide (LBP) in a mouse model of cerulein-induced acute pancreatitis. Med Sci Monit. 2019;25:3880–3886. doi:10.12659/msm.913820</Citation><ArticleIdList><ArticleId IdType="doi">10.12659/msm.913820</ArticleId><ArticleId IdType="pmc">PMC6556067</ArticleId><ArticleId IdType="pubmed">31127077</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39654201</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1536-5964</ISSN><JournalIssue CitedMedium="Internet"><Volume>103</Volume><Issue>49</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>06</Day></PubDate></JournalIssue><Title>Medicine</Title><ISOAbbreviation>Medicine (Baltimore)</ISOAbbreviation></Journal><ArticleTitle>Determinants of developing cardiovascular disease risk with emphasis on type-2 diabetes and predictive modeling utilizing machine learning algorithms.</ArticleTitle><Pagination><StartPage>e40813</StartPage><MedlinePgn>e40813</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e40813</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1097/MD.0000000000040813</ELocationID><Abstract><AbstractText>This research aims to enhance our comprehensive understanding of the influence of type-2 diabetes on the development of cardiovascular diseases (CVD) risk, its underlying determinants, and to construct precise predictive models capable of accurately assessing CVD risk within the context of Bangladesh. This study combined data from the 2011 and 2017 to 2018 Bangladesh Demographic and Health Surveys, focusing on individuals with hypertension. CVD development followed World Health Organization (WHO) guidelines. Eight machine learning algorithms (Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbor, Light GBM, and XGBoost) were analyzed and compared using 6 evaluation metrics to assess model performance. The study reveals that individuals aged 35 to 54 years, 55 to 69 years, and ≥ 70 years face higher CVD risk with adjusted odds ratios (AOR) of 2.140, 3.015, and 3.963, respectively, compared to those aged 18 to 34 years. "Rich" respondents show increased CVD risk (AOR = 1.370, P < .01) compared to "poor" individuals. Also, "normal weight" (AOR = 1.489, P < .01) and "overweight/obese" (AOR = 1.871, P < .01) individuals exhibit higher CVD risk than "underweight" individuals. The predictive models achieve impressive performance, with 75.21% accuracy and an 80.79% AUC, with Random Forest (RF) excelling in specificity at 76.96%. This research holds practical implications for targeted interventions based on identified significant factors, utilizing ML models for early detection and risk assessment, enhancing awareness and education, addressing urbanization-related lifestyle changes, improving healthcare infrastructure in rural areas, and implementing workplace interventions to mitigate stress and promote physical activity.</AbstractText><CopyrightInformation>Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Das</LastName><ForeName>Shatabdi</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Science Engineering and Technology School, Khulna University, Khulna, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rahman</LastName><ForeName>Riaz</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Science Engineering and Technology School, Khulna University, Khulna, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Talukder</LastName><ForeName>Ashis</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-2205-0696</Identifier><AffiliationInfo><Affiliation>Science Engineering and Technology School, Khulna University, Khulna, Bangladesh.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Medicine (Baltimore)</MedlineTA><NlmUniqueID>2985248R</NlmUniqueID><ISSNLinking>0025-7974</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001459" MajorTopicYN="N" Type="Geographic">Bangladesh</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012959" MajorTopicYN="N">Socioeconomic Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="N">Hypertension</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors have no funding and conflict of interest to discloser.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>1</Hour><Minute>2</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39654201</ArticleId><ArticleId IdType="pmc">PMC11630972</ArticleId><ArticleId IdType="doi">10.1097/MD.0000000000040813</ArticleId><ArticleId IdType="pii">00005792-202412060-00044</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Jin Z, Oresko J, Huang S, Cheng AC. HeartToGo: a personalized medicine technology for cardiovascular disease prevention and detection. In: 2009 IEEE/NIH Life Science Systems and Applications Workshop. IEEE; 2009:80–83.</Citation></Reference><Reference><Citation>Rahim A, Rasheed Y, Azam F, Anwar MW, Rahim MA, Muzaffar AW. An integrated machine learning framework for effective prediction of cardiovascular diseases. IEEE Access. 2021;9:106575–88.</Citation></Reference><Reference><Citation>Maiga J, Hungilo GG. Comparison of machine learning models in prediction of cardiovascular disease using health record data. In: 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). IEEE; 2019: 45–48.</Citation></Reference><Reference><Citation>World Health Organization, & International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21:1983–92.</Citation><ArticleIdList><ArticleId IdType="pubmed">14597836</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaptoge S, Pennells L, De Bacquer D, et al. . World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Global Health. 2019;7:e1332–45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7025029</ArticleId><ArticleId IdType="pubmed">31488387</ArticleId></ArticleIdList></Reference><Reference><Citation>Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361:13–20.</Citation><ArticleIdList><ArticleId IdType="pubmed">12517460</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization. Prevention of Cardiovascular Disease: Guidelines for Assessment and Management of Total Cardiovascular Risk. World Health Organization; 2007.</Citation></Reference><Reference><Citation>Romiti S, Vinciguerra M, Saade W, Anso Cortajarena I, Greco E. Artificial intelligence (AI) and cardiovascular diseases: an unexpected alliance. Cardiol Res Pract. 2020;2020:1–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7336209</ArticleId><ArticleId IdType="pubmed">32676206</ArticleId></ArticleIdList></Reference><Reference><Citation>Li P, Hu Y, Liu ZP. Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods. Biomed Signal Proc Control. 2021;66:102474.</Citation></Reference><Reference><Citation>Lakshmanarao A, Swathi Y, Sundareswar PSS. Machine learning techniques for heart disease prediction. Forest. 2019;95:97.</Citation></Reference><Reference><Citation>Rahman M, Nakamura K, Seino K, Kizuki M. Sociodemographic factors and the risk of developing cardiovascular disease in Bangladesh. Am J Prev Med. 2015;48:456–61.</Citation><ArticleIdList><ArticleId IdType="pubmed">25498549</ArticleId></ArticleIdList></Reference><Reference><Citation>Nashif S, Raihan MR, Islam MR, Imam MH. Heart disease detection by using machine learning algorithms and a real-time cardiovascular health monitoring system. World J Eng Technol. 2018;06:854–73.</Citation></Reference><Reference><Citation>Sajid MR, Muhammad N, Zakaria R, et al. . Nonclinical features in predictive modeling of cardiovascular diseases: a machine learning approach. Interdiscip Sci Comput Life Sci. 2021;13:201–11.</Citation><ArticleIdList><ArticleId IdType="pubmed">33675528</ArticleId></ArticleIdList></Reference><Reference><Citation>Alić B, Gurbeta L, Badnjević A. Machine learning techniques for classification of diabetes and cardiovascular diseases. In: 2017 6th Mediterranean Conference on Embedded Computing (MECO). IEEE; 2017:1–4.</Citation></Reference><Reference><Citation>Ruan Y, Guo Y, Zheng Y, et al. . Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. BMC Public Health. 2018;18:1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6011508</ArticleId><ArticleId IdType="pubmed">29925336</ArticleId></ArticleIdList></Reference><Reference><Citation>Garavand A, Behmanesh A, Aslani N, Sadeghsalehi H, Ghaderzadeh M. Towards diagnostic aided systems in coronary artery disease detection: a comprehensive multiview survey of the state of the art. Int J Intell Syst. 2023;2023:1–19.</Citation></Reference><Reference><Citation>Garavand A, Salehnasab C, Behmanesh A, Aslani N, Zadeh AH, Ghaderzadeh M. Efficient model for coronary artery disease diagnosis: a comparative study of several machine learning algorithms. J Healthcare Eng. 2022;2022:5359540.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9596250</ArticleId><ArticleId IdType="pubmed">36304749</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar NK, Sindhu GS, Prashanthi DK, Sulthana AS. Analysis and prediction of cardio vascular disease using machine learning classifiers. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE; 2020:15–21.</Citation></Reference><Reference><Citation>Alizadehsani R, Abdar M, Roshanzamir M, et al. . Machine learning-based coronary artery disease diagnosis: a comprehensive review. Comput Biol Med. 2019;111:103346.</Citation><ArticleIdList><ArticleId IdType="pubmed">31288140</ArticleId></ArticleIdList></Reference><Reference><Citation>Baccouche A, Garcia-Zapirain B, Castillo Olea C, Elmaghraby A. Ensemble deep learning models for heart disease classification: a case study from Mexico. Information. 2020;11:207.</Citation></Reference><Reference><Citation>Ene-Iordache B, Perico N, Bikbov B, et al. . Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. Lancet Global Health. 2016;4:e307–19.</Citation><ArticleIdList><ArticleId IdType="pubmed">27102194</ArticleId></ArticleIdList></Reference><Reference><Citation>Dehghan M, Mente A, Zhang X, et al. ; Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390:2050–62.</Citation><ArticleIdList><ArticleId IdType="pubmed">28864332</ArticleId></ArticleIdList></Reference><Reference><Citation>Tada H, Fujino N, Hayashi K, Kawashiri M, Takamura M. Human genetics and its impact on cardiovascular disease. J Cardiol. 2022;79:233–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">34551866</ArticleId></ArticleIdList></Reference><Reference><Citation>Chowdhury R, Ramond A, O’Keeffe LM, et al. . Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018;362:k3310.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6113772</ArticleId><ArticleId IdType="pubmed">30158148</ArticleId></ArticleIdList></Reference><Reference><Citation>Chandralekha M, Shenbagavadivu N. Performance analysis of various machine learning techniques to predict cardiovascular disease: an emprical study. Appl Math Inf Sci. 2018;12:217–26.</Citation></Reference><Reference><Citation>Arunachalam S. Cardiovascular disease prediction model using machine learning algorithms. Int J Res Appl Sci Eng Technol. 2020;8:1006–19.</Citation></Reference><Reference><Citation>Sharma D, Gotlieb N, Farkouh ME, Patel K, Xu W, Bhat M. Machine learning approach to classify cardiovascular disease in patients with nonalcoholic fatty liver disease in the UK biobank cohort. J Am Heart Assoc. 2022;11:e022576.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9075189</ArticleId><ArticleId IdType="pubmed">34927450</ArticleId></ArticleIdList></Reference><Reference><Citation>Al Kibria GM, Burrowes V, Choudhury A, Sharmeen A, Swasey K. Sex differences in prevalence and associated factors of prehypertension and hypertension among Bangladeshi adults. Int J Cardiol Hypertens. 2019;1:100006.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7803050</ArticleId><ArticleId IdType="pubmed">33447740</ArticleId></ArticleIdList></Reference><Reference><Citation>Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr. 2019;11:74.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6712750</ArticleId><ArticleId IdType="pubmed">31467596</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodgers JL, Jones J, Bolleddu SI, et al. . Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis. 2019;6:19.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6616540</ArticleId><ArticleId IdType="pubmed">31035613</ArticleId></ArticleIdList></Reference><Reference><Citation>Thompson SC, Nedkoff L, Katzenellenbogen J, Hussain MA, Sanfilippo F. Challenges in managing acute cardiovascular diseases and follow up care in rural areas: a narrative review. Int J Environ Res Public Health. 2019;16:5126.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6950682</ArticleId><ArticleId IdType="pubmed">31847490</ArticleId></ArticleIdList></Reference><Reference><Citation>Clark AM, DesMeules M, Luo W, Duncan AS, Wielgosz A. Socioeconomic status and cardiovascular disease: risks and implications for care. Nat Rev Cardiol. 2009;6:712–22.</Citation><ArticleIdList><ArticleId IdType="pubmed">19770848</ArticleId></ArticleIdList></Reference><Reference><Citation>Erem C, Hacihasanoglu A, Kocak M, Deger O, Topbas M. Prevalence of prehypertension and hypertension and associated risk factors among Turkish adults: Trabzon hypertension study. J Public Health (Oxf). 2009;31:47–58.</Citation><ArticleIdList><ArticleId IdType="pubmed">18829520</ArticleId></ArticleIdList></Reference><Reference><Citation>Petrelli A, Sebastiani G, Napoli AD, et al. . Education inequalities in cardiovascular and coronary heart disease in Italy and the role of behavioral and biological risk factors. Nutr Metab Cardiovasc Dis. 2022;32:918–28.</Citation><ArticleIdList><ArticleId IdType="pubmed">35067447</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39653777</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1546-170X</ISSN><JournalIssue CitedMedium="Internet"><Volume>30</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Nature medicine</Title><ISOAbbreviation>Nat Med</ISOAbbreviation></Journal><ArticleTitle>Data-driven cluster analysis identifies distinct types of metabolic dysfunction-associated steatotic liver disease.</ArticleTitle><Pagination><StartPage>3624</StartPage><EndPage>3633</EndPage><MedlinePgn>3624-3633</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41591-024-03283-1</ELocationID><Abstract><AbstractText>Metabolic dysfunction-associated steatotic liver disease (MASLD) exhibits considerable variability in clinical outcomes. Identifying specific phenotypic profiles within MASLD is essential for developing targeted therapeutic strategies. Here we investigated the heterogeneity of MASLD using partitioning around medoids clustering based on six simple clinical variables in a cohort of 1,389 individuals living with obesity. The identified clusters were applied across three independent MASLD cohorts with liver biopsy (totaling 1,099 participants), and in the UK Biobank to assess the incidence of chronic liver disease, cardiovascular disease and type 2 diabetes. Results unveiled two distinct types of MASLD associated with steatohepatitis on histology and liver imaging. The first cluster, liver-specific, was genetically linked and showed rapid progression of chronic liver disease but limited risk of cardiovascular disease. The second cluster, cardiometabolic, was primarily associated with dysglycemia and high levels of triglycerides, leading to a similar incidence of chronic liver disease but a higher risk of cardiovascular disease and type 2 diabetes. Analyses of samples from 831 individuals with available liver transcriptomics and 1,322 with available plasma metabolomics highlighted that these two types of MASLD exhibited distinct liver transcriptomic profiles and plasma metabolomic signatures, respectively. In conclusion, these data provide preliminary evidence of the existence of two distinct types of clinically relevant MASLD with similar liver phenotypes at baseline, but each with specific underlying biological profiles and different clinical trajectories, suggesting the need for tailored therapeutic strategies.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Raverdy</LastName><ForeName>Violeta</ForeName><Initials>V</Initials><Identifier Source="ORCID">0000-0001-5754-2028</Identifier><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Tavaglione</LastName><ForeName>Federica</ForeName><Initials>F</Initials><Identifier Source="ORCID">0000-0002-1720-4355</Identifier><AffiliationInfo><Affiliation>Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Chatelain</LastName><ForeName>Estelle</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>US 41 - UAR 2014 - PLBS Bilille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Lassailly</LastName><ForeName>Guillaume</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Hepato-Gastroenterology CHU Lille, University of Lille, Inserm INFINITE-U1286, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>De Vincentis</LastName><ForeName>Antonio</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Operative Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vespasiani-Gentilucci</LastName><ForeName>Umberto</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qadri</LastName><ForeName>Sami F</ForeName><Initials>SF</Initials><Identifier Source="ORCID">0000-0001-9313-9324</Identifier><AffiliationInfo><Affiliation>Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Minerva Foundation Institute for Medical Research, Helsinki, Finland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Caiazzo</LastName><ForeName>Robert</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verkindt</LastName><ForeName>Helene</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Saponaro</LastName><ForeName>Chiara</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kerr-Conte</LastName><ForeName>Julie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Baud</LastName><ForeName>Gregory</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marciniak</LastName><ForeName>Camille</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chetboun</LastName><ForeName>Mikael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Oukhouya-Daoud</LastName><ForeName>Naima</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Blanck</LastName><ForeName>Samuel</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>ULR 2694 METRICS: Évaluation des technologies de santé et des pratiques médicales, University of Lille, CHU Lille, F-59000, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vandel</LastName><ForeName>Jimmy</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0003-0189-0220</Identifier><AffiliationInfo><Affiliation>US 41 - UAR 2014 - PLBS Bilille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Olsson</LastName><ForeName>Lisa</ForeName><Initials>L</Initials><Identifier Source="ORCID">0000-0001-9730-1915</Identifier><AffiliationInfo><Affiliation>Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chakaroun</LastName><ForeName>Rima</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gnemmi</LastName><ForeName>Viviane</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Cancer Heterogeneity Plasticity and Resistance to Therapies, CANTHER-UMR9020-U1277 - CNRS, Inserm, CHU Lille, University of Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Pathology, CHU Lille, University of Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Leteurtre</LastName><ForeName>Emmanuelle</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Cancer Heterogeneity Plasticity and Resistance to Therapies, CANTHER-UMR9020-U1277 - CNRS, Inserm, CHU Lille, University of Lille, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Pathology, CHU Lille, University of Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lefebvre</LastName><ForeName>Philippe</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haas</LastName><ForeName>Joel T</ForeName><Initials>JT</Initials><Identifier Source="ORCID">0000-0002-0028-5988</Identifier><AffiliationInfo><Affiliation>Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yki-Järvinen</LastName><ForeName>Hannele</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Minerva Foundation Institute for Medical Research, Helsinki, Finland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Francque</LastName><ForeName>Sven</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-7527-4714</Identifier><AffiliationInfo><Affiliation>Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Staels</LastName><ForeName>Bart</ForeName><Initials>B</Initials><Identifier Source="ORCID">0000-0002-3784-1503</Identifier><AffiliationInfo><Affiliation>Nuclear Receptors, Metabolic and Cardiovascular Diseases - U1011, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Le Roux</LastName><ForeName>Carel W</ForeName><Initials>CW</Initials><Identifier Source="ORCID">0000-0001-5521-5445</Identifier><AffiliationInfo><Affiliation>Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tremaroli</LastName><ForeName>Valentina</ForeName><Initials>V</Initials><Identifier Source="ORCID">0000-0002-9150-4233</Identifier><AffiliationInfo><Affiliation>Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mathurin</LastName><ForeName>Philippe</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Hepato-Gastroenterology CHU Lille, University of Lille, Inserm INFINITE-U1286, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marot</LastName><ForeName>Guillemette</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>ULR 2694 METRICS: Évaluation des technologies de santé et des pratiques médicales, University of Lille, CHU Lille, F-59000, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>MODAL: Models for Data Analysis and Learning, Inria, F-59000, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Romeo</LastName><ForeName>Stefano</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0001-9168-4898</Identifier><AffiliationInfo><Affiliation>Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden. stefano.romeo@wlab.gu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy. stefano.romeo@wlab.gu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden. stefano.romeo@wlab.gu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine Huddinge (H7), Karolinska Institutet and University Hospital, Stockholm, Sweden. stefano.romeo@wlab.gu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden. stefano.romeo@wlab.gu.se.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pattou</LastName><ForeName>François</ForeName><Initials>F</Initials><Identifier Source="ORCID">0000-0001-8388-3766</Identifier><AffiliationInfo><Affiliation>Translational Research for Diabetes UMR 1190, University of Lille, Inserm, Institut Pasteur Lille, CHU Lille, Lille, France. francois.pattou@univ-lille.fr.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of General and Endocrine Surgery, Centre Hospitalier et Universitaire de Lille, Lille, France. francois.pattou@univ-lille.fr.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>NNF23OC0082114</GrantID><Agency>Novo Nordisk Fonden (Novo Nordisk Foundation)</Agency><Country/></Grant><Grant><GrantID>NNF20OC0063883</GrantID><Agency>Novo Nordisk Fonden (Novo Nordisk Foundation)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Nat Med</MedlineTA><NlmUniqueID>9502015</NlmUniqueID><ISSNLinking>1078-8956</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="Y">Liver</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005234" MajorTopicYN="Y">Fatty Liver</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008659" MajorTopicYN="N">Metabolic Diseases</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: The authors declare no conflicts of interest related to this manuscript.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>8</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>23</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>9</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39653777</ArticleId><ArticleId IdType="pmc">PMC11645276</ArticleId><ArticleId IdType="doi">10.1038/s41591-024-03283-1</ArticleId><ArticleId IdType="pii">10.1038/s41591-024-03283-1</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology78, 1966–1986 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37983810</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinella, M. E. et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology77, 1797–1835 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10735173</ArticleId><ArticleId IdType="pubmed">36727674</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology77, 1335–1347 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10026948</ArticleId><ArticleId IdType="pubmed">36626630</ArticleId></ArticleIdList></Reference><Reference><Citation>Romeo, S., Sanyal, A. & Valenti, L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab.31, 35–45 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">31914377</ArticleId></ArticleIdList></Reference><Reference><Citation>Kantartzis, K. & Stefan, N. Clustering NAFLD: phenotypes of nonalcoholic fatty liver disease and their differing trajectories. Hepatol. Commun.7, e0112 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10043573</ArticleId><ArticleId IdType="pubmed">36972374</ArticleId></ArticleIdList></Reference><Reference><Citation>Targher, G., Day, C. P. & Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med.363, 1341–1350 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20879883</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol.71, 793–801 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">31279902</ArticleId></ArticleIdList></Reference><Reference><Citation>Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol.73, 202–209 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">32278004</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med.24, 908–922 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6553468</ArticleId><ArticleId IdType="pubmed">29967350</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefan, N. & Cusi, K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol.10, 284–296 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35183303</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedman, S. L. & Sanyal, A. J. The future of hepatology. Hepatology78, 637–648 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37013924</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet.49, 1758–1766 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5709146</ArticleId><ArticleId IdType="pubmed">29083408</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefan, N., Haring, H. U. & Cusi, K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol.7, 313–324 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">30174213</ArticleId></ArticleIdList></Reference><Reference><Citation>Lauridsen, B. K. et al. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur. Heart J.39, 385–393 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29228164</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavaglione, F. et al. Inborn and acquired risk factors for severe liver disease in Europeans with type 2 diabetes from the UK Biobank. JHEP Rep.3, 100262 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8099786</ArticleId><ArticleId IdType="pubmed">33997749</ArticleId></ArticleIdList></Reference><Reference><Citation>Holmer, M. et al. Effect of common genetic variants on the risk of cirrhosis in non-alcoholic fatty liver disease during 20 years of follow-up. Liver Int.42, 2769–2780 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9828463</ArticleId><ArticleId IdType="pubmed">36166317</ArticleId></ArticleIdList></Reference><Reference><Citation>Seko, Y. et al. The greater impact of PNPLA3 polymorphism on liver-related events in Japanese non-alcoholic fatty liver disease patients: a multicentre cohort study. Liver Int.43, 2210–2219 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37470077</ArticleId></ArticleIdList></Reference><Reference><Citation>Nishimura, N. et al. Chitinase 3-like 1 is a profibrogenic factor overexpressed in the aging liver and in patients with liver cirrhosis. Proc. Natl Acad. Sci. USA118, e2019633118 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8092404</ArticleId><ArticleId IdType="pubmed">33888584</ArticleId></ArticleIdList></Reference><Reference><Citation>Lefebvre, P. et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight2, e92264 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5499370</ArticleId><ArticleId IdType="pubmed">28679947</ArticleId></ArticleIdList></Reference><Reference><Citation>Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature588, 135–140 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">33177712</ArticleId></ArticleIdList></Reference><Reference><Citation>Nemet, I. et al. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur. Heart J.44, 3085–3096 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10481777</ArticleId><ArticleId IdType="pubmed">37342006</ArticleId></ArticleIdList></Reference><Reference><Citation>Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell180, 862–877 e822 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7402401</ArticleId><ArticleId IdType="pubmed">32142679</ArticleId></ArticleIdList></Reference><Reference><Citation>Mantovani, A. et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals. Gut70, 962–969 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">32938692</ArticleId></ArticleIdList></Reference><Reference><Citation>Liabeuf, S. et al. Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS ONE8, e67168 (2013).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3691113</ArticleId><ArticleId IdType="pubmed">23826225</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei, H. et al. Increased circulating phenylacetylglutamine concentration elevates the predictive value of cardiovascular event risk in heart failure patients. J. Intern. Med.294, 515–530 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37184278</ArticleId></ArticleIdList></Reference><Reference><Citation>Yi, J., Wang, L., Guo, J. & Ren, X. Novel metabolic phenotypes for extrahepatic complication of nonalcoholic fatty liver disease. Hepatol. Commun.7, e0016 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9833442</ArticleId><ArticleId IdType="pubmed">36633488</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye, J. et al. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: a data-driven cluster analysis with international validation. Metabolism136, 155294 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35995280</ArticleId></ArticleIdList></Reference><Reference><Citation>Cusi, K. Selective agonists of thyroid hormone receptor beta for the treatment of NASH. N. Engl. J. Med.390, 559–561 (2024).</Citation><ArticleIdList><ArticleId IdType="pubmed">38324491</ArticleId></ArticleIdList></Reference><Reference><Citation>Loomba, R. et al. Randomized, controlled trial of the FGF21 analogue pegozafermin in NASH. N. Engl. J. Med.389, 998–1008 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10718287</ArticleId><ArticleId IdType="pubmed">37356033</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooreman, M. P. et al. The pan-PPAR agonist lanifibranor improves cardiometabolic health in patients with metabolic dysfunction-associated steatohepatitis. Nat. Commun.15, 3962 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11087475</ArticleId><ArticleId IdType="pubmed">38730247</ArticleId></ArticleIdList></Reference><Reference><Citation>Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med.384, 1113–1124 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33185364</ArticleId></ArticleIdList></Reference><Reference><Citation>Loomba, R. et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N. Engl. J. Med.391, 299–310 (2024).</Citation><ArticleIdList><ArticleId IdType="pubmed">38856224</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanyal, A. J. et al. A phase 2 randomized trial of survodutide in MASH and fibrosis. N. Engl. J. Med.391, 311–319 (2024).</Citation><ArticleIdList><ArticleId IdType="pubmed">38847460</ArticleId></ArticleIdList></Reference><Reference><Citation>Jamialahmadi, O. et al. Partitioned polygenic risk scores identify distinct types of metabolic dysfunction-associated steatotic liver disease. Nat. Med.10.1038/s41591-024-03284-0 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11645285</ArticleId><ArticleId IdType="pubmed">39653778</ArticleId></ArticleIdList></Reference><Reference><Citation>Gormley, I. C., Murphy, T. B. & Raftery, A. E. Model-based clustering. Ann. Rev. Stat. Appl.10, 573–595 (2023).</Citation></Reference><Reference><Citation>Nair, A. T. N. et al. Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes. Nat. Med.28, 982–988 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35534565</ArticleId></ArticleIdList></Reference><Reference><Citation>Raverdy, V. et al. Data-driven subgroups of type 2 diabetes, metabolic response, and renal risk profile after bariatric surgery: a retrospective cohort study. Lancet Diabetes Endocrinol.10, 167–176 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35148818</ArticleId></ArticleIdList></Reference><Reference><Citation>Raverdy, V. et al. Performance of non-invasive tests for liver fibrosis resolution after bariatric surgery. Metabolism153, 155790 (2024).</Citation><ArticleIdList><ArticleId IdType="pubmed">38219973</ArticleId></ArticleIdList></Reference><Reference><Citation>Raverdy, V. et al. Combining diabetes, sex, and menopause as meaningful clinical features associated with NASH and liver fibrosis in individuals with class II and III obesity: a retrospective cohort study. Obesity31, 3066–3076 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37987186</ArticleId></ArticleIdList></Reference><Reference><Citation>Saux, P. et al. Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study. Lancet Digit. Health5, e692–e702 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37652841</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice. 2. Diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care47, S20–S42 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10725812</ArticleId><ArticleId IdType="pubmed">38078589</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathurin, P. et al. Prospective study of the long-term effects of bariatric surgery on liver injury in patients without advanced disease. Gastroenterology137, 532–540 (2009).</Citation><ArticleIdList><ArticleId IdType="pubmed">19409898</ArticleId></ArticleIdList></Reference><Reference><Citation>Lassailly, G. et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology149, 379–388 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">25917783</ArticleId></ArticleIdList></Reference><Reference><Citation>Lassailly, G. et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology159, 1290–1301 e1295 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">32553765</ArticleId></ArticleIdList></Reference><Reference><Citation>Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology41, 1313–1321 (2005).</Citation><ArticleIdList><ArticleId IdType="pubmed">15915461</ArticleId></ArticleIdList></Reference><Reference><Citation>Brunt, E. M. et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology53, 810–820 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3079483</ArticleId><ArticleId IdType="pubmed">21319198</ArticleId></ArticleIdList></Reference><Reference><Citation>Lalloyer, F. et al. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J. Hepatol.79, 898–909 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37230231</ArticleId></ArticleIdList></Reference><Reference><Citation>Verrijken, A. et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology59, 121–129 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">24375485</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavaglione, F. et al. Accuracy of controlled attenuation parameter for assessing liver steatosis in individuals with morbid obesity before bariatric surgery. Liver Int.42, 374–383 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34890093</ArticleId></ArticleIdList></Reference><Reference><Citation>Luukkonen, P. K. et al. The PNPLA3-I148M variant confers an antiatherogenic lipid profile in insulin-resistant patients. J. Clin. Endocrinol. Metab.106, e300–e315 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33064150</ArticleId></ArticleIdList></Reference><Reference><Citation>Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.12, e1001779 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4380465</ArticleId><ArticleId IdType="pubmed">25826379</ArticleId></ArticleIdList></Reference><Reference><Citation>Jamialahmadi, O. et al. Exome-wide association study on alanine aminotransferase identifies sequence variants in the GPAM and APOE associated with fatty liver disease. Gastroenterology160, 1634–1646 e1637 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33347879</ArticleId></ArticleIdList></Reference><Reference><Citation>Bianco, C. et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol.74, 775–782 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7987554</ArticleId><ArticleId IdType="pubmed">33248170</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilman, H. R. et al. Characterisation of liver fat in the UK Biobank cohort. PLoS ONE12, e0172921 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5328634</ArticleId><ArticleId IdType="pubmed">28241076</ArticleId></ArticleIdList></Reference><Reference><Citation>Mojtahed, A. et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases. Abdom. Radiol.44, 72–84 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6348264</ArticleId><ArticleId IdType="pubmed">30032383</ArticleId></ArticleIdList></Reference><Reference><Citation>Parisinos, C. A. et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. J. Hepatol.73, 241–251 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7372222</ArticleId><ArticleId IdType="pubmed">32247823</ArticleId></ArticleIdList></Reference><Reference><Citation>Schubert, E. & Rousseeuw, P. J. Fast and eager k-medoids clustering: 0(k) runtime improvement of the PAM, CLARA and CLARANS algorithms. Inf. Syst.101, 101804 (2021).</Citation></Reference><Reference><Citation>Rousseeuw, P. J. & Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math.20, 53–65 (1987).</Citation></Reference><Reference><Citation>Gunderson, K. L. et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet.37, 549–554 (2005).</Citation><ArticleIdList><ArticleId IdType="pubmed">15838508</ArticleId></ArticleIdList></Reference><Reference><Citation>Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature562, 203–209 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6786975</ArticleId><ArticleId IdType="pubmed">30305743</ArticleId></ArticleIdList></Reference><Reference><Citation>Dongiovanni, P. et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J. Intern. Med.283, 356–370 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5900872</ArticleId><ArticleId IdType="pubmed">29280273</ArticleId></ArticleIdList></Reference><Reference><Citation>Margerie, D. et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med. Genomics12, 80 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6545676</ArticleId><ArticleId IdType="pubmed">31159817</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39653743</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2041-1723</ISSN><JournalIssue CitedMedium="Internet"><Volume>15</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>09</Day></PubDate></JournalIssue><Title>Nature communications</Title><ISOAbbreviation>Nat Commun</ISOAbbreviation></Journal><ArticleTitle>Dysregulation of MMP2-dependent TGF-ß2 activation impairs fibrous cap formation in type 2 diabetes-associated atherosclerosis.</ArticleTitle><Pagination><StartPage>10464</StartPage><MedlinePgn>10464</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">10464</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-024-50753-8</ELocationID><Abstract><AbstractText>Type 2 diabetes is associated with cardiovascular disease, possibly due to impaired vascular fibrous repair. Yet, the mechanisms are elusive. Here, we investigate alterations in the fibrous repair processes in type 2 diabetes atherosclerotic plaque extracellular matrix by combining multi-omics from the human Carotid Plaque Imaging Project cohort and functional studies. Plaques from type 2 diabetes patients have less collagen. Interestingly, lower levels of transforming growth factor-ß distinguish type 2 diabetes plaques and, in these patients, lower levels of fibrous repair markers are associated with cardiovascular events. Transforming growth factor-ß2 originates mostly from contractile vascular smooth muscle cells that interact with synthetic vascular smooth muscle cells in the cap, leading to collagen formation and vascular smooth muscle cell differentiation. This is regulated by free transforming growth factor-ß2 which is affected by hyperglycemia. Our findings underscore the importance of transforming growth factor-ß2-driven fibrous repair in type 2 diabetes as an area for future therapeutic strategies.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Singh</LastName><ForeName>Pratibha</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Sun</LastName><ForeName>Jiangming</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0001-6814-1297</Identifier><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cavalera</LastName><ForeName>Michele</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Sharify</LastName><ForeName>Dania</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Matthes</LastName><ForeName>Frank</ForeName><Initials>F</Initials><Identifier Source="ORCID">0000-0002-5115-8831</Identifier><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barghouth</LastName><ForeName>Mohammad</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tengryd</LastName><ForeName>Christoffer</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dunér</LastName><ForeName>Pontus</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Persson</LastName><ForeName>Ana</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sundius</LastName><ForeName>Lena</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nitulescu</LastName><ForeName>Mihaela</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bengtsson</LastName><ForeName>Eva</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Biomedical Science, Malmö University, Malmö, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rattik</LastName><ForeName>Sara</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Engelbertsen</LastName><ForeName>Daniel</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Orho-Melander</LastName><ForeName>Marju</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0002-3578-2503</Identifier><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nilsson</LastName><ForeName>Jan</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0002-9752-7479</Identifier><AffiliationInfo><Affiliation>Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Monaco</LastName><ForeName>Claudia</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0003-1985-4914</Identifier><AffiliationInfo><Affiliation>Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goncalves</LastName><ForeName>Isabel</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Edsfeldt</LastName><ForeName>Andreas</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-2691-9192</Identifier><AffiliationInfo><Affiliation>Cardiovascular Research-Translational Studies, Lund University, Malmö, Sweden. Andreas.edsfeldt@med.lu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiology, University Hospital of Skåne, Lund/Malmö, Sweden. Andreas.edsfeldt@med.lu.se.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden. Andreas.edsfeldt@med.lu.se.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CG-22-0254-H-02</GrantID><Agency>Svenska Sällskapet för Medicinsk Forskning (Swedish Society for Medical Research)</Agency><Country/></Grant><Grant><GrantID>2019-01907</GrantID><Agency>Vetenskapsrådet (Swedish Research Council)</Agency><Country/></Grant><Grant><GrantID>SLS-961085</GrantID><Agency>Svenska Läkaresällskapet (Swedish Society of Medicine)</Agency><Country/></Grant><Grant><GrantID>20220044 and 20220284; 20200403</GrantID><Agency>Hjärt-Lungfonden (Swedish Heart-Lung Foundation)</Agency><Country/></Grant><Grant><GrantID>20210796</GrantID><Agency>Crafoordska Stiftelsen (Crafoord Foundation)</Agency><Country/></Grant><Grant><GrantID>J.S, S-993166</GrantID><Agency>STROKE-Riksförbundet (Swedish Stroke Association)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Nat Commun</MedlineTA><NlmUniqueID>101528555</NlmUniqueID><ISSNLinking>2041-1723</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053781">Transforming Growth Factor beta2</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.24.24</RegistryNumber><NameOfSubstance UI="D020778">Matrix Metalloproteinase 2</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.24.24</RegistryNumber><NameOfSubstance UI="C522361">MMP2 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-34-5</RegistryNumber><NameOfSubstance UI="D003094">Collagen</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C509041">TGFB2 protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D053781" MajorTopicYN="Y">Transforming Growth Factor beta2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020778" MajorTopicYN="Y">Matrix Metalloproteinase 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058226" MajorTopicYN="Y">Plaque, Atherosclerotic</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009131" MajorTopicYN="Y">Muscle, Smooth, Vascular</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D032389" MajorTopicYN="Y">Myocytes, Smooth Muscle</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050197" MajorTopicYN="Y">Atherosclerosis</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003094" MajorTopicYN="N">Collagen</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005109" MajorTopicYN="N">Extracellular Matrix</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: A.E. reports consulting fees from Novo Nordisk, Sanofi and Amgen, but this has not had any relationship with the current study or affected the design/outcome of the study.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>6</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>23</Hour><Minute>18</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>9</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39653743</ArticleId><ArticleId IdType="pmc">PMC11628557</ArticleId><ArticleId IdType="doi">10.1038/s41467-024-50753-8</ArticleId><ArticleId IdType="pii">10.1038/s41467-024-50753-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Rawshani, A. et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med.376, 1407–1418 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28402770</ArticleId></ArticleIdList></Reference><Reference><Citation>Burke, A. P. et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Thromb. Vasc. Biol.24, 1266–1271 (2004).</Citation><ArticleIdList><ArticleId IdType="pubmed">15142859</ArticleId></ArticleIdList></Reference><Reference><Citation>Virmani, R., Burke, A. P. & Kolodgie, F. Morphological characteristics of coronary atherosclerosis in diabetes mellitus. Can. J. Cardiol.22, 81B–84B (2006).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2780829</ArticleId><ArticleId IdType="pubmed">16498517</ArticleId></ArticleIdList></Reference><Reference><Citation>Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet375, 2215–2222 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2904878</ArticleId><ArticleId IdType="pubmed">20609967</ArticleId></ArticleIdList></Reference><Reference><Citation>Rawshani, A. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.379, 633–644 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">30110583</ArticleId></ArticleIdList></Reference><Reference><Citation>Monaco, C. et al. Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis. Circulation120, 2462–2469 (2009).</Citation><ArticleIdList><ArticleId IdType="pubmed">19948979</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun, J. et al. Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture. J. Am. Coll. Cardiol.81, 2213–2227 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37286250</ArticleId></ArticleIdList></Reference><Reference><Citation>Magid, R., Murphy, T. J. & Galis, Z. S. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem.278, 32994–32999 (2003).</Citation><ArticleIdList><ArticleId IdType="pubmed">12816956</ArticleId></ArticleIdList></Reference><Reference><Citation>Edsfeldt, A. et al. Impaired fibrous repair: a possible contributor to atherosclerotic plaque vulnerability in patients with type II diabetes. Arterioscler. Thromb. Vasc. Biol.34, 2143–2150 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">25035341</ArticleId></ArticleIdList></Reference><Reference><Citation>Scholtes, V. P. et al. Type 2 diabetes is not associated with an altered plaque phenotype among patients undergoing carotid revascularization. A histological analysis of 1455 carotid plaques. Atherosclerosis235, 418–423 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">24937465</ArticleId></ArticleIdList></Reference><Reference><Citation>Milzi, A. et al. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study. Cardiovasc. Diabetol.16, 152 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5709861</ArticleId><ArticleId IdType="pubmed">29195505</ArticleId></ArticleIdList></Reference><Reference><Citation>Sugiyama, T. et al. Coronary plaque characteristics in patients with diabetes mellitus who presented with acute coronary syndromes. J. Am. Heart Assoc.7, e009245 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6064844</ArticleId><ArticleId IdType="pubmed">30006490</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso, S. P. et al. Diabetes mellitus is associated with plaque classified as thin cap fibroatheroma: an intravascular ultrasound study. Diab. Vasc. Dis. Res.7, 14–19 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20368228</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgmaier, M., Hellmich, M., Marx, N. & Reith, S. A score to quantify coronary plaque vulnerability in high-risk patients with type 2 diabetes: an optical coherence tomography study. Cardiovasc. Diabetol.13, 117 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4148556</ArticleId><ArticleId IdType="pubmed">25248966</ArticleId></ArticleIdList></Reference><Reference><Citation>Goncalves, I. et al. Plaque vulnerability index predicts cardiovascular events: a histological study of an endarterectomy cohort. J. Am. Heart Assoc.10, e021038 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8475655</ArticleId><ArticleId IdType="pubmed">34325529</ArticleId></ArticleIdList></Reference><Reference><Citation>Tomas, L. et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J.39, 2301–2310 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6012762</ArticleId><ArticleId IdType="pubmed">29562241</ArticleId></ArticleIdList></Reference><Reference><Citation>Edsfeldt, A. et al. Transforming growth factor-beta2 is associated with atherosclerotic plaque stability and lower risk for cardiovascular events. Cardiovasc. Res.119, 2061–2073 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10478752</ArticleId><ArticleId IdType="pubmed">37200403</ArticleId></ArticleIdList></Reference><Reference><Citation>Jenkins, G. The role of proteases in transforming growth factor-beta activation. Int. J. Biochem. Cell Biol.40, 1068–1078 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18243766</ArticleId></ArticleIdList></Reference><Reference><Citation>Newby, A. C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res.69, 614–624 (2006).</Citation><ArticleIdList><ArticleId IdType="pubmed">16266693</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson, C. & Galis, Z. S. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol.24, 54–60 (2004).</Citation><ArticleIdList><ArticleId IdType="pubmed">14551157</ArticleId></ArticleIdList></Reference><Reference><Citation>Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol.16, 389–406 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6727648</ArticleId><ArticleId IdType="pubmed">30846875</ArticleId></ArticleIdList></Reference><Reference><Citation>Ostling, G., Hedblad, B., Berglund, G. & Goncalves, I. Increased echolucency of carotid plaques in patients with type 2 diabetes. Stroke38, 2074–2078 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17525393</ArticleId></ArticleIdList></Reference><Reference><Citation>Fabris, E. et al. Thin-cap fibroatheroma rather than any lipid plaques increases the risk of cardiovascular events in diabetic patients: insights from the COMBINE OCT-FFR trial. Circ. Cardiovasc. Interv.15, e011728 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35485232</ArticleId></ArticleIdList></Reference><Reference><Citation>Huibers, A., de Borst, G. J., Bulbulia, R., Pan, H. & Halliday, A. Plaque echolucency and the risk of ischaemic stroke in patients with asymptomatic carotid stenosis within the first asymptomatic carotid surgery trial (ACST-1). Eur. J. Vasc. Endovasc. Surg.51, 616–621 (2016).</Citation><ArticleIdList><ArticleId IdType="pubmed">26725253</ArticleId></ArticleIdList></Reference><Reference><Citation>Grainger, D. J. TGF-beta and atherosclerosis in man. Cardiovasc. Res.74, 213–222 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17382916</ArticleId></ArticleIdList></Reference><Reference><Citation>Toma, I. & McCaffrey, T. A. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res.347, 155–175 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4915479</ArticleId><ArticleId IdType="pubmed">21626289</ArticleId></ArticleIdList></Reference><Reference><Citation>Argmann, C. A. et al. Transforming growth factor-beta1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler. Thromb. Vasc. Biol.21, 2011–2018 (2001).</Citation><ArticleIdList><ArticleId IdType="pubmed">11742878</ArticleId></ArticleIdList></Reference><Reference><Citation>Gojova, A. et al. Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood102, 4052–4058 (2003).</Citation><ArticleIdList><ArticleId IdType="pubmed">12920022</ArticleId></ArticleIdList></Reference><Reference><Citation>Maheshwari, A. et al. TGF-beta2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology140, 242–253 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3008335</ArticleId><ArticleId IdType="pubmed">20875417</ArticleId></ArticleIdList></Reference><Reference><Citation>Zode, G. S. et al. Transforming growth factor-beta2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol. Vis.17, 1745–1758 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3130727</ArticleId><ArticleId IdType="pubmed">21738403</ArticleId></ArticleIdList></Reference><Reference><Citation>Yokoyama, K. et al. The PI3K/Akt pathway mediates the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol.250, 15–23 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3262137</ArticleId><ArticleId IdType="pubmed">21858467</ArticleId></ArticleIdList></Reference><Reference><Citation>Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res.127, 1437–1455 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7641189</ArticleId><ArticleId IdType="pubmed">32981416</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med.25, 1576–1588 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7318784</ArticleId><ArticleId IdType="pubmed">31591603</ArticleId></ArticleIdList></Reference><Reference><Citation>Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res.2, 656–672 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7615632</ArticleId><ArticleId IdType="pubmed">38362263</ArticleId></ArticleIdList></Reference><Reference><Citation>Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation142, 2045–2059 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7682794</ArticleId><ArticleId IdType="pubmed">32674599</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation142, 2060–2075 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8104264</ArticleId><ArticleId IdType="pubmed">32962412</ArticleId></ArticleIdList></Reference><Reference><Citation>Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med.25, 1280–1289 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7274198</ArticleId><ArticleId IdType="pubmed">31359001</ArticleId></ArticleIdList></Reference><Reference><Citation>Grootaert, M. O. J. & Bennett, M. R. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc. Res.117, 2326–2339 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8479803</ArticleId><ArticleId IdType="pubmed">33576407</ArticleId></ArticleIdList></Reference><Reference><Citation>Herring, B. P., Hoggatt, A. M., Burlak, C. & Offermanns, S. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc. Cell6, 21 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4193961</ArticleId><ArticleId IdType="pubmed">25309723</ArticleId></ArticleIdList></Reference><Reference><Citation>Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol.16, 727–744 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">31243391</ArticleId></ArticleIdList></Reference><Reference><Citation>Rohl, S. et al. Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response. JVS Vasc. Sci.1, 13–27 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8489224</ArticleId><ArticleId IdType="pubmed">34617037</ArticleId></ArticleIdList></Reference><Reference><Citation>Lewandowski, K. C., Banach, E., Bienkiewicz, M. & Lewinski, A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch. Med. Sci.7, 294–303 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3258712</ArticleId><ArticleId IdType="pubmed">22291770</ArticleId></ArticleIdList></Reference><Reference><Citation>Rysz, J. et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol.20, 444–452 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17879211</ArticleId></ArticleIdList></Reference><Reference><Citation>Arreguin-Cano, J. A. et al. MMP-2 salivary activity in type 2 diabetes mellitus patients. Diabetol. Metab. Syndr.11, 113 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6937721</ArticleId><ArticleId IdType="pubmed">31892956</ArticleId></ArticleIdList></Reference><Reference><Citation>Derynck, R. & Akhurst, R. J. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat. Cell Biol.9, 1000–1004 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17762890</ArticleId></ArticleIdList></Reference><Reference><Citation>Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ321, 405–412 (2000).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC27454</ArticleId><ArticleId IdType="pubmed">10938048</ArticleId></ArticleIdList></Reference><Reference><Citation>Group, A. C. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.358, 2560–2572 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18539916</ArticleId></ArticleIdList></Reference><Reference><Citation>Action to Control Cardiovascular Risk in Diabetes Study Group et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med.358, 2545–2559 (2008).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4551392</ArticleId><ArticleId IdType="pubmed">18539917</ArticleId></ArticleIdList></Reference><Reference><Citation>Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med.360, 129–139 (2009).</Citation><ArticleIdList><ArticleId IdType="pubmed">19092145</ArticleId></ArticleIdList></Reference><Reference><Citation>Hayward, R. A. et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.372, 2197–2206 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">26039600</ArticleId></ArticleIdList></Reference><Reference><Citation>Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med.359, 1577–1589 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18784090</ArticleId></ArticleIdList></Reference><Reference><Citation>Goncalves, I. et al. Short communication: Dating components of human atherosclerotic plaques. Circ. Res.106, 1174–1177 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20167929</ArticleId></ArticleIdList></Reference><Reference><Citation>Edsfeldt, A. et al. Human atherosclerotic plaque progression is dependent on apoptosis according to bomb-pulse 14C dating. JACC Basic Transl. Sci.6, 734–745 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8559321</ArticleId><ArticleId IdType="pubmed">34754987</ArticleId></ArticleIdList></Reference><Reference><Citation>Gupta, A. et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke44, 3071–3077 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23988640</ArticleId></ArticleIdList></Reference><Reference><Citation>Marnane, M. et al. Plaque inflammation and unstable morphology are associated with early stroke recurrence in symptomatic carotid stenosis. Stroke45, 801–806 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">24481971</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian, J. et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J. Am. Coll. Cardiol.63, 2209–2216 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">24632266</ArticleId></ArticleIdList></Reference><Reference><Citation>Little, P. J., Tannock, L., Olin, K. L., Chait, A. & Wight, T. N. Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta1 exhibit increased binding to LDLs. Arterioscler. Thromb. Vasc. Biol.22, 55–60 (2002).</Citation><ArticleIdList><ArticleId IdType="pubmed">11788461</ArticleId></ArticleIdList></Reference><Reference><Citation>Schonherr, E., Jarvelainen, H. T., Sandell, L. J. & Wight, T. N. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J. Biol. Chem.266, 17640–17647 (1991).</Citation><ArticleIdList><ArticleId IdType="pubmed">1894644</ArticleId></ArticleIdList></Reference><Reference><Citation>Dadlani, H., Ballinger, M. L., Osman, N., Getachew, R. & Little, P. J. Smad and p38 MAP kinase-mediated signaling of proteoglycan synthesis in vascular smooth muscle. J. Biol. Chem.283, 7844–7852 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18223258</ArticleId></ArticleIdList></Reference><Reference><Citation>Burch, M. L. et al. TGF-beta stimulates biglycan synthesis via p38 and ERK phosphorylation of the linker region of Smad2. Cell Mol. Life Sci.67, 2077–2090 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11115902</ArticleId><ArticleId IdType="pubmed">20213272</ArticleId></ArticleIdList></Reference><Reference><Citation>Goncalves, I. et al. Changes related to age and cerebrovascular symptoms in the extracellular matrix of human carotid plaques. Stroke34, 616–622 (2003).</Citation><ArticleIdList><ArticleId IdType="pubmed">12624281</ArticleId></ArticleIdList></Reference><Reference><Citation>Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3530905</ArticleId><ArticleId IdType="pubmed">23104886</ArticleId></ArticleIdList></Reference><Reference><Citation>Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5600148</ArticleId><ArticleId IdType="pubmed">28263959</ArticleId></ArticleIdList></Reference><Reference><Citation>McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res.40, 4288–4297 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3378882</ArticleId><ArticleId IdType="pubmed">22287627</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics8, 118–127 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">16632515</ArticleId></ArticleIdList></Reference><Reference><Citation>Monaco, C. et al. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc. Natl Acad. Sci. USA101, 5634–5639 (2004).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC397455</ArticleId><ArticleId IdType="pubmed">15064395</ArticleId></ArticleIdList></Reference><Reference><Citation>Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods10, 1096–1098 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">24056875</ArticleId></ArticleIdList></Reference><Reference><Citation>Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science376, eabl4896 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9812260</ArticleId><ArticleId IdType="pubmed">35549404</ArticleId></ArticleIdList></Reference><Reference><Citation>Stuart, T. et al. Comprehensive integration of single-cell data. Cell177, 1888–1902.e1821 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6687398</ArticleId><ArticleId IdType="pubmed">31178118</ArticleId></ArticleIdList></Reference><Reference><Citation>Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun. Biol.5, 1084 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9556750</ArticleId><ArticleId IdType="pubmed">36224302</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma, W. F. et al. Enhanced single-cell RNA-seq workflow reveals coronary artery disease cellular cross-talk and candidate drug targets. Atherosclerosis340, 12–22 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8919504</ArticleId><ArticleId IdType="pubmed">34871816</ArticleId></ArticleIdList></Reference><Reference><Citation>Eriksson, L., Rosen, J., Johansson, E. & Trygg, J. Orthogonal PLS (OPLS) modeling for improved analysis and interpretation in drug design. Mol. Inf.31, 414–419 (2012).</Citation><ArticleIdList><ArticleId IdType="pubmed">27477460</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39653251</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>19</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8006</ISSN><JournalIssue CitedMedium="Internet"><Volume>1869</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Biochimica et biophysica acta. General subjects</Title><ISOAbbreviation>Biochim Biophys Acta Gen Subj</ISOAbbreviation></Journal><ArticleTitle>Computational profiling and pharmacokinetic modelling of Febuxostat: Evaluating its potential as a therapeutic agent for diabetic wound healing.</ArticleTitle><Pagination><StartPage>130735</StartPage><MedlinePgn>130735</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbagen.2024.130735</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0304-4165(24)00178-8</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetic wounds, a significant complication of Type 2 Diabetes Mellitus (T2DM), face delayed healing due to impaired inflammation, angiogenesis, and collagen synthesis. This study explores Febuxostat, a xanthine oxidase inhibitor for its therapeutic potential in wound healing. Combining computational approaches and in-vitro assays, the study evaluates its effects on key wound healing pathways, cell viability, migration.</AbstractText><AbstractText Label="METHODOLOGY" NlmCategory="METHODS">The potential of Febuxostat in diabetic wound healing was studied using in-silico tools for Molecular docking and ADMET profiling, alongside Molecular dynamics (MD) simulations. Toxicity was assessed with OSIRIS Explorer, and biological activity was predicted using the PASS tool. In-vitro MTT and scratch assays on L929 cells further validated cytotoxicity and wound healing efficacy.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Docking analysis revealed strong binding affinities to key wound healing targets, including VEGF (-9.11 kcal/mol) and NFKβ (-8.62 kcal/mol). Pharmacokinetic studies highlighted favorable skin permeability, supporting topical applications. Toxicity predictions indicated a safe profile. Molecular dynamics simulations demonstrated stable protein-ligand complexes, particularly with VEGF. Cytotoxicity studies on L929 cells revealed an IC<sub>50</sub> of 6.08 μM and the scratch assay demonstrated significant wound healing activity, highlighting its effectiveness in promoting cell migration and closure.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Febuxostat shows remarkable potential in enhancing diabetic wound healing by promoting cell migration, targeting wound-healing proteins, as demonstrated through in-silico and in-vitro studies. This drug is poised to effectively treat diabetic wounds, accelerating healing and reducing complications. Rigorous pre-clinical and clinical evaluations are essential to validate its safety, efficacy, and therapeutic potential.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Nirenjen</LastName><ForeName>S</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Narayanan</LastName><ForeName>J</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India. Electronic address: narayanj@srmist.edu.in.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>07</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Biochim Biophys Acta Gen Subj</MedlineTA><NlmUniqueID>101731726</NlmUniqueID><ISSNLinking>0304-4165</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>101V0R1N2E</RegistryNumber><NameOfSubstance UI="D000069465">Febuxostat</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000069465" MajorTopicYN="Y">Febuxostat</DescriptorName><QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014945" MajorTopicYN="Y">Wound Healing</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D062105" MajorTopicYN="Y">Molecular Docking Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056004" MajorTopicYN="Y">Molecular Dynamics Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic wounds</Keyword><Keyword MajorTopicYN="N">Febuxostat</Keyword><Keyword MajorTopicYN="N">Inflammation</Keyword><Keyword MajorTopicYN="N">MRSA infections</Keyword><Keyword MajorTopicYN="N">Molecular docking</Keyword><Keyword MajorTopicYN="N">Molecular dynamics</Keyword><Keyword MajorTopicYN="N">Wound healing</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>20</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>19</Hour><Minute>16</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39653251</ArticleId><ArticleId IdType="doi">10.1016/j.bbagen.2024.130735</ArticleId><ArticleId IdType="pii">S0304-4165(24)00178-8</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39653064</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>31</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>31</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1522-1555</ISSN><JournalIssue CitedMedium="Internet"><Volume>328</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month><Day>01</Day></PubDate></JournalIssue><Title>American journal of physiology. Endocrinology and metabolism</Title><ISOAbbreviation>Am J Physiol Endocrinol Metab</ISOAbbreviation></Journal><ArticleTitle>Enhanced quantification of α-cell suppression by hyperglycemia using a high-sensitivity glucagon assay.</ArticleTitle><Pagination><StartPage>E62</StartPage><EndPage>E68</EndPage><MedlinePgn>E62-E68</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpendo.00301.2024</ELocationID><Abstract><AbstractText>Accurate measurement of glucagon concentrations in a variety of conditions is necessary for subsequent estimation of glucagon secretion. Glucagon arises in the α-cell as a product of proglucagon processing. Modern two-site immunoassays have overcome prior problems with glucagon measurement caused by cross-reactivity with other proglucagon-derived fragments. However, in response to hyperglycemia, glucagon concentrations can fall below the limit of quantification of commercial immunoassays. This has implications for the characterization of α-cell function in health, in prediabetes, and in type 2 diabetes. An increase in the sensitivity of glucagon measurement was achieved by ethanol precipitation and concentration of the sample before measurement. Concentrating the sample sixfold enabled a decrease in the level of quantitation from 1.7 to 0.3 pmol/L with acceptable precision. To establish whether this enhanced high-sensitivity glucagon assay enhances the characterization of α-cell function in health and disease, we then estimated glucagon secretion rate (GSR) in four subjects. We subsequently used the relationship of GSR to glucose concentrations to characterize the α-cell response to glucose and demonstrate improved characterization of α-cell dysfunction in vivo.<b>NEW & NOTEWORTHY</b> We describe a method that lowers the limit of quantification of a glucagon immunoassay thereby enhancing the ability to differentiate between normal and abnormal α-cell responsiveness to glucagon.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Dyer</LastName><ForeName>Roy B</ForeName><Initials>RB</Initials><AffiliationInfo><Affiliation>Immunochemical Core Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Laurenti</LastName><ForeName>Marcello C</ForeName><Initials>MC</Initials><Identifier Source="ORCID">0000-0002-8697-6260</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Christie</LastName><ForeName>Hannah E</ForeName><Initials>HE</Initials><Identifier Source="ORCID">0000-0002-0606-6778</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mohan</LastName><ForeName>Sneha</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Egan</LastName><ForeName>Aoife M</ForeName><Initials>AM</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dalla Man</LastName><ForeName>Chiara</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0002-4908-0596</Identifier><AffiliationInfo><Affiliation>Department of Information Engineering, University of Padova, Padova, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vella</LastName><ForeName>Adrian</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0001-6493-7837</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>DK134767</GrantID><Agency>HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)</Agency><Country/></Grant><Grant><GrantID>DK78646</GrantID><Agency>HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)</Agency><Country/></Grant><Grant><GrantID>DK116231</GrantID><Agency>HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)</Agency><Country/></Grant><Grant><GrantID>DK126206</GrantID><Agency>HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)</Agency><Country/></Grant><Grant><GrantID>DK TR000135</GrantID><Agency>HHS | NIH | NIH Office of the Director (OD)</Agency><Country/></Grant><Grant><GrantID>Departments of Excellence (Law 232/2016)</GrantID><Agency>Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Am J Physiol Endocrinol Metab</MedlineTA><NlmUniqueID>100901226</NlmUniqueID><ISSNLinking>0193-1849</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9007-92-5</RegistryNumber><NameOfSubstance UI="D005934">Glucagon</NameOfSubstance></Chemical><Chemical><RegistryNumber>IY9XDZ35W2</RegistryNumber><NameOfSubstance UI="D005947">Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D005934" MajorTopicYN="Y">Glucagon</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050416" MajorTopicYN="Y">Glucagon-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006943" MajorTopicYN="Y">Hyperglycemia</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007118" MajorTopicYN="N">Immunoassay</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">glucagon secretion</Keyword><Keyword MajorTopicYN="N">glucagon suppression</Keyword><Keyword MajorTopicYN="N">α-cell function</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>1</Day><Hour>12</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>10</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>19</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39653064</ArticleId><ArticleId IdType="doi">10.1152/ajpendo.00301.2024</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39652177</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>08</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2731-7013</ISSN><JournalIssue CitedMedium="Internet"><Volume>76</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Dermatologie (Heidelberg, Germany)</Title><ISOAbbreviation>Dermatologie (Heidelb)</ISOAbbreviation></Journal><ArticleTitle>[Atopic dermatitis and diabetes mellitus-is there a link?].</ArticleTitle><Pagination><StartPage>21</StartPage><EndPage>26</EndPage><MedlinePgn>21-26</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s00105-024-05440-6</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Atopic dermatitis and diabetes mellitus are chronic, immune-mediated, inflammatory diseases that significantly affect patients' quality of life and also represent a considerable socioeconomic burden. Despite intensive research in recent decades, the possible link between these two medical conditions remains a controversial topic due to sparse and sometimes contradictory data. Nevertheless, the potential link between them is based on some recognized common pathophysiological features.</AbstractText><AbstractText Label="AIM" NlmCategory="OBJECTIVE">To summarize and evaluate a possible association between atopic dermatitis and diabetes mellitus.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">A literature review on the potential association between atopic dermatitis and diabetes mellitus was conducted.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Several studies have reported a correlation between atopic dermatitis and type 1 or type 2 diabetes mellitus. However, other studies have shown no association between these two conditions or even suggested that atopic dermatitis could reduce the risk of developing diabetes mellitus in certain patients. In addition, these two chronic diseases also have certain clinical features that suggest a possible correlation. However, there is currently no clear scientific evidence of a significant positive association between atopic dermatitis and diabetes mellitus, mainly due to the lack of large and diverse demographic studies.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Clinicians should be aware of this potential correlation in both adult and pediatric patients and consider the importance of an interdisciplinary approach for the management of atopic dermatitis. Further research is needed to determine possible associations between atopic dermatitis and diabetes mellitus in specific populations.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sendrea</LastName><ForeName>Adelina-Maria</ForeName><Initials>AM</Initials><AffiliationInfo><Affiliation>Carol Davila Universität für Medizin und Pharmacie, 8 Eroilor Sanitari Boulevard, 050474, Bukarest, Rumänien. adelinalopotaru@yahoo.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Abteilung Pädiatrische Dermatologie, Colentina Klinik, Bukarest, Rumänien. adelinalopotaru@yahoo.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Dermatologische Forschungsabteilung, Colentina Klinik, Bukarest, Rumänien. adelinalopotaru@yahoo.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Salavastru</LastName><ForeName>Carmen Maria</ForeName><Initials>CM</Initials><AffiliationInfo><Affiliation>Carol Davila Universität für Medizin und Pharmacie, 8 Eroilor Sanitari Boulevard, 050474, Bukarest, Rumänien.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Abteilung Pädiatrische Dermatologie, Colentina Klinik, Bukarest, Rumänien.</Affiliation></AffiliationInfo></Author></AuthorList><Language>ger</Language><PublicationTypeList><PublicationType UI="D004740">English Abstract</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><VernacularTitle>Atopische Dermatitis und Diabetes mellitus – Gibt es Zusammenhänge?</VernacularTitle><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Dermatologie (Heidelb)</MedlineTA><NlmUniqueID>9918384885206676</NlmUniqueID><ISSNLinking>2731-7005</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003876" MajorTopicYN="Y">Dermatitis, Atopic</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="ger"><AbstractText Label="ZUSAMMENFASSUNG" NlmCategory="UNASSIGNED">HINTERGRUND: Atopische Dermatitis und Diabetes mellitus sind chronische, immunvermittelte, entzündliche Erkrankungen, die die Lebensqualität der Patienten erheblich beeinträchtigen und zudem eine beträchtliche sozioökonomische Belastung darstellen. Trotz intensiver Forschung in den letzten Jahrzehnten bleibt der mögliche Zusammenhang zwischen diesen beiden medizinischen Zuständen aufgrund spärlicher und manchmal widersprüchlicher Daten ein umstrittenes Thema. Dennoch beruht die potenzielle Verbindung zwischen ihnen auf einigen anerkannten gemeinsamen pathophysiologischen Merkmalen.</AbstractText><AbstractText Label="ZIELE" NlmCategory="UNASSIGNED">Ein möglicher Zusammenhang zwischen atopischer Dermatitis und Diabetes mellitus soll dargestellt und bewertet werden.</AbstractText><AbstractText Label="MATERIAL UND METHODEN" NlmCategory="METHODS">Wir führten eine Literaturrecherche zum potenziellen Zusammenhang zwischen atopischer Dermatitis und Diabetes mellitus durch.</AbstractText><AbstractText Label="ERGEBNISSE" NlmCategory="UNASSIGNED">Mehrere Studien haben eine Korrelation zwischen atopischer Dermatitis und Diabetes mellitus Typ 1 oder Typ 2 festgestellt. Andere Studien zeigten jedoch keinen Zusammenhang zwischen diesen beiden Erkrankungen oder deuteten sogar darauf hin, dass atopische Dermatitis das Risiko für die Entwicklung von Diabetes mellitus bei bestimmten Patienten verringern könnte. Darüber hinaus weisen diese beiden chronischen Erkrankungen auch bestimmte klinische Merkmale auf, die auf eine mögliche Korrelation hindeuten. Derzeit gibt es jedoch keinen eindeutigen wissenschaftlichen Beweis für einen signifikant positiven Zusammenhang zwischen atopischer Dermatitis und Diabetes mellitus, was v. a. auf das Fehlen umfangreicher und vielfältiger demografischer Studien zurückzuführen ist.</AbstractText><AbstractText Label="SCHLUSSFOLGERUNGEN" NlmCategory="UNASSIGNED">Ärzte sollten sich dieser potenziellen Korrelation sowohl bei Erwachsenen als auch bei pädiatrischen Patienten bewusst sein und die Bedeutung eines multidisziplinären Ansatzes für das Management der atopischen Dermatitis berücksichtigen. Weitere Untersuchungen sind erforderlich, um mögliche Zusammenhänge zwischen atopischer Dermatitis und Diabetes mellitus in spezifischen Bevölkerungsgruppen zu bestimmen.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Adiponectin</Keyword><Keyword MajorTopicYN="N">Correlations</Keyword><Keyword MajorTopicYN="N">Leptin</Keyword><Keyword MajorTopicYN="N">Multidisciplinary approach</Keyword><Keyword MajorTopicYN="N">Th1/Th2 paradigm</Keyword></KeywordList><CoiStatement>Einhaltung ethischer Richtlinien. Interessenkonflikt: A.-M. Sendrea und C.M. Salavastru geben an, dass kein Interessenkonflikt besteht. Für diesen Beitrag wurden von den Autorinnen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>9</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>11</Hour><Minute>13</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>9</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39652177</ArticleId><ArticleId IdType="pmc">PMC11711671</ArticleId><ArticleId IdType="doi">10.1007/s00105-024-05440-6</ArticleId><ArticleId IdType="pii">10.1007/s00105-024-05440-6</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Wollenberg A, Christen-Zach S, Taieb A et al (2020) ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. J Eur Acad Dermatol Venereol 34:2717–2744</Citation><ArticleIdList><ArticleId IdType="pubmed">33205485</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim J, Kim BE, Leung DYM (2019) Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc 40:84–92</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6399565</ArticleId><ArticleId IdType="pubmed">30819278</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang L, Fu J, Zhou Y (2020) Research Progress in Atopic March. Front Immunol 11:1907</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7482645</ArticleId><ArticleId IdType="pubmed">32973790</ArticleId></ArticleIdList></Reference><Reference><Citation>Brunner Pm SJ, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, Luger T, Deleuran M, Werfel T, Eyerich K, Stingl G (2017) Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Investig Dermatology: 18–25</Citation><ArticleIdList><ArticleId IdType="pubmed">27771048</ArticleId></ArticleIdList></Reference><Reference><Citation>Silverberg JI (2019) Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol 123:144–151</Citation><ArticleIdList><ArticleId IdType="pubmed">31034875</ArticleId></ArticleIdList></Reference><Reference><Citation>Banday Mz SA, Nissar S (2020) Pathophysiology of diabetes: An overview. Avicenna J Med 10(04):174–188</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7791288</ArticleId><ArticleId IdType="pubmed">33437689</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramachandran A (2014) Know the signs and symptoms of diabetes. Indian J Med Res 140:579–581</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4311308</ArticleId><ArticleId IdType="pubmed">25579136</ArticleId></ArticleIdList></Reference><Reference><Citation>Lima AL, Illing T, Schliemann S et al (2017) Cutaneous Manifestations of Diabetes Mellitus: A Review. Am J Clin Dermatol 18:541–553</Citation><ArticleIdList><ArticleId IdType="pubmed">28374407</ArticleId></ArticleIdList></Reference><Reference><Citation>Mendes AL, Miot HA, Haddad VJ (2017) Diabetes mellitus and the skin. An Bras Dermatol 92:8–20</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5312172</ArticleId><ArticleId IdType="pubmed">28225950</ArticleId></ArticleIdList></Reference><Reference><Citation>Kero J, Gissler M, Hemminki E et al (2001) Could TH1 and TH2 diseases coexist? Evaluation of asthma incidence in children with coeliac disease, type 1 diabetes, or rheumatoid arthritis: A register study. J Allergy Clin Immunol 108:781–783</Citation><ArticleIdList><ArticleId IdType="pubmed">11692104</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang S, Zhang B, Liu Y et al (2024) Adipokines in atopic dermatitis: the link between obesity and atopic dermatitis. Lipids Health Dis 23:26</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10804547</ArticleId><ArticleId IdType="pubmed">38263019</ArticleId></ArticleIdList></Reference><Reference><Citation>Diwan AG, Kuvalekar AA, Dharamsi S et al (2018) Correlation of Serum Adiponectin and Leptin levels in Obesity and Type 2 Diabetes Mellitus. Indian J Endocrinol Metab 22:93–99</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5838920</ArticleId><ArticleId IdType="pubmed">29535945</ArticleId></ArticleIdList></Reference><Reference><Citation>Eichenfield LF, Stripling S, Fung S et al (2022) Recent Developments and Advances in Atopic Dermatitis: A Focus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Paediatr Drugs 24:293–305</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9191759</ArticleId><ArticleId IdType="pubmed">35698002</ArticleId></ArticleIdList></Reference><Reference><Citation>Bach JF, Chatenoud L (2012) The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb Perspect Med 2:a7799</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3281594</ArticleId><ArticleId IdType="pubmed">22355800</ArticleId></ArticleIdList></Reference><Reference><Citation>Akdis CA (2021) Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 21:739–751</Citation><ArticleIdList><ArticleId IdType="pubmed">33846604</ArticleId></ArticleIdList></Reference><Reference><Citation>Silverberg JI, Song J, Pinto D et al (2016) Atopic Dermatitis Is Associated with Less Physical Activity in US Adults. J Invest Dermatol 136:1714–1716</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5216175</ArticleId><ArticleId IdType="pubmed">27189827</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang TH, Chen PC, Lin YC et al (2022) Adolescents with Atopic Dermatitis Have Lower Peak Exercise Load Capacity and Exercise Volume Compared with Unaffected Peers. Int J Environ Res Public Health 19:</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9407882</ArticleId><ArticleId IdType="pubmed">36011919</ArticleId></ArticleIdList></Reference><Reference><Citation>Shuai Yuan XL, Qianwen L, Wang Z, Jiang X, Burgess S, Susanna CL (2023) Physical Activity, Sedentary Behavior, and Type 2 Diabetes: Mendelian Randomization Analysis. J Endocr Soc 7:1–8</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10321115</ArticleId><ArticleId IdType="pubmed">37415875</ArticleId></ArticleIdList></Reference><Reference><Citation>Malone JI, Hansen BC (2019) Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes 20:5–9</Citation><ArticleIdList><ArticleId IdType="pubmed">30311716</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4259868</ArticleId><ArticleId IdType="pubmed">25506234</ArticleId></ArticleIdList></Reference><Reference><Citation>Sendrea AM, Cristea S, Salavastru CM (2024) Association Between Increased Body Mass Index (BMI) and Atopic Dermatitis in Children Attending a Tertiary Referral Center: A Case-Control Study. Cureus 16:e60770</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11107859</ArticleId><ArticleId IdType="pubmed">38774465</ArticleId></ArticleIdList></Reference><Reference><Citation>Ali ZSUC, Agner T, Thomsen SF (2018) Is atopic dermatitis associated with obesity? A systematic review of observational studies. J Eur Acad Dermatol Venereol 32(8):1246–1255</Citation><ArticleIdList><ArticleId IdType="pubmed">29444366</ArticleId></ArticleIdList></Reference><Reference><Citation>Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6:1246–1258</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4600176</ArticleId><ArticleId IdType="pubmed">26468341</ArticleId></ArticleIdList></Reference><Reference><Citation>Ascott A, Mansfield KE, Schonmann Y et al (2021) Atopic eczema and obesity: a population-based study. Br J Dermatol 184:871–879</Citation><ArticleIdList><ArticleId IdType="pubmed">33090454</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin CH, Wei CC, Lin CL et al (2015) Childhood type 1 diabetes may increase the risk of atopic dermatitis. Br J Dermatol 174:88–94</Citation><ArticleIdList><ArticleId IdType="pubmed">26370535</ArticleId></ArticleIdList></Reference><Reference><Citation>Silverberg JI, Gelfand JM, Margolis DJ et al (2018) Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults. Ann Allergy Asthma Immunol 121:604–612 e603</Citation><ArticleIdList><ArticleId IdType="pubmed">30092266</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu F, Wu B, Wang Y (2023) Mendelian randomization indicates that atopic dermatitis contributes to the occurrence of diabetes. BMC Med Genomics 16:</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10268454</ArticleId><ArticleId IdType="pubmed">37322504</ArticleId></ArticleIdList></Reference><Reference><Citation>Gazit V, Tasher D, Hanukoglu A et al (2008) Atopy in children and adolescents with insulin-dependent diabetes mellitus. Isr Med Assoc J 10:858–861</Citation><ArticleIdList><ArticleId IdType="pubmed">19160942</ArticleId></ArticleIdList></Reference><Reference><Citation> The EURODIAB Substudy 2 Study Group (2000). Decreased prevalence of atopic diseases in children with diabetes. J Pediatr 137:470–474</Citation><ArticleIdList><ArticleId IdType="pubmed">11035823</ArticleId></ArticleIdList></Reference><Reference><Citation>Drucker AM, Qureshi AA, Dummer TJB et al (2017) Atopic dermatitis and risk of hypertension, type 2 diabetes, myocardial infarction and stroke in a cross-sectional analysis from the Canadian Partnership for Tomorrow Project. Br J Dermatol 177:1043–1051</Citation><ArticleIdList><ArticleId IdType="pubmed">28617976</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39651976</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1935-5548</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>Supplement_1</Issue><PubDate><Year>2025</Year><Month>Jan</Month><Day>01</Day></PubDate></JournalIssue><Title>Diabetes care</Title><ISOAbbreviation>Diabetes Care</ISOAbbreviation></Journal><ArticleTitle>8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes-2025.</ArticleTitle><Pagination><StartPage>S167</StartPage><EndPage>S180</EndPage><MedlinePgn>S167-S180</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.2337/dc25-S008</ELocationID><Abstract><AbstractText>The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.</AbstractText><CopyrightInformation>© 2024 by the American Diabetes Association.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><CollectiveName>American Diabetes Association Professional Practice Committee -</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Diabetes Care</MedlineTA><NlmUniqueID>7805975</NlmUniqueID><ISSNLinking>0149-5992</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D059039" MajorTopicYN="Y">Standard of Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading></MeshHeadingList><InvestigatorList><Investigator ValidYN="Y"><LastName>ElSayed</LastName><ForeName>Nuha A</ForeName><Initials>NA</Initials></Investigator><Investigator ValidYN="Y"><LastName>McCoy</LastName><ForeName>Rozalina G</ForeName><Initials>RG</Initials></Investigator><Investigator ValidYN="Y"><LastName>Aleppo</LastName><ForeName>Grazia</ForeName><Initials>G</Initials></Investigator><Investigator ValidYN="Y"><LastName>Balapattabi</LastName><ForeName>Kirthikaa</ForeName><Initials>K</Initials></Investigator><Investigator ValidYN="Y"><LastName>Beverly</LastName><ForeName>Elizabeth A</ForeName><Initials>EA</Initials></Investigator><Investigator ValidYN="Y"><LastName>Briggs Early</LastName><ForeName>Kathaleen</ForeName><Initials>K</Initials></Investigator><Investigator ValidYN="Y"><LastName>Bruemmer</LastName><ForeName>Dennis</ForeName><Initials>D</Initials></Investigator><Investigator ValidYN="Y"><LastName>Echouffo-Tcheugui</LastName><ForeName>Justin B</ForeName><Initials>JB</Initials></Investigator><Investigator ValidYN="Y"><LastName>Ekhlaspour</LastName><ForeName>Laya</ForeName><Initials>L</Initials></Investigator><Investigator ValidYN="Y"><LastName>Garg</LastName><ForeName>Rajesh</ForeName><Initials>R</Initials></Investigator><Investigator ValidYN="Y"><LastName>Khunti</LastName><ForeName>Kamlesh</ForeName><Initials>K</Initials></Investigator><Investigator ValidYN="Y"><LastName>Kushner</LastName><ForeName>Robert F</ForeName><Initials>RF</Initials></Investigator><Investigator ValidYN="Y"><LastName>Lal</LastName><ForeName>Rayhan</ForeName><Initials>R</Initials></Investigator><Investigator ValidYN="Y"><LastName>Lingvay</LastName><ForeName>Ildiko</ForeName><Initials>I</Initials></Investigator><Investigator ValidYN="Y"><LastName>Matfin</LastName><ForeName>Glenn</ForeName><Initials>G</Initials></Investigator><Investigator ValidYN="Y"><LastName>Pandya</LastName><ForeName>Naushira</ForeName><Initials>N</Initials></Investigator><Investigator ValidYN="Y"><LastName>Pekas</LastName><ForeName>Elizabeth J</ForeName><Initials>EJ</Initials></Investigator><Investigator ValidYN="Y"><LastName>Pilla</LastName><ForeName>Scott J</ForeName><Initials>SJ</Initials></Investigator><Investigator ValidYN="Y"><LastName>Polsky</LastName><ForeName>Sarit</ForeName><Initials>S</Initials></Investigator><Investigator ValidYN="Y"><LastName>Segal</LastName><ForeName>Alissa R</ForeName><Initials>AR</Initials></Investigator><Investigator ValidYN="Y"><LastName>Seley</LastName><ForeName>Jane Jeffrie</ForeName><Initials>JJ</Initials></Investigator><Investigator ValidYN="Y"><LastName>Stanton</LastName><ForeName>Robert C</ForeName><Initials>RC</Initials></Investigator><Investigator ValidYN="Y"><LastName>Bannuru</LastName><ForeName>Raveendhara R</ForeName><Initials>RR</Initials></Investigator></InvestigatorList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pmc-release"><Year>2026</Year><Month>1</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>10</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39651976</ArticleId><ArticleId IdType="pmc">PMC11635032</ArticleId><ArticleId IdType="doi">10.2337/dc25-S008</ArticleId><ArticleId IdType="pii">157555</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care 2007;30:1562–1566</Citation><ArticleIdList><ArticleId IdType="pubmed">17372155</ArticleId></ArticleIdList></Reference><Reference><Citation>Knowler WC, Barrett-Connor E, Fowler SE, et al. .; Diabetes Prevention Program Research Group . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1370926</ArticleId><ArticleId IdType="pubmed">11832527</ArticleId></ArticleIdList></Reference><Reference><Citation>Garvey WT, Ryan DH, Henry R, et al. . Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care 2014;37:912–921</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4392900</ArticleId><ArticleId IdType="pubmed">24103901</ArticleId></ArticleIdList></Reference><Reference><Citation>Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27:155–161</Citation><ArticleIdList><ArticleId IdType="pubmed">14693982</ArticleId></ArticleIdList></Reference><Reference><Citation>Le Roux CW, Astrup A, Fujioka K, et al. .; SCALE Obesity Prediabetes NN8022-1839 Study Group . 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 2017;389:1399–1409</Citation><ArticleIdList><ArticleId IdType="pubmed">28237263</ArticleId></ArticleIdList></Reference><Reference><Citation>Booth H, Khan O, Prevost T, et al. . Incidence of type 2 diabetes after bariatric surgery: population-based matched cohort study. Lancet Diabetes Endocrinol 2014;2:963–968</Citation><ArticleIdList><ArticleId IdType="pubmed">25466723</ArticleId></ArticleIdList></Reference><Reference><Citation>Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 2002;25:608–613</Citation><ArticleIdList><ArticleId IdType="pubmed">11874956</ArticleId></ArticleIdList></Reference><Reference><Citation>Galaviz KI, Weber MB, Suvada K, et al. . Interventions for reversing prediabetes: a systematic review and meta-analysis. Am J Prev Med 2022;62:614–625</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10420389</ArticleId><ArticleId IdType="pubmed">35151523</ArticleId></ArticleIdList></Reference><Reference><Citation>Jackness C, Karmally W, Febres G, et al. . Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 2013;62:3027–3032</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3749351</ArticleId><ArticleId IdType="pubmed">23610060</ArticleId></ArticleIdList></Reference><Reference><Citation>Rothberg AE, McEwen LN, Kraftson AT, Fowler CE, Herman WH. Very-low-energy diet for type 2 diabetes: an underutilized therapy? J Diabetes Complications 2014;28:506–510</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4350259</ArticleId><ArticleId IdType="pubmed">24849710</ArticleId></ArticleIdList></Reference><Reference><Citation>Hollander PA, Elbein SC, Hirsch IB, et al. . Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 1998;21:1288–1294</Citation><ArticleIdList><ArticleId IdType="pubmed">9702435</ArticleId></ArticleIdList></Reference><Reference><Citation>Garvey WT, Ryan DH, Bohannon NJV, et al. . Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended release. Diabetes Care 2014;37:3309–3316</Citation><ArticleIdList><ArticleId IdType="pubmed">25249652</ArticleId></ArticleIdList></Reference><Reference><Citation>Hollander P, Gupta AK, Plodkowski R, et al. .; COR-Diabetes Study Group . Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care 2013;36:4022–4029</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3836105</ArticleId><ArticleId IdType="pubmed">24144653</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ, Bergenstal R, Bode B, et al. .; NN8022-1922 Study Group . Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 2015;314:687–699</Citation><ArticleIdList><ArticleId IdType="pubmed">26284720</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubino F, Nathan DM, Eckel RH, et al. .; Delegates of the 2nd Diabetes Surgery Summit . Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Obes Surg 2017;27:2–21</Citation><ArticleIdList><ArticleId IdType="pubmed">27957699</ArticleId></ArticleIdList></Reference><Reference><Citation>UKPDS Group . UK Prospective Diabetes Study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients. Metabolism 1990;39:905–912</Citation><ArticleIdList><ArticleId IdType="pubmed">2392060</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldstein DJ. Beneficial health effects of modest weight loss. Int J Obes Relat Metab Disord 1992;16:397–415</Citation><ArticleIdList><ArticleId IdType="pubmed">1322866</ArticleId></ArticleIdList></Reference><Reference><Citation>Steven S, Hollingsworth KG, Al-Mrabeh A, et al. . Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 2016;39:808–815. Diabetes Care 2016;41:1321</Citation><ArticleIdList><ArticleId IdType="pubmed">27002059</ArticleId></ArticleIdList></Reference><Reference><Citation>Jensen MD, Ryan DH, Apovian CM, et al. .; Obesity Society . 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 2014;63:2985–3023</Citation><ArticleIdList><ArticleId IdType="pubmed">24239920</ArticleId></ArticleIdList></Reference><Reference><Citation>Lean ME, Leslie WS, Barnes AC, et al. . Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 2018;391:541–551</Citation><ArticleIdList><ArticleId IdType="pubmed">29221645</ArticleId></ArticleIdList></Reference><Reference><Citation>Lean MEJ, Leslie WS, Barnes AC, et al. . Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2019;7:344–355</Citation><ArticleIdList><ArticleId IdType="pubmed">30852132</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahan S, Fujioka K. Obesity pharmacotherapy in patients with type 2 diabetes. Diabetes Spectr 2017;30:250–257</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5687110</ArticleId><ArticleId IdType="pubmed">29151715</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: a systematic review and meta-analysis. PLoS Med 2020;17:e1003206.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7386646</ArticleId><ArticleId IdType="pubmed">32722673</ArticleId></ArticleIdList></Reference><Reference><Citation>Aminian A, Wilson R, Zajichek A, et al. . Cardiovascular outcomes in patients with type 2 diabetes and obesity: comparison of gastric bypass, sleeve gastrectomy, and usual care. Diabetes Care 2021;44:2552–2563</Citation><ArticleIdList><ArticleId IdType="pubmed">34503954</ArticleId></ArticleIdList></Reference><Reference><Citation> -World Health Organization . Obesity. 2023. Accessed 21 August 2024. Available from https://www.who.int/health-topics/obesity#tab=tab_1</Citation></Reference><Reference><Citation>WHO Expert Consultation . Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157–163</Citation><ArticleIdList><ArticleId IdType="pubmed">14726171</ArticleId></ArticleIdList></Reference><Reference><Citation>Araneta MRG, Kanaya AM, Hsu WC, et al. . Optimum BMI cut points to screen Asian Americans for type 2 diabetes. Diabetes Care 2015;38:814–820</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4407753</ArticleId><ArticleId IdType="pubmed">25665815</ArticleId></ArticleIdList></Reference><Reference><Citation>Aggarwal R, Bibbins-Domingo K, Yeh RW, et al. . Diabetes screening by race and ethnicity in the United States: equivalent body mass index and age thresholds. Ann Intern Med 2022;175:765–773</Citation><ArticleIdList><ArticleId IdType="pubmed">35533384</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubino F, Batterham RL, Koch M, et al. . Lancet Diabetes & Endocrinology Commission on the Definition and Diagnosis of Clinical Obesity. Lancet Diabetes Endocrinol 2023;11:226–228</Citation><ArticleIdList><ArticleId IdType="pubmed">36878238</ArticleId></ArticleIdList></Reference><Reference><Citation>Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab 2022;34:11–20</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8740746</ArticleId><ArticleId IdType="pubmed">34986330</ArticleId></ArticleIdList></Reference><Reference><Citation>Lawrence BJ, Kerr D, Pollard CM, et al. . Weight bias among health care professionals: a systematic review and meta-analysis. Obesity (Silver Spring) 2021;29:1802–1812</Citation><ArticleIdList><ArticleId IdType="pubmed">34490738</ArticleId></ArticleIdList></Reference><Reference><Citation>Moore CH, Oliver TL, Randolph J, Dowdell EB. Interventions for reducing weight bias in healthcare providers: an interprofessional systematic review and meta-analysis. Clin Obes 2022;12:e12545.</Citation><ArticleIdList><ArticleId IdType="pubmed">35946476</ArticleId></ArticleIdList></Reference><Reference><Citation>American Medical Association . AMA Manual of Style: a Guide for Authors and Editors. Oxford University Press, 2019</Citation></Reference><Reference><Citation> -American Medical Association . Person-First Language for Obesity H-440.821. Accessed 21 August 2024. Available from https://policysearch.ama-assn.org/policyfinder/detail/obesity?uri=%2FAMADoc%2FHOD.xml-H-440.821.xml</Citation></Reference><Reference><Citation>Kushner RF, Batsis JA, Butsch WS, et al. . Weight history in clinical practice: the state of the science and future directions. Obesity (Silver Spring) 2020;28:9–17</Citation><ArticleIdList><ArticleId IdType="pubmed">31858735</ArticleId></ArticleIdList></Reference><Reference><Citation>Yancy CW, Jessup M, Bozkurt B, et al. . 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 2017;70:776–803</Citation><ArticleIdList><ArticleId IdType="pubmed">28461007</ArticleId></ArticleIdList></Reference><Reference><Citation>Bosch X, Monclús E, Escoda O, et al. . Unintentional weight loss: clinical characteristics and outcomes in a prospective cohort of 2677 patients. PLoS One 2017;12:e0175125.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5384681</ArticleId><ArticleId IdType="pubmed">28388637</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilding JPH. The importance of weight management in type 2 diabetes mellitus. Int J Clin Pract 2014;68:682–691</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4238418</ArticleId><ArticleId IdType="pubmed">24548654</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care 2015;38:1161–1172</Citation><ArticleIdList><ArticleId IdType="pubmed">25998297</ArticleId></ArticleIdList></Reference><Reference><Citation>Warren J, Smalley B, Barefoot N. Higher motivation for weight loss in African American than Caucasian rural patients with hypertension and/or diabetes. Ethn Dis 2016;26:77–84</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4738858</ArticleId><ArticleId IdType="pubmed">26843799</ArticleId></ArticleIdList></Reference><Reference><Citation>Stoops H, Dar M. Equity and obesity treatment—expanding Medicaid-covered interventions. N Engl J Med 2023;388:2309–2311</Citation><ArticleIdList><ArticleId IdType="pubmed">37339118</ArticleId></ArticleIdList></Reference><Reference><Citation>Rothberg AE, McEwen LN, Kraftson AT, et al. . Impact of weight loss on waist circumference and the components of the metabolic syndrome. BMJ Open Diabetes Res Care 2017;5:e000341</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5337678</ArticleId><ArticleId IdType="pubmed">28316795</ArticleId></ArticleIdList></Reference><Reference><Citation>Wing RR, Bolin P, Brancati FL, et al. .; Look AHEAD Research Group . Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013;369:145–154</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3791615</ArticleId><ArticleId IdType="pubmed">23796131</ArticleId></ArticleIdList></Reference><Reference><Citation>Look AHEAD Research Group . Eight-year weight losses with an intensive lifestyle intervention: the Look AHEAD study. Obesity (Silver Spring) 2014;22:5–13</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3904491</ArticleId><ArticleId IdType="pubmed">24307184</ArticleId></ArticleIdList></Reference><Reference><Citation>Gregg E, Jakicic J, Blackburn G, et al. .; Look AHEAD Research Group . Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2016;4:913–921</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5094846</ArticleId><ArticleId IdType="pubmed">27595918</ArticleId></ArticleIdList></Reference><Reference><Citation>Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. Lancet Diabetes Endocrinol 2017;5:808–815</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5815373</ArticleId><ArticleId IdType="pubmed">28711469</ArticleId></ArticleIdList></Reference><Reference><Citation>Schauer PR, Bhatt DL, Kirwan JP, et al. .; STAMPEDE Investigators . Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med 2017;376:641–651</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5451258</ArticleId><ArticleId IdType="pubmed">28199805</ArticleId></ArticleIdList></Reference><Reference><Citation>Ikramuddin S, Korner J, Lee W-J, et al. . Durability of addition of Roux-en-Y gastric bypass to lifestyle intervention and medical management in achieving primary treatment goals for uncontrolled type 2 diabetes in mild to moderate obesity: a randomized control trial. Diabetes Care 2016;39:1510–1518</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5001141</ArticleId><ArticleId IdType="pubmed">27311493</ArticleId></ArticleIdList></Reference><Reference><Citation>Gadde KM, Allison DB, Ryan DH, et al. . Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 2011;377:1341–1352</Citation><ArticleIdList><ArticleId IdType="pubmed">21481449</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies M, Færch L, Jeppesen OK, et al. .; STEP 2 Study Group . Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021;397:971–984</Citation><ArticleIdList><ArticleId IdType="pubmed">33667417</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Daniels GH, Brown-Frandsen K, et al. .; LEADER Trial Investigators . Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375:311–322</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4985288</ArticleId><ArticleId IdType="pubmed">27295427</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenstock J, Wysham C, Frías JP, et al. . Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021;398:143–155</Citation><ArticleIdList><ArticleId IdType="pubmed">34186022</ArticleId></ArticleIdList></Reference><Reference><Citation>Frías JP, Davies MJ, Rosenstock J, et al. .; SURPASS-2 Investigators . Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 2021;385:503–515</Citation><ArticleIdList><ArticleId IdType="pubmed">34170647</ArticleId></ArticleIdList></Reference><Reference><Citation>Magkos F, Fraterrigo G, Yoshino J, et al. . Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016;23:591–601</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4833627</ArticleId><ArticleId IdType="pubmed">26916363</ArticleId></ArticleIdList></Reference><Reference><Citation>Evert AB, Dennison M, Gardner CD, et al. . Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 2019;42:731–754</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7011201</ArticleId><ArticleId IdType="pubmed">31000505</ArticleId></ArticleIdList></Reference><Reference><Citation>Olateju IV, Opaleye-Enakhimion T, Udeogu JE, et al. . A systematic review on the effectiveness of diet and exercise in the management of obesity. Diabetes Metab Syndr 2023;17:102759.</Citation><ArticleIdList><ArticleId IdType="pubmed">37084486</ArticleId></ArticleIdList></Reference><Reference><Citation>Wadi NM, Asantewa-Ampaduh S, Rivas C, Goff LM. Culturally tailored lifestyle interventions for the prevention and management of type 2 diabetes in adults of Black African ancestry: a systematic review of tailoring methods and their effectiveness. Public Health Nutr 2022;25:422–436</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8883766</ArticleId><ArticleId IdType="pubmed">34435943</ArticleId></ArticleIdList></Reference><Reference><Citation>McCurley JL, Gutierrez AP, Gallo LC. Diabetes prevention in U.S. Hispanic adults: a systematic review of culturally tailored interventions. Am J Prev Med 2017;52:519–529</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5362335</ArticleId><ArticleId IdType="pubmed">27989451</ArticleId></ArticleIdList></Reference><Reference><Citation>Ali SH, Misra S, Parekh N, Murphy B, DiClemente RJ. Preventing type 2 diabetes among South Asian Americans through community-based lifestyle interventions: a systematic review. Prev Med Rep 2020;20:101182.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7441043</ArticleId><ArticleId IdType="pubmed">32844084</ArticleId></ArticleIdList></Reference><Reference><Citation>Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 2015;115:1447–1463</Citation><ArticleIdList><ArticleId IdType="pubmed">25935570</ArticleId></ArticleIdList></Reference><Reference><Citation>Sacks FM, Bray GA, Carey VJ, et al. . Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–873</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2763382</ArticleId><ArticleId IdType="pubmed">19246357</ArticleId></ArticleIdList></Reference><Reference><Citation>de Souza RJ, Bray GA, Carey VJ, et al. . Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr 2012;95:614–625</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3278241</ArticleId><ArticleId IdType="pubmed">22258266</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnston BC, Kanters S, Bandayrel K, et al. . Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis. JAMA 2014;312:923–933</Citation><ArticleIdList><ArticleId IdType="pubmed">25182101</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye W, Xu L, Ye Y, et al. . The efficacy and safety of meal replacement in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab 2023;108:3041–3049</Citation><ArticleIdList><ArticleId IdType="pubmed">37192345</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao Q, de Araujo CD, Juul F, et al. . Isocaloric replacement of ultraprocessed foods was associated with greater weight loss in the POUNDS Lost trial. Obesity (Silver Spring) 2024;32:1281–1289</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11212670</ArticleId><ArticleId IdType="pubmed">38932724</ArticleId></ArticleIdList></Reference><Reference><Citation>Leung CW, Epel ES, Ritchie LD, Crawford PB, Laraia BA. Food insecurity is inversely associated with diet quality of lower-income adults. J Acad Nutr Diet 2014;114:1943–1953.e1942</Citation><ArticleIdList><ArticleId IdType="pubmed">25091796</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoerster KD, Hunter-Merrill R, Nguyen T, et al. . Effect of a remotely delivered self-directed behavioral intervention on body weight and physical health status among adults with obesity: the D-ELITE randomized clinical trial. JAMA 2022;328:2230–2241</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9856350</ArticleId><ArticleId IdType="pubmed">36511927</ArticleId></ArticleIdList></Reference><Reference><Citation>Appel LJ, Clark JM, Yeh H-C, et al. . Comparative effectiveness of weight-loss interventions in clinical practice. N Engl J Med 2011;365:1959–1968</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4074540</ArticleId><ArticleId IdType="pubmed">22085317</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahan S, Manson JE. Obesity treatment, beyond the guidelines: practical suggestions for clinical practice. JAMA 2019;321:1349–1350</Citation><ArticleIdList><ArticleId IdType="pubmed">30896727</ArticleId></ArticleIdList></Reference><Reference><Citation>Thorpe K, Toles A, Shah B, Schneider J, Bravata DM. Weight loss-associated decreases in medical care expenditures for commercially insured patients with chronic conditions. J Occup Environ Med 2021;63:847–851</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8478295</ArticleId><ArticleId IdType="pubmed">34138824</ArticleId></ArticleIdList></Reference><Reference><Citation>Wadden TA, Tronieri JS, Butryn ML. Lifestyle modification approaches for the treatment of obesity in adults. Am Psychol 2020;75:235–251</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7027681</ArticleId><ArticleId IdType="pubmed">32052997</ArticleId></ArticleIdList></Reference><Reference><Citation>Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009;41:459–471</Citation><ArticleIdList><ArticleId IdType="pubmed">19127177</ArticleId></ArticleIdList></Reference><Reference><Citation>Gudzune KA, Doshi RS, Mehta AK, et al. . Efficacy of commercial weight-loss programs: an updated systematic review. Ann Intern Med 2015;162:501–512</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4446719</ArticleId><ArticleId IdType="pubmed">25844997</ArticleId></ArticleIdList></Reference><Reference><Citation>Bloom B, Mehta AK, Clark JM, Gudzune KA. Guideline‐concordant weight‐loss programs in an urban area are uncommon and difficult to identify through the internet. Obesity (Silver Spring) 2016;24:583–588</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4769110</ArticleId><ArticleId IdType="pubmed">26861769</ArticleId></ArticleIdList></Reference><Reference><Citation>Muscogiuri G, Barrea L, Laudisio D, et al. . The management of very low-calorie ketogenic diet in obesity outpatient clinic: a practical guide. J Transl Med 2019;17:356.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6820992</ArticleId><ArticleId IdType="pubmed">31665015</ArticleId></ArticleIdList></Reference><Reference><Citation>Saris WH. Very-low-calorie diets and sustained weight loss. Obes Res 2001;9(Suppl 4):295S–301S</Citation><ArticleIdList><ArticleId IdType="pubmed">11707557</ArticleId></ArticleIdList></Reference><Reference><Citation>Gardner CD, Kim S, Bersamin A, et al. . Micronutrient quality of weight-loss diets that focus on macronutrients: results from the A TO Z study. Am J Clin Nutr 2010;92:304–312</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2904033</ArticleId><ArticleId IdType="pubmed">20573800</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsai AG, Wadden TA. The evolution of very-low-calorie diets: an update and meta-analysis. Obesity (Silver Spring) 2006;14:1283–1293</Citation><ArticleIdList><ArticleId IdType="pubmed">16988070</ArticleId></ArticleIdList></Reference><Reference><Citation>Johansson K, Neovius M, Hemmingsson E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2014;99:14–23</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3862452</ArticleId><ArticleId IdType="pubmed">24172297</ArticleId></ArticleIdList></Reference><Reference><Citation>Batsis JA, Apolzan JW, Bagley PJ, et al. . A systematic review of dietary supplements and alternative therapies for weight loss. Obesity (Silver Spring) 2021;29:1102–1113</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8231729</ArticleId><ArticleId IdType="pubmed">34159755</ArticleId></ArticleIdList></Reference><Reference><Citation>Bessell E, Maunder A, Lauche R, Adams J, Sainsbury A, Fuller NR. Efficacy of dietary supplements containing isolated organic compounds for weight loss: a systematic review and meta-analysis of randomised placebo-controlled trials. Int J Obes (Lond) 2021;45:1631–1643</Citation><ArticleIdList><ArticleId IdType="pubmed">33976376</ArticleId></ArticleIdList></Reference><Reference><Citation>Maunder A, Bessell E, Lauche R, Adams J, Sainsbury A, Fuller NR. Effectiveness of herbal medicines for weight loss: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020;22:891–903</Citation><ArticleIdList><ArticleId IdType="pubmed">31984610</ArticleId></ArticleIdList></Reference><Reference><Citation>Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr 2016;104:1151–1159</Citation><ArticleIdList><ArticleId IdType="pubmed">27604772</ArticleId></ArticleIdList></Reference><Reference><Citation>Moon J, Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metab Syndr 2020;29:166–173</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7539343</ArticleId><ArticleId IdType="pubmed">32699189</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, et al. . Social determinants of health and diabetes: a scientific review. Diabetes Care 2020;44:258–279</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Galindo RJ, Uppal TS, McCoy RG, Umpierrez GE, Ali MK. Use and continuity of weight-modifying medications among adults with diabetes and overweight/obesity: US population study. Obesity (Silver Spring) 2023;31:2924–2935</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10840906</ArticleId><ArticleId IdType="pubmed">37919239</ArticleId></ArticleIdList></Reference><Reference><Citation>Domecq JP, Prutsky G, Leppin A, et al. . Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab 2015;100:363–370</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5393509</ArticleId><ArticleId IdType="pubmed">25590213</ArticleId></ArticleIdList></Reference><Reference><Citation> -Drugs.com . Phentermine prescribing information. Accessed 21 August 2024. Available from https://www.drugs.com/pro/phentermine.html</Citation></Reference><Reference><Citation>Garvey WT, Frias JP, Jastreboff AM, et al. .; SURMOUNT-2 Investigators . Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2023;402:613–626</Citation><ArticleIdList><ArticleId IdType="pubmed">37385275</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosiborod MN, Petrie MC, Borlaug BA, et al. .; STEP-HFpEF DM Trial Committees and Investigators . Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med 2024;390:1394–1407</Citation><ArticleIdList><ArticleId IdType="pubmed">38587233</ArticleId></ArticleIdList></Reference><Reference><Citation>Malhotra A, Grunstein RR, Fietze I, et al. .; SURMOUNT-OSA Investigators . Tirzepatide for the treatment of obstructive sleep apnea and obesity. N Engl J Med 2024;141:107516</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11168245</ArticleId><ArticleId IdType="pubmed">38547961</ArticleId></ArticleIdList></Reference><Reference><Citation>Loomba R, Hartman ML, Lawitz EJ, et al. .; SYNERGY-NASH Investigators . Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N Engl J Med 2024;391:299–310</Citation><ArticleIdList><ArticleId IdType="pubmed">38856224</ArticleId></ArticleIdList></Reference><Reference><Citation>Newsome PN, Buchholtz K, Cusi K, et al. . A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med 2021;384:1113–1124</Citation><ArticleIdList><ArticleId IdType="pubmed">33185364</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Bain SC, Consoli A, et al. .; SUSTAIN-6 Investigators . Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016;375:1834–1844</Citation><ArticleIdList><ArticleId IdType="pubmed">27633186</ArticleId></ArticleIdList></Reference><Reference><Citation>Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. .; SELECT Trial Investigators . Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 2023;389:2221–2232</Citation><ArticleIdList><ArticleId IdType="pubmed">37952131</ArticleId></ArticleIdList></Reference><Reference><Citation>Neeland IJ, Linge J, Birkenfeld AL. Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes Metab 2024;26(Suppl 4):16–27</Citation><ArticleIdList><ArticleId IdType="pubmed">38937282</ArticleId></ArticleIdList></Reference><Reference><Citation>Locatelli JC, Costa JG, Haynes A, et al. . Incretin-based weight loss pharmacotherapy: can resistance exercise optimize changes in body composition? Diabetes Care 2024;47:1718–1730</Citation><ArticleIdList><ArticleId IdType="pubmed">38687506</ArticleId></ArticleIdList></Reference><Reference><Citation>Lau S, Pek K, Chew J, et al. . The Simplified Nutritional Appetite Questionnaire (SNAQ) as a screening tool for risk of malnutrition: optimal cutoff, factor structure, and validation in healthy community-dwelling older adults. Nutrients 2020;12:2885.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7551805</ArticleId><ArticleId IdType="pubmed">32967354</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu SCY, Khow KSF, Jadczak AD, Visvanathan R. Clinical screening tools for sarcopenia and its management. Curr Gerontol Geriatr Res 2016;2016:5978523.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4757731</ArticleId><ArticleId IdType="pubmed">26966433</ArticleId></ArticleIdList></Reference><Reference><Citation> -BAPEN . Introducing 'MUST.' Accessed 17 September 2024. Available from https://www.bapen.org.uk/must-and-self-screening/introducing-must/</Citation></Reference><Reference><Citation>Fujioka K, O’Neil PM, Davies M, et al. . Early weight loss with liraglutide 3.0 mg predicts 1-year weight loss and is associated with improvements in clinical markers. Obesity (Silver Spring) 2016;24:2278–2288</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5129670</ArticleId><ArticleId IdType="pubmed">27804269</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujioka K, Plodkowski R, O’Neil PM, Gilder K, Walsh B, Greenway FL. The relationship between early weight loss and weight loss at 1 year with naltrexone ER/bupropion ER combination therapy. Int J Obes (Lond) 2016;40:1369–1375</Citation><ArticleIdList><ArticleId IdType="pubmed">27328752</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilding JPH, Batterham RL, Davies M, et al. .; STEP 1 Study Group . Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes Metab 2022;24:1553–1564</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9542252</ArticleId><ArticleId IdType="pubmed">35441470</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubino D, Abrahamsson N, Davies M, et al. .; STEP 4 Investigators . Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 2021;325:1414–1425</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7988425</ArticleId><ArticleId IdType="pubmed">33755728</ArticleId></ArticleIdList></Reference><Reference><Citation>Aronne LJ, Sattar N, Horn DB, et al. .; SURMOUNT-4 Investigators . Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA 2024;331:38–48</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10714284</ArticleId><ArticleId IdType="pubmed">38078870</ArticleId></ArticleIdList></Reference><Reference><Citation>Sullivan S. Endoscopic medical devices for primary obesity treatment in patients with diabetes. Diabetes Spectr 2017;30:258–264</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5687104</ArticleId><ArticleId IdType="pubmed">29151716</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahan S, Saunders KH, Kaplan LM. Combining obesity pharmacotherapy with endoscopic bariatric and metabolic therapies. Techniques Innovations Gastrointest Endosc 2020;22:154–158</Citation></Reference><Reference><Citation>Eisenberg D, Shikora SA, Aarts E, et al. . 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): indications for metabolic and bariatric surgery. Surg Obes Relat Dis 2022;18:1345–1356</Citation><ArticleIdList><ArticleId IdType="pubmed">36280539</ArticleId></ArticleIdList></Reference><Reference><Citation>O’Brien R, Johnson E, Haneuse S, et al. . Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care: a matched cohort study. Ann Intern Med 2018;169:300–310</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6759803</ArticleId><ArticleId IdType="pubmed">30083761</ArticleId></ArticleIdList></Reference><Reference><Citation>Mingrone G, Panunzi S, De Gaetano A, et al. . Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2015;386:964–973</Citation><ArticleIdList><ArticleId IdType="pubmed">26369473</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöström L, Peltonen M, Jacobson P, et al. . Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014;311:2297–2304</Citation><ArticleIdList><ArticleId IdType="pubmed">24915261</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöström L, Lindroos A-K, Peltonen M, et al. .; Swedish Obese Subjects Study Scientific Group . Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004;351:2683–2693</Citation><ArticleIdList><ArticleId IdType="pubmed">15616203</ArticleId></ArticleIdList></Reference><Reference><Citation>Adams TD, Davidson LE, Litwin SE, et al. . Health benefits of gastric bypass surgery after 6 years. JAMA 2012;308:1122–1131</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3744888</ArticleId><ArticleId IdType="pubmed">22990271</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöström L, Gummesson A, Sjöström CD, et al. .; Swedish Obese Subjects Study . Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol 2009;10:653–662</Citation><ArticleIdList><ArticleId IdType="pubmed">19556163</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöström L, Peltonen M, Jacobson P, et al. . Bariatric surgery and long-term cardiovascular events. JAMA 2012;307:56–65</Citation><ArticleIdList><ArticleId IdType="pubmed">22215166</ArticleId></ArticleIdList></Reference><Reference><Citation>Arterburn DE, Olsen MK, Smith VA, et al. . Association between bariatric surgery and long-term survival. JAMA 2015;313:62–70</Citation><ArticleIdList><ArticleId IdType="pubmed">25562267</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheng B, Truong K, Spitler H, Zhang L, Tong X, Chen L. The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: a systematic review and meta-analysis. Obes Surg 2017;27:2724–2732</Citation><ArticleIdList><ArticleId IdType="pubmed">28801703</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher DP, Johnson E, Haneuse S, et al. . Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA 2018;320:1570–1582</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6233803</ArticleId><ArticleId IdType="pubmed">30326126</ArticleId></ArticleIdList></Reference><Reference><Citation>Billeter AT, Scheurlen KM, Probst P, et al. . Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br J Surg 2018;105:168–181</Citation><ArticleIdList><ArticleId IdType="pubmed">29405276</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöström L, Narbro K, Sjöström CD, et al. .; Swedish Obese Subjects Study . Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007;357:741–752</Citation><ArticleIdList><ArticleId IdType="pubmed">17715408</ArticleId></ArticleIdList></Reference><Reference><Citation>Aminian A, Zajichek A, Arterburn DE, et al. . Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA 2019;322:1271–1282</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6724187</ArticleId><ArticleId IdType="pubmed">31475297</ArticleId></ArticleIdList></Reference><Reference><Citation>Syn NL, Cummings DE, Wang LZ, et al. . Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. Lancet 2021;397:1830–1841</Citation><ArticleIdList><ArticleId IdType="pubmed">33965067</ArticleId></ArticleIdList></Reference><Reference><Citation>Verrastro O, Panunzi S, Castagneto-Gissey L, et al. . Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. Lancet 2023;401:1786–1797</Citation><ArticleIdList><ArticleId IdType="pubmed">37088093</ArticleId></ArticleIdList></Reference><Reference><Citation>Aminian A, Al-Kurd A, Wilson R, et al. . Association of bariatric surgery with major adverse liver and cardiovascular outcomes in patients with biopsy-proven nonalcoholic steatohepatitis. JAMA 2021;326:2031–2042</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8587225</ArticleId><ArticleId IdType="pubmed">34762106</ArticleId></ArticleIdList></Reference><Reference><Citation>Lassailly G, Caiazzo R, Ntandja-Wandji L-C, et al. . Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology 2020;159:1290–1301</Citation><ArticleIdList><ArticleId IdType="pubmed">32553765</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Gu Y, Jin Y, Mao Z. Is bariatric surgery effective for Chinese patients with type 2 diabetes mellitus and body mass index < 35 kg/m2? A systematic review and meta-analysis. Obes Surg 2021;31:4083–4092</Citation><ArticleIdList><ArticleId IdType="pubmed">34244912</ArticleId></ArticleIdList></Reference><Reference><Citation>McTigue KM, Wellman R, Nauman E, et al. .; PCORnet Bariatric Study Collaborative . Comparing the 5-year diabetes outcomes of sleeve gastrectomy and gastric bypass: the national Patient-Centered Clinical Research Network (PCORNet) bariatric study. JAMA Surg 2020;155:e200087.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7057171</ArticleId><ArticleId IdType="pubmed">32129809</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjöholm K, Pajunen P, Jacobson P, et al. . Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish Obese Subjects (SOS) study. Diabetologia 2015;58:1448–1453</Citation><ArticleIdList><ArticleId IdType="pubmed">25924987</ArticleId></ArticleIdList></Reference><Reference><Citation>Arterburn DE, Bogart A, Sherwood NE, et al. . A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg 2013;23:93–102</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4641311</ArticleId><ArticleId IdType="pubmed">23161525</ArticleId></ArticleIdList></Reference><Reference><Citation>Brethauer SA, Aminian A, Romero-Talamás H, et al. . Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg 2013;258:628–636</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4110959</ArticleId><ArticleId IdType="pubmed">24018646</ArticleId></ArticleIdList></Reference><Reference><Citation>Hariri K, Guevara D, Jayaram A, Kini SU, Herron DM, Fernandez-Ranvier G. Preoperative insulin therapy as a marker for type 2 diabetes remission in obese patients after bariatric surgery. Surg Obes Relat Dis 2018;14:332–337</Citation><ArticleIdList><ArticleId IdType="pubmed">29339030</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu H, Di J, Bao Y, et al. . Visceral fat area as a new predictor of short-term diabetes remission after Roux-en-Y gastric bypass surgery in Chinese patients with a body mass index less than 35 kg/m2. Surg Obes Relat Dis 2015;11:6–11</Citation><ArticleIdList><ArticleId IdType="pubmed">25547054</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirwan JP, Aminian A, Kashyap SR, Burguera B, Brethauer SA, Schauer PR. Bariatric surgery in obese patients with type 1 diabetes. Diabetes Care 2016;39:941–948</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8310563</ArticleId><ArticleId IdType="pubmed">27222552</ArticleId></ArticleIdList></Reference><Reference><Citation>Fouse T, Schauer P. The socioeconomic impact of morbid obesity and factors affecting access to obesity surgery. Surg Clin North Am 2016;96:669–679</Citation><ArticleIdList><ArticleId IdType="pubmed">27473794</ArticleId></ArticleIdList></Reference><Reference><Citation>Lauren BN, Lim F, Krikhely A, et al. . Estimated cost-effectiveness of medical therapy, sleeve gastrectomy, and gastric bypass in patients with severe obesity and type 2 diabetes. JAMA Netw Open 2022;5:e2148317.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8845022</ArticleId><ArticleId IdType="pubmed">35157054</ArticleId></ArticleIdList></Reference><Reference><Citation>Young MT, Gebhart A, Phelan MJ, Nguyen NT. Use and outcomes of laparoscopic sleeve gastrectomy vs laparoscopic gastric bypass: analysis of the American College of Surgeons NSQIP. J Am Coll Surg 2015;220:880–885</Citation><ArticleIdList><ArticleId IdType="pubmed">25907869</ArticleId></ArticleIdList></Reference><Reference><Citation>Aminian A, Brethauer SA, Kirwan JP, Kashyap SR, Burguera B, Schauer PR. How safe is metabolic/diabetes surgery? Diabetes Obes Metab 2015;17:198–201</Citation><ArticleIdList><ArticleId IdType="pubmed">25352176</ArticleId></ArticleIdList></Reference><Reference><Citation>Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014;349:g3961.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4707708</ArticleId><ArticleId IdType="pubmed">25164369</ArticleId></ArticleIdList></Reference><Reference><Citation>Birkmeyer NJO, Dimick JB, Share D, et al. .; Michigan Bariatric Surgery Collaborative . Hospital complication rates with bariatric surgery in Michigan. JAMA 2010;304:435–442</Citation><ArticleIdList><ArticleId IdType="pubmed">20664044</ArticleId></ArticleIdList></Reference><Reference><Citation>Altieri MS, Yang J, Telem DA, et al. . Lap band outcomes from 19,221 patients across centers and over a decade within the state of New York. Surg Endosc 2016;30:1725–1732</Citation><ArticleIdList><ArticleId IdType="pubmed">26201412</ArticleId></ArticleIdList></Reference><Reference><Citation>Hutter MM, Schirmer BD, Jones DB, et al. . First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg 2011;254:410–420</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3339264</ArticleId><ArticleId IdType="pubmed">21865942</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen NT, Slone JA, Nguyen X-MT, Hartman JS, Hoyt DB. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg 2009;250:631–641</Citation><ArticleIdList><ArticleId IdType="pubmed">19730234</ArticleId></ArticleIdList></Reference><Reference><Citation>Courcoulas AP, King WC, Belle SH, et al. . Seven-year weight trajectories and health outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) study. JAMA Surg 2018;153:427–434</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6584318</ArticleId><ArticleId IdType="pubmed">29214306</ArticleId></ArticleIdList></Reference><Reference><Citation>Birkmeyer JD, Finks JF, O’Reilly A, et al. .; Michigan Bariatric Surgery Collaborative . Surgical skill and complication rates after bariatric surgery. N Engl J Med 2013;369:1434–1442</Citation><ArticleIdList><ArticleId IdType="pubmed">24106936</ArticleId></ArticleIdList></Reference><Reference><Citation>Mechanick JI, Apovian C, Brethauer S, et al. . Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists—executive summary. Endocr Pract 2019;25:1346–1359</Citation><ArticleIdList><ArticleId IdType="pubmed">31682518</ArticleId></ArticleIdList></Reference><Reference><Citation>Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 2005;353:249–254</Citation><ArticleIdList><ArticleId IdType="pubmed">16034010</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheehan A, Patti ME. Hypoglycemia after upper gastrointestinal surgery: clinical approach to assessment, diagnosis, and treatment. Diabetes Metab Syndr Obes 2020;13:4469–4482</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7682607</ArticleId><ArticleId IdType="pubmed">33239898</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee D, Dreyfuss JM, Sheehan A, Puleio A, Mulla CM, Patti ME. Glycemic patterns are distinct in post-bariatric hypoglycemia after gastric bypass (PBH-RYGB). J Clin Endocrinol Metab 2021;106:2291–2303</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8277212</ArticleId><ArticleId IdType="pubmed">33974064</ArticleId></ArticleIdList></Reference><Reference><Citation>Salehi M, Vella A, McLaughlin T, Patti M-E. Hypoglycemia after gastric bypass surgery: current concepts and controversies. J Clin Endocrinol Metab 2018;103:2815–2826</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6692713</ArticleId><ArticleId IdType="pubmed">30101281</ArticleId></ArticleIdList></Reference><Reference><Citation>Conason A, Teixeira J, Hsu C-H, Puma L, Knafo D, Geliebter A. Substance use following bariatric weight loss surgery. JAMA Surg 2013;148:145–150</Citation><ArticleIdList><ArticleId IdType="pubmed">23560285</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhatti JA, Nathens AB, Thiruchelvam D, Grantcharov T, Goldstein BI, Redelmeier DA. Self-harm emergencies after bariatric surgery: a population-based cohort study. JAMA Surg 2016;151:226–232</Citation><ArticleIdList><ArticleId IdType="pubmed">26444444</ArticleId></ArticleIdList></Reference><Reference><Citation>Peterhänsel C, Petroff D, Klinitzke G, Kersting A, Wagner B. Risk of completed suicide after bariatric surgery: a systematic review. Obes Rev 2013;14:369–382</Citation><ArticleIdList><ArticleId IdType="pubmed">23297762</ArticleId></ArticleIdList></Reference><Reference><Citation>Jakobsen GS, Småstuen MC, Sandbu R, et al. . Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA 2018;319:291–301</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5833560</ArticleId><ArticleId IdType="pubmed">29340680</ArticleId></ArticleIdList></Reference><Reference><Citation>King WC, Chen J-Y, Mitchell JE, et al. . Prevalence of alcohol use disorders before and after bariatric surgery. JAMA 2012;307:2516–2525</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3682834</ArticleId><ArticleId IdType="pubmed">22710289</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenberg I, Sogg S, M Perna F. Behavioral and psychological care in weight loss surgery: best practice update. Obesity (Silver Spring) 2009;17:880–884</Citation><ArticleIdList><ArticleId IdType="pubmed">19396066</ArticleId></ArticleIdList></Reference><Reference><Citation>Ilanga M, Heard JC, McClintic J, et al. . Use of GLP-1 agonists in high risk patients prior to bariatric surgery: a cohort study. Surg Endosc 2023;37:9509–9513</Citation><ArticleIdList><ArticleId IdType="pubmed">37700013</ArticleId></ArticleIdList></Reference><Reference><Citation>Thakur U, Bhansali A, Gupta R, Rastogi A. Liraglutide augments weight loss after laparoscopic sleeve gastrectomy: a randomised, double-blind, placebo-control study. Obes Surg 2021;31:84–92</Citation><ArticleIdList><ArticleId IdType="pubmed">32656729</ArticleId></ArticleIdList></Reference><Reference><Citation>Jensen AB, Renström F, Aczél S, et al. . Efficacy of the glucagon-like peptide-1 receptor agonists liraglutide and semaglutide for the treatment of weight regain after bariatric surgery: a retrospective observational study. Obes Surg 2023;33:1017–1025</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9918402</ArticleId><ArticleId IdType="pubmed">36765019</ArticleId></ArticleIdList></Reference><Reference><Citation>Vosburg RW, El Chaar M, El Djouzi S, et al. .; Clinical Issues Committee of the American Society for Metabolic and Bariatric Surgery . Literature review on antiobesity medication use for metabolic and bariatric surgery patients from the American Society for Metabolic and Bariatric Surgery Clinical Issues Committee. Surg Obes Relat Dis 2022;18:1109–1119</Citation><ArticleIdList><ArticleId IdType="pubmed">36028428</ArticleId></ArticleIdList></Reference><Reference><Citation> -U.S. National Library of Medicine . Phentermine-phentermine hydrochloride capsule. Accessed 21 August 2024. Available from https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=737eef3b-9a6b-4ab3-a25c-49d84d2a0197</Citation></Reference><Reference><Citation>Aronne LJ, Wadden TA, Peterson C, Winslow D, Odeh S, Gadde KM. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring) 2013;21:2163–2171</Citation><ArticleIdList><ArticleId IdType="pubmed">24136928</ArticleId></ArticleIdList></Reference><Reference><Citation> -CHEPLAPHARM and H2-Pharma . Xenical (orlistat). Accessed 21 August 2024. Available from https://xenical.com</Citation></Reference><Reference><Citation> -Vivus . Qsymia (phentermine and topiramate extended-release) capsules. Accessed 21 August 2024. Available from https://qsymia.com</Citation></Reference><Reference><Citation> -Currax Pharmaceuticals . Contrave (naltrexone HCl/bupropion HCl) extended-release tablets. Accessed 21 August 2024. Available from https://contrave.com</Citation></Reference><Reference><Citation> -Novo Nordisk . Saxenda (liraglutide injection 3 mg). Accessed 21 August 2024. Available from https://www.saxenda.com</Citation></Reference><Reference><Citation> -Eli Lilly and Company . Zepbound (tirzepatide). Accessed 21 August 2024. Available from https://pi.lilly.com/us/zepbound-uspi.pdf</Citation></Reference><Reference><Citation> -Merative . Redbook (electronic version). Accessed 1 July 2024. Available from https://www.micromedexsolutions.com</Citation></Reference><Reference><Citation> -Data.Medicaid.gov . NADAC (National Average Drug Acquisition Cost). Accessed 1 July 2024. Available from https://healthdata.gov/dataset/NADAC-National-Average-Drug-Acquisition-Cost-2024/3tha-57c6/about_data</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39651921</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>30</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">0975-4466</ISSN><JournalIssue CitedMedium="Internet"><Volume>44</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Season>Nov-Dec</Season></PubDate></JournalIssue><Title>Annals of Saudi medicine</Title><ISOAbbreviation>Ann Saudi Med</ISOAbbreviation></Journal><ArticleTitle>Efficacy and safety of semaglutide: real-world tertiary care experience from Saudi Arabia.</ArticleTitle><Pagination><StartPage>361</StartPage><EndPage>368</EndPage><MedlinePgn>361-368</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.5144/0256-4947.2024.361</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Semaglutide, a glucagon-like peptide-1, is an effective antidiabetic drug promoting weight loss and providing cardiovascular protection. The original trials did not include participants from Saudi Arabia; hence, the study's findings are expected to be useful.</AbstractText><AbstractText Label="OBJECTIVES" NlmCategory="UNASSIGNED">Explore the efficacy, safety, and favorable effects of once-weekly subcutaneous semaglutide (1 mg) in patients with type 2 diabetes and those who received it as an off-license prescription without having diabetes.</AbstractText><AbstractText Label="DESIGN" NlmCategory="UNASSIGNED">Retrospective review of medical records.</AbstractText><AbstractText Label="SETTING" NlmCategory="UNASSIGNED">Department of medicine at our institution.</AbstractText><AbstractText Label="PATIENTS AND METHODS" NlmCategory="UNASSIGNED">This retrospective observational study evaluated patients receiving the glucagon-like peptide-1 analog semaglutide, with the trade name Ozempic. The weight, height, body mass index, blood pressure, and laboratory data, including serum creatinine and hemoglobin A1c (HbA1c) levels and urine albumin/creatinine ratio, were recorded. Moreover, any history of medical comorbidities, such as cardiovascular diseases, cerebrovascular diseases, and heart failure, was documented before and after drug administration.</AbstractText><AbstractText Label="MAIN OUTCOME MEASURES" NlmCategory="UNASSIGNED">Glycemic and weight loss efficacy.</AbstractText><AbstractText Label="SAMPLE SIZE" NlmCategory="UNASSIGNED">1007 patients.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The median age of the patients was 57.0 years, comprising 60.28% females. Among them, 955 and 442 patients received the medication for at least 3 and 6 months, respectively. Our results show a 4.4% weight loss and 0.4% improvement in HBA1c in patients with diabetes. Similar results were observed in the patients without diabetes in terms of weight along with a significant decrease in diastolic blood pressure. Our results also show stability in the serum creatinine and urine albumin creatinine ratio. The drug was equally effective in males and females.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Treatment with once-weekly subcutaneous semaglutide (1 mg) led to clinically significant weight loss and improved HbA1c level and cardiometabolic risk factors such as blood pressure.</AbstractText><AbstractText Label="LIMITATIONS" NlmCategory="UNASSIGNED">Retrospective design.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Butt</LastName><ForeName>Muhammad Imran</ForeName><Initials>MI</Initials><Identifier Source="ORCID">0000-0002-2143-7303</Identifier><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alkhalifah</LastName><ForeName>Khalid Mania</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Riazuddin</LastName><ForeName>Muhammad</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Almuammar</LastName><ForeName>Saud Mohammed</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Almuammar</LastName><ForeName>Salman Mohammed</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alhifthi</LastName><ForeName>Ghayda Abdulkader</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Fahad Wali</ForeName><Initials>FW</Initials><AffiliationInfo><Affiliation>From the Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al Hashim</LastName><ForeName>Samia Mohamed</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>From the Department of Biostatistics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Waheed</LastName><ForeName>Najeeb</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>From the Department of Endocrinology, Imperial College London Diabetes Centre, Al Ain, Abu Dhabi, United Arab Emirates.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>Saudi Arabia</Country><MedlineTA>Ann Saudi Med</MedlineTA><NlmUniqueID>8507355</NlmUniqueID><ISSNLinking>0256-4947</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>62340-29-8</RegistryNumber><NameOfSubstance UI="D004763">Glucagon-Like Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>53AXN4NNHX</RegistryNumber><NameOfSubstance UI="C000591245">semaglutide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004763" MajorTopicYN="Y">Glucagon-Like Peptides</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012529" MajorTopicYN="N" Type="Geographic">Saudi Arabia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015431" MajorTopicYN="Y">Weight Loss</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D063128" MajorTopicYN="N">Tertiary Healthcare</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001794" MajorTopicYN="N">Blood Pressure</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007279" MajorTopicYN="N">Injections, Subcutaneous</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>None.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>9</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39651921</ArticleId><ArticleId IdType="pmc">PMC11627033</ArticleId><ArticleId IdType="doi">10.5144/0256-4947.2024.361</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank Moritz, Ogurtsova Katherine, Duncan Bruce B, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Alwadeai KS, Alhammad SA. Prevalence of type 2 diabetes mellitus and related factors among the general adult population in Saudi Arabia between 2016–2022: A systematic review and meta-analysis of the cross-sectional studies. Medicine 2023;102:e34021.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10270537</ArticleId><ArticleId IdType="pubmed">37327272</ArticleId></ArticleIdList></Reference><Reference><Citation>Aljulifi MZ. Prevalence and reasons of increased type 2 diabetes in Gulf Cooperation Council Countries. Saudi Med J 2021;42:481–490.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9149705</ArticleId><ArticleId IdType="pubmed">33896777</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh SK, Singh R, Singh SK, Iquebal MA, Jaiswal S, Rai PK. Prevalence of obesity in newly onset diabetes mellitus and its relationship with uric acid: an Indian cross-sectional study. Int J Gen Med 2023;16:1217–1226.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10086392</ArticleId><ArticleId IdType="pubmed">37057053</ArticleId></ArticleIdList></Reference><Reference><Citation>Hira T, Pinyo J, Hara H. What is GLP-1 really doing in obesity?. Trends Endocrinol Metab 2020;31:71–80.</Citation><ArticleIdList><ArticleId IdType="pubmed">31636017</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu C, Zou Y, Qian H. GLP-1R agonists for the treatment of obesity: a patent review (2015-present). Expert Opin Ther Pat 2020;30:781–794.</Citation><ArticleIdList><ArticleId IdType="pubmed">32799587</ArticleId></ArticleIdList></Reference><Reference><Citation>Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbøl JD, Hansen T, et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallelgroup, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol 2017. April;5:251–260.</Citation><ArticleIdList><ArticleId IdType="pubmed">28110911</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016;375:1834–1844.</Citation><ArticleIdList><ArticleId IdType="pubmed">27633186</ArticleId></ArticleIdList></Reference><Reference><Citation>Tan HC, Dampil OA, Marquez MM. Efficacy and safety of semaglutide for weight loss in obesity without diabetes: A systematic review and meta-analysis. J ASEAN Fed Endocr Soc 2022;37:65–72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9758543</ArticleId><ArticleId IdType="pubmed">36578889</ArticleId></ArticleIdList></Reference><Reference><Citation>Alfadda AA, Al-Dhwayan MM, Alharbi AA, Al Khudhair BK, Al Nozha OM, Al-Qahtani NM, et al. The Saudi clinical practice guideline for the management of overweight and obesity in adults. Saudi Med J 2016;37:1151–1162.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5075383</ArticleId><ArticleId IdType="pubmed">27652370</ArticleId></ArticleIdList></Reference><Reference><Citation>FDA requests the withdrawal of the weight-loss drug Belviq, Belviq XR (lorcaserin) from the market. Available from: https://www.fda.gov/drugs/fda-drug-safetypodcasts/fda-requests-withdrawal-weightloss-drug-belviq-belviq-xr-lorcaserin-market -2020;3:5.</Citation></Reference><Reference><Citation>Amaro A, Sugimoto D, Wharton S. Efficacy and safety of semaglutide for weight management: evidence from the STEP program. Postgrad Med 2022;134(sup1):5–17.</Citation><ArticleIdList><ArticleId IdType="pubmed">36691309</ArticleId></ArticleIdList></Reference><Reference><Citation>Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016;23:591–601.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4833627</ArticleId><ArticleId IdType="pubmed">26916363</ArticleId></ArticleIdList></Reference><Reference><Citation>Alqahtani SA, Al-Omar HA, Alshehri A, Abanumay A, Alabdulkarim H, Alrumaih A, et al. Obesity burden and impact of weight loss in Saudi Arabia: A modelling study. Adv Ther 2023;40:1114–1128.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9988771</ArticleId><ArticleId IdType="pubmed">36633732</ArticleId></ArticleIdList></Reference><Reference><Citation>Gao X, Hua X, Wang X, Xu W, Zhang Y, Shi C, et al. Efficacy and safety of semaglutide on weight loss in obese or overweight patients without diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2022;13:935823.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9515581</ArticleId><ArticleId IdType="pubmed">36188627</ArticleId></ArticleIdList></Reference><Reference><Citation>DeSouza C, Cariou B, Garg S, Lausvig N, Navarria A, Fonseca V. Efficacy and safety of semaglutide for type 2 diabetes by race and ethnicity: a post hoc analysis of the SUSTAIN trials. J Clin Endocrinol Metab 2020;105:543–556.</Citation><ArticleIdList><ArticleId IdType="pubmed">31769496</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021;384:989–1002.</Citation><ArticleIdList><ArticleId IdType="pubmed">33567185</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghusn W, De la Rosa A, Sacoto D, Cifuentes L, Campos A, Feris F, et al. Weight loss outcomes associated with semaglutide treatment for patients with overweight or obesity. JAMA Netw Open 2022;5:e2231982.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9486455</ArticleId><ArticleId IdType="pubmed">36121652</ArticleId></ArticleIdList></Reference><Reference><Citation>Buse JB, Nordahl Christensen H, Harty BJ, Mitchell J, Soule BP, Zacherle E, et al. Study design and baseline profile for adults with type 2 diabetes in the once-weekly subcutaneous semaglutide randomized PRAgmatic (SEPRA) trial. BMJ Open Diabetes Res Care 2023;11:e003206.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10163526</ArticleId><ArticleId IdType="pubmed">37137527</ArticleId></ArticleIdList></Reference><Reference><Citation>Holmes P, Bell HE, Bozkurt K, Catarig AM, Clark A, Machell A, et al. Real-world use of once-weekly semaglutide in type 2 diabetes: results from the SURE UK multicentre, prospective, observational study. Diabetes Ther 2021;12:2891–2905.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8475854</ArticleId><ArticleId IdType="pubmed">34562237</ArticleId></ArticleIdList></Reference><Reference><Citation>Menzen M, Berentzen TL, Catarig AM, Pieperhoff S, Simon J, Jacob S. Real-world use of once-weekly semaglutide in Type 2 diabetes: results from SemaglUtide real-world evidence (SURE) Germany. Exp Clin Endocrinol Diabetes 2023;131:205–215.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10101737</ArticleId><ArticleId IdType="pubmed">36599459</ArticleId></ArticleIdList></Reference><Reference><Citation>Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab 2018;20(suppl 1):5–21.</Citation><ArticleIdList><ArticleId IdType="pubmed">29364588</ArticleId></ArticleIdList></Reference><Reference><Citation>Rentzeperi E, Pegiou S, Koufakis T, Grammatiki M, Kotsa K. Sex differences in response to treatment with glucagon-like peptide 1 receptor agonists: opportunities for a tailored approach to diabetes and obesity care. J Pers Med 2022;12:454.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8950819</ArticleId><ArticleId IdType="pubmed">35330453</ArticleId></ArticleIdList></Reference><Reference><Citation>Wajid M, Sattar S, Khalid F, Masood MQ. Efficacy and tolerability of semaglutide in patients with Type-2 diabetes mellitus: experience of a tertiary care hospital, Pakistan. Clin Med Insights Endocrinol Diabetes 2023;16:11795514231213568.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10676067</ArticleId><ArticleId IdType="pubmed">38023735</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown RE, Bech PG, Aronson R. Semaglutide once weekly in people with type 2 diabetes: real-world analysis of the Canadian LMC diabetes registry (SPARE study). Diabetes Obes Metab 2020;22:2013–2020.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7689820</ArticleId><ArticleId IdType="pubmed">32538541</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajamand Ekberg N, Bodholdt U, Catarig AM, Catrina SB, Grau K, Holmberg CN, Klanger B, et al. Real-world use of once-weekly semaglutide in patients with type 2 diabetes: results from the SURE Denmark/Sweden multicentre, prospective, observational study. Prim Care Diabetes 2021;15:871–878.</Citation><ArticleIdList><ArticleId IdType="pubmed">34183269</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu S, Su X, Fan G. Efficacy and tolerability of the subcutaneous semaglutide for type 2 Diabetes patients: an updated systematic review and meta-analysis. Diabetol Metab Syndr 2023;15:218.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10612199</ArticleId><ArticleId IdType="pubmed">37891683</ArticleId></ArticleIdList></Reference><Reference><Citation>Alsheikh A, Alshehri A, Alzahrani S, Jammah AA, Alqahtani F, Alotaibi M, et al. Evaluating the Clinical Effectiveness and Safety of Semaglutide in Individuals with Uncontrolled Type 2 Diabetes. Real-World Evidence from Saudi Arabia: The Observational, Multicenter, 15-Month EVOLUTION Study. Diabetes Ther. 2024;15(2):473–485.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10838866</ArticleId><ArticleId IdType="pubmed">38110660</ArticleId></ArticleIdList></Reference><Reference><Citation>Naseri MW, Esmat HA, Bahee MD. Prevalence of hypertension in Type-2 diabetes mellitus. Ann Med Surg (Lond) 2022;78:103758.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9127167</ArticleId><ArticleId IdType="pubmed">35620043</ArticleId></ArticleIdList></Reference><Reference><Citation>Haile TG, Mariye T, Tadesse DB, Gebremeskel GG, Asefa GG, Getachew T. Prevalence of hypertension among type 2 diabetes mellitus patients in Ethiopia: a systematic review and meta-analysis. Int Health 2023;15:235–241.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10153558</ArticleId><ArticleId IdType="pubmed">36055967</ArticleId></ArticleIdList></Reference><Reference><Citation>Almubark RA, Alqahtani S, Isnani AC, Alqarni A, Shams M, Yahia M, et al. Gender differences in the attitudes and management of people with obesity in Saudi Arabia: data from the ACTION-IO study. Risk Manag Healthc Policy 2022;15:1179–1188.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9172923</ArticleId><ArticleId IdType="pubmed">35685203</ArticleId></ArticleIdList></Reference><Reference><Citation>Mugharbel KM, Al-Mansouri MA. Prevalence of obesity among type 2 diabetic patients in Al-khobar primary health care centers. J Family Community Med 2003;10:49–53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3425767</ArticleId><ArticleId IdType="pubmed">23011992</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39650851</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1177-8881</ISSN><JournalIssue CitedMedium="Internet"><Volume>18</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Drug design, development and therapy</Title><ISOAbbreviation>Drug Des Devel Ther</ISOAbbreviation></Journal><ArticleTitle>The Clinical Efficacy of Gegen Qinlian Decoction in Treating Type 2 Diabetes is Positively Correlated with the Dose of <i>Coptidis rhizoma</i>: Three Randomized, Doubleblind, Dose-Parallel Controlled Clinical Trials.</ArticleTitle><Pagination><StartPage>5573</StartPage><EndPage>5582</EndPage><MedlinePgn>5573-5582</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.2147/DDDT.S487315</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">The results of Study 1 we have published proved that medium and high doses of Gegen Qinlian Decoction (GQD) were effective in treating type 2 diabetes (T2D) with damp-heat syndrome. However, whether the main drug of GQD in treating T2D was <i>Puerariae Lobatae Radix</i> or <i>Coptidis Rhizoma</i> has always been a hot topic of debate among many doctors. Therefore, we conducted Study 2 and Study 3 to determine the main drug of GQD for treating T2D.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Both Study 2 and Study 3 were randomized, double-blind, dose-parallel controlled, multicenter trials. In Study 2, <i>Puerariae Lobatae Radix</i> was used as the main drug, and in Study 3, <i>Coptidis Rhizoma</i> was used as the main drug. About 120 patients with newly diagnosed T2D were enrolled in each study and randomized 1:1:1 to three treatment groups. The three treatment groups were named HD, MD, and LD groups according to the high, medium, and low doses of the main drug. The course of treatment was 12 weeks. The primary outcomes were the changes in HbA1c.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">In Study 2, the HbA1c decreased by 0.58 (0.87), 0.28 (1.17), and 0.55 (0.85) in the HD, MD, and LD groups, respectively, with no significant difference between treatment groups according to covariance analysis (F=0.66, P=0.5206). In Study 3, the HbA1c decreased by 0.75 (0.82), 0.34 (0.71), and 0.26 (0.79) in the HD, MD, and LD groups respectively. By analysis of covariance, the change values of HbA1c were significantly different among the three groups (F=3.11, P=0.0492).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">The changes in HbA1c were positively correlated with the dose of <i>Coptidis Rhizoma</i>, but not significantly with the dose of <i>Puerariae Lobatae Radix</i>. It demonstrated that the main drug of GQD in treating T2D patients is <i>Coptidis Rhizoma</i>.</AbstractText><CopyrightInformation>© 2024 Kang et al.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Kang</LastName><ForeName>Xiaomin</ForeName><Initials>X</Initials><Identifier Source="ORCID">0000-0002-3002-3786</Identifier><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Beijing University of Chinese Medicine, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Jin</LastName><ForeName>De</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Ji</LastName><ForeName>Hangyu</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>An</LastName><ForeName>Xuedong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yuehong</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0000-0001-8024-9751</Identifier><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Duan</LastName><ForeName>Liyun</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Cunqing</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Rongrong</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Duan</LastName><ForeName>Yingying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Beijing University of Chinese Medicine, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yuqing</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Yuting</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>Linlin</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Beijing University of Chinese Medicine, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lian</LastName><ForeName>Fengmei</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tong</LastName><ForeName>Xiaolin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>New Zealand</Country><MedlineTA>Drug Des Devel Ther</MedlineTA><NlmUniqueID>101475745</NlmUniqueID><ISSNLinking>1177-8881</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>CXS4LJR7EL</RegistryNumber><NameOfSubstance UI="C107393">Coptidis rhizoma extract</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004365">Drugs, Chinese Herbal</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C542794">gegenqinlian</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000089042" MajorTopicYN="N">Coptis chinensis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004305" MajorTopicYN="Y">Dose-Response Relationship, Drug</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004311" MajorTopicYN="N">Double-Blind Method</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004365" MajorTopicYN="Y">Drugs, Chinese Herbal</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Coptidis rhizoma</Keyword><Keyword MajorTopicYN="N">Gegen Qinlian Decoction</Keyword><Keyword MajorTopicYN="N">Huanglian</Keyword><Keyword MajorTopicYN="N">clinical trial</Keyword><Keyword MajorTopicYN="N">dose-parallel controlled</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The authors report no conflicts of interest in this work.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39650851</ArticleId><ArticleId IdType="pmc">PMC11625183</ArticleId><ArticleId IdType="doi">10.2147/DDDT.S487315</ArticleId><ArticleId IdType="pii">487315</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Tremblay J, Hamet P. Environmental and genetic contributions to diabetes. Metabolism. 2019;100S:153952.</Citation><ArticleIdList><ArticleId IdType="pubmed">31610851</ArticleId></ArticleIdList></Reference><Reference><Citation>Association AD. 10. cardiovascular disease and risk management: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S125–S150. doi:10.2337/dc21-S010</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-S010</ArticleId><ArticleId IdType="pubmed">33298421</ArticleId></ArticleIdList></Reference><Reference><Citation>Association AD. 11. microvascular complications and foot care: standards of medical care in diabetes-2021. Diab Care. 2021;44(Suppl 1):S151–S167. doi:10.2337/dc21-S011</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-S011</ArticleId><ArticleId IdType="pubmed">33298422</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabet Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2018.02.023</ArticleId><ArticleId IdType="pubmed">29496507</ArticleId></ArticleIdList></Reference><Reference><Citation>Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10:107–111. doi:10.2991/jegh.k.191028.001</Citation><ArticleIdList><ArticleId IdType="doi">10.2991/jegh.k.191028.001</ArticleId><ArticleId IdType="pmc">PMC7310804</ArticleId><ArticleId IdType="pubmed">32175717</ArticleId></ArticleIdList></Reference><Reference><Citation>Society CD. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 Edition). Chin J Endocrinol Metab. 2021;37(04):311–398. doi:10.3760/cma.j.cn311282-20210304-00142</Citation><ArticleIdList><ArticleId IdType="doi">10.3760/cma.j.cn311282-20210304-00142</ArticleId></ArticleIdList></Reference><Reference><Citation>Qiu L. Table and explanation of unit values of length, capacity and weight in China’s past dynasties. China Metrol. 2006;(10):46–48+76. doi:10.16569/j.cnki.cn11-3720/t.2006.10.026</Citation><ArticleIdList><ArticleId IdType="doi">10.16569/j.cnki.cn11-3720/t.2006.10.026</ArticleId></ArticleIdList></Reference><Reference><Citation>Tong XL, Mu LC, Ji HY, et al. Study on drug dosage of treatise on febrile diseases. J Trad Chin Med. 2009;50(04):368–372. doi:10.13288/j.11-2166/r.2009.04.020</Citation><ArticleIdList><ArticleId IdType="doi">10.13288/j.11-2166/r.2009.04.020</ArticleId></ArticleIdList></Reference><Reference><Citation>Xie M. Formulaology. 3rd ed. Bei Jing: People ‘s Medical Publishing House; 2016.</Citation></Reference><Reference><Citation>Zhao LH, Lian FM, Ji HY, et al. Clinical examples of treatment for type 2 diabetes by professor Tong Xiao-lin using Ge-Gen-Qin-Lian decoction. Chin J Exp Tradit Med Formul. 2011;17:249–251.</Citation></Reference><Reference><Citation>Tong XL, Zhao LH, Lian FM, et al. Clinical observations on the dose-effect relationship of gegen qin lian decoction on 54 out-patients with type 2 diabetes. J Tradit Chin Med. 2011;31:56–59. doi:10.1016/S0254-6272(11)60013-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0254-6272(11)60013-7</ArticleId><ArticleId IdType="pubmed">21563509</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang CH, Xu GL, Liu YH, et al. Anti-diabetic activities of Gegen Qinlian Decoction in high-fat diet combined with streptozotocin-induced diabetic rats and in 3T3-L1 adipocytes. Phytomedicine. 2013;20:221–229. doi:10.1016/j.phymed.2012.11.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.phymed.2012.11.002</ArticleId><ArticleId IdType="pubmed">23219338</ArticleId></ArticleIdList></Reference><Reference><Citation>He Y, Gai Y, Wu X, et al. Quantitatively analyze composition principle of Ma Huang Tang by structural equation modeling. J Ethnopharmacol. 2012;143:851–858. doi:10.1016/j.jep.2012.08.010</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jep.2012.08.010</ArticleId><ArticleId IdType="pubmed">22925947</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu CS, Nie AZ, Wang X, et al. Research progress on dose- effect relationship of Chinese materia medica. Chin Trad Herbal Drugs. 2019;50(07):1708–1712.</Citation></Reference><Reference><Citation>Xu J, Lian F, Zhao L, et al. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J. 2015;9:552–562. doi:10.1038/ismej.2014.177</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ismej.2014.177</ArticleId><ArticleId IdType="pmc">PMC4331591</ArticleId><ArticleId IdType="pubmed">25279787</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO Consultation. Definition, Diagnosis, and Classification of Diabetes Mellitus and Its Complications. Geneva, Switzerland: World Health Organization; 1999.</Citation></Reference><Reference><Citation>Zheng XY. The Guidelines for Clinical Research of New Drugs of Traditional Chinese Medicine. Bei Jing: China Medical Science and Technology Press; 2002.</Citation></Reference><Reference><Citation>Lu JZ, Ye D, Ma BL. Constituents, pharmacokinetics, and pharmacology of Gegen-Qinlian Decoction. Front Pharmacol. 2021;12:668418. doi:10.3389/fphar.2021.668418</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.668418</ArticleId><ArticleId IdType="pmc">PMC8139575</ArticleId><ArticleId IdType="pubmed">34025427</ArticleId></ArticleIdList></Reference><Reference><Citation>Tu J, Zhu S, Li B, et al. Gegen Qinlian Decoction coordinately regulates PPARgamma and PPARalpha to improve glucose and lipid homeostasis in diabetic rats and insulin resistance 3T3-L1 adipocytes. Front Pharmacol. 2020;11:811. doi:10.3389/fphar.2020.00811</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2020.00811</ArticleId><ArticleId IdType="pmc">PMC7300300</ArticleId><ArticleId IdType="pubmed">32595495</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu Y, Huang J, Wang N, et al. Network pharmacology-based analysis and experimental exploration of antidiabetic mechanisms of Gegen Qinlian Decoction. Front Pharmacol. 2021;12:649606. doi:10.3389/fphar.2021.649606</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.649606</ArticleId><ArticleId IdType="pmc">PMC8350346</ArticleId><ArticleId IdType="pubmed">34381354</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian J, Bai B, Gao Z, et al. Alleviation effects of GQD, a traditional Chinese medicine formula, on diabetes rats linked to modulation of the gut microbiome. Front Cell Infect Microbiol. 2021;11:740236. doi:10.3389/fcimb.2021.740236</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcimb.2021.740236</ArticleId><ArticleId IdType="pmc">PMC8531589</ArticleId><ArticleId IdType="pubmed">34692563</ArticleId></ArticleIdList></Reference><Reference><Citation>Gao Z, Zhang W, He L, et al. Double-blinded, randomized clinical trial of Gegen Qinlian decoction pinpoints Faecalibacterium as key gut bacteria in alleviating hyperglycemia. Precis Clin Med. 2024;7(1):pbae003. doi:10.1093/pcmedi/pbae003</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/pcmedi/pbae003</ArticleId><ArticleId IdType="pmc">PMC10941319</ArticleId><ArticleId IdType="pubmed">38495337</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao MM, Lu J, Li S, et al. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun. 2021;12:5616. doi:10.1038/s41467-021-25952-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-021-25952-2</ArticleId><ArticleId IdType="pmc">PMC8460738</ArticleId><ArticleId IdType="pubmed">34556670</ArticleId></ArticleIdList></Reference><Reference><Citation>Lv X, Zhao Y, Yang X, et al. Berberine potentiates insulin secretion and prevents beta-cell dysfunction through the miR-204/SIRT1 signaling pathway. Front Pharmacol. 2021;12:720866. doi:10.3389/fphar.2021.720866</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.720866</ArticleId><ArticleId IdType="pmc">PMC8493072</ArticleId><ArticleId IdType="pubmed">34630099</ArticleId></ArticleIdList></Reference><Reference><Citation>Meng Z, Yu Y, Zhang Y, et al. Highly bioavailable Berberine formulation improves glucocorticoid receptor-mediated Insulin Resistance via reduction in association of the glucocorticoid receptor with phosphatidylinositol-3-kinase. Int J Biol Sci. 2020;16:2527–2541. doi:10.7150/ijbs.39508</Citation><ArticleIdList><ArticleId IdType="doi">10.7150/ijbs.39508</ArticleId><ArticleId IdType="pmc">PMC7415432</ArticleId><ArticleId IdType="pubmed">32792855</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang M, Yang H, Yang E, et al. Berberine decreases intestinal GLUT2 translocation and reduces intestinal glucose absorption in mice. Int J Mol Sci. 2021;23:327. doi:10.3390/ijms23010327</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms23010327</ArticleId><ArticleId IdType="pmc">PMC8745600</ArticleId><ArticleId IdType="pubmed">35008753</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Gu Y, Ren H, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun. 2020;11:5015. doi:10.1038/s41467-020-18414-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-020-18414-8</ArticleId><ArticleId IdType="pmc">PMC7538905</ArticleId><ArticleId IdType="pubmed">33024120</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle> -<PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39650653</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1664-3224</ISSN><JournalIssue CitedMedium="Internet"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in immunology</Title><ISOAbbreviation>Front Immunol</ISOAbbreviation></Journal><ArticleTitle>Global and regional genetic association analysis of ulcerative colitis and type 2 diabetes mellitus and causal validation analysis of two-sample two-way Mendelian randomization.</ArticleTitle><Pagination><StartPage>1375915</StartPage><MedlinePgn>1375915</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1375915</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fimmu.2024.1375915</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Clinical co-occurrence of UC (Ulcerative Colitis) and T2DM (Type 2 Diabetes Mellitus) is observed. The aim of this study is to investigate the potential causal relationship between Ulcerative Colitis (UC) and Type 2 Diabetes Mellitus (T2DM) using LDSC and LAVA analysis, followed by genetic verification through TSMR, providing insights for clinical prevention and treatment.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Genetic loci closely related to T2DM were extracted as instrumental variables from the GWAS database, with UC as the outcome variable, involving European populations. The UC data included 27,432 samples and 8,050,003 SNPs, while the T2DM data comprised 406,831 samples and 11,914,699 SNPs. LDSC and LAVA were used for quantifying genetic correlation at both global (genome-wide) and local (genomic regions) levels. MR analysis was conducted using IVW, MR-Egger regression, Weighted median, and Weighted mode, assessing the causal relationship between UC and diabetes with OR values and 95% CI. Heterogeneity and pleiotropy were tested using Egger-intercept, MR-PRESSO, and sensitivity analysis through the "leave-one-out" method and Cochran Q test. Subsequently, a reverse MR operation was conducted using UC as the exposure data and T2DM as the outcome data for validation.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Univariable and bivariable LDSC calculated the genetic correlation and potential sample overlap between T2DM and UC, resulting in rg = -0.0518, se = 0.0562, <i>P</i> = 0.3569 with no significant genetic association found for paired traits. LAVA analysis identified 9 regions with local genetic correlation, with 6negative and 3 positive associations, indicating a negative correlation between T2DM and UC. MR analysis, with T2DM as the exposure and UC as the outcome, involved 34 SNPs as instrumental variables. The OR values and 95% CI from IVW, MR-Egger, Weighted median, and Weighted mode were 0.917 (0.848~0.992), 0.949 (0.800~1.125), 0.881 (0.779~0.996), 0.834(0.723~0.962) respectively, with IVW <i>P</i>-value < 0.05, suggesting a negative causal relationship between T2DM and UC. MR-Egger regression showed an intercept of -0.004 with a standard error of 0.009, <i>P</i> = 0.666, and MR-PRESSO Global Test <i>P</i>-value > 0.05, indicating no pleiotropy and no outliers detected. Heterogeneity tests showed no heterogeneity, and the "leave-one-out" sensitivity analysis results were stable. With UC as the exposure and T2DM as the outcome, 32 SNPs were detected, but no clear causal association was found.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">There is a causal relationship between T2DM and UC, where T2DM reduces the risk of UC, while no significant causal relationship was observed from UC to T2DM.</AbstractText><CopyrightInformation>Copyright © 2024 Hu, Chen, Zhou, Zhao, Wang, Huang, Li and Zeng.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Yan-Zhi</ForeName><Initials>YZ</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Zhe</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Ming-Han</ForeName><Initials>MH</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Zhen-Yu</ForeName><Initials>ZY</Initials><AffiliationInfo><Affiliation>College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Xiao-Yan</ForeName><Initials>XY</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Jun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xin-Tian</ForeName><Initials>XT</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeng</LastName><ForeName>Juan-Ni</ForeName><Initials>JN</Initials><AffiliationInfo><Affiliation>The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Immunol</MedlineTA><NlmUniqueID>101560960</NlmUniqueID><ISSNLinking>1664-3224</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003093" MajorTopicYN="Y">Colitis, Ulcerative</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="Y">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="Y">Mendelian Randomization Analysis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">LAVA analysis</Keyword><Keyword MajorTopicYN="N">LDSC analysis</Keyword><Keyword MajorTopicYN="N">Mendelian randomization</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">UC</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>17</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39650653</ArticleId><ArticleId IdType="pmc">PMC11621067</ArticleId><ArticleId IdType="doi">10.3389/fimmu.2024.1375915</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ingelfinger JR, Jarcho JA. Increase in the incidence of diabetes and its implications. New Engl J Med. (2017) 376:1473–4. doi: 10.1056/nejme1616575</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/nejme1616575</ArticleId><ArticleId IdType="pubmed">28402766</ArticleId></ArticleIdList></Reference><Reference><Citation>Sell H, Eckel J. Chemotactic cytokines, obesity and type 2 diabetes:in vivoandin vitroevidence for a possible causal correlation? Proc Nutr Soc. (2009) 68:378–84. doi: 10.1017/s0029665109990218</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/s0029665109990218</ArticleId><ArticleId IdType="pubmed">19698204</ArticleId></ArticleIdList></Reference><Reference><Citation>Svenson KL, Pollare T, Lithell H, Hällgren R. Impaired glucose handling in active rheumatoid arthritis: Relationship to peripheral insulin resistance. Metabolism-clinical Exp. (1988) 37:125–30. doi: 10.1016/s0026-0495(98)90005-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0026-0495(98)90005-1</ArticleId><ArticleId IdType="pubmed">2893241</ArticleId></ArticleIdList></Reference><Reference><Citation>Karstoft K, Pedersen BK. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol. (2015) 94:146–50. doi: 10.1038/icb.2015.101</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/icb.2015.101</ArticleId><ArticleId IdType="pubmed">26568029</ArticleId></ArticleIdList></Reference><Reference><Citation>Johansen MY, MacDonald CS, Hansen KB, Karstoft K, Christensen R, Pedersen M, et al. . Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes. JAMA. (2017) 318:637–7. doi: 10.1001/jama.2017.10169</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2017.10169</ArticleId><ArticleId IdType="pmc">PMC5817591</ArticleId><ArticleId IdType="pubmed">28810024</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan PG, Li JN. The standard diagnosis and treatment of ulcerative colitis. Chin J Internal Med. (2021) 60:567–70. doi: 10.3760/cma.j.cn112138-20210316-00216</Citation><ArticleIdList><ArticleId IdType="doi">10.3760/cma.j.cn112138-20210316-00216</ArticleId><ArticleId IdType="pubmed">34058816</ArticleId></ArticleIdList></Reference><Reference><Citation>Du L, Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol Clinics North America. (2020) 49:643–54. doi: 10.1016/j.gtc.2020.07.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gtc.2020.07.005</ArticleId><ArticleId IdType="pubmed">33121686</ArticleId></ArticleIdList></Reference><Reference><Citation>Berre CL, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. (2023) 402:571–84. doi: 10.1016/s0140-6736(23)00966-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(23)00966-2</ArticleId><ArticleId IdType="pubmed">37573077</ArticleId></ArticleIdList></Reference><Reference><Citation>Cleynen I, Boucher G, Jostins L, Schumm L, Zeißig S, Ahmad T, et al. . Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. (2016) 387:156–67. doi: 10.1016/s0140-6736(15)00465-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(15)00465-1</ArticleId><ArticleId IdType="pmc">PMC4714968</ArticleId><ArticleId IdType="pubmed">26490195</ArticleId></ArticleIdList></Reference><Reference><Citation>Preda C-M, Istratescu D. Etiology of Ulcerative Colitis. London, UK: IntechOpen; (2022). doi: 10.5772/intechopen.106842</Citation><ArticleIdList><ArticleId IdType="doi">10.5772/intechopen.106842</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah A, Patel V, Jain M, Parmar G. Network pharmacology and systems biology in drug discovery. null. (2023), 231–52. doi: 10.1007/978-981-99-1316-9_10</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/978-981-99-1316-9_10</ArticleId></ArticleIdList></Reference><Reference><Citation>Meyer A, Dong C, Casagrande C, Chan S, Huybrechts I, Nicolas G, et al. . Food processing and risk of crohn’s disease and ulcerative colitis: A european prospective cohort study. Clin Gastroenterol Hepatol. (2023) 21:1607–1616.e6. doi: 10.1016/j.cgh.2022.09.031</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2022.09.031</ArticleId><ArticleId IdType="pubmed">36243353</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. . IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119–9. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Thorsteinsdottir S, Gudjonsson T, Nielsen OH, Vainer B, Seidelin JB. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol. (2011) 8:395–404. doi: 10.1038/nrgastro.2011.96</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrgastro.2011.96</ArticleId><ArticleId IdType="pubmed">21647200</ArticleId></ArticleIdList></Reference><Reference><Citation>Barabási ALászló, Oltvai ZoltánN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. (2004) 5:101–13. doi: 10.1038/nrg1272</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrg1272</ArticleId><ArticleId IdType="pubmed">14735121</ArticleId></ArticleIdList></Reference><Reference><Citation>Paramsothy S, Kamm MA, Kaakoush NO, Walsh A, van den Bogaerde J, Samuel DB, et al. . Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. (2017) 389:1218–28. doi: 10.1016/s0140-6736(17)30182-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(17)30182-4</ArticleId><ArticleId IdType="pubmed">28214091</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao W, Gong J, Zhu W, Tian H, Ding C, Gu L, et al. . Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora. BMC Microbiol. (2016) 16:0–0. doi: 10.1186/s12866-016-0869-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12866-016-0869-2</ArticleId><ArticleId IdType="pmc">PMC5095982</ArticleId><ArticleId IdType="pubmed">27809778</ArticleId></ArticleIdList></Reference><Reference><Citation>Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. . An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discovery. (2015) 14:475–86. doi: 10.1038/nrd4609</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrd4609</ArticleId><ArticleId IdType="pubmed">26091267</ArticleId></ArticleIdList></Reference><Reference><Citation>Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nat Biotechnol. (2006) 24:805–15. doi: 10.1038/nbt1228</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nbt1228</ArticleId><ArticleId IdType="pubmed">16841068</ArticleId></ArticleIdList></Reference><Reference><Citation>Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol. (2005) 5:0–0. doi: 10.1186/1472-6904-5-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1472-6904-5-3</ArticleId><ArticleId IdType="pmc">PMC1090568</ArticleId><ArticleId IdType="pubmed">15854222</ArticleId></ArticleIdList></Reference><Reference><Citation>Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. (2006) 16:127–36. doi: 10.1016/j.sbi.2006.01.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sbi.2006.01.013</ArticleId><ArticleId IdType="pubmed">16442279</ArticleId></ArticleIdList></Reference><Reference><Citation>Flordellis C, Manolis AS, Hervé P, Karabinis A. Rethinking target discovery in polygenic diseases. Curr Topics Medicinal Chem. (2006) 6:1791–8. doi: 10.2174/156802606778194226</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/156802606778194226</ArticleId><ArticleId IdType="pubmed">17017957</ArticleId></ArticleIdList></Reference><Reference><Citation>Dessalew N, Mikre W. On the paradigm shift towards multitarget selective drug design. Curr Comput - Aided Drug Design. (2008) 4:76–90. doi: 10.2174/157340908784533229</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/157340908784533229</ArticleId></ArticleIdList></Reference><Reference><Citation>Bulik-Sullivan B, Finucane H, Anttila V, Gusev A, Day FR, Loh P-R, et al. . An atlas of genetic correlations across human diseases and traits. Nat Genet. (2015) 47:1236–41. doi: 10.1038/ng.3406</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3406</ArticleId><ArticleId IdType="pmc">PMC4797329</ArticleId><ArticleId IdType="pubmed">26414676</ArticleId></ArticleIdList></Reference><Reference><Citation>Werme J, Sluis Svd, Posthuma D, de Leeuw C. An integrated framework for local genetic correlation analysis. Nat Genet. (2022) 54:274–82. doi: 10.1038/s41588-022-01017-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-022-01017-y</ArticleId><ArticleId IdType="pubmed">35288712</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah A, Ghasemzadeh N, Zaragoza-Macias E, Patel R, Eapen DJ, Neeland IJ, et al. . Sex and age differences in the association of depression with obstructive coronary artery disease and adverse cardiovascular events. J Am Heart Assoc. (2014) 3. doi: 10.1161/jaha.113.000741</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/jaha.113.000741</ArticleId><ArticleId IdType="pmc">PMC4309058</ArticleId><ArticleId IdType="pubmed">24943475</ArticleId></ArticleIdList></Reference><Reference><Citation>Harshfield EL, Pennells L, Schwartz J, Willeit P, Kaptoge SK, Bell S, et al. . Association between depressive symptoms and incident cardiovascular diseases. JAMA. (2020) 324:2396–6. doi: 10.1001/jama.2020.23068</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2020.23068</ArticleId><ArticleId IdType="pmc">PMC7739139</ArticleId><ArticleId IdType="pubmed">33320224</ArticleId></ArticleIdList></Reference><Reference><Citation>Lespérance François, Frasure-Smith N, Talajic M. Major depression before and after myocardial infarction. Psychosomatic Med. (1996) 58:99–110. doi: 10.1097/00006842-199603000-00001</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/00006842-199603000-00001</ArticleId><ArticleId IdType="pubmed">8849624</ArticleId></ArticleIdList></Reference><Reference><Citation>Frasure-Smith N, Lespérance François, Talajic M. The impact of negative emotions on prognosis following myocardial infarction: Is it more than depression? Health Psychol. (1995) 14:388–98. doi: 10.1037/0278-6133.14.5.388</Citation><ArticleIdList><ArticleId IdType="doi">10.1037/0278-6133.14.5.388</ArticleId><ArticleId IdType="pubmed">7498109</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi AT, et al. . Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. (2015) 47:979–86. doi: 10.1038/ng.3359</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.3359</ArticleId><ArticleId IdType="pmc">PMC4881818</ArticleId><ArticleId IdType="pubmed">26192919</ArticleId></ArticleIdList></Reference><Reference><Citation>Virtamo J, Valkeila E, Alfthan G, Punsar S, Huttunen JK, Karvonen MJ, et al. . Serum selenium and the risk of coronary heart disease and stroke. Am J Epidemiol. (1985) 122:276–82. doi: 10.1093/oxfordjournals.aje.a114099</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/oxfordjournals.aje.a114099</ArticleId><ArticleId IdType="pubmed">4014210</ArticleId></ArticleIdList></Reference><Reference><Citation>Suadicani P, Hein HO, Gyntelberg F. Serum selenium concentration and risk of ischaemic heart disease in a prospective cohort study of 3000 males. Atherosclerosis. (1992) 96:33–42. doi: 10.1016/0021-9150(92)90035-f</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0021-9150(92)90035-f</ArticleId><ArticleId IdType="pubmed">1418100</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. (2015) 30:543–52. doi: 10.1007/s10654-015-0011-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10654-015-0011-z</ArticleId><ArticleId IdType="pmc">PMC4516908</ArticleId><ArticleId IdType="pubmed">25773750</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyv080</ArticleId><ArticleId IdType="pmc">PMC4469799</ArticleId><ArticleId IdType="pubmed">26050253</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Smith GD, Haycock P, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.21965</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gepi.21965</ArticleId><ArticleId IdType="pmc">PMC4849733</ArticleId><ArticleId IdType="pubmed">27061298</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartwig FP, Smith GD, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. (2017) 46:1985–98. doi: 10.1093/ije/dyx102</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyx102</ArticleId><ArticleId IdType="pmc">PMC5837715</ArticleId><ArticleId IdType="pubmed">29040600</ArticleId></ArticleIdList></Reference><Reference><Citation>Verbanck M, Chen CY, Neale BM, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. (2018) 50:693–8. doi: 10.1038/s41588-018-0099-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-018-0099-7</ArticleId><ArticleId IdType="pmc">PMC6083837</ArticleId><ArticleId IdType="pubmed">29686387</ArticleId></ArticleIdList></Reference><Reference><Citation>Jess T, Jensen BW, Andersson M, Villumsen M, Allin KH. Inflammatory bowel diseases increase risk of type 2 diabetes in a nationwide cohort study. Clin Gastroenterol Hepatol. (2020) 18:881–888.e1. doi: 10.1016/j.cgh.2019.07.052</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2019.07.052</ArticleId><ArticleId IdType="pubmed">31394285</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu X, Zhang Q, Meng Z, Gan H. Systematic review and meta-analysis of the association between inflammatory bowel disease and diabetes mellitus. Chin J Postgraduate Med. (2021) 44:748–54.</Citation></Reference><Reference><Citation>Kang ES, Han K, Chun J, Soh H, Park S, Im J, et al. . Increased risk of diabetes in inflammatory bowel disease patients: A nationwide population-based study in korea. J Clin Med. (2019) 8:343–3. doi: 10.3390/jcm8030343</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm8030343</ArticleId><ArticleId IdType="pmc">PMC6463263</ArticleId><ArticleId IdType="pubmed">30862129</ArticleId></ArticleIdList></Reference><Reference><Citation>Lai S-W, Kuo Y-H, Liao K-F. Association between inflammatory bowel disease and diabetes mellitus. Clin Gastroenterol Hepatol. (2020) 18:1002–3. doi: 10.1016/j.cgh.2019.09.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2019.09.016</ArticleId><ArticleId IdType="pubmed">32197704</ArticleId></ArticleIdList></Reference><Reference><Citation>Allin KH, Agrawal M, Iversen A, Antonsen J, Villumsen M, Jess T. The risk of type 2 diabetes in patients with inflammatory bowel disease after bowel resections: A nationwide cohort study. Gastro Hep Adv. (2022) 1:777–84. doi: 10.1016/j.gastha.2022.06.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gastha.2022.06.007</ArticleId><ArticleId IdType="pmc">PMC9481066</ArticleId><ArticleId IdType="pubmed">36117549</ArticleId></ArticleIdList></Reference><Reference><Citation>Jurjus A, Eid A, Kattar SAl, Zeenny MN, Gerges-Geagea AG, Haydar H, et al. . Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links. BBA Clin. (2016) 5:16–24. doi: 10.1016/j.bbacli.2015.11.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bbacli.2015.11.002</ArticleId><ArticleId IdType="pmc">PMC4802401</ArticleId><ArticleId IdType="pubmed">27051585</ArticleId></ArticleIdList></Reference><Reference><Citation>Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the dots between inflammatory bowel disease and metabolic syndrome: A focus on gut-derived metabolites. Nutrients. (2020) 12:1434–4. doi: 10.3390/nu12051434</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu12051434</ArticleId><ArticleId IdType="pmc">PMC7285036</ArticleId><ArticleId IdType="pubmed">32429195</ArticleId></ArticleIdList></Reference><Reference><Citation>Tseng CH. Metformin use is associated with a lower risk of inflammatory bowel disease in patients with type 2 diabetes mellitus. J Crohns Colitis. (2021) 15:64–73. doi: 10.1093/ecco-jcc/jjaa136</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ecco-jcc/jjaa136</ArticleId><ArticleId IdType="pubmed">32604412</ArticleId></ArticleIdList></Reference><Reference><Citation>Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. (2011) 122:253–70. doi: 10.1042/cs20110386</Citation><ArticleIdList><ArticleId IdType="doi">10.1042/cs20110386</ArticleId><ArticleId IdType="pmc">PMC3398862</ArticleId><ArticleId IdType="pubmed">22117616</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Dwairi A, Alqudah M, Al-Shboul O, Alfaqih MA, Alomari D. Metformin exerts anti−inflammatory effects on mouse colon smooth muscle cells in vitro. Exp Ther Med. (2018). doi: 10.3892/etm.2018.6222</Citation><ArticleIdList><ArticleId IdType="doi">10.3892/etm.2018.6222</ArticleId><ArticleId IdType="pmc">PMC6090284</ArticleId><ArticleId IdType="pubmed">30116349</ArticleId></ArticleIdList></Reference><Reference><Citation>Xue Y, Zhang H, Sun X, Zhu M-J. Metformin improves ileal epithelial barrier function in interleukin-10 deficient mice. PloS One. (2016) 11:e0168670. doi: 10.1371/journal.pone.0168670</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0168670</ArticleId><ArticleId IdType="pmc">PMC5176295</ArticleId><ArticleId IdType="pubmed">28002460</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng J, Zeng L, Lai X, Li J, Liu L, Lin Q, et al. . Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation. J Cell Mol Med. (2017) 22:546–57. doi: 10.1111/jcmm.13342</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jcmm.13342</ArticleId><ArticleId IdType="pmc">PMC5742676</ArticleId><ArticleId IdType="pubmed">29148173</ArticleId></ArticleIdList></Reference><Reference><Citation>Russo E, Giudici F, Fiorindi C, Ficari F, Scaringi S, Amedei AA, et al. . Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front Immunol. (2019) 10:2754. doi: 10.3389/fimmu.2019.02754</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2019.02754</ArticleId><ArticleId IdType="pmc">PMC6883404</ArticleId><ArticleId IdType="pubmed">31824517</ArticleId></ArticleIdList></Reference><Reference><Citation>Bian X, Wu W, Yang L, Lv LX, Wang Q, Li Y, et al. . Administration of akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol. (2019) 10:2259. doi: 10.3389/fmicb.2019.02259</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fmicb.2019.02259</ArticleId><ArticleId IdType="pmc">PMC6779789</ArticleId><ArticleId IdType="pubmed">31632373</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryan P, Patterson E, Carafa I, Mandal R, Wishart DS, Dinan TG, et al. . Metformin and dipeptidyl peptidase-4 inhibitor differentially modulate the intestinal microbiota and plasma metabolome of metabolically dysfunctional mice. Can J Diabetes. (2020) 44:146–155.e2. doi: 10.1016/j.jcjd.2019.05.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2019.05.008</ArticleId><ArticleId IdType="pubmed">31445961</ArticleId></ArticleIdList></Reference><Reference><Citation>Mccreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. (2016) 59:426–35. doi: 10.1007/s00125-015-3844-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-015-3844-9</ArticleId><ArticleId IdType="pmc">PMC4742508</ArticleId><ArticleId IdType="pubmed">26780750</ArticleId></ArticleIdList></Reference><Reference><Citation>Elahi D, Egan JM, Shannon RP, Meneilly GS, Khatri A, Habener JF, et al. . GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide. Obesity. (2008) 16:1501–9. doi: 10.1038/oby.2008.229</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/oby.2008.229</ArticleId><ArticleId IdType="pubmed">18421270</ArticleId></ArticleIdList></Reference><Reference><Citation>Müller T, Finan B, Bloom SR, D’Alessio DA, Drucker DJ, Flatt P, et al. . Glucagon-like peptide 1 (GLP-1). Mol Metab. (2019) 30:72–130. doi: 10.1016/j.molmet.2019.09.010</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.molmet.2019.09.010</ArticleId><ArticleId IdType="pmc">PMC6812410</ArticleId><ArticleId IdType="pubmed">31767182</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang W. Protective Effect and Mechanism of Glp-1 on Diabetes Mellitus Complicated With Chronic Colitis [D]. Changchun, Jilin Province, China: Jilin University; (2022).</Citation></Reference><Reference><Citation>Farghaly O. EXPERIMENTAL ULCERATIVE COLITIS: TGF-β AS A DIAGNOSTIC MARKER. Al-Azhar J Pharm Sci. (2020) 61:46–60. doi: 10.21608/ajps.2020.86014</Citation><ArticleIdList><ArticleId IdType="doi">10.21608/ajps.2020.86014</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang L. The Role and Potential Therapeutic Mechanisms of Irisin in UC Mice. Kaifeng, Henan Province, China: Henan University; (2019).</Citation></Reference><Reference><Citation>Novelle MG, Contreras C, Romero-Picó A, López M, Diéguez C. Irisin, two years later. Int J Endocrinol. (2013) 2013:1–8. doi: 10.1155/2013/746281</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/746281</ArticleId><ArticleId IdType="pmc">PMC3835481</ArticleId><ArticleId IdType="pubmed">24298283</ArticleId></ArticleIdList></Reference><Reference><Citation>Polyzos SA, Anastasilakis AD, Geladari E, Mantzoros CS. Irisin in patients with nonalcoholic fatty liver disease. Metabolism-clinical Exp. (2014) 63:207–17. doi: 10.1016/j.metabol.2013.09.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2013.09.013</ArticleId><ArticleId IdType="pubmed">24140091</ArticleId></ArticleIdList></Reference><Reference><Citation>Dulian K, Laskowski Radosław, Grzywacz T, Kujach S, Flis DJ, Smaruj M, et al. . The whole body cryostimulation modifies irisin concentration and reduces inflammation in middle aged, obese men. Cryobiology. (2015) 71:398–404. doi: 10.1016/j.cryobiol.2015.10.143</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cryobiol.2015.10.143</ArticleId><ArticleId IdType="pubmed">26475491</ArticleId></ArticleIdList></Reference><Reference><Citation>Lima Mágero FR, Vasconcellos LF, Frazão L, Bandeira F. Irisin precursor FNDC5 and glycemic control in patients with type 2 diabetes. J Endocrine Soc. (2021). doi: 10.1210/jendso/bvab048.963</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jendso/bvab048.963</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Q. Relationship between transforming growth factor beta 1 and peripheral neuropathy in type 2 diabetic. Beijing Med J. (2013).</Citation></Reference><Reference><Citation>John P, Yadla M. Noninvasive method of differentiating diabetic nephropathy and nondiabetic renal disease using serum bone morphogenetic protein-7 and transforming growth factor-beta 1 levels in patients with type-2 diabetes mellitus. Saudi J Kidney Dis Transplant. (2019) 30:1300–0. doi: 10.4103/1319-2442.275474</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/1319-2442.275474</ArticleId><ArticleId IdType="pubmed">31929277</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39649227</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>A scoping review of type 2 diabetes mellitus in Pakistan investigating the status of glycemic control, awareness, treatment adherence, complications and cost.</ArticleTitle><Pagination><StartPage>1441591</StartPage><MedlinePgn>1441591</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1441591</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1441591</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">The high prevalence of Type 2 diabetes mellitus(T2DM) in Pakistan is a challenge to the existing healthcare system. This is the first comprehensive review of the status of glycemic control, diabetes knowledge, treatment adherence, complications and financial burden faced by the diabetic patient population of the country.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">We searched PubMed, Web of Science and Scopus for studies on diabetes control, knowledge, treatment adherence, prevalence of complications and cost in Pakistan published in English from 2000 to 2024. We hand-searched Google Scholar for additional papers and included a total of 45 studies in our review.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The review shows that poor glycemic control prevails among diabetic patients ranging from 44.7% to 86.4% along with half of the patients have poor diabetes knowledge (46.0% -70.0%). Treatment adherence level in diabetic patients varies widely in different studies, frequently reported complications are retinopathy (14.5%-43.0%), nephropathy (14.0%-31.0%) and neuropathy (10.8%-59.6%); and the disease poses a great deal of economic burden.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Most of the studies were observational. Glycemic control and knowledge among individuals with T2DM in Pakistan are inadequate, leading to a high prevalence of complications that impose significant health and economic burdens. Further longitudinal studies generating evidence of lifestyle modifications as primary and secondary prevention strategies against diabetes in the Pakistani population can form a strong foundation for awareness campaigns and policy revisions.</AbstractText><CopyrightInformation>Copyright © 2024 Taimur, Ahmad, Khan, Shirayama, Okamoto, Aung, Shabbir and Yuasa.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Taimur</LastName><ForeName>Hira</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmad</LastName><ForeName>Ishtiaq</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khan</LastName><ForeName>Hamza</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shirayama</LastName><ForeName>Yoshihisa</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Okamoto</LastName><ForeName>Miyoko</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aung</LastName><ForeName>Myo Nyein</ForeName><Initials>MN</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Advanced Research Institute for Health Sciences, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shabbir</LastName><ForeName>Sameera</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Central Campus, International Higher School of Medicine, Bishkek, Kyrgyzstan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yuasa</LastName><ForeName>Motoyuki</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Global Health Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007722" MajorTopicYN="N">Health Knowledge, Attitudes, Practice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D048909" MajorTopicYN="N">Diabetes Complications</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000074822" MajorTopicYN="N">Treatment Adherence and Compliance</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017048" MajorTopicYN="N">Health Care Costs</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Pakistan</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">awareness</Keyword><Keyword MajorTopicYN="N">complications</Keyword><Keyword MajorTopicYN="N">cost</Keyword><Keyword MajorTopicYN="N">glycemic control</Keyword><Keyword MajorTopicYN="N">medication adherence</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>11</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>5</Hour><Minute>58</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39649227</ArticleId><ArticleId IdType="pmc">PMC11621625</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1441591</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: A global systematic review. Pharmacoeconomics. (2015) 33:811–31. doi: 10.1007/s40273-015-0268-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40273-015-0268-9</ArticleId><ArticleId IdType="pmc">PMC4519633</ArticleId><ArticleId IdType="pubmed">25787932</ArticleId></ArticleIdList></Reference><Reference><Citation> -Diabetes_WHO (2023). Available online at: https://www.who.int/news-room/fact-sheets/detail/diabetes. (accessed March 18, 2024)</Citation></Reference><Reference><Citation> -International diabetes federation (2024). Available online at: https://diabetesatlas.org/. (accessed April 22, 2024)</Citation></Reference><Reference><Citation>Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. (2010) 87:293–301. doi: 10.1016/j.diabres.2010.01.026</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2010.01.026</ArticleId><ArticleId IdType="pubmed">20171754</ArticleId></ArticleIdList></Reference><Reference><Citation>Hills AP, Arena R, Khunti K, Yajnik CS, Jayawardena R, Henry CJ. Epidemiology and determinants of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol. (2018) 6:966–78. doi: 10.1016/s2213-8587(18)30204-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2213-8587(18)30204-3</ArticleId><ArticleId IdType="pubmed">30287102</ArticleId></ArticleIdList></Reference><Reference><Citation>Abdul B, Asher F, Qureshi H, Shera AS. Prevalence of diabetes, pre-diabetes and associated risk factors: second National Diabetes Survey of Pakistan (NDSP), 2016–2017. BMJ Open. (2018) 8:e020961. doi: 10.1136/bmjopen-2017-020961</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2017-020961</ArticleId><ArticleId IdType="pmc">PMC6078264</ArticleId><ArticleId IdType="pubmed">30082350</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. . IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhutta ZA, Haq ZU, Basit A. Diabetes in Pakistan: addressing the crisis. Lancet. (2022) 10:309–10. doi: 10.1016/S2213-8587(22)00102-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(22)00102-4</ArticleId><ArticleId IdType="pubmed">35358429</ArticleId></ArticleIdList></Reference><Reference><Citation>Rafique I, Saqib MAN, Munir MA, Qureshi H, Rizwanullah KSA, Khan SA, et al. . Prevalence of risk factors for noncommunicable diseases in adults: key findings from the Pakistan STEPS survey. East Mediterr Health J. (2018) 24:33–41. doi: 10.26719/2018.24.1.33</Citation><ArticleIdList><ArticleId IdType="doi">10.26719/2018.24.1.33</ArticleId><ArticleId IdType="pubmed">29658619</ArticleId></ArticleIdList></Reference><Reference><Citation>Hall JN, Moore S, Harper SB, Lynch JW. Global variability in fruit and vegetable consumption. Am J Prev Med. (2009) 36:402–409.e5. doi: 10.1016/j.amepre.2009.01.029</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2009.01.029</ArticleId><ArticleId IdType="pubmed">19362694</ArticleId></ArticleIdList></Reference><Reference><Citation>Funnell MM, Brown TL, Childs BP, Haas LB, Hosey GM, Jensen B, et al. . National standards for diabetes self-management education. Diabetes Care. (2007) 30:1630–7. doi: 10.2337/dc07-9923</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc07-9923</ArticleId><ArticleId IdType="pubmed">17526822</ArticleId></ArticleIdList></Reference><Reference><Citation>Krapek K, King K, Warren SS, George KG, Caputo DA, Mihelich K, et al. . Medication adherence and associated hemoglobin A1c in type 2 diabetes. Ann Pharmacother. (2004) 38:1357–62. doi: 10.1345/aph.1D612</Citation><ArticleIdList><ArticleId IdType="doi">10.1345/aph.1D612</ArticleId><ArticleId IdType="pubmed">15238621</ArticleId></ArticleIdList></Reference><Reference><Citation>Rhee MK, Slocum W, Ziemer DC, Culler SD, Cook CB, El-Kebbi IM. Patient adherence improves glycemic control. Diabetes Educ. (2005) 31:240–50. doi: 10.1177/0145721705274927</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721705274927</ArticleId><ArticleId IdType="pubmed">15797853</ArticleId></ArticleIdList></Reference><Reference><Citation>Simpson SH, Eurich DT, Majumdar SR, Padwal RS, Tsuyuki RT, Varney J, et al. . A meta-analysis of the association between adherence to drug therapy and mortality. Bmj. (2006) 333:15. doi: 10.1136/bmj.38875.675486.55</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.38875.675486.55</ArticleId><ArticleId IdType="pmc">PMC1488752</ArticleId><ArticleId IdType="pubmed">16790458</ArticleId></ArticleIdList></Reference><Reference><Citation>Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med. (2010) 123:S3–S11. doi: 10.1016/j.amjmed.2009.12.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjmed.2009.12.004</ArticleId><ArticleId IdType="pubmed">20206730</ArticleId></ArticleIdList></Reference><Reference><Citation>Gaster B, Hirsch IB. The effects of improved glycemic control on complications in type 2 diabetes. Arch Internal Med. (1998) 158:134–40. doi: 10.1001/archinte.158.2.134</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinte.158.2.134</ArticleId><ArticleId IdType="pubmed">9448551</ArticleId></ArticleIdList></Reference><Reference><Citation>Monami M, Candido R, Pintaudi B, Targher G, Mannucci E. Improvement of glycemic control in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrition Metab Cardiovasc Dis. (2021) 31:2539–46. doi: 10.1016/j.numecd.2021.05.010</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2021.05.010</ArticleId><ArticleId IdType="pubmed">34158243</ArticleId></ArticleIdList></Reference><Reference><Citation>Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implementation Sci. (2010) 5:1–9. doi: 10.1186/1748-5908-5-69</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1748-5908-5-69</ArticleId><ArticleId IdType="pmc">PMC2954944</ArticleId><ArticleId IdType="pubmed">20854677</ArticleId></ArticleIdList></Reference><Reference><Citation>Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. . PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Internal Med. (2018) 169:467–73. doi: 10.7326/M18-0850</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/M18-0850</ArticleId><ArticleId IdType="pubmed">30178033</ArticleId></ArticleIdList></Reference><Reference><Citation>Atif M, Saleem Q, Asghar S, Malik I, Ahmad N. Extent and predictors of poor glycaemic control among elderly Pakistani patients with type 2 diabetes mellitus: A multi-centre cross-sectional study. Medicina. (2019) 55:21. doi: 10.3390/medicina55010021</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/medicina55010021</ArticleId><ArticleId IdType="pmc">PMC6358768</ArticleId><ArticleId IdType="pubmed">30658518</ArticleId></ArticleIdList></Reference><Reference><Citation>Khowaja MA, Rozi S, Sawani S, Ahmed A. Factors associated with Diabetes Empowerment among patients with type 2 diabetes, at OPD setting, Karachi, Pakistan. Sci Rep. (2023) 13:7165. doi: 10.1038/s41598-023-34385-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-023-34385-4</ArticleId><ArticleId IdType="pmc">PMC10156749</ArticleId><ArticleId IdType="pubmed">37137962</ArticleId></ArticleIdList></Reference><Reference><Citation>Hai AA, Iftikhar S, Latif S, Herekar F, Patel MJ. Diabetes self-care activities and their relation with glycemic control in patients presenting to The Indus Hospital, Karachi. Cureus. (2019) 11:2377–385. doi: 10.7759/cureus.6297</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.6297</ArticleId><ArticleId IdType="pmc">PMC6942497</ArticleId><ArticleId IdType="pubmed">31938590</ArticleId></ArticleIdList></Reference><Reference><Citation>Farooque R, Herekar F, Iftikhar S, Patel MJ. The frequency of poor sleep quality in patients with diabetes mellitus and its association with glycemic control. Cureus. (2020) 12. doi: 10.7759/cureus.11608</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.11608</ArticleId><ArticleId IdType="pmc">PMC7752787</ArticleId><ArticleId IdType="pubmed">33364126</ArticleId></ArticleIdList></Reference><Reference><Citation>Bukhsh A, Khan TM, Nawaz MS, Ahmed HS, Chan KG, Lee LH, et al. . Association of diabetes-related self-care activities with glycemic control of patients with type 2 diabetes in Pakistan. Patient preference adherence. (2018) 12:2377–85. doi: 10.2147/PPA.S177314</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/PPA.S177314</ArticleId><ArticleId IdType="pmc">PMC6235006</ArticleId><ArticleId IdType="pubmed">30519003</ArticleId></ArticleIdList></Reference><Reference><Citation>Sayeed KA, Qayyum A, Jamshed F, Gill U, Usama SM, Asghar K. Impact of diabetes-related self-management on glycemic control in type II diabetes mellitus. Cureus. (2020) 12. doi: 10.7759/cureus.7845</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.7845</ArticleId><ArticleId IdType="pmc">PMC7253072</ArticleId><ArticleId IdType="pubmed">32483496</ArticleId></ArticleIdList></Reference><Reference><Citation>Arshad R, Iqbal S, Sarwar U, Amir M, Waqar S, Naqvi ASA H. Effect of obesity, socioeconomic status and gender on glycemic control in diabetic patients. Rawal Med J. (2023) 48:651–1.</Citation></Reference><Reference><Citation>Fawwad A, Mustafa N, Zafar AB, Khalid M. Incidence of microvascular complications of type 2 diabetes: A 12 year longitudinal study from Karachi-Pakistan. Pak J Med Sci. (2018) 34:1058–63. doi: 10.12669/pjms.345.15224</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.345.15224</ArticleId><ArticleId IdType="pmc">PMC6191805</ArticleId><ArticleId IdType="pubmed">30344550</ArticleId></ArticleIdList></Reference><Reference><Citation>Jawad N, Naveed S, Ali Z, Jafri S, Ahmad SM, Baloch Qutrio ZA. anthropometry and diabetic control in Pakistan. Indo Am J Of Pharm Sci. (2017) 4:3722–8. doi: 10.5281/zenodo.1036563</Citation><ArticleIdList><ArticleId IdType="doi">10.5281/zenodo.1036563</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhter J, Ahmed A, Mawani M, Lakhani L, Kalsekar A, Tabassum S, et al. . Patterns, control and complications of diabetes from a hospital based registry established in a low income country. BMC Endocrine Disord. (2017) 17:30. doi: 10.1186/s12902-017-0179-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-017-0179-1</ArticleId><ArticleId IdType="pmc">PMC5460467</ArticleId><ArticleId IdType="pubmed">28583113</ArticleId></ArticleIdList></Reference><Reference><Citation> -Athar MH, Nisar S, Zubair U, Bin Mumtaz H. Impact of general education status on glycemic control in patients of diabetes mellitus. Pakistan Armed Forces Med J. (2020) 70:S26–30. https://pafmj.org/PAFMJ/article/view/3788.</Citation></Reference><Reference><Citation>Noor A, Rahman MU, Faraz N, Samin KA, Ullah H, Ali A. Relationship of homocysteine with gender, blood pressure, body mass index, hemoglobin A1c, and the duration of diabetes mellitus type 2. Cureus. (2021) 13:e19211. doi: 10.7759/cureus.19211</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.19211</ArticleId><ArticleId IdType="pmc">PMC8642136</ArticleId><ArticleId IdType="pubmed">34877198</ArticleId></ArticleIdList></Reference><Reference><Citation> -Khan AU, Khan MZA, Nadeem M, Bangash RY, Fakhr A. Status of glycemic control in patients of type 2 diabetes mellitus. Pakistan Armed Forces Med J. (2013) 63:275–8. https://pafmj.org/PAFMJ/article/view/2272.</Citation></Reference><Reference><Citation>Aziz A, Ali SA. Compliance of checking HbA1c in a tertiary care hospital of Pakistan. Pakistan J Med Sci. (2021) 37:142. doi: 10.12669/pjms.37.1.2814</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.37.1.2814</ArticleId><ArticleId IdType="pmc">PMC7794143</ArticleId><ArticleId IdType="pubmed">33437266</ArticleId></ArticleIdList></Reference><Reference><Citation>Basit A, Hydrie MZI, Hakeem R, Ahmedani MY, Masood Q. Frequency of chronic complications of type 2 diabetes. J Coll Physicians Surg Pak. (2004) 14:79–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">15228868</ArticleId></ArticleIdList></Reference><Reference><Citation>Siddiqui FJ, Avan BI, Mahmud S, Nanan DJ, Jabbar A, Assam PN. Uncontrolled diabetes mellitus: prevalence and risk factors among people with type 2 diabetes mellitus in an Urban District of Karachi, Pakistan. Diabetes Res Clin Pract. (2015) 107:148–56. doi: 10.1016/j.diabres.2014.09.025</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2014.09.025</ArticleId><ArticleId IdType="pubmed">25451895</ArticleId></ArticleIdList></Reference><Reference><Citation>Shera AS, Jawad F, Maqsood A, Jamal S, Azfar M, Ahmed U. Prevalence of chronic complications and associated factors in type 2 diabetes. J Pak Med Assoc. (2004) 54:54–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">15134204</ArticleId></ArticleIdList></Reference><Reference><Citation>Sultana R, Mughal UUR, Ghoto MA, Muhammad S, Abbas J, Laghari SH. Awareness and Lifestyle Practices among Type-II Diabetics Pertaining to the Disease Attended at Outpatient Clinics of Nawabshah, Shaheed Benazirabad. J Pharm Res Int. (2021) 33:67–75. doi: 10.9734/jpri/2021/v33i29A31565</Citation><ArticleIdList><ArticleId IdType="doi">10.9734/jpri/2021/v33i29A31565</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramzan B, Hassali A, Hashmi F, Saleem F, Gardezi S, Hussain I, et al. . Impact of diabetes-related knowledge and medication adherence on quality of life among type 2 diabetes patients in a tertiary health facility in Multan, Pakistan. Trop J Pharm Res. (2022) 21:871–7. doi: 10.4314/tjpr.v21i4.26</Citation><ArticleIdList><ArticleId IdType="doi">10.4314/tjpr.v21i4.26</ArticleId></ArticleIdList></Reference><Reference><Citation>Iqbal Q, ul Haq N, Bashir S, Bashaar M. Profile and predictors of health related quality of life among type II diabetes mellitus patients in Quetta city, Pakistan. Health Qual Life Outcomes. (2017) 15:142. doi: 10.1186/s12955-017-0717-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12955-017-0717-6</ArticleId><ArticleId IdType="pmc">PMC5512812</ArticleId><ArticleId IdType="pubmed">28709437</ArticleId></ArticleIdList></Reference><Reference><Citation> -Khan A, Farooq A, Arshad AR, Rashid S. Awareness regarding diabetes and its management amongst patients visiting tertiary care hospitals and its impact on glycemic control. Pakistan Armed Forces Med J. (2021) 71:1815–19. https://pafmj.org/PAFMJ/article/view/2998.</Citation></Reference><Reference><Citation>Shams N, Amjad S, Seetlani NK, Ahmed W. Diabetes knowledge in elderly type 2 diabetes mellitus patients and association with glycemic control. J Liaquat Univ Med Health Sci. (2016) 15:71–7. doi: 10.22442/jlumhs.161520468</Citation><ArticleIdList><ArticleId IdType="doi">10.22442/jlumhs.161520468</ArticleId></ArticleIdList></Reference><Reference><Citation>Uthman M, Ullah Z, Shah NU. Knowledge, attitude and practice (KAP) survey of type 2 diabetes mellitus. Age (years). (2015) 9:351–5.</Citation></Reference><Reference><Citation>Anwer I, Shahzad M, Ijaz N, Gill SI, Shahzad A, Usman M. Awareness and understanding of diabetes complications among patients of diabetes mellitus. Age (years). (2022) 14:266. doi: 10.53350/pjmhs2216192</Citation><ArticleIdList><ArticleId IdType="doi">10.53350/pjmhs2216192</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar A, Shaikh ZA, Prithian SL, Shaikh BA, Ansari IA, Hyder I. Knowledge of Hypoglycemic Symptoms and their Self-Management among patients with Type II Diabetes Mellitus. Pakistan J Health Med Sci. (2021) 15:2961–2. doi: 10.53350/pjmhs2115112961</Citation><ArticleIdList><ArticleId IdType="doi">10.53350/pjmhs2115112961</ArticleId></ArticleIdList></Reference><Reference><Citation>Butt MD, Ong SC, Rafiq A, Malik T, Sajjad A, Batool N, et al. . An observational multi-center study on type 2 diabetes treatment prescribing pattern and patient adherence to treatment. Sci Rep. (2023) 13:23037. doi: 10.1038/s41598-023-50517-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-023-50517-2</ArticleId><ArticleId IdType="pmc">PMC10754831</ArticleId><ArticleId IdType="pubmed">38155289</ArticleId></ArticleIdList></Reference><Reference><Citation>Nazir SUR, Hassali MA, Saleem F, Bashir S, Aljadhey H. Disease related knowledge, medication adherence and glycaemic control among patients with type 2 diabetes mellitus in Pakistan. Primary Care Diabetes. (2016) 10:136–41. doi: 10.1016/j.pcd.2015.09.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2015.09.004</ArticleId><ArticleId IdType="pubmed">26476867</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarwar H, Dayo A, Ghoto MA, Ishaq H, Baloch N, Memmon N, et al. . Adherence with prescribed medications among diabetes mellitus II patients. Int J Pharm Sci Rev Res. (2014) 24:246–52.</Citation></Reference><Reference><Citation>Beg BM, Khan H, Hasan D, Izhar Z, Amin U, Areej S. Evaluation of medication adherence among diabetics: a cross-sectional study in Lahore, Punjab, Pakistan. Independent J Allied Health Sci. (2018) 1:27–32.</Citation></Reference><Reference><Citation>Shams N, Amjad S, Seetlani NK, Niaz F, Farhat S, Bashir F. Geriatric Type 2 diabetes; the risk factors and associations for medication non-adherence. Prof Med J. (2020) 27:260–7. doi: 10.29309/TPMJ/2020.27.02.3300</Citation><ArticleIdList><ArticleId IdType="doi">10.29309/TPMJ/2020.27.02.3300</ArticleId></ArticleIdList></Reference><Reference><Citation>Iqbal SP, Farid R, Arshad A. Noncompliance to treatment and its associated factors among patients with diabetes mellitus in karachi. J Shalamar Med Dental College-JSHMDC. (2023) 4:104–10. doi: 10.53685/jshmdc.v4i2.189</Citation><ArticleIdList><ArticleId IdType="doi">10.53685/jshmdc.v4i2.189</ArticleId></ArticleIdList></Reference><Reference><Citation>Abro M, Zafar AB, Fawwad A, Mustafa N, Tahir B, Riaz M, et al. . Prevalence of diabetic micro vascular complications at a tertiary care unit of Karachi, Pakistan. Int J Diabetes Developing Countries. (2019) 39:325–30. doi: 10.1007/s13410-018-0683-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13410-018-0683-5</ArticleId></ArticleIdList></Reference><Reference><Citation>Zia A, Bhatti A, Jalil F, Wang X, John P, Kiani AK, et al. . Prevalence of type 2 diabetes–associated complications in Pakistan. Int J Diabetes Developing Countries. (2016) 36:179–88. doi: 10.1007/s13410-015-0380-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13410-015-0380-6</ArticleId></ArticleIdList></Reference><Reference><Citation>Asghar S, Shahid S, Fatima M, Bukhari SMH, Siddiqui SN. Metabolic syndrome in type 2 diabetes mellitus patients: prevalence, risk factors, and associated microvascular complications. Cureus. (2023) 15. doi: 10.77592/cureus.39076</Citation><ArticleIdList><ArticleId IdType="doi">10.77592/cureus.39076</ArticleId><ArticleId IdType="pmc">PMC10268561</ArticleId><ArticleId IdType="pubmed">37323312</ArticleId></ArticleIdList></Reference><Reference><Citation>Uddin F, Ali B, Junaid N. Prevalence of diabetic complications in newly diagnosed type 2 diabetes patients in Pakistan: findings from national registry. J Ayub Med Coll Abbottabad. (2019) 30:652–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30838825</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharif S, Raza MT, Mushtaq S, Afreen B, Hashmi BA, Ali MH, et al. . Frequency of depression in patients with type 2 diabetes mellitus and its relationship with glycemic control and diabetic microvascular complications. Cureus. (2019) 11. doi: 10.77592/cureus.5145</Citation><ArticleIdList><ArticleId IdType="doi">10.77592/cureus.5145</ArticleId><ArticleId IdType="pmc">PMC6741377</ArticleId><ArticleId IdType="pubmed">31523573</ArticleId></ArticleIdList></Reference><Reference><Citation>Akhtar MS, Rafique S, Akhtar MS, Irfan HM. Prevalence of diabetic complications in an urban district of Jhang (Punjab) Pakistan. Can J App Sci. (2011) 1:43–9. doi: 10.21065/19257430.43.1</Citation><ArticleIdList><ArticleId IdType="doi">10.21065/19257430.43.1</ArticleId></ArticleIdList></Reference><Reference><Citation>Wahab S, Mahmood N, Shaikh Z, Kazmi WH. Frequency of retinopathy in newly diagnosed type 2 diabetes patients. JPMA. J Pakistan Med Assoc. (2008) 58:557–61.</Citation><ArticleIdList><ArticleId IdType="pubmed">18998309</ArticleId></ArticleIdList></Reference><Reference><Citation> -Khan KA, Kamran SM, Qureshi MN, Jamal Y. Frequency of retinopathy in newly diagnosed patients of type 2 diabetes mellitus (DM): retinopathy in type 2 DM. Pakistan Armed Forces Med J. (2015) 65:63–7. https://pafmj.org/PAFMJ/article/view/671.</Citation></Reference><Reference><Citation>Hussain S, Qamar MR, Iqbal MA, Ahmad A, Ullah E. Risk factors of retinopathy in type 2 diabetes mellitus at a tertiary care hospital, Bahawalpur Pakistan. Pak J Med Sci. (2013) 29:536–9. doi: 10.12669/pjms.292.3066</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.292.3066</ArticleId><ArticleId IdType="pmc">PMC3809270</ArticleId><ArticleId IdType="pubmed">24353572</ArticleId></ArticleIdList></Reference><Reference><Citation>TAHIR MM, Chachar AZK, Haider M, Shamim A, Asif M, Ali S. Frequency of peripheral neuropathy in newly diagnosed type 2 diabetes presenting in a tertiary care hospital of lahore. Pakistan Journal of Medical and Health Sciences (2021) 15(7):1676–79. doi: 10.53350/pjmhs211571676</Citation><ArticleIdList><ArticleId IdType="doi">10.53350/pjmhs211571676</ArticleId></ArticleIdList></Reference><Reference><Citation>Khowaja LA, Khuwaja AK, Cosgrove P. Cost of diabetes care in out-patient clinics of Karachi, Pakistan. BMC Health Serv Res. (2007) 7:189. doi: 10.1186/1472-6963-7-189</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1472-6963-7-189</ArticleId><ArticleId IdType="pmc">PMC2206019</ArticleId><ArticleId IdType="pubmed">18028552</ArticleId></ArticleIdList></Reference><Reference><Citation>Datta BK, Muhammad Jami H, Asma S. Assessing the relationship between out-of-pocket spending on blood pressure and diabetes medication and household catastrophic health expenditure: evidence from Pakistan. Int J Equity Health. (2019) 18. doi: 10.1186/s12939-018-0906-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12939-018-0906-x</ArticleId><ArticleId IdType="pmc">PMC6334430</ArticleId><ArticleId IdType="pubmed">30646905</ArticleId></ArticleIdList></Reference><Reference><Citation>Hussain M, Naqvi SBS, Khan MA, Rizvi M, Alam S, Abbas A, et al. . Direct cost of treatment of diabetes mellitus type 2 in Pakistan. Int J Pharm Pharm Sci. (2014) 6:261–4.</Citation></Reference><Reference><Citation>Khalid AS, Azwa Q, Fatima J, Usman G, Syed MU, Kanza A, et al. . Impact of diabetes-related self-management on glycemic control in type II diabetes mellitus. Cereus. (2020) 4. doi: 10.7759/cureus.7845</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.7845</ArticleId><ArticleId IdType="pmc">PMC7253072</ArticleId><ArticleId IdType="pubmed">32483496</ArticleId></ArticleIdList></Reference><Reference><Citation>Anwer I, Shahzad M, Ijaz N, Iqbal Gill SI, Shahzad A, Usman M, et al. . Awareness and understanding of diabetes complications among patients of diabetes Mellitus. Pak J Med Health Sci. (2021) 14:92–5. doi: 10.53350/pjmhs2216192</Citation><ArticleIdList><ArticleId IdType="doi">10.53350/pjmhs2216192</ArticleId></ArticleIdList></Reference><Reference><Citation>Nadia S, Sadia A, Kumar SN, Furquana N, Shahzia F, Farhat B. Geriatric Type 2 diabetes; the risk factors and associations for medication non-adherence. Professional Med J. (2020) 27:260–7. doi: 10.29309/TPMJ/2020.27.02.3300</Citation><ArticleIdList><ArticleId IdType="doi">10.29309/TPMJ/2020.27.02.3300</ArticleId></ArticleIdList></Reference><Reference><Citation>Fareed U, Beena A, Nabeea J. Prevalence of diabetic complications in newly diagnosed type 2 diabetes patients in Pakistan: findings from national registry. J Ayub Med Coll Abbottabad. (2018) 30:652-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30838825</ArticleId></ArticleIdList></Reference><Reference><Citation>Butt MD, Ong SC, Wahab MU, Rasool MF, Saleem F, Hashmi A, et al. . Cost of illness analysis of type 2 diabetes mellitus: the findings from a lower-middle income country. Int J Environ Res Public Health. (2022) 19:12611. doi: 10.3390/ijerph191912611</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph191912611</ArticleId><ArticleId IdType="pmc">PMC9566593</ArticleId><ArticleId IdType="pubmed">36231911</ArticleId></ArticleIdList></Reference><Reference><Citation>World Bank data . Diabetes-WHO, IDF atlas, Pakistan Diabetes Prevention Program (PakDPP), Agha Khan University; (2021).</Citation></Reference><Reference><Citation>Rahman M, Nakamura K, Hasan SM M, Seino K, Mostofa G. Mediators of the association between low socioeconomic status and poor glycemic control among type 2 diabetics in Bangladesh. Sci Rep. (2020) 10:6690. doi: 10.1038/s41598-020-63253-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-63253-8</ArticleId><ArticleId IdType="pmc">PMC7174358</ArticleId><ArticleId IdType="pubmed">32317650</ArticleId></ArticleIdList></Reference><Reference><Citation>Tanzil S, Jamali T. Obesity, an emerging epidemic in Pakistan-a review of evidence. J Ayub Med Coll Abbottabad. (2016) 28:597–600.</Citation><ArticleIdList><ArticleId IdType="pubmed">28712244</ArticleId></ArticleIdList></Reference><Reference><Citation>Mehboob B, Safdar NF, Zaheer S. Socio-economic, environmental and demographic determinants of rise in obesity among Pakistani women: a systematic review. J Pak Med Assoc. (2016) 66:1165–72.</Citation><ArticleIdList><ArticleId IdType="pubmed">27654739</ArticleId></ArticleIdList></Reference><Reference><Citation>Aschner P, Galstyan G, Yavuz DG, Litwak L, Gonzalez-Galvez G, Goldberg-Eliaschewitz F, et al. . Glycemic control and prevention of diabetic complications in low-and middle-income countries: an expert opinion. Diabetes Ther. (2021) 12:1491–501. doi: 10.1007/s13300-021-00997-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-021-00997-0</ArticleId><ArticleId IdType="pmc">PMC8099945</ArticleId><ArticleId IdType="pubmed">33840067</ArticleId></ArticleIdList></Reference><Reference><Citation>Borgharkar SS, Das SS. Real-world evidence of glycemic control among patients with type 2 diabetes mellitus in India: the TIGHT study. BMJ Open Diabetes Res Care. (2019) 7:e000654. doi: 10.1136/bmjdrc-2019-000654</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2019-000654</ArticleId><ArticleId IdType="pmc">PMC6673766</ArticleId><ArticleId IdType="pubmed">31413840</ArticleId></ArticleIdList></Reference><Reference><Citation> -Aga Khan University Hospital . Patient education material. In: The Aga Khan University Hospital offers a wide range of information and education materials for patients on various diseases and conditions. These are designed to help patients better manage and understand their disease (2024) (Karachi, Pakistan: Agha Khan University Hospital.). Available at: https://hospitals.aku.edu/Pakistan/patients-families/Pages/Patient%20Educational%20Material.aspx.</Citation></Reference><Reference><Citation>Sharma T, Kalra J, Dhasmana D, Basera H. Poor adherence to treatment: A major challenge in diabetes. Age (Yrs). (2014) 15:26–9.</Citation></Reference><Reference><Citation>Medi RK, Mateti UV, Kanduri KR, Konda SS. Medication adherence and determinants of non-adherence among south Indian diabetes patients. J Soc Health Diabetes. (2015) 3:048–51. doi: 10.4103/2321-0656.140892</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/2321-0656.140892</ArticleId></ArticleIdList></Reference><Reference><Citation>Afroz A, Alam K, Hossain MN, Biswas A, Ali L, Magliano DJ, et al. . Burden of macro- and micro-vascular complications of type 2 diabetes in Bangladesh. Diabetes Metab Syndrome: Clin Res Rev. (2019) 13:1615–22. doi: 10.1016/j.dsx.2019.03.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2019.03.001</ArticleId><ArticleId IdType="pubmed">31336530</ArticleId></ArticleIdList></Reference><Reference><Citation>Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol. (2016) 12:357–70. doi: 10.1038/nrendo.2016.53</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2016.53</ArticleId><ArticleId IdType="pubmed">27080137</ArticleId></ArticleIdList></Reference><Reference><Citation>Mishra S, Pant B, Subedi P. The prevalence of diabetic retinopathy among known diabetic population in Nepal. Kathmandu Univ Med J. (2016) 14:134–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">28166069</ArticleId></ArticleIdList></Reference><Reference><Citation>Oberoi S, Kansra P. Economic menace of diabetes in India: a systematic review. Int J Diabetes developing countries. (2020) 40:464–75. doi: 10.1007/s13410-020-00838-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13410-020-00838-z</ArticleId><ArticleId IdType="pmc">PMC7299136</ArticleId><ArticleId IdType="pubmed">32837090</ArticleId></ArticleIdList></Reference><Reference><Citation>Basit A, Fawwad A, Baqa K. Diabetes registry of Pakistan. Pak J Med Sci. (2020) 36:578–80. doi: 10.12669/pjms.36.3.1877</Citation><ArticleIdList><ArticleId IdType="doi">10.12669/pjms.36.3.1877</ArticleId><ArticleId IdType="pmc">PMC7150381</ArticleId><ArticleId IdType="pubmed">32292475</ArticleId></ArticleIdList></Reference><Reference><Citation> -National association of diabetes educators of Pakistan (2024). Available online at: https://www.nadep.org.pk/About.html. (accessed February 2, 2024)</Citation></Reference><Reference><Citation> -Pakistan diabetes prevention (2024). Available online at: https://pakdpp.org.pk/prevention/. (accessed February 2, 2024)</Citation></Reference><Reference><Citation>Hafeez A, Mohamud BK, Shiekh MR, Shah SAI, Jooma R. Lady health workers programme in Pakistan: challenges, achievements and the way forward. JPMA. J Pakistan Med Assoc. (2011) 61:210–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">21465929</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39649224</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>The harmful effect of ankylosing spondylitis on diabetes mellitus: new evidence from the Mendelian randomization analysis.</ArticleTitle><Pagination><StartPage>1369466</StartPage><MedlinePgn>1369466</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1369466</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1369466</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">While observational research has highlighted a possible link between ankylosing spondylitis (AS) and type 2 diabetes (T2DM), the quality of evidence remains limited, and the causal relationship is yet to be established. This study aims to explore the causal link between AS and T2DM, as well as its impact on traits related to glucose metabolism.</AbstractText><AbstractText Label="METHOD" NlmCategory="UNASSIGNED">To infer a causal relationship between AS and various diabetes-related traits, including type 1 diabetes (T1DM), T2DM, blood glucose levels, fasting glucose, glycated hemoglobin, and fasting insulin, we employed Mendelian randomization (MR) analysis. We sourced GWAS summary data for both exposure and outcome variables from the IEU OpenGWAS database, GWAS Catalog, and FinnGen database. To synthesize the results of the MR analyses, we applied meta-analysis techniques using either a fixed or random effects model. For identifying and excluding instrumental variants (IVs) that exhibit horizontal pleiotropy with the outcomes, we utilized the MR-PRESSO method. Sensitivity analyses were conducted using the MR-Egger method, along with Q and I^2 tests, to ensure the robustness of our findings.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Our analysis revealed a significant association between AS and an increased risk of T1DM with an odds ratio (OR) of 1.5754 (95% CI: 1.2935 to 1.9187) and T2DM with an OR of 1.0519 (95% CI: 1.0059 to 1.1001). Additionally, AS was associated with elevated levels of fasting glucose (beta coefficient = 0.0165, 95% CI: 0.0029 to 0.0301) and blood glucose (beta coefficient = 0.0280, 95% CI: 0.0086 to 0.0474), alongside a decrease in fasting insulin levels (beta coefficient = -0.0190, 95% CI: -0.0330 to -0.0050).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Our findings collectively underscore the detrimental impact of AS on the development of diabetes, highlighting the critical influence of autoimmune disorders in diabetes onset. This provides profound insights into the pathogenesis of diabetes from an immunological standpoint.</AbstractText><CopyrightInformation>Copyright © 2024 Ren, He, Wang, Shu, Li and Ma.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Ren</LastName><ForeName>Zheng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>He</LastName><ForeName>Liang</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Institute of General Surgery, Wulumuqi General Hospital of People's Liberation Army (PLA), Urumqi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Wang</LastName><ForeName>Jing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shu</LastName><ForeName>Li</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Chenyang</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Micro Operation of the Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ma</LastName><ForeName>Yuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="N">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013167" MajorTopicYN="Y">Spondylitis, Ankylosing</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Mendelian randomization</Keyword><Keyword MajorTopicYN="N">ankylosing spondylitis</Keyword><Keyword MajorTopicYN="N">glucose metabolism</Keyword><Keyword MajorTopicYN="N">meta-analysis</Keyword><Keyword MajorTopicYN="N">type 1 and 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>17</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>11</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>5</Hour><Minute>58</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39649224</ArticleId><ArticleId IdType="pmc">PMC11624504</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1369466</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. (2021) 17:387–404. doi: 10.1038/s41584-021-00625-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41584-021-00625-y</ArticleId><ArticleId IdType="pubmed">34113018</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritchlin C, Adamopoulos IE. Axial spondyloarthritis: new advances in diagnosis and management. Bmj. (2021) 372:m4447. doi: 10.1136/bmj.m4447</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m4447</ArticleId><ArticleId IdType="pubmed">33397652</ArticleId></ArticleIdList></Reference><Reference><Citation>Sieper J, Braun J, Dougados M, Baeten D. Axial spondyloarthritis. Nat Rev Dis Primers. (2015) 1:15013. doi: 10.1038/nrdp.2015.13</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrdp.2015.13</ArticleId><ArticleId IdType="pubmed">27188328</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith JA. Update on ankylosing spondylitis: current concepts in pathogenesis. Curr Allergy Asthma Rep. (2015) 15:489. doi: 10.1007/s11882-014-0489-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11882-014-0489-6</ArticleId><ArticleId IdType="pubmed">25447326</ArticleId></ArticleIdList></Reference><Reference><Citation>Landi M, Maldonado-Ficco H, Perez-Alamino R, Maldonado-Cocco JA, Citera G, Arturi P, et al. . Gender differences among patients with primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease in an iberoamerican spondyloarthritis cohort. Med (Baltimore). (2016) 95:e5652. doi: 10.1097/MD.0000000000005652</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000005652</ArticleId><ArticleId IdType="pmc">PMC5181818</ArticleId><ArticleId IdType="pubmed">28002334</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang H, Chen Y, Xu W, Shao M, Deng J, Xu S, et al. . Epigenetics of ankylosing spondylitis: Recent developments. Int J Rheum Dis. (2021) 24:487–93. doi: 10.1111/1756-185X.14080</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/1756-185X.14080</ArticleId><ArticleId IdType="pubmed">33608999</ArticleId></ArticleIdList></Reference><Reference><Citation>Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatol (Oxford). (2018) 57:vi4–9. doi: 10.1093/rheumatology/key001</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/rheumatology/key001</ArticleId><ArticleId IdType="pmc">PMC6238220</ArticleId><ArticleId IdType="pubmed">30445483</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen CW, Wei JC, Gu J, Yu D. Editorial: advances in pathogenesis, etiology, and therapies for ankylosing spondylitis. Front Immunol. (2021) 12:822582. doi: 10.3389/fimmu.2021.822582</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2021.822582</ArticleId><ArticleId IdType="pmc">PMC8732985</ArticleId><ArticleId IdType="pubmed">35003143</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, et al. . Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res. (2019) 7:22. doi: 10.1038/s41413-019-0057-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41413-019-0057-8</ArticleId><ArticleId IdType="pmc">PMC6804882</ArticleId><ArticleId IdType="pubmed">31666997</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu GH, Lin J, Chen WQ. Concurrent ankylosing spondylitis and myelodysplastic syndrome: A case report. World J Clin cases. (2022) 10:1929–36. doi: 10.12998/wjcc.v10.i6.1929</Citation><ArticleIdList><ArticleId IdType="doi">10.12998/wjcc.v10.i6.1929</ArticleId><ArticleId IdType="pmc">PMC8891766</ArticleId><ArticleId IdType="pubmed">35317144</ArticleId></ArticleIdList></Reference><Reference><Citation>Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, et al. . Immune cells involved in the pathogenesis of ankylosing spondylitis. BioMed Pharmacother. (2018) 100:198–204. doi: 10.1016/j.biopha.2018.01.108</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2018.01.108</ArticleId><ArticleId IdType="pubmed">29428668</ArticleId></ArticleIdList></Reference><Reference><Citation>Ou J, Xiao M, Huang Y, Tu L, Chen Z, Cao S, et al. . Serum metabolomics signatures associated with ankylosing spondylitis and TNF inhibitor therapy. Front Immunol. (2021) 12:630791. doi: 10.3389/fimmu.2021.630791</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2021.630791</ArticleId><ArticleId IdType="pmc">PMC7933516</ArticleId><ArticleId IdType="pubmed">33679777</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. . IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. (2017) 128:40–50. doi: 10.1016/j.diabres.2017.03.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2017.03.024</ArticleId><ArticleId IdType="pubmed">28437734</ArticleId></ArticleIdList></Reference><Reference><Citation>Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. . Type 1 diabetes mellitus. Nat Rev Dis Primers. (2017) 3:17016. doi: 10.1038/nrdp.2017.16</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrdp.2017.16</ArticleId><ArticleId IdType="pubmed">28358037</ArticleId></ArticleIdList></Reference><Reference><Citation>Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. (2017) 389:2239–51. doi: 10.1016/S0140-6736(17)30058-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(17)30058-2</ArticleId><ArticleId IdType="pubmed">28190580</ArticleId></ArticleIdList></Reference><Reference><Citation>Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. (2019) 19:734–46. doi: 10.1038/s41577-019-0213-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41577-019-0213-9</ArticleId><ArticleId IdType="pubmed">31501536</ArticleId></ArticleIdList></Reference><Reference><Citation>Dror E, Dalmas E, Meier DT, Wueest S, Thévenet J, Thienel C, et al. . Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. (2017) 18:283–92. doi: 10.1038/ni.3659</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ni.3659</ArticleId><ArticleId IdType="pubmed">28092375</ArticleId></ArticleIdList></Reference><Reference><Citation>Biondi B, Kahaly GJ, Robertson RP. Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr Rev. (2019) 40:789–824. doi: 10.1210/er.2018-00163</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/er.2018-00163</ArticleId><ArticleId IdType="pmc">PMC6507635</ArticleId><ArticleId IdType="pubmed">30649221</ArticleId></ArticleIdList></Reference><Reference><Citation>Liao KF, Kuo YH, Lai SW. Diabetes mellitus in ankylosing spondylitis. Ann Rheum Dis. (2021) 80:e134. doi: 10.1136/annrheumdis-2019-216221</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/annrheumdis-2019-216221</ArticleId><ArticleId IdType="pubmed">31492707</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen HH, Yeh SY, Chen HY, Lin CL, Sung FC, Kao CH. Ankylosing spondylitis and other inflammatory spondyloarthritis increase the risk of developing type 2 diabetes in an Asian population. Rheumatol Int. (2014) 34:265–70. doi: 10.1007/s00296-013-2927-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00296-013-2927-5</ArticleId><ArticleId IdType="pubmed">24362789</ArticleId></ArticleIdList></Reference><Reference><Citation>Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. (2016) 27:3253–65. doi: 10.1681/ASN.2016010098</Citation><ArticleIdList><ArticleId IdType="doi">10.1681/ASN.2016010098</ArticleId><ArticleId IdType="pmc">PMC5084898</ArticleId><ArticleId IdType="pubmed">27486138</ArticleId></ArticleIdList></Reference><Reference><Citation>Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. . The MR-Base platform supports systematic causal inference across the human phenome. Elife. (2018) 7:e34408. doi: 10.7554/eLife.34408</Citation><ArticleIdList><ArticleId IdType="doi">10.7554/eLife.34408</ArticleId><ArticleId IdType="pmc">PMC5976434</ArticleId><ArticleId IdType="pubmed">29846171</ArticleId></ArticleIdList></Reference><Reference><Citation>Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89–98. doi: 10.1093/hmg/ddu328</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/hmg/ddu328</ArticleId><ArticleId IdType="pmc">PMC4170722</ArticleId><ArticleId IdType="pubmed">25064373</ArticleId></ArticleIdList></Reference><Reference><Citation>Su Q, Jin C, Yang Y, Wang J, Wang J, Zeng H, et al. . Association between autoimmune diseases and sarcopenia: A two-sample mendelian randomization study. Clin Epidemiol. (2023) 15:901–10. doi: 10.2147/CLEP.S416778</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/CLEP.S416778</ArticleId><ArticleId IdType="pmc">PMC10464831</ArticleId><ArticleId IdType="pubmed">37650009</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun D, Ma R, Wang J, Wang Y, Ye Q. The causal relationship between sarcoidosis and autoimmune diseases: a bidirectional Mendelian randomization study in FinnGen. Front Immunol. (2024) 15:1325127. doi: 10.3389/fimmu.2024.1325127</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2024.1325127</ArticleId><ArticleId IdType="pmc">PMC11070530</ArticleId><ArticleId IdType="pubmed">38711527</ArticleId></ArticleIdList></Reference><Reference><Citation>Su Y, Zhang Y, Chai Y, Xu J. Autoimmune diseases and their genetic link to bronchiectasis: insights from a genetic correlation and Mendelian randomization study. Front Immunol. (2024) 15:1343480. doi: 10.3389/fimmu.2024.1343480</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2024.1343480</ArticleId><ArticleId IdType="pmc">PMC11039849</ArticleId><ArticleId IdType="pubmed">38660310</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Yuan S, Schooling CM, Larsson SC. A Mendelian randomization study of genetic predisposition to autoimmune diseases and COVID-19. Sci Rep. (2022) 12:17703. doi: 10.1038/s41598-022-22711-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-022-22711-1</ArticleId><ArticleId IdType="pmc">PMC9587049</ArticleId><ArticleId IdType="pubmed">36271292</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Liu J, Wang C, Liu J, Lu W. Toll-like receptors gene polymorphisms in autoimmune disease. Front Immunol. (2021) 12:672346. doi: 10.3389/fimmu.2021.672346</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2021.672346</ArticleId><ArticleId IdType="pmc">PMC8107678</ArticleId><ArticleId IdType="pubmed">33981318</ArticleId></ArticleIdList></Reference><Reference><Citation>Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. . Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. (2013) 45:730–8. doi: 10.1038/ng.2667</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng.2667</ArticleId><ArticleId IdType="pmc">PMC3757343</ArticleId><ArticleId IdType="pubmed">23749187</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng Q, Yang Y, Shi X, Yeung KF, Yang C, Peng H, et al. . MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting for linkage disequilibrium and horizontal pleiotropy. NAR Genom Bioinform. (2020) 2:lqaa028. doi: 10.1093/nargab/lqaa028</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nargab/lqaa028</ArticleId><ArticleId IdType="pmc">PMC7671398</ArticleId><ArticleId IdType="pubmed">33575584</ArticleId></ArticleIdList></Reference><Reference><Citation>Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. (2011) 40:740–52. doi: 10.1093/ije/dyq151</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyq151</ArticleId><ArticleId IdType="pmc">PMC3147064</ArticleId><ArticleId IdType="pubmed">20813862</ArticleId></ArticleIdList></Reference><Reference><Citation>Adu Y, Ring D, Teunis T. Randomized controlled trials studying nonoperative treatments of osteoarthritis often use misleading and uninformative control groups: A systematic review. Clin Orthop Relat Res. (2024). doi: 10.1097/CORR.0000000000003273</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/CORR.0000000000003273</ArticleId><ArticleId IdType="pubmed">39453403</ArticleId></ArticleIdList></Reference><Reference><Citation>Dougados M, Baeten D. Spondyloarthritis. Lancet. (2011) 377:2127–37. doi: 10.1016/S0140-6736(11)60071-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(11)60071-8</ArticleId><ArticleId IdType="pubmed">21684383</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgos-Varga R, Wei JC, Rahman MU, Akkoc N, Haq SA, Hammoudeh M, et al. . The prevalence and clinical characteristics of nonradiographic axial spondyloarthritis among patients with inflammatory back pain in rheumatology practices: a multinational, multicenter study. Arthritis Res Ther. (2016) 18:132. doi: 10.1186/s13075-016-1027-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13075-016-1027-9</ArticleId><ArticleId IdType="pmc">PMC4896040</ArticleId><ArticleId IdType="pubmed">27267875</ArticleId></ArticleIdList></Reference><Reference><Citation>Escalante A. Ankylosing spondylitis. A common cause of low back pain. Postgrad Med. (1993) 94:153–60. doi: 10.1080/00325481.1993.11945685</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/00325481.1993.11945685</ArticleId><ArticleId IdType="pubmed">8321769</ArticleId></ArticleIdList></Reference><Reference><Citation>Schlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. (1973) 288:704–6. doi: 10.1056/NEJM197304052881403</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJM197304052881403</ArticleId><ArticleId IdType="pubmed">4688372</ArticleId></ArticleIdList></Reference><Reference><Citation>McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. . The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. (2009) 10:314–24. doi: 10.1038/ni.1698</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ni.1698</ArticleId><ArticleId IdType="pmc">PMC2945605</ArticleId><ArticleId IdType="pubmed">19182808</ArticleId></ArticleIdList></Reference><Reference><Citation>(2) Classification and diagnosis of diabetes. Diabetes Care. (2015) 38 Suppl:S8–s16. doi: 10.2337/dc15-S005</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc15-S005</ArticleId><ArticleId IdType="pubmed">25537714</ArticleId></ArticleIdList></Reference><Reference><Citation>Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. (2010) 464:1293–300. doi: 10.1038/nature08933</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature08933</ArticleId><ArticleId IdType="pmc">PMC4959889</ArticleId><ArticleId IdType="pubmed">20432533</ArticleId></ArticleIdList></Reference><Reference><Citation>Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet. (2008) 371:1777–82. doi: 10.1016/S0140-6736(08)60765-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(08)60765-5</ArticleId><ArticleId IdType="pubmed">18502302</ArticleId></ArticleIdList></Reference><Reference><Citation>Ni Q, Pham NB, Meng WS, Zhu G, Chen X. Advances in immunotherapy of type I diabetes. Adv Drug Deliv Rev. (2019) 139:83–91. doi: 10.1016/j.addr.2018.12.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.addr.2018.12.003</ArticleId><ArticleId IdType="pubmed">30528629</ArticleId></ArticleIdList></Reference><Reference><Citation>Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. (2005) 23:447–85. doi: 10.1146/annurev.immunol.23.021704.115643</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev.immunol.23.021704.115643</ArticleId><ArticleId IdType="pubmed">15771578</ArticleId></ArticleIdList></Reference><Reference><Citation>DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. (2018) 391:2449–62. doi: 10.1016/S0140-6736(18)31320-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(18)31320-5</ArticleId><ArticleId IdType="pmc">PMC6661119</ArticleId><ArticleId IdType="pubmed">29916386</ArticleId></ArticleIdList></Reference><Reference><Citation>Mordes JP, Bortell R, Doukas J, Rigby M, Whalen B, Zipris D, et al. . The BB/Wor rat and the balance hypothesis of autoimmunity. Diabetes Metab Rev. (1996) 12:103–9. doi: 10.1002/(SICI)1099-0895(199607)12:2<103::AID-DMR157>3.0.CO;2-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/(SICI)1099-0895(199607)12:2<103::AID-DMR157>3.0.CO;2-2</ArticleId><ArticleId IdType="pubmed">8877279</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, Tsou HK, Chiou JY, Wang YH, Zhang Z, Wei JC. Increased risk of inflammatory bowel disease among patients with ankylosing spondylitis: A 13-year population-based cohort study. Front Immunol. (2020) 11:578732. doi: 10.3389/fimmu.2020.578732</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2020.578732</ArticleId><ArticleId IdType="pmc">PMC7567031</ArticleId><ArticleId IdType="pubmed">33123163</ArticleId></ArticleIdList></Reference><Reference><Citation>Kang JH, Chen YH, Lin HC. Comorbidity profiles among patients with ankylosing spondylitis: a nationwide population-based study. Ann Rheum Dis. (2010) 69:1165–8. doi: 10.1136/ard.2009.116178</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/ard.2009.116178</ArticleId><ArticleId IdType="pubmed">20375121</ArticleId></ArticleIdList></Reference><Reference><Citation>Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunol. (2016) 310:27–41. doi: 10.1016/j.cellimm.2016.09.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cellimm.2016.09.009</ArticleId><ArticleId IdType="pubmed">27660198</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen MH, Chen WS, Lee HT, Tsai CY, Chou CT. Inverse correlation of programmed death 1 (PD-1) expression in T cells to the spinal radiologic changes in Taiwanese patients with ankylosing spondylitis. Clin Rheumatol. (2011) 30:1181–7. doi: 10.1007/s10067-011-1721-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10067-011-1721-6</ArticleId><ArticleId IdType="pubmed">21547439</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang CJ, Chou FC, Chu CH, Wu JC, Lin SH, Chang DM, et al. . Protective role of programmed death 1 ligand 1 (PD-L1)in nonobese diabetic mice: the paradox in transgenic models. Diabetes. (2008) 57:1861–9. doi: 10.2337/db07-1260</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db07-1260</ArticleId><ArticleId IdType="pmc">PMC2453619</ArticleId><ArticleId IdType="pubmed">18420489</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA. (2005) 102:11823–8. doi: 10.1073/pnas.0505497102</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.0505497102</ArticleId><ArticleId IdType="pmc">PMC1188011</ArticleId><ArticleId IdType="pubmed">16087865</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill NJ, Van Gunst K, Sarvetnick N. Th1 and Th2 pancreatic inflammation differentially affects homing of islet-reactive CD4 cells in nonobese diabetic mice. J Immunol. (2003) 170:1649–58. doi: 10.4049/jimmunol.170.4.1649</Citation><ArticleIdList><ArticleId IdType="doi">10.4049/jimmunol.170.4.1649</ArticleId><ArticleId IdType="pubmed">12574327</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee YH, Bae SC, Kim JH, Song GG. Meta-analysis of genetic polymorphisms in programmed cell death 1. Associations with rheumatoid arthritis, ankylosing spondylitis, and type 1 diabetes susceptibility. Z Rheumatol. (2015) 74:230–9. doi: 10.1007/s00393-014-1415-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00393-014-1415-y</ArticleId><ArticleId IdType="pubmed">24942602</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu C, Wu Y, Liu N. Osteopontin in autoimmune disorders: current knowledge and future perspective. Inflammopharmacology. (2022) 30:385–96. doi: 10.1007/s10787-022-00932-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10787-022-00932-0</ArticleId><ArticleId IdType="pubmed">35235108</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB, et al. . Osteopontin might be involved in bone remodeling rather than in inflammation in ankylosing spondylitis. Rheumatol (Oxford). (2008) 47:1775–9. doi: 10.1093/rheumatology/ken385</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/rheumatology/ken385</ArticleId><ArticleId IdType="pubmed">18854347</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Cai Y, Wang Z, Deng A, Yang G. Polymorphisms in the osteopontin are associated with susceptibility to ankylosing spondylitis in a han chinese population. BioMed Res Int 2018. (2018) p:3458439. doi: 10.1155/2018/3458439</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2018/3458439</ArticleId><ArticleId IdType="pmc">PMC5822803</ArticleId><ArticleId IdType="pubmed">29581970</ArticleId></ArticleIdList></Reference><Reference><Citation>Barchetta I, Alessandri C, Bertoccini L, Cimini FA, Taverniti L, Di Franco M, et al. . Increased circulating osteopontin levels in adult patients with type 1 diabetes mellitus and association with dysmetabolic profile. Eur J Endocrinol. (2016) 174:187–92. doi: 10.1530/EJE-15-0791</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/EJE-15-0791</ArticleId><ArticleId IdType="pubmed">26578639</ArticleId></ArticleIdList></Reference><Reference><Citation>Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. (2009) 15:4137–42. doi: 10.3748/wjg.15.4137</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.15.4137</ArticleId><ArticleId IdType="pmc">PMC2738809</ArticleId><ArticleId IdType="pubmed">19725147</ArticleId></ArticleIdList></Reference><Reference><Citation>Karakoc M, Altindag O, Keles H, Soran N, Selek S. Serum oxidative-antioxidative status in patients with ankylosing spondilitis. Rheumatol Int. (2007) 27:1131–4. doi: 10.1007/s00296-007-0352-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00296-007-0352-3</ArticleId><ArticleId IdType="pubmed">17443328</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye G, Xie Z, Zeng H, Wang P, Li J, Zheng G, et al. . Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. (2020) 11:775. doi: 10.1038/s41419-020-02993-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41419-020-02993-x</ArticleId><ArticleId IdType="pmc">PMC7498590</ArticleId><ArticleId IdType="pubmed">32943613</ArticleId></ArticleIdList></Reference><Reference><Citation>Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. (1998) 47:1562–9. doi: 10.2337/diabetes.47.10.1562</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.47.10.1562</ArticleId><ArticleId IdType="pubmed">9753293</ArticleId></ArticleIdList></Reference><Reference><Citation>Dokken BB, Saengsirisuwan V, Kim JS, Teachey MK, Henriksen EJ. Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3. Am J Physiol Endocrinol Metab. (2008) 294:E615–21. doi: 10.1152/ajpendo.00578.2007</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00578.2007</ArticleId><ArticleId IdType="pubmed">18089761</ArticleId></ArticleIdList></Reference><Reference><Citation>Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res. (2016) 167:228–56. doi: 10.1016/j.trsl.2015.08.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.trsl.2015.08.011</ArticleId><ArticleId IdType="pubmed">26408801</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes. (2021) 12:238–60. doi: 10.4239/wjd.v12.i3.238</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v12.i3.238</ArticleId><ArticleId IdType="pmc">PMC7958474</ArticleId><ArticleId IdType="pubmed">33758645</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Zhang Z, Wu X, Zhou J, Meng D, Zhu P. Risk of adverse events after anti-TNF treatment for inflammatory rheumatological disease. A meta-analysis. Front Pharmacol. (2021) 12:746396. doi: 10.3389/fphar.2021.746396</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2021.746396</ArticleId><ArticleId IdType="pmc">PMC8591221</ArticleId><ArticleId IdType="pubmed">34790122</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. (2016) 12:81–91. doi: 10.1038/nrrheum.2015.133</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrrheum.2015.133</ArticleId><ArticleId IdType="pubmed">26439405</ArticleId></ArticleIdList></Reference><Reference><Citation>da Silva BS, Bonfá E, de Moraes JC, Saad CG, Ribeiro AC, Gonçalves CR, et al. . Effects of anti-TNF therapy on glucose metabolism in patients with ankylosing spondylitis, psoriatic arthritis or juvenile idiopathic arthritis. Biologicals. (2010) 38:567–9. doi: 10.1016/j.biologicals.2010.05.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biologicals.2010.05.003</ArticleId><ArticleId IdType="pubmed">20638299</ArticleId></ArticleIdList></Reference><Reference><Citation>Sidiropoulos PI, Karvounaris SA, Boumpas DT. Metabolic syndrome in rheumatic diseases: epidemiology, pathophysiology, and clinical implications. Arthritis Res Ther. (2008) 10:207. doi: 10.1186/ar2397</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/ar2397</ArticleId><ArticleId IdType="pmc">PMC2483433</ArticleId><ArticleId IdType="pubmed">18492218</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua C, Sanchez-Andrade A, Martin J, et al. . Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. (2006) 24:83–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">16539824</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen HH, Chen DY, Lin CC, Chen YM, Lai KL, Lin CH. Association between use of disease-modifying antirheumatic drugs and diabetes in patients with ankylosing spondylitis, rheumatoid arthritis, or psoriasis/psoriatic arthritis: a nationwide, population-based cohort study of 84,989 patients. Ther Clin Risk Manag. (2017) 13:583–92. doi: 10.2147/TCRM.S130666</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/TCRM.S130666</ArticleId><ArticleId IdType="pmc">PMC5422572</ArticleId><ArticleId IdType="pubmed">28496328</ArticleId></ArticleIdList></Reference><Reference><Citation>Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. (2021) 21:739–51. doi: 10.1038/s41577-021-00538-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41577-021-00538-7</ArticleId><ArticleId IdType="pubmed">33846604</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, et al. . Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun. (2020) 107:102360. doi: 10.1016/j.jaut.2019.102360</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jaut.2019.102360</ArticleId><ArticleId IdType="pubmed">31806420</ArticleId></ArticleIdList></Reference><Reference><Citation>Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. . Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. (2015) 67:686–91. doi: 10.1002/art.38967</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/art.38967</ArticleId><ArticleId IdType="pubmed">25417597</ArticleId></ArticleIdList></Reference><Reference><Citation>Asquith M, Sternes PR, Costello ME, Karstens L, Diamond S, Martin TM, et al. . HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. (2019) 71:1642–50. doi: 10.1002/art.v71.10</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/art.v71.10</ArticleId><ArticleId IdType="pubmed">31038287</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms. Front Endocrinol (Lausanne). (2020) 11:125. doi: 10.3389/fendo.2020.00125</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2020.00125</ArticleId><ArticleId IdType="pmc">PMC7105744</ArticleId><ArticleId IdType="pubmed">32265832</ArticleId></ArticleIdList></Reference><Reference><Citation>Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, et al. . Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci USA. (2005) 102:2916–21. doi: 10.1073/pnas.0500178102</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.0500178102</ArticleId><ArticleId IdType="pmc">PMC549484</ArticleId><ArticleId IdType="pubmed">15710870</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. (2010) 53:741–8. doi: 10.1007/s00125-009-1626-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-009-1626-y</ArticleId><ArticleId IdType="pubmed">20012858</ArticleId></ArticleIdList></Reference><Reference><Citation>Tajik N, Frech M, Schulz O, Schälter F, Lucas S, Azizov V, et al. . Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. (2020) 11:1995. doi: 10.1038/s41467-020-15831-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-020-15831-7</ArticleId><ArticleId IdType="pmc">PMC7181728</ArticleId><ArticleId IdType="pubmed">32332732</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39648515</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1442-2018</ISSN><JournalIssue CitedMedium="Internet"><Volume>26</Volume><Issue>4</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Nursing & health sciences</Title><ISOAbbreviation>Nurs Health Sci</ISOAbbreviation></Journal><ArticleTitle>Long-Term Effects of an Automated Personalized Self-Care Program for Patients With Type 2 Diabetes.</ArticleTitle><Pagination><StartPage>e70008</StartPage><MedlinePgn>e70008</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/nhs.70008</ELocationID><Abstract><AbstractText>Elevated glycated hemoglobin (HbA1c) levels and longer disease duration increase the risk of complications in type 2 diabetes mellitus (T2DM), highlighting the need for continuous management. This study evaluated the 18-month effects of the Automated Personalized Self-Care (APSC) program on self-care self-efficacy, diabetes self-care, and complication risk indices in T2DM patients through a randomized controlled trial. Participants aged 40-69 years were assigned to either an intervention group using the APSC mobile app, which provided personalized goals, automated feedback, and monthly support, or a comparison group. The final analysis included 43 engaged participants from the intervention group and 78 from the comparison group. Data were collected at baseline, 6, 12, and 18 months using structured questionnaires and medical record reviews and analyzed using generalized estimating equations. Significant effects were observed for self-care self-efficacy, diabetes self-care activities, vegetable intake, HbA1c, and total cholesterol levels. The APSC program showed potential to improve long-term self-care and reduce complication risk in T2DM patients. Further research with a larger samples and strategies to promote long-term engagement is needed for its integration into routine diabetes care. Trial Registration: Clinical Research Information Service: KCT0007672.</AbstractText><CopyrightInformation>© 2024 John Wiley & Sons Australia, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Haejung</ForeName><Initials>H</Initials><Identifier Source="ORCID">0000-0003-0291-9945</Identifier><AffiliationInfo><Affiliation>College of Nursing, Pusan National University, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Institute of Nursing Science, Pusan National University, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Park</LastName><ForeName>Gaeun</ForeName><Initials>G</Initials><Identifier Source="ORCID">0000-0003-0923-4340</Identifier><AffiliationInfo><Affiliation>Research Institute of Nursing Science, Pusan National University, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>DaeEun</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0002-3136-2739</Identifier><AffiliationInfo><Affiliation>College of Nursing, Pusan National University, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khang</LastName><ForeName>Ah Reum</ForeName><Initials>AR</Initials><Identifier Source="ORCID">0000-0002-9154-6468</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Min Jin</ForeName><Initials>MJ</Initials><Identifier Source="ORCID">0000-0002-4351-789X</Identifier><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>NRF-2019R1I1A3A01062513</GrantID><Agency>National Research Foundation of Korea</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Australia</Country><MedlineTA>Nurs Health Sci</MedlineTA><NlmUniqueID>100891857</NlmUniqueID><ISSNLinking>1441-0745</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012648" MajorTopicYN="Y">Self Care</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020377" MajorTopicYN="N">Self Efficacy</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">evidence‐based practice</Keyword><Keyword MajorTopicYN="N">mobile applications</Keyword><Keyword MajorTopicYN="N">randomized controlled trial</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>18</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>17</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>1</Hour><Minute>43</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39648515</ArticleId><ArticleId IdType="doi">10.1111/nhs.70008</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>Al Mahrouqi, A. S., R. K. Mallinson, K. M. Oh, and A. A. Weinstein. 2022. “Patients' and Nurses' Perceptions of Diabetes Self‐Management in Oman: A Qualitative Study.” International Journal of Environmental Research and Public Health 19, no. 11: 6929. https://doi.org/10.3390/ijerph19116929.</Citation></Reference><Reference><Citation>Bae, J. H., K. Han, S. Ko, et al. 2022. “Diabetes Fact Sheet in Korea 2021.” Diabetes & Metabolism Journal 46, no. 3: 417–426. https://doi.org/10.4093/dmj.2022.0106.</Citation></Reference><Reference><Citation>Bijl, J. V. D., A. V. Poelgeest‐Eeltink, and L. Shortridge‐Baggett. 1999. “The Psychometric Properties of the Diabetes Management Self‐Efficacy Scale for Patients With Type 2 Diabetes Mellitus.” Journal of Advanced Nursing 30, no. 2: 352–359. https://doi.org/10.1046/j.1365‐2648.1999.01077.x.</Citation></Reference><Reference><Citation>Boye, K. S., V. T. Thieu, M. J. Lage, H. Miller, and R. Paczkowski. 2022. “The Association Between Sustained HbA1c Control and Long‐Term Complications Among Individuals With Type 2 Diabetes: A Retrospective Study.” Advances in Therapy 39, no. 5: 2208–2221. https://doi.org/10.1007/s12325‐022‐02106‐4.</Citation></Reference><Reference><Citation>Chen, J. F., L. L. Wu, and S. C. Chou. 2016. “Effects of Journaling Dietary Intake App on the Health Outcomes of Chronic Kidney Disease Stage 3B‐5.” In 2016 49th Hawaii International Conference on System Sciences (HICSS), 3379–3388. Koloa, HI: HICSS. https://doi.org/10.1109/HICSS.2016.421.</Citation></Reference><Reference><Citation>Choi, E. J., M. Nam, S. H. Kim, et al. 2011. “Psychometric Properties of a Korean Version of the Summary of Diabetes Self‐Care Activities Measure.” International Journal of Nursing Studies 48, no. 3: 333–337. https://doi.org/10.1016/j.ijnurstu.2010.08.007.</Citation></Reference><Reference><Citation>Dobson, A. J., and A. G. Barnett. 2018. An Introduction to Generalized Linear Models. 4th ed. Boca Raton, FL: CRC Press.</Citation></Reference><Reference><Citation>Dobson, R., R. Whittaker, Y. Jiang, et al. 2020. “Long‐Term Follow‐Up of a Randomized Controlled Trial of a Text‐Message Diabetes Self‐Management Support Programme, SMS4BG.” Diabetic Medicine 37, no. 2: 311–318. https://doi.org/10.1111/dme.14182.</Citation></Reference><Reference><Citation>Holmen, H., A. Torbjørnsen, A. K. Wahl, et al. 2014. “A Mobile Health Intervention for Self‐Management and Lifestyle Change for Persons With Type 2 Diabetes, Part 2: One‐Year Results From the Norwegian Randomized Controlled Trial Renewing Health.” JMIR mHealth and uHealth 2, no. 4: e3882. https://doi.org/10.2196/mhealth.3882.</Citation></Reference><Reference><Citation>International Diabetes Federation. 2021. Diabetes Facts & Figures. Brussels, Belgium: International Diabetes Federation. https://idf.org/about‐diabetes/diabetes‐facts‐figures/.</Citation></Reference><Reference><Citation>Korean National Health Insurance Service. 2022. Diabetes Accounts for 95.3% of All Patients After Middle Age (40 Years of Age or Older). Gangwon, Republic of Korea: Korean National Health Insurance Service. https://www.nhis.or.kr/nhis/together/wbhaea01600m01.do?mode=view&articleNo=10829528.</Citation></Reference><Reference><Citation>Korean Statistical Information Service. 2023. Trends in the Prevalence of Diabetes (Based on Fasting Blood Glucose or HbA1c Criteria). Daejeon, Republic of Korea: Korean Statistical Information Service. https://kosis.kr/statHtml/statHtml.do?orgId=177&tblId=DT_11702_N102&conn_path=I3.</Citation></Reference><Reference><Citation>Lee, E., J. van der Bijl, L. M. Shortridge‐Baggett, S. J. Han, and S. H. Moon. 2015. “Psychometric Properties of the Diabetes Management Self‐Efficacy Scale in Korean Patients With Type 2 Diabetes.” International Journal of Endocrinology 2015: 1–9. https://doi.org/10.1155/2015/780701.</Citation></Reference><Reference><Citation>Lee, E. H., Y. H. Chung, J. S. Kim, R. Y. Song, and K. Y. Hwang. 2006. Statistical Methods for Health Care Research. 2nd ed. Paju, Republic of Korea: Koonja.</Citation></Reference><Reference><Citation>Lee, H., and M. S. Kim. 2007. “The Relationship of Diet, Physical Activities, Self‐Efficacy, and Self‐Care With Cardiovascular Risk Factors Among Clients With Type II Diabetes.” Journal of Korean Academy of Adult Nursing 19, no. 2: 283–294.</Citation></Reference><Reference><Citation>Lee, K., H. Kwon, B. Lee, et al. 2018. “Effect of Self‐Monitoring on Long‐Term Patient Engagement With Mobile Health Applications.” PLoS One 13, no. 7: e0201166. https://doi.org/10.1371/journal.pone.0201166.</Citation></Reference><Reference><Citation>Lee, Y. B., G. Kim, J. E. Jun, et al. 2023. “An Integrated Digital Health Care Platform for Diabetes Management With AI‐Based Dietary Management: 48‐Week Results From a Randomized Controlled Trial.” Diabetes Care 46, no. 5: 959–966. https://doi.org/10.2337/dc22‐1929.</Citation></Reference><Reference><Citation>Lim, S. L., K. W. Ong, J. Johal, et al. 2021. “Effect of a Smartphone App on Weight Change and Metabolic Outcomes in Asian Adults With Type 2 Diabetes: A Randomized Clinical Trial.” JAMA Network Open 4, no. 6: e2112417. https://doi.org/10.1001/jamanetworkopen.2021.12417.</Citation></Reference><Reference><Citation>Liu, K., Z. Xie, and C. K. Or. 2020. “Effectiveness of Mobile App‐Assisted Self‐Care Interventions for Improving Patient Outcomes in Type 2 Diabetes and/or Hypertension: Systematic Review and Meta‐Analysis of Randomized Controlled Trials.” JMIR mHealth and uHealth 8, no. 8: e15779. https://doi.org/10.2196/15779.</Citation></Reference><Reference><Citation>Mather, K. J., I. Bebu, C. Baker, et al. 2020. “Prevalence of Microvascular and Macrovascular Disease in the Glycemia Reduction Approaches in Diabetes—A Comparative Effectiveness (GRADE) Study Cohort.” Diabetes Research and Clinical Practice 165: 108235. https://doi.org/10.1016/j.diabres.2020.108235.</Citation></Reference><Reference><Citation>Meyerowitz‐Katz, G., S. Ravi, L. Arnolda, X. Feng, G. Maberly, and T. Astell‐Burt. 2020. “Rates of Attrition and Dropout in App‐Based Interventions for Chronic Disease: Systematic Review and Meta‐Analysis.” Journal of Medical Internet Research 22, no. 9: e20283. https://doi.org/10.2196/20283.</Citation></Reference><Reference><Citation>Oh, J. Y., Y. J. Yang, B. S. Kim, and J. H. Kang. 2007. “Validity and Reliability of Korean Version of International Physical Activity Questionnaire (IPAQ) Short Form.” Journal of the Korean Academy of Family Medicine 28, no. 7: 532–541.</Citation></Reference><Reference><Citation>Ong, K. L., L. K. Stafford, S. A. McLaughlin, et al. 2023. “Global, Regional, and National Burden of Diabetes From 1990 to 2021, With Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021.” Lancet 402, no. 10397: 203–234. https://doi.org/10.1016/S0140‐6736(23)01301‐6.</Citation></Reference><Reference><Citation>Park, G., H. Lee, and A. R. Khang. 2022. “The Development of Automated Personalized Self‐Care (APSC) Program for Patients With Type 2 Diabetes Mellitus.” Journal of Korean Academy of Nursing 52, no. 5: 535–549. https://doi.org/10.4040/jkan.22046.</Citation></Reference><Reference><Citation>Park, G., H. Lee, Y. Lee, et al. 2024. “Automated Personalized Self‐Care Program for Patients With Type 2 Diabetes Mellitus: A Pilot Trial.” Asian Nursing Research 18, no. 2: 114–124. https://doi.org/10.1016/j.anr.2024.04.003.</Citation></Reference><Reference><Citation>Park, G., H. Lee, M. J. Lee, and A. R. Khang. 2024. “Impact of Mobile App‐Based Self‐Monitoring Engagement on Health Behaviors, Psychological Outcomes, and Clinical Outcomes Among Patients with Type 2 Diabetes.” Manuscript submitted for publication.</Citation></Reference><Reference><Citation>Poppe, L., I. De Bourdeaudhuij, M. Verloigne, L. Degroote, S. Shadid, and G. Crombez. 2019. “A Self‐Regulation‐Based Ehealth and Mhealth Intervention for an Active Lifestyle in Adults With Type 2 Diabetes: Protocol for a Randomized Controlled Trial.” JMIR Research Protocols 8, no. 3: e12413. https://doi.org/10.2196/12413.</Citation></Reference><Reference><Citation>Sartore, G., E. Ragazzi, R. Caprino, and A. Lapolla. 2023. “Long‐Term HbA1c Variability and Macro‐/Micro‐Vascular Complications in Type 2 Diabetes Mellitus: A Meta‐Analysis Update.” Acta Diabetologica 60, no. 6: 721–738. https://doi.org/10.1007/s00592‐023‐02037‐8.</Citation></Reference><Reference><Citation>Schrauben, S. J., A. Inamdar, C. Yule, et al. 2022. “Effects of Dietary App‐Supported Tele‐Counseling on Sodium Intake, Diet Quality, and Blood Pressure in Patients With Diabetes and Kidney Disease.” Journal of Renal Nutrition 32, no. 1: 39–50. https://doi.org/10.1053/j.jrn.2021.08.006.</Citation></Reference><Reference><Citation>Thorsen, I. K., Y. Yang, L. S. Valentiner, et al. 2022. “The Effects of a Lifestyle Intervention Supported by the Interwalk Smartphone App on Increasing Physical Activity Among Persons With Type 2 Diabetes: Parallel‐Group, Randomized Trial.” JMIR mHealth and uHealth 10, no. 9: e30602. https://doi.org/10.2196/30602.</Citation></Reference><Reference><Citation>Toobert, D. J., S. E. Hampson, and R. E. Glasgow. 2000. “The Summary of Diabetes Self‐Care Activities Measure: Results From 7 Studies and a Revised Scale.” Diabetes Care 23, no. 7: 943–950. https://doi.org/10.2337/diacare.23.7.943.</Citation></Reference><Reference><Citation>Waki, K., M. Nara, S. Enomoto, et al. 2024. “Effectiveness of DialBetesPlus, a Self‐Management Support System for Diabetic Kidney Disease: Randomized Controlled Trial.” npj Digital Medicine 7, no. 1: 104. https://doi.org/10.1038/s41746‐024‐01114‐8.</Citation></Reference><Reference><Citation>Yang, Y., E. Y. Lee, H. S. Kim, S. H. Lee, K. H. Yoon, and J. H. Cho. 2020. “Effect of a Mobile Phone‐Based Glucose‐Monitoring and Feedback System for Type 2 Diabetes Management in Multiple Primary Care Clinic Settings: Cluster Randomized Controlled Trial.” JMIR mHealth and uHealth 8, no. 2: e16266. https://doi.org/10.2196/16266.</Citation></Reference><Reference><Citation>Young, H. M., S. Miyamoto, M. Dharmar, and Y. Tang‐Feldman. 2020. “Nurse Coaching and Mobile Health Compared With Usual Care to Improve Diabetes Self‐Efficacy for Persons With Type 2 Diabetes: Randomized Controlled Trial.” JMIR mHealth and uHealth 8, no. 3: e16665. https://doi.org/10.2196/16665.</Citation></Reference><Reference><Citation>Zhang, P., X. Tao, Y. Ma, et al. 2024. “Improving the Management of Type 2 Diabetes in China Using a Multifaceted Digital Health Intervention in Primary Health Care: The SMARTDiabetes Cluster Randomised Controlled Trial.” Lancet Regional Health–Western Pacific 49: 101130. https://doi.org/10.1016/j.lanwpc.2024.101130.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39648376</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>09</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1681-7168</ISSN><JournalIssue CitedMedium="Internet"><Volume>34</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the College of Physicians and Surgeons--Pakistan : JCPSP</Title><ISOAbbreviation>J Coll Physicians Surg Pak</ISOAbbreviation></Journal><ArticleTitle>Relationship of HbA1c with Mean Platelet Volume and Leucocyte Count in Patients with Type 2 Diabetes Mellitus.</ArticleTitle><Pagination><StartPage>1436</StartPage><EndPage>1440</EndPage><MedlinePgn>1436-1440</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.29271/jcpsp.2024.12.1436</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To determine the relationship between mean platelet volume (MPV), leucocyte count, and HbA1c levels in patients with type 2 diabetes mellitus (DM).</AbstractText><AbstractText Label="STUDY DESIGN" NlmCategory="METHODS">Observational study. Place and Duration of the Study: Bahcesehir Family Healthcare Centre (FHC), Adana, Turkiye, from January 2023 to 2024.</AbstractText><AbstractText Label="METHODOLOGY" NlmCategory="METHODS">This study included 101 controls and 106 patients with Type 2 diabetes mellitus (DM). Age, gender, body mass index (BMI), duration of diabetes, smoking, type of diabetic medication, and presence of chronic diseases were all assessed in relation to the patients. Analysis of leucocyte count, MPV, and HbA1c was conducted retrospectively. IBM SPSS version 25.0 was utilised for the statistical analysis, with p <0.05 being considered as the significance threshold.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The DM group exhibited significantly higher levels of HbA1c (7.8 ± 1.5%), MPV (9.2 ± 1.3 fL), and leucocyte count (7.1 ± 1.8 x10^3/µL) in comparison to the control group (p <0.001). There was a positive and statistically significant association found between the leucocyte count, MPV, and HbA1c. In the control group, there was no significant link onserved.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In patients with Type 2 DM, a favourable connection between HbA1c, MPV, and leucocyte count was observed. These results point to a higher risk of thrombosis and inflammation in DM patients. Patients with HbA1c values above 7 showed increased leucocyte counts and MPV, which indicated that these patients were at a higher risk of vascular problems. Leucocyte counts and MPV may serve as useful biomarkers to gauge the likelihood of vascular problems in DM.</AbstractText><AbstractText Label="KEY WORDS" NlmCategory="BACKGROUND">Type 2 diabetes mellitus, HbA1c, Mean platelet volume, Leucocyte count, Inflammation, Vascular complications.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kiziltas</LastName><ForeName>Ozlem</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>Seyhan Health Directorate, Adana, Turkiye.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Family Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkiye.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fidanci</LastName><ForeName>Izzet</ForeName><Initials>I</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Coll Physicians Surg Pak</MedlineTA><NlmUniqueID>9606447</NlmUniqueID><ISSNLinking>1022-386X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D063847" MajorTopicYN="Y">Mean Platelet Volume</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007958" MajorTopicYN="N">Leukocyte Count</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>18</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>6</Hour><Minute>17</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>48</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39648376</ArticleId><ArticleId IdType="doi">10.29271/jcpsp.2024.12.1436</ArticleId><ArticleId IdType="pii">040579197</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39648027</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>08</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0412-4081</ISSN><JournalIssue CitedMedium="Print"><Volume>60</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>11</Day></PubDate></JournalIssue><Title>[Zhonghua yan ke za zhi] Chinese journal of ophthalmology</Title><ISOAbbreviation>Zhonghua Yan Ke Za Zhi</ISOAbbreviation></Journal><ArticleTitle>[Association between type 2 diabetes mellitus and the risk of developing cataracts: based on the research of two-sample Mendelian randomization].</ArticleTitle><Pagination><StartPage>991</StartPage><EndPage>997</EndPage><MedlinePgn>991-997</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.3760/cma.j.cn112142-20240107-00005</ELocationID><Abstract><AbstractText><b>Objective:</b> To determine the causal relationship between cataracts and type 2 diabetes mellitus (T2D) by the Mendelian randomization (MR) analysis using the genome-wide association study (GWAS) data. <b>Methods:</b> Data on T2D and cataracts in the European population were obtained from the OpenGWAS database. The single nucleotide polymorphisms (SNPs) that met the genome-wide significance criteria (<i>P</i><5×10⁻⁸) of T2D (48 286 cases, 250 671 controls) and cataracts (5 045 cases, 356 096 controls) were selected. The main method was random effects inverse variance weighting (IVW), and four other two-sample MR methods were also used, including MR Egger, Simple median, Weighted median, and Weighted mode, to assess the causal relationship using odds ratios (<i>OR</i>). Sensitivity analyses were conducted using the leave-one-out approach to evaluate the robustness of the results. <b>Results:</b> The MR Egger analysis showed a significant risk association between T2D and cataracts (<i>OR=</i>1.003, 95%<i>CI</i>=1.001-1.006; <i>P</i>=0.013). Using the methods of Weighted median (<i>OR</i>=1.002, 95%<i>CI</i>=1.000-1.004; <i>P</i>=0.029) and Weighted mode (<i>OR</i>=1.002, 95%<i>CI</i>=1.000-1.005; <i>P</i>=0.046), similar results were obtained. However, the IVW test failed to confirm the causality (<i>P</i>=0.149). The sensitivity analyses using the MR Egger and IVW tests did not show significant heterogeneity between T2D and cataracts (all <i>P</i>>0.05). With the leave-one-out analysis, the SNPs with significant effects were not identified, indicating the robustness of the MR results in this study. The MR Egger interception of the SNPs showed significant directional pleiotropy (<i>P</i>=0.038), suggesting a directional pleiotropy between T2D and cataracts. <b>Conclusions:</b> The results of the MR analysis suggest there is a causal relationship between T2D and cataracts, and T2D increases the risk of cataracts.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>X H</ForeName><Initials>XH</Initials><AffiliationInfo><Affiliation>Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Wenzhou325027, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>B</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Wenzhou325027, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>W F</ForeName><Initials>WF</Initials><AffiliationInfo><Affiliation>Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Wenzhou325027, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Y E</ForeName><Initials>YE</Initials><AffiliationInfo><Affiliation>Eye Hospital of Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Wenzhou325027, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>chi</Language><GrantList CompleteYN="Y"><Grant><GrantID>2022C03070</GrantID><Agency>Key S&T Project of Zhejiang Provincial Department of Science and Technology</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D004740">English Abstract</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>China</Country><MedlineTA>Zhonghua Yan Ke Za Zhi</MedlineTA><NlmUniqueID>16210540R</NlmUniqueID><ISSNLinking>0412-4081</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D002386" MajorTopicYN="Y">Cataract</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="Y">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016017" MajorTopicYN="N">Odds Ratio</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="chi"><AbstractText><b>目的:</b> 探讨白内障与2型糖尿病的因果关系。 <b>方法:</b> 孟德尔随机化(MR)研究。于 全基因组关联研究(GWAS)的OpenGWAS 数据库获取欧洲人种的 2型糖尿病(病例数 48 286,对照数 250 671)和白内障(病例数 5 045,对照数 356 096)的数据。选取符合全基因组显著性标准(<i>P</i><5×10⁻⁸)的2型糖尿病和白内障的单核多态性(SNP)。主要采用随机效应逆方差加权(IVW)模型,同时运用了其他4种双样本MR模型,包括MR Egger、中位数、加权中位数(WM)和加权模式,用比值比(<i>OR)</i>及其95%置信区间(<i>CI</i>)来评估两者的因果关系;使用逐个剔除检验评估结果的稳健性。 <b>结果:</b> MR Egger 分析结果表明,2型糖尿病与白内障之间存在显著的风险关联(<i>OR</i>=1.003,95%<i>CI</i>=1.001~1.006,<i>P</i>=0.013);其他模型中WM(<i>OR</i>=1.002,95%<i>CI</i>=1.000~1.004,<i>P</i>=0.029)和加权模式(<i>OR</i>=1.002,95%<i>CI</i>=1.000~1.005,<i>P</i>=0.046)也得到类似的结果。但IVW检验结果显示无明显因果关系(<i>P</i>=0.149)。通过 MR Egger 和 IVW 检验开展敏感性分析,均未显示2型糖尿病与白内障之间存在显著的异质性(均<i>P</i>>0.05)。应用逐个剔除检验,未确定有显著影响的 SNP,表明该MR分析结果具有稳健性。SNP 的 MR Egger 截距(-0.0002)显示出显著的定向多效性(<i>P</i>=0.038),这些结果提示2型糖尿病与白内障之间存在方向性多效性作用。 <b>结论:</b> 基于欧洲人MR分析结果显示,2型糖尿病与白内障之间存在因果关系,2型糖尿病增加了白内障的风险。.</AbstractText></OtherAbstract></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>21</Hour><Minute>14</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39648027</ArticleId><ArticleId IdType="doi">10.3760/cma.j.cn112142-20240107-00005</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39647851</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>09</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>09</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1475-2727</ISSN><JournalIssue CitedMedium="Internet"><Volume>28</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>09</Day></PubDate></JournalIssue><Title>Public health nutrition</Title><ISOAbbreviation>Public Health Nutr</ISOAbbreviation></Journal><ArticleTitle>Dietary fat quality indices and risk of pre-diabetes and type 2 diabetes mellitus: Tehran Lipid and Glucose Study.</ArticleTitle><Pagination><StartPage>e8</StartPage><MedlinePgn>e8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1017/S1368980024001216</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To assess associations between dietary fat quality indices and risk of pre-diabetes and type 2 diabetes mellitus (T2DM) among Iranian adults.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">Daily intakes of fatty acids were estimated using a validated FFQ with 168 food items. Adjusted hazard ratios (HR) and 95 % CI for pre-diabetes and T2DM were calculated across tertile categories of dietary fat quality indices including the atherogenic index, thrombogenic index, health-promoting index, ratio of PUFA to SFA (PUFA:SFA) and ratio of hypo- and hypercholesterolaemia (h:H).</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">Tehran Lipid and Glucose Study.</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">Iranian men and women.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The mean (sd) age of the 2042 pre-diabetes-free participants in pre-diabetes analysis was 38·84 (12·97), and 55·2 % were women. In T2DM analysis, the mean (sd) age of the 2295 T2DM-free participants was 40·06 (13·42), and 54·6 % of them were women. In the crude model, the PUFA:SFA ratio was positively associated with T2DM incidence (HR = 1·43; 95 % CI 1·04, 1·98). However, after adjustment for confounding variables, there were no significant associations between dietary fat quality indices and risk of pre-diabetes and T2DM.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We found no significant association between fat quality indices and risk of pre-diabetes and T2DM. Further prospective and clinical trial studies are needed to clarify the issue.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Gaeini</LastName><ForeName>Zahra</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alvirdizadeh</LastName><ForeName>Sevda</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hosseinpour-Niazi</LastName><ForeName>Somayeh</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mirmiran</LastName><ForeName>Parvin</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Azizi</LastName><ForeName>Fereidoun</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Public Health Nutr</MedlineTA><NlmUniqueID>9808463</NlmUniqueID><ISSNLinking>1368-9800</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004041">Dietary Fats</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005227">Fatty Acids</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007492" MajorTopicYN="N" Type="Geographic">Iran</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004041" MajorTopicYN="Y">Dietary Fats</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005227" MajorTopicYN="N">Fatty Acids</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004032" MajorTopicYN="N">Diet</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Fat quality indices</Keyword><Keyword MajorTopicYN="N">Pre-diabetes</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>9</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>20</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39647851</ArticleId><ArticleId IdType="doi">10.1017/S1368980024001216</ArticleId><ArticleId IdType="pii">S1368980024001216</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39647763</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-0003</ISSN><JournalIssue CitedMedium="Internet"><Volume>286</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>International journal of biological macromolecules</Title><ISOAbbreviation>Int J Biol Macromol</ISOAbbreviation></Journal><ArticleTitle>Low-dose IL-2 restores metabolic dysfunction and immune dysregulation in mice with type 2 diabetes induced by a high-fat, high-sugar diet and streptozotocin.</ArticleTitle><Pagination><StartPage>138468</StartPage><MedlinePgn>138468</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijbiomac.2024.138468</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0141-8130(24)09279-1</ELocationID><Abstract><AbstractText>Interleukin-2 (IL-2) is pivotal in immune regulation, particularly in the promotion of regulatory T (Treg) cells and the maintenance of immune tolerance. While its efficacy in autoimmune diseases is well established, its role in type 2 diabetes (T2D) remains largely unexplored. This study investigates the effects of low-dose IL-2 in a KM mouse model of T2D induced by streptozotocin (STZ) and a high-fat, high-sugar (HFHS) diet. We found that low-dose IL-2 administration significantly improved fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c) levels, and glucose tolerance, indicating better glycemic control. Additionally, IL-2 treatment improved insulin sensitivity, enhanced insulin secretion, and ameliorated lipid metabolism, as evidenced by reduced cholesterol and triglyceride levels. These metabolic improvements were associated with a modulation of inflammation, including a reduction in pro-inflammatory cytokines (TNF-α, IL-1β) and an increase in anti-inflammatory cytokines (IL-10). Importantly, IL-2 also altered the gut microbiome, reducing intestinal inflammation and endotoxin levels, which suggests a broader impact on metabolic health beyond immune regulation. These findings support the potential of low-dose IL-2 as an immunotherapeutic approach for improving metabolic dysfunction and inflammation in T2D.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Huo</LastName><ForeName>Lijing</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Hairui</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hou</LastName><ForeName>Shiyu</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Wenting</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Meng</LastName><ForeName>Qingwen</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Chenhui</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ma</LastName><ForeName>Xiaohan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Lijing</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>He</LastName><ForeName>Jintian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China. Electronic address: 576477418@qq.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Baohua</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China. Electronic address: zhaobaohua@mail.hebtu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Int J Biol Macromol</MedlineTA><NlmUniqueID>7909578</NlmUniqueID><ISSNLinking>0141-8130</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007376">Interleukin-2</NameOfSubstance></Chemical><Chemical><RegistryNumber>5W494URQ81</RegistryNumber><NameOfSubstance UI="D013311">Streptozocin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="Y">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007376" MajorTopicYN="Y">Interleukin-2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013311" MajorTopicYN="Y">Streptozocin</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050356" MajorTopicYN="N">Lipid Metabolism</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Gut microbiota</Keyword><Keyword MajorTopicYN="N">IL-2</Keyword><Keyword MajorTopicYN="N">Immunotherapy</Keyword><Keyword MajorTopicYN="N">Macrophage polarization</Keyword><Keyword MajorTopicYN="N">Regulatory T cells</Keyword><Keyword MajorTopicYN="N">Th17 T cells</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors have no financial or non-financial interests that may be relevant to the submitted work.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>11</Day><Hour>14</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>19</Hour><Minute>17</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39647763</ArticleId><ArticleId IdType="doi">10.1016/j.ijbiomac.2024.138468</ArticleId><ArticleId IdType="pii">S0141-8130(24)09279-1</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39647665</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8227</ISSN><JournalIssue CitedMedium="Internet"><Volume>219</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes research and clinical practice</Title><ISOAbbreviation>Diabetes Res Clin Pract</ISOAbbreviation></Journal><ArticleTitle>Diabetes specialist nurse support, training and 'virtual' advice reduces district nurse visits and improves outcomes for people with diabetes requiring visits for insulin administration.</ArticleTitle><Pagination><StartPage>111948</StartPage><MedlinePgn>111948</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.diabres.2024.111948</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8227(24)00858-1</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">We evaluated the effectiveness of a community diabetes specialist nurse (cDSN) working with district nurses (DNs) to optimise insulin therapy on DN workload and patient outcomes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This was an observational clinical improvement study of outcomes pre- and post-introduction of an intervention within a community diabetes service in an areas of England. Patients were followed up for 6 months. The intervention was a cDSN providing advice and support to DNs in safe diabetes management, with a particular focus on insulin use.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">in total, 148 of 224 patients were reviewed; 130 (87.8 %) were available for follow up 6 months after their first review. Comparing pre- to post-intervention outcomes, number of patients with a hypoglycaemic event reduced from 21/129 to 1/128 (X<sup>2</sup> = 19.71, p < 0.001) as did the number with a hyperglycaemic event; 53/129 to 23/128 (X<sup>2</sup> = 16.48, p < 0.001). Number of DN visits and use of acute hospital services also improved significantly. Estimated cost savings through reduced DN visits, insulin usage, and hospital service use totalled £1.9 million.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Significant financial savings and reduced patient harms were identified following our intervention in this cohort. Roll-out to other sites in England is a next step.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Gilligan</LastName><ForeName>Laura</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>The Diabetes Centre, Ipswich Hospital, East Suffolk and North East Essex NHS Trust, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Page</LastName><ForeName>Emma</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>The Diabetes Centre, Ipswich Hospital, East Suffolk and North East Essex NHS Trust, UK; Getting It Right First Time Programme, NHS England, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hall</LastName><ForeName>Jo</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>The Diabetes Centre, Ipswich Hospital, East Suffolk and North East Essex NHS Trust, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ward</LastName><ForeName>Kelly</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>The Diabetes Centre, Ipswich Hospital, East Suffolk and North East Essex NHS Trust, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gray</LastName><ForeName>William K</ForeName><Initials>WK</Initials><AffiliationInfo><Affiliation>Getting It Right First Time Programme, NHS England, London, UK. Electronic address: William.gray5@nhs.net.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Briggs</LastName><ForeName>Tim W R</ForeName><Initials>TWR</Initials><AffiliationInfo><Affiliation>Getting It Right First Time Programme, NHS England, London, UK; Royal National Orthopaedic Hospital NHS Trust, Stanmore, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rayman</LastName><ForeName>Gerry</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>The Diabetes Centre, Ipswich Hospital, East Suffolk and North East Essex NHS Trust, UK; Getting It Right First Time Programme, NHS England, London, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Diabetes Res Clin Pract</MedlineTA><NlmUniqueID>8508335</NlmUniqueID><ISSNLinking>0168-8227</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="Y">Insulin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004739" MajorTopicYN="N" Type="Geographic">England</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000072184" MajorTopicYN="N">Nurse Specialists</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">Diabetes specialist nurse</Keyword><Keyword MajorTopicYN="N">District nurse</Keyword><Keyword MajorTopicYN="N">Insulin</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39647665</ArticleId><ArticleId IdType="doi">10.1016/j.diabres.2024.111948</ArticleId><ArticleId IdType="pii">S0168-8227(24)00858-1</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39647587</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1573-2517</ISSN><JournalIssue CitedMedium="Internet"><Volume>372</Volume><PubDate><Year>2025</Year><Month>Mar</Month><Day>01</Day></PubDate></JournalIssue><Title>Journal of affective disorders</Title><ISOAbbreviation>J Affect Disord</ISOAbbreviation></Journal><ArticleTitle>A randomised controlled feasibility trial of Behavioural activation as a treatment for people with diabetes and depression: (DiaDeM feasibility trial).</ArticleTitle><Pagination><StartPage>333</StartPage><EndPage>346</EndPage><MedlinePgn>333-346</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jad.2024.11.079</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0165-0327(24)01970-0</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">There is a lack of evidence on effective treatments for depression in people with T2DM, particularly in Low and Middle-Income Countries (LMICs). This study aims to test the feasibility and acceptability of a culturally adapted Behavioural Activation (BA) intervention (DiaDeM) for people with depression and T2DM in two South Asian LMICs.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A multicountry, individually randomised-controlled feasibility trial was conducted from March 2022 to November 2022. We recruited adults from diabetes healthcare facilities in Bangladesh and Pakistan with a diagnosis of depression and T2DM. Consenting individuals were randomised to either optimised usual care or the DiaDeM intervention, which comprised six BA sessions delivered by non-mental health facilitators over six to twelve weeks. Participants were followed up at three and six months post-randomisation. The feasibility and acceptability of recruitment and retention, intervention delivery, and data collection were assessed. A mixed-methods process evaluation was also performed to inform the main trial.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The DiaDeM feasibility trial successfully recruited 128 participants, with 85 % retention at six months follow-up. The majority of participants engaged with the intervention, demonstrating good adherence to the Behavioural Activation (BA) sessions. Data completeness for key outcomes, including depression severity and HbA1c levels, was high across all time points (>90 %). The process evaluation showed high acceptability of the intervention, with participants reporting increased motivation and improved management of both T2DM and depression.</AbstractText><AbstractText Label="DISCUSSION" NlmCategory="CONCLUSIONS">Good recruitment and retention rates, completeness of data collection, and high acceptability of the intervention showed that it would be feasible to undertake a full-scale trial.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ahmed</LastName><ForeName>Naveed</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh; BIRDEM General Hospital, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zavala</LastName><ForeName>Gerardo A</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom. Electronic address: g.zavala@york.ac.uk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqui</LastName><ForeName>Faraz</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aslam</LastName><ForeName>Faiza</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Institute of Psychiatry, Rawalpindi Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Keding</LastName><ForeName>Ada</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, York, Trials Unit, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Halmkan</LastName><ForeName>Shannon</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, York, Trials Unit, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Afaq</LastName><ForeName>Saima</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom; Institute of Public Health and Social Sciences, Khyber Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jennings</LastName><ForeName>Hannah Maria</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom; Hull York Medical School, York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Anas</LastName><ForeName>Ashraful</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shaha</LastName><ForeName>Sanjit K</ForeName><Initials>SK</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jahan</LastName><ForeName>Kazi Moriom</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kuddus</LastName><ForeName>Abdul</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nisar</LastName><ForeName>Zara</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, Khyber Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Walker</LastName><ForeName>Simon M</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>Centre for Health Economics, University of York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Naz</LastName><ForeName>Anum</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Institute of Psychiatry, Rawalpindi Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shakoor</LastName><ForeName>Hira</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, Khyber Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Niazi</LastName><ForeName>Asima K</ForeName><Initials>AK</Initials><AffiliationInfo><Affiliation>Baqai Institute of Diabetes and Endocrinology(BIDE), Karachi, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jacobs</LastName><ForeName>Rowena</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Centre for Health Economics, University of York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Coales</LastName><ForeName>Karen</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Azad</LastName><ForeName>Kishwar</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Centre for Health Research and Implementation, Diabetic Association of Bangladesh, Bangladesh.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fottrell</LastName><ForeName>Edward</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Institute for Global Health, University College London, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haq</LastName><ForeName>Zia Ul</ForeName><Initials>ZU</Initials><AffiliationInfo><Affiliation>Institute of Public Health and Social Sciences, Khyber Medical University, Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ekers</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom; Tees Esk and Wear Valleys NHS Foundation Trust, York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Siddiqi</LastName><ForeName>Najma</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, University of York, United Kingdom; Hull York Medical School, York, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hewitt</LastName><ForeName>Catherine</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Health Sciences, York, Trials Unit, United Kingdom.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>DiaDeM Global Health Research Group</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>J Affect Disord</MedlineTA><NlmUniqueID>7906073</NlmUniqueID><ISSNLinking>0165-0327</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005240" MajorTopicYN="Y">Feasibility Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003863" MajorTopicYN="N">Depression</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001459" MajorTopicYN="N" Type="Geographic">Bangladesh</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010154" MajorTopicYN="N" Type="Geographic">Pakistan</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001521" MajorTopicYN="N">Behavior Therapy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010342" MajorTopicYN="N">Patient Acceptance of Health Care</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>14</Day><Hour>0</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>19</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39647587</ArticleId><ArticleId IdType="doi">10.1016/j.jad.2024.11.079</ArticleId><ArticleId IdType="pii">S0165-0327(24)01970-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39647240</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1532-1983</ISSN><JournalIssue CitedMedium="Internet"><Volume>44</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Clinical nutrition (Edinburgh, Scotland)</Title><ISOAbbreviation>Clin Nutr</ISOAbbreviation></Journal><ArticleTitle>Beyond fat: Does semaglutide affect lean mass?</ArticleTitle><Pagination><StartPage>104</StartPage><EndPage>108</EndPage><MedlinePgn>104-108</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.clnu.2024.12.004</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0261-5614(24)00445-X</ELocationID><Abstract><AbstractText>This opinion paper aims to discuss the influence of semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), on lean mass beyond its impact on weight loss. Although significant weight loss is achieved with semaglutide, the impact of this drug on lean mass remains controversial. Several investigations have demonstrated that semaglutide-induced weight loss is linked to decreases in lean mass as well as fat mass; on the other hand, the ratio of lean mass to total body mass rises. Nevertheless, larger clinical trials have reported converse findings and significant reductions in lean mass following treatment with semaglutide. This disparity in research findings emphasizes the necessity for additional studies on this subject because semaglutide use is rising quickly.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Jamialahmadi</LastName><ForeName>Tannaz</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Eid</LastName><ForeName>Ali H</ForeName><Initials>AH</Initials><AffiliationInfo><Affiliation>Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gadde</LastName><ForeName>Kishore M</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Almahmeed</LastName><ForeName>Wael</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kroh</LastName><ForeName>Matthew</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al Zein</LastName><ForeName>Mohammad</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sahebkar</LastName><ForeName>Amirhossein</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address: amir_saheb2000@yahoo.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Clin Nutr</MedlineTA><NlmUniqueID>8309603</NlmUniqueID><ISSNLinking>0261-5614</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>53AXN4NNHX</RegistryNumber><NameOfSubstance UI="C000591245">semaglutide</NameOfSubstance></Chemical><Chemical><RegistryNumber>62340-29-8</RegistryNumber><NameOfSubstance UI="D004763">Glucagon-Like Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000067757">Glucagon-Like Peptide-1 Receptor</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D004763" MajorTopicYN="Y">Glucagon-Like Peptides</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015431" MajorTopicYN="Y">Weight Loss</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000067757" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor</DescriptorName><QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001823" MajorTopicYN="Y">Body Composition</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000273" MajorTopicYN="N">Adipose Tissue</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Body composition</Keyword><Keyword MajorTopicYN="N">Glucagon-like peptide-1 receptor agonist</Keyword><Keyword MajorTopicYN="N">Lean mass</Keyword><Keyword MajorTopicYN="N">Semaglutide</Keyword></KeywordList><CoiStatement>Conflict of interest The authors have no competing interests to disclose.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>9</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>18</Hour><Minute>2</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39647240</ArticleId><ArticleId IdType="doi">10.1016/j.clnu.2024.12.004</ArticleId><ArticleId IdType="pii">S0261-5614(24)00445-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39645620</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>08</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Electronic-Print"><Journal><ISSN IssnType="Electronic">1788-6120</ISSN><JournalIssue CitedMedium="Internet"><Volume>165</Volume><Issue>49</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>08</Day></PubDate></JournalIssue><Title>Orvosi hetilap</Title><ISOAbbreviation>Orv Hetil</ISOAbbreviation></Journal><ArticleTitle>[Drug repositioning and its aspects in clinical diabetology].</ArticleTitle><Pagination><StartPage>1919</StartPage><EndPage>1926</EndPage><MedlinePgn>1919-1926</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1556/650.2024.33177</ELocationID><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Pokoly</LastName><ForeName>Bence</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>1 Országos Mozgásszervi Intézet - Országos Reumatológiai és Fizioterápiás Intézet Budapest, Frankel Leó út 25-29., 1023 Magyarország.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>2 Szent Margit Kórház Budapest Magyarország.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Somogyi</LastName><ForeName>Anikó</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>3 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Hematológiai Klinika Budapest Magyarország.</Affiliation></AffiliationInfo></Author></AuthorList><Language>hun</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><VernacularTitle>A gyógyszer-repozicionálás és klinikai diabetológiai vonatkozásai.</VernacularTitle><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>08</Day></ArticleDate></Article><MedlineJournalInfo><Country>Hungary</Country><MedlineTA>Orv Hetil</MedlineTA><NlmUniqueID>0376412</NlmUniqueID><ISSNLinking>0030-6002</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058492" MajorTopicYN="Y">Drug Repositioning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003920" MajorTopicYN="N">Diabetes Mellitus</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="hun"><AbstractText>A gyógyszer-repozicionálás a gyógyszerfejlesztés különleges, mind gyakrabban alkalmazott útja. Az eljárás eredményeként bizonyos betegségek kezelésére már forgalomba került, illetve a fejlesztés különböző fázisaiban található gyógyszereket, hatóanyagokat új, az eredetitől néha teljesen eltérő indikációval kezdenek sikerrel használni. A közlemény első felében e folyamatról adunk rövid áttekintést, vázoljuk előnyeit és lehetséges buktatóit. Az általános bevezető részt követően számba vesszük a korábban antidiabetikumként forgalomba került gyógyszerek újabb sikeres alkalmazási területeit, majd megemlítünk néhány olyan készítményt, amely mára a diabetes mellitus kezelésében is felhasználhatóvá vált, időközben felismert számottevőbb vércukorszint-csökkentő tulajdonságai révén. Orv Hetil. 2024; 165(49): 1919–1926.</AbstractText></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">drug repositioning</Keyword><Keyword MajorTopicYN="N">gyógyszer-repozicionálás</Keyword><Keyword MajorTopicYN="N">terápia</Keyword><Keyword MajorTopicYN="N">treatment</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>12</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>11</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39645620</ArticleId><ArticleId IdType="doi">10.1556/650.2024.33177</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39645259</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>23</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1468-3296</ISSN><JournalIssue CitedMedium="Internet"><Volume>80</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>23</Day></PubDate></JournalIssue><Title>Thorax</Title><ISOAbbreviation>Thorax</ISOAbbreviation></Journal><ArticleTitle>Comparative estimate of glucose-lowering therapies on risk of incident pneumonia and severe sepsis: an analysis of real-world cohort data.</ArticleTitle><Pagination><StartPage>32</StartPage><EndPage>41</EndPage><MedlinePgn>32-41</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e221906</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/thorax-2024-221906</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are treatments for type 2 diabetes (T2D). Beyond glucose-lowering and cardiorenal protection, these drugs may protect against pneumonia and sepsis.</AbstractText><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">This study assesses the impact of SGLT2i and GLP-1 RAs on the risk of incident pneumonia and severe sepsis.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A retrospective cohort study was conducted using anonymised electronic medical records from TriNetX, a global federated database. Two intention-to-treat analyses were performed, each with two cohorts of adult T2D patients. The first analysis compared individuals prescribed SGLT2i, and the second individuals prescribed GLP-1 RAs, with those prescribed dipeptidyl peptidase-4 inhibitors (DPP-4i). An active comparator new user design was used, with outcomes defined as time-to-incident pneumonia and severe sepsis. Propensity score matching (1:1) was applied to control for potential confounders, and patients were followed for 12 months. Secondary analyses compared SGLT2i and GLP-1 RAs against other glucose-lowering therapies.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">After propensity score matching, 352 687 patients were included in the SGLT2i versus DPP-4i comparison. SGLT2i treatment was associated with a risk reduction in incident pneumonia (HR 0.75 (95% CI 0.73, 0.78)) and severe sepsis (0.75 (0.73, 0.77)). In the GLP-1 RA versus DPP-4i comparison, 331 863 patients were included. GLP-1 RA treatment was associated with a risk reduction in incident pneumonia (0.60 (0.58, 0.62)) and severe sepsis (0.61 (0.59, 0.63)).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">SGLT2i and GLP-1 RAs are associated with a reduced risk of incident pneumonia and severe sepsis in patients with T2D. Further research and focused randomised controlled trials are warranted to explore the broader clinical implications of these treatments.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Henney</LastName><ForeName>Alex E</ForeName><Initials>AE</Initials><Identifier Source="ORCID">0000-0002-8066-9470</Identifier><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Riley</LastName><ForeName>David R</ForeName><Initials>DR</Initials><Identifier Source="ORCID">0000-0002-0905-6524</Identifier><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hydes</LastName><ForeName>Theresa J</ForeName><Initials>TJ</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Anson</LastName><ForeName>Matthew</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ibarburu</LastName><ForeName>Gema H</ForeName><Initials>GH</Initials><AffiliationInfo><Affiliation>TriNetX LLC, Cambridge, Massachusetts, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Frost</LastName><ForeName>Frederick</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alam</LastName><ForeName>Uazman</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cuthbertson</LastName><ForeName>Daniel J</ForeName><Initials>DJ</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK dan.cuthbertson@liverpool.ac.uk.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Thorax</MedlineTA><NlmUniqueID>0417353</NlmUniqueID><ISSNLinking>0040-6376</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="CommentIn"><RefSource>doi: 10.1136/thorax-2024-222540</RefSource></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018805" MajorTopicYN="Y">Sepsis</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011014" MajorTopicYN="Y">Pneumonia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="Y">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Bacterial Infection</Keyword><Keyword MajorTopicYN="N">Clinical Epidemiology</Keyword><Keyword MajorTopicYN="N">Infection Control</Keyword><Keyword MajorTopicYN="N">Pneumonia</Keyword><Keyword MajorTopicYN="N">Respiratory Infection</Keyword></KeywordList><CoiStatement>Competing interests: MA receives a fellowship from the Novo Nordisk UK research foundation and JDRF. DJJC has received investigator-initiated grants from Astra Zeneca and Novo Nordisk, support for education from Perspectum with any financial remuneration from pharmaceutical company consultation made to the University of Liverpool. GHI is an employee of TriNetX LLC. UA has received honoraria from Procter & Gamble, Viatris, Grunenthal and Sanofi for educational meetings and funding for attendance at an educational meeting from Diiachi Sankyo. UA has also received investigator-led funding from Procter & Gamble and is a council member of the Royal Society of Medicine’s Vascular, Lipid & Metabolic Medicine Section. All other authors declare that there are no financial relationships or activities that might bias, or be perceived to bias, their contribution to this manuscript.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>24</Day><Hour>0</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>20</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>27</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39645259</ArticleId><ArticleId IdType="pmc">PMC11671942</ArticleId><ArticleId IdType="doi">10.1136/thorax-2024-221906</ArticleId><ArticleId IdType="pii">thorax-2024-221906</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci. 2023;24:13.:11038. doi: 10.3390/ijms241311038.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms241311038</ArticleId><ArticleId IdType="pmc">PMC10341596</ArticleId><ArticleId IdType="pubmed">37446214</ArticleId></ArticleIdList></Reference><Reference><Citation>Ehrlich SF, Quesenberry CP, Jr, Van Den Eeden SK, et al. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33:55–60. doi: 10.2337/dc09-0880.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-0880</ArticleId><ArticleId IdType="pmc">PMC2797986</ArticleId><ArticleId IdType="pubmed">19808918</ArticleId></ArticleIdList></Reference><Reference><Citation>Kornum JB, Thomsen RW, Riis A, et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care. 2008;31:1541–5. doi: 10.2337/dc08-0138.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc08-0138</ArticleId><ArticleId IdType="pmc">PMC2494631</ArticleId><ArticleId IdType="pubmed">18487479</ArticleId></ArticleIdList></Reference><Reference><Citation>Gorricho J, Garjón J, Alonso A, et al. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol. 2017;83:2034–44. doi: 10.1111/bcp.13288.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/bcp.13288</ArticleId><ArticleId IdType="pmc">PMC5555874</ArticleId><ArticleId IdType="pubmed">28294379</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh S, Loke YK, Furberg CD. Long-term use of thiazolidinediones and the associated risk of pneumonia or lower respiratory tract infection: systematic review and meta-analysis. Thorax. 2011;66:383–8. doi: 10.1136/thx.2010.152777.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/thx.2010.152777</ArticleId><ArticleId IdType="pubmed">21325145</ArticleId></ArticleIdList></Reference><Reference><Citation>Salvatore T, Galiero R, Caturano A, et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci. 2022;23:3651. doi: 10.3390/ijms23073651.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms23073651</ArticleId><ArticleId IdType="pmc">PMC8998569</ArticleId><ArticleId IdType="pubmed">35409011</ArticleId></ArticleIdList></Reference><Reference><Citation>Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20:189. doi: 10.1186/s12933-021-01366-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-021-01366-8</ArticleId><ArticleId IdType="pmc">PMC8442438</ArticleId><ArticleId IdType="pubmed">34526024</ArticleId></ArticleIdList></Reference><Reference><Citation>Cariou B. Pleiotropic effects of insulin and GLP-1 receptor agonists: Potential benefits of the association. Diabetes & Metabolism. 2015;41:6S28–35. doi: 10.1016/S1262-3636(16)30006-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1262-3636(16)30006-4</ArticleId><ArticleId IdType="pubmed">26774017</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel DK, Strong J. The Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Beyond the Glycemic Benefit. Diabetes Ther. 2019;10:1771–92. doi: 10.1007/s13300-019-00686-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-019-00686-z</ArticleId><ArticleId IdType="pmc">PMC6778563</ArticleId><ArticleId IdType="pubmed">31456166</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H-L, Tse Y-K, Chandramouli C, et al. Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Pneumonia and Septic Shock. J Clin Endocrinol Metab. 2022;107:3442–51. doi: 10.1210/clinem/dgac558.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgac558</ArticleId><ArticleId IdType="pmc">PMC9693836</ArticleId><ArticleId IdType="pubmed">36181458</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang M, et al. Association of SGLT2I vs. DPP4I with Pneumonia, COVID-19, and Adverse Respiratory Events in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Can J Diabetes. 2024 doi: 10.1016/j.jcjd.2024.04.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2024.04.009</ArticleId><ArticleId IdType="pubmed">38636589</ArticleId></ArticleIdList></Reference><Reference><Citation>Yeo YH, Gaddam S, Ng WH, et al. Increased Risk of Aspiration Pneumonia Associated With Endoscopic Procedures Among Patients With Glucagon-like Peptide 1 Receptor Agonist Use. Gastroenterology. 2024;167:402–4. doi: 10.1053/j.gastro.2024.03.015.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.gastro.2024.03.015</ArticleId><ArticleId IdType="pubmed">38552724</ArticleId></ArticleIdList></Reference><Reference><Citation>Brunetti VC, Reynier P, Azoulay L, et al. SGLT-2 inhibitors and the risk of hospitalization for community-acquired pneumonia: A population-based cohort study. Pharmacoepidemiol Drug Saf. 2021;30:740–8. doi: 10.1002/pds.5192.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/pds.5192</ArticleId><ArticleId IdType="pubmed">33428309</ArticleId></ArticleIdList></Reference><Reference><Citation>Patoulias D, Boulmpou A, Imprialos K, et al. Meta-analysis evaluating the risk of respiratory tract infections and acute respiratory distress syndrome with glucagon-like peptide-1 receptor agonists in cardiovascular outcome trials: Useful implications for the COVID-19 pandemic. Rev Clin Esp (Barc) 2022;222:229–32. doi: 10.1016/j.rceng.2021.04.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.rceng.2021.04.002</ArticleId><ArticleId IdType="pmc">PMC8179096</ArticleId><ArticleId IdType="pubmed">34167924</ArticleId></ArticleIdList></Reference><Reference><Citation>Palchuk MB, London JW, Perez-Rey D, et al. A global federated real-world data and analytics platform for research. JAMIA Open. 2023;6:ooad035. doi: 10.1093/jamiaopen/ooad035.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jamiaopen/ooad035</ArticleId><ArticleId IdType="pmc">PMC10182857</ArticleId><ArticleId IdType="pubmed">37193038</ArticleId></ArticleIdList></Reference><Reference><Citation>VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med. 2017;167:268–74. doi: 10.7326/M16-2607.</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/M16-2607</ArticleId><ArticleId IdType="pubmed">28693043</ArticleId></ArticleIdList></Reference><Reference><Citation>Elm E von, Altman DG, Egger M, et al. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335:806–8. doi: 10.1136/bmj.39335.541782.AD.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.39335.541782.AD</ArticleId><ArticleId IdType="pmc">PMC2034723</ArticleId><ArticleId IdType="pubmed">17947786</ArticleId></ArticleIdList></Reference><Reference><Citation>Puckrin R, Saltiel M-P, Reynier P, et al. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018;55:503–14. doi: 10.1007/s00592-018-1116-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-018-1116-0</ArticleId><ArticleId IdType="pubmed">29484489</ArticleId></ArticleIdList></Reference><Reference><Citation>Mudaliar S, Polidori D, Zambrowicz B, et al. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside. Diabetes Care. 2015;38:2344–53. doi: 10.2337/dc15-0642.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc15-0642</ArticleId><ArticleId IdType="pubmed">26604280</ArticleId></ArticleIdList></Reference><Reference><Citation>Jeong HE, Park S, Noh Y, et al. Association of adverse respiratory events with sodium-glucose cotransporter 2 inhibitors versus dipeptidyl peptidase 4 inhibitors among patients with type 2 diabetes in South Korea: a nationwide cohort study. BMC Med. 2023;21:47. doi: 10.1186/s12916-023-02765-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12916-023-02765-2</ArticleId><ArticleId IdType="pmc">PMC9913005</ArticleId><ArticleId IdType="pubmed">36765407</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu M, Wang R, Pei L, et al. The relationship between the use of GLP-1 receptor agonists and the incidence of respiratory illness: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr . 2023;15:164. doi: 10.1186/s13098-023-01118-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-023-01118-6</ArticleId><ArticleId IdType="pmc">PMC10369734</ArticleId><ArticleId IdType="pubmed">37491292</ArticleId></ArticleIdList></Reference><Reference><Citation>Rezaiguia-Delclaux S, Streich B, Bouleau D, et al. Pulmonary scintigraphy for diagnosis of aspiration during intravenous propofol anaesthesia for colonoscopy. Br J Anaesth. 2001;87:204–6. doi: 10.1093/bja/87.2.204.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bja/87.2.204</ArticleId><ArticleId IdType="pubmed">11493490</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheong AJY, Teo YN, Teo YH, et al. SGLT inhibitors on weight and body mass: A meta-analysis of 116 randomized-controlled trials. Obesity (Silver Spring) . 2022;30:117–28. doi: 10.1002/oby.23331.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.23331</ArticleId><ArticleId IdType="pubmed">34932882</ArticleId></ArticleIdList></Reference><Reference><Citation>White GE, Shu I, Rometo D, et al. Real-world weight-loss effectiveness of glucagon-like peptide-1 agonists among patients with type 2 diabetes: A retrospective cohort study. Obesity (Silver Spring) . 2023;31:537–44. doi: 10.1002/oby.23622.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.23622</ArticleId><ArticleId IdType="pmc">PMC9877131</ArticleId><ArticleId IdType="pubmed">36621904</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun F, Chai S, Li L, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network meta-analysis. J Diabetes Res. 2015;2015:157201. doi: 10.1155/2015/157201.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2015/157201</ArticleId><ArticleId IdType="pmc">PMC4320855</ArticleId><ArticleId IdType="pubmed">25688373</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. The Lancet. 2021;397:971–84. doi: 10.1016/S0140-6736(21)00213-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(21)00213-0</ArticleId><ArticleId IdType="pubmed">33667417</ArticleId></ArticleIdList></Reference><Reference><Citation>Forsythe LK, Wallace JMW, Livingstone MBE. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21:117–33. doi: 10.1017/S0954422408138732.</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0954422408138732</ArticleId><ArticleId IdType="pubmed">19087366</ArticleId></ArticleIdList></Reference><Reference><Citation>Iannantuoni F, M de Marañon A, Diaz-Morales N, et al. The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. J Clin Med. 2019;8:11. doi: 10.3390/jcm8111814.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm8111814</ArticleId><ArticleId IdType="pmc">PMC6912454</ArticleId><ArticleId IdType="pubmed">31683785</ArticleId></ArticleIdList></Reference><Reference><Citation>Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther Adv Endocrinol Metab. 2024;15:20420188231222367. doi: 10.1177/20420188231222367.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/20420188231222367</ArticleId><ArticleId IdType="pmc">PMC10823863</ArticleId><ArticleId IdType="pubmed">38288136</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen L, Jhund PS, Anand IS, et al. Incidence and Outcomes of Pneumonia in Patients With Heart Failure. J Am Coll Cardiol. 2021;77:1961–73. doi: 10.1016/j.jacc.2021.03.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2021.03.001</ArticleId><ArticleId IdType="pubmed">33888245</ArticleId></ArticleIdList></Reference><Reference><Citation>McDonald HI, Thomas SL, Millett ERC, et al. CKD and the risk of acute, community-acquired infections among older people with diabetes mellitus: a retrospective cohort study using electronic health records. Am J Kidney Dis. 2015;66:60–8. doi: 10.1053/j.ajkd.2014.11.027.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.ajkd.2014.11.027</ArticleId><ArticleId IdType="pmc">PMC4510204</ArticleId><ArticleId IdType="pubmed">25641062</ArticleId></ArticleIdList></Reference><Reference><Citation>Aberle J, Menzen M, Schmid SM, et al. Dapagliflozin effects on haematocrit, red blood cell count and reticulocytes in insulin-treated patients with type 2 diabetes. Sci Rep. 2020;10:22396. doi: 10.1038/s41598-020-78734-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-78734-z</ArticleId><ArticleId IdType="pmc">PMC7769973</ArticleId><ArticleId IdType="pubmed">33372185</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu AY, Peebles RS. The GLP-1 receptor in airway inflammation in asthma: a promising novel target? Expert Rev Clin Immunol. 2021;17:1053–7. doi: 10.1080/1744666X.2021.1971973.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/1744666X.2021.1971973</ArticleId><ArticleId IdType="pmc">PMC8487967</ArticleId><ArticleId IdType="pubmed">34425713</ArticleId></ArticleIdList></Reference><Reference><Citation>James PG, et al. Metformin reduces airway glucose permeability and hyperglycaemia-induced. Thorax. 2013;68:835. doi: 10.1136/thoraxjnl-2012-203178.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/thoraxjnl-2012-203178</ArticleId><ArticleId IdType="pmc">PMC3756442</ArticleId><ArticleId IdType="pubmed">23709760</ArticleId></ArticleIdList></Reference><Reference><Citation>McLaughlin JM, Swerdlow DL, Isturiz RE, et al. Rethinking number-needed-to-vaccinate for pneumococcal conjugate vaccines in older adults: Current and future implications. Vaccine (Auckl) 2017;35:5360–5. doi: 10.1016/j.vaccine.2017.08.028.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vaccine.2017.08.028</ArticleId><ArticleId IdType="pubmed">28863866</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilding J. SGLT2 inhibitors and urinary tract infections. Nat Rev Endocrinol. 2019;15:687–8. doi: 10.1038/s41574-019-0275-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-019-0275-6</ArticleId><ArticleId IdType="pubmed">31641244</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39645032</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>07</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1559-2030</ISSN><JournalIssue CitedMedium="Internet"><Volume>148</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Contemporary clinical trials</Title><ISOAbbreviation>Contemp Clin Trials</ISOAbbreviation></Journal><ArticleTitle>Protocol for the implementation and referral of the ecofit physical activity intervention within Diabetes Alliance Program Plus among regional, rural and remote people with type 2 diabetes in a primary care setting.</ArticleTitle><Pagination><StartPage>107774</StartPage><MedlinePgn>107774</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cct.2024.107774</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1551-7144(24)00357-4</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">This paper outlines the protocol for the ecofit implementation-effectiveness trial, a multi-component mobile Health (mHealth) intervention that aims to increase resistance and aerobic physical activity in primary care-based adults with type 2 diabetes (T2D). This study will be conducted as part of the Diabetes Alliance Program Plus (DAP+), a large-scale integrated health service intervention in a large health district in Australia. The ecofit program has previously demonstrated efficacy and effectiveness in insufficiently active people with (or at risk of) T2D and community dwelling-adults, respectively. The aim of this study is to assess the reach (primary outcome), adoption, appropriateness, feasibility and fidelity of the implementation of ecofit and the overall effectiveness of the intervention.</AbstractText><AbstractText Label="RESEARCH DESIGN AND METHODS" NlmCategory="METHODS">Prospective participants are adults diagnosed with T2D, who attend primary care settings enrolled in DAP+, and are identified and referred to ecofit by a primary care clinician. To support the implementation of ecofit a host of strategies will be utilised, which includes the education and upskilling of primary care clinicians enrolled in DAP+ using brief training sessions, the supply of an information package and access to professional development. The co-primary outcomes of reach will be defined as the number of participant registrations on the ecofit platform and the number of primary care clinicians who have been introduced to ecofit.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study will evaluate the implementation of ecofit among adults with T2D within the primary care setting. The results may help improve T2D lifestyle interventions in primary care settings across Australia.</AbstractText><CopyrightInformation>Copyright © 2024. Published by Elsevier Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Jansson</LastName><ForeName>Anna K</ForeName><Initials>AK</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia; Active Living and Learning Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beacroft</LastName><ForeName>Sam</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Duncan</LastName><ForeName>Mitch J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia; Active Living and Learning Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cox</LastName><ForeName>Emily R</ForeName><Initials>ER</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia; Active Living and Learning Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Robards</LastName><ForeName>Sara L</ForeName><Initials>SL</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ferris</LastName><ForeName>Wendy</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hure</LastName><ForeName>Alexis</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, Newcastle, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Acharya</LastName><ForeName>Shamasunder</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Hunter New England Local Health District, John Hunter Hospital, New Lambton Heights, Newcastle, NSW, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Plotnikoff</LastName><ForeName>Ronald C</ForeName><Initials>RC</Initials><AffiliationInfo><Affiliation>Centre for Active Living and Learning, School of Education, University of Newcastle, Callaghan, NSW, Australia; Active Living and Learning Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia. Electronic address: ron.plotnikoff@newcastle.edu.au.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078325">Clinical Trial Protocol</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Contemp Clin Trials</MedlineTA><NlmUniqueID>101242342</NlmUniqueID><ISSNLinking>1551-7144</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001315" MajorTopicYN="N" Type="Geographic">Australia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006293" MajorTopicYN="N">Health Promotion</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011320" MajorTopicYN="Y">Primary Health Care</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012017" MajorTopicYN="N">Referral and Consultation</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012424" MajorTopicYN="N">Rural Population</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017216" MajorTopicYN="Y">Telemedicine</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000068456" MajorTopicYN="N">Clinical Studies as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Physical activity</Keyword><Keyword MajorTopicYN="N">Primary care</Keyword><Keyword MajorTopicYN="N">Resistance training</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword><Keyword MajorTopicYN="N">mHealth</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39645032</ArticleId><ArticleId IdType="doi">10.1016/j.cct.2024.107774</ArticleId><ArticleId IdType="pii">S1551-7144(24)00357-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39644731</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>26</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>26</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1878-0334</ISSN><JournalIssue CitedMedium="Internet"><Volume>18</Volume><Issue>11-12</Issue><PubDate><Year>2024</Year><Season>Nov-Dec</Season></PubDate></JournalIssue><Title>Diabetes & metabolic syndrome</Title><ISOAbbreviation>Diabetes Metab Syndr</ISOAbbreviation></Journal><ArticleTitle>The mediating role of the food environment, greenspace, and walkability in the association between socioeconomic position and type 2 diabetes - The Maastricht Study.</ArticleTitle><Pagination><StartPage>103155</StartPage><MedlinePgn>103155</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.dsx.2024.103155</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1871-4021(24)00216-9</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">This study investigates the interplay between socioeconomic position (SEP), the residential food environment, walkability, greenspace, and type 2 diabetes (T2D), particularly whether the environmental factors mediate the association between SEP and T2D.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">SEP, T2D status, residential Food Environment Healthiness Index (FEHI), number of fast-food outlets (FF), walkability index (WI), and proportion of greenspace (GS) were ascertained in 9188 participants. The associations between SEP, the environment and T2D were modeled with logistic regression and survival analysis. The proportion of mediation of the association between SEP and T2D was estimated with causal mediation analysis.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Lower SEP was associated with higher risk of T2D. Hazard ratios (HR) were 2.03 (95 % CI 1.60-2.58), 1.79 (1.40-2.30) and 1.77 (1.21-2.58) for an interquartile range decrease (IQR) of education, income, and occupation, respectively. HRs for IQR changes of the environmental factors were: FEHI 1.20 (1.00-1.43), FF 0.87 (0.76-0.99), WI 1.23 (0.95-1.58) and GS 1.16 (0.96-1.43). Regression on prevalent T2D yielded similar results. Lower socioeconomic position was associated with a less healthy environment (e.g., FEHI -0.10 (-0.12--0.07) for education). Environmental exposures mediated between 0.1 % (-0.7-0.9) and 2.6 % (0.4-5.2) of the cross-sectional associations and 0.3 % (-8.6-8.6) and 8.5 % (2.3-27.4) of the longitudinal associations.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">People with lower SEP had higher risk and prevalence of T2D and lived in a slightly less healthy residential environment. The association between SEP and T2D is not strongly mediated by FEHI, FF, WI, or GS.</AbstractText><CopyrightInformation>Copyright © 2024 Research Trust of DiabetesIndia (DiabetesIndia) and National Diabetes Obesity and Cholesterol Foundation (N-DOC). Published by Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Albers</LastName><ForeName>Jeroen D</ForeName><Initials>JD</Initials><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands. Electronic address: j.albers@maastrichtuniversity.nl.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koster</LastName><ForeName>Annemarie</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sezer</LastName><ForeName>Bengisu</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Meisters</LastName><ForeName>Rachelle</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schram</LastName><ForeName>Miranda T</ForeName><Initials>MT</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; MHeNS School for Mental Health and Neuroscience, Maastricht University and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Eussen</LastName><ForeName>Simone J P M</ForeName><Initials>SJPM</Initials><AffiliationInfo><Affiliation>Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dukers</LastName><ForeName>Nicole H T M</ForeName><Initials>NHTM</Initials><AffiliationInfo><Affiliation>Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands; Department of Health Promotion, Maastricht University, Maastricht, the Netherlands and Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Heerlen, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jansen</LastName><ForeName>Maria W J</ForeName><Initials>MWJ</Initials><AffiliationInfo><Affiliation>Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands; Living Lab Public Health Limburg, Public Health Service South Limburg, Heerlen, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stehouwer</LastName><ForeName>Coen D A</ForeName><Initials>CDA</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lakerveld</LastName><ForeName>Jeroen</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Epidemiology and Data Science, Amsterdam University Medical Centers,Vrije Universiteit Amsterdam and Amsterdam Public Health, Health Behaviours and Chronic Diseases, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bosma</LastName><ForeName>Hans</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>25</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Diabetes Metab Syndr</MedlineTA><NlmUniqueID>101462250</NlmUniqueID><ISSNLinking>1871-4021</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016138" MajorTopicYN="Y">Walking</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012111" MajorTopicYN="N">Residence Characteristics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012959" MajorTopicYN="N">Socioeconomic Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012923" MajorTopicYN="N">Social Class</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000091542" MajorTopicYN="N">Neighborhood Characteristics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Food environment</Keyword><Keyword MajorTopicYN="N">Greenspace</Keyword><Keyword MajorTopicYN="N">Socioeconomic position</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword><Keyword MajorTopicYN="N">Walkability</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>27</Day><Hour>0</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>18</Hour><Minute>6</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644731</ArticleId><ArticleId IdType="doi">10.1016/j.dsx.2024.103155</ArticleId><ArticleId IdType="pii">S1871-4021(24)00216-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39644730</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>26</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>26</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1878-0334</ISSN><JournalIssue CitedMedium="Internet"><Volume>18</Volume><Issue>11-12</Issue><PubDate><Year>2024</Year><Season>Nov-Dec</Season></PubDate></JournalIssue><Title>Diabetes & metabolic syndrome</Title><ISOAbbreviation>Diabetes Metab Syndr</ISOAbbreviation></Journal><ArticleTitle>Machine learning algorithms mimicking specialists decision making on initial treatment for people with type 2 diabetes mellitus in Japan diabetes data management study (JDDM76).</ArticleTitle><Pagination><StartPage>103168</StartPage><MedlinePgn>103168</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.dsx.2024.103168</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1871-4021(24)00229-7</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To evaluate whether typical machine learning models that mimic specialists' care can successfully reproduce information, not only on whether to prescribe medications but also which hypoglycemic agents to prescribe as initial treatment for type 2 diabetes.</AbstractText><AbstractText Label="RESEARCH DESIGN AND METHODS" NlmCategory="METHODS">A medical records database containing prescriptions for medications for 16,005 patients who visited a diabetologist's office for the first time was utilized to train five typical machine learning models as well-as a model used for logistic analysis. Prescribed were no medications (diet and exercise therapy), insulin, biguanides (BG), sulfonylureas (SU), dipeptidyl peptidase-4 inhibitors (DPP-4I), alpha-glucosidase inhibitors (α-GI) or glinides. Models were compared based on the F1 score and ROC/AUC scores.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">XGBoost, which splits decision-making into three sections, was the top performing model (42 % accuracy) among five models and conventional logistic regression (35 % accuracy). The second highest scoring model was Support Vector Machines, which had an accuracy of 40 %. When using XGBoost to compare decisions on no medication needed vs. needing medication the AUC was 0.96. Insulin vs. oral medications had an AUC of 0.78. With all remaining oral medications removed, the AUC was 0.76.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Among the five models investigated, XGBoost outperformed the other machine learning models examined as well as the traditional logistic model, suggesting that its accuracy had the potential to assist non-specialists in decision-making regarding treatment of patients with type 2 diabetes in the future.</AbstractText><CopyrightInformation>Copyright © 2024 Research Trust of DiabetesIndia (DiabetesIndia) and National Diabetes Obesity and Cholesterol Foundation (N-DOC). Published by Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Price</LastName><ForeName>Jenny Elizabeth</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>Graduate School of Science and Technology, Niigata University, Niigata, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fujihara</LastName><ForeName>Kazuya</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Hematology, Endocrinology and Metabolism, University Faculty of Medicine, Niigata, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kodama</LastName><ForeName>Satoru</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Hematology, Endocrinology and Metabolism, University Faculty of Medicine, Niigata, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamazaki</LastName><ForeName>Katsuya</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Kawai Clinic, Tsukuba, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Maegawa</LastName><ForeName>Hiroshi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Medicine, Shiga University of Medical Science, Shiga, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamazaki</LastName><ForeName>Tatsuya</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Faculty of Engineering, Niigata University, Niigata, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sone</LastName><ForeName>Hirohito</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Hematology, Endocrinology and Metabolism, University Faculty of Medicine, Niigata, Japan. Electronic address: sone@med.niigata-u.ac.jp.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Japan Diabetes Clinical Data Management Study Group (JDDM study group)</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Diabetes Metab Syndr</MedlineTA><NlmUniqueID>101462250</NlmUniqueID><ISSNLinking>1871-4021</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007564" MajorTopicYN="N" Type="Geographic">Japan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003657" MajorTopicYN="N">Decision Making</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013038" MajorTopicYN="N">Specialization</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes specialists</Keyword><Keyword MajorTopicYN="N">Initial therapy</Keyword><Keyword MajorTopicYN="N">Machine learning</Keyword><Keyword MajorTopicYN="N">Patterns of usage</Keyword><Keyword MajorTopicYN="N">XGBoost</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that there is no duality of interest associated with this manuscript.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>27</Day><Hour>0</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>10</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>18</Hour><Minute>6</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644730</ArticleId><ArticleId IdType="doi">10.1016/j.dsx.2024.103168</ArticleId><ArticleId IdType="pii">S1871-4021(24)00229-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39644661</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>08</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1873-7072</ISSN><JournalIssue CitedMedium="Internet"><Volume>467</Volume><PubDate><Year>2025</Year><Month>Mar</Month><Day>01</Day></PubDate></JournalIssue><Title>Food chemistry</Title><ISOAbbreviation>Food Chem</ISOAbbreviation></Journal><ArticleTitle>Chemical characterization and DPP IV inhibitory capacity of purified adzuki bean β-vignin digest in comparison to soybean β-conglycinin and in vitro effect of β-vignin on diabetic-related outcomes.</ArticleTitle><Pagination><StartPage>142285</StartPage><MedlinePgn>142285</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.foodchem.2024.142285</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0308-8146(24)03935-9</ELocationID><Abstract><AbstractText>Adzuki bean (AB) is a legume with a low glycemic index and is traditionally used in Asian cultures to modulate type 2 diabetes (T2D). Our objectives were to characterize the functional peptides from purified AB β-vignin after simulated gastrointestinal digestion in comparison to soybean β-conglycinin, to evaluate their DPP IV inhibitory capacity, and to determine in vitro the effect of digested AB β-vignin on diabetic-related outcomes using HepG2 cells in healthy and insulin-resistant states. Five peptides (215-742 Da) from AB β-vignin and five peptides (215-447 Da) from β-conglycinin were identified to exhibit bioactivity as DPP IV inhibitors. Molecular docking demonstrated peptides could bind to DPP IV at the same binding site as a diabetic medication, linagliptin. Digested AB β-vignin significantly increased (p < 0.05) hepatic glucose uptake (> 290 %) via DPP IV inhibition (> 40 %) in healthy and insulin-resistant states. IRS-1, Akt-1, and Glut 2 increased after treating cells with digested AB β-vignin in healthy and insulin-resistant states.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kwan</LastName><ForeName>Shu Hang</ForeName><Initials>SH</Initials><AffiliationInfo><Affiliation>Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Esteves</LastName><ForeName>Frida</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Tecnologico de Monterrey, Monterrey, Mexico.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Davis</LastName><ForeName>Emily</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gonzalez de Mejia</LastName><ForeName>Elvira</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA. Electronic address: edemejia@illinois.edu.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Food Chem</MedlineTA><NlmUniqueID>7702639</NlmUniqueID><ISSNLinking>0308-8146</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005916">Globulins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C013894">beta-conglycinin protein, Glycine max</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D055314">Seed Storage Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D030262">Soybean Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.14.5</RegistryNumber><NameOfSubstance UI="D018819">Dipeptidyl Peptidase 4</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D052179">Antigens, Plant</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005916" MajorTopicYN="Y">Globulins</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055314" MajorTopicYN="Y">Seed Storage Proteins</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D030262" MajorTopicYN="Y">Soybean Proteins</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018819" MajorTopicYN="Y">Dipeptidyl Peptidase 4</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D056945" MajorTopicYN="N">Hep G2 Cells</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="Y">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D052179" MajorTopicYN="Y">Antigens, Plant</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004063" MajorTopicYN="N">Digestion</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000070658" MajorTopicYN="N">Vigna</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013025" MajorTopicYN="N">Glycine max</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Adzuki bean β-vignin</Keyword><Keyword MajorTopicYN="N">Antidiabetic potential</Keyword><Keyword MajorTopicYN="N">Dipeptidyl peptidase IV inhibition</Keyword><Keyword MajorTopicYN="N">Glucose uptake</Keyword><Keyword MajorTopicYN="N">Insulin resistance</Keyword><Keyword MajorTopicYN="N">Vigna angularis</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>8</Day><Hour>6</Hour><Minute>20</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>18</Hour><Minute>4</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644661</ArticleId><ArticleId IdType="doi">10.1016/j.foodchem.2024.142285</ArticleId><ArticleId IdType="pii">S0308-8146(24)03935-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39644538</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>17</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1873-460X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of diabetes and its complications</Title><ISOAbbreviation>J Diabetes Complications</ISOAbbreviation></Journal><ArticleTitle>Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways.</ArticleTitle><Pagination><StartPage>108928</StartPage><MedlinePgn>108928</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jdiacomp.2024.108928</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1056-8727(24)00254-X</ELocationID><Abstract><AbstractText>Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Yaribeygi</LastName><ForeName>Habib</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran. Electronic address: habib.yari@yahoo.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kashian</LastName><ForeName>Kiana</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moghaddam</LastName><ForeName>Kimia Imani</ForeName><Initials>KI</Initials><AffiliationInfo><Affiliation>Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karim</LastName><ForeName>Sheida Rashmeh</ForeName><Initials>SR</Initials><AffiliationInfo><Affiliation>Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bagheri</LastName><ForeName>Narges</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karav</LastName><ForeName>Sercan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jamialahmadi</LastName><ForeName>Tannaz</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rizzo</LastName><ForeName>Manfredi</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sahebkar</LastName><ForeName>Amirhossein</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address: amir_Saheb2000@yahoo.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Diabetes Complications</MedlineTA><NlmUniqueID>9204583</NlmUniqueID><ISSNLinking>1056-8727</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>89750-14-1</RegistryNumber><NameOfSubstance UI="D052216">Glucagon-Like Peptide 1</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D052216" MajorTopicYN="Y">Glucagon-Like Peptide 1</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="Y">Liver</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008107" MajorTopicYN="N">Liver Diseases</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D048909" MajorTopicYN="N">Diabetes Complications</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">GLP-1</Keyword><Keyword MajorTopicYN="N">Hepatic disorder</Keyword><Keyword MajorTopicYN="N">Inflammation</Keyword><Keyword MajorTopicYN="N">Liver</Keyword><Keyword MajorTopicYN="N">NAFLD</Keyword><Keyword MajorTopicYN="N">Oxidative stress</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that have no conflict of interest in this study.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>18</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644538</ArticleId><ArticleId IdType="doi">10.1016/j.jdiacomp.2024.108928</ArticleId><ArticleId IdType="pii">S1056-8727(24)00254-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39644537</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1873-460X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of diabetes and its complications</Title><ISOAbbreviation>J Diabetes Complications</ISOAbbreviation></Journal><ArticleTitle>Glucagon-like Peptide-1 receptor agonists versus dipeptidyl-peptidase 4 inhibitors in advanced chronic kidney disease and end stage kidney disease: Real world effectiveness and persistence of therapy.</ArticleTitle><Pagination><StartPage>108925</StartPage><MedlinePgn>108925</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jdiacomp.2024.108925</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1056-8727(24)00251-4</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Atherosclerotic cardiovascular disease is the leading cause of death in people with type 2 diabetes (T2D) and chronic kidney disease (CKD) or end-stage kidney disease (ESKD). Glucagon-Like Peptide-1 receptor agonists (GLP-1RA) reduce cardiovascular events, improve glycemic control, promote weight loss, and slow progression of nephropathy. Despite these benefits and professional society treatment guidelines recommendations, GLP-1RAs remain under-utilized in people with advanced CKD and ESKD due to tolerability and safety concerns.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We conducted a retrospective cohort study comparing clinical outcomes and medication use details after initiating GLP-1RA or dipeptidyl-peptidase 4 inhibitor (DPP-4i) in people with T2D and advanced CKD or ESKD. Eligible patients were identified via electronic health record query with extraction of baseline demographics, vital signs, and laboratory values. A manual chart review was undertaken to confirm eligibility, medication use, and extract a detailed account of all side effects.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 236 eligible patients (149 in the GLP-1RA group and 87 in the DPP-4i group) were identified. The average duration of treatment was 1036 (±909.9) and 1109 (±1090.9) days for GLP-1RA and DPP-4i, respectively. The average percentage weight loss from baseline to 36 months of treatment in the GLP-1RA group was -9.6 % (95 % CI, -11.3 to -7.8) versus -2.4 % (95 % CI, -5.4 to 0.5) in the DPP-4i group (estimated treatment difference (ETD) -7.1 (95 % CI, -10.6 to -3.7) percentage-points, p < 0.001). The change in HbA1c from baseline to 36 months of treatment was significantly greater in the GLP-1RA (-1.0 %) compared with the DPP-4i group (0.2 %) (ETD -1.2 (95 % CI, -2.1 to -0.3) percentage-points, p = 0.04).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">In patients with T2D and advanced CKD or ESKD, treatment with GLP-1RAs in a real-world setting had long treatment persistence, and compared to DPP-4is, was associated with greater weight loss and glycemic improvement.</AbstractText><CopyrightInformation>Published by Elsevier Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sidra</LastName><ForeName>F N U</ForeName><Initials>FNU</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Dept of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Agarwal</LastName><ForeName>Shubham</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Dept of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA. Electronic address: shubhamagarwaldr@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lockhart Pastor</LastName><ForeName>Paola</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Dept of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Donglu</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xilong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lingvay</LastName><ForeName>Ildiko</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Division of Endocrinology, Dept of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Diabetes Complications</MedlineTA><NlmUniqueID>9204583</NlmUniqueID><ISSNLinking>1056-8727</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="Y">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007676" MajorTopicYN="Y">Kidney Failure, Chronic</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="Y">Diabetic Nephropathies</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000099059" MajorTopicYN="N">Assessment of Medication Adherence</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Advanced CKD</Keyword><Keyword MajorTopicYN="N">DPP-4i</Keyword><Keyword MajorTopicYN="N">Dialysis</Keyword><Keyword MajorTopicYN="N">ESKD</Keyword><Keyword MajorTopicYN="N">GLP-1RA</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Donglu Xie reports financial support was provided by National Center for Advancing Translational Sciences. Ildiko Lingvay reports a relationship with Novo Nordisk that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Sanofi that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Merck that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Pfizer that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Mylan that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Boehringer Ingelheim that includes: consulting or advisory and funding grants. Ildiko Lingvay reports a relationship with Eli Lilly that includes: consulting or advisory. Ildiko Lingvay reports a relationship with AstraZeneca that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Janssen that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Intercept that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Intarcia that includes: consulting or advisory. Ildiko Lingvay reports a relationship with TargetPharma that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Novartis that includes: consulting or advisory. Ildiko Lingvay reports a relationship with GI Dynamics that includes: consulting or advisory. Ildiko Lingvay reports a relationship with MannKind that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Valeritas that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Carmot that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Zealand Pharma that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Shionogi that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Mediflix that includes: consulting or advisory. Ildiko Lingvay reports a relationship with Bayer that includes: consulting or advisory. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>11</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>18</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644537</ArticleId><ArticleId IdType="doi">10.1016/j.jdiacomp.2024.108925</ArticleId><ArticleId IdType="pii">S1056-8727(24)00251-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39644303</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>07</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0869-866X</ISSN><JournalIssue CitedMedium="Print"><Volume>32</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Problemy sotsial'noi gigieny, zdravookhraneniia i istorii meditsiny</Title><ISOAbbreviation>Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med</ISOAbbreviation></Journal><ArticleTitle>[The inadequate physical activity as risk factor of non-communicable diseases].</ArticleTitle><Pagination><StartPage>1267</StartPage><EndPage>1272</EndPage><MedlinePgn>1267-1272</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.32687/0869-866X-2024-32-6-1267-1272</ELocationID><Abstract><AbstractText>The article presents brief review of impact of inadequate physical activity on development of non-communicable diseases. The low physical activity is among top five most significant factors of premature death and is the cause of more than 20% of cases of diabetes mellitus II and chronic cardiovascular diseases. The article considers mode of assessing intensity of physical activity based on using metabolic equivalent. The effect of hypodynamia on development of obesity, diseases of musculoskeletal system, diabetes mellitus II, cardio-vascular and oncological diseases is considered. The relationship between inadequate physical activity and population mental health is considered too.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Amlaev</LastName><ForeName>K R</ForeName><Initials>KR</Initials><AffiliationInfo><Affiliation>The Federal State Budget Educational Institution of Higher Education "The Stavropol State Medical University" of the Minzdrav of Russia, 355017, Stavropol, Russia, kum672002@mail.ru.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dahkilgova</LastName><ForeName>Kh T</ForeName><Initials>KT</Initials><AffiliationInfo><Affiliation>The Federal State Budget Educational Institution of Higher Education "The Stavropol State Medical University" of the Minzdrav of Russia, 355017, Stavropol, Russia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Blinkova</LastName><ForeName>L N</ForeName><Initials>LN</Initials><AffiliationInfo><Affiliation>The Federal State Budget Educational Institution of Higher Education "The Stavropol State Medical University" of the Minzdrav of Russia, 355017, Stavropol, Russia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mazharov</LastName><ForeName>V N</ForeName><Initials>VN</Initials><AffiliationInfo><Affiliation>The Federal State Budget Educational Institution of Higher Education "The Stavropol State Medical University" of the Minzdrav of Russia, 355017, Stavropol, Russia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>rus</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D004740">English Abstract</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Russia (Federation)</Country><MedlineTA>Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med</MedlineTA><NlmUniqueID>101270373</NlmUniqueID><ISSNLinking>0869-866X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073296" MajorTopicYN="Y">Noncommunicable Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">exercise</Keyword><Keyword MajorTopicYN="N">hypodynamia</Keyword><Keyword MajorTopicYN="N">physical activity</Keyword><Keyword MajorTopicYN="N">risk factor</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>10</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>8</Day><Hour>1</Hour><Minute>9</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>10</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39644303</ArticleId><ArticleId IdType="doi">10.32687/0869-866X-2024-32-6-1267-1272</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39643900</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1475-2840</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>06</Day></PubDate></JournalIssue><Title>Cardiovascular diabetology</Title><ISOAbbreviation>Cardiovasc Diabetol</ISOAbbreviation></Journal><ArticleTitle>Diabetes does not increase in-hospital or short-term mortality in patients undergoing surgical repair for type A aortic dissection: insight from the national readmission database.</ArticleTitle><Pagination><StartPage>436</StartPage><MedlinePgn>436</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">436</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12933-024-02524-4</ELocationID><Abstract><AbstractText Label="BACKGROUND">Previous studies have reported a protective effect of type 2 diabetes on the incidence and progression of aortic aneurysms. We investigated whether this protective effect extends to aortic dissections.</AbstractText><AbstractText Label="METHODS">Data from the US Nationwide Readmission Database (2016-2019) were analyzed. Patients admitted for open surgery repair of acute type A aortic dissection (TAAD) were initially analyzed (index group). Those discharged alive were followed for up to 30 days (readmission group). The co-primary outcomes were in-hospital and 30-day mortality.</AbstractText><AbstractText Label="RESULTS">Between 2016 and 2019, 7,324 patients were admitted for open surgical repair of acute TAAD, of whom 965 (13.2%) had diabetes. Patients with diabetes were older and had a higher prevalence of obesity, hypertension, smoking, dyslipidemia, and chronic kidney disease (CKD). 15.2% of patients with diabetes and 14.6% without diabetes died; hence, diabetes did not have a significant impact on in-hospital mortality (adjusted odd ratio [aOR] = 1.02 [0.84-1.24]). Similarly, diabetes was not associated with a higher adjusted risk of atrial fibrillation (aOR = 1.03 [0.89-1.20]), stroke (aOR = 0.83 [0.55-1.26]), cardiogenic shock (aOR = 1.18 [0.98-1.42]), but increased the risk of acute renal failure (aOR = 1.20 [1.04-1.39]). Within 30 days of discharge, 154 (15.9%) patients with diabetes and 952 (15%) from the non-diabetes group were readmitted. Readmitted patients with diabetes were older and had a higher prevalence of cardiovascular comorbidities. We didn't observe any significant difference in the adjusted risk of 30-day mortality between the diabetes and non-diabetes groups (adjusted hazard ratio [aHR] = 0.81 [0.41-1.60]). However, diabetes was associated with a lower risk of readmission (aHR = 0.81 [0.68-0.97]). Age was the most significant predictor of all outcomes. CKD was the most significant predictor of 30-day mortality, with the risk increasing five-fold in patients with diabetes (HR = 5.58 [2.58-6.62]. Cardiovascular-related conditions were the most common causes of readmission in both groups. However, respiratory-related conditions were more prevalent in the diabetes group compared to the non-diabetes group (19.5% vs. 13%, respectively, p = 0.032).</AbstractText><AbstractText Label="CONCLUSIONS">Diabetes does not increase in-hospital or short-term mortality in patients undergoing surgical repair for Type A aortic dissection.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Chaudhry</LastName><ForeName>Hamza</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dargham</LastName><ForeName>Soha</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Biostatistics Core, Weill Cornell Medicine- Qatar, Doha, Qatar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jayyousi</LastName><ForeName>Amin</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al Suwaidi</LastName><ForeName>Jassim</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Heart hospital, Hamad Medical Corporation, Doha, Qatar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abi Khalil</LastName><ForeName>Charbel</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0002-1428-6324</Identifier><AffiliationInfo><Affiliation>Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar. cha2022@med.cornell.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Heart hospital, Hamad Medical Corporation, Doha, Qatar. cha2022@med.cornell.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Sanford and I. Weill Department of Medicine, Weill Cornell Medicine, New York, USA. cha2022@med.cornell.edu.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cardiovasc Diabetol</MedlineTA><NlmUniqueID>101147637</NlmUniqueID><ISSNLinking>1475-2840</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000784" MajorTopicYN="Y">Aortic Dissection</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016208" MajorTopicYN="Y">Databases, Factual</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017052" MajorTopicYN="Y">Hospital Mortality</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010359" MajorTopicYN="Y">Patient Readmission</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001014" MajorTopicYN="Y">Aortic Aneurysm</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D065840" MajorTopicYN="N">Protective Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014656" MajorTopicYN="N">Vascular Surgical Procedures</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Aortic dissection</Keyword><Keyword MajorTopicYN="N">Cardiology</Keyword><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">Type A aortic dissection</Keyword><Keyword MajorTopicYN="N">Vascular medicine</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was approved by WCM-Q’s institutional review board (record number 21−0002). Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>48</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>47</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>23</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39643900</ArticleId><ArticleId IdType="pmc">PMC11622540</ArticleId><ArticleId IdType="doi">10.1186/s12933-024-02524-4</ArticleId><ArticleId IdType="pii">10.1186/s12933-024-02524-4</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Levy D, Goyal A, Grigorova Y, Farci F, Le JK. Aortic Dissection. In: StatPearls. Treasure Island (FL); 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">28722992</ArticleId></ArticleIdList></Reference><Reference><Citation>Gawinecka J, Schonrath F, von Eckardstein A. Acute aortic dissection: pathogenesis, risk factors and diagnosis. Swiss Med Wkly. 2017;147:w14489.</Citation><ArticleIdList><ArticleId IdType="pubmed">28871571</ArticleId></ArticleIdList></Reference><Reference><Citation>Howard DP, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM, Oxford Vascular S. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation. 2013;127(20):2031–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6016737</ArticleId><ArticleId IdType="pubmed">23599348</ArticleId></ArticleIdList></Reference><Reference><Citation>McClure RS, Ouzounian M, Boodhwani M, El-Hamamsy I, Chu MWA, Pozeg Z, Dagenais F, Sikdar KC, Appoo JJ. Cause of death following surgery for Acute Type A Dissection: evidence from the Canadian thoracic aortic collaborative. Aorta (Stamford). 2017;5(2):33–41.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5570566</ArticleId><ArticleId IdType="pubmed">28868314</ArticleId></ArticleIdList></Reference><Reference><Citation>Harky A, Bashir M, Antoniou A, Bilal H. Open aortic arch surgery: the gold standard method. Indian J Thorac Cardiovasc Surg. 2019;35(Suppl 2):130–5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7525466</ArticleId><ArticleId IdType="pubmed">33061078</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi Khalil C. Macrovascular complications in patients with diabetes and Prediabetes. Biomed Res Int. 2017;2017:7839101.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5697393</ArticleId><ArticleId IdType="pubmed">29238721</ArticleId></ArticleIdList></Reference><Reference><Citation>Raffort J, Lareyre F, Clement M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res. 2018;114(13):1702–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6198737</ArticleId><ArticleId IdType="pubmed">30052821</ArticleId></ArticleIdList></Reference><Reference><Citation>Theivacumar NS, Stephenson MA, Mistry H, Valenti D. Diabetes mellitus and aortic aneurysm rupture: a favorable association? Vasc Endovascular Surg. 2014;48(1):45–50.</Citation><ArticleIdList><ArticleId IdType="pubmed">24065625</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Zhang L, Zhu G, Feng R, Zhou J, Jing Z. Diabetes Mellitus lowers the risk of aortic dissection: a systematic review and meta-analysis. Ann Vasc Surg. 2021;74:209–19.</Citation><ArticleIdList><ArticleId IdType="pubmed">33529778</ArticleId></ArticleIdList></Reference><Reference><Citation>He X, Liu X, Liu W, Wang B, Liu Y, Li Z, Wang T, Tan R, Gao B, Zeng H. Association between diabetes and risk of aortic dissection: a case-control study in a Chinese Population. PLoS ONE. 2015;10(11):e0142697.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4643043</ArticleId><ArticleId IdType="pubmed">26562793</ArticleId></ArticleIdList></Reference><Reference><Citation>Agana DFG, Striley CW, Cook RL, Cruz-Almeida Y, Carek PJ, Salemi JL. A novel approach to characterizing readmission patterns following hospitalization for ambulatory care-sensitive conditions. J Gen Intern Med. 2020;35(4):1060–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7174498</ArticleId><ArticleId IdType="pubmed">31993948</ArticleId></ArticleIdList></Reference><Reference><Citation>INTRODUCTION TO THE HCUP NATIONWIDE READMISSIONS DATABASE (NRD). 2020 [https://hcup-us.ahrq.gov/db/nation/nrd/Introduction_NRD_2020.jsp#:~:text=These%20States%20are%20geographically%20dispersed,for%20data%20years%202010%2D2020].</Citation></Reference><Reference><Citation>Yuan X, Mitsis A, Nienaber CA. Current understanding of aortic dissection. Life (Basel) 2022, 12(10).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9605578</ArticleId><ArticleId IdType="pubmed">36295040</ArticleId></ArticleIdList></Reference><Reference><Citation>Prakash SK, Pedroza C, Khalil YA, Milewicz DM. Diabetes and reduced risk for thoracic aortic aneurysms and dissections: a nationwide case-control study. J Am Heart Assoc 2012, 1(2).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3487378</ArticleId><ArticleId IdType="pubmed">23130125</ArticleId></ArticleIdList></Reference><Reference><Citation>Avdic T, Franzen S, Zarrouk M, Acosta S, Nilsson P, Gottsater A, Svensson AM, Gudbjornsdottir S, Eliasson B. Reduced long-term risk of aortic aneurysm and aortic dissection among individuals with type 2 diabetes Mellitus: a Nationwide Observational Study. J Am Heart Assoc 2018, 7(3).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5850251</ArticleId><ArticleId IdType="pubmed">29367416</ArticleId></ArticleIdList></Reference><Reference><Citation>Theivacumar NS, Stephenson MA, Mistry H, Valenti D. Diabetics are less likely to develop thoracic aortic dissection: a 10-year single-center analysis. Ann Vasc Surg. 2014;28(2):427–32.</Citation><ArticleIdList><ArticleId IdType="pubmed">24360939</ArticleId></ArticleIdList></Reference><Reference><Citation>Arun D, Munir W, Schmitt LV, Vyas R, Ravindran JI, Bashir M, Williams IM, Velayudhan B, Idhrees M. Exploring the correlation and protective role of diabetes mellitus in aortic aneurysm disease. Front Cardiovasc Med. 2021;8:769343.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8606667</ArticleId><ArticleId IdType="pubmed">34820431</ArticleId></ArticleIdList></Reference><Reference><Citation>Visca D, Pignatti P, Spanevello A, Lucini E, La Rocca E. Relationship between diabetes and respiratory diseases-clinical and therapeutic aspects. Pharmacol Res. 2018;137:230–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">30312663</ArticleId></ArticleIdList></Reference><Reference><Citation>Golledge J, Karan M, Moran CS, Muller J, Clancy P, Dear AE, Norman PE. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions. Eur Heart J. 2008;29(5):665–72.</Citation><ArticleIdList><ArticleId IdType="pubmed">18263873</ArticleId></ArticleIdList></Reference><Reference><Citation>Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol. 2015;35(8):1746–55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4514552</ArticleId><ArticleId IdType="pubmed">26044582</ArticleId></ArticleIdList></Reference><Reference><Citation>Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, Andreotti F. Insulin-like growth factor-1 as a vascular protective factor. Circulation. 2004;110(15):2260–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">15477425</ArticleId></ArticleIdList></Reference><Reference><Citation>Harris KM, Nienaber CA, Peterson MD, Woznicki EM, Braverman AC, Trimarchi S, Myrmel T, Pyeritz R, Hutchison S, Strauss C, et al. Early mortality in type A acute aortic dissection: insights from the international registry of acute aortic dissection. JAMA Cardiol. 2022;7(10):1009–15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9403853</ArticleId><ArticleId IdType="pubmed">36001309</ArticleId></ArticleIdList></Reference><Reference><Citation>Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, Bridges CR, Haan CK, Svedjeholm R, Taegtmeyer H, et al. The society of thoracic surgeons practice guideline series: blood glucose management during adult cardiac surgery. Ann Thorac Surg. 2009;87(2):663–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">19161815</ArticleId></ArticleIdList></Reference><Reference><Citation>Malone DL, Genuit T, Tracy JK, Gannon C, Napolitano LM. Surgical site infections: reanalysis of risk factors. J Surg Res. 2002;103(1):89–95.</Citation><ArticleIdList><ArticleId IdType="pubmed">11855922</ArticleId></ArticleIdList></Reference><Reference><Citation>Bower WF, Jin L, Underwood MJ, Lee JF, Lee KF, Lam YH, Ng SK, Vlantis AC, Lai PB. Overt diabetes mellitus adversely affects surgical outcomes of noncardiovascular patients. Surgery. 2010;147(5):670–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">20045546</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan AT, Koh M, Chan KK, Guo H, Alter DA, Austin PC, Tu JV, Wijeysundera HC, Ko DT. Association between cardiovascular risk factors and aortic stenosis: the CANHEART aortic stenosis study. J Am Coll Cardiol. 2017;69(12):1523–32.</Citation><ArticleIdList><ArticleId IdType="pubmed">28335833</ArticleId></ArticleIdList></Reference><Reference><Citation>Rawshani A, Sattar N, McGuire DK, Wallstrom O, Smith U, Boren J, Bergstrom G, Omerovic E, Rosengren A, Eliasson B, et al. Left-sided degenerative valvular heart disease in type 1 and type 2 diabetes. Circulation. 2022;146(5):398–411.</Citation><ArticleIdList><ArticleId IdType="pubmed">35678729</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu Q, Lv J, Ye Y, Li Z, Wang W, Zhang B, Zhao Q, Zhao Z, Zhang H, Liu Q, et al. Prevalence and impact of diabetes in patients with valvular heart disease. iScience. 2024;27(3):109084.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10875155</ArticleId><ArticleId IdType="pubmed">38375234</ArticleId></ArticleIdList></Reference><Reference><Citation>Manduteanu I, Simionescu D, Simionescu A, Simionescu M. Aortic valve disease in diabetes: molecular mechanisms and novel therapies. J Cell Mol Med. 2021;25(20):9483–95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8505854</ArticleId><ArticleId IdType="pubmed">34561944</ArticleId></ArticleIdList></Reference><Reference><Citation>Chow JP, Simionescu DT, Warner H, Wang B, Patnaik SS, Liao J, Simionescu A. Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials. 2013;34(3):685–95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3496025</ArticleId><ArticleId IdType="pubmed">23103157</ArticleId></ArticleIdList></Reference><Reference><Citation>Mehran R, Nikolsky E, Lansky AJ, Kirtane AJ, Kim Y-H, Feit F, Manoukian S, Moses JW, Ebrahimi R, Ohman EM, et al. Impact of chronic kidney disease on early (30-Day) and late (1-Year) outcomes of patients with Acute coronary syndromes treated with alternative antithrombotic treatment strategies: an ACUITY (Acute catheterization and urgent intervention triage strategY) Substudy. JACC: Cardiovasc Interventions. 2009;2(8):748–57.</Citation><ArticleIdList><ArticleId IdType="pubmed">19695543</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith DH, Thorp ML, Gurwitz JH, McManus DD, Goldberg RJ, Allen LA, Hsu G, Sung SH, Magid DJ, Go AS. Chronic kidney disease and outcomes in heart failure with preserved Versus reduced ejection fraction. Circulation: Cardiovasc Qual Outcomes. 2013;6(3):333–42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3904800</ArticleId><ArticleId IdType="pubmed">23685625</ArticleId></ArticleIdList></Reference><Reference><Citation>Huber M, Ozrazgat-Baslanti T, Thottakkara P, Scali S, Bihorac A, Hobson C. Cardiovascular-specific mortality and kidney disease in patients undergoing vascular surgery. JAMA Surg. 2016;151(5):441–50.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4871734</ArticleId><ArticleId IdType="pubmed">26720406</ArticleId></ArticleIdList></Reference><Reference><Citation>Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52.</Citation><ArticleIdList><ArticleId IdType="pubmed">23727170</ArticleId></ArticleIdList></Reference><Reference><Citation>Baaten C, Schröer JR, Floege J, Marx N, Jankowski J, Berger M, Noels H. Platelet abnormalities in CKD and their implications for antiplatelet therapy. Clin J Am Soc Nephrol. 2022;17(1):155–70.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8763166</ArticleId><ArticleId IdType="pubmed">34750169</ArticleId></ArticleIdList></Reference><Reference><Citation>Harris D, Klyushnenkova E, Kalsi R, Garrido D, Bhardwaj A, Rabin J, Toursavadkohi S, Diaz J, Crawford R. Non-white race is an independent risk factor for hospitalization for aortic dissection. Ethn Dis. 2016;26(3):363–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4948803</ArticleId><ArticleId IdType="pubmed">27440976</ArticleId></ArticleIdList></Reference><Reference><Citation>Asfaw A, Ning Y, Bergstein A, Takayama H, Kurlansky P. Racial disparities in surgical treatment of type a acute aortic dissection. JTCVS Open. 2023;14:46–76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10328814</ArticleId><ArticleId IdType="pubmed">37425478</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen SW, Chan YH, Lin CP, Wu VC, Cheng YT, Chen DY, Chang SH, Hung KC, Chu PH, Chou AH. Association of long-term use of antihypertensive medications with late outcomes among patients with aortic dissection. JAMA Netw Open. 2021;4(3):e210469.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7930924</ArticleId><ArticleId IdType="pubmed">33656527</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39643008</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8227</ISSN><JournalIssue CitedMedium="Internet"><Volume>219</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes research and clinical practice</Title><ISOAbbreviation>Diabetes Res Clin Pract</ISOAbbreviation></Journal><ArticleTitle>Responses to lifestyle interventions among individuals with distinct pre-diabetes phenotypes: A systematic review and Meta-Analysis.</ArticleTitle><Pagination><StartPage>111939</StartPage><MedlinePgn>111939</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.diabres.2024.111939</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8227(24)00849-0</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">To assess responses to lifestyle interventions (LIs) among individuals with distinct pre-diabetes phenotypes (isolated impaired fasting glucose [i-IFG], isolated impaired glucose tolerance [i-IGT], and combined IFG + IGT) for reducing diabetes incidence, reversing pre-diabetes, and improving glycemic control and insulin sensitivity.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">PubMed, Embase, Cochrane Library, and Web of Science were searched until December 6th, 2023. We included randomized controlled trials examining responses to LIs (including diet and/or physical activity) among adults with i-IFG, i-IGT, and IFG + IGT. Outcomes included diabetes incidence, normoglycemia incidence, fasting plasma glucose (FPG), 2-hour plasma glucose (2 h-PG), hemoglobin A1c, fasting insulin (FI), and homeostasis model assessment-insulin resistance (HOMA-IR). Random-effects meta-analyses were performed to estimate risk ratios (RRs) and mean differences.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Twenty-seven studies were included. Meta-analysis of 10 studies that performed stratified analyses by pre-diabetes phenotype found that LIs significantly reduced diabetes incidence in i-IGT (RR = 0.69 [0.56; 0.85], I<sup>2</sup> = 14 %) and IFG + IGT (RR = 0.56 [0.48; 0.66], I<sup>2</sup> = 0 %) but not in i-IFG (RR = 0.85 [0.66; 1.11], I<sup>2</sup> = 0 %; p<sub>subgroup</sub> = 0.02). Meta-analysis of 20 studies using IGT for participant recruitment showed that LIs significantly decreased diabetes incidence, increased normoglycemia incidence, and improved FPG, 2 h-PG, FI and HOMA-IR.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">LIs are effective for IGT (with or without IFG), but tailored LIs are needed for i-IFG to prevent diabetes.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Rong</LastName><ForeName>Jincheng</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>School of Nursing, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, China. Electronic address: u3010481@connect.hku.hk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ho</LastName><ForeName>Mandy</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Nursing, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, China. Electronic address: mandyho1@hku.hk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Disheng</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>School of Nursing, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, China. Electronic address: zdison@connect.hku.hk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chau</LastName><ForeName>Pui Hing</ForeName><Initials>PH</Initials><AffiliationInfo><Affiliation>School of Nursing, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, SAR, China. Electronic address: phchau@graduate.hku.hk.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Diabetes Res Clin Pract</MedlineTA><NlmUniqueID>8508335</NlmUniqueID><ISSNLinking>0168-8227</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010641" MajorTopicYN="Y">Phenotype</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008019" MajorTopicYN="Y">Life Style</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="N">Exercise</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="N">Glucose Intolerance</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes prevention</Keyword><Keyword MajorTopicYN="N">Impaired fasting glucose</Keyword><Keyword MajorTopicYN="N">Impaired glucose tolerance</Keyword><Keyword MajorTopicYN="N">Lifestyle intervention</Keyword><Keyword MajorTopicYN="N">Pre-diabetes</Keyword><Keyword MajorTopicYN="N">Systematic review</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>46</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>20</Hour><Minute>38</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39643008</ArticleId><ArticleId IdType="doi">10.1016/j.diabres.2024.111939</ArticleId><ArticleId IdType="pii">S0168-8227(24)00849-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39643007</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8227</ISSN><JournalIssue CitedMedium="Internet"><Volume>219</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes research and clinical practice</Title><ISOAbbreviation>Diabetes Res Clin Pract</ISOAbbreviation></Journal><ArticleTitle>Efficacy of flash glucose monitoring on HbA1c in type 2 diabetes: An individual patient data meta-analysis of real-world evidence.</ArticleTitle><Pagination><StartPage>111950</StartPage><MedlinePgn>111950</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.diabres.2024.111950</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8227(24)00860-X</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">There is a growing body of evidence demonstrating the benefit of flash glucose monitoring in type 2 diabetes mellitus (T2DM). This individual patient data meta-analysis aimed to investigate the impact of commencing flash glucose monitoring on HbA1c in people living with T2DM treated with insulin in a real-world setting.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A meta-analysis of eight observational studies which assessed change in HbA1c at 3-6 months following initiating flash glucose monitoring for which Abbott Diabetes Care could provide individual patient data was performed. Studies included adults with T2DM managed with insulin and baseline HbA1c between 8.0 %-12.0 % (64-108 mmol/mol). A one-stage model was created to explore heterogeneity.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 803 patients were included in the analysis (mean(SD) age: 62.8(11.4) years, BMI: 32.2(6.8) kg/m<sup>2</sup>, baseline HbA1c 9.0(0.9) % [75 (10) mmol/mol]). Commencement of flash glucose monitoring was associated with an HbA1c reduction of 0.89 % (95 % CI 0.71 to 1.08) (9.8 mmol/mol (95 % CI 7.8 to 11.8)) at 3-6 months. In the one stage model, age, BMI and baseline HbA1c accounted for the substantial heterogeneity observed between studies.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Commencement of flash glucose monitoring was associated with a significant reduction in HbA1c at 3-6 months in a real-world setting in T2DM managed with insulin.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Heer</LastName><ForeName>Randeep S</ForeName><Initials>RS</Initials><AffiliationInfo><Affiliation>Abbott Diabetes Care, Witney, UK. Electronic address: randeep.heer@abbott.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lovegrove</LastName><ForeName>Joshua</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Abbott Diabetes Care, Witney, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Welsh</LastName><ForeName>Zoë</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Abbott Diabetes Care, Witney, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Diabetes Res Clin Pract</MedlineTA><NlmUniqueID>8508335</NlmUniqueID><ISSNLinking>0168-8227</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015190" MajorTopicYN="Y">Blood Glucose Self-Monitoring</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Continuous glucose monitoring</Keyword><Keyword MajorTopicYN="N">Flash glucose monitoring</Keyword><Keyword MajorTopicYN="N">Meta-analysis</Keyword><Keyword MajorTopicYN="N">Real-world</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest RSH, JL and ZW are employees of Abbott Diabetes Care, Witney, UK.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>46</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>20</Hour><Minute>38</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39643007</ArticleId><ArticleId IdType="doi">10.1016/j.diabres.2024.111950</ArticleId><ArticleId IdType="pii">S0168-8227(24)00860-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39642712</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>19</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1090-2104</ISSN><JournalIssue CitedMedium="Internet"><Volume>742</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Biochemical and biophysical research communications</Title><ISOAbbreviation>Biochem Biophys Res Commun</ISOAbbreviation></Journal><ArticleTitle>1,25(OH)2D3 promotes insulin secretion through the classical pyroptosis pathway in vitro and vivo.</ArticleTitle><Pagination><StartPage>151058</StartPage><MedlinePgn>151058</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbrc.2024.151058</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0006-291X(24)01594-8</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetes is a chronic metabolic disorder characterized by persistently elevated levels of blood glucose. Research has demonstrated a close relationship between inflammation and the development of diabetes. Vitamin D has been shown to be significantly associated with type 2 diabetes; however, the mechanisms by which it regulates inflammation during the onset of the disease remain incompletely understood. In this study, we investigated the effect of pyroptosis on pancreatic β-cell function in diabetes and explored the role of 1,25(OH)2D3 in type 2 diabetes through the pyroptosis signaling pathway.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">In both in vivo and in vitro settings, we established a diabetes model combined with 1,25(OH)₂D₃ intervention to investigate its impact on insulin secretion levels, the release of inflammatory factors, and the expression levels of pyroptosis-related proteins.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">In both in vivo and in vitro experiments, we have observed that 1,25(OH)₂D₃ exhibits anti-inflammatory properties by downregulating the expression levels of pyroptosis-related proteins. Furthermore, it provides protection against pancreatic β-cell damage caused by type 2 diabetes mellitus (T2DM) and enhances insulin secretion. Inhibition of gasdermin D (GSDMD) expression impedes the progression of cell pyroptosis, reduces the amplification of the inflammatory response, and protects pancreatic cells from injury.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We hypothesize that the induction of pancreatic cells through pyroptosis occurs via the classical pathway in T2DM, and propose that 1,25(OH)2D3 may have a beneficial effect on this process. Consequently, 1,25(OH)2D3 could potentially serve as an adjuvant to inhibit the pyroptosis of pancreatic β cells by targeting the classical signaling pathway, thereby reducing the inflammatory response and alleviating symptoms associated with diabetes.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zheng</LastName><ForeName>Yuxuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Zhihao</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wei</LastName><ForeName>Xun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Center of Laboratory Animal, Shanghai Jiao Tong University, Shanghai, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Lewen</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Yudie</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Zhengyu</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China. Electronic address: zacharyzhou@suda.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Biochem Biophys Res Commun</MedlineTA><NlmUniqueID>0372516</NlmUniqueID><ISSNLinking>0006-291X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>FXC9231JVH</RegistryNumber><NameOfSubstance UI="D002117">Calcitriol</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D028044">Phosphate-Binding Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C498368">Gsdmd protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000094524">Gasdermins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000069292" MajorTopicYN="Y">Pyroptosis</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002117" MajorTopicYN="Y">Calcitriol</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078790" MajorTopicYN="Y">Insulin Secretion</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="Y">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="Y">Insulin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D028044" MajorTopicYN="N">Phosphate-Binding Proteins</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000094524" MajorTopicYN="N">Gasdermins</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">1,25(OH)2D3</Keyword><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">Inflammation</Keyword><Keyword MajorTopicYN="N">Pyroptosis</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>20</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>45</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>8</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39642712</ArticleId><ArticleId IdType="doi">10.1016/j.bbrc.2024.151058</ArticleId><ArticleId IdType="pii">S0006-291X(24)01594-8</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39642665</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>19</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">0306-4565</ISSN><JournalIssue CitedMedium="Internet"><Volume>126</Volume><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of thermal biology</Title><ISOAbbreviation>J Therm Biol</ISOAbbreviation></Journal><ArticleTitle>The effect of repeated hot water immersion on vascular function, blood pressure and central haemodynamics in individuals with type 2 diabetes mellitus.</ArticleTitle><Pagination><StartPage>104017</StartPage><MedlinePgn>104017</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtherbio.2024.104017</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0306-4565(24)00235-3</ELocationID><Abstract><AbstractText>Type 2 diabetes mellitus (T2DM) is characterised by endothelial dysfunction, leading to increased risk of cardiovascular disease. Emerging evidence suggest that HWI may favourably improve vascular function but data are limited in individual with T2DM. The aim was to investigate whether repeated hot water immersion (HWI) improved macrovascular, microvascular and central haemodynamic function in individuals with T2DM. Fourteen individuals completed a pre-post experimental study where participants were assessed pre- and post-8-10 × 1 h HWI sessions (40 °C water) undertaken within a 14-day period. During HWIs, body position was adjusted to clamp rectal temperature at 38.5-39.0 °C for the duration of the immersion. Stroke volume index (SVi), cardiac index (Q˙ i), resting heart rate (HR), systolic blood pressure (SBP), diastolic BP (DBP), brachial flow-mediated dilation (FMD) and cutaneous microvascular endothelial function (via transdermal iontophoresis) and plasma [nitrate] and [nitrite] (NOX; via ozone chemiluminescence) were assessed pre- and post HWI. Neither brachial FMD measures of macrovascular endothelial function (p = 0.43) or forearm microvascular function (ACh max, p = 0.63; ACh area under curve (AUC), p = 0.63; insulin max, p = 0.51; insulin AUC, p = 0.86) or NOX (p = 0.38) were changed. Q˙ i (p < 0.01), SVi (p < 0.02) and resting HR (p < 0.01) were all significantly reduced following the 10-days HWI intervention. SBP was reduced (p = 0.03), whereas DBP was unchanged (p = 0.56). HWI may represent an appropriate intervention to improve Q˙ I, SVi and BP in individuals with T2DM, but not macrovascular endothelial or cutaneous microvascular function.</AbstractText><CopyrightInformation>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>James</LastName><ForeName>Thomas J</ForeName><Initials>TJ</Initials><AffiliationInfo><Affiliation>School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Corbett</LastName><ForeName>Jo</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cummings</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Allard</LastName><ForeName>Sharon</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bailey</LastName><ForeName>Stephen J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Eglin</LastName><ForeName>Clare</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Belcher</LastName><ForeName>Harvey</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Piccolo</LastName><ForeName>Daniel D</ForeName><Initials>DD</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tipton</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Perissiou</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Saynor</LastName><ForeName>Zoe L</ForeName><Initials>ZL</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shepherd</LastName><ForeName>Anthony I</ForeName><Initials>AI</Initials><AffiliationInfo><Affiliation>School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK. Electronic address: ant.shepherd@port.ac.uk.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Therm Biol</MedlineTA><NlmUniqueID>7600115</NlmUniqueID><ISSNLinking>0306-4565</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001794" MajorTopicYN="Y">Blood Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006439" MajorTopicYN="Y">Hemodynamics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007101" MajorTopicYN="Y">Immersion</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006339" MajorTopicYN="N">Heart Rate</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014664" MajorTopicYN="N">Vasodilation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Blood pressure</Keyword><Keyword MajorTopicYN="N">Cardiac output</Keyword><Keyword MajorTopicYN="N">Endothelial function</Keyword><Keyword MajorTopicYN="N">Hot water immersion</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>Declaration of competing interest All authors report no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>20</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>7</Day><Hour>14</Hour><Minute>46</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>7</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39642665</ArticleId><ArticleId IdType="doi">10.1016/j.jtherbio.2024.104017</ArticleId><ArticleId IdType="pii">S0306-4565(24)00235-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39642136</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Exploring the link between dietary thiamine and type 2 diabetes mellitus risk in US adults aged 45 years and older: Insights from a cross-sectional investigation.</ArticleTitle><Pagination><StartPage>e0313114</StartPage><MedlinePgn>e0313114</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0313114</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0313114</ELocationID><Abstract><AbstractText>The correlation between dietary thiamine intake and the incidence of type 2 diabetes mellitus (T2DM) remains a subject of controversy within the academic community. While numerous studies have attempted to elucidate this relationship, conclusive evidence remains elusive. A survey of U.S. adults aged 45 years and older examined the supposed association between dietary thiamine intake and the risk of developing T2DM with the aim of clarifying the potential link. In this cross-sectional investigation, we evaluated dietary thiamine intake data sourced from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2020. Using weighted multivariate logistic regression analysis, we assessed the potential risk of T2DM associated with varying levels of thiamine intake. The observation of nonlinear relationships was accomplished by fitting smoothed curves. This study ultimately included 15,231 participants aged 45 years and older. Dietary thiamine intake (after log transformation) was inversely related to T2DM after accounting for potential confounders (OR = 0.86, 95% CI: 0.78, 0.95). An increase in dietary thiamine intake by one unit is associated with a 14% reduction in the risk of T2DM. Furthermore, our analysis revealed that the associations between dietary thiamine intake and T2DM risk, such as age, gender, race, smoking status, alcohol use, hypertension, body mass index (BMI), and cardiovascular disease (CVD), remained consistent across multiple stratified subgroups (p values >0.05). According to this study, dietary thiamine intake may be associated with the incidence of T2DM among US residents aged 45 years and older. Appropriate increases in dietary thiamine intake are expected to offer substantial preventive potential for T2DM and significant clinical implications.</AbstractText><CopyrightInformation>Copyright: © 2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>Hong</ForeName><Initials>H</Initials><Identifier Source="ORCID">0009-0002-0505-0368</Identifier><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Zhengwei</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ni</LastName><ForeName>Hengfan</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Haoran</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qin</LastName><ForeName>Bo</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>He</LastName><ForeName>Zhiyao</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jin</LastName><ForeName>Zhaohui</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>X66NSO3N35</RegistryNumber><NameOfSubstance UI="D013831">Thiamine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013831" MajorTopicYN="Y">Thiamine</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="N">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004032" MajorTopicYN="N">Diet</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>13</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39642136</ArticleId><ArticleId IdType="pmc">PMC11623452</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0313114</ArticleId><ArticleId IdType="pii">PONE-D-24-25453</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Magliano DJ, Islam RM, Barr E, Gregg EW, Pavkov ME, Harding JL, et al.. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019; 366: l5003. doi: 10.1136/bmj.l5003</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.l5003</ArticleId><ArticleId IdType="pmc">PMC6737490</ArticleId><ArticleId IdType="pubmed">31511236</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan J, Lim LL, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al.. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. Lancet. 2021;396(10267):2019–82. doi: 10.1016/S0140-6736(20)32374-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(20)32374-6</ArticleId><ArticleId IdType="pubmed">33189186</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al.. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16. doi: 10.1007/s00125-018-4711-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-018-4711-2</ArticleId><ArticleId IdType="pubmed">30171279</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuchen C, Hejia Z, Fanke M, Qixin D, Liyang C, Xi G, et al.. Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury. Front Endocrinol (Lausanne). 2023; 14:1032015. doi: 10.3389/fendo.2023.1032015</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1032015</ArticleId><ArticleId IdType="pmc">PMC9899888</ArticleId><ArticleId IdType="pubmed">36755923</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi: 10.1038/nrendo.2017.151</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2017.151</ArticleId><ArticleId IdType="pubmed">29219149</ArticleId></ArticleIdList></Reference><Reference><Citation>Martín-Peláez S, Fito M, Castaner O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients. 2020;12(8). 10.3390/nu12082236.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu12082236</ArticleId><ArticleId IdType="pmc">PMC7468821</ArticleId><ArticleId IdType="pubmed">32726990</ArticleId></ArticleIdList></Reference><Reference><Citation>Toi PL, Anothaisintawee T, Chaikledkaew U, Briones JR, Reutrakul S, Thakkinstian A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients. 2020;12(9). 10.3390/nu12092722.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu12092722</ArticleId><ArticleId IdType="pmc">PMC7551929</ArticleId><ArticleId IdType="pubmed">32899917</ArticleId></ArticleIdList></Reference><Reference><Citation>Sobiecki JG, Imamura F, Davis CR, Sharp SJ, Koulman A, Hodgson JM, et al.. A nutritional biomarker score of the Mediterranean diet and incident type 2 diabetes: Integrated analysis of data from the MedLey randomised controlled trial and the EPIC-InterAct case-cohort study. Plos Med. 2023;20(4): e1004221. doi: 10.1371/journal.pmed.1004221</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1004221</ArticleId><ArticleId IdType="pmc">PMC10138823</ArticleId><ArticleId IdType="pubmed">37104291</ArticleId></ArticleIdList></Reference><Reference><Citation>Maroto-Rodriguez J, Ortolá R, Carballo-Casla A, Iriarte-Campo V, Salinero-Fort MÁ, Rodríguez-Artalejo F, et al.. Association between a mediterranean lifestyle and Type 2 diabetes incidence: a prospective UK biobank study. Cardiovasc Diabetol. 2023;22(1):271. doi: 10.1186/s12933-023-01999-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-023-01999-x</ArticleId><ArticleId IdType="pmc">PMC10552305</ArticleId><ArticleId IdType="pubmed">37794451</ArticleId></ArticleIdList></Reference><Reference><Citation>Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. Plant Physiol. 2021;186(4):1832–47. doi: 10.1093/plphys/kiab198</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/plphys/kiab198</ArticleId><ArticleId IdType="pmc">PMC8331165</ArticleId><ArticleId IdType="pubmed">33944954</ArticleId></ArticleIdList></Reference><Reference><Citation>Kerns JC, Arundel C, Chawla LS. Thiamin deficiency in people with obesity. Adv Nutr. 2015;6(2):147–53. doi: 10.3945/an.114.007526</Citation><ArticleIdList><ArticleId IdType="doi">10.3945/an.114.007526</ArticleId><ArticleId IdType="pmc">PMC4352173</ArticleId><ArticleId IdType="pubmed">25770253</ArticleId></ArticleIdList></Reference><Reference><Citation>Marrs C, Lonsdale D. Hiding in Plain Sight: Modern Thiamine Deficiency. Cells-Basel. 2021;10(10). doi: 10.3390/cells10102595</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cells10102595</ArticleId><ArticleId IdType="pmc">PMC8533683</ArticleId><ArticleId IdType="pubmed">34685573</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith TJ, Johnson CR, Koshy R, Hess SY, Qureshi UA, Mynak ML, et al.. Thiamine deficiency disorders: a clinical perspective. Ann N Y Acad Sci. 2021;1498(1):9–28. doi: 10.1111/nyas.14536</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/nyas.14536</ArticleId><ArticleId IdType="pmc">PMC8451766</ArticleId><ArticleId IdType="pubmed">33305487</ArticleId></ArticleIdList></Reference><Reference><Citation>Sinha S, Kataria A, Kolla BP, Thusius N, Loukianova LL. Wernicke Encephalopathy-Clinical Pearls. Mayo Clin Proc. 2019;94(6):1065–72. doi: 10.1016/j.mayocp.2019.02.018</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mayocp.2019.02.018</ArticleId><ArticleId IdType="pubmed">31171116</ArticleId></ArticleIdList></Reference><Reference><Citation>Li D, Guo Y, Xia M, Zhang J, Zang W. Dietary intake of thiamine and riboflavin in relation to severe headache or migraine: A cross-sectional survey. Headache. 2022;62(9):1133–42. doi: 10.1111/head.14384</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/head.14384</ArticleId><ArticleId IdType="pubmed">36047917</ArticleId></ArticleIdList></Reference><Reference><Citation>Duc HN, Oh H, Yoon IM, Kim MS. Association between levels of thiamine intake, diabetes, cardiovascular diseases and depression in Korea: a national cross-sectional study. J Nutr Sci. 2021;10: e31. doi: 10.1017/jns.2021.23</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/jns.2021.23</ArticleId><ArticleId IdType="pmc">PMC8141681</ArticleId><ArticleId IdType="pubmed">34094512</ArticleId></ArticleIdList></Reference><Reference><Citation>Ge Y, Huang S, Li Y, Zhang Z, Kong M, Cui N, et al.. Pregnancy thiamine and riboflavin intake and the risk of gestational diabetes mellitus: A prospective cohort study. Am J Clin Nutr. 2023;117(2):426–35. doi: 10.1016/j.ajcnut.2022.11.014</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajcnut.2022.11.014</ArticleId><ArticleId IdType="pubmed">36811572</ArticleId></ArticleIdList></Reference><Reference><Citation>Alaei SF, Soares MJ, Zhao Y, Sherriff J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: A randomized, double-blind cross-over trial. Eur J Nutr. 2013;52(7):1821–4. doi: 10.1007/s00394-013-0534-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00394-013-0534-6</ArticleId><ArticleId IdType="pubmed">23715873</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu C, Meng Q, Zu C, Li R, Yang S, He P, et al.. U-shaped association between dietary thiamine intake and new-onset diabetes: A nationwide cohort study. QJM. 2022;115(12):822–9. doi: 10.1093/qjmed/hcac159</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/qjmed/hcac159</ArticleId><ArticleId IdType="pmc">PMC9744247</ArticleId><ArticleId IdType="pubmed">35894803</ArticleId></ArticleIdList></Reference><Reference><Citation>Eshak ES, Iso H, Muraki I, Tamakoshi A. Among the water-soluble vitamins, dietary intakes of vitamins C, B2 and folate are associated with the reduced risk of diabetes in Japanese women but not men. Br J Nutr. 2019;121(12):1357–64. doi: 10.1017/S000711451900062X</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S000711451900062X</ArticleId><ArticleId IdType="pubmed">30890201</ArticleId></ArticleIdList></Reference><Reference><Citation>2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1): S17–38. 10.2337/dc22-S002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-S002</ArticleId><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Ardeshirrouhanifard S, Li J, Li M, Dai H, Song Y. Associations of Nutritional, Environmental, and Metabolic Biomarkers with Diabetes-Related Mortality in U.S. Adults: The Third National Health and Nutrition Examination Surveys between 1988–1994 and 2016. Nutrients. 2022;14(13). doi: 10.3390/nu14132629</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14132629</ArticleId><ArticleId IdType="pmc">PMC9268621</ArticleId><ArticleId IdType="pubmed">35807807</ArticleId></ArticleIdList></Reference><Reference><Citation>Ziegler D, Reiners K, Strom A, Obeid R. Association between diabetes and thiamine status—A systematic review and meta-analysis. Metabolism. 2023; 144:155565. doi: 10.1016/j.metabol.2023.155565</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2023.155565</ArticleId><ArticleId IdType="pubmed">37094704</ArticleId></ArticleIdList></Reference><Reference><Citation>Whelton PK, Carey RM, Aronow WS, Casey DJ, Collins KJ, Dennison HC, et al.. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138(17): e426–83. doi: 10.1161/CIR.0000000000000597</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIR.0000000000000597</ArticleId><ArticleId IdType="pubmed">30354655</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghaferi AA, Schwartz TA, Pawlik TM. STROBE Reporting Guidelines for Observational Studies. Jama Surg. 2021;156(6):577–8. doi: 10.1001/jamasurg.2021.0528</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamasurg.2021.0528</ArticleId><ArticleId IdType="pubmed">33825815</ArticleId></ArticleIdList></Reference><Reference><Citation>von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9. doi: 10.1016/j.ijsu.2014.07.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijsu.2014.07.013</ArticleId><ArticleId IdType="pubmed">25046131</ArticleId></ArticleIdList></Reference><Reference><Citation>Thornalley PJ, Babaei-Jadidi R, Al AH, Rabbani N, Antonysunil A, Larkin J, et al.. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia. 2007;50(10):2164–70. doi: 10.1007/s00125-007-0771-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-007-0771-4</ArticleId><ArticleId IdType="pmc">PMC1998885</ArticleId><ArticleId IdType="pubmed">17676306</ArticleId></ArticleIdList></Reference><Reference><Citation>Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients. 2016;8(2):68. doi: 10.3390/nu8020068</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu8020068</ArticleId><ArticleId IdType="pmc">PMC4772032</ArticleId><ArticleId IdType="pubmed">26828517</ArticleId></ArticleIdList></Reference><Reference><Citation>DiNicolantonio JJ, Liu J, O’Keefe JH. Thiamine and Cardiovascular Disease: A Literature Review. Prog Cardiovasc Dis. 2018;61(1):27–32. doi: 10.1016/j.pcad.2018.01.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcad.2018.01.009</ArticleId><ArticleId IdType="pubmed">29360523</ArticleId></ArticleIdList></Reference><Reference><Citation>Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, et al.. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients. 2020;12(9). 10.3390/nu12092810</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu12092810</ArticleId><ArticleId IdType="pmc">PMC7551939</ArticleId><ArticleId IdType="pubmed">32933220</ArticleId></ArticleIdList></Reference><Reference><Citation>Beltramo E, Berrone E, Tarallo S, Porta M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 2008;45(3):131–41. doi: 10.1007/s00592-008-0042-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-008-0042-y</ArticleId><ArticleId IdType="pubmed">18581039</ArticleId></ArticleIdList></Reference><Reference><Citation>Rad MG, Sharifi M, Meamar R, Soltani N. The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide. Nutr Diabetes. 2022;12(1):32. doi: 10.1038/s41387-022-00211-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41387-022-00211-5</ArticleId><ArticleId IdType="pmc">PMC9209469</ArticleId><ArticleId IdType="pubmed">35725834</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39642126</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Effects of probiotic supplementation on the anthropometric nutritional status of patients with type 2 Diabetes mellitus: A systematic review and meta-analysis protocol.</ArticleTitle><Pagination><StartPage>e0314971</StartPage><MedlinePgn>e0314971</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0314971</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0314971</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetes mellitus (DM) is characterized by hyperglycemia due to insufficient insulin production or utilization. Previous studies have shown a relationship between the gut microbiota and DM, driving interest in probiotic supplementation to modulate the microbiota and glucose metabolism in patients with DM, although the exact mechanisms remain unclear. Probiotics can influence metabolic factors and improve the composition of the microbiota, possibly helping to reduce weight in patients with DM.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">The objective of this review is to compile and analyze the most relevant evidence on the effects of probiotic supplementation on the nutritional anthropometric status of patients with type 2 Diabetes mellitus (T2DM).</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Methodological guidelines will be followed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and the study has been registered in the International Prospective Register of Systematic Reviews under reference number CRD42023480243. Studies will be selected through an active search of the PubMed, Science Direct, and SCOPUS databases using the following search descriptors: gut microbiota, body weight, and metabolic diseases, according to medical subject headings. The assessment of the methodological quality of the studies will be carried out using the Cochrane Collaboration instrument. The risk of bias will be analyzed using the Revised Cochrane tool for risk of bias in randomized controlled trials (RoB 2). A meta-analysis will be performed if heterogeneity is acceptable and justifiable; otherwise, the results will be presented in a qualitative narrative synthesis.</AbstractText><AbstractText Label="EXPECTED RESULTS" NlmCategory="RESULTS">The results of probiotic supplementation are expected to demonstrate improvements in anthropometric parameters such as body weight, BMI and abdominal and waist circumference in patients with T2DM, thus providing valuable evidence for clinical application.</AbstractText><CopyrightInformation>Copyright: © 2024 Ribeiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ribeiro</LastName><ForeName>Dálete Assíria de Souza</ForeName><Initials>DAS</Initials><AffiliationInfo><Affiliation>Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Araújo</LastName><ForeName>Anny Cristine</ForeName><Initials>AC</Initials><AffiliationInfo><Affiliation>Health Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>do Nascimento</LastName><ForeName>Priscila Kelly da Silva Bezerra</ForeName><Initials>PKDSB</Initials><AffiliationInfo><Affiliation>Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>da Rocha</LastName><ForeName>Ilanna Marques Gomes</ForeName><Initials>IMG</Initials><AffiliationInfo><Affiliation>Department of Gastroenterology, Faculty of Medicine, Hospital das Clinicas HCFMUSP, University of São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rezende</LastName><ForeName>Adriana Augusto de</ForeName><Initials>AA</Initials><Identifier Source="ORCID">0000-0003-2452-4047</Identifier><AffiliationInfo><Affiliation>Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Health Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000886" MajorTopicYN="N">Anthropometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000178" MajorTopicYN="N">diet therapy</QualifierName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019587" MajorTopicYN="Y">Dietary Supplements</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015201" MajorTopicYN="N">Meta-Analysis as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009752" MajorTopicYN="Y">Nutritional Status</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019936" MajorTopicYN="Y">Probiotics</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078202" MajorTopicYN="N">Systematic Reviews as Topic</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>18</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>13</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39642126</ArticleId><ArticleId IdType="pmc">PMC11623458</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0314971</ArticleId><ArticleId IdType="pii">PONE-D-24-32485</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: 2021. Available at: https://www.diabetesatlas.org.</Citation></Reference><Reference><Citation>Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019–2020. São Paulo: Editora Clannad; 2019.</Citation></Reference><Reference><Citation>Huang S, Shi K, Ren Y, Wang J, Yan WF, Qian WL, et al.. Association of magnitude of weight loss and weight variability with mortality and major cardiovascular events among individuals with type 2 diabetes mellitus: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21:78. doi: 10.1186/s12933-022-01503-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-022-01503-x</ArticleId><ArticleId IdType="pmc">PMC9112517</ArticleId><ArticleId IdType="pubmed">35578337</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharin T, Ahammed B, Elahi M, Mamun MSA, Paul DK. Impact of physical exercise and food habit on type ii diabetes mellitus medicated patients-A cross sectional study. J Chem Health Risks. 2021;11:33–43.</Citation></Reference><Reference><Citation>Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34–46. doi: 10.1038/s42255-018-0017-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s42255-018-0017-4</ArticleId><ArticleId IdType="pubmed">32694818</ArticleId></ArticleIdList></Reference><Reference><Citation>Soltani S, Ashoori M, Dehghani F, Meshkini F, Clayton ZS, Abdollahi S. Effects of probiotic/synbiotic supplementation on body weight in patients with diabetes: a systematic review and meta-analyses of randomized-controlled trials. BMC Endocr Disord. 2023;23(1):86. Published 2023 Apr 21. doi: 10.1186/s12902-023-01338-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-023-01338-x</ArticleId><ArticleId IdType="pmc">PMC10120130</ArticleId><ArticleId IdType="pubmed">37085813</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao H, Fan C, Fan X, et al.. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. Br J Nutr. 2020;124(4):396–406. doi: 10.1017/S0007114520001117</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0007114520001117</ArticleId><ArticleId IdType="pubmed">32213218</ArticleId></ArticleIdList></Reference><Reference><Citation>Kimura I, Inoue D, Hirano K, Tsujimoto G. The SCFA Receptor GPR43 and Energy Metabolism. Front Endocrinol (Lausanne). 2014;5:85. Published 2014 Jun 5. doi: 10.3389/fendo.2014.00085</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2014.00085</ArticleId><ArticleId IdType="pmc">PMC4046487</ArticleId><ArticleId IdType="pubmed">24926285</ArticleId></ArticleIdList></Reference><Reference><Citation>den Hartigh LJ. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients. 2019;11(2):370. Published 2019 Feb 11. doi: 10.3390/nu11020370</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu11020370</ArticleId><ArticleId IdType="pmc">PMC6413010</ArticleId><ArticleId IdType="pubmed">30754681</ArticleId></ArticleIdList></Reference><Reference><Citation>Naseri K, Saadati S, Ghaemi F, et al.. The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Eur J Nutr. 2023;62(2):543–561. doi: 10.1007/s00394-022-03012-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00394-022-03012-9</ArticleId><ArticleId IdType="pmc">PMC9941248</ArticleId><ArticleId IdType="pubmed">36239789</ArticleId></ArticleIdList></Reference><Reference><Citation>Li G, Feng H, Mao XL, et al.. The effects of probiotics supplementation on glycaemic control among adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomised clinical trials. J Transl Med. 2023;21(1):442. Published 2023 Jul 6. doi: 10.1186/s12967-023-04306-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12967-023-04306-0</ArticleId><ArticleId IdType="pmc">PMC10324246</ArticleId><ArticleId IdType="pubmed">37415167</ArticleId></ArticleIdList></Reference><Reference><Citation>Corb Aron R. A., Abid A., Vesa C. M., Nechifor A. C., Behl T., Ghitea T. C., et al.. (2021). Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms. 2021;9(3):618. Published 2021 Mar 17. doi: 10.3390/microorganisms9030618</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/microorganisms9030618</ArticleId><ArticleId IdType="pmc">PMC8002498</ArticleId><ArticleId IdType="pubmed">33802777</ArticleId></ArticleIdList></Reference><Reference><Citation>Moher D, Liberati A, Tetzlaff J, Altman D. Principais itens para relatar Revisões sistemáticas e Metanálises: A recomendacão PRISMA. Epidemiologia e Servicos de Saúde. 2015; 24: 335–342.</Citation></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al.. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. Published 2021 Mar 29. doi: 10.1136/bmj.n71</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.n71</ArticleId><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Latorraca C de OC, Rodrigues M, Leite Pacheco R, Cabrera Martimbianco AL, Riera R. Busca em bases de dados eletrônicas da área da saúde: por onde começar. Diagn tratamento. 2019; [59–63].</Citation></Reference><Reference><Citation>ElSayed Nuha A., Aleppo Grazia, Aroda Vanita R., Bannuru Raveendhara R., Brown Florence M., Bruemmer Dennis, et al.. Gabbay, American Diabetes Association; 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 1 January 2023; 46 (Supplement_1): S19–S40. 10.2337/dc23-S002</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-S002</ArticleId><ArticleId IdType="pmc">PMC9810477</ArticleId><ArticleId IdType="pubmed">36507649</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO–World Health Organization. Obesity: preventing and managing the global epidemic: report of WHO consultation on obesity. Geneva, 1998.</Citation><ArticleIdList><ArticleId IdType="pubmed">11234459</ArticleId></ArticleIdList></Reference><Reference><Citation>Bramer W.M.; Rethlefsen M.L.; Kleijnen J.; Franco O.H. Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Syst Rev 6, 245 (2017). doi: 10.1186/s13643-017-0644-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-017-0644-y</ArticleId><ArticleId IdType="pmc">PMC5718002</ArticleId><ArticleId IdType="pubmed">29208034</ArticleId></ArticleIdList></Reference><Reference><Citation>Ouzzani M., Hammady H., Fedorowicz Z., & Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 5, 210 (2016). doi: 10.1186/s13643-016-0384-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-016-0384-4</ArticleId><ArticleId IdType="pmc">PMC5139140</ArticleId><ArticleId IdType="pubmed">27919275</ArticleId></ArticleIdList></Reference><Reference><Citation>Sterne J A C, SavoviÄ J, Page M J, Elbers R G, Blencowe N S, Boutron I et al.. RoB 2: a revised tool for assessing risk of bias in randomised trials BMJ 2019; 366:l4898 doi: 10.1136/bmj.l4898</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.l4898</ArticleId><ArticleId IdType="pubmed">31462531</ArticleId></ArticleIdList></Reference><Reference><Citation>Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.315.7109.629</ArticleId><ArticleId IdType="pmc">PMC2127453</ArticleId><ArticleId IdType="pubmed">9310563</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi L, Lin L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine (Baltimore). 2019;98(23):e15987. doi: 10.1097/MD.0000000000015987</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000015987</ArticleId><ArticleId IdType="pmc">PMC6571372</ArticleId><ArticleId IdType="pubmed">31169736</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodrigues C. L.; Ziegelmann P. K. Seção de Biestatística Metanálise: Um Guia Prático Meta-analysis: a Practical Guide. Revista HCPA, v.30, n.4, p. 436–447, 2010.</Citation></Reference><Reference><Citation>Guyatt G, Oxman AD, Akl EA, Kunz R, Brozek J, Norris S, et al.. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–394. doi: 10.1016/j.jclinepi.2010.04.026</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jclinepi.2010.04.026</ArticleId><ArticleId IdType="pubmed">21195583</ArticleId></ArticleIdList></Reference><Reference><Citation>Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021;12:632335. Published 2021 Apr 7. doi: 10.3389/fendo.2021.632335</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2021.632335</ArticleId><ArticleId IdType="pmc">PMC8060771</ArticleId><ArticleId IdType="pubmed">33897618</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Kramer M, et al.. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020;32(3):379–390.e3. doi: 10.1016/j.cmet.2020.06.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2020.06.011</ArticleId><ArticleId IdType="pubmed">32652044</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep. 2020;10(1):5450. Published 2020 Mar 25. doi: 10.1038/s41598-020-62224-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-62224-3</ArticleId><ArticleId IdType="pmc">PMC7096501</ArticleId><ArticleId IdType="pubmed">32214153</ArticleId></ArticleIdList></Reference><Reference><Citation>Bock P. M., Telo G. H., Ramalho R., Sbaraini M., Leivas G., Martins A. F., et al.. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia. 2021;64(1):26–41. doi: 10.1007/s00125-020-05295-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-020-05295-1</ArticleId><ArticleId IdType="pubmed">33047170</ArticleId></ArticleIdList></Reference><Reference><Citation>Horvath A, Leber B, Feldbacher N, Tripolt N, Rainer F, Blesl A, et al.. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study.European journal of nutrition. 2019:1–15. doi: 10.1007/s00394-019-02135-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00394-019-02135-w</ArticleId><ArticleId IdType="pmc">PMC7501130</ArticleId><ArticleId IdType="pubmed">31729622</ArticleId></ArticleIdList></Reference><Reference><Citation>Kooshki A, Tofighian T, Akbarzadeh R. Effect of synbiotic supplementation on weight, body mass index and blood sugar in type II diabetic patients. J Res Health. 2017;7(2):771–6.</Citation></Reference><Reference><Citation>Kocsis T., Molnár B., Németh D. et al. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Sci Rep 10, 11787 (2020). doi: 10.1038/s41598-020-68440-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-68440-1</ArticleId><ArticleId IdType="pmc">PMC7366719</ArticleId><ArticleId IdType="pubmed">32678128</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39641545</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>01</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>01</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1369-1619</ISSN><JournalIssue CitedMedium="Internet"><Volume>35</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>International journal of environmental health research</Title><ISOAbbreviation>Int J Environ Health Res</ISOAbbreviation></Journal><ArticleTitle>The effect of eating motivation on adherence to the Mediterranean diet, glycemia and lipid profile in individuals with type 2 diabetes.</ArticleTitle><Pagination><StartPage>257</StartPage><EndPage>268</EndPage><MedlinePgn>257-268</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1080/09603123.2024.2438122</ELocationID><Abstract><AbstractText>The aim of this study was to investigate the effect of eating motivation on Mediterranean diet adherence, glycemia and lipid profile in individuals with type 2 diabetes. A questionnaire consisting of general information, eating motivation scale and Mediterranean diet adherence scale was applied to 400 individuals with diabetes. Height, weight, plasma glucose, total cholesterol, triglycerides, low density lipoprotein and high density lipoprotein values were measured. Environmental and political, health, commercial and marketing, economic and affordability motivations are effective in individuals with diabetes. Emotional motivation and social motivation were positively correlated with body mass index, HbA1C, total cholesterol, triglyceride and low density lipoprotein levels. Health motivation increased the likelihood of having glucose levels below 130 mg/dl. Individuals with diabetes were influenced by eating motivations and these motivations were associated with adherence to the Mediterranean diet and glycemia. Eating motivation may be effective in the management of type 2 diabetes.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Öztürk Özkan</LastName><ForeName>Gülin</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul Medeniyet University, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Çeteoğlu</LastName><ForeName>Büşra</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul Medeniyet University, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Temiz</LastName><ForeName>Beyza</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul Medeniyet University, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dursun</LastName><ForeName>Hüsna</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul Medeniyet University, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karaçam</LastName><ForeName>Melike</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul Medeniyet University, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sarğın</LastName><ForeName>Mehmet</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>İstanbul Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Famıly Medıcıne, İstanbul, Turkey.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Int J Environ Health Res</MedlineTA><NlmUniqueID>9106628</NlmUniqueID><ISSNLinking>0960-3123</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008055">Lipids</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D038441" MajorTopicYN="Y">Diet, Mediterranean</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009042" MajorTopicYN="Y">Motivation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008055" MajorTopicYN="Y">Lipids</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010349" MajorTopicYN="N">Patient Compliance</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">EATMOT</Keyword><Keyword MajorTopicYN="N">M editerranean diet</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword><Keyword MajorTopicYN="N">eating motivation</Keyword><Keyword MajorTopicYN="N">glycemia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>2</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>9</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39641545</ArticleId><ArticleId IdType="doi">10.1080/09603123.2024.2438122</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39641406</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>06</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1118-4841</ISSN><JournalIssue CitedMedium="Internet"><Volume>28</Volume><Issue>10s</Issue><PubDate><Year>2024</Year><Month>Oct</Month><Day>31</Day></PubDate></JournalIssue><Title>African journal of reproductive health</Title><ISOAbbreviation>Afr J Reprod Health</ISOAbbreviation></Journal><ArticleTitle>Patients' experiences in receiving family support for type-2 diabetes mellitus: A scoping review.</ArticleTitle><Pagination><StartPage>411</StartPage><EndPage>420</EndPage><MedlinePgn>411-420</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.29063/ajrh2024/v28i10s.43</ELocationID><Abstract><AbstractText>The aim of the study was to determine how patients' experiences in receiving family support for type-2 diabetes mellitus. We conducted scoping review using the Joanna briggs institute guidelines and Levac, Colquhoun and O'Brien. Five electronic databases including PubMed, Scopus, ScienceDirect, ProQuest and Sage Pub were systematically searched by keywords for literature published between 2013 to 2023. Ten articles were used to final review. Analysis revealed that family support is an important factor to improve diabetes self-management behaviour for patients with type-2 diabetes mellitus. The availability of family support primarily comes from their spouses and children. Some obstacles, such as the emotional distance between patients and their families, can be overcome by improving shared knowledge and skills in self-management. Family support also has a positive impact on behavioural control and health outcomes for patients with type 2 diabetes mellitus.</AbstractText><CopyrightInformation>African Journal of Reproductive Health © 2024.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Suhamdani</LastName><ForeName>Haris</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Doctorate Degree Program in Public Health, Faculty of Public Health Universitas Airlangga, Surabaya, 60115, Indonesia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yusuf</LastName><ForeName>Ah</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Nursing, Faculty of Nursing Universitas Airlangga, Surabaya, 60115, Indonesia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ernawaty</LastName><ForeName>Ernawaty</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Health Policy and Administration, Faculty of Public Health Universitas Airlangga, Surabaya, 60115, Indonesia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Airlangga Centre for Health Policy Research Group, Surabaya, 60115, Indonesia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sulistyo</LastName><ForeName>Angger A H</ForeName><Initials>AAH</Initials><AffiliationInfo><Affiliation>Doctorate Degree Program in Public Health, Faculty of Public Health Universitas Airlangga, Surabaya, 60115, Indonesia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Nigeria</Country><MedlineTA>Afr J Reprod Health</MedlineTA><NlmUniqueID>9712263</NlmUniqueID><ISSNLinking>1118-4841</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012944" MajorTopicYN="Y">Social Support</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005190" MajorTopicYN="Y">Family</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012648" MajorTopicYN="N">Self Care</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000073278" MajorTopicYN="N">Self-Management</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000092802" MajorTopicYN="N">Family Support</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="fre"><AbstractText>L'objectif de cette étude était de déterminer comment les expériences des patients en matière de soutien familial pour le diabète sucré de type 2. Nous avons procédé à un examen de la portée de l'étude en utilisant les lignes directrices de l'institut Joanna Briggs et Levac, Colquhoun et O'Brien. Cinq bases de données électroniques, dont PubMed, Scopus, ScienceDirect, ProQuest et Sage Pub, ont fait l'objet d'une recherche systématique par mots-clés de la littérature publiée entre 2013 et 2023. Dix articles ont été retenus pour l'examen final. L'analyse a révélé que le soutien familial est un facteur important pour améliorer le comportement d'autogestion du diabète chez les patients atteints de diabète sucré de type 2. Le soutien familial provient principalement des conjoints et des enfants. Certains obstacles, comme la distance émotionnelle entre les patients et leur famille, peuvent être surmontés en améliorant le partage des connaissances et des compétences en matière d'autogestion. Le soutien familial a également un impact positif sur le contrôle du comportement et les résultats pour la santé des patients atteints de diabète de type 2.</AbstractText><CopyrightInformation>African Journal of Reproductive Health © 2024.</CopyrightInformation></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">family support</Keyword><Keyword MajorTopicYN="N">patient experiences</Keyword><Keyword MajorTopicYN="N">review</Keyword></KeywordList><CoiStatement>The Authors declared no conflict of interest</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>12</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>7</Hour><Minute>29</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39641406</ArticleId><ArticleId IdType="doi">10.29063/ajrh2024/v28i10s.43</ArticleId><ArticleId IdType="pii">Afr J Reprod Health 2024; 28 [10s]: 411-420</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39641242</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1753-9455</ISSN><JournalIssue CitedMedium="Internet"><Volume>18</Volume><PubDate><Year>2024</Year><Season>Jan-Dec</Season></PubDate></JournalIssue><Title>Therapeutic advances in cardiovascular disease</Title><ISOAbbreviation>Ther Adv Cardiovasc Dis</ISOAbbreviation></Journal><ArticleTitle>Angiotensin receptor neprilysin inhibitor in chronic heart failure and comorbidity management: Indian consensus statement.</ArticleTitle><Pagination><StartPage>17539447241301959</StartPage><MedlinePgn>17539447241301959</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">17539447241301959</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1177/17539447241301959</ELocationID><Abstract><AbstractText>Heart failure (HF) is a significant public health concern characterized by notable rates of morbidity and mortality. Multimorbidity, ranging from 43% to 98% among HF patients, significantly impacts prognosis and treatment response. HF management requires a holistic approach, including guideline-directed medical therapy. Sacubitril/valsartan (angiotensin receptor neprilysin inhibitor [ARNI]) is a cornerstone of HF treatment, supported by robust evidence from large-scale clinical trials across different levels of left ventricular ejection fraction. The recommendations presented in this paper have been developed by a group of cardiologists in India who convened in expert opinion meetings to discuss the utilization of ARNI in chronic HF patients with five different comorbid conditions like type 2 diabetes mellitus (T2DM), chronic kidney disease, myocardial infarction (MI), obesity, and hypertension. Key focus areas include initiation, dose titration, and management across different HF phenotypes and comorbidities. Emphasis is placed on the efficacy of ARNI irrespective of glycemic status in the T2DM population, its role in HF patients with obesity, and addressing challenges related to renal function decline and hyperkalemia. Additionally, the document highlights ARNI's potential benefits in hypertensive and post-MI HF patients, alongside observations on the obesity paradox in HF prognosis. Overall, these recommendations aim to optimize ARNI therapy in HF patient populations with different comorbidities, addressing specific challenges and considerations to improve outcomes and quality of life.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mittal</LastName><ForeName>Sanjay</ForeName><Initials>S</Initials><Identifier Source="ORCID">0009-0002-9179-5840</Identifier><AffiliationInfo><Affiliation>Clinical and Preventive Cardiology, Cardiac Care, Medanta-The Medicity Hospital, Sector 38, Gurugram, Haryana 122001, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Harikrishnan</LastName><ForeName>Sivadasanpillai</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gupta</LastName><ForeName>Anoop</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Epic Multispeciality Hospital, Ahmedabad, Gujarat, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bansal</LastName><ForeName>Sandeep</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, Delhi, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koshy</LastName><ForeName>George A</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Cosmopolitan Hospital, Trivandrum, Kerala, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mohanan</LastName><ForeName>Padhinhare P</ForeName><Initials>PP</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Westfort Hi-Tech Hospital, Thrissur, Kerala, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bhattacharya</LastName><ForeName>Debdatta</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Narayana Hrudayalaya Hospital, Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kerkar</LastName><ForeName>Prafulla</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Asian Heart Institute, Mumbai, Maharashtra, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Swamy</LastName><ForeName>Ajay</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>KIMS Hospital, Hyderabad, Telangana, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aggarwal</LastName><ForeName>Vinayak</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Non-Invasive and Clinical Cardiology, Fortis Memorial Research Institute, Fortis Hospital, Gurgaon, Haryana, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Srivastava</LastName><ForeName>Sameer</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Max Hospital, New Delhi, Delhi, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mahajan</LastName><ForeName>Ajay</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Cardiology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, Maharashtra, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mehta</LastName><ForeName>Ashwani</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Sir Gangaram Hospital, New Delhi, Delhi, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sharma</LastName><ForeName>Kamal</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0001-5866-2566</Identifier><AffiliationInfo><Affiliation>Sal Hospital, Ahmedabad, Gujarat, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shetty</LastName><ForeName>Sadanand</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Sadanand Healthy Living Center, Mumbai, Maharashtra, India.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D017065">Practice Guideline</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Ther Adv Cardiovasc Dis</MedlineTA><NlmUniqueID>101316343</NlmUniqueID><ISSNLinking>1753-9447</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D057911">Angiotensin Receptor Antagonists</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000613">Aminobutyrates</NameOfSubstance></Chemical><Chemical><RegistryNumber>WB8FT61183</RegistryNumber><NameOfSubstance UI="C549068">sacubitril and valsartan sodium hydrate drug combination</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.24.11</RegistryNumber><NameOfSubstance UI="D015260">Neprilysin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001713">Biphenyl Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance></Chemical><Chemical><RegistryNumber>80M03YXJ7I</RegistryNumber><NameOfSubstance UI="D000068756">Valsartan</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057911" MajorTopicYN="Y">Angiotensin Receptor Antagonists</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000613" MajorTopicYN="Y">Aminobutyrates</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="Y">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015260" MajorTopicYN="Y">Neprilysin</DescriptorName><QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001713" MajorTopicYN="Y">Biphenyl Compounds</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004338" MajorTopicYN="Y">Drug Combinations</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D032921" MajorTopicYN="Y">Consensus</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002908" MajorTopicYN="N">Chronic Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007194" MajorTopicYN="N" Type="Geographic">India</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000068756" MajorTopicYN="Y">Valsartan</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006973" MajorTopicYN="N">Hypertension</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="N">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><OtherAbstract Type="plain-language-summary" Language="eng"><AbstractText><b>Angiotensin receptor neprilysin inhibitor (ARNI) in chronic heart failure and comorbidity management: Indian consensus statement</b>Heart failure (HF) is a significant public health concern characterized by notable rates of morbidity and mortality. Multimorbidity, ranging from 43% to 98% among HF patients, significantly impacts prognosis and treatment response. HF management requires a holistic approach, including guideline-directed medical therapy (GDMT). Sacubitril/valsartan (ARNI) is a cornerstone of HF treatment, supported by robust evidence from large-scale clinical trials across different levels of left ventricular ejection fraction (LVEF). The recommendations presented in this paper have been developed by a group of cardiologists in India who convened in seven advisory board meetings to discuss the utilization of ARNI in chronic HF (CHF) patients with different comorbid conditions like Type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), myocardial infarction (MI), obesity, and hypertension. Key focus areas include initiation, dose titration, and management across different HF phenotypes and comorbidities. Emphasis is placed on the efficacy of ARNI irrespective of glycemic status in the T2DM population, its role in HF patients with obesity, and addressing challenges related to renal function decline and hyperkalemia. Additionally, the document highlights ARNI’s potential benefits in hypertensive and post-MI HF patients, alongside observations on the “obesity paradox” in HF prognosis. The paper underscores the importance of accurate biomarkers and imaging in HF diagnosis and monitoring. Overall, these recommendations aim to optimize ARNI therapy in HF patient populations with different comorbidities, addressing specific challenges and considerations to improve outcomes and quality of life.</AbstractText></OtherAbstract><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">ARNI</Keyword><Keyword MajorTopicYN="N">chronic heart failure</Keyword><Keyword MajorTopicYN="N">chronic kidney disease</Keyword><Keyword MajorTopicYN="N">sacubitril/valsartan</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>12</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39641242</ArticleId><ArticleId IdType="pmc">PMC11622297</ArticleId><ArticleId IdType="doi">10.1177/17539447241301959</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Harikrishnan S, Sanjay G, Anees T, et al.. Clinical presentation, management, in-hospital and 90-day outcomes of heart failure patients in Trivandrum, Kerala, India: the Trivandrum Heart Failure Registry. Eur J Heart Fail 2015; 17(8): 794–800.</Citation><ArticleIdList><ArticleId IdType="pubmed">26011246</ArticleId></ArticleIdList></Reference><Reference><Citation>Dokainish H, Teo K, Zhu J, et al.. Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Global Health 2017; 5(7): e665–e672.</Citation><ArticleIdList><ArticleId IdType="pubmed">28476564</ArticleId></ArticleIdList></Reference><Reference><Citation>Adams KF, Fonarow GC, Emerman CL, et al.. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005; 149(2): 209–216.</Citation><ArticleIdList><ArticleId IdType="pubmed">15846257</ArticleId></ArticleIdList></Reference><Reference><Citation>Streng KW, Nauta JF, Hillege HL, et al.. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 2018; 271: 132–139.</Citation><ArticleIdList><ArticleId IdType="pubmed">30482453</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Deursen VM, Urso R, Laroche C, et al.. Co-morbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail 2014; 16(1): 103–111.</Citation><ArticleIdList><ArticleId IdType="pubmed">24453099</ArticleId></ArticleIdList></Reference><Reference><Citation>Gimeno-Miguel A, Gracia Gutiérrez A, Poblador-Plou B, et al.. Multimorbidity patterns in patients with heart failure: an observational Spanish study based on electronic health records. BMJ Open 2019; 9(12): e033174.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7008407</ArticleId><ArticleId IdType="pubmed">31874886</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerhardt T, Gerhardt LMS, Ouwerkerk W, et al.. Multimorbidity in patients with acute heart failure across world regions and country income levels (REPORT-HF): a prospective, multicentre, global cohort study. Lancet Global Health 2023; 11(12): e1874–e1884.</Citation><ArticleIdList><ArticleId IdType="pubmed">37973338</ArticleId></ArticleIdList></Reference><Reference><Citation>Ang N, Chandramouli C, Yiu K, et al.. Heart failure and multimorbidity in Asia. Curr Heart Fail Rep 2023; 20(1): 24–32.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9977703</ArticleId><ArticleId IdType="pubmed">36811820</ArticleId></ArticleIdList></Reference><Reference><Citation>Harikrishnan S, Koshy L, Ganapathi S, et al.. Charting a roadmap for heart failure research in India: insights from a qualitative survey. Indian J Med Res 2023; 158(2): 182–189.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10645037</ArticleId><ArticleId IdType="pubmed">37787260</ArticleId></ArticleIdList></Reference><Reference><Citation>Onteddu SH, Wangchuk G, Sharma AJ, et al.. Acute decompensated heart failure in a North Indian community hospital: demographics, clinical characteristics, comorbidities and adherence to therapy. Indian Heart J 2020; 72(1): 27–31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7231861</ArticleId><ArticleId IdType="pubmed">32423557</ArticleId></ArticleIdList></Reference><Reference><Citation>Shukkoor AA, George NE, Radhakrishnan S, et al.. Clinical characteristics and outcomes of patients admitted with acute heart failure: insights from a single-center heart failure registry in South India. Egypt Heart J 2021; 73: 38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8088418</ArticleId><ArticleId IdType="pubmed">33932180</ArticleId></ArticleIdList></Reference><Reference><Citation>McDonagh TA, Metra M, Adamo M, et al.. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599–3726.</Citation><ArticleIdList><ArticleId IdType="pubmed">34447992</ArticleId></ArticleIdList></Reference><Reference><Citation>Heidenreich PA, Bozkurt B, Aguilar D, et al.. 2022 ACC/AHA/HFSA guideline for the management of heart failure. J Card Fail 2022; 28(5): e1–e167.</Citation><ArticleIdList><ArticleId IdType="pubmed">35378257</ArticleId></ArticleIdList></Reference><Reference><Citation>Marti CN, Fonarow GC, Anker S, et al.. Medication dosing for heart failure with reduced ejection fraction. Eur J Heart Fail 2019; 21(3): 286–296.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6528811</ArticleId><ArticleId IdType="pubmed">30537163</ArticleId></ArticleIdList></Reference><Reference><Citation>Lipsey JE, McIlvennan CK, Helmkamp LJ, et al.. Multimorbidity and guideline-directed medical therapy intensification in heart failure: findings from the EPIC-HF trial. J Card Fail 2022; 28(5, Supplement): S13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11279720</ArticleId><ArticleId IdType="pubmed">39071594</ArticleId></ArticleIdList></Reference><Reference><Citation>Screever EM, Van Der Wal MHL, Van Veldhuisen DJ, et al.. Comorbidities complicating heart failure: changes over the last 15 years. Clin Res Cardiol 2023; 112(1): 123–133.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9849176</ArticleId><ArticleId IdType="pubmed">35976430</ArticleId></ArticleIdList></Reference><Reference><Citation>McMurray JJV, Packer M, Desai AS, et al.. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993–1004.</Citation><ArticleIdList><ArticleId IdType="pubmed">25176015</ArticleId></ArticleIdList></Reference><Reference><Citation>Swedberg K, Komajda M, Böhm M, et al.. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376(9744): 875–885.</Citation><ArticleIdList><ArticleId IdType="pubmed">20801500</ArticleId></ArticleIdList></Reference><Reference><Citation>Banks AZ, Mentz RJ, Stebbins A, et al.. Response to exercise training and outcomes in patients with heart failure and diabetes mellitus: insights from HF-ACTION. J Card Fail 2016; 22(7): 485–491.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4903090</ArticleId><ArticleId IdType="pubmed">26687984</ArticleId></ArticleIdList></Reference><Reference><Citation>De Boer RA, Doehner W, Van Der Horst ICC, et al.. Influence of diabetes mellitus and hyperglycemia on prognosis in patients ⩾70 years old with heart failure and effects of nebivolol (data from the Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with heart failure [SENIORS]). Am J Cardiol 2010; 106(1): 78–86.e1.</Citation><ArticleIdList><ArticleId IdType="pubmed">20609652</ArticleId></ArticleIdList></Reference><Reference><Citation>The SOLVD Investigators; Yusuf S, Pitt B, et al.. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325(5): 293–302.</Citation><ArticleIdList><ArticleId IdType="pubmed">2057034</ArticleId></ArticleIdList></Reference><Reference><Citation>Deedwania PC, Giles TD, Klibaner M, et al.. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am Heart J 2005; 149(1): 159–167.</Citation><ArticleIdList><ArticleId IdType="pubmed">15660048</ArticleId></ArticleIdList></Reference><Reference><Citation>Granger CB, McMurray JJV, Yusuf S, et al.. Effects of candesartan in patients with chronic heart failure. Lancet 2003; 362: 772–776.</Citation><ArticleIdList><ArticleId IdType="pubmed">13678870</ArticleId></ArticleIdList></Reference><Reference><Citation>Kristensen SL, Mogensen UM, Jhund PS, et al.. Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-Preserve trial (Irbesartan in Heart Failure with Preserved Ejection Fraction). Circulation 2017; 135(8): 724–735.</Citation><ArticleIdList><ArticleId IdType="pubmed">28052977</ArticleId></ArticleIdList></Reference><Reference><Citation>Cleland JGF. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27(19): 2338–2345.</Citation><ArticleIdList><ArticleId IdType="pubmed">16963472</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmed A, Rich MW, Fleg JL, et al.. Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation 2006; 114(5): 397–403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2628473</ArticleId><ArticleId IdType="pubmed">16864724</ArticleId></ArticleIdList></Reference><Reference><Citation>Yusuf S, Pfeffer MA, Swedberg K, et al.. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved trial. Lancet 2003; 362(9386): 777–781.</Citation><ArticleIdList><ArticleId IdType="pubmed">13678871</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo N, Fonarow GC, Lippmann SJ, et al.. Early adoption of sacubitril/valsartan for patients with heart failure with reduced ejection fraction: insights from Get with the Guidelines-Heart Failure (GWTG-HF). JACC Heart Fail 2017; 5(4): 305–309</Citation><ArticleIdList><ArticleId IdType="pubmed">28359417</ArticleId></ArticleIdList></Reference><Reference><Citation>Lawson CA, Solis-Trapala I, Dahlstrom U, et al.. Comorbidity health pathways in heart failure patients: a sequences-of-regressions analysis using cross-sectional data from 10,575 patients in the Swedish Heart Failure Registry. PLoS Med 2018; 15(3): e1002540.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5870940</ArticleId><ArticleId IdType="pubmed">29584734</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruiz-Laiglesia FJ, Sánchez-Marteles M, Pérez-Calvo JI, et al.. Comorbidity in heart failure. Results of the Spanish RICA Registry. QJM 2014; 107(12): 989–994.</Citation><ArticleIdList><ArticleId IdType="pubmed">24947341</ArticleId></ArticleIdList></Reference><Reference><Citation>Harikrishnan S, Bahl A, Roy A, et al.. Clinical profile and 90 day outcomes of 10,851 heart failure patients across India: National Heart Failure Registry. ESC Heart Fail 2022; 9(6): 3898–3908.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9773752</ArticleId><ArticleId IdType="pubmed">36214477</ArticleId></ArticleIdList></Reference><Reference><Citation>Harikrishnan S, Jeemon P, Ganapathi S, et al.. Five-year mortality and readmission rates in patients with heart failure in India: results from the Trivandrum heart failure registry. Int J Cardiol 2021; 326: 139–143.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10424638</ArticleId><ArticleId IdType="pubmed">33049297</ArticleId></ArticleIdList></Reference><Reference><Citation>Jayagopal PB, Sastry SL, Nanjappa V, et al.. Clinical characteristics and 30-day outcomes in patients with acute decompensated heart failure: results from Indian College of Cardiology National Heart Failure Registry (ICCNHFR). Int J Cardiol 2022; 356: 73–78.</Citation><ArticleIdList><ArticleId IdType="pubmed">35296433</ArticleId></ArticleIdList></Reference><Reference><Citation>Chopra VK, Mittal S, Bansal M, et al.. Clinical profile and one-year survival of patients with heart failure with reduced ejection fraction: the largest report from India. Indian Heart J 2019; 71(3): 242–248.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6796637</ArticleId><ArticleId IdType="pubmed">31543197</ArticleId></ArticleIdList></Reference><Reference><Citation>Cruz Rodriguez JB, Cu C, Siddiqui T. Narrative review in the current role of angiotensin receptor-neprilysin inhibitors. Ann Transl Med 2021; 9(6): 518.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8039652</ArticleId><ArticleId IdType="pubmed">33850915</ArticleId></ArticleIdList></Reference><Reference><Citation>La Canna G, Scarfo’ I. New and old echocardiographic parameters in heart failure. Eur Heart J Suppl 2020; 22(Suppl L): L86–L92.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7673607</ArticleId><ArticleId IdType="pubmed">33239981</ArticleId></ArticleIdList></Reference><Reference><Citation>Bozkurt B, Coats AJS, Tsutsui H, et al.. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur J Heart Fail 2021; 23(3): 352–380.</Citation><ArticleIdList><ArticleId IdType="pubmed">33605000</ArticleId></ArticleIdList></Reference><Reference><Citation>Bayes-Genis A, Docherty KF, Petrie MC, et al.. Practical algorithms for early diagnosis of heart failure and heart stress using NT-proBNP: a clinical consensus statement from the Heart Failure Association of the ESC. Eur J Heart Fail 2023; 25(11): 1891–1898.</Citation><ArticleIdList><ArticleId IdType="pubmed">37712339</ArticleId></ArticleIdList></Reference><Reference><Citation>Raymond I, Groenning BA, Hildebrandt PR, et al.. The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart 2003; 89(7): 745–751.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1767734</ArticleId><ArticleId IdType="pubmed">12807847</ArticleId></ArticleIdList></Reference><Reference><Citation>Ullah W, Ahmad A, Sattar Y, et al.. Importance of basal metabolic index in the diagnosis of heart failure with B-type natriuretic peptide. Cardiol Res 2019; 10(4): 211–215.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6681847</ArticleId><ArticleId IdType="pubmed">31413777</ArticleId></ArticleIdList></Reference><Reference><Citation>Daniels LB, Clopton P, Bhalla V, et al.. How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure. Results from the Breathing Not Properly Multinational Study. Am Heart J 2006; 151(5): 999–1005.</Citation><ArticleIdList><ArticleId IdType="pubmed">16644321</ArticleId></ArticleIdList></Reference><Reference><Citation>McDonagh TA, Metra M, Adamo M, et al.. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023; 44(37): 3627–3639.</Citation><ArticleIdList><ArticleId IdType="pubmed">37622666</ArticleId></ArticleIdList></Reference><Reference><Citation>Thygesen K, Mair J, Giannitsis E, et al.. How to use high-sensitivity troponins in acute cardiac care. Eur Heart J 2012; 33: 2252–2257.</Citation><ArticleIdList><ArticleId IdType="pubmed">22723599</ArticleId></ArticleIdList></Reference><Reference><Citation>Harada T, Kagami K, Kato T, et al.. Echocardiography in the diagnostic evaluation and phenotyping of heart failure with preserved ejection fraction. J Cardiol 2022; 79(6): 679–690.</Citation><ArticleIdList><ArticleId IdType="pubmed">34857430</ArticleId></ArticleIdList></Reference><Reference><Citation>Jameel FA, Junejo AM, Ul Ain Khan Q, et al.. Echocardiographic changes in chronic kidney disease patients on maintenance hemodialysis. Cureus 2020; 12(7): e8969.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7398731</ArticleId><ArticleId IdType="pubmed">32766011</ArticleId></ArticleIdList></Reference><Reference><Citation>Zamfirescu MB, Ghilencea LN, Popescu MR, et al.. The E/e’ ratio—role in risk stratification of acute heart failure with preserved ejection fraction. Medicina (Kaunas) 2021; 57(4): 375.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8070491</ArticleId><ArticleId IdType="pubmed">33924367</ArticleId></ArticleIdList></Reference><Reference><Citation>Abramov D, Parwani P. Diving Into the Diagnostic Score Algorithms of Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021;8:665424.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8222584</ArticleId><ArticleId IdType="pubmed">34179132</ArticleId></ArticleIdList></Reference><Reference><Citation>Khan MS, Felker GM, Piña IL, et al.. Reverse cardiac remodeling following initiation of sacubitril/valsartan in patients with heart failure with and without diabetes. JACC Heart Fail 2021; 9(2): 137–145.</Citation><ArticleIdList><ArticleId IdType="pubmed">33309581</ArticleId></ArticleIdList></Reference><Reference><Citation>Kristensen SL, Preiss D, Jhund PS, et al.. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction. Circ Heart Fail 2016; 9(1): e002560.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4718182</ArticleId><ArticleId IdType="pubmed">26754626</ArticleId></ArticleIdList></Reference><Reference><Citation>Seferovic JP, Claggett B, Seidelmann SB, et al.. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol 2017; 5(5): 333–340.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5534167</ArticleId><ArticleId IdType="pubmed">28330649</ArticleId></ArticleIdList></Reference><Reference><Citation>Wijkman MO, Claggett B, Vaduganathan M, et al.. Effects of sacubitril/valsartan on glycemia in patients with diabetes and heart failure: the PARAGON-HF and PARADIGM-HF trials. Cardiovasc Diabetol 2022; 21: 110.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9206286</ArticleId><ArticleId IdType="pubmed">35717169</ArticleId></ArticleIdList></Reference><Reference><Citation>Damman K, Gori M, Claggett B, et al.. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail 2018; 6(6):489–498.</Citation><ArticleIdList><ArticleId IdType="pubmed">29655829</ArticleId></ArticleIdList></Reference><Reference><Citation>Mc Causland FR, Lefkowitz MP, Claggett B, et al.. Angiotensin-neprilysin inhibition and renal outcomes in heart failure with preserved ejection fraction. Circulation 2020; 142(13): 1236–1245.</Citation><ArticleIdList><ArticleId IdType="pubmed">32845715</ArticleId></ArticleIdList></Reference><Reference><Citation>Voors AA, Gori M, Liu LCY, et al.. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2015; 17(5): 510–517.</Citation><ArticleIdList><ArticleId IdType="pubmed">25657064</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayalasomayajula SP, Langenickel TH, Jordaan P, et al.. Effect of renal function on the pharmacokinetics of LCZ696 (sacubitril/valsartan), an angiotensin receptor neprilysin inhibitor. Eur J Clin Pharmacol 2016; 72(9): 1065–1073.</Citation><ArticleIdList><ArticleId IdType="pubmed">27230850</ArticleId></ArticleIdList></Reference><Reference><Citation>Gan L, Lyu X, Yang X, et al.. Application of angiotensin receptor–neprilysin inhibitor in chronic kidney disease patients: Chinese Expert Consensus. Front Med 2022; 9: 877237.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9343998</ArticleId><ArticleId IdType="pubmed">35928297</ArticleId></ArticleIdList></Reference><Reference><Citation>Solomon SD, McMurray JJV, Anand IS, et al.. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019; 381(17): 1609–1620.</Citation><ArticleIdList><ArticleId IdType="pubmed">31475794</ArticleId></ArticleIdList></Reference><Reference><Citation> -Nesbitt H. American Society of Nephrology and Kidney week—abstract details (2020) [Internet], https://www.asn-online.org/education/kidneyweek/2020/program-abstract.aspx?controlId=3449363 (2020, accessed 8 April 2024)</Citation></Reference><Reference><Citation>Nguyen DV, Le TN, Truong BQ, et al.. Efficacy and safety of angiotensin receptor-neprilysin inhibition in heart failure patients with end-stage kidney disease on maintenance dialysis: a systematic review and meta-analysis. Eur J Heart Fail. Epub ahead of print September 2024. DOI: 10.1002/ejhf.3454.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ejhf.3454</ArticleId><ArticleId IdType="pubmed">39252524</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu S, Xu Z, Lin B, et al.. Effects of sacubitril-valsartan in heart failure with preserved ejection fraction in patients undergoing peritoneal dialysis. Front Med 2021; 8: 657067.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8255468</ArticleId><ArticleId IdType="pubmed">34235161</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee S, Oh J, Kim H, et al.. Sacubitril/valsartan in patients with heart failure with reduced ejection fraction with end-stage of renal disease. ESC Heart Fail 2020; 7(3): 1125–1129.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7261577</ArticleId><ArticleId IdType="pubmed">32153122</ArticleId></ArticleIdList></Reference><Reference><Citation>Ding Y, Wan L, Zhang Z-C, et al.. Effects of sacubitril-valsartan in patients undergoing maintenance dialysis. Ren Fail 202; 45(1): 2222841.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10281424</ArticleId><ArticleId IdType="pubmed">37334931</ArticleId></ArticleIdList></Reference><Reference><Citation>George J, Gopal A, Gracious N, et al.. Clinical response and safety of angiotensin receptor and neprilysin inhibitor combination in advanced chronic kidney disease and heart failure with reduced ejection fraction. J Assoc Physicians India 2023; 71(7): 11–12.</Citation><ArticleIdList><ArticleId IdType="pubmed">37449691</ArticleId></ArticleIdList></Reference><Reference><Citation>Jurica J, Péč MJ, Benko J, et al.. Obesity as a risk factor in atrial fibrillation and heart failure. J Diabetes Metab Disord 2024; 23(1): 125–134.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11196522</ArticleId><ArticleId IdType="pubmed">38932866</ArticleId></ArticleIdList></Reference><Reference><Citation>Gupta PP, Fonarow GC, Horwich TB. Obesity and the obesity paradox in heart failure. Can J Cardiol 2015; 31(2): 195–202.</Citation><ArticleIdList><ArticleId IdType="pubmed">25661554</ArticleId></ArticleIdList></Reference><Reference><Citation>Kristensen SL, Martinez F, Jhund PS, et al.. Geographic variations in the PARADIGM-HF heart failure trial. Eur Heart J 2016; 37(41): 3167–3174.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5106574</ArticleId><ArticleId IdType="pubmed">27354044</ArticleId></ArticleIdList></Reference><Reference><Citation>Fonarow GC, Srikanthan P, Costanzo MR, et al.. An obesity paradox in acute heart failure: analysis of body mass index and inhospital mortality for 108 927 patients in the Acute Decompensated Heart Failure National Registry. Am Heart J 2007; 153(1): 74–81.</Citation><ArticleIdList><ArticleId IdType="pubmed">17174642</ArticleId></ArticleIdList></Reference><Reference><Citation>Alrob OA, Sankaralingam S, Alazzam S, et al.. Obesity paradox among heart failure with reduced ejection fraction patients: a retrospective cohort study. Medicina 2023; 59(1): 60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9865794</ArticleId><ArticleId IdType="pubmed">36676684</ArticleId></ArticleIdList></Reference><Reference><Citation>Haass M, Kitzman DW, Anand IS, et al.. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 2011; 4(3): 324–331.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3100162</ArticleId><ArticleId IdType="pubmed">21350053</ArticleId></ArticleIdList></Reference><Reference><Citation>Adamopoulos C, Meyer P, Desai RV, et al.. Absence of obesity paradox in patients with chronic heart failure and diabetes mellitus: a propensity-matched study. Eur J Heart Fail 2011; 13(2): 200–206.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3025667</ArticleId><ArticleId IdType="pubmed">20930001</ArticleId></ArticleIdList></Reference><Reference><Citation>Streng KW, Voors AA, Hillege HL, et al.. Waist-to-hip ratio and mortality in heart failure. Eur J Heart Fail 2018; 20(9): 1269–1277.</Citation><ArticleIdList><ArticleId IdType="pubmed">29963737</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappelletto C, Stolfo D, Orsini N, et al.. Use of and association between heart failure pharmacological treatments and outcomes in obese versus non-obese patients with heart failure with reduced ejection fraction: data from the Swedish Heart Failure Registry. Eur J Heart Fail 2023; 25(5): 698–710.</Citation><ArticleIdList><ArticleId IdType="pubmed">36781199</ArticleId></ArticleIdList></Reference><Reference><Citation>Kido K, Bianco C, Caccamo M, et al.. Association of body mass index with clinical outcomes in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. J Cardiovasc Pharmacol Ther 2021; 26(6): 619–624.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8545761</ArticleId><ArticleId IdType="pubmed">34138675</ArticleId></ArticleIdList></Reference><Reference><Citation>Abumayyaleh M, Demmer J, Krack C, et al.. Incidence of atrial and ventricular arrhythmias in obese patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Diabetes Obes Metab 2023; 25(10): 2999–3011.</Citation><ArticleIdList><ArticleId IdType="pubmed">37417372</ArticleId></ArticleIdList></Reference><Reference><Citation>Jariwala P, Punjani A, Boorugu H, et al.. A clinical experience of Indian patients with heart failure with reduced left ventricular ejection fraction using an angiotensin receptor-neprilysin inhibitor [ARNI] on an outpatient basis. Indian Heart J 2021; 73(2): 211–213.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8065353</ArticleId><ArticleId IdType="pubmed">33865520</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewan P, Docherty KF, McMurray JJV. Sacubitril/valsartan in Asian patients with heart failure with reduced ejection fraction. Korean Circ J 2019; 49(6): 469–484.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6554586</ArticleId><ArticleId IdType="pubmed">31172710</ArticleId></ArticleIdList></Reference><Reference><Citation>Böhm M, Young R, Jhund PS, et al.. Systolic blood pressure, cardiovascular outcomes and efficacy and safety of sacubitril/valsartan (LCZ696) in patients with chronic heart failure and reduced ejection fraction: results from PARADIGM-HF. Eur Heart J 2017; 38(15): 1132–1143.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6251522</ArticleId><ArticleId IdType="pubmed">28158398</ArticleId></ArticleIdList></Reference><Reference><Citation>Jackson AM, Jhund PS, Anand IS, et al.. Sacubitril–valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur Heart J 2021; 42(36): 3741–3752.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8455346</ArticleId><ArticleId IdType="pubmed">34392331</ArticleId></ArticleIdList></Reference><Reference><Citation>Senni M, McMurray JJV, Wachter R, et al.. Impact of systolic blood pressure on the safety and tolerability of initiating and up-titrating sacubitril/valsartan in patients with heart failure and reduced ejection fraction: insights from the TITRATION study. Eur J Heart Fail 2018; 20(3): 491–500.</Citation><ArticleIdList><ArticleId IdType="pubmed">29164797</ArticleId></ArticleIdList></Reference><Reference><Citation>Mancia G, Brunström M, Burnier M, et al.. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens 2023; 41(12): 1874–2071.</Citation><ArticleIdList><ArticleId IdType="pubmed">37345492</ArticleId></ArticleIdList></Reference><Reference><Citation>Unger T, Borghi C, Charchar F, et al.. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020; 75(6): 1334–1357.</Citation><ArticleIdList><ArticleId IdType="pubmed">32370572</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruilope LM, Dukat A, Böhm M, et al.. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 2010; 375(9722): 1255–1266.</Citation><ArticleIdList><ArticleId IdType="pubmed">20236700</ArticleId></ArticleIdList></Reference><Reference><Citation>Kario K, Sun N, Chiang FT, et al.. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension 2014; 63(4): 698–705.</Citation><ArticleIdList><ArticleId IdType="pubmed">24446062</ArticleId></ArticleIdList></Reference><Reference><Citation>Leancă SA, Afrăsânie I, Crişu D, et al.. Cardiac reverse remodeling in ischemic heart disease with novel therapies for heart failure with reduced ejection fraction. Life 2023; 13(4): 1000.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10143569</ArticleId><ArticleId IdType="pubmed">37109529</ArticleId></ArticleIdList></Reference><Reference><Citation>Rezq A, Saad M, El Nozahi M. Comparison of the efficacy and safety of sacubitril/valsartan versus ramipril in patients with ST-segment elevation myocardial infarction. Am J Cardiol 2021; 143: 7–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">33417876</ArticleId></ArticleIdList></Reference><Reference><Citation>Pfeffer MA, Claggett B, Lewis EF, et al.. Angiotensin receptor–neprilysin inhibition in acute myocardial infarction. N Engl J Med 2021; 385(20): 1845–1855.</Citation><ArticleIdList><ArticleId IdType="pubmed">34758252</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah AM, Claggett B, Prasad N, et al.. Impact of sacubitril/valsartan compared with ramipril on cardiac structure and function after acute myocardial infarction: the PARADISE-MI Echocardiographic Substudy. Circulation 2022; 146(14): 1067–1081.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9529950</ArticleId><ArticleId IdType="pubmed">36082663</ArticleId></ArticleIdList></Reference><Reference><Citation>Mogensen UM, Køber L, Kristensen SL, et al.. The effects of sacubitril/valsartan on coronary outcomes in PARADIGM-HF. Am Heart J 2017; 188: 35–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">28577679</ArticleId></ArticleIdList></Reference><Reference><Citation>Mehran R, Steg PG, Pfeffer MA, et al.. The effects of angiotensin receptor-neprilysin inhibition on major coronary events in patients with acute myocardial infarction: insights from the PARADISE-MI trial. Circulation 2022; 146(23): 1749–1757.</Citation><ArticleIdList><ArticleId IdType="pubmed">36321459</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Zhu H, Zheng Y, et al.. A systematic review and meta-analysis of sacubitril-valsartan in the treatment of ventricular remodeling in patients with heart failure after acute myocardial infarction. Front Cardiovasc Med 2022; 9: 953948.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9592716</ArticleId><ArticleId IdType="pubmed">36304540</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang P, Han Y, Lian C, et al.. Efficacy and safety of sacubitril/valsartan vs. valsartan in patients with acute myocardial infarction: a meta-analysis. Front Cardiovasc Med 2022; 9: 988117..</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9448932</ArticleId><ArticleId IdType="pubmed">36093128</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39640885</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Study on the characteristics of carotid wall shear stress in type 2 diabetes patients based on ultrasound vector flow imaging.</ArticleTitle><Pagination><StartPage>1409082</StartPage><MedlinePgn>1409082</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1409082</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1409082</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="UNASSIGNED">We aimed to quantitatively analyze wall shear stress (WSS) of the common carotid artery (CCA) and elucidate the relationship between WSS and cardiovascular disease (CVD) in patients with type 2 diabetes mellitus (T2DM) using ultrasound vector flow (V-Flow) imaging.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">A total of 109 T2DM patients were selected as the DM group, while 49 healthy volunteers served as the control group. V-Flow examination of the bilateral CCA was conducted. The maximum wall shear stress (WSS<sub>max</sub>) and mean wall shear stress (WSS<sub>mean</sub>) at the bifurcation, proximal bifurcation and middle segment of the bilateral CCA were obtained.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">The DM group showed decreased WSS<sub>mean</sub> in the middle region and proximal bifurcation of the CCA compared with the control group (p < 0.05). The WSS<sub>mean</sub> was further decreased in T2DM patients with CVD compared to those without CVD (middle region: 0.71 ± 0.17 Pa <i>vs.</i> 0.84 ± 0.24 Pa, p < 0.05; proximal bifurcation: 0.62 ± 0.22 Pa <i>vs.</i> 0.80 ± 0.21 Pa, p < 0.05). The receiver operating characteristic curve showed that a model combining with age, body mass index and WSS<sub>mean</sub> at the proximal carotid bifurcation had diagnostic value for detecting CVD in T2DM patients (area under the curve: 0.862, p < 0.05).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">WSS<sub>mean</sub> has potential value for evaluation of atherosclerosis, as well as in detecting the occurrence of CVD in T2DM patients. Ultrasound V-Flow imaging may be an effective tool for non-invasive evaluation of WSS in the clinic.</AbstractText><CopyrightInformation>Copyright © 2024 Li, Luo, Liu, Xie, Wang, Deng, Zhong, Liu, Cao, Du, Luo, Deng and Yin.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Li</LastName><ForeName>Zhaohuan</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Luo</LastName><ForeName>Anguo</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Xuebing</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Shenghua</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Yulin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deng</LastName><ForeName>Lan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhong</LastName><ForeName>Shimin</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yaoxia</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Geriatric Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cao</LastName><ForeName>Xu</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Du</LastName><ForeName>Yigang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Ultrasound Research and Development, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luo</LastName><ForeName>Wen</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Clinical and Research, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deng</LastName><ForeName>Yan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yin</LastName><ForeName>Lixue</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017536" MajorTopicYN="N">Carotid Artery, Common</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014463" MajorTopicYN="N">Ultrasonography</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001783" MajorTopicYN="N">Blood Flow Velocity</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002339" MajorTopicYN="N">Carotid Arteries</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D059168" MajorTopicYN="N">Carotid Intima-Media Thickness</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">cardiovascular diseases</Keyword><Keyword MajorTopicYN="N">carotid artery</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">vector flow imaging</Keyword><Keyword MajorTopicYN="N">wall shear stress</Keyword></KeywordList><CoiStatement>Authors YD and WL were employed by Shenzhen Mindray Bio-Medical Electronics Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>9</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39640885</ArticleId><ArticleId IdType="pmc">PMC11617173</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1409082</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientifc evidence from across the world in 2007-2017. Cardiovasc Diabetol. (2018) 17:83. doi: 10.1186/s12933-018-0728-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-018-0728-6</ArticleId><ArticleId IdType="pmc">PMC5994068</ArticleId><ArticleId IdType="pubmed">29884191</ArticleId></ArticleIdList></Reference><Reference><Citation>Gimbrone MA, Jr, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. (2013) 22:9–15. doi: 10.1016/j.carpath.2012.06.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.carpath.2012.06.006</ArticleId><ArticleId IdType="pmc">PMC4564111</ArticleId><ArticleId IdType="pubmed">22818581</ArticleId></ArticleIdList></Reference><Reference><Citation>Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, et al. . Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. (2009) 297:H1535–1543. doi: 10.1152/ajpheart.00510.2009</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpheart.00510.2009</ArticleId><ArticleId IdType="pmc">PMC2770764</ArticleId><ArticleId IdType="pubmed">19684185</ArticleId></ArticleIdList></Reference><Reference><Citation>Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol. (2009) 29:158–61. doi: 10.1161/ATVBAHA.108.166736</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/ATVBAHA.108.166736</ArticleId><ArticleId IdType="pubmed">19038849</ArticleId></ArticleIdList></Reference><Reference><Citation>Papathanasopoulou P, Zhao S, Köhler U, Robertson MB, Long Q, Hoskins P, et al. . MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J Magnetic Resonance Imaging. (2003) 17:153–62. doi: 10.1002/jmri.10243</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jmri.10243</ArticleId><ArticleId IdType="pubmed">12541221</ArticleId></ArticleIdList></Reference><Reference><Citation>Samijo SK, Willigers JM, Barkhuysen R, Kitslaar PJ, Reneman RS, Brands PJ, et al. . Wall shear stress in the human common carotid artery as function of age and gender. Cardiovasc Res. (1998) 39:515–22. doi: 10.1016/S0008-6363(98)00074-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0008-6363(98)00074-1</ArticleId><ArticleId IdType="pubmed">9798536</ArticleId></ArticleIdList></Reference><Reference><Citation>Mynard JP, Wasserman BA, Steinman DA. Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis. (2013) 227:259–66. doi: 10.1016/j.atherosclerosis.2013.01.026</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.atherosclerosis.2013.01.026</ArticleId><ArticleId IdType="pmc">PMC4329978</ArticleId><ArticleId IdType="pubmed">23398945</ArticleId></ArticleIdList></Reference><Reference><Citation>Du Y, Goddi A, Bortolotto C, Shen Y, Dell'Era A, Calliada F, et al. . Wall shear stress measurements based on ultrasound vector flow imaging: Theoretical studies and clinical examples. J Ultrasound Med. (2020) 39:1649–64. doi: 10.1002/jum.15253</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jum.15253</ArticleId><ArticleId IdType="pmc">PMC7497026</ArticleId><ArticleId IdType="pubmed">32124997</ArticleId></ArticleIdList></Reference><Reference><Citation>Du Y, Ding H, He L, Yiu BYS, Deng L, Yu ACH, et al. . Quantitative blood flow measurements in the common carotid artery: A comparative study of high-frame-rate ultrasound vector flow imaging, pulsed wave Doppler, and phase contrast magnetic resonance imaging. Diagnostics. (2022) 12:690. doi: 10.3390/diagnostics12030690</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/diagnostics12030690</ArticleId><ArticleId IdType="pmc">PMC8947594</ArticleId><ArticleId IdType="pubmed">35328242</ArticleId></ArticleIdList></Reference><Reference><Citation>Poloni S, Bozzetto M, Du Y, Aiani L, Goddi A, Fiorina I, et al. . Velocity vector comparison between vector flow imaging and computational fluid dynamics in the carotid bifurcation. Ultrasonics. (2023) 128:106860. doi: 10.1016/j.ultras.2022.106860</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ultras.2022.106860</ArticleId><ArticleId IdType="pubmed">36244088</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao M, Zhang L, Chen J, Gu S, Wu R, Jia C. Associations between carotid plaque shape, biomechanical parameters, and ischemic stroke in mild carotid stenosis with a single plaque. Ultrasonography. (2024) 43:209–19. doi: 10.14366/usg.24019</Citation><ArticleIdList><ArticleId IdType="doi">10.14366/usg.24019</ArticleId><ArticleId IdType="pmc">PMC11079503</ArticleId><ArticleId IdType="pubmed">38644636</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association . 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. (2021) 44:S15–33. doi: 10.2337/dc21-ad09</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-ad09</ArticleId><ArticleId IdType="pubmed">33298413</ArticleId></ArticleIdList></Reference><Reference><Citation>Qiu Y, Yang D, Zhang Q, Chen K, Dong Y, Wang WP. V Flow technology in measurement of wall shear stress of common carotid arteries in healthy adults: Feasibility and normal values. Clin Hemorheol Microcirc. (2020) 74:453–62. doi: 10.3233/CH-190719</Citation><ArticleIdList><ArticleId IdType="doi">10.3233/CH-190719</ArticleId><ArticleId IdType="pubmed">31683473</ArticleId></ArticleIdList></Reference><Reference><Citation>Katritsis D, Kaiktsis L, Chaniotis A, Pantos J, Efstathopoulos EP, Marmarelis V. Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis. (2007) 49:307–29. doi: 10.1016/j.pcad.2006.11.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcad.2006.11.001</ArticleId><ArticleId IdType="pubmed">17329179</ArticleId></ArticleIdList></Reference><Reference><Citation>Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular ndothelial cells. J Biomech. (2005) 38:1949–71. doi: 10.1016/j.jbiomech.2004.09.030</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jbiomech.2004.09.030</ArticleId><ArticleId IdType="pubmed">16084198</ArticleId></ArticleIdList></Reference><Reference><Citation>Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. (2011) 91:327–87. doi: 10.1152/physrev.00047.2009</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/physrev.00047.2009</ArticleId><ArticleId IdType="pmc">PMC3844671</ArticleId><ArticleId IdType="pubmed">21248169</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang K, Chen Y, Zhang T, Huang L, Wang Y, Yin T, et al. . A novel role of Id1 in regulating oscillatory shear stress-mediated lipid uptake in endothelial cells. Ann Biomed Eng. (2018) 46:849–63. doi: 10.1007/s10439-018-2000-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10439-018-2000-3</ArticleId><ArticleId IdType="pubmed">29508175</ArticleId></ArticleIdList></Reference><Reference><Citation>Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C. Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol. (2006) 113:12–8. doi: 10.1016/j.ijcard.2006.03.035</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2006.03.035</ArticleId><ArticleId IdType="pubmed">16889847</ArticleId></ArticleIdList></Reference><Reference><Citation>Yiu BYS, Lai SS, Yu ACH. Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns. Ultrasound Med Biol. (2014) 40:2295–309. doi: 10.1016/j.ultrasmedbio.2014.03.014</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ultrasmedbio.2014.03.014</ArticleId><ArticleId IdType="pubmed">24972498</ArticleId></ArticleIdList></Reference><Reference><Citation>Du Y, Shen Y, Yiu BYS, Yu A, Zhu L. High frame rate vector flow imaging: Development as a new diagnostic mode on a clinical scanner. IEEE IUS. (2018). doi: 10.1109/ULTSYM.2018.8580187</Citation><ArticleIdList><ArticleId IdType="doi">10.1109/ULTSYM.2018.8580187</ArticleId></ArticleIdList></Reference><Reference><Citation>Goddi A, Bortolotto C, Raciti MV, Fiorina I, Aiani L, Magistretti G, et al. . High-frame rate vector flow imaging of the carotid bifurcation in healthy adults: comparison with color doppler imaging. J Ultrasound Med. (2018) 37:2263–75. doi: 10.1002/jum.14579</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jum.14579</ArticleId><ArticleId IdType="pubmed">29574932</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Z, Zhou Y, Deng L, Wang Y, Liu Y, Cao X, et al. . Distribution characteristics of carotid arterial wall shear stress and its relationship with cardiocerebrovascular diseases in patients with type 2 diabetes mellitus. Chin J Ultrasound Med. (2021) 37:485–8.</Citation></Reference><Reference><Citation>Carallo C, Tripolino C, De Franceschi MS, Irace C, Xu XY, Gnasso A. Carotid endothelial shear stress reduction with aging is associated with plaque development in twelve years. Atherosclerosis. (2016) 251:63–9. doi: 10.1016/j.atherosclerosis.2016.05.048</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.atherosclerosis.2016.05.048</ArticleId><ArticleId IdType="pubmed">27266823</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang G, Wang Z, Zhang S, Qin Y, Yao Y, Tang X, et al. . Age and anatomical location related hemodynamic changes assessed by 4D flow MRI in the carotid arteries of healthy adults. Eur J Radiol. (2020) 128:109035. doi: 10.1016/j.ejrad.2020.109035</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ejrad.2020.109035</ArticleId><ArticleId IdType="pubmed">32413676</ArticleId></ArticleIdList></Reference><Reference><Citation>He L, Cai Y, Feng Y, Wang W, Feng T, Shen E, et al. . Utility of vector flow mapping technology in quantitative assessment of carotid wall shear stress in hypertensive patients: A preliminary study. Front Cardiovasc Med. (2022) 28:967763. doi: 10.3389/fcvm.2022.967763</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcvm.2022.967763</ArticleId><ArticleId IdType="pmc">PMC9649775</ArticleId><ArticleId IdType="pubmed">36386366</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng C, Tempel D, van Haperen R, an der Baan A, Grosveld F, Daemen MJ, et al. . Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. (2006) 113:2744–53. doi: 10.1161/CIRCULATIONAHA.105.590018</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.105.590018</ArticleId><ArticleId IdType="pubmed">16754802</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho KI, Kim BH, Kim HS, Heo JH. Low carotid artery wall shear stress is associated with significant coronary artery disease in patients with chest pain. J Atheroscler Thromb. (2016) 23:297–308. doi: 10.5551/jat.31377fi 2</Citation><ArticleIdList><ArticleId IdType="doi">10.5551/jat.31377</ArticleId><ArticleId IdType="pubmed">26477886</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639901</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">2296-2565</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in public health</Title><ISOAbbreviation>Front Public Health</ISOAbbreviation></Journal><ArticleTitle>Health economic evaluation of structured education programs for patients with diabetes: a systematic review.</ArticleTitle><Pagination><StartPage>1467178</StartPage><MedlinePgn>1467178</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1467178</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fpubh.2024.1467178</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Diabetes structured education programs have been demonstrated to effectively improve glycemic control and self-management behaviors. However, evidence on the health economic evaluation of these programs is limited.</AbstractText><AbstractText Label="OBJECTIVES" NlmCategory="UNASSIGNED">To systematically review the health economic evaluation of structured education programs for patients with type 1 and type 2 diabetes mellitus.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">The English databases PUBMED, WEB OF SCIENCE, OVID, COCHRANE LIBRARY, EMBASE, and EBSCO, along with the Chinese databases CNKI, WANFANG, VIP, and SINOMED, were searched from their inception to September 2024. The quality of the literature was assessed using the CHEERS 2022 checklist. A descriptive analysis was performed on the studies included in the review, with all currencies converted to international dollars. An incremental cost-effectiveness ratio of less than one times the <i>per capita</i> GDP was considered highly cost-effective, while a ratio between one and three times the <i>per capita</i> GDP was considered cost-effective.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 28 studies from upper-middle-income and high-income countries were included. The average quality score of the included studies was 18.6, indicating a moderate level of reporting quality. Among these, eleven studies demonstrated that diabetes structured education programs were highly cost-effective and twelve were found to be cost-effective. In contrast, three studies were deemed not cost-effective, and two studies provided uncertain results. The ranges of the incremental cost-effectiveness ratios for short-term, medium-term, and long-term studies were - 520.60 to 65,167.00 dollars, -24,952.22 to 14,465.00 dollars, and -874.00 to 236,991.67 dollars, respectively.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">This study confirms the cost-effectiveness of structured education programs for diabetes and highlights their importance for patients with type 2 diabetes who have HbA1c levels exceeding 7% and are receiving non-insulin therapy. Additionally, the potential advantages of incorporating telecommunication technologies into structured diabetes education were emphasized. These findings offer valuable insights and guidance for decision-making in diabetes management and clinical practice, contributing to the optimization of medical resource allocation and the improvement of health status and quality of life for patients.</AbstractText><CopyrightInformation>Copyright © 2024 Ye, Zhou, Yang, Tao and Jiang.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ye</LastName><ForeName>Caihua</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>International Nursing School, Hainan Medical University, Haikou, Hainan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Qiwei</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>International Nursing School, Hainan Medical University, Haikou, Hainan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Wenfei</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>International Nursing School, Hainan Medical University, Haikou, Hainan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Tao</LastName><ForeName>Libo</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Center for Health Policy and Technology Evaluation, Peking University Health Science Center, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Jiang</LastName><ForeName>Xinjun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>International Nursing School, Hainan Medical University, Haikou, Hainan, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Public Health</MedlineTA><NlmUniqueID>101616579</NlmUniqueID><ISSNLinking>2296-2565</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003362" MajorTopicYN="Y">Cost-Benefit Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010353" MajorTopicYN="Y">Patient Education as Topic</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">cost-effectiveness analysis</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">health economic evaluation</Keyword><Keyword MajorTopicYN="N">structured education</Keyword><Keyword MajorTopicYN="N">systematic review</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>4</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>21</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639901</ArticleId><ArticleId IdType="pmc">PMC11617538</ArticleId><ArticleId IdType="doi">10.3389/fpubh.2024.1467178</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. (2001) 414:782–7. doi: 10.1038/414782a</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/414782a</ArticleId><ArticleId IdType="pubmed">11742409</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. . Idf diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>van Dieren S, Beulens JWJ, van der Schouw YT, Grobbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. European J Cardiovasc Prevent Rehabil. (2010) 17:S3–S08. doi: 10.1097/01.hjr.0000368191.86614.5a</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/01.hjr.0000368191.86614.5a</ArticleId><ArticleId IdType="pubmed">20489418</ArticleId></ArticleIdList></Reference><Reference><Citation>Afroz A, Alramadan MJ, Hossain MN, Romero L, Alam K, Magliano DJ, et al. . Cost-of-illness of type 2 diabetes mellitus in low and lower-middle income countries: a systematic review. BMC Health Serv Res. (2018) 18:972. doi: 10.1186/s12913-018-3772-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-018-3772-8</ArticleId><ArticleId IdType="pmc">PMC6296053</ArticleId><ArticleId IdType="pubmed">30558591</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel MR, Anthony Tolentino D, Smith A, Heisler M. Economic burden, financial stress, and cost-related coping among people with uncontrolled diabetes in the u.s. Prev Med Rep. (2023) 34:102246. doi: 10.1016/j.pmedr.2023.102246</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pmedr.2023.102246</ArticleId><ArticleId IdType="pmc">PMC10209691</ArticleId><ArticleId IdType="pubmed">37252071</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang Y, Wu Y, Lu Y, Kornelius E, Lin Y, Chen Y, et al. . Adherence to self-care behavior and glycemic effects using structured education. J Diabetes Investig. (2015) 6:662–9. doi: 10.1111/jdi.12343</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.12343</ArticleId><ArticleId IdType="pmc">PMC4627543</ArticleId><ArticleId IdType="pubmed">26543540</ArticleId></ArticleIdList></Reference><Reference><Citation>Loveman E, Frampton GK, Clegg AJ. The clinical effectiveness of diabetes education models for type 2 diabetes: a systematic review. Health Technol Assess. (2008) 12:1–116. doi: 10.3310/hta12090</Citation><ArticleIdList><ArticleId IdType="doi">10.3310/hta12090</ArticleId><ArticleId IdType="pubmed">18405469</ArticleId></ArticleIdList></Reference><Reference><Citation>Khunti K, Chatterjee S, Carey M, Daly H, Batista-Ferrer H, Davies MJ. New drug treatments versus structured education programmes for type 2 diabetes: comparing cost-effectiveness. The Lancet. (2016) 4:557–9. doi: 10.1016/S2213-8587(16)30048-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(16)30048-1</ArticleId><ArticleId IdType="pubmed">27235133</ArticleId></ArticleIdList></Reference><Reference><Citation>National Institute for Health and Care Excellence . Guidance on the use of patient-education models for diabetes. London: NICE; (2003).</Citation></Reference><Reference><Citation>Chatterjee S, Davies MJ, Heller S, Speight J, Snoek FJ, Khunti K. Diabetes structured self-management education programmes: a narrative review and current innovations. The Lancet. (2018) 6:130–42. doi: 10.1016/S2213-8587(17)30239-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(17)30239-5</ArticleId><ArticleId IdType="pubmed">28970034</ArticleId></ArticleIdList></Reference><Reference><Citation>Pacheco APF, Sande-Lee SVD, Sandoval RDCB, Batista S, Marques JLB. Effects of a structured education program on glycemic control in type 1 diabetes. Arch Endocrinol Metabol. (2017) 61:534–41. doi: 10.1590/2359-3997000000278</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/2359-3997000000278</ArticleId><ArticleId IdType="pmc">PMC10522068</ArticleId><ArticleId IdType="pubmed">28724054</ArticleId></ArticleIdList></Reference><Reference><Citation>Alibrahim A, AlRamadhan D, Johny S, Alhashemi M, Alduwaisan H, Al-Hilal M. The effect of structured diabetes self-management education on type 2 diabetes patients attending a primary health center in Kuwait. Diabetes Res Clin Pract. (2021) 171:108567. doi: 10.1016/j.diabres.2020.108567</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2020.108567</ArticleId><ArticleId IdType="pubmed">33279531</ArticleId></ArticleIdList></Reference><Reference><Citation>Walker GS, Chen JY, Hopkinson H, Sainsbury CAR, Jones GC. Structured education using dose adjustment for normal eating (dafne) reduces long-term hba(1c) and hba(1c) variability. Diabetic Med. (2018) 35:745–9. doi: 10.1111/dme.13621</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13621</ArticleId><ArticleId IdType="pubmed">29573459</ArticleId></ArticleIdList></Reference><Reference><Citation>Davis J, Fischl AH, Beck J, Browning L, Carter A, Condon JE, et al. . 2022 national standards for diabetes self-management education and support. Diabetes Care. (2022) 45:484–94. doi: 10.2337/dc21-2396</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-2396</ArticleId><ArticleId IdType="pubmed">35050365</ArticleId></ArticleIdList></Reference><Reference><Citation>Chinese DS. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (part 1). Chinese J Practical Internal Med. (2021) 41:668–95. doi: 10.19538/j.nk2021080106</Citation><ArticleIdList><ArticleId IdType="doi">10.19538/j.nk2021080106</ArticleId></ArticleIdList></Reference><Reference><Citation>Deakin TA, Cade JE, Williams R, Greenwood DC. Structured patient education: the diabetes x-pert programme makes a difference. Diabet Med. (2006) 23:944–54. doi: 10.1111/j.1464-5491.2006.01906.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2006.01906.x</ArticleId><ArticleId IdType="pubmed">16922700</ArticleId></ArticleIdList></Reference><Reference><Citation>Sturt JA, Whitlock S, Fox C, Hearnshaw H, Farmer AJ, Wakelin M, et al. . Effects of the diabetes manual 1:1 structured education in primary care. Diabet Med. (2008) 25:722–31. doi: 10.1111/j.1464-5491.2008.02451.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2008.02451.x</ArticleId><ArticleId IdType="pubmed">18435777</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang X, Jiang H, Tao L, Li M. The cost-effectiveness analysis of self-efficacy-focused structured education program for patients with type 2 diabetes mellitus in mainland China setting. Front Public Health. (2021) 9:767123. doi: 10.3389/fpubh.2021.767123</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2021.767123</ArticleId><ArticleId IdType="pmc">PMC8695800</ArticleId><ArticleId IdType="pubmed">34957020</ArticleId></ArticleIdList></Reference><Reference><Citation>Basarir H, Brennan A, Jacques R, Pollard D, Stevens K, Freeman J, et al. . Cost-effectiveness of structured education in children with type-1 diabetes mellitus. Int J Technol Assess Health Care. (2016) 32:203–11. doi: 10.1017/S0266462316000507</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0266462316000507</ArticleId><ArticleId IdType="pubmed">27719689</ArticleId></ArticleIdList></Reference><Reference><Citation>Brady EM, Bamuya C, Beran D, Correia J, Crampin A, Damasceno A, et al. . Extending availability of self-management structured education programmes for people with type 2 diabetes in low-to-middle income countries (extend)-a feasibility study in Mozambique and Malawi. BMJ Open. (2021) 11:e47425. doi: 10.1136/bmjopen-2020-047425</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2020-047425</ArticleId><ArticleId IdType="pmc">PMC8458338</ArticleId><ArticleId IdType="pubmed">34548349</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan Rohimi WNLH, Mohd Tahir NA. The Cost-effectiveness of different types of educational interventions in type ii diabetes mellitus: A systematic review. Front Pharmacol. (2022) 13:953341. doi: 10.3389/fphar.2022.953341</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2022.953341</ArticleId><ArticleId IdType="pmc">PMC9355120</ArticleId><ArticleId IdType="pubmed">35935879</ArticleId></ArticleIdList></Reference><Reference><Citation>Lian JX, McGhee SM, Chau J, Wong CKH, Lam CLK, Wong WCW. Systematic review on the cost-effectiveness of self-management education programme for type 2 diabetes mellitus. Diabetes Res Clin Pract. (2017) 127:21–34. doi: 10.1016/j.diabres.2017.02.021</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2017.02.021</ArticleId><ArticleId IdType="pubmed">28315575</ArticleId></ArticleIdList></Reference><Reference><Citation>Teljeur C, Moran PS, Walshe S, Smith SM, Cianci F, Murphy L, et al. . Economic evaluation of chronic disease self-management for people with diabetes: a systematic review. Diabet Med. (2017) 34:1040–9. doi: 10.1111/dme.13281</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13281</ArticleId><ArticleId IdType="pubmed">27770591</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. . The prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ. (2021) 372:n71. doi: 10.1136/bmj.n71</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.n71</ArticleId><ArticleId IdType="pmc">PMC8005924</ArticleId><ArticleId IdType="pubmed">33782057</ArticleId></ArticleIdList></Reference><Reference><Citation>Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, et al. . Consolidated health economic evaluation reporting standards 2022 (cheers 2022) statement: updated reporting guidance for health economic evaluations. Value Health. (2022) 25:3–9. doi: 10.1016/j.jval.2021.11.1351</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jval.2021.11.1351</ArticleId><ArticleId IdType="pubmed">35031096</ArticleId></ArticleIdList></Reference><Reference><Citation>Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, et al. . Consolidated health economic evaluation reporting standards (cheers) 2022 explanation and elaboration: a report of the ispor cheers ii good practices task force. Value Health. (2022) 25:10–31. doi: 10.1016/j.jval.2021.10.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jval.2021.10.008</ArticleId><ArticleId IdType="pubmed">35031088</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei X, Oxley S, Sideris M, Kalra A, Sun L, Yang L, et al. . Cost-effectiveness of risk-reducing surgery for breast and ovarian cancer prevention: a systematic review. Cancers (Basel). (2022) 14:6117. doi: 10.3390/cancers14246117</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cancers14246117</ArticleId><ArticleId IdType="pmc">PMC9776851</ArticleId><ArticleId IdType="pubmed">36551605</ArticleId></ArticleIdList></Reference><Reference><Citation>Global Economic Monitor (GEM) . (2024). Databank. Available online at: https://databank.worldbank.org/source/global-economic-monitor-(gem)</Citation></Reference><Reference><Citation>World Health Orgnization . (2017). Who | making choices in health: who guide to cost-effectiveness analysis. Available online at: http://www.who.int/choice/book/en/ (Accessed May 6, 2024)</Citation></Reference><Reference><Citation>Pollard DJ, Brennan A, Dixon S, Waugh N, Elliott J, Heller S, et al. . Cost-effectiveness of insulin pumps compared with multiple daily injections both provided with structured education for adults with type 1 diabetes: a health economic analysis of the relative effectiveness of pumps over structured education (repose) randomised controlled trial. BMJ Open. (2018) 8:e16766. doi: 10.1136/bmjopen-2017-016766</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2017-016766</ArticleId><ArticleId IdType="pmc">PMC5893943</ArticleId><ArticleId IdType="pubmed">29627802</ArticleId></ArticleIdList></Reference><Reference><Citation>Shearer A, Bagust A, Sanderson D, Heller S, Roberts S. Cost-effectiveness of flexible intensive insulin management to enable dietary freedom in people with type 1 diabetes in the Uk. Diabet Med. (2004) 21:460–7. doi: 10.1111/j.1464-5491.2004.01183.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2004.01183.x</ArticleId><ArticleId IdType="pubmed">15089791</ArticleId></ArticleIdList></Reference><Reference><Citation>Cunningham SG, Stoddart A, Wild SH, Conway NJ, Gray AM, Wake DJ. Cost-utility of an online education platform and diabetes personal health record: analysis over ten years. J Diabetes Sci Technol. (2023) 17:715–26. doi: 10.1177/19322968211069172</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/19322968211069172</ArticleId><ArticleId IdType="pmc">PMC10210109</ArticleId><ArticleId IdType="pubmed">34986658</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh S, Price H, Fayers K, Leal J, Donoghue V, Hempenstall J, et al. . The wisdom self-management intervention: a cost-effectiveness analysis to support the transformation of type 2 diabetes care in England. Diabet Med. (2022) 39:e14928. doi: 10.1111/dme.14928</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14928</ArticleId><ArticleId IdType="pmc">PMC9544153</ArticleId><ArticleId IdType="pubmed">35900906</ArticleId></ArticleIdList></Reference><Reference><Citation>Gordon LG, Bird D, Oldenburg B, Friedman RH, Russell AW, Scuffham PA. A cost-effectiveness analysis of a telephone-linked care intervention for individuals with type 2 diabetes. Diabetes Res Clin Pract. (2014) 104:103–11. doi: 10.1016/j.diabres.2013.12.032</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2013.12.032</ArticleId><ArticleId IdType="pubmed">24503043</ArticleId></ArticleIdList></Reference><Reference><Citation>Odnoletkova I, Ramaekers D, Nobels F, Goderis G, Aertgeerts B, Annemans L. Delivering diabetes education through nurse-led telecoaching. Cost-effectiveness analysis. PLoS One. (2016) 11:e163997. doi: 10.1371/journal.pone.0163997</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0163997</ArticleId><ArticleId IdType="pmc">PMC5058491</ArticleId><ArticleId IdType="pubmed">27727281</ArticleId></ArticleIdList></Reference><Reference><Citation>Christie D, Thompson R, Sawtell M, Allen E, Cairns J, Smith F, et al. . Structured, intensive education maximising engagement, motivation and long-term change for children and young people with diabetes: a cluster randomised controlled trial with integral process and economic evaluation – the cascade study. Health Technol Assess. (2014) 18:1–202. doi: 10.3310/hta18200</Citation><ArticleIdList><ArticleId IdType="doi">10.3310/hta18200</ArticleId><ArticleId IdType="pmc">PMC4781436</ArticleId><ArticleId IdType="pubmed">24690402</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye W, Kuo S, Kieffer EC, Piatt G, Sinco B, Palmisano G, et al. . Cost-effectiveness of a diabetes self-management education and support intervention led by community health workers and peer leaders: projections from the racial and ethnic approaches to community health Detroit trial. Diabetes Care. (2021) 44:1108–15. doi: 10.2337/dc20-0307</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-0307</ArticleId><ArticleId IdType="pmc">PMC8132331</ArticleId><ArticleId IdType="pubmed">33958424</ArticleId></ArticleIdList></Reference><Reference><Citation>Kruger J, Brennan A, Thokala P, Basarir H, Jacques R, Elliott J, et al. . The cost-effectiveness of the dose adjustment for normal eating (dafne) structured education programme: an update using the Sheffield type 1 diabetes policy model. Diabet Med. (2013) 30:1236–44. doi: 10.1111/dme.12270</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.12270</ArticleId><ArticleId IdType="pubmed">23815547</ArticleId></ArticleIdList></Reference><Reference><Citation>Gillett M, Dallosso HM, Dixon S, Brennan A, Carey ME, Campbell MJ, et al. . Delivering the diabetes education and self management for ongoing and newly diagnosed (desmond) programme for people with newly diagnosed type 2 diabetes: cost effectiveness analysis. BMJ. (2010) 341:c4093. doi: 10.1136/bmj.c4093</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.c4093</ArticleId><ArticleId IdType="pmc">PMC2924963</ArticleId><ArticleId IdType="pubmed">20729270</ArticleId></ArticleIdList></Reference><Reference><Citation>Starostina EG, Antsiferov M, Galstyan GR, Trautner C, Jörgens V, Bott U, et al. . Effectiveness and cost-benefit analysis of intensive treatment and teaching programmes for type 1 (insulin-dependent) diabetes mellitus in Moscow: blood glucose versus urine glucose self-monitoring. Diabetologia. (1994) 37:170–6. doi: 10.1007/s001250050089, PMID:</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s001250050089</ArticleId><ArticleId IdType="pubmed">8163051</ArticleId></ArticleIdList></Reference><Reference><Citation>Prezio EA, Pagán JA, Shuval K, Culica D. The community diabetes education (CoDE) program: cost-effectiveness and health outcomes. Am J Prev Med. (2014) 47:771–9. doi: 10.1016/j.amepre.2014.08.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2014.08.016</ArticleId><ArticleId IdType="pubmed">25455119</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang D, Zhu W, Huang J, Dong Y. A health economic analysis of an integrated diabetes care program in China: based on real-world evidence. Front Public Health. (2023) 11:1211671. doi: 10.3389/fpubh.2023.1211671</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2023.1211671</ArticleId><ArticleId IdType="pmc">PMC10758444</ArticleId><ArticleId IdType="pubmed">38169641</ArticleId></ArticleIdList></Reference><Reference><Citation>Gilmer T, Burgos JL, Anzaldo-Campos MC, Vargas-Ojeda A. Cost-effectiveness of a technology-enhanced diabetes care management program in mexico. Value Health Reg Issues. (2019) 20:41–6. doi: 10.1016/j.vhri.2018.12.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.vhri.2018.12.006</ArticleId><ArticleId IdType="pubmed">30856542</ArticleId></ArticleIdList></Reference><Reference><Citation>Lian J, McGhee SM, So C, Chau J, Wong CKH, Wong WCW, et al. . Five-year cost-effectiveness of the patient empowerment programme (pep) for type 2 diabetes mellitus in primary care. Diabetes Obes Metab. (2017) 19:1312–6. doi: 10.1111/dom.12919</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.12919</ArticleId><ArticleId IdType="pubmed">28230312</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernandez-Jimenez S, Garcia-Ulloa AC, Anaya P, Gasca-Pineda R, Sanchez-Trujillo LA, Pena Baca H, et al. . Cost-effectiveness of a self-management and comprehensive training intervention in patients with type 2 diabetes up to 5 years of diagnosis in a specialized hospital in mexico City. BMJ Open Diabetes Res Care. (2021) 9:2097. doi: 10.1136/bmjdrc-2020-002097</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2020-002097</ArticleId><ArticleId IdType="pmc">PMC8230997</ArticleId><ArticleId IdType="pubmed">34167953</ArticleId></ArticleIdList></Reference><Reference><Citation>Xinjun J, Libo T, Mingzi L. The structured education for type 2 diabetes patients without insulin therapy: a cost⁃effectiveness analysis. Chin Nurs Res. (2022) 36:1257–61. doi: 10.12102/j.issn.1009-6493.2022.07.027</Citation><ArticleIdList><ArticleId IdType="doi">10.12102/j.issn.1009-6493.2022.07.027</ArticleId></ArticleIdList></Reference><Reference><Citation>Handley MA, Shumway M, Schillinger D. Cost-effectiveness of automated telephone self-management support with nurse care management among patients with diabetes. Ann Fam Med. (2008) 6:512–8. doi: 10.1370/afm.889</Citation><ArticleIdList><ArticleId IdType="doi">10.1370/afm.889</ArticleId><ArticleId IdType="pmc">PMC2582479</ArticleId><ArticleId IdType="pubmed">19001303</ArticleId></ArticleIdList></Reference><Reference><Citation>O'Reilly DJ, Blackhouse G, Bowen JM, Brozic A, Agema P, Punthakee Z, et al. . Economic analysis of a diabetes health coaching intervention for adults living with type 2 diabetes: a single-Centre evaluation from a community-based randomized controlled trial. Can J Diabetes. (2022) 46:165–70. doi: 10.1016/j.jcjd.2021.08.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2021.08.003</ArticleId><ArticleId IdType="pubmed">35115250</ArticleId></ArticleIdList></Reference><Reference><Citation>Mounié M, Costa N, Gourdy P, Latorre C, Schirr-Bonnans S, Lagarrigue J, et al. . Correction to: cost-effectiveness evaluation of a remote monitoring programme including lifestyle education software in type 2 diabetes: results of the educ@dom study. Diabet Ther. (2022) 13:1131–2. doi: 10.1007/s13300-022-01248-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-022-01248-6</ArticleId><ArticleId IdType="pmc">PMC9076765</ArticleId><ArticleId IdType="pubmed">35316510</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Parrott S, Sweeting M, Farmer A, Ross J, Dack C, et al. . Cost-effectiveness of facilitated access to a self-management website, compared to usual care, for patients with type 2 diabetes (help-diabetes): randomized controlled trial. J Med Internet Res. (2018) 20:e201. doi: 10.2196/jmir.9256</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/jmir.9256</ArticleId><ArticleId IdType="pmc">PMC6015272</ArticleId><ArticleId IdType="pubmed">29884608</ArticleId></ArticleIdList></Reference><Reference><Citation>Hendrie D, Miller TR, Woodman RJ, Hoti K, Hughes J. Cost-effectiveness of reducing glycaemic episodes through community pharmacy management of patients with type 2 diabetes mellitus. J Prim Prev. (2014) 35:439–49. doi: 10.1007/s10935-014-0368-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10935-014-0368-x</ArticleId><ArticleId IdType="pubmed">25257687</ArticleId></ArticleIdList></Reference><Reference><Citation>Gillespie P, O'Shea E, O’Hara MC, Dinneen SF. Cost effectiveness of group follow-up after structured education for type 1 diabetes: a cluster randomised controlled trial. Trials. (2014) 15:227. doi: 10.1186/1745-6215-15-227</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1745-6215-15-227</ArticleId><ArticleId IdType="pmc">PMC4070096</ArticleId><ArticleId IdType="pubmed">24927851</ArticleId></ArticleIdList></Reference><Reference><Citation>Mash R, Kroukamp R, Gaziano T, Levitt N. Cost-effectiveness of a diabetes group education program delivered by health promoters with a guiding style in underserved communities in cape town, South Africa. Patient Educ Couns. (2015) 98:622–6. doi: 10.1016/j.pec.2015.01.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pec.2015.01.005</ArticleId><ArticleId IdType="pubmed">25641665</ArticleId></ArticleIdList></Reference><Reference><Citation>Mikhael E, Ong S, Hussain S. Cost-effectiveness analysis of the culturally developed diabetes self-management education and support program among type 2 diabetes mellitus patients in Iraq. J Pharm Bioallied Sci. (2023) 15:49. doi: 10.4103/jpbs.jpbs_767_21</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/jpbs.jpbs_767_21</ArticleId><ArticleId IdType="pmc">PMC10259737</ArticleId><ArticleId IdType="pubmed">37313544</ArticleId></ArticleIdList></Reference><Reference><Citation>Derakhshandeh-Rishehri S, Keshavarz K, Ghodsi D, Pishdad G, Faghih S. Cost-effectiveness analysis of group vs. weblog telecommunication (web tel) nutrition education program on glycemic indices in patients with non-insulin dependent diabetes mellitus type 2: a randomized controlled trial. Front Nutr. (2022) 9:915847. doi: 10.3389/fnut.2022.915847</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnut.2022.915847</ArticleId><ArticleId IdType="pmc">PMC9270004</ArticleId><ArticleId IdType="pubmed">35811957</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee JY, Lee SWH. Telemedicine cost-effectiveness for diabetes management: a systematic review. Diabetes Technol Ther. (2018) 20:492–500. doi: 10.1089/dia.2018.0098</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/dia.2018.0098</ArticleId><ArticleId IdType="pubmed">29812965</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang X, Ming W, You JH. The cost-effectiveness of digital health interventions on the management of cardiovascular diseases: systematic review. J Med Internet Res. (2019) 21:e13166. doi: 10.2196/13166</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/13166</ArticleId><ArticleId IdType="pmc">PMC6601257</ArticleId><ArticleId IdType="pubmed">31210136</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. . Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The Lancet. (2018) 6:361–9. doi: 10.1016/S2213-8587(18)30051-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(18)30051-2</ArticleId><ArticleId IdType="pubmed">29503172</ArticleId></ArticleIdList></Reference><Reference><Citation>Seng JJB, Kwan YH, Lee VSY, Tan CS, Zainudin SB, Thumboo J, et al. . Differential health care use, diabetes-related complications, and mortality among five unique classes of patients with type 2 diabetes in Singapore: a latent class analysis of 71,125 patients. Diabetes Care. (2020) 43:1048–56. doi: 10.2337/dc19-2519</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc19-2519</ArticleId><ArticleId IdType="pmc">PMC7171941</ArticleId><ArticleId IdType="pubmed">32188774</ArticleId></ArticleIdList></Reference><Reference><Citation>Toresson Grip E, Svensson A, Miftaraj M, Eliasson B, Franzén S, Gudbjörnsdottir S, et al. . Real-world costs of continuous insulin pump therapy and multiple daily injections for type 1 diabetes: a population-based and propensity-matched cohort from the swedish national diabetes register. Diabetes Care. (2019) 42:545–52. doi: 10.2337/dc18-1850</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc18-1850</ArticleId><ArticleId IdType="pubmed">30705062</ArticleId></ArticleIdList></Reference><Reference><Citation>Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bärnighausen T, et al. . The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. The Lancet. (2017) 5:423–30. doi: 10.1016/S2213-8587(17)30097-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(17)30097-9</ArticleId><ArticleId IdType="pubmed">28456416</ArticleId></ArticleIdList></Reference><Reference><Citation>Seuring T, Archangelidi O, Suhrcke M. The economic costs of type 2 diabetes: a global systematic review. PharmacoEconomics. (2015) 33:811–31. doi: 10.1007/s40273-015-0268-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40273-015-0268-9</ArticleId><ArticleId IdType="pmc">PMC4519633</ArticleId><ArticleId IdType="pubmed">25787932</ArticleId></ArticleIdList></Reference><Reference><Citation>Jalilian H, Heydari S, Imani A, Salimi M, Mir N, Najafipour F. Economic burden of type 2 diabetes in Iran: a cost-of-illness study. Health Sci Rep. (2023) 6:e1120. doi: 10.1002/hsr2.1120</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hsr2.1120</ArticleId><ArticleId IdType="pmc">PMC9941092</ArticleId><ArticleId IdType="pubmed">36824619</ArticleId></ArticleIdList></Reference><Reference><Citation>Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. (2007) 370:1929–38. doi: 10.1016/S0140-6736(07)61696-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(07)61696-1</ArticleId><ArticleId IdType="pubmed">18063029</ArticleId></ArticleIdList></Reference><Reference><Citation>Flood D, Seiglie JA, Dunn M, Tschida S, Theilmann M, Marcus ME, et al. . The state of diabetes treatment coverage in 55 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 680 102 adults. The Lancet Healthy Longevity. (2021) 2:e340–51. doi: 10.1016/s2666-7568(21)00089-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2666-7568(21)00089-1</ArticleId><ArticleId IdType="pmc">PMC8865379</ArticleId><ArticleId IdType="pubmed">35211689</ArticleId></ArticleIdList></Reference><Reference><Citation>Chowdhury HA, Harrison CL, Siddiquea BN, Tissera S, Afroz A, Ali L, et al. . The effectiveness of diabetes self-management education intervention on glycaemic control and cardiometabolic risk in adults with type 2 diabetes in low- and middle-income countries: a systematic review and meta-analysis. PLoS One. (2024) 19:e297328. doi: 10.1371/journal.pone.0297328</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0297328</ArticleId><ArticleId IdType="pmc">PMC10836683</ArticleId><ArticleId IdType="pubmed">38306363</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Robben MP, Amoakoh-Coleman M, Boateng D, Grobbee DE, Davies MJ, et al. . Structured diabetes self-management education and glycaemic control in low- and middle-income countries: a systematic review. Diabet Med. (2022) 39:e14812. doi: 10.1111/dme.14812</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14812</ArticleId><ArticleId IdType="pmc">PMC9539947</ArticleId><ArticleId IdType="pubmed">35179792</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamptey R, Davies MJ, Khunti K, Schreder S, Stribling B, Hadjiconstantinou M. Cultural adaptation of a diabetes self-management education and support (dsmes) programme for two low resource urban settings in Ghana, during the covid-19 era. BMC Health Serv Res. (2022) 22:996. doi: 10.1186/s12913-022-08390-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-022-08390-8</ArticleId><ArticleId IdType="pmc">PMC9354422</ArticleId><ArticleId IdType="pubmed">35932063</ArticleId></ArticleIdList></Reference><Reference><Citation>Dritsaki M, Gray A, Petrou S, Dutton S, Lamb SE, Thorn JC. Current UK practices on health economics analysis plans (heaps): Are we using heaps of them? Pharmacoeconomics. (2018):253–7. doi: 10.1007/s40273-017-0598-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40273-017-0598-x</ArticleId><ArticleId IdType="pubmed">29214388</ArticleId></ArticleIdList></Reference><Reference><Citation>Edwards RT, Hounsome B, Linck P, Russell IT. Economic evaluation alongside pragmatic randomised trials: developing a standard operating procedure for clinical trials units. Trials. (2008) 9:64. doi: 10.1186/1745-6215-9-64</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1745-6215-9-64</ArticleId><ArticleId IdType="pmc">PMC2615739</ArticleId><ArticleId IdType="pubmed">19014634</ArticleId></ArticleIdList></Reference><Reference><Citation>Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. . Grade: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. (2008) 336:924–6. doi: 10.1136/bmj.39489.470347.AD</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.39489.470347.AD</ArticleId><ArticleId IdType="pmc">PMC2335261</ArticleId><ArticleId IdType="pubmed">18436948</ArticleId></ArticleIdList></Reference><Reference><Citation>Adarkwah CC, van Gils PF, Hiligsmann M, Evers SMAA. Risk of bias in model-based economic evaluations: the ecobias checklist. Expert Rev Pharmacoecon Outcomes Res. (2016) 16:513–23. doi: 10.1586/14737167.2015.1103185</Citation><ArticleIdList><ArticleId IdType="doi">10.1586/14737167.2015.1103185</ArticleId><ArticleId IdType="pubmed">26588001</ArticleId></ArticleIdList></Reference><Reference><Citation>Evers SMAA, Hiligsmann M, Adarkwah CC. Risk of bias in trial-based economic evaluations: identification of sources and bias-reducing strategies. Psychol Health. (2015) 30:52–71. doi: 10.1080/08870446.2014.953532</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/08870446.2014.953532</ArticleId><ArticleId IdType="pubmed">25141273</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639832</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>18</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1752-2978</ISSN><JournalIssue CitedMedium="Internet"><Volume>32</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Feb</Month><Day>01</Day></PubDate></JournalIssue><Title>Current opinion in endocrinology, diabetes, and obesity</Title><ISOAbbreviation>Curr Opin Endocrinol Diabetes Obes</ISOAbbreviation></Journal><ArticleTitle>Interactions between antidiabetes medications and heart-brain axis.</ArticleTitle><Pagination><StartPage>34</StartPage><EndPage>43</EndPage><MedlinePgn>34-43</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1097/MED.0000000000000896</ELocationID><Abstract><AbstractText Label="PURPOSE OF REVIEW" NlmCategory="OBJECTIVE">The heart - brain axis (HBA) is the physiological interactions between the cardiovascular and nervous systems through autonomic nerves, hormones, and cytokines. Patients diagnosed with diabetes mellitus have an increased risk of the cardiovascular and neurological diseases. However, recent evidence demonstrated that different antidiabetic drugs may delay cognitive impairment and improve cardiovascular outcomes. This review examines the impact of antidiabetic drugs on the HBA in patients with diabetes.</AbstractText><AbstractText Label="RECENT FINDINGS" NlmCategory="RESULTS">Metformin improves the cardiovascular and cognitive outcomes through adenosine 5'-monophosphate-activated protein kinase activation. Sodium-glucose cotransporter-2 inhibitors reduce inflammation, oxidative stress by inhibiting the NLRP3 inflammasome thereby reducing the incidence of heart failure and formation of beta-amyloid and neurofibrillary tangles in the brain. Dipeptidyl peptidase-4 inhibitors exhibit neuroprotective effects in Alzheimer's disease by reducing amyloid-beta and tau pathology and inflammation but may exacerbate heart failure risk due to increased sympathetic activity and prolonged β-adrenergic stimulation. Glucagon-like peptide-1 receptor agonists exhibit neuroprotective effects in Alzheimer's and Parkinson's diseases by reducing neuroinflammation, but may increase sympathetic activity, potentially elevating heart rate and blood pressure, despite their cardioprotective benefits.</AbstractText><AbstractText Label="SUMMARY" NlmCategory="CONCLUSIONS">Antidiabetes medications have the potential to improve cardiovascular and cognitive outcomes; however, additional studies are required to substantiate these effects.</AbstractText><CopyrightInformation>Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ong</LastName><ForeName>Leong Tung</ForeName><Initials>LT</Initials><AffiliationInfo><Affiliation>Department of Cardiology, National University Heart Centre, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sia</LastName><ForeName>Ching-Hui</ForeName><Initials>CH</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Curr Opin Endocrinol Diabetes Obes</MedlineTA><NlmUniqueID>101308636</NlmUniqueID><ISSNLinking>1752-296X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>9100L32L2N</RegistryNumber><NameOfSubstance UI="D008687">Metformin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001921" MajorTopicYN="Y">Brain</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006321" MajorTopicYN="N">Heart</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008687" MajorTopicYN="N">Metformin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="N">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="N">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>18</Day><Hour>12</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>4</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639832</ArticleId><ArticleId IdType="doi">10.1097/MED.0000000000000896</ArticleId><ArticleId IdType="pii">01266029-990000000-00117</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Hu JR, Abdullah A, Nanna MG, Soufer R. The brain–heart axis: neuroinflammatory interactions in cardiovascular disease. Curr Cardiol Rep 2023; 25:1745–1758.</Citation></Reference><Reference><Citation>Tahsili-Fahadan P, Geocadin RG. Heart–brain axis. Circ Res 2017; 120:559–572.</Citation></Reference><Reference><Citation>Alfaddagh A, Martin SS, Leucker TM, et al. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am J Prev Cardiol 2020; 4:100130.</Citation></Reference><Reference><Citation>Ghaddar B, Diotel N. Zebrafish: a new promise to study the impact of metabolic disorders on the brain. Int J Mol Sci 2022; 23:5372.</Citation></Reference><Reference><Citation>Purkayastha S, Cai D. Neuroinflammatory basis of metabolic syndrome. Mol Metab 2013; 2:356–363.</Citation></Reference><Reference><Citation>Lin HB, Li FX, Zhang JY, et al. Cerebral-cardiac syndrome and diabetes: cardiac damage after ischemic stroke in diabetic state. Front Immunol 2021; 12:737170.</Citation></Reference><Reference><Citation>Arshad A, Sarween N, Sharif A. Systematic review of cardiovascular outcome trials using new antidiabetic agents in CKD stratified by estimated GFR. Kidney Int Rep 2021; 6:2415–2424.</Citation></Reference><Reference><Citation>Tian S, Jiang J, Wang J, et al. Comparison on cognitive outcomes of antidiabetic agents for type 2 diabetes: a systematic review and network meta-analysis. Diabetes Metab Res Rev 2023; 39:e3673.</Citation></Reference><Reference><Citation>Nițulescu IM, Ciulei G, Cozma A, et al. From innate immunity to metabolic disorder: a review of the NLRP3 inflammasome in diabetes mellitus. J Clin Med 2023; 12:6022.</Citation></Reference><Reference><Citation>Lin HB, Wei GS, Li FX, et al. Macrophage-NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes. Neurosci Bull 2020; 36:1035–1045.</Citation></Reference><Reference><Citation>Lu S, Li Y, Qian Z, et al. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756.</Citation></Reference><Reference><Citation>Wang X, Wang Y, Antony V, et al. Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol Metab 2020; 31:712–724.</Citation></Reference><Reference><Citation>Vlachakis PK, Theofilis P, Kachrimanidis I, et al. The role of inflammasomes in heart failure. Int J Mol Sci 2024; 25:5372.</Citation></Reference><Reference><Citation>Shen S, Wang Z, Sun H, Ma L. Role of NLRP3 inflammasome in myocardial ischemia-reperfusion injury and ventricular remodeling. Med Sci Monit 2022; 28:e934255.</Citation></Reference><Reference><Citation>Jeyabal P, Thandavarayan RA, Joladarashi D, et al. MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun 2016; 471:423–429.</Citation></Reference><Reference><Citation>Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 2014; 9:e104771.</Citation></Reference><Reference><Citation>Franke M, Bieber M, Kraft P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 2021; 92:223–233.</Citation></Reference><Reference><Citation>Fann DY, Lee SY, Manzanero S, et al. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941–966.</Citation></Reference><Reference><Citation>Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ 2013; 22:746–750.</Citation></Reference><Reference><Citation>Hong P, Li FX, Gu RN, et al. Inhibition of NLRP3 inflammasome ameliorates cerebral ischemia-reperfusion injury in diabetic mice. Neural Plast 2018; 2018:9163521.</Citation></Reference><Reference><Citation>Gupta M, Pandey S, Rumman M, et al. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57–63.</Citation></Reference><Reference><Citation>Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17:796–808.</Citation></Reference><Reference><Citation>Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromolec Med 2010; 12:193–204.</Citation></Reference><Reference><Citation>Scheitz JF, Nolte CH, Doehner W, et al. Stroke-heart syndrome: clinical presentation and underlying mechanisms. Lancet Neurol 2018; 17:1109–1120.</Citation></Reference><Reference><Citation>Spallone V, Valensi P. SGLT2 inhibitors and the autonomic nervous system in diabetes: a promising challenge to better understand multiple target improvement. Diabetes Metab 2021; 47:101224.</Citation></Reference><Reference><Citation>Vinik AI, Casellini C, Parson HK, et al. Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events. Front Neurosci 2018; 12:591.</Citation></Reference><Reference><Citation>Manzella D, Barbieri M, Rizzo MR, et al. Role of free fatty acids on cardiac autonomic nervous system in noninsulin-dependent diabetic patients: effects of metabolic control. J Clin Endocrinol Metab 2001; 86:2769–2774.</Citation></Reference><Reference><Citation>Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997; 96:4104–4113.</Citation></Reference><Reference><Citation>Paolisso G, Manzella D, Rizzo MR, et al. Effects of insulin on the cardiac autonomic nervous system in insulin-resistant states. Clin Sci (Lond) 2000; 98:129–136.</Citation></Reference><Reference><Citation>Manzella D, Grella R, Esposito K, et al. Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens 2004; 17:223–227.</Citation></Reference><Reference><Citation>Żera T, Nowiński A, Kwiatkowski P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016; 58:67–72.</Citation></Reference><Reference><Citation>Wu KLH, Chan SHH, Chan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflamm 2012; 9:212.</Citation></Reference><Reference><Citation>Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018; 14:591–604.</Citation></Reference><Reference><Citation>Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes 2014; 63:2244–2252.</Citation></Reference><Reference><Citation>Chiang M-C, Cheng Y-C, Chen S-J, et al. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res 2016; 347:322–331.</Citation></Reference><Reference><Citation>Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes. Neuropharmacology 2011; 60:910–920.</Citation></Reference><Reference><Citation>El-Mir MY, Detaille D, G RV, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 2008; 34:77–87.</Citation></Reference><Reference><Citation>Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 2010; 107:21830–21835.</Citation></Reference><Reference><Citation>Hwang IK, Kim IY, Joo EJ, et al. Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem Res 2010; 35:645–650.</Citation></Reference><Reference><Citation>Chung MM, Chen YL, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochim Biophys Acta 2015; 1852:720–731.</Citation></Reference><Reference><Citation>Keshavarzi S, Kermanshahi S, Karami L, et al. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: the role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology 2019; 72:74–84.</Citation></Reference><Reference><Citation>Mostafa DK, Ismail CA, Ghareeb DA. Differential metformin dose-dependent effects on cognition in rats: role of Akt. Psychopharmacology (Berl) 2016; 233:2513–2524.</Citation></Reference><Reference><Citation>Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69:351–363.</Citation></Reference><Reference><Citation>Chen Q, Cao T, Li N, et al. Repurposing of anti-diabetic agents as a new opportunity to alleviate cognitive impairment in neurodegenerative and neuropsychiatric disorders. Front Pharmacol 2021; 12:667874.</Citation></Reference><Reference><Citation>Franco C, Previate C, Trombini AB, et al. Metformin improves autonomic nervous system imbalance and metabolic dysfunction in monosodium l -glutamate-treated rats. Front Endocrinol (Lausanne) 2021; 12:660793.</Citation></Reference><Reference><Citation>Oliveira PWC, de Sousa GJ, Birocale AM, et al. Chronic metformin reduces systemic and local inflammatory proteins and improves hypertension-related cardiac autonomic dysfunction. Nutr Metab Cardiovasc Dis 2020; 30:274–281.</Citation></Reference><Reference><Citation>Łabuzek K, Suchy D, Gabryel B, et al. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 2010; 62:956–965.</Citation></Reference><Reference><Citation>Lv WS, Wen JP, Li L, et al. The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 2012; 1444:11–19.</Citation></Reference><Reference><Citation>Cooney MT, Vartiainen E, Laatikainen T, et al. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J 2010; 159:612.e3–619.e3.</Citation></Reference><Reference><Citation>Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 2017; 27:657–669.</Citation></Reference><Reference><Citation>Sardu C, Paolisso P, Sacra C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE Multicenter Prospective Study. Diabetes Care 2019; 42:1946–1955.</Citation></Reference><Reference><Citation>Robichaud S, Rasheed A, Pietrangelo A, et al. Autophagy is differentially regulated in leukocyte and nonleukocyte foam cells during atherosclerosis. Circ Res 2022; 130:831–847.</Citation></Reference><Reference><Citation>Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118:692–702.</Citation></Reference><Reference><Citation>Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Heart Fail Rev 2020; 25:899–905.</Citation></Reference><Reference><Citation>Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 2020; 5:632–644.</Citation></Reference><Reference><Citation>Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21:263–269.</Citation></Reference><Reference><Citation>Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol 2014; 13:148.</Citation></Reference><Reference><Citation>Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced parkinson's disease rat model. ACS Chem Neurosci 2021; 12:689–703.</Citation></Reference><Reference><Citation>Rizzo MR, Di Meo I, Polito R, et al. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res 2022; 176:106062.</Citation></Reference><Reference><Citation>DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 2010; 298:R245–R253.</Citation></Reference><Reference><Citation>Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018; 61:2087–2097.</Citation></Reference><Reference><Citation>Ryan KL, Rickards CA, Hinojosa-Laborde C, et al. Sympathetic responses to central hypovolemia: new insights from microneurographic recordings. Front Physiol 2012; 3:110.</Citation></Reference><Reference><Citation>Jordan J, Tank J, Heusser K, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J Am Soc Hypertens 2017; 11:604–612.</Citation></Reference><Reference><Citation>Matthews VB, Elliot RH, Rudnicka C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens 2017; 35:2059–2068.</Citation></Reference><Reference><Citation>Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013; 15:853–862.</Citation></Reference><Reference><Citation>Scheen AJ. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr Cardiol Rep 2019; 21:70.</Citation></Reference><Reference><Citation>Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol 2018; 71:471–476.</Citation></Reference><Reference><Citation>Nguyen T, Wen S, Gong M, et al. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting SGLT-2 in mice. Diabetes Metab Syndr Obes 2020; 13:2781–2799.</Citation></Reference><Reference><Citation>Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 2018; 61:2108–2117.</Citation></Reference><Reference><Citation>Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 2018; 85:32–37.</Citation></Reference><Reference><Citation>Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 2018; 17:6.</Citation></Reference><Reference><Citation>Jiang X, Li J, Yao X, et al. Neuroprotective effects of dipeptidyl peptidase 4 inhibitor on Alzheimer's disease: a narrative review. Front Pharmacol 2024; 15:1361651.</Citation></Reference><Reference><Citation>Chen S, Zhou M, Sun J, et al. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology 2019; 157:107668.</Citation></Reference><Reference><Citation>Kornelius E, Lin CL, Chang HH, et al. DPP-4 inhibitor linagliptin attenuates Aβ-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci Ther 2015; 21:549–557.</Citation></Reference><Reference><Citation>Huang CN, Wang CJ, Lin CL, et al. Abelmoschus esculentus subfractions attenuate Aβ and tau by regulating DPP-4 and insulin resistance signals. BMC Complement Med Ther 2020; 20:370.</Citation></Reference><Reference><Citation>Siddiqui N, Ali J, Parvez S, et al. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer's disease. Neuropharmacology 2021; 195:108662.</Citation></Reference><Reference><Citation>Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802–818.</Citation></Reference><Reference><Citation>Chen S, Liu AR, An FM, et al. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease by exendin-4. Age (Dordr) 2012; 34:1211–1224.</Citation></Reference><Reference><Citation>Packer M. Do DPP-4 inhibitors cause heart failure events by promoting adrenergically mediated cardiotoxicity? Clues from laboratory models and clinical trials. Circ Res 2018; 122:928–932.</Citation></Reference><Reference><Citation>Sipido KR. CaM or cAMP: linking beta-adrenergic stimulation to ‘leaky’ RyRs. Circ Res 2007; 100:296–298.</Citation></Reference><Reference><Citation>Weir DL, McAlister FA, Senthilselvan A, et al. Sitagliptin use in patients with diabetes and heart failure: a population-based retrospective cohort study. JACC Heart Fail 2014; 2:573–582.</Citation></Reference><Reference><Citation>Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014; 130:1579–1588.</Citation></Reference><Reference><Citation>Okabe K, Matsushima S, Ikeda S, et al. DPP (dipeptidyl peptidase)-4 inhibitor attenuates Ang II (angiotensin II)–induced cardiac hypertrophy via GLP (glucagon-like peptide)-1–dependent suppression of Nox (nicotinamide adenine dinucleotide phosphate oxidase) 4-HDAC (histone deacetylase) 4 pathway. Hypertension 2020; 75:991–1001.</Citation></Reference><Reference><Citation>Nakajima Y, Ito S, Asakura M, et al. A dipeptidyl peptidase-IV inhibitor improves diastolic dysfunction in Dahl salt-sensitive rats. J Mol Cell Cardiol 2019; 129:257–265.</Citation></Reference><Reference><Citation>Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400–423.</Citation></Reference><Reference><Citation>Grieco M, Giorgi A, Gentile MC, et al. Glucagon-like peptide-1: a focus on neurodegenerative diseases. Front Neurosci 2019; 13:1112.</Citation></Reference><Reference><Citation>Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease. J Neurosci Res 2008; 86:326–338.</Citation></Reference><Reference><Citation>Liu W, Jalewa J, Sharma M, et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience 2015; 303:42–50.</Citation></Reference><Reference><Citation>Ma D, Liu X, Liu J, et al. Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice. Brain Res 2019; 1714:126–132.</Citation></Reference><Reference><Citation>Meissner WG, Remy P, Giordana C, et al. Trial of lixisenatide in early Parkinson's disease. N Engl J Med 2024; 390:1176–1185.</Citation></Reference><Reference><Citation>Cai HY, Yang JT, Wang ZJ, et al. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2018; 495:1034–1040.</Citation></Reference><Reference><Citation>Cai HY, Hölscher C, Yue XH, et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience 2014; 277:6–13.</Citation></Reference><Reference><Citation>Zhou M, Chen S, Peng P, et al. Dulaglutide ameliorates STZ induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and NFs through GSK3β. Biochem Biophys Res Commun 2019; 511:154–160.</Citation></Reference><Reference><Citation>Solmaz V, Çinar BP, Yiğittürk G, et al. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur J Pharmacol 2015; 765:482–487.</Citation></Reference><Reference><Citation>Wang Y, Chen S, Xu Z, et al. GLP-1 receptor agonists downregulate aberrant GnT-III expression in Alzheimer's disease models through the Akt/GSK-3β/β-catenin signaling. Neuropharmacology 2018; 131:190–199.</Citation></Reference><Reference><Citation>Baggio LL, Ussher JR, McLean BA, et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab 2017; 6:1339–1349.</Citation></Reference><Reference><Citation>Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 2002; 110:43–52.</Citation></Reference><Reference><Citation>Griffioen KJ, Wan R, Okun E, et al. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res 2011; 89:72–78.</Citation></Reference><Reference><Citation>Zhang J, Chen Q, Zhong J, et al. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front Immunol 2019; 10:1050.</Citation></Reference><Reference><Citation>Ferhatbegović L, Mršić D, Macić-Džanković A. The benefits of GLP1 receptors in cardiovascular diseases. Front Clin Diabetes Healthc 2023; 4:1293926.</Citation></Reference><Reference><Citation>Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117:2340–2350.</Citation></Reference><Reference><Citation>Yu JH, Park SY, Lee DY, et al. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Res Clin Pract 2022; 41:136–149.</Citation></Reference><Reference><Citation>Anagnostis P, Siolos P, Christou K, et al. The effect of antidiabetic medications on the cardiovascular system: a critical appraisal of current data. Hormones (Athens) 2018; 17:83–95.</Citation></Reference><Reference><Citation>Younk LM, Lamos EM, Davis SN. Cardiovascular effects of antidiabetes drugs. Expert Opin Drug Saf 2016; 15:1239–1257.</Citation></Reference><Reference><Citation>Palleria C, Leporini C, Maida F, et al. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol 2016; 42:76–92.</Citation></Reference><Reference><Citation>Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes Endocrinol 2015; 3:75–89.</Citation></Reference><Reference><Citation>Tuligenga RH. Intensive glycaemic control and cognitive decline in patients with type 2 diabetes: a meta-analysis. Endocr Connect 2015; 4:R16–24.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639712</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1940-4034</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><PubDate><Year>2024</Year><Season>Jan-Dec</Season></PubDate></JournalIssue><Title>Journal of cardiovascular pharmacology and therapeutics</Title><ISOAbbreviation>J Cardiovasc Pharmacol Ther</ISOAbbreviation></Journal><ArticleTitle>Impact of SGLT2 Inhibitors on Left Ventricular Remodeling in Diabetic Patients with Acute Myocardial Infarction.</ArticleTitle><Pagination><StartPage>10742484241301191</StartPage><MedlinePgn>10742484241301191</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1177/10742484241301191</ELocationID><Abstract><AbstractText Label="OBJECTIVE">To assess the effect of sodium-glucose cotransporter 2 inhibitors (SGLT2-I) on cardiac remodeling and prognosis in type 2 diabetes mellitus (T2DM) patients presenting with acute myocardial infarction (AMI).</AbstractText><AbstractText Label="METHODS">In this single-center retrospective active-comparator study, consecutive diabetic AMI patients undergoing percutaneous coronary intervention (PCI) between 2021 and 2023 were enrolled. Patients were divided into SGLT2-I users and non-SGLT2-I users based on discharge medications. The primary endpoint was the left ventricular remodeling index (LVRI), defined as the relative change in LV end-diastolic volume after six months. The secondary outcomes included major adverse cardiovascular events (MACE), comprising all-cause mortality, hospitalization for heart failure, nonfatal MI, and nonfatal stroke.</AbstractText><AbstractText Label="RESULTS">The study comprised 423 T2DM AMI patients(with or without ST-segment elevation), with 239 SGLT2-I users and 184 non-SGLT2-I users. At six months, LVRI was significantly lower in the SGLT2-I users compared to the non-SGLT2-I users (3.49 ± 19.71 vs 7.06 ± 15.15, <i>P</i> = .042). The non-SGLT2-I users exhibited a higher prevalence of positive LVR (LVRI > 0%) (64.67% vs 50.63%, <i>P</i> = .004) and pathological LVR (LVRI > 20%) (19.57% vs 12.13%, <i>P</i> = .036). Multivariate logistic regression indicated that SGLT2-I was associated with a reduced risk of LVR (OR 0.6; 95%CI 0.38-0.97; <i>P</i> = .035). During a mean follow-up of 25 ± 8 months, Kaplan-Meier analysis demonstrated a lower rate of MACE-free survival in the non-SGLT2-I users (<i>P</i> = .005).</AbstractText><AbstractText Label="CONCLUSIONS">SGLT2-I protects against LVR and lowers the risk of adverse cardiovascular outcomes in T2DM AMI patients.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wan</LastName><ForeName>Jun</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0003-1545-6556</Identifier><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xu</LastName><ForeName>Feng</ForeName><Initials>F</Initials><Identifier Source="ORCID">0009-0005-5343-6910</Identifier><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zuo</LastName><ForeName>Heping</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>Xin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Electrocardiographic Diagnosis, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Yulin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Cai</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yin</LastName><ForeName>Chunlin</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheng</LastName><ForeName>Jinglin</ForeName><Initials>J</Initials><Identifier Source="ORCID">0009-0009-7254-2128</Identifier><AffiliationInfo><Affiliation>Department of Emergency Internal Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>He</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Emergency Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Cardiovasc Pharmacol Ther</MedlineTA><NlmUniqueID>9602617</NlmUniqueID><ISSNLinking>1074-2484</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020257" MajorTopicYN="Y">Ventricular Remodeling</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016277" MajorTopicYN="Y">Ventricular Function, Left</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D062645" MajorTopicYN="Y">Percutaneous Coronary Intervention</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009203" MajorTopicYN="Y">Myocardial Infarction</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">SGLT2-I</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">acute myocardial infarction</Keyword><Keyword MajorTopicYN="N">cardiac remodeling</Keyword></KeywordList><CoiStatement>Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>2</Hour><Minute>52</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639712</ArticleId><ArticleId IdType="doi">10.1177/10742484241301191</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639620</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>06</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1660-9379</ISSN><JournalIssue CitedMedium="Print"><Volume>20</Volume><Issue>898</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>Revue medicale suisse</Title><ISOAbbreviation>Rev Med Suisse</ISOAbbreviation></Journal><ArticleTitle>[SGLT2 inhibitors : promises, but for whom ?].</ArticleTitle><Pagination><StartPage>2307</StartPage><EndPage>2311</EndPage><MedlinePgn>2307-2311</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.53738/REVMED.2024.20.898.2307</ELocationID><Abstract><AbstractText>In type 2 diabetes, the launch of gliflozins (or SGLT2i), like each new therapeutic class, is generating a great deal of hope and is being heavily marketed. The pivotal studies show a beneficial effect on the risk of hospitalization for heart failure and, to a lesser extent, on the decline in renal function. The impact on physiological factors (weight, glycated hemoglobin, blood pressure) is modest, and the side-effect profile is relatively heavy, particularly in the elderly (frequent urogenital infections, ketoacidosis, etc.). The aim of this article is first and foremost to take a critical look at the interpretation of clinical studies and to identify populations where a favorable benefit/risk balance cannot be guaranteed.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lanfranchi</LastName><ForeName>Camille</ForeName><Initials>C</Initials><Identifier Source="ORCID">0009-0002-1927-4645</Identifier><AffiliationInfo><Affiliation>Pharmacie interjurassienne, Hôpitaux et institutions de soins du canton du Jura, du Jura bernois et du canton de Neuchâtel, 2740 Moutier.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jolivot</LastName><ForeName>Pierre-Alain</ForeName><Initials>PA</Initials><Identifier Source="ORCID">0009-0002-6238-0910</Identifier><AffiliationInfo><Affiliation>Pharmacie interjurassienne, Hôpitaux et institutions de soins du canton du Jura, du Jura bernois et du canton de Neuchâtel, 2740 Moutier.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wermeille</LastName><ForeName>Joël</ForeName><Initials>J</Initials><Identifier Source="ORCID">0009-0005-9767-0282</Identifier><AffiliationInfo><Affiliation>Pharmacie interjurassienne, Hôpitaux et institutions de soins du canton du Jura, du Jura bernois et du canton de Neuchâtel, 2740 Moutier.</Affiliation></AffiliationInfo></Author></AuthorList><Language>fre</Language><PublicationTypeList><PublicationType UI="D004740">English Abstract</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><VernacularTitle>Inhibiteurs du SGLT2 : des promesses, mais pour qui ?</VernacularTitle></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Rev Med Suisse</MedlineTA><NlmUniqueID>101219148</NlmUniqueID><ISSNLinking>1660-9379</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="N">Heart Failure</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="fre"><AbstractText>Dans le diabète de type 2, l’arrivée sur le marché des gliflozines (ou iSGLT2) comme chaque nouvelle classe thérapeutique, suscite beaucoup d’espoir et fait l’objet d’un marketing important. Les études déterminantes (pivots), montrent un effet bénéfique sur le risque d’hospitalisation pour insuffisance cardiaque et dans une proportion moindre, sur le déclin de la fonction rénale. L’impact sur les facteurs physiologiques (poids, hémoglobine glyquée, tension artérielle) est modeste et leur profil d’effets indésirables est relativement chargé en particulier chez la personne âgée (infections urogénitales fréquentes, acidocétose, etc.). L’objectif de cet article est avant tout de poser un regard critique sur l’interprétation des études déterminantes et d’identifier les populations chez qui la balance bénéfice/risque devrait être questionnée.</AbstractText></OtherAbstract><CoiStatement>Les auteurs n’ont déclaré aucun conflit d’intérêts en relation avec cet article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>2</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639620</ArticleId><ArticleId IdType="doi">10.53738/REVMED.2024.20.898.2307</ArticleId><ArticleId IdType="pii">RMS0898-010</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639300</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6963</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>BMC health services research</Title><ISOAbbreviation>BMC Health Serv Res</ISOAbbreviation></Journal><ArticleTitle>Prescribing patterns before the initiation of novel antidiabetic medicines in public, occupational, and private healthcare: a register study reflecting the guidelines of care in type 2 diabetes.</ArticleTitle><Pagination><StartPage>1553</StartPage><MedlinePgn>1553</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1553</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12913-024-12010-y</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Disparities in access to healthcare has been implied before in Finland, a country with universal healthcare but de facto tiered primary care. Less is however known about the content of care provided in different settings. Previous studies indicate potential disparities in prescribing newer medicines between healthcare sectors. We compared the preceding prescribing patterns of patients who initiated a sodium-glucose co-transporter 2 (SGLT2) inhibitor or a glucagon-like peptide-1 (GLP-1) analogue in public, occupational, and private healthcare.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We used logistic models and patient-level register data from the city of Oulu, Finland, during 2014-2018. Among patients who initiated SGLT2 inhibitors or GLP-1 analogues, we studied whether it was a first-line treatment or if other antidiabetic medicines preceded the use. In addition, prior use of statins (a lipid-lowering medicine) and insulins were studied. Clinical guidelines for type 2 diabetes recommend in most cases metformin in first-line, and insulin only at later stages or in case of severe hyperglycaemia. Using a lipid-lowering medicine is typically recommended for all.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The examined novel antidiabetic medicines were seldom initiated in first-line, and no significant differences were observed for preceding statin use across sectors, net of patient characteristics. However, patients in the public sector were more likely to have used insulin previously compared to patients in occupational sector.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Before the initiation of the examined novel antidiabetic medicines, no marked differences across sectors in the use of other antidiabetic medicines or statins were observed. The higher likelihood of prior insulin use in the public sector might reflect initiation at a later stage and/or unobserved differences in clinical characteristics across patient populations.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Rättö</LastName><ForeName>Hanna</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Research Unit, The Social Insurance Institution of Finland, Helsinki, Finland. hanna.ratto@kela.fi.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>INVEST Research Flagship Centre, University of Turku, Turku, Finland. hanna.ratto@kela.fi.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nurminen</LastName><ForeName>Mikko</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Research Unit, The Social Insurance Institution of Finland, Helsinki, Finland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aaltonen</LastName><ForeName>Katri</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Research Unit, The Social Insurance Institution of Finland, Helsinki, Finland.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>INVEST Research Flagship Centre, University of Turku, Turku, Finland.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>2/26/2021</GrantID><Agency>The Social Insurance Institution of Finland</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Health Serv Res</MedlineTA><NlmUniqueID>101088677</NlmUniqueID><ISSNLinking>1472-6963</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005387" MajorTopicYN="N" Type="Geographic">Finland</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010818" MajorTopicYN="Y">Practice Patterns, Physicians'</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012042" MajorTopicYN="Y">Registries</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="N">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017149" MajorTopicYN="N">Private Sector</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017150" MajorTopicYN="N">Public Sector</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017410" MajorTopicYN="N">Practice Guidelines as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Care guideline</Keyword><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">Healthcare</Keyword><Keyword MajorTopicYN="N">Novel medicine</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was based only on administrative, secondary register data, and no human subjects were contacted to collect the data. From purely register-based studies, no Ethics Board approval is required in Finland [61]. According to the General Data Protection Regulation of the European Union and the Finnish Data Protection Act, processing of personal data is permitted without informed consent of study subjects if the task is carried out in the public interest, such as scientific research [62, 63]. The data used in the study were fully pseudonymised before we accessed them, and all data preparation and linkage in the study were done with pseudo-identifiers. The study was conducted following good scientific practice, data protection guidelines and ethical standards. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>23</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639300</ArticleId><ArticleId IdType="pmc">PMC11619279</ArticleId><ArticleId IdType="doi">10.1186/s12913-024-12010-y</ArticleId><ArticleId IdType="pii">10.1186/s12913-024-12010-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diab Res Clin Pract. 2018;138:271–81. 10.1016/j.diabres.2018.02.023. Epub 2018 Feb 26.</Citation><ArticleIdList><ArticleId IdType="pubmed">29496507</ArticleId></ArticleIdList></Reference><Reference><Citation>The Lancet. Diabetes: a defining disease of the 21st century. Lancet. 2023;401(10394):2087. 10.1016/S0140-6736(23)01296-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">37355279</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, Thornton PL, Haire-Joshu D. Social determinants of health and diabetes: a scientific review. Diabetes Care. 2020;44(1):258–79. 10.2337/dci20-0053. Epub ahead of print.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Dalstra JA, Kunst AE, Borrell C, Breeze E, Cambois E, Costa G, Geurts JJ, Lahelma E, Van Oyen H, Rasmussen NK, Regidor E, Spadea T, Mackenbach JP. Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int J Epidemiol. 2005;34(2):316–26. 10.1093/ije/dyh386. Epub 2005 Feb 28.</Citation><ArticleIdList><ArticleId IdType="pubmed">15737978</ArticleId></ArticleIdList></Reference><Reference><Citation>Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. Int J Epidemiol. 2011;40(3):804–18. 10.1093/ije/dyr029. Epub 2011 Feb 19.</Citation><ArticleIdList><ArticleId IdType="pubmed">21335614</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown AF, Ettner SL, Piette J, Weinberger M, Gregg E, Shapiro MF, Karter AJ, Safford M, Waitzfelder B, Prata PA, Beckles GL. Socioeconomic position and health among persons with diabetes mellitus: a conceptual framework and review of the literature. Epidemiol Rev. 2004;26:63–77. 10.1093/epirev/mxh002.</Citation><ArticleIdList><ArticleId IdType="pubmed">15234948</ArticleId></ArticleIdList></Reference><Reference><Citation>Manderbacka K, Peltonen R, Koskinen S, Martikainen P. The burden of diabetes mortality in Finland 1988–2007 - a brief report. BMC Public Health. 2011;11:747. 10.1186/1471-2458-11-747.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3196713</ArticleId><ArticleId IdType="pubmed">21958153</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD 2021 Diabetes Collaborators. Global, regional, and national of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–234. doi: 10.1016/S0140-6736(23)01301burden of diabetes from 1990 to 2021, with projections − 6. Epub 2023 Jun 22. Erratum in: Lancet. 2023;402(10408):1132.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Dal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O, Standl E, Beulens JW. Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26(2suppl):25–32. 10.1177/2047487319878371. Epub 2019 Nov 13.</Citation><ArticleIdList><ArticleId IdType="pubmed">31722562</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65(12):1925–66. 10.1007/s00125-022-05787-2. Epub 2022 Sep 24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9510507</ArticleId><ArticleId IdType="pubmed">36151309</ArticleId></ArticleIdList></Reference><Reference><Citation>Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC, ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. 10.1093/eurheartj/ehz486. Erratum in: Eur Heart J. 2020;41(45):4317.</Citation><ArticleIdList><ArticleId IdType="pubmed">31497854</ArticleId></ArticleIdList></Reference><Reference><Citation>Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B, ESC Scientific Document Group. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2022;29(1):5–115. 10.1093/eurjpc/zwab154.</Citation><ArticleIdList><ArticleId IdType="pubmed">34558602</ArticleId></ArticleIdList></Reference><Reference><Citation>Soppi A, Heino P, Kurko T, Maljanen T, Saastamoinen L, Aaltonen K. Growth of diabetes drug expenditure decomposed-A nationwide analysis. Health Policy. 2018;122(12):1326–32. 10.1016/j.healthpol.2018.09.008. Epub 2018 Sep 18.</Citation><ArticleIdList><ArticleId IdType="pubmed">30297302</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirsch IB, Juneja R, Beals JM, Antalis CJ, Wright EE Jr. The evolution of insulin and how it informs therapy and treatment choices. Endocr Rev. 2020;41(5):733–55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7366348</ArticleId><ArticleId IdType="pubmed">32396624</ArticleId></ArticleIdList></Reference><Reference><Citation>Nair S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metabolism. 2010;95(1):34–42.</Citation><ArticleIdList><ArticleId IdType="pubmed">19892839</ArticleId></ArticleIdList></Reference><Reference><Citation>Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Reviews Endocrinol. 2012;8(12):728–42.</Citation><ArticleIdList><ArticleId IdType="pubmed">22945360</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, Buse JB. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 2021;9(1):46–52. 10.1016/S2213-8587(20)30343-0. Epub 2020 Nov 4. Erratum in: Lancet Diabetes Endocrinol. 2021;9(1):e1.</Citation><ArticleIdList><ArticleId IdType="pubmed">33159841</ArticleId></ArticleIdList></Reference><Reference><Citation>Vogler S, Zimmermann N, de Joncheere K. Policy interventions related to medicines: Survey of measures taken in European countries during 2010–2015. Health Policy. 2016;120(12):1363–77. 10.1016/j.healthpol.2016.09.006. Epub 2016 Sep 20.</Citation><ArticleIdList><ArticleId IdType="pubmed">27720165</ArticleId></ArticleIdList></Reference><Reference><Citation>Riddle MC, Herman WH. The cost of Diabetes Care-An Elephant in the room. Diabetes Care. 2018;41(5):929–32. 10.2337/dci18-0012.</Citation><ArticleIdList><ArticleId IdType="pubmed">29678864</ArticleId></ArticleIdList></Reference><Reference><Citation>Suleman F, Movik E. Pharmaceutical policies: effects of educational or regulatory policies targeting prescribers. Cochrane Database Syst Rev. 2019;2019(11):CD013478. 10.1002/14651858.CD013478.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6852004</ArticleId><ArticleId IdType="pubmed">31721159</ArticleId></ArticleIdList></Reference><Reference><Citation>Mossialos E, Oliver A. An overview of pharmaceutical policy in four countries: France, Germany, the Netherlands and the United Kingdom. Int J Health Plann Manage. 2005;20(4):291–306. 10.1002/hpm.816.</Citation><ArticleIdList><ArticleId IdType="pubmed">16335079</ArticleId></ArticleIdList></Reference><Reference><Citation>Type 2 diabetes. Current care guidelines. Working group appointed by the Finnish Medical Society Duodecim, the Finnish Society for Internal Medicine, the Medical Advisory Board of the Finnish Diabetes Society. 2024. https://www.kaypahoito.fi/hoi50056. Accessed 12 Nov 2024.</Citation></Reference><Reference><Citation>About Current Care Guidelines. https://www.kaypahoito.fi/en/about-current-care-guidelines. Accessed 12 Nov 2024.</Citation></Reference><Reference><Citation>Järvinen S, Laine MK, Eriksson JG. Comparison of use of diabetic medication and clinical guidelines in four nordic countries. Ann Med. 2016;48(3):162–8. 10.3109/07853890.2016.1146825. Epub 2016 Feb 18.</Citation><ArticleIdList><ArticleId IdType="pubmed">26890317</ArticleId></ArticleIdList></Reference><Reference><Citation>Rättö H, Kurko T, Pajunen P, Kastarinen H. Second-line pharmacotherapy intensification after metformin monotherapy in type 2 diabetes: a nationwide register study from Finland during 2011–2022. BMC Health Serv Res. 2024;24(1):944. 10.1186/s12913-024-11325-0.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11331595</ArticleId><ArticleId IdType="pubmed">39160557</ArticleId></ArticleIdList></Reference><Reference><Citation>Barnett AH. Complementing insulin therapy to achieve glycemic control. Adv Ther. 2013;30(6):557–76. 10.1007/s12325-013-0039-y.</Citation><ArticleIdList><ArticleId IdType="pubmed">23797471</ArticleId></ArticleIdList></Reference><Reference><Citation>Update on current care guideline: diabetes. Lääketieteellinen Aikakauskirja Duodecim 2013;129(22):2390-1. Availabde https://www.duodecimlehti.fi/lehti/2013/22/duo11347. Accessed 12 Nov 2024.</Citation><ArticleIdList><ArticleId IdType="pubmed">24397151</ArticleId></ArticleIdList></Reference><Reference><Citation>Update on current care guidelines: diabetes. Lääketieteellinen Aikakauskirja Duodecim 2018;134(9):979 – 80. Available: https://www.duodecimlehti.fi/duo14309. Accessed 12 Nv 2024.</Citation></Reference><Reference><Citation>Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes: developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J. 2023;44(39):4043–140.</Citation><ArticleIdList><ArticleId IdType="pubmed">37622663</ArticleId></ArticleIdList></Reference><Reference><Citation>OECD. Health at a glance 2015: OECD indicators. Paris: OECD Publishing; 2015. 10.1787/health_glance-2015-en.</Citation></Reference><Reference><Citation>van Doorslaer E, Wagstaff A, van der Burg H, Christiansen T, De Graeve D, Duchesne I, Gerdtham UG, Gerfin M, Geurts J, Gross L, Häkkinen U, John J, Klavus J, Leu RE, Nolan B, O’Donnell O, Propper C, Puffer F, Schellhorn M, Sundberg G, Winkelhake O. Equity in the delivery of health care in Europe and the US. J Health Econ. 2000;19(5):553–83. 10.1016/s0167-6296(00)00050-3.</Citation><ArticleIdList><ArticleId IdType="pubmed">11184794</ArticleId></ArticleIdList></Reference><Reference><Citation>van Doorslaer E, Masseria C, Koolman X, OECD Health Equity Research Group. Inequalities in access to medical care by income in developed countries. CMAJ. 2006;174(2):177–83. 10.1503/cmaj.050584.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1329455</ArticleId><ArticleId IdType="pubmed">16415462</ArticleId></ArticleIdList></Reference><Reference><Citation>Manderbacka K, Arffman M, Leyland A, McCallum A, Keskimäki I. Change and persistence in healthcare inequities: access to elective surgery in Finland in 1992–2003. Scand J Public Health. 2009;37(2):131–8. 10.1177/1403494808098505. Epub 2009 Jan 5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2841521</ArticleId><ArticleId IdType="pubmed">19124597</ArticleId></ArticleIdList></Reference><Reference><Citation>Blomgren J, Virta LJ. Socioeconomic differences in use of public, occupational and private health care: a register-linkage study of a working-age population in Finland. PLoS ONE. 2020;15(4):e0231792. 10.1371/journal.pone.0231792.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7162494</ArticleId><ArticleId IdType="pubmed">32298356</ArticleId></ArticleIdList></Reference><Reference><Citation>Koponen P, Tynkkynen LK, eds. Työterveyshuollon sairaanhoitopalvelut - Näkökulmia suomalaisen terveydenhuoltojärjestelmän oikeudenmukaisuuteen. Finnish institute for health and welfare (THL). Discussion Paper8/2023. 2023;119. Helsinki, Finland. ISBN ISBN 978-952-408-040-8 (online publication).</Citation></Reference><Reference><Citation>Keskimaki I, Tynkkynen LK, Reissell E, Koivusalo M, Syrja V, Vuorenkoski L, Rechel B, Karanikolos M. Finland: health system review. Health Syst Transit. 2019;21(2):1–166.</Citation><ArticleIdList><ArticleId IdType="pubmed">31596240</ArticleId></ArticleIdList></Reference><Reference><Citation>Blomgren J, Jäppinen S, Lahdensuo K. Avohoidon palvelujen käyttö on vahvasti eriytynyt työmarkkina-aseman mukaan. Suom Lääkäril. 2022;78:e30509.</Citation></Reference><Reference><Citation>Aalto AM, Koponen, Väisänen V, Elovainio M, Sinervo T, Sulander J. Työikäisten monikanavainen perusterveydenhuolto Suomessa. Tutkimuksesta tiiviisti 11/2023. Helsinki: Terveyden ja hyvinvoinnin laitos.</Citation></Reference><Reference><Citation>Chandra A, Cutler D, Song Z. Who ordered that? The economics of treatment choices in medical care. Handb Health Econ. 2011;2:397–432.</Citation></Reference><Reference><Citation>Hajjaj FM, Salek MS, Basra MK, Finlay AY. Non-clinical influences on clinical decision-making: a major challenge to evidence-based practice. J R Soc Med. 2010;103(5):178–87. 10.1258/jrsm.2010.100104.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2862069</ArticleId><ArticleId IdType="pubmed">20436026</ArticleId></ArticleIdList></Reference><Reference><Citation>Aaltonen K, Miettinen J, Maljanen T, Virta L, Martikainen J. Lääkkeiden määrääminen avohoidon eri sektoreilla. Suom Lääkäril. 2018;35:1875–80.</Citation></Reference><Reference><Citation>Jussila E, Kotakorpi K, Verho J. Prescription behavior of physicians in the public and private sector. FIT working paper 5. FIT Working Paper Series. Finnish Center of Excellence in Tax Systems Research. 2022.</Citation></Reference><Reference><Citation>Härkönen M, Timonen J, Tervola J, Aaltonen K. Income differences in the type of antihypertensive medicines used in ambulatory settings in Finland: a register-based study. Eur J Clin Pharmacol. 2015;71(10):1263–70. 10.1007/s00228-015-1911-2. Epub 2015 Jul 31.</Citation><ArticleIdList><ArticleId IdType="pubmed">26227069</ArticleId></ArticleIdList></Reference><Reference><Citation>Rantsi M, Hyttinen V. Sosioekonomisen aseman yhteys muistisairauslääkkeiden käytön aloitukseen kotona-asuvilla 65 vuotta täyttäneillä: väestöpohjainen kohorttitutkimus. Sosiaalilääketieteellinen Aikakauslehti. 2020;57(1). 10.23990/sa.80307.</Citation></Reference><Reference><Citation>Weiss D, Rydland HT, Øversveen E, Jensen MR, Solhaug S, Krokstad S. Innovative technologies and social inequalities in health: a scoping review of the literature. PLoS ONE. 2018;13(4):e0195447. 10.1371/journal.pone.0195447.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5882163</ArticleId><ArticleId IdType="pubmed">29614114</ArticleId></ArticleIdList></Reference><Reference><Citation>Aarnio E, Martikainen J, Winn AN, Huupponen R, Vahtera J, Korhonen MJ. Socioeconomic inequalities in statin adherence under universal coverage: does sex matter? Circ Cardiovasc Qual Outcomes. 2016;9(6):704–13. 10.1161/CIRCOUTCOMES.116.002728. Epub 2016 Oct 18.</Citation><ArticleIdList><ArticleId IdType="pubmed">27756795</ArticleId></ArticleIdList></Reference><Reference><Citation>Salonsalmi A, Mauramo E, Lahelma E, Rahkonen O, Pietiläinen O. Multiple socioeconomic circumstances and initiation of Cardiovascular Medication among Ageing employees. Int J Environ Res Public Health. 2021;18(19):10148. 10.3390/ijerph181910148.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8507630</ArticleId><ArticleId IdType="pubmed">34639449</ArticleId></ArticleIdList></Reference><Reference><Citation>Vehko T, Manderbacka K, Arffman M, Sund R, Reunanen A, Keskimäki I. Changing patterns of secondary preventive medication among newly diagnosed coronary heart disease patients with diabetes in Finland: a register-based study. Scand J Public Health. 2010;38(3):317–24 doi: 10.1177/1403494810364558. Epub 2010 Mar 12.</Citation><ArticleIdList><ArticleId IdType="pubmed">20228159</ArticleId></ArticleIdList></Reference><Reference><Citation>Hyun KK, Brieger D, Woodward M, Richtering S, Redfern J. The effect of socioeconomic disadvantage on prescription of guideline-recommended medications for patients with acute coronary syndrome: systematic review and meta-analysis. Int J Equity Health. 2017;16(1):162. 10.1186/s12939-017-0658-z.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5579970</ArticleId><ArticleId IdType="pubmed">28859658</ArticleId></ArticleIdList></Reference><Reference><Citation>Government Decree on the amendment of Government Decree on the diseases regarded as severe and chronic on medical grounds, and the medicinal costs for which a 65 or 100 per cent reimbursement is made under Chap. 5, section 5(2) of the Health Insurance Act. https://www.finlex.fi/fi/laki/kaannokset/2016/en20161149. Accessed 8 Nov 2024.</Citation></Reference><Reference><Citation>Blomgren J, Jäppinen S. Sosiaali- Ja terveyspalveluiden ja etuuksien käyttö Oulussa 2013–2018. Tutkimushankkeen Aineiston Yleiskuvaus. Työpapereita 154. Helsinki: Kela; 2020.</Citation></Reference><Reference><Citation>Statistical database Kelasto. Report Existing, new and withdrawn entitlements for reimbursements of drug expenses. https://tietotarjotin.fi/en/statistical-data/2051231/statistical-database-kelasto. Accessed 12 Nov 2024.</Citation></Reference><Reference><Citation>Hujanen T, Mikkola H. Työterveyshuollon kustannuskehitys. Suom Lääkäril. 2016;71:1537–40.</Citation></Reference><Reference><Citation>Data resource catalogue. Data resource Lääkärinpalkkiot ja hammaslääkärin palkkiot toimenpiteittäin. https://aineistokatalogi.fi/catalog/studies/8000fcf8-a03b-49c4-97e2-98304f483fbd/datasets/4175d863-cace-4ab8-9d6b-ede7c6a216b4. Accessed 12 Nov 2024.</Citation></Reference><Reference><Citation>WHOCC. WHO collaborating centre for drug statistics methodology. 2015. https://www.whocc.no/. Accessed 10 Oct 2023.</Citation></Reference><Reference><Citation>Miettinen J, Aaltonen K, Martikainen J. Lääkemääräysten alkuperän määrittäminen terveydenhuollon käyntitietojen avulla. Työpapereita 108. Helsinki: Kela; 2016.</Citation></Reference><Reference><Citation>Peltola M, Juntunen M, Häkkinen U, Rosenqvist G, Seppälä TT, Sund R. Methodological and statistical issuesin register based evaluation of cost and outcomes in healthcare. Ann Med. 2011;43:S4-13.</Citation><ArticleIdList><ArticleId IdType="pubmed">21639717</ArticleId></ArticleIdList></Reference><Reference><Citation>Häkkinen U, Sund R. What works? The association of organisational structure, reforms and interventions on efficiency in treating hip fractures. Soc Sci Med. 2021;274:113611. 10.1016/j.socscimed.2020.113611. Epub 2020 Dec 24. PMID: 33685757.</Citation><ArticleIdList><ArticleId IdType="pubmed">33685757</ArticleId></ArticleIdList></Reference><Reference><Citation>Rättö H, Nurminen M, Kari H. Valtaosa työikäisten lääkkeistä määrätään julkisella sektorilla. Yleislääkäri. 2022;4:17–22.</Citation></Reference><Reference><Citation>Brown A, Guess N, Dornhorst A, Taheri S, Frost G. Insulin-associated weight gain in obese type 2 diabetes mellitus patients: what can be done? Diabetes Obes Metab. 2017;19(12):1655–68. 10.1111/dom.13009. Epub 2017 Jul 13.</Citation><ArticleIdList><ArticleId IdType="pubmed">28509408</ArticleId></ArticleIdList></Reference><Reference><Citation>TENK [Finnish National Board on Research Integrity]. The ethical principles of research with human participants and ethical review in the human sciences in Finland. Finnish National Board on Research Integrity. Helsinki; 2019.</Citation></Reference><Reference><Citation>General Data Protection Regulation of the European Union. Regulation (EU) 2016/679 of the European. Parliament and of the Council.</Citation></Reference><Reference><Citation>Data Protection. Act 1050/2018, Finland. English translation.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39639251</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>06</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>08</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1471-2458</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>BMC public health</Title><ISOAbbreviation>BMC Public Health</ISOAbbreviation></Journal><ArticleTitle>The effect of life skills training on reducing domestic violence and improving treatment adherence in women with diabetes experiencing intimate partner violence: a randomized clinical trial based on the theory of self-efficacy.</ArticleTitle><Pagination><StartPage>3390</StartPage><MedlinePgn>3390</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">3390</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12889-024-20913-y</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Intimate partner violence (IPV) is a global health problem and the cause of chronic diseases, such as diabetes. It has a negative effect on adherence to treatment, decreases self-efficacy beliefs, and intensifies stress in women. Therefore, this study aimed to investigate the effect of life skills training based on the self-efficacy theory on IPV and adherence to treatment in women with type 2 diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This trial was conducted using a pretest-posttest design and follow-up after one month. The samples included 100 women selected by convenience sampling with random block allocation with type 2 diabetes and IPV. The intervention consisted of 8 sessions over one month of life skills training based on self-efficacy theory. Participants completed questionnaires at pre-test, post-test and follow-up, including a demographic information form and questionnaires on IPV and treatment adherence. Considered statistically significant at P < 0. 05.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The mean changes in IPV scores from the pre-test to the post-test were - 8.38 ± 4.06 and - 0.06 ± 3.09 in the intervention and control groups, respectively. Also, the reduction in the intervention group was significantly more than in the control group (P < 0.001; 95%CI=-9.75; -6.89). The mean changes in IPV scores from post-test to follow-up were - 1.36 ± 3.47 and 1.50 ± 4.14 in intervention and control groups, respectively, indicating a statistically significant difference between the two groups (P < 0.001; 95%CI=-4.38; -1.34). The mean changes in adherence scores from the pre-test to the post-test were 11.40 ± 4.23 and 0.68 ± 3.49 in the intervention and control groups, respectively. The increase was significantly higher in the intervention group than in the control group (P < 0.001; 95%CI = 9.18; 12.26). The mean changes in adherence scores from post-test to follow-up were 2.68 ± 5.06 and - 0.86 ± 2.43 in the intervention and control groups, respectively. The difference between the two groups was statistically significant (P < 0.001; 95%CI = 1.95; 5.12).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Life skills training based on self-efficacy theory reduced IPV and improved treatment compliance in women with diabetes under IPV. It is recommended that this training be taught to other patients with chronic conditions as a means of violence prevention and treatment adherence.</AbstractText><AbstractText Label="TRIAL REGISTRATION" NlmCategory="BACKGROUND">The trial was registered with the Iranian Registry of Clinical Trials (IRCT) on 13 October 2022 and can be found on the Iranian Registry of Clinical Trials platform. IRCT registration number: IRCT20090522001930N6.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Rezaee</LastName><ForeName>Shahrbanoo</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Student Research Committee, Faculty of Nursing and Midwifery, Bushehr University of Medical Sciences, Bushehr, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bagherzadeh</LastName><ForeName>Razieh</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Midwifery, Nursing and Midwifery Faculty, Bushehr University of Medical Sciences, Bushehr, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reisi</LastName><ForeName>Mahnoush</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Health Education and Health Promotion, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fotovat</LastName><ForeName>Leila</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Student Mental Health Counseling Office, Student Cultural Vice-Chancellor, Bushehr University of Medical Sciences, Bushehr, Iran.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vahedparast</LastName><ForeName>Hakimeh</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Medical-Surgical Nursing, Nursing and Midwifery Faculty, Bushehr University of Medical Sciences, P.O.Box. 7518759577, Salmane-farsi Blvd, Bushehr, Iran. h.vahedparast@bpums.ac.ir.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Public Health</MedlineTA><NlmUniqueID>100968562</NlmUniqueID><ISSNLinking>1471-2458</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020377" MajorTopicYN="Y">Self Efficacy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000066511" MajorTopicYN="Y">Intimate Partner Violence</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000074822" MajorTopicYN="N">Treatment Adherence and Compliance</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017579" MajorTopicYN="N">Domestic Violence</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Intimate partner violence</Keyword><Keyword MajorTopicYN="N">Life skills training</Keyword><Keyword MajorTopicYN="N">Self-efficacy</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Women</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This research was approved by the Ethics Committee of Bushehr University of Medical Sciences (reference number IR.BPUMS.REC.1401.063). All participants were required to sign a written informed consent form. The participants were informed of the research objectives and methodology and were assured of the confidentiality of their data. Furthermore, it was emphasised that participation in the study was entirely voluntary and that participants were free to withdraw from the study at any time. To safeguard the confidentiality of those involved in the research, the objectives and methodology were presented in a private setting by a female researcher to participants who met the eligibility criteria. Once consent had been obtained, the participants completed the IPV questionnaire in the absence of any other individual. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>23</Hour><Minute>50</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639251</ArticleId><ArticleId IdType="pmc">PMC11622502</ArticleId><ArticleId IdType="doi">10.1186/s12889-024-20913-y</ArticleId><ArticleId IdType="pii">10.1186/s12889-024-20913-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Lye M-S, Zarghami M, Charati JY, Abdollahi F. Impact of intimate partner violence on Iranian children’s growth and development: a descriptive-analytical study. Oman Med J. 2023;38(1):e464.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10015342</ArticleId><ArticleId IdType="pubmed">36937772</ArticleId></ArticleIdList></Reference><Reference><Citation>W.H.O. Violence against women prevalence estimates, 2018: Global, regional and national prevalence estimates for intimate partner violence against women and global and regional prevalence estimates for non-partner sexual violence against women. Executive summary: World Health Organization; 2021 2021.</Citation></Reference><Reference><Citation>Mohammadbeigi A, Sajadi M, Ahmadli R, Asgarian A, Khazaei S, Afrashteh S, et al. Intimate partner violence against Iranian women. Natl Med J India. 2019;32(2):67–71.</Citation><ArticleIdList><ArticleId IdType="pubmed">31939399</ArticleId></ArticleIdList></Reference><Reference><Citation>Clemente-Teixeira M, Magalhães T, Barrocas J, Dinis-Oliveira RJ, Taveira-Gomes T. Health outcomes in women victims of intimate partner violence: a 20-year real-world study. Int J Environ Res Public Health. 2022;19(24):17035.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9779804</ArticleId><ArticleId IdType="pubmed">36554916</ArticleId></ArticleIdList></Reference><Reference><Citation>Stubbs A, Szoeke C. The effect of intimate partner violence on the physical health and health-related behaviors of women: a systematic review of the literature. Trauma Violence Abuse. 2022;23(4):1157–72.</Citation><ArticleIdList><ArticleId IdType="pubmed">33541243</ArticleId></ArticleIdList></Reference><Reference><Citation>Weitzman A, Goosby BJ. Intimate partner violence, circulating glucose, and non-communicable disease: adding insult to injury? SSM-population Health. 2021;13:100701.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7750577</ArticleId><ArticleId IdType="pubmed">33364298</ArticleId></ArticleIdList></Reference><Reference><Citation>Pheiffer C, Dias S, Adam S. Intimate Partner violence: a risk factor for gestational diabetes. Int J Environ Res Public Health. 2020;17(21):7843.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7663316</ArticleId><ArticleId IdType="pubmed">33114711</ArticleId></ArticleIdList></Reference><Reference><Citation>Mason SM, Wright RJ, Hibert EN, Spiegelman D, Jun H-J, Hu FB, et al. Intimate partner violence and incidence of type 2 diabetes in women. Diabetes Care. 2013;36(5):1159–65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3631851</ArticleId><ArticleId IdType="pubmed">23248189</ArticleId></ArticleIdList></Reference><Reference><Citation>Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of Disease Study 2021. Lancet. 2023;402(10397):203–34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Farshchi N, Dept ZB, University IA, Zanjan I, Kiani Q, Dept ZB, Islamic Azad University, Zanjan, Iran., Chiti H. Metabolic Disease Research Center ZUoMS, Zanjan, Iran. Effectiveness of Group Therapy Reality in Reducing Depression, Anxiety and Increased Compliance to Treatment in Patients with Diabetic Type 1. Journal of Advances in Medical and Biomedical Research. 2018;26(117):74–85.</Citation></Reference><Reference><Citation>Oraki MZ, N HP HS. The effectiveness of anger management training with cognitive-behavioral approach on adherence treatment and controlling blood sugar in patients with type 2 diabetes. Health Psychol. 2012;21(4):56–0.</Citation></Reference><Reference><Citation>Myers L. Adherance to Treatment in Medical conditions. CRC; 2020.</Citation></Reference><Reference><Citation>Oraii A, Shafiee A, Jalali A, Alaeddini F, Saadat S, Masoudkabir F, et al. Prevalence, awareness, treatment, and control of type 2 diabetes mellitus among the adult residents of tehran: Tehran Cohort Study. BMC Endocr Disorders. 2022;22(1):248.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9578278</ArticleId><ArticleId IdType="pubmed">36253738</ArticleId></ArticleIdList></Reference><Reference><Citation>Pratiwi IN, Nursalam N, Widyawati IY, Ramoo V. Spousal involvement in Collaborative Management and Glycemic Behavior Change among patients with diabetes Mellitus: a systematic review. SAGE Open Nurs. 2024;10:23779608241245196.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11025446</ArticleId><ArticleId IdType="pubmed">38638412</ArticleId></ArticleIdList></Reference><Reference><Citation>Haines L, Coppa N, Harris Y, Wisnivesky J, Lin JJ. The impact of partnership status on diabetes control and self-management behaviors. Health Educ Behav. 2018;45(5):668–71.</Citation><ArticleIdList><ArticleId IdType="pubmed">29361845</ArticleId></ArticleIdList></Reference><Reference><Citation>Botvin GJ, Kantor LW. Preventing alcohol and tobacco use through life skills training: theory, methods, and empirical findings. Alcohol Res Health. 2000;24(4).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6709746</ArticleId><ArticleId IdType="pubmed">15986720</ArticleId></ArticleIdList></Reference><Reference><Citation>Naeim MRS. The efficacy of life skills training on marital adjustment of women for the prevention of domestic violence. Shenakht J Psychol Psychiatry. 2016;3(2):21–32.</Citation></Reference><Reference><Citation>Poursalman SA. The effectiveness of life skills training on anger management and resilience in adolescents. J Appl Family Therapy. 2020;1(2):105–24.</Citation></Reference><Reference><Citation>SohrabzadehM NZ. Model Designing of determining factors affecting violence against women. Sci J Women Cult. 2020;1(43):101–13.</Citation></Reference><Reference><Citation>RajabiF A. The effectiveness of life skills training on the psychological well-being and happiness of elderly women. Q Sci Res J Aging Psychol. 2018;4(4):301–12.</Citation></Reference><Reference><Citation>Zhu Y, Hou F, Chen C, Wei D, Peng L, You X, et al. Moderating effect of self-efficacy on the association of intimate partner violence with risky sexual behaviors among men who have sex with men in China. BMC Infect Dis. 2021;21(1):895.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8408951</ArticleId><ArticleId IdType="pubmed">34470607</ArticleId></ArticleIdList></Reference><Reference><Citation>Shorey S, Lopez V. Self-efficacy in a nursing context. In: Haugan G, Eriksson M, editors. Health Promotion in Health care – vital theories and research. Cham: Springer International Publishing; 2021. pp. 145–58.</Citation></Reference><Reference><Citation>Darvishnia Fandari A, Ar. The effectiveness of coping therapy on General Self-Efficacy, Psychological Well-Being and Resilience in Women under domestic violence. J Health Promotion Manage. 2022;11(1):140–54.</Citation></Reference><Reference><Citation>Mohammadbeigi AS, R.Rezakhoo SBM. The effect of life skills training on decreasing of Domestic Violence and general health promotion of women. Nurs Midwifery J. 2016;13(10):903–11.</Citation></Reference><Reference><Citation>Ahn HSUELB, A.Bong M. Cultural differences in the understanding of modelling and feedback as sources of self-efficacy information. Br J Educ Psychol. 2016;86(1):112–36.</Citation><ArticleIdList><ArticleId IdType="pubmed">26387485</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohseni Tabrizi M AK, AJ. The study of domestic violence in marrid women addmitted to yazd legal medicine organization and welfare organization. Tolooebehdasht. 2013;11(3):11–24.</Citation></Reference><Reference><Citation>Reisi MM, Ghr FJHBTE. Communicative and critical health literacy and self-care behaviors in patients with type 2 diabetes. Iran J Diabetes Metabolism. 2015;14(3):199–208.</Citation></Reference><Reference><Citation>Babaheidarian FM, Sangestani SZ, Roshanaei G. The effect of family-based counseling on domestic violence in pregnant women referring to health centers in Sahneh city, Iran, 2018. Ann Gen Psychiatry. 2021;20(1):11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7866450</ArticleId><ArticleId IdType="pubmed">33546724</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirahmadian M, Maadi Esfahan M, Haghani S, Ranjbar F. Effect of problem-solving skills training on domestic violence in Infertile women: a quasi-experimental study. Iran J Nurs. 2022;35(136):202–17.</Citation></Reference><Reference><Citation>Mahmoudian SAG, Akhavan-Taheri PJSMN. The effect of anger management skills training program on women exposed to domestic violence: an interventional study. J Isfahan Med School. 2019;37(516):119–24.</Citation></Reference><Reference><Citation>Fallah EB, M.Rashidi K. Impact of life skills training on adolescents’ inclination to Risky behaviors: a Randomized Controlled Clinical Trial. Iran J Psychiatry Behav Sci. 2021;15(3).</Citation></Reference><Reference><Citation>Farjam ECK, E.Ebrahimi S, S.Afzalaghaee M. N. Application of Models and Theories of Health Education and Health Promotion in the Prevention of Substance Abuse in Adolescents: A Systematic Review: North Khorasan University of Medical Sciences; 2023 2023. 71–9 p.</Citation></Reference><Reference><Citation>Taghdisi MH, Latifi M, Eshagh Afkari M, Dastoorpour M, Estebsari F, Jamalzadeh F. The impact of educational intervention to increase self efficacy and awareness for the prevention of domestic violence against women. Iran J Health Educ Health Promot. 2015;3(1):32–8.</Citation></Reference><Reference><Citation>Oraki m, f. The effectiveness of mindfulness-based stress reduction (MBSR) on emotion regulation, perceived stress, and adherence of treatment in overweight patients with type 2 diabetes. Health Psychol. 2021;10(38):157–75.</Citation></Reference><Reference><Citation>Eshghi Motlagh AB, RA F, Esmaily H. Effect of an educational intervention program based on Bandura’s self-efficacy theory on self-care, self-efficacy, and blood sugar levels in mothers with pre-diabetes during pregnancy. Evid Based Care. 2019;9(2):53–64.</Citation></Reference><Reference><Citation>Zamani-Alavijeh F, Araban M, Koohestani HR, Karimy M. The effectiveness of stress management training on blood glucose control in patients with type 2 diabetes. Diabetol Metab Syndr. 2018;10(1):39.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5941598</ArticleId><ArticleId IdType="pubmed">29760788</ArticleId></ArticleIdList></Reference><Reference><Citation>Kruger DF, Lorenzi GM, Dokken BB, Sadler CE, Mann K, Valentine V. Managing diabetes with Integrated teams: maximizing your efforts with Limited Time. Postgrad Med. 2012;124(2):64–76.</Citation><ArticleIdList><ArticleId IdType="pubmed">22437217</ArticleId></ArticleIdList></Reference><Reference><Citation>LS-G. The relationships between Diabetes Self-Care, Diabetes Time Management, and diabetes distress in women with type 2 diabetes Mellitus. Sci Diabetes self-management care. 2021;47(4):245–54.</Citation><ArticleIdList><ArticleId IdType="pubmed">34036847</ArticleId></ArticleIdList></Reference><Reference><Citation>Russell lBS D-CS MA. Time requirements for diabetes self-management: too much for many. J Fam Pract. 2005;54(1):52–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">15623407</ArticleId></ArticleIdList></Reference><Reference><Citation>Fitzpatrick SL, Schumann KP, Hill-Briggs F. Problem solving interventions for diabetes self-management and control: a systematic review of the literature. Diabetes Res Clin Pract. 2013;100(2):145–61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3633671</ArticleId><ArticleId IdType="pubmed">23312614</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill-Briggs F, Gemmell L. Problem solving in diabetes self-management and control. Diabetes Educ. 2007;33(6):1032–50.</Citation><ArticleIdList><ArticleId IdType="pubmed">18057272</ArticleId></ArticleIdList></Reference><Reference><Citation>Mulvaney SA. Improving patient problem solving to reduce barriers to diabetes self-management. Clin Diabetes. 2009;27(3):99–104.</Citation></Reference><Reference><Citation>Mahboobifar MZ, A.Aliyari SH. Effect of Cognitive-Social Based Care Program on Patient’s compliance in heart valve surgery in selected Military Hospital. Military Caring Sci J. 2019;6(2):81–91.</Citation></Reference><Reference><Citation>Bandura A. Self-efficacy mechanism in human agency. Am Psychol. 1982;37(2):122–47.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39639039</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2041-1723</ISSN><JournalIssue CitedMedium="Internet"><Volume>15</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>Nature communications</Title><ISOAbbreviation>Nat Commun</ISOAbbreviation></Journal><ArticleTitle>Healthcare utilization, mortality, and cardiovascular events following GLP1-RA initiation in chronic kidney disease.</ArticleTitle><Pagination><StartPage>10623</StartPage><MedlinePgn>10623</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">10623</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-024-54009-3</ELocationID><Abstract><AbstractText>Treatment with glucagon-like peptide-1 receptor agonists (GLP1-RA) in patients with type 2 diabetes (T2D) and chronic kidney disease (CKD) may attenuate kidney disease progression and cardiovascular events but their real-world impact on healthcare utilization and mortality in this population are not well-defined. Here, we emulate a clinical trial that compares outcomes following initiation of GLP1-RA vs Dipeptidyl peptidase-4 inhibitors (DPP4i), as active comparators, in U.S. veterans aged 35 years of older with moderate to advanced CKD during fiscal years 2006 to 2021. Primary outcome was rate of acute healthcare utilization. Secondary outcomes were all-cause mortality and a composite of acute cardiovascular events. After propensity score matching (16,076 pairs) and 2.2 years mean follow-up duration, use of GLP1-RA in patients with moderate to advanced CKD was associated with lower annual rate of acute healthcare utilization and all-cause mortality. There was no significant difference in acute cardiovascular events.</AbstractText><CopyrightInformation>© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Shuyao</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sidra</LastName><ForeName>Fnu</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Jones Center for Diabetes & Endocrine Wellness, Macon, GA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alvarez</LastName><ForeName>Carlos A</ForeName><Initials>CA</Initials><AffiliationInfo><Affiliation>Department of Pharmacy Practice and Center for Excellence in Real World Evidence, Texas Tech University Health Science Center, Dallas, TX, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kinaan</LastName><ForeName>Mustafa</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Endocrinology, Diabetes, and Metabolism Fellowship, UCF HCA Healthcare GME, Orlando, FL, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Internal Medicine, University of Central Florida, College of Medicine, Orlando, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Lingvay</LastName><ForeName>Ildiko</ForeName><Initials>I</Initials><Identifier Source="ORCID">0000-0001-7006-7401</Identifier><AffiliationInfo><Affiliation>Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Mansi</LastName><ForeName>Ishak A</ForeName><Initials>IA</Initials><Identifier Source="ORCID">0000-0001-6122-3716</Identifier><AffiliationInfo><Affiliation>Department of Internal Medicine, University of Central Florida, College of Medicine, Orlando, FL, USA. Ishak.mansi@va.gov.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Education Services, Orlando VA Healthcare System, Orlando, FL, USA. Ishak.mansi@va.gov.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Nat Commun</MedlineTA><NlmUniqueID>101528555</NlmUniqueID><ISSNLinking>2041-1723</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="N">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010342" MajorTopicYN="N">Patient Acceptance of Health Care</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: I.L. received research funding (paid to institution) from NovoNordisk, Sanofi, Merck, Pfizer, Mylan, Boehringer-Ingelheim. IL received advisory/consulting fees and/or other support from: Novo Nordisk, Eli Lilly, Sanofi, Astra Zeneca, Boehringer-Ingelheim, Cytoki Pharma, Johnson and Johnson, Intercept, TARGETPharma, Merck, Pfizer, Valeritas, Zealand Pharma, Shionogi, Carmot Therapeutics, Structure Therapeutics, Bayer, Translational Medical Academy, Mediflix, Biomea, Metsera, Regeneron, The Comm Group, and WebMD. I.L. serves on the Data Safety Monitoring Board for JAEB. C.A.A. received research funding (paid to the institution) from Merck, Bristol Myers Squibb, and Boehringer-Ingelheim. C.A.A. received funding from the National Institutes of Health National Center for Advancing Translational Sciences (grant #UL1TR003163). S.Z., F.S. and I.A.M. declared no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>23</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39639039</ArticleId><ArticleId IdType="pmc">PMC11621321</ArticleId><ArticleId IdType="doi">10.1038/s41467-024-54009-3</ArticleId><ArticleId IdType="pii">10.1038/s41467-024-54009-3</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Folkerts, K. et al. Annual health care resource utilization and cost among type 2 diabetes patients with newly recognized chronic kidney disease within a large U.S. administrative claims database. J. Manag. Care Spec. Pharm.26, 1506–1516 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10391265</ArticleId><ArticleId IdType="pubmed">33251992</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng, Y. et al. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol.12, 672350 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8281340</ArticleId><ArticleId IdType="pubmed">34276558</ArticleId></ArticleIdList></Reference><Reference><Citation>United States Renal Data System 2022 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. https://usrds-adr.niddk.nih.gov/2022 (Accessed 22 December 2023).</Citation></Reference><Reference><Citation>Zhang, S. et al. Emergency department visits and hospitalizations among hemodialysis patients by day of the week and dialysis schedule in the United States. PLoS ONE14, e0220966 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6695146</ArticleId><ArticleId IdType="pubmed">31415609</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H. L., Tai P. H., Hwang Y. T., Lin S. W. & Lan L. C. Causes of hospitalization among end-stage kidney disease cohort before and after hemodialysis. Int. J. Environ. Res. Public Health. 19, 10.3390/ijerph191610253 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9408097</ArticleId><ArticleId IdType="pubmed">36011888</ArticleId></ArticleIdList></Reference><Reference><Citation>Chu, Y. W. et al. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS ONE12, e0174601 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5371333</ArticleId><ArticleId IdType="pubmed">28355264</ArticleId></ArticleIdList></Reference><Reference><Citation>Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation143, 1157–1172 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7969169</ArticleId><ArticleId IdType="pubmed">33720773</ArticleId></ArticleIdList></Reference><Reference><Citation>Morbidity and Mortality in Patients with CKD. United States Renal Data System 2022 USRDS Annual Data Report. https://usrds-adr.niddk.nih.gov/2022/chronic-kidney-disease/3-morbidity-and-mortality-in-patients-with-ckd. Accessed 22 December 2023.</Citation></Reference><Reference><Citation>Lo, C. et al. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane Database Syst. Rev.9, Cd011798 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6513625</ArticleId><ArticleId IdType="pubmed">30246878</ArticleId></ArticleIdList></Reference><Reference><Citation>Kawanami, D. & Takashi, Y. GLP-1 Receptor agonists in diabetic kidney disease: from clinical outcomes to mechanisms. Front. Pharmacol.11, 967 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7338581</ArticleId><ArticleId IdType="pubmed">32694999</ArticleId></ArticleIdList></Reference><Reference><Citation>Michos, E. D., Bakris, G. L., Rodbard, H. W. & Tuttle, K. R. Glucagon-like peptide-1 receptor agonists in diabetic kidney disease: a review of their kidney and heart protection. Am. J. Prev. Cardiol.14, 100502 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10258236</ArticleId><ArticleId IdType="pubmed">37313358</ArticleId></ArticleIdList></Reference><Reference><Citation>Wexler, D. J. et al. Comparative effects of glucose-lowering medications on kidney outcomes in type 2 diabetes: the GRADE randomized clinical trial. JAMA Intern. Med.183, 705–714 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10203973</ArticleId><ArticleId IdType="pubmed">37213109</ArticleId></ArticleIdList></Reference><Reference><Citation>KDIGO 2020 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 98, S1–s115 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">32998798</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association. Introduction: standards of medical care in diabetes-2022. Diabetes Care. 45, S1–S2 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34964812</ArticleId></ArticleIdList></Reference><Reference><Citation>Yajima, T., Yajima, K., Hayashi, M., Takahashi, H. & Yasuda, K. Improved glycemic control with once-weekly dulaglutide in addition to insulin therapy in type 2 diabetes mellitus patients on hemodialysis evaluated by continuous glucose monitoring. J. Diabetes Complicat.32, 310–315 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29366733</ArticleId></ArticleIdList></Reference><Reference><Citation>Kondo, M., Toyoda, M., Kimura, M., Ishida, N. & Fukagawa, M. Favorable effect on blood volume control in hemodialysis patients with type 2 diabetes after switching from insulin therapy to liraglutide, a human glucagon-like peptide-1 analog–results from a pilot study in Japan. Tokai J. Exp. Clin. Med.42, 52–57 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28413872</ArticleId></ArticleIdList></Reference><Reference><Citation>Idorn, T. et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and end-stage renal disease: an investigator-initiated, placebo-controlled, double-blind, parallel-group, randomized trial. Diabetes Care39, 206–213 (2016).</Citation><ArticleIdList><ArticleId IdType="pubmed">26283739</ArticleId></ArticleIdList></Reference><Reference><Citation>Bomholt, T. et al. The glycemic effect of liraglutide evaluated by continuous glucose monitoring in persons with type 2 diabetes receiving dialysis. Nephron. 145, 27–34 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33105146</ArticleId></ArticleIdList></Reference><Reference><Citation>Giugliano, D. et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc. Diabetol.20, 189 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8442438</ArticleId><ArticleId IdType="pubmed">34526024</ArticleId></ArticleIdList></Reference><Reference><Citation>Kristensen, S. L. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol.7, 776–785 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">31422062</ArticleId></ArticleIdList></Reference><Reference><Citation>Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol.9, 653–662 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">34425083</ArticleId></ArticleIdList></Reference><Reference><Citation>Reifsnider, O. et al. Cost-effectiveness analysis of empagliflozin versus sitagliptin as second-line therapy for treatment in patients with type 2 diabetes in the United States. Diabetes Obes. Metab.23, 791–799 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7898389</ArticleId><ArticleId IdType="pubmed">33236481</ArticleId></ArticleIdList></Reference><Reference><Citation>Poonawalla, I. B., Bowe, A. T., Tindal, M. C., Meah, Y. A. & Schwab, P. A real-world comparison of cardiovascular, medical and costs outcomes in new users of SGLT2 inhibitors versus GLP-1 agonists. Diabetes Res. Clin. Pract.175, 108800 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33845052</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilke, T. et al. Healthcare resource utilization and associated costs in new users of empagliflozin versus DPP-4 inhibitors and GLP-1 agonists: a comparative analysis based on retrospective real-world data from german sickness funds. Clinicoecon Outcomes Res.14, 319–332 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9075907</ArticleId><ArticleId IdType="pubmed">35531480</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomsen, R. W. et al. Healthcare resource utilization and costs for empagliflozin versus glucagon-like peptide-1 receptor agonists in routine clinical care in Denmark. Diabetes Ther.13, 1891–1906 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9663772</ArticleId><ArticleId IdType="pubmed">36315384</ArticleId></ArticleIdList></Reference><Reference><Citation>Berg, J. K., Shenouda, S. K., Heilmann, C. R., Gray, A. L. & Holcombe, J. H. Effects of exenatide twice daily versus sitagliptin on 24-h glucose, glucoregulatory and hormonal measures: a randomized, double-blind, crossover study. Diabetes Obes. Metab.13, 982–989 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3258427</ArticleId><ArticleId IdType="pubmed">21615670</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergenstal, R. M. et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet. 376, 431–439 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20580422</ArticleId></ArticleIdList></Reference><Reference><Citation>Wysham, C. et al. DURATION-2: efficacy and safety of switching from maximum daily sitagliptin or pioglitazone to once-weekly exenatide. Diabet. Med.28, 705–714 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3123706</ArticleId><ArticleId IdType="pubmed">21434995</ArticleId></ArticleIdList></Reference><Reference><Citation>Pratley, R. E. et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet. 375, 1447–1456 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20417856</ArticleId></ArticleIdList></Reference><Reference><Citation>Pratley, R. et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J. Clin. Pract.65, 397–407 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3085127</ArticleId><ArticleId IdType="pubmed">21355967</ArticleId></ArticleIdList></Reference><Reference><Citation>DeFronzo, R. A. et al. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin.24, 2943–2952 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18786299</ArticleId></ArticleIdList></Reference><Reference><Citation>Patoulias, D. I. et al. Cardiovascular efficacy and safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of cardiovascular outcome trials. World J. Cardiol.13, 585–592 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8554356</ArticleId><ArticleId IdType="pubmed">34754403</ArticleId></ArticleIdList></Reference><Reference><Citation>White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med.369, 1327–1335 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23992602</ArticleId></ArticleIdList></Reference><Reference><Citation>Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med.369, 1317–1326 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23992601</ArticleId></ArticleIdList></Reference><Reference><Citation>Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med.373, 232–242 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">26052984</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenstock, J. et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA321, 69–79 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6583576</ArticleId><ArticleId IdType="pubmed">30418475</ArticleId></ArticleIdList></Reference><Reference><Citation>Nauck, M. A., Meier, J. J., Cavender, M. A., Abd El Aziz, M. & Drucker, D. J. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation136, 849–870 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28847797</ArticleId></ArticleIdList></Reference><Reference><Citation>Richardson, T. L. Jr. et al. Primary occurrence of cardiovascular events after adding sodium-glucose cotransporter-2 inhibitors or glucagon-like peptide-1 receptor agonists compared with dipeptidyl peptidase-4 inhibitors: a cohort study in veterans with diabetes. Ann. Intern. Med.176, 751–760 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10367222</ArticleId><ArticleId IdType="pubmed">37155984</ArticleId></ArticleIdList></Reference><Reference><Citation>Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med.373, 2247–2257 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">26630143</ArticleId></ArticleIdList></Reference><Reference><Citation>Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med.381, 841–851 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">31185157</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelly, M. et al. Effects of GLP-1 receptor agonists on cardiovascular outcomes in patients with type 2 diabetes and chronic kidney disease: a systematic review and meta-analysis. Pharmacotherapy42, 921–928 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10099849</ArticleId><ArticleId IdType="pubmed">36271706</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin, Y. et al. The cardiovascular and renal effects of glucagon-like peptide 1 receptor agonists in patients with advanced diabetic kidney disease. Cardiovasc. Diabetol.22, 60 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10024371</ArticleId><ArticleId IdType="pubmed">36932379</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, J. J. et al. Association of glucagon-like peptide-1 receptor agonist vs dipeptidyl peptidase-4 inhibitor use with mortality among patients with type 2 diabetes and advanced chronic kidney disease. JAMA Netw. Open5, e221169 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8902651</ArticleId><ArticleId IdType="pubmed">35254430</ArticleId></ArticleIdList></Reference><Reference><Citation>Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med.391, 109–121 (2024).</Citation><ArticleIdList><ArticleId IdType="pubmed">38785209</ArticleId></ArticleIdList></Reference><Reference><Citation>Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol.17, 227–244 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33219281</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai, X. et al. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J. Biol. Sci.14, 1696–1708 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6216037</ArticleId><ArticleId IdType="pubmed">30416384</ArticleId></ArticleIdList></Reference><Reference><Citation>Greco E. V. et al. GLP-1 Receptor agonists and kidney protection. Medicina. 55, 233 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6630923</ArticleId><ArticleId IdType="pubmed">31159279</ArticleId></ArticleIdList></Reference><Reference><Citation>Semaglutide Injection Criteria for Use July 2022 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives. https://www.va.gov/formularyadvisor/DOC_PDF/CFU_Semaglutide_OZEMPIC_Jul22a.pdf (Accessed 22 December 2023).</Citation></Reference><Reference><Citation>VA Informatics and Computing Infrastructure (VINCI), VA HSR RES 13-457, U.S. Department of Veterans Affairs. https://vincicentral.vinci.med.va.gov (2008).</Citation></Reference><Reference><Citation>Lund, J. L., Richardson, D. B. & Sturmer, T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr. Epidemiol. Rep.2, 221–228 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4778958</ArticleId><ArticleId IdType="pubmed">26954351</ArticleId></ArticleIdList></Reference><Reference><Citation>Stop Code References. Cost Accounting Office of the VHA. http://vaww.dss.med.va.gov/programdocs/pd_oident.aspManagerial.</Citation></Reference><Reference><Citation>Kivimäki, M. et al. Validity of cardiovascular disease event ascertainment using linkage to UK Hospital records. Epidemiology28, 735–739 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5540351</ArticleId><ArticleId IdType="pubmed">28570383</ArticleId></ArticleIdList></Reference><Reference><Citation>McCormick, N., Lacaille, D., Bhole, V. & Avina-Zubieta, J. A. Validity of myocardial infarction diagnoses in administrative databases: a systematic review. PLoS ONE9, e92286 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3969323</ArticleId><ArticleId IdType="pubmed">24682186</ArticleId></ArticleIdList></Reference><Reference><Citation>McCormick, N., Bhole, V., Lacaille, D. & Avina-Zubieta, J. A. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS ONE10, e0135834 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4546158</ArticleId><ArticleId IdType="pubmed">26292280</ArticleId></ArticleIdList></Reference><Reference><Citation>Ginde, A. A., Blanc, P. G., Lieberman, R. M. & Camargo, C. A. Jr. Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits. BMC Endocr. Disord.8, 4 (2008).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2323001</ArticleId><ArticleId IdType="pubmed">18380903</ArticleId></ArticleIdList></Reference><Reference><Citation>Karter, A. J. et al. Revalidation of the hypoglycemia risk stratification tool using ICD-10 codes. Diabetes Care.42, e58–e59 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6429629</ArticleId><ArticleId IdType="pubmed">30765427</ArticleId></ArticleIdList></Reference><Reference><Citation>Adams, M. A., et al. Development and validation of a new ICD-10-based screening colonoscopy overuse measure in a large integrated healthcare system: a retrospective observational study. BMJ Qual Saf. 10.1136/bmjqs-2021-014236 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10294020</ArticleId><ArticleId IdType="pubmed">36192148</ArticleId></ArticleIdList></Reference><Reference><Citation>Elixhauser, A., Steiner, C., Palmer, L. Clinical Classifications Software (CCS) for ICD-9-CM. Databases and Related Tools from the Healthcare Cost and Utilization Project (HCUP) U.S. Agency for Healthcare Research and Quality; 2012:Appendix A. Accessed 01 January 2012. http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp.</Citation></Reference><Reference><Citation>Deyo, R. A., Cherkin, D. C. & Ciol, M. A. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J. Clin. Epidemiol.45, 613–619 (1992).</Citation><ArticleIdList><ArticleId IdType="pubmed">1607900</ArticleId></ArticleIdList></Reference><Reference><Citation>Orkaby, A. R. et al. The burden of frailty among U.S. veterans and its association with mortality, 2002-2012. J. Gerontol. A Biol. Sci. Med. Sci.74, 1257–1264 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6625596</ArticleId><ArticleId IdType="pubmed">30307533</ArticleId></ArticleIdList></Reference><Reference><Citation>Schneeweiss, S., Wang, P. S., Avorn, J. & Glynn, R. J. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv. Res.38, 1103–1120 (2003).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1360935</ArticleId><ArticleId IdType="pubmed">12968819</ArticleId></ArticleIdList></Reference><Reference><Citation>Quan, H. et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol.173, 676–682 (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">21330339</ArticleId></ArticleIdList></Reference><Reference><Citation>D’Agostino, R. B. Sr. et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation117, 743–753 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18212285</ArticleId></ArticleIdList></Reference><Reference><Citation>Becker, S. & Ichino, A. Estimation of average treatment effects based on propensity scores. Stata J.2, 358–377 (2002).</Citation></Reference><Reference><Citation>Leuven, E. & Sianesi, B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. http://ideas.repec.org/c/boc/bocode/s432001.html. version 4.0.5 ed. 2003.</Citation></Reference><Reference><Citation>Austin, P. C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat.10, 150–161 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3120982</ArticleId><ArticleId IdType="pubmed">20925139</ArticleId></ArticleIdList></Reference><Reference><Citation>Staffa, S. J. & Zurakowski, D. Five steps to successfully implement and evaluate propensity score matching in clinical research studies. Anesth. Analg.127, 1066–1073 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29324498</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39638855</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>09</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2045-2322</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>Scientific reports</Title><ISOAbbreviation>Sci Rep</ISOAbbreviation></Journal><ArticleTitle>Monitoring individualized glucose levels predicts risk for bradycardia in type 2 diabetes patients with chronic kidney disease: a pilot study.</ArticleTitle><Pagination><StartPage>30290</StartPage><MedlinePgn>30290</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">30290</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-024-81983-x</ELocationID><Abstract><AbstractText>Patients with diabetes mellitus (DM) and chronic kidney disease (CKD) exhibit an elevated risk for cardiac arrhythmias, such as bradycardia, which may potentially lead to sudden cardiac death (SCD). While hypoglycemia, defined as a critical drop in glucose levels below the normal range, has long been associated with adverse cardiovascular events, recent studies have highlighted the need for a comprehensive reevaluation of its direct impact on cardiovascular outcomes, particularly in high-risk populations such as those with DM and CKD. In this study, we investigated the association between glucose levels and bradycardia by simultaneously monitoring interstitial glucose (IG) and ECG for 7 days in insulin-treated patients with DM and CKD. We identified bradycardia episodes in 19 of 85 patients (22%) and associated these episodes with personalized low, medium, and high relative glucose levels. Our analysis revealed a significant increase in bradycardia frequency during periods of lowest relative glucose, particularly between 06:00-09:00 and 12:00-15:00. Furthermore, leveraging a Random Forests classifier, we achieved a promising area under the curve (AUC) of 0.94 for predicting bradyarrhythmias using glucose levels and heart rate variability features. Contrary to previous findings, only 4% of bradycardia episodes in our study population occurred at glucose levels of 70 mg/dL or lower, with 28% observed at levels exceeding 180 mg/dL. Our findings not only highlight the strong correlation between relative glucose levels, heart rate parameters, and bradycardia onset but also emphasize the need for a more personalized definition of hypoglycemia to understand its relationship with bradyarrhythmias in high-risk DM and CKD patient populations.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Farhadi Ghalati</LastName><ForeName>Pejman</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>E Samadi</LastName><ForeName>Moein</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verket</LastName><ForeName>Marlo</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital RWTH, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Balfanz</LastName><ForeName>Paul</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital RWTH, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Müller-Wieland</LastName><ForeName>Dirk</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital RWTH, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jonas</LastName><ForeName>Stephan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute for Digital Medicine, University Clinic Bonn, Bonn, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Napp</LastName><ForeName>Andreas</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital RWTH, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wanner</LastName><ForeName>Christoph</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ketteler</LastName><ForeName>Markus</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Nephrology, Coburg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vassiliadou</LastName><ForeName>Athina</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Nephrology and Diabetology, Kliniken Maria-Hilf GmbH, Mönchengladbach, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Heidenreich</LastName><ForeName>Stefan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>KFH Nephrology Center, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deserno</LastName><ForeName>Thomas</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hetzel</LastName><ForeName>Gudrun</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Nephrology, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fliser</LastName><ForeName>Danilo</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kelm</LastName><ForeName>Malte</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Pulmonology and Vascular Medicine, HHU Düsseldorf, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Floege</LastName><ForeName>Jürgen</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine II, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Marx</LastName><ForeName>Nikolaus</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine I, University Hospital RWTH, Aachen, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schuppert</LastName><ForeName>Andreas</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany. aschuppert@ukaachen.de.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Sci Rep</MedlineTA><NlmUniqueID>101563288</NlmUniqueID><ISSNLinking>2045-2322</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001919" MajorTopicYN="Y">Bradycardia</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010865" MajorTopicYN="N">Pilot Projects</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006339" MajorTopicYN="N">Heart Rate</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="N">Hypoglycemia</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Bradycardia</Keyword><Keyword MajorTopicYN="N">Chronic kidney disease</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Glucose monitoring</Keyword><Keyword MajorTopicYN="N">Hypoglycemia</Keyword><Keyword MajorTopicYN="N">Machine learning</Keyword><Keyword MajorTopicYN="N">Personalized medicine</Keyword></KeywordList><CoiStatement>Declarations. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>23</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39638855</ArticleId><ArticleId IdType="pmc">PMC11621348</ArticleId><ArticleId IdType="doi">10.1038/s41598-024-81983-x</ArticleId><ArticleId IdType="pii">10.1038/s41598-024-81983-x</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Carrero, J. J. et al. Sex differences in the impact of diabetes on mortality in chronic dialysis patients. Nephrology Dialysis Transplantation26, 270–276 (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">20621930</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergner, D. W. & Goldberger, J. J. Diabetes mellitus and sudden cardiac death: what are the data?. Cardiology journal17, 117–129 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20544609</ArticleId></ArticleIdList></Reference><Reference><Citation>Pun, P. H. et al. Chronic kidney disease is associated with increased risk of sudden cardiac death among patients with coronary artery disease. Kidney international76, 652–658 (2009).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2990680</ArticleId><ArticleId IdType="pubmed">19536082</ArticleId></ArticleIdList></Reference><Reference><Citation>Myerburg, R. J. & Junttila, M. J. Sudden cardiac death caused by coronary heart disease. Circulation125, 1043–1052 (2012).</Citation><ArticleIdList><ArticleId IdType="pubmed">22371442</ArticleId></ArticleIdList></Reference><Reference><Citation>Grisanti, L. A. Diabetes and arrhythmias: pathophysiology, mechanisms and therapeutic outcomes. Frontiers in physiology9, 409132 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6275303</ArticleId><ArticleId IdType="pubmed">30534081</ArticleId></ArticleIdList></Reference><Reference><Citation>Shapira, O. M. & Bar-Khayim, Y. Ecg changes and cardiac arrhythmias in chronic renal failure patients on hemodialysis. Journal of electrocardiology25, 273–279 (1992).</Citation><ArticleIdList><ArticleId IdType="pubmed">1402512</ArticleId></ArticleIdList></Reference><Reference><Citation>Franciosi, S. et al. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Autonomic Neuroscience205, 1–11 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28392310</ArticleId></ArticleIdList></Reference><Reference><Citation>Chow, E. et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes63, 1738–1747 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">24757202</ArticleId></ArticleIdList></Reference><Reference><Citation>Lindström, T., Jorfeldt, L., Tegler, L. & Arnqvist, H. Hypoglycaemia and cardiac arrhythmias in patients with type 2 diabetes mellitus. Diabetic medicine9, 536–541 (1992).</Citation><ArticleIdList><ArticleId IdType="pubmed">1643801</ArticleId></ArticleIdList></Reference><Reference><Citation>Fitzpatrick, C. et al. Association of hypoglycaemia and risk of cardiac arrhythmia in patients with diabetes mellitus: a systematic review and meta-analysis. Diabetes, Obesity and Metabolism20, 2169–2178 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29740922</ArticleId></ArticleIdList></Reference><Reference><Citation>McCall, A. L. Insulin therapy and hypoglycemia. Endocrinology and Metabolism Clinics41, 57–87 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4265808</ArticleId><ArticleId IdType="pubmed">22575407</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalra, S. et al. Hypoglycemia: The neglected complication. Indian journal of endocrinology and metabolism17, 819–834 (2013).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3784865</ArticleId><ArticleId IdType="pubmed">24083163</ArticleId></ArticleIdList></Reference><Reference><Citation>Tattersall, R. Brittle diabetes revisited: the third arnold bloom memorial lecture. Diabetic medicine14, 99–110 (1997).</Citation><ArticleIdList><ArticleId IdType="pubmed">9047086</ArticleId></ArticleIdList></Reference><Reference><Citation>Gill, G., Woodward, A., Casson, I. & Weston, P. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’syndrome revisited. Diabetologia52, 42–45 (2009).</Citation><ArticleIdList><ArticleId IdType="pubmed">18972096</ArticleId></ArticleIdList></Reference><Reference><Citation>Rana, O. A., Byrne, C. D. & Greaves, K. Intensive glucose control and hypoglycaemia: a new cardiovascular risk factor?. Heart100, 21–27 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">23697655</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamseddin, M. K. & Parfrey, P. S. Sudden cardiac death in chronic kidney disease: epidemiology and prevention. Nature Reviews Nephrology7, 145–154 (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">21283136</ArticleId></ArticleIdList></Reference><Reference><Citation>Investigators, T. O. T. Does hypoglycaemia increase the risk of cardiovascular events? a report from the origin trial. European heart journal34, 3137–3144 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23999452</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonds, D. E. et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the accord study. Bmj340 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2803744</ArticleId><ArticleId IdType="pubmed">20061358</ArticleId></ArticleIdList></Reference><Reference><Citation>Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. New England Journal of Medicine363, 1410–1418 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20925543</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanon, V. P. et al. Hypoglycemia from a cardiologist’s perspective. Clinical cardiology37, 499–504 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6649367</ArticleId><ArticleId IdType="pubmed">24895268</ArticleId></ArticleIdList></Reference><Reference><Citation>Novodvorsky, P. et al. Diurnal differences in risk of cardiac arrhythmias during spontaneous hypoglycemia in young people with type 1 diabetes. Diabetes care40, 655–662 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28213374</ArticleId></ArticleIdList></Reference><Reference><Citation>Marx, N. et al. Hypoglycemia and cardiovascular outcomes in the carmelina and carolina trials of linagliptin: A secondary analysis of randomized clinical trials. JAMA cardiology9, 134–143 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10765314</ArticleId><ArticleId IdType="pubmed">38170502</ArticleId></ArticleIdList></Reference><Reference><Citation>Solomon, S. C. et al. Forecasting a crisis: machine-learning models predict occurrence of intraoperative bradycardia associated with hypotension. Anesthesia & Analgesia130, 1201–1210 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">32287127</ArticleId></ArticleIdList></Reference><Reference><Citation>Sakamoto, J. T. et al. Heart rate variability analysis in patients who have bradycardia presenting to the emergency department with chest pain. The Journal of Emergency Medicine54, 273–280 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29242010</ArticleId></ArticleIdList></Reference><Reference><Citation>Hanss, R. et al. Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients?. Anaesthesia63, 129–135 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18211442</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang, H., Salmon, B. P., Gale, T. J. & Dargaville, P. A. Prediction of bradycardia in preterm infants using artificial neural networks. Machine Learning with Applications10, 100426 (2022).</Citation></Reference><Reference><Citation>McCraty, R. & Shaffer, F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Global advances in health and medicine4, 46–61 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4311559</ArticleId><ArticleId IdType="pubmed">25694852</ArticleId></ArticleIdList></Reference><Reference><Citation>Vaillancourt, D. E. & Newell, K. M. Changing complexity in human behavior and physiology through aging and disease. Neurobiology of aging23, 1–11 (2002).</Citation><ArticleIdList><ArticleId IdType="pubmed">11755010</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Frontiers in public health5, 290215 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5624990</ArticleId><ArticleId IdType="pubmed">29034226</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaffer, F., McCraty, R. & Zerr, C. L. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Frontiers in psychology5, 108292 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4179748</ArticleId><ArticleId IdType="pubmed">25324790</ArticleId></ArticleIdList></Reference><Reference><Citation>Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology-heart and circulatory physiology278, H2039–H2049 (2000).</Citation><ArticleIdList><ArticleId IdType="pubmed">10843903</ArticleId></ArticleIdList></Reference><Reference><Citation>Bandt, C. & Pompe, B. Permutation entropy: a natural complexity measure for time series. Physical review letters88, 174102 (2002).</Citation><ArticleIdList><ArticleId IdType="pubmed">12005759</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher, R. A. On the interpretation of [Image: see text] 2 from contingency tables, and the calculation of p. Journal of the royal statistical society85, 87–94 (1922).</Citation></Reference><Reference><Citation>Ghalati, P. F. & Schuppert, A. Cmda: a tool for continuous monitoring data analysis. arXiv preprint arXiv:2310.14427 (2023).</Citation></Reference><Reference><Citation>fundamental algorithms for scientific computing in python. Virtanen, P. et al. Scipy 1.0. Nature methods17, 261–272 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7056644</ArticleId><ArticleId IdType="pubmed">32015543</ArticleId></ArticleIdList></Reference><Reference><Citation>Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research12, 2825–2830 (2011).</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39638769</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1463-1326</ISSN><JournalIssue CitedMedium="Internet"><Volume>27</Volume><Issue>2</Issue><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Diabetes, obesity & metabolism</Title><ISOAbbreviation>Diabetes Obes Metab</ISOAbbreviation></Journal><ArticleTitle>Effectiveness and cost-effectiveness of an app and rewards-based intervention in type 2 diabetes: A randomised controlled trial.</ArticleTitle><Pagination><StartPage>729</StartPage><EndPage>739</EndPage><MedlinePgn>729-739</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/dom.16067</ELocationID><Abstract><AbstractText Label="AIM" NlmCategory="OBJECTIVE">Digital health interventions and economic incentives have shown promise in facilitating diabetes self-management, though evidence is limited. Therefore, this study aimed to evaluate the effectiveness and cost-effectiveness of a comprehensive app-based diabetes self-management programme with rewards for healthy behaviours and health outcomes.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">The TRIal to slow the Progression Of Diabetes (TRIPOD) study was an open-label, parallel-group, randomised controlled trial conducted at Duke-NUS Medical School, Singapore. Adults with Type 2 Diabetes (diabetes), HbA<sub>1c</sub> of 7.5%-11.0% (inclusive) and taking at least one oral diabetes medication were eligible. In total, 269 participants were randomised across three arms [Usual care (UC): 117, diabetes management programme (DMP) (intervention without rewards): 36, DMP+ (intervention with rewards): 116]. Data were analysed using intention-to-treat analysis with change in HbA<sub>1c</sub> at month 12 between DMP+ and UC as the primary outcome. Cost-effectiveness of DMP+ relative to UC was also calculated.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Mean HbA<sub>1c</sub> improved by 0.1% in UC and by 0.5% in DMP+ at 12 months, revealing a mean difference of 0.4% (95% confidence interval (CI): -0.70, -0.08, p = 0.015). The odds ratio of HbA<sub>1c</sub> improvements of >0.5% was 2.12 (95% CI: 1.17, 3.85, p = 0.013) for DMP+ relative to UC. The incremental cost-effectiveness ratio of DMP+ relative to UC was SGD8,516 (USD6,531) per quality-adjusted life year gained if effectiveness could be maintained with a single year of intervention.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A comprehensive app-based diabetes self-management programme with rewards for healthy behaviours and health outcomes (DMP+) cost-effectively improved glycaemic control in Type 2 diabetes patients. Organizations focusing on value-based healthcare should consider subsidising similar interventions.</AbstractText><CopyrightInformation>© 2024 John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Finkelstein</LastName><ForeName>Eric Andrew</ForeName><Initials>EA</Initials><Identifier Source="ORCID">0000-0001-6443-9686</Identifier><AffiliationInfo><Affiliation>Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gardner</LastName><ForeName>Daphne Su-Lyn</ForeName><Initials>DS</Initials><Identifier Source="ORCID">0000-0001-5349-7442</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tham</LastName><ForeName>Kwang Wei</ForeName><Initials>KW</Initials><Identifier Source="ORCID">0000-0003-1904-5711</Identifier><AffiliationInfo><Affiliation>Endocrinology Services, Woodlands Health, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gandhi</LastName><ForeName>Mihir</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0002-8902-2710</Identifier><AffiliationInfo><Affiliation>Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Biostatistics, Singapore Clinical Research Institute, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheung</LastName><ForeName>Yin Bun</ForeName><Initials>YB</Initials><Identifier Source="ORCID">0000-0003-0517-7625</Identifier><AffiliationInfo><Affiliation>Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bairavi</LastName><ForeName>Joann</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0001-9497-3994</Identifier><AffiliationInfo><Affiliation>Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Chun Fan</ForeName><Initials>CF</Initials><Identifier Source="ORCID">0000-0002-1375-5328</Identifier><AffiliationInfo><Affiliation>Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tan</LastName><ForeName>Ngiap Chuan</ForeName><Initials>NC</Initials><Identifier Source="ORCID">0000-0002-5946-1149</Identifier><AffiliationInfo><Affiliation>Department of Research, SingHealth Polyclinics, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yeoh</LastName><ForeName>Ester</ForeName><Initials>E</Initials><Identifier Source="ORCID">0000-0002-2686-9412</Identifier><AffiliationInfo><Affiliation>Diabetes Centre, Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Aspen Diabetes & Endocrine Clinic, Mount Elizabeth Novena Specialist Centre, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Phong Ching</ForeName><Initials>PC</Initials><Identifier Source="ORCID">0000-0002-9446-2032</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ho</LastName><ForeName>Emily Tse Lin</ForeName><Initials>ETL</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adamjee</LastName><ForeName>Thofique</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of General Medicine, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bee</LastName><ForeName>Yong Mong</ForeName><Initials>YM</Initials><Identifier Source="ORCID">0000-0002-5482-2646</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goh</LastName><ForeName>Su-Yen</ForeName><Initials>SY</Initials><Identifier Source="ORCID">0000-0003-3758-9982</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>NMRC/HSRG/0079/2017</GrantID><Agency>National Medical Research Council</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Obes Metab</MedlineTA><NlmUniqueID>100883645</NlmUniqueID><ISSNLinking>1462-8902</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003362" MajorTopicYN="Y">Cost-Benefit Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D063731" MajorTopicYN="Y">Mobile Applications</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012201" MajorTopicYN="Y">Reward</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073278" MajorTopicYN="Y">Self-Management</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012846" MajorTopicYN="N" Type="Geographic">Singapore</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015438" MajorTopicYN="N">Health Behavior</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019057" MajorTopicYN="N">Quality-Adjusted Life Years</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">cost‐effectiveness</Keyword><Keyword MajorTopicYN="N">effectiveness</Keyword><Keyword MajorTopicYN="N">glycaemic control</Keyword><Keyword MajorTopicYN="N">randomised trial</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>22</Hour><Minute>42</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39638769</ArticleId><ArticleId IdType="doi">10.1111/dom.16067</ArticleId></ArticleIdList><ReferenceList><Title>REFERENCES</Title><Reference><Citation>Cheah JS, Yeo PP, Thai AC, et al. Epidemiology of diabetes mellitus in Singapore: comparison with other ASEAN countries. Ann Acad Med Singapore. 1985;14(2):232‐239.</Citation></Reference><Reference><Citation>Ministry of Health and Health Promotion Board S. National Population Health Survey 2022 (Household Interview and Health Examination). Epidemiology & Disease Control Division and Policy RSG. Ministry of Health and Health Promotion Board S; 2023.</Citation></Reference><Reference><Citation>Png ME, Yoong J, Phan TP, Wee HL. Current and future economic burden of diabetes among working‐age adults in Asia: conservative estimates for Singapore from 2010‐2050. BMC Public Health. 2016;16(1):153.</Citation></Reference><Reference><Citation>Khalik S. Parliament: health minister Gan Kim Yong declares 'war on diabetes'; new task force set up. Vol 2016. The Straits Times; 2016.</Citation></Reference><Reference><Citation>Moschonis G, Siopis G, Jung J, et al. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with type 2 diabetes: a systematic review and meta‐analysis of randomised controlled trials. Lancet Digit Health. 2023;5(3):e125‐e143.</Citation></Reference><Reference><Citation>Eberle C, Löhnert M, Stichling S. Effectiveness of disease‐specific mHealth apps in patients with diabetes mellitus: scoping review. JMIR Mhealth Uhealth. 2021;9(2):e23477.</Citation></Reference><Reference><Citation>Lim SL, Ong KW, Johal J, et al. Effect of a smartphone app on weight change and metabolic outcomes in Asian adults with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2021;4(6):e2112417.</Citation></Reference><Reference><Citation>Koot D, Goh PSC, Lim RSM, et al. A Mobile lifestyle management program (GlycoLeap) for people with type 2 diabetes: single‐arm feasibility study. JMIR Mhealth Uhealth. 2019;7(5):e12965.</Citation></Reference><Reference><Citation>Wayne N, Perez DF, Kaplan DM, Ritvo P. Health coaching reduces HbA1c in type 2 diabetic patients from a lower‐socioeconomic status community: a randomized controlled trial. J Med Internet Res. 2015;17(10):e224.</Citation></Reference><Reference><Citation>Adu MD, Malabu UH, Malau‐Aduli AEO, Malau‐Aduli BS. Users' preferences and design recommendations to promote engagements with mobile apps for diabetes self‐management: multi‐national perspectives. PLoS One. 2018;13(12):e0208942.</Citation></Reference><Reference><Citation>Lum E, Jimenez G, Huang Z, et al. Decision support and alerts of apps for self‐management of blood glucose for type 2 diabetes. Jama. 2019;321(15):1530‐1532.</Citation></Reference><Reference><Citation>Jahns R‐G. Currently, only 1,2% of diabetics that have a smartphone use a diabetes app. Until 2018 the share will rise to 7,8% globally. Research 2 Guidance. https://research2guidance.com/currently-only-12-of-diabetics-that-have-a-smartphone-use-a-diabetes-app-until-2018-the-share-will-rise-to-78-globally/ Accessed 1 Nov 2023.</Citation></Reference><Reference><Citation>Patton SR, Cushing CC, Lansing AH. Applying behavioral economics theories to interventions for persons with diabetes. Curr Diab Rep. 2022;22(5):219‐226.</Citation></Reference><Reference><Citation>Bilger M, Shah M, Tan NC, et al. Process‐ and outcome‐based financial incentives to improve self‐management and glycemic control in people with type 2 diabetes in Singapore: a randomized controlled trial. Patient. 2021;14(5):555‐567.</Citation></Reference><Reference><Citation>Ladapo JA, Orstad SL, Wali S, et al. Effectiveness of goal‐directed and outcome‐based financial incentives for weight loss in primary care patients with obesity living in socioeconomically disadvantaged neighborhoods: a randomized clinical trial. JAMA Intern Med. 2023;183(1):61‐69.</Citation></Reference><Reference><Citation>Egede LE, Campbell JA, Walker RJ, Dawson AZ, Williams JS. Financial incentives to improve glycemic control in African American adults with type 2 diabetes: a pilot randomized controlled trial. BMC Health Serv Res. 2021;21(1):57.</Citation></Reference><Reference><Citation>Lim RSM, Gardner DSL, Bee YM, et al. TRIal to slow the progression of diabetes (TRIPOD): study protocol for a randomized controlled trial using wireless technology and incentives. Trials. 2019;20(1):650.</Citation></Reference><Reference><Citation>Bairavi J, Gardner DS, Yeoh E, et al. Protocol update and baseline characteristics for the TRIal to slow the progression of diabetes (TRIPOD) randomized controlled trial. Trials. 2023;24(1):728.</Citation></Reference><Reference><Citation>NUS‐IRB. Mission principles: our guiding principles. https://www.nus.edu.sg/research/irb/about-us/mission-principles. Accessed 1 Aug 2024</Citation></Reference><Reference><Citation>Armstrong T, Bull F. Development of the World Health Organization global physical activity questionnaire (GPAQ). J Public Health. 2006;14(2):66‐70.</Citation></Reference><Reference><Citation>Schmitt A, Gahr A, Hermanns N, Kulzer B, Huber J, Haak T. The diabetes self‐management questionnaire (DSMQ): development and evaluation of an instrument to assess diabetes self‐care activities associated with glycaemic control. Health Qual Life Outcomes. 2013;11:138.</Citation></Reference><Reference><Citation>Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193‐213.</Citation></Reference><Reference><Citation>Reilly MC, Zbrozek AS, Dukes EM. The validity and reproducibility of a work productivity and activity impairment instrument. Pharmacoeconomics. 1993;4(5):353‐365.</Citation></Reference><Reference><Citation>EuroQol – a new facility for the measurement of health‐related quality of life. Health Policy. 1990;16(3):199‐208.</Citation></Reference><Reference><Citation>Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:32.</Citation></Reference><Reference><Citation>Hua X, Lung TW, Palmer A, Si L, Herman WH, Clarke P. How consistent is the relationship between improved glucose control and modelled health outcomes for people with type 2 diabetes mellitus? A systematic review. Pharmacoeconomics. 2017;35(3):319‐329.</Citation></Reference><Reference><Citation>Statistics SDo. National Accounts: statistics on national accounts, compiled by the Singapore Department of Statistics, provide up‐to‐date performance indicators for the Singapore economy. Government of Singapore; 2024. https://www.singstat.gov.sg/find-data/search-by-theme/economy/national-accounts/latest-data. Accessed 20 Nov 2024.</Citation></Reference><Reference><Citation>Institute for Clinical and Economic Review. ICER 2019 Perspectives on Cost‐Effectiveness Threshold Ranges. 2019. https://icer.org/wp‐content/uploads/2023/08/ICER_2019_Perspectives‐on‐Cost‐Effectiveness‐Threshold‐Ranges.pdf. Accessed 20 Nov 2024.</Citation></Reference><Reference><Citation>Hutubessy R, Chisholm D, Edejer TT‐T, Who C. Generalized cost‐effectiveness analysis for national‐level priority‐setting in the health sector. Cost Effect Res Alloc. 2003;1(1):8.</Citation></Reference><Reference><Citation>World Health Organization. WHO Commission on Macroeconomics and Health & World Health Organization. Macroeconomics and health : investing in health for economic development : executive summary / report of the Commission on Macroeconomics and Health. https://apps.who.int/iris/handle/10665/42463. Published 2001. Accessed 20 Nov 2024.</Citation></Reference><Reference><Citation>Boye KS, Thieu VT, Lage MJ, Miller H, Paczkowski R. The association between sustained HbA1c control and long‐term complications among individuals with type 2 diabetes: a retrospective study. Adv Ther. 2022;39(5):2208‐2221.</Citation></Reference><Reference><Citation>American Diabetes A. Standards of medical Care in Diabetes—2009. Diabetes Care. 2009;32(Supplement_1):S13‐S61.</Citation></Reference><Reference><Citation>Trawley S, Baptista S, Browne JL, Pouwer F, Speight J. The use of Mobile applications among adults with type 1 and type 2 diabetes: results from the second MILES‐Australia (MILES‐2) study. Diabetes Technol Ther. 2017;19(12):730‐738.</Citation></Reference><Reference><Citation>Böhm A‐K, Jensen ML, Sørensen MR, Stargardt T. Real‐world evidence of user engagement with Mobile health for diabetes management: longitudinal observational study. JMIR Mhealth Uhealth. 2020;8(11):e22212.</Citation></Reference><Reference><Citation>Amagai S, Pila S, Kaat AJ, Nowinski CJ, Gershon RC. Challenges in participant engagement and retention using Mobile health apps: literature review. J Med Internet Res. 2022;24(4):e35120.</Citation></Reference><Reference><Citation>Finkelstein EA, Haaland BA, Bilger M, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(12):983‐995.</Citation></Reference><Reference><Citation>Finkelstein EA, Tham KW, Haaland BA, Sahasranaman A. Applying economic incentives to increase effectiveness of an outpatient weight loss program (TRIO) ‐ a randomized controlled trial. Soc Sci Med. 2017;185:63‐70.</Citation></Reference><Reference><Citation>Hafner M, Pollard J, Van Stolk C. Incentives and physical activity: an assessment of the association between Vitality's active rewards with apple watch benefit and sustained physical activity improvements. Rand Health Q. 2020;9(1):4.</Citation></Reference><Reference><Citation>Health Promotion Board S. LumiHealth. https://www.lumihealth.sg/. Published 2023 Accessed 29 Nov 2023.</Citation></Reference><Reference><Citation>Ministry of Health S. National Steps Challenge™. https://www.healthhub.sg/programmes/nsc. Published 2023. Accessed 29 Nov 2023</Citation></Reference><Reference><Citation>Singapore MoH. Eat, drink, shop healthy challenge. https://www.healthhub.sg/programmes/nutrition-hub/eat-drink-shop-healthy-challenge. Published 2023 Accessed 29 Nov 2023.</Citation></Reference><Reference><Citation>Tham KW, Lim AYL, Baur LA. The global agenda on obesity: what does this mean for Singapore? Singapore Med J. 2023;64(3):182‐187.</Citation></Reference><Reference><Citation>Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE‐AIM framework. Am J Public Health. 1999;89(9):1322‐1327.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39638196</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>08</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-0003</ISSN><JournalIssue CitedMedium="Internet"><Volume>285</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>International journal of biological macromolecules</Title><ISOAbbreviation>Int J Biol Macromol</ISOAbbreviation></Journal><ArticleTitle>Hovenia dulcis (Guaizao) polysaccharide ameliorates hyperglycemia through multiple signaling pathways in rats with type 2 diabetes mellitus.</ArticleTitle><Pagination><StartPage>138338</StartPage><MedlinePgn>138338</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijbiomac.2024.138338</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0141-8130(24)09149-9</ELocationID><Abstract><AbstractText>Type 2 diabetes mellitus (T2DM) poses a significant threat to human health, with its incidence and mortality rates increasing annually. This study investigated the hypoglycemic effects and underlying mechanisms of pure Hovenia dulcis (Guaizao) polysaccharide (HDPs-2A) in rats subjected to a high-fat and high-sugar diet combined with streptozotocin-induced T2DM. Oral administration of HDPs-2A resulted in significant increases in body weight and liver glycogen levels compared to untreated controls. Moreover, a reduction in fasting blood glucose levels, alleviation of hyperinsulinemia, enhanced glucose tolerance, and improved insulin resistance were observed in the HDPs-2A-treated group. HDPs-2A also effectively reversed diabetes-induced dyslipidemia, as evidenced by decreased total cholesterol and triglyceride levels, alongside increased high-density lipoprotein cholesterol levels. Histopathological analyses confirmed that HDPs-2A partially repaired liver tissue damage by mitigating oxidative stress responses in the liver. Additionally, treatment with HDPs-2A significantly elevated short-chain fatty acid levels in T2DM rats. Real-time quantitative PCR and Western blot analyses indicated that HDPs-2A significantly enhanced the expression of InsR, IRS2, PI3K, Akt, and GLUT4, suggesting that HDPs-2A regulates insulin resistance and glycometabolism through the activation of the PI3K/Akt signaling pathway. Furthermore, HDPs-2A appeared to modulate the expression of GS, GSK-3β, and FoxO1 to improve glucose metabolism and reduce insulin resistance. It also improved glucose metabolism by activating the AMPK pathway and modulating G6Pase and PEPCK expression. This study provides novel insights into the antidiabetic effects of HDPs, positioning them as promising nutritional agents for the management of T2DM.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Bing</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China. Electronic address: yangbing4329@126.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Ruyan</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xinyu</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Wanjia</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kan</LastName><ForeName>Jianquan</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China. Electronic address: kanjianquan@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Int J Biol Macromol</MedlineTA><NlmUniqueID>7909578</NlmUniqueID><ISSNLinking>0141-8130</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011134" MajorTopicYN="Y">Polysaccharides</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006943" MajorTopicYN="Y">Hyperglycemia</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Glycolipid metabolism</Keyword><Keyword MajorTopicYN="N">Hovenia dulcis</Keyword><Keyword MajorTopicYN="N">Insulin resistance</Keyword><Keyword MajorTopicYN="N">Polysaccharide</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare no competing financial interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>10</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>8</Day><Hour>6</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>19</Hour><Minute>18</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39638196</ArticleId><ArticleId IdType="doi">10.1016/j.ijbiomac.2024.138338</ArticleId><ArticleId IdType="pii">S0141-8130(24)09149-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39637763</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-7123</ISSN><JournalIssue CitedMedium="Internet"><Volume>343</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Psychiatry research</Title><ISOAbbreviation>Psychiatry Res</ISOAbbreviation></Journal><ArticleTitle>The relationship between depression and insulin resistance in the population without diabetes: Results from the 2005-2016 NHANES.</ArticleTitle><Pagination><StartPage>116311</StartPage><MedlinePgn>116311</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.psychres.2024.116311</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0165-1781(24)00596-1</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Insulin resistance (IR), a precursor of type 2 diabetes and other metabolic disorders, is becoming more common owing to rising obesity rates. Depression, which affects 4.4 % of the global population, has been linked to IR; however, the findings are inconsistent. The roles of moderating factors in the depression-IR relationship remain underexplored, creating a gap in the current understanding.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Data from six cycles of the National Health and Nutrition Examination Survey (NHANES, 2005-2016), including 6636 participants without diabetes, were analyzed. Depression was assessed using the Patient Health Questionnaire-9 (PHQ-9), with scores of 5-9 and 10-27 defined as mild and moderate-to-severe depression, respectively. IR was measured using the HOMA2-IR model, with IR defined as a value of ≥ 2.3. Weighted generalized linear models (GLMs) were used to investigate the relationship between depression and IR. Stratified analyses were used to evaluate the potential moderators.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">After adjusting for demographic factors and metabolic indicators, the results of GLMs analysis showed that moderate-to-severe depression significantly increased the odds of IR (OR = 1.65, 95 % CI: 1.04-2.61, p = 0.035), especially in non-Hispanic White individuals (OR = 2.64, 95 % CI: 1.39-5.00, p = 0.004). Antidepressant use also reduced this association.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Moderate-to-severe depression was significantly associated with IR, and race/ethnicity and antidepressant use were important moderators. These findings underscore the need for targeted interventions to address both mental and metabolic health risks in high-risk populations.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Nanchong Psychosomatic Hospital, Nanchong 637700, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Siyu</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Nanchong Psychosomatic Hospital, Nanchong 637700, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xian</LastName><ForeName>Xiaohua</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Nanchong Psychosomatic Hospital, Nanchong 637700, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xian</LastName><ForeName>Yin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Nanchong Psychosomatic Hospital, Nanchong 637700, PR China. Electronic address: xianyin@ncsxyy.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Psychiatry Res</MedlineTA><NlmUniqueID>7911385</NlmUniqueID><ISSNLinking>0165-1781</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="Y">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003863" MajorTopicYN="Y">Depression</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Antidepressants</Keyword><Keyword MajorTopicYN="N">Depression, Insulin resistance</Keyword><Keyword MajorTopicYN="N">Modulatory effect</Keyword><Keyword MajorTopicYN="N">NHANES</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>6</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>18</Hour><Minute>11</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39637763</ArticleId><ArticleId IdType="doi">10.1016/j.psychres.2024.116311</ArticleId><ArticleId IdType="pii">S0165-1781(24)00596-1</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39635824</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1471-6348</ISSN><JournalIssue CitedMedium="Internet"><Volume>40</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>International journal of technology assessment in health care</Title><ISOAbbreviation>Int J Technol Assess Health Care</ISOAbbreviation></Journal><ArticleTitle>Expanding access to sodium-glucose cotransporter 2 inhibitors (SGLT2i) in the Ministry of Health Malaysia - a multiple HTA approach.</ArticleTitle><Pagination><StartPage>e69</StartPage><MedlinePgn>e69</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e69</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1017/S0266462324000643</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">Ministry of Health (MOH) Malaysia stakeholders seek primary care access to sodium-glucose cotransporter 2 inhibitor (SGLT2i). Addressing this required a complex decision, selecting among three SGLT2i for two different indications and two practice settings. The options include expanding the existing SGLT2i (empagliflozin) in the MOH Medicines Formulary to primary care and/or having dapagliflozin and/or luseogliflozin as alternatives. This study aimed to conduct a multiple health technology assessment (HTA) to determine the SGLT2i of choice for the MOH setting.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The clinical benefits of SGLT2i were assessed through a systematic literature review and affordability was assessed through the development of three budget impact analysis models simulating seventy scenarios. Each model varied by prescribing indications, restrictions, and SGLT2i involved (M1: glycemic control, HbA1c between 6.5 percent and 10 percent, empagliflozin-dapagliflozin-luseogliflozin; M2: cardiovascular benefits, HbA1c less than 10 percent, empagliflozin-dapagliflozin; M3: a composite of M1 and M2). The outcome of the HTA was presented to the MOH decision-makers.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Although there was no significant difference in glycemic control between the SGLT2i, differences exist in cardiovascular benefits conferred. Despite having scenarios with lower net budget impact (NBI) in the M1, M2, and M3 models, decision-makers decided to expand empagliflozin use to primary care setting and add dapagliflozin for hospital-only setting for both indications [NBI of $4.38 mil] due to empagliflozin's advantage in reducing risk for cardiovascular death and prior experience of its use in MOH.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The multiple HTA approach guided the complex decision-making process by providing a holistic understanding of the decision's impact.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Choo</LastName><ForeName>Coleen Siew Bee</ForeName><Initials>CSB</Initials><Identifier Source="ORCID">0009-0003-0942-5726</Identifier><AffiliationInfo><Affiliation>Pharmaceutical Services Programme, Ministry of Health MalaysiaPetaling Jaya, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yong</LastName><ForeName>Yee Vern</ForeName><Initials>YV</Initials><AffiliationInfo><Affiliation>Dato' Keramat Primary Healthcare Clinic, Ministry of Health MalaysiaKuala Lumpur, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chandriah</LastName><ForeName>Haarathi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Pharmaceutical Services Programme, Ministry of Health MalaysiaPetaling Jaya, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmad</LastName><ForeName>Nur Sufiza</ForeName><Initials>NS</Initials><AffiliationInfo><Affiliation>Pharmaceutical Services Programme, Ministry of Health MalaysiaPetaling Jaya, Malaysia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Int J Technol Assess Health Care</MedlineTA><NlmUniqueID>8508113</NlmUniqueID><ISSNLinking>0266-4623</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001559">Benzhydryl Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>1ULL0QJ8UC</RegistryNumber><NameOfSubstance UI="C529054">dapagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>HDC1R2M35U</RegistryNumber><NameOfSubstance UI="C570240">empagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005960">Glucosides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001559" MajorTopicYN="Y">Benzhydryl Compounds</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003362" MajorTopicYN="N">Cost-Benefit Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005960" MajorTopicYN="Y">Glucosides</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008296" MajorTopicYN="N" Type="Geographic">Malaysia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011320" MajorTopicYN="N">Primary Health Care</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019057" MajorTopicYN="N">Quality-Adjusted Life Years</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013673" MajorTopicYN="Y">Technology Assessment, Biomedical</DescriptorName><QualifierName UI="Q000458" MajorTopicYN="N">organization & administration</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">SGLT2i</Keyword><Keyword MajorTopicYN="N">decision-making</Keyword><Keyword MajorTopicYN="N">technology assessment</Keyword></KeywordList><CoiStatement>The authors reported no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39635824</ArticleId><ArticleId IdType="pmc">PMC11703615</ArticleId><ArticleId IdType="doi">10.1017/S0266462324000643</ArticleId><ArticleId IdType="pii">S0266462324000643</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ministry of Health Malaysia, National Institutes of Health, Institute for Public Health (IPH). National Health and Morbidity Survey (NHMS) 2019: Vol. I: NCDs – Non-communicable diseases: Risk factors and other health problems. Selangor, Malaysia: Institute for Public Health, National Institutes of Health, Ministry of Health Malaysia; 2020. p. 392.</Citation></Reference><Reference><Citation>Ministry of Health, Malaysia. National Diabetes Registry Report 2020. Putrajaya, Malaysia: Disease Control Division; 2021. p. 56.</Citation></Reference><Reference><Citation>Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.</Citation><ArticleIdList><ArticleId IdType="pubmed">26378978</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiviott SD, Raz I, Bonaca MP, et al. DECLARE–TIMI 58 investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–357.</Citation><ArticleIdList><ArticleId IdType="pubmed">30415602</ArticleId></ArticleIdList></Reference><Reference><Citation>Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657.</Citation><ArticleIdList><ArticleId IdType="pubmed">28605608</ArticleId></ArticleIdList></Reference><Reference><Citation>Cannon CP, Pratley R, Dagogo-Jack S, et al. VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–1435.</Citation><ArticleIdList><ArticleId IdType="pubmed">32966714</ArticleId></ArticleIdList></Reference><Reference><Citation>Ministry of Health, Malaysia [Internet]. Clinical practice guidelines: Management of Type 2 diabetes mellitus, 6th ed. Malaysia: Ministry of Health; 2020. [cited 2023 June 27]. Available from: https://www.acadmed.org.my/index.cfm?&menuid=67.3.</Citation></Reference><Reference><Citation>American Diabetes Association. Pharmacologic approaches to glycemic treatment. Sec. 9. In standards of medical Care in Diabetes 2022. Diabetes Care. 2022; 45:S125–S143.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964831</ArticleId></ArticleIdList></Reference><Reference><Citation>Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63:221–228.</Citation><ArticleIdList><ArticleId IdType="pubmed">31853556</ArticleId></ArticleIdList></Reference><Reference><Citation>Sullivan SD, Mauskopf JA, Augustovski F, et al. Budget impact analysis-principles of good practice: Report of the ISPOR 2012 Budget Impact Analysis Good Practice II Task Force. Value Health. 2014;17:5–14.</Citation><ArticleIdList><ArticleId IdType="pubmed">24438712</ArticleId></ArticleIdList></Reference><Reference><Citation>Mearns ES, Sobieraj DM, White CM, et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: A network meta-analysis. PLoS One. 2015;10:e0125879.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4412636</ArticleId><ArticleId IdType="pubmed">25919293</ArticleId></ArticleIdList></Reference><Reference><Citation>Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. BMJ Open. 2016;6:e009417.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4769433</ArticleId><ArticleId IdType="pubmed">26911584</ArticleId></ArticleIdList></Reference><Reference><Citation>Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–794.</Citation><ArticleIdList><ArticleId IdType="pubmed">27059700</ArticleId></ArticleIdList></Reference><Reference><Citation>European Medicines Agency (EMA) [Internet]. Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus [cited 2022 March 3]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-clinical-investigation-medicinal-products-treatment-prevention-diabetes-mellitus_en.pdf.</Citation></Reference><Reference><Citation>Seino Y, Inagaki N, Haneda M, et al. Efficacy and safety of luseogliflozin added to various oral antidiabetic drugs in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig. 2015;6:443–453.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4511304</ArticleId><ArticleId IdType="pubmed">26221523</ArticleId></ArticleIdList></Reference><Reference><Citation>Saad M, Mahmoud AN, Elgendy IY, et al. Cardiovascular outcomes with sodium-glucose cotransporter-2 inhibitors in patients with type II diabetes mellitus: A meta-analysis of placebo-controlled randomized trials. Int J Cardiol. 2017;228:352–358.</Citation><ArticleIdList><ArticleId IdType="pubmed">27866027</ArticleId></ArticleIdList></Reference><Reference><Citation>Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25:495–502.</Citation><ArticleIdList><ArticleId IdType="pubmed">29372664</ArticleId></ArticleIdList></Reference><Reference><Citation>Odutayo A, da Costa BR, Pereira TV, et al. Sodium-glucose cotransporter 2 inhibitors, all-cause mortality, and cardiovascular outcomes in adults with type 2 diabetes: A Bayesian meta-analysis and meta-regression. J Am Heart Assoc. 2021;10:e019918.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8649541</ArticleId><ArticleId IdType="pubmed">34514812</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaku K, Lee J, Mattheus M, et al. Empagliflozin and cardiovascular outcomes in Asian patients with type 2 diabetes and established cardiovascular disease. Circ J. 2017;81:227–234.</Citation><ArticleIdList><ArticleId IdType="pubmed">28025462</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma S, Mazer CD, Al-Omran M, et al. Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: A subanalysis of EMPA-REG OUTCOME. Circulation. 2018;137:405–407.</Citation><ArticleIdList><ArticleId IdType="pubmed">29133602</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma S, Mazer CD, Fitchett D, et al. Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: Subanalysis of the EMPA-REG OUTCOME® randomised trial. Diabetologia. 2018;61:1712–1723.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6061159</ArticleId><ArticleId IdType="pubmed">29777264</ArticleId></ArticleIdList></Reference><Reference><Citation>Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137:119–129.</Citation><ArticleIdList><ArticleId IdType="pubmed">28904068</ArticleId></ArticleIdList></Reference><Reference><Citation>Pellicori P, Ofstad AP, Fitchett D, et al. Early benefits of empagliflozin in patients with or without heart failure: Findings from EMPA-REG OUTCOME. ESC Heart Fail. 2020;7:3401–3407.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7754994</ArticleId><ArticleId IdType="pubmed">32915523</ArticleId></ArticleIdList></Reference><Reference><Citation>Fitchett D, Butler J, van de Borne P, et al. EMPA-REG OUTCOME® trial investigators. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J. 2018;39:363–370.</Citation><ArticleIdList><ArticleId IdType="pubmed">29020355</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma S, Sharma A, Zinman B, et al. Empagliflozin reduces the risk of mortality and hospitalization for heart failure across Thrombolysis In Myocardial Infarction Risk Score for Heart Failure in Diabetes categories: Post hoc analysis of the EMPA-REG OUTCOME trial. Diabetes Obes Metab. 2020;22:1141–1150.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7318207</ArticleId><ArticleId IdType="pubmed">32227432</ArticleId></ArticleIdList></Reference><Reference><Citation>Fitchett D, Inzucchi SE, Cannon CP, et al. Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial. Circulation. 2019;139:1384–1395.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6416009</ArticleId><ArticleId IdType="pubmed">30586757</ArticleId></ArticleIdList></Reference><Reference><Citation>Inzucchi SE, Khunti K, Fitchett DH, et al. Cardiovascular benefit of empagliflozin across the spectrum of cardiovascular risk factor control in the EMPA-REG OUTCOME trial. J Clin Endocrinol Metab. 2020;105:3025–3035.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7382052</ArticleId><ArticleId IdType="pubmed">32485734</ArticleId></ArticleIdList></Reference><Reference><Citation>Furtado RHM, Bonaca MP, Raz I, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019;139:2516–2527.</Citation><ArticleIdList><ArticleId IdType="pubmed">30882239</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonaca MP, Wiviott SD, Zelniker T, et al. Dapagliflozin and cardiac, kidney, and limb outcomes in patients with and without peripheral artery disease in DECLARE-TIMI 58. Circulation. 2020;142:734–747.</Citation><ArticleIdList><ArticleId IdType="pubmed">32795086</ArticleId></ArticleIdList></Reference><Reference><Citation>Kato ET, Silverman MG, Mosenzon O, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation. 2019;139:2528–2536.</Citation><ArticleIdList><ArticleId IdType="pubmed">30882238</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosiborod M, Gause-Nilsson I, Xu J, Sonesson C, Johnsson E. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and concomitant heart failure. J Diabetes Complicat. 2017;31:1215–1221.</Citation><ArticleIdList><ArticleId IdType="pubmed">28284707</ArticleId></ArticleIdList></Reference><Reference><Citation>Azharuddin M, Adil M, Ghosh P, Sharma M. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A systematic literature review and Bayesian network meta-analysis of randomized controlled trials. Diab Res Clin Prac. 2018;146:180–190.</Citation><ArticleIdList><ArticleId IdType="pubmed">30389620</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: A network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18:1199–1206.</Citation><ArticleIdList><ArticleId IdType="pubmed">27407013</ArticleId></ArticleIdList></Reference><Reference><Citation>Canadian Agency for Drugs and Technologies in Health (CADTH) [Internet]. Common Drug Review: CADTH Canadian Drug Expert Committee final recommendation for Dapagliflozin – Indication: Type 2 diabetes [published 2015 November 20, revised 2024 March 7; cited 2024 March 25]. Available from: https://www.cadth.ca/dapagliflozin.</Citation></Reference><Reference><Citation>Canadian Agency for Drugs and Technologies in Health (CADTH) [Internet]. Common Drug Review: CADTH Canadian Drug Expert Committee final recommendation for Empagliflozin – Indication: Type 2 diabetes [published 2015 Oct 15, revised 2024 Mar 7; cited 2024 Mar 25]. Available from: https://www.cadth.ca/empagliflozin.</Citation></Reference><Reference><Citation>Scottish Medicines Consortium (SMC) [Internet]. SMC Medicine Advice for dapagliflozin (Forxiga®) – Indication: For use in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control as add on combination therapy (dual therapy in combination with metformin) (799/12[a]), [published 2013 January 14; cited 2023 August 28]. Available from: https://www.scottishmedicines.org.uk/medicines-advice/dapagliflozin-forxiga-fullsubmission-79912/.</Citation></Reference><Reference><Citation>Scottish Medicines Consortium (SMC) [Internet]. SMC Medicine Advice for dapagliflozin (Forxiga®) – Indication: For use in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control as add on combination therapy (in combination with insulin) (799/12[b]), [published 2014 March 10; cited 2023 August 28]. Available from: https://www.scottishmedicines.org.uk/medicines-advice/dapagliflozin-forxiga-resubmission-79912-1/.</Citation></Reference><Reference><Citation>Scottish Medicines Consortium (SMC) [Internet]. SMC Medicine Advice for dapagliflozin (Forxiga®) – Indication: For use in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control as add on combination therapy (in triple therapy in combination with metformin and sulphonylure) (799/12[c]), [published 2014 July 07; cited 2023 August 28]. Available from: https://www.scottishmedicines.org.uk/medicines-advice/dapagliflozin-forxiga-resubmission-79912/.</Citation></Reference><Reference><Citation>Scottish Medicines Consortium (SMC) [Internet]. SMC Medicine Advice for empagliflozin (Jardiance®) – Indication: Treatment of type 2 diabetes to improve glycaemic control in adults as add-on combination therapy: In combination with other glucose-lowering medicinal products including insulin (993/14), [published 2014 October 13; cited 2023 August 28]. Available from: https://www.scottishmedicines.org.uk/medicines-advice/empagliflozin-jardiance-fullsubmission-99314/.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – July 2014 PBAC Meeting for Dapagliflozin, tablet, 10mg, Forxiga® – Indication: Treatment of patients with type 2 diabetes mellitus as dual oral combination therapy with metformin or a sulfonylurea [published 2014 July; cited 2023 August 28]. Available from: https://www.pbs.gov.au/info/industry/listing/elements/pbac-meetings/psd/2013-07/dapagliflozin.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – November 2014 PBAC Meeting for Dapagliflozin Tablet; 10mg; Forxiga® – Indication: The treatment of type 2 diabetes in combination with insulin [published 2014 November; cited 2023 August 28]. Available from: https://www.pbs.gov.au/industry/listing/elements/pbac-meetings/psd/2014-11/files/dapagliflozin-psd-11-2014.pdf.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – March 2015 PBAC Meeting for Dapagliflozin 10mg tablet, 28, Forxiga® – Indication: Treatment of patients with type 2 diabetes mellitus in combination with metformin and a sulfonylurea [published 2015 March; cited 2023 August 28]. Available from: https://www.pbs.gov.au/industry/listing/elements/pbac-meetings/psd/2015-03/Files/dapagliflozin-psd-march-2015.pdf.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – July 2014 PBAC Meeting for Empagliflozin, oral tablet, 10 mg, 25 mg, Jardiance® – Indication: Treatment of type 2 diabetes mellitus in combination with metformin and a sulfonylurea [published 2014 July; cited 2023 August 28]. Available from: https://www.pbs.gov.au/industry/listing/elements/pbac-meetings/psd/2014-07/empagliflozin-psd-07-2014.pdf.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – November 2015 PBAC Meeting for Empagliflozin, oral tablet, 10 mg, 25 mg, Jardiance® – Indication: treatment of type 2 diabetes mellitus in combination with insulin, with or without metformin [published 2015 November; cited 2023 August 28]. Available from: https://www.pbs.gov.au/industry/listing/elements/pbac-meetings/psd/2015-11/files/empagliflozin-2-psd-november-2015.pdf.</Citation></Reference><Reference><Citation>Pharmaceutical Benefits Advisory Committee (PBAC) [Internet]. Public Summary Document – November 2015 PBAC Meeting for Empagliflozin, oral film coated tablets, 10 mg and 25 mg, Jardiance® – Indication: treatment of type 2 diabetes mellitus in combination with metformin and a sulfonylurea (triple oral therapy) when combination therapy with both agents does not provide adequate glycaemic control [published 2015 November; cited 2023 August 28]. Available from: https://www.pbs.gov.au/industry/listing/elements/pbac-meetings/psd/2015-11/files/empagliflozin-1-psd-november-2015.pdf.</Citation></Reference><Reference><Citation>National Institute for Health and Care Excellence (NICE) [Internet]. Technology appraisal guidance – Dapagliflozin in combination therapy for treating type 2 diabetes (TA288) [published 2013 June 26, updated 2016 November 23; cited 2023 August 28]. Available from: https://www.nice.org.uk/guidance/ta288.</Citation></Reference><Reference><Citation>National Institute for Health and Care Excellence (NICE) [Internet]. Technology appraisal guidance – Dapagliflozin in triple therapy for treating type 2 diabetes (TA418) [published 2016 November 23; cited 2023 August 28]. Available from: https://www.nice.org.uk/guidance/ta418.</Citation></Reference><Reference><Citation>National Institute for Health and Care Excellence (NICE) [Internet]. Technology appraisal guidance – Empagliflozin in combination therapy for treating type 2 diabetes (TA336) [published 2015 March 25; cited 2023 August 28]. Available from: https://www.nice.org.uk/guidance/ta336/chapter/1-Guidance.</Citation></Reference><Reference><Citation>Ministry of Health (MOH), Singapore [Internet]. SGLT2 inhibitors for treating type 2 diabetes mellitus – Technology guidance from the MOH Drug Advisory Committee [published 2017 May 03, updated 2024 January 02; cited 2023 August 28]. Available from: https://www.ace-hta.gov.sg/healthcare-professionals/ace-technology-guidances/details/sodium-glucose-co-transporter-2-(sglt2)-inhibitors-for-type-2-diabetes-mellitus.</Citation></Reference><Reference><Citation>Canadian Agency for Drugs and Technologies in Health (CADTH) [Internet]. Common Drug Review: CADTH Canadian Drug Expert Committee final recommendation for Empagliflozin – Indication: Prevention of cardiovascular mortality in type 2 diabetes mellitus [published 2016 October 26; cited 2024 March 25]. Available from: https://www.cadth.ca/empagliflozin.</Citation></Reference><Reference><Citation>Ministry of Health, Malaysia. Direct health-care cost of noncommunicable diseases in Malaysia. Putrajaya, Malaysia: Ministry of Health Malaysia; 2022. p. 72.</Citation></Reference><Reference><Citation>Shafie AA, Ng CH. Estimating the costs of managing complications of type 2 diabetes mellitus in Malaysia. Malays J Pharm Sci. 2020;18:15–32.</Citation></Reference><Reference><Citation>National Institute for Health and Care Excellence (NICE) [Internet]. NICE health technology evaluations: The manual – Process and methods (PMG36) [published 2022 January 31; cited 2023 August 28]. Available from: www.nice.org.uk/process/pmg36.</Citation></Reference><Reference><Citation>Ministry of Health (MOH), Singapore [Internet]. SGLT2 inhibitors for treating heart failure with reduced ejection fraction and chronic kidney disease – Technology Guidance from the MOH Drug Advisory Committee [published 2022 August 31; cited 2023 August 28]. Available from: https://www.ace-hta.gov.sg/healthcare-professionals/ace-technology-guidances.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39635750</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">2299-2847</ISSN><JournalIssue CitedMedium="Internet"><Volume>96</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>May</Month><Day>09</Day></PubDate></JournalIssue><Title>Polski przeglad chirurgiczny</Title><ISOAbbreviation>Pol Przegl Chir</ISOAbbreviation></Journal><ArticleTitle>Analysis of quality of life in patients with clinically severe obesity and type 2 diabetes mellitus after laparoscopic sleeve gastrectomy - a 12-month prospective observational study.</ArticleTitle><Pagination><StartPage>20</StartPage><EndPage>30</EndPage><MedlinePgn>20-30</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.5604/01.3001.0054.5125</ELocationID><Abstract><AbstractText>&lt;b&gt;Introduction:&lt;/b&gt; Due to a short history of laparoscopic sleeve gastrectomy (LSG) as an independent bariatric procedure, we stilllack studies providing analysis of the quality of life (QoL) in patients with type 2 diabetes mellitus (DM2).&lt;b&gt;Aim:&lt;/b&gt; We aimed to assess the influence of LSG on QoL in obese patients with DM2.&lt;b&gt;Material and Methods:&lt;/b&gt; Prospective, observational study included patients with: morbid obesity, body mass index (BMI) ≥ 35 kg/m and ≤ 50 kg/m&lt;sup&gt;2&lt;/sup&gt;, DM2 shorter than 10 years, qualified for LSG. Bariatric Analysis and Reporting Outcome System (BAROS) that included the Moorehead-Ardelt Quality of Life Questionnaire II (MA-QoLQII) score, and the SF-36 Health Survey (SF-36) questionnaire were used for repetitive assessment of QoL before LSG and after one and 12 months following surgery. Selected clinical and biochemical parameters were also repeatedly measured.&lt;b&gt;Results:&lt;/b&gt; Thirty-three patients were included in the study (23 females). Patients' mean age was 45 10 years. BAROS significantly increased before LSG, one month, and one year after surgery (0.63 1.12, 2.94 1.90, and 4.97 2.08, respectively). The MA-QoLQII score significantly rose with an increase of excess body mass index loss (EBMIL) (P = 0.002) and remission of DM2 (P = 0.049), while inversely correlated with Homeostatic Model Assessment for Insulin Resistance index (HOMA-IR) (P = 0.003). Degenerative joint disease (P = 0.025) and average time of low glucose concentration in continuous glucose monitoring (CGM) (P = 0.005) had an inverse correlation with SF-36 Physical Component Summaries (PCS), standardized for cardiovascular comorbidity, EBMIL and HOMA-IR (P = 0.839; P = 0.086; P = 0.571, respectively). EBMIL (P = 0.003), remission of DM2 (P &lt; 0.001) had a positive correlation with Mental Component Summaries (MCS), while HOMA-IR (P &lt; 0.001) and count of low glucose concentration events (P = 0.022) had an inverse correlation with MCS, while standardized for average glucose concentration in CGM after 12 months (P = 0.586).&lt;b&gt;Discussion:&lt;/b&gt; Significant improvement in QoL was observed in patients with DM2 after LSG. Remission of DM2, higher EBMIL, lower HOMA-IR, fewer and shorter low glucose concentration events in CGM after 12 months were factors that increased selected QoL scores.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wysocki</LastName><ForeName>Michał</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital in Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mizera</LastName><ForeName>Magdalena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karpińska</LastName><ForeName>Izabela</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ptaszkiewicz</LastName><ForeName>Kuba</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Małczak</LastName><ForeName>Piotr</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pisarska-Adamczyk</LastName><ForeName>Magdalena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medical Education, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kania</LastName><ForeName>Michał</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Metabolic Diseases and Diabetology, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Major</LastName><ForeName>Piotr</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Poland</Country><MedlineTA>Pol Przegl Chir</MedlineTA><NlmUniqueID>0376426</NlmUniqueID><ISSNLinking>0032-373X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011788" MajorTopicYN="Y">Quality of Life</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009767" MajorTopicYN="Y">Obesity, Morbid</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005743" MajorTopicYN="Y">Gastrectomy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010535" MajorTopicYN="Y">Laparoscopy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050110" MajorTopicYN="N">Bariatric Surgery</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Bariatric Analysis and Reporting Outcome System</Keyword><Keyword MajorTopicYN="N">SF-36 Health Survey</Keyword><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">laparoscopic sleeve gastrectomy</Keyword><Keyword MajorTopicYN="N">morbid obesity</Keyword><Keyword MajorTopicYN="N">quality of life</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>55</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39635750</ArticleId><ArticleId IdType="doi">10.5604/01.3001.0054.5125</ArticleId><ArticleId IdType="pii">01.3001.0054.5125</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39634184</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Mapping the mitochondrial landscape in T2DM: key findings from 2003-2023.</ArticleTitle><Pagination><StartPage>1474232</StartPage><MedlinePgn>1474232</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1474232</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1474232</ELocationID><Abstract><AbstractText Label="BACKGOUND" NlmCategory="UNASSIGNED">T2DM, a chronic metabolic disorder, poses a significant threat to global public health. Mitochondria play a crucial role in the pathogenesis of T2DM. This study intends to investigate the correlation between mitochondria and T2DM over the past two decades (2003-2023) through bibliometric analysis. Its objectives are to pinpoint trends, emphasize research priorities, and establish a foundation for future investigations.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">A literature search was conducted using the SCI-E database. All recorded results were downloaded in plain text format for further analysis. The following terms were analyzed using Vosviewer 1.6.18, citespace 6.3r1, bibliometrix in RStudio (v.4.4.1), and Microsoft Excel 2021: country, institution, author, journal, references, and keywords.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">From January 1, 2003 to December 31, 2023, a total of 2,732 articles were retrieved. The United States, China, and Italy contributed most of the records. UNIVERSITY OF CALIFORNIA SYSTEM, INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICAL INSERM, and US DEPARTMENT OF VETERANS AFFAIRS were the top 3 most productive institutions. rocha milagros, victor victor m had the most publications, followed by roden michael, and petersen kf had the most citations together. DIABETES published the most articles on research on this topic, followed by AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, DIABETOLOGIA. The key points of this topic are the relationship between mitochondria and T2DM, the skeletal muscle mitochondrial changes observed in T2DM, and the impact of mitochondrial dysfunction on T2DM. Over the past five years, particle dynamics, mitochondrial dysfunction, and mechanism research have emerged as significant focal points in this field.</AbstractText><AbstractText Label="CONCLUDE" NlmCategory="UNASSIGNED">This paper successfully identified the key areas and emerging trends in the relationship between mitochondria and T2DM, thereby offering valuable insights for future research.</AbstractText><CopyrightInformation>Copyright © 2024 Tan, Liu, Zhou, Gao, Fang, Wang and Chen.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Tan</LastName><ForeName>Yi</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Mingjun</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Xinfeng</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Tianjiao</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>The Affliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fang</LastName><ForeName>Jinxu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Sixian</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Shaotao</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015706" MajorTopicYN="Y">Bibliometrics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008928" MajorTopicYN="Y">Mitochondria</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">CiteSpace</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword><Keyword MajorTopicYN="N">VOSviewer</Keyword><Keyword MajorTopicYN="N">bibliometric analysis</Keyword><Keyword MajorTopicYN="N">mitochondria</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39634184</ArticleId><ArticleId IdType="pmc">PMC11614640</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1474232</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. (2019) 576:51–60. doi: 10.1038/s41586-019-1797-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-019-1797-8</ArticleId><ArticleId IdType="pubmed">31802013</ArticleId></ArticleIdList></Reference><Reference><Citation>Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. . Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. (2020) 21:6275. doi: 10.3390/ijms21176275</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms21176275</ArticleId><ArticleId IdType="pmc">PMC7503727</ArticleId><ArticleId IdType="pubmed">32872570</ArticleId></ArticleIdList></Reference><Reference><Citation>Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. (2017) 389:2239–51. doi: 10.1016/S0140-6736(17)30058-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(17)30058-2</ArticleId><ArticleId IdType="pubmed">28190580</ArticleId></ArticleIdList></Reference><Reference><Citation>Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, et al. . Sequence and organization of the human mitochondrial genome. Nature. (1981) 290:457–65. doi: 10.1038/290457a0</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/290457a0</ArticleId><ArticleId IdType="pubmed">7219534</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FGS, Goodpaster BH, et al. . Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. (2009) 298:E49. doi: 10.1152/ajpendo.00317.2009</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00317.2009</ArticleId><ArticleId IdType="pmc">PMC2806111</ArticleId><ArticleId IdType="pubmed">19887598</ArticleId></ArticleIdList></Reference><Reference><Citation>Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. (2020) 37:101674. doi: 10.1016/j.redox.2020.101674</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.redox.2020.101674</ArticleId><ArticleId IdType="pmc">PMC7767752</ArticleId><ArticleId IdType="pubmed">32811789</ArticleId></ArticleIdList></Reference><Reference><Citation>Masser DR, Otalora L, Clark NW, Kinter MT, Elliott MH, Freeman WM. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. (2017) 143:595. doi: 10.1111/jnc.14216</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jnc.14216</ArticleId><ArticleId IdType="pmc">PMC5693713</ArticleId><ArticleId IdType="pubmed">28902411</ArticleId></ArticleIdList></Reference><Reference><Citation>Pipatpiboon N, Pintana H, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci. (2013) 37:839–49. doi: 10.1111/ejn.12088</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ejn.12088</ArticleId><ArticleId IdType="pubmed">23240760</ArticleId></ArticleIdList></Reference><Reference><Citation>Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord. (2020) 19:2017–22. doi: 10.1007/s40200-020-00679-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40200-020-00679-x</ArticleId><ArticleId IdType="pmc">PMC7843747</ArticleId><ArticleId IdType="pubmed">33520874</ArticleId></ArticleIdList></Reference><Reference><Citation>Gherardi G, Corbioli G, Ruzza F, Rizzuto R. CoQ10 and resveratrol effects to ameliorate aged-related mitochondrial dysfunctions. Nutrients. (2022) 14:4326. doi: 10.3390/nu14204326</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14204326</ArticleId><ArticleId IdType="pmc">PMC9611139</ArticleId><ArticleId IdType="pubmed">36297010</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Y, Kim M, Paye S, Benayoun BA. Sex as a biological variable in nutrition research: from human studies to animal models. Annu Rev Nutr. (2022) 42:227. doi: 10.1146/annurev-nutr-062220-105852</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-nutr-062220-105852</ArticleId><ArticleId IdType="pmc">PMC9398923</ArticleId><ArticleId IdType="pubmed">35417195</ArticleId></ArticleIdList></Reference><Reference><Citation>Galmés-Pascual BM, Nadal-Casellas A, Bauza-Thorbrügge M, Sbert-Roig M, García-Palmer FJ, Proenza AM, et al. . 17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B. (2017) 232(2):297–308. doi: 10.1530/JOE-16-0350</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/JOE-16-0350</ArticleId><ArticleId IdType="pubmed">27885055</ArticleId></ArticleIdList></Reference><Reference><Citation>Nadal-Casellas A, Amengual-Cladera E, Proenza AM, Lladó I, Gianotti M. Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats. Cell Physiol Biochem. (2010) 26:291–302. doi: 10.1159/000320552</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000320552</ArticleId><ArticleId IdType="pubmed">20798513</ArticleId></ArticleIdList></Reference><Reference><Citation>Amengual-Cladera E, Lladó I, Proenza AM, Gianotti M. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue. Br J Nutr. (2013) 109:413–24. doi: 10.1017/S0007114512001171</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0007114512001171</ArticleId><ArticleId IdType="pubmed">22717037</ArticleId></ArticleIdList></Reference><Reference><Citation>Meyer MR, Clegg DJ, Prossnitz ER, Barton M. Obesity, insulin resistance and diabetes: sex differences and role of estrogen receptors. Acta Physiol (Oxford England). (2011) 203:259. doi: 10.1111/j.1748-1716.2010.02237.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1748-1716.2010.02237.x</ArticleId><ArticleId IdType="pmc">PMC3110567</ArticleId><ArticleId IdType="pubmed">21281456</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, et al. . Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. (2024) 9:262. doi: 10.1038/s41392-024-01951-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41392-024-01951-9</ArticleId><ArticleId IdType="pmc">PMC11445387</ArticleId><ArticleId IdType="pubmed">39353925</ArticleId></ArticleIdList></Reference><Reference><Citation>Rabøl R, Svendsen PF, Skovbro M, Boushel R, Haugaard SB, Schjerling P, et al. . Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism. (2009) 58:1145–52. doi: 10.1016/j.metabol.2009.03.014</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2009.03.014</ArticleId><ArticleId IdType="pubmed">19454354</ArticleId></ArticleIdList></Reference><Reference><Citation>Damiecki M, Naha R, Schaumkessel Y, Westhoff P, Atanelov N, Stefanski A, et al. . Mitochondrial apolipoprotein MIC26 is a metabolic rheostat regulating central cellular fuel pathways. Life Sci Alliance. (2024) 7:e202403038. doi: 10.26508/lsa.202403038</Citation><ArticleIdList><ArticleId IdType="doi">10.26508/lsa.202403038</ArticleId><ArticleId IdType="pmc">PMC11472510</ArticleId><ArticleId IdType="pubmed">39393820</ArticleId></ArticleIdList></Reference><Reference><Citation>Dong H, Guo W, Yue R, Sun X, Zhou Z. Nuclear nicotinamide adenine dinucleotide deficiency by nmnat1 deletion impaired hepatic insulin signaling, mitochondrial function, and hepatokine expression in mice fed a high-fat diet. Lab Invest. (2024) 104:100329. doi: 10.1016/j.labinv.2024.100329</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.labinv.2024.100329</ArticleId><ArticleId IdType="pmc">PMC10957298</ArticleId><ArticleId IdType="pubmed">38237740</ArticleId></ArticleIdList></Reference><Reference><Citation>Ofori EK, Dziedzorm W, Buabeng A, Dogodzi FK, Adusu-Donkor LX, Bernard SK, et al. . Comparative determination of mitochondrial biomarkers and their relationship with insulin resistance in type 2 diabetic patients: an observational cross-sectional study. Endocrinol Diabetes Metab. (2024) 7:e507. doi: 10.1002/edm2.507</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/edm2.507</ArticleId><ArticleId IdType="pmc">PMC11213964</ArticleId><ArticleId IdType="pubmed">38943337</ArticleId></ArticleIdList></Reference><Reference><Citation>Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial energy metabolism in the regulation of thermogenic brown fats and human metabolic diseases. Int J Mol Sci. (2023) 24(2):1352. doi: 10.3390/ijms24021352</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms24021352</ArticleId><ArticleId IdType="pmc">PMC9861294</ArticleId><ArticleId IdType="pubmed">36674862</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen CM. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. (2006) 57:359–77. doi: 10.1002/asi.20317</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/asi.20317</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U.S.A. (2004) 101 Suppl 1:5303–10. doi: 10.1073/pnas.0307513100</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.0307513100</ArticleId><ArticleId IdType="pmc">PMC387312</ArticleId><ArticleId IdType="pubmed">14724295</ArticleId></ArticleIdList></Reference><Reference><Citation>Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. (2017) 11:959–75. doi: 10.1016/j.joi.2017.08.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.joi.2017.08.007</ArticleId></ArticleIdList></Reference><Reference><Citation>Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. (2004) 350:664–71. doi: 10.1056/NEJMoa031314</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa031314</ArticleId><ArticleId IdType="pmc">PMC2995502</ArticleId><ArticleId IdType="pubmed">14960743</ArticleId></ArticleIdList></Reference><Reference><Citation>Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. (2005) 307:384–7. doi: 10.1126/science.1104343</Citation><ArticleIdList><ArticleId IdType="doi">10.1126/science.1104343</ArticleId><ArticleId IdType="pubmed">15662004</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. (2005) 54:8–14. doi: 10.2337/diabetes.54.1.8</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.54.1.8</ArticleId><ArticleId IdType="pubmed">15616005</ArticleId></ArticleIdList></Reference><Reference><Citation>Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. (2003) 34:267–73. doi: 10.1038/ng1180</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ng1180</ArticleId><ArticleId IdType="pubmed">12808457</ArticleId></ArticleIdList></Reference><Reference><Citation>Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. (2017) 11:637–45. doi: 10.1016/j.redox.2017.01.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.redox.2017.01.013</ArticleId><ArticleId IdType="pmc">PMC5284490</ArticleId><ArticleId IdType="pubmed">28131082</ArticleId></ArticleIdList></Reference><Reference><Citation>Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. . Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. (2008) 7:45–56. doi: 10.1016/j.cmet.2007.10.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2007.10.013</ArticleId><ArticleId IdType="pubmed">18177724</ArticleId></ArticleIdList></Reference><Reference><Citation>Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. (2007) 50:790–6. doi: 10.1007/s00125-007-0594-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-007-0594-3</ArticleId><ArticleId IdType="pmc">PMC1820754</ArticleId><ArticleId IdType="pubmed">17334651</ArticleId></ArticleIdList></Reference><Reference><Citation>Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, et al. . Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. (2007) 56:1592–9. doi: 10.2337/db06-0981</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db06-0981</ArticleId><ArticleId IdType="pubmed">17351150</ArticleId></ArticleIdList></Reference><Reference><Citation>Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. . Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U.S.A. (2003) 100:8466–71. doi: 10.1073/pnas.1032913100</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.1032913100</ArticleId><ArticleId IdType="pmc">PMC166252</ArticleId><ArticleId IdType="pubmed">12832613</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M-A, Morio B, et al. . Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. (2008) 118:789–800. doi: 10.1172/JCI32601</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI32601</ArticleId><ArticleId IdType="pmc">PMC2176186</ArticleId><ArticleId IdType="pubmed">18188455</ArticleId></ArticleIdList></Reference><Reference><Citation>Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. . Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. (2003) 300:1140–2. doi: 10.1126/science.1082889</Citation><ArticleIdList><ArticleId IdType="doi">10.1126/science.1082889</ArticleId><ArticleId IdType="pmc">PMC3004429</ArticleId><ArticleId IdType="pubmed">12750520</ArticleId></ArticleIdList></Reference><Reference><Citation>Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. . Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. (2000) 404:787–90. doi: 10.1038/35008121</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/35008121</ArticleId><ArticleId IdType="pubmed">10783895</ArticleId></ArticleIdList></Reference><Reference><Citation>Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. (2014) 20:1427–35. doi: 10.1038/nm.3735</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nm.3735</ArticleId><ArticleId IdType="pmc">PMC4412031</ArticleId><ArticleId IdType="pubmed">25419710</ArticleId></ArticleIdList></Reference><Reference><Citation>Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. (2019) 316:E268–85. doi: 10.1152/ajpendo.00314.2018</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00314.2018</ArticleId><ArticleId IdType="pmc">PMC6397358</ArticleId><ArticleId IdType="pubmed">30601700</ArticleId></ArticleIdList></Reference><Reference><Citation>Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O’Callaghan N, Lionetti L, et al. . Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. (2019) 10:532. doi: 10.3389/fphys.2019.00532</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2019.00532</ArticleId><ArticleId IdType="pmc">PMC6510277</ArticleId><ArticleId IdType="pubmed">31130874</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. . IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. (2018) 138:271–81. doi: 10.1016/j.diabres.2018.02.023</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2018.02.023</ArticleId><ArticleId IdType="pubmed">29496507</ArticleId></ArticleIdList></Reference><Reference><Citation>Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL, et al. . Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. (2007) 56:1376–81. doi: 10.2337/db06-0783</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db06-0783</ArticleId><ArticleId IdType="pmc">PMC2995532</ArticleId><ArticleId IdType="pubmed">17287462</ArticleId></ArticleIdList></Reference><Reference><Citation>Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. (2016) 12:633–45. doi: 10.1038/nrendo.2016.104</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2016.104</ArticleId><ArticleId IdType="pubmed">27448057</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. (2002) 51:2944–50. doi: 10.2337/diabetes.51.10.2944</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.51.10.2944</ArticleId><ArticleId IdType="pubmed">12351431</ArticleId></ArticleIdList></Reference><Reference><Citation>Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, et al. . Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. (2008) 57:2943–9. doi: 10.2337/db08-0391</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db08-0391</ArticleId><ArticleId IdType="pmc">PMC2570390</ArticleId><ArticleId IdType="pubmed">18678616</ArticleId></ArticleIdList></Reference><Reference><Citation>Toledo FGS, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, et al. . Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. (2007) 56:2142–7. doi: 10.2337/db07-0141</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db07-0141</ArticleId><ArticleId IdType="pubmed">17536063</ArticleId></ArticleIdList></Reference><Reference><Citation>Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. (2015) 4(1):R1–R15. doi: 10.1530/EC-14-0092</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/EC-14-0092</ArticleId><ArticleId IdType="pmc">PMC4261703</ArticleId><ArticleId IdType="pubmed">25385852</ArticleId></ArticleIdList></Reference><Reference><Citation>Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. . Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. (2005) 115:3587–93. doi: 10.1172/JCI25151</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI25151</ArticleId><ArticleId IdType="pmc">PMC1280967</ArticleId><ArticleId IdType="pubmed">16284649</ArticleId></ArticleIdList></Reference><Reference><Citation>Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin C-T, et al. . Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. (2009) 119:573–81. doi: 10.1172/JCI37048</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI37048</ArticleId><ArticleId IdType="pmc">PMC2648700</ArticleId><ArticleId IdType="pubmed">19188683</ArticleId></ArticleIdList></Reference><Reference><Citation>Patti M-E, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. (2010) 31:364–95. doi: 10.1210/er.2009-0027</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/er.2009-0027</ArticleId><ArticleId IdType="pmc">PMC3365846</ArticleId><ArticleId IdType="pubmed">20156986</ArticleId></ArticleIdList></Reference><Reference><Citation>Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. (2012) 148:852–71. doi: 10.1016/j.cell.2012.02.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cell.2012.02.017</ArticleId><ArticleId IdType="pmc">PMC3294420</ArticleId><ArticleId IdType="pubmed">22385956</ArticleId></ArticleIdList></Reference><Reference><Citation>Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. (2011) 8:92–103. doi: 10.1038/nrendo.2011.138</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrendo.2011.138</ArticleId><ArticleId IdType="pubmed">21912398</ArticleId></ArticleIdList></Reference><Reference><Citation>Simoneau JA, Colberg SR, Thaete FL, Kelley DE. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. (1995) 9:273–8. doi: 10.1096/fasebj.9.2.7781930</Citation><ArticleIdList><ArticleId IdType="doi">10.1096/fasebj.9.2.7781930</ArticleId><ArticleId IdType="pubmed">7781930</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjölin E, Dahlman I, et al. . Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. (2007) 50:2526–33. doi: 10.1007/s00125-007-0818-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-007-0818-6</ArticleId><ArticleId IdType="pubmed">17879081</ArticleId></ArticleIdList></Reference><Reference><Citation>Misu H, Takamura T, Matsuzawa N, Shimizu A, Ota T, Sakurai M, et al. . Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia. (2007) 50:268–77. doi: 10.1007/s00125-006-0489-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-006-0489-8</ArticleId><ArticleId IdType="pubmed">17187250</ArticleId></ArticleIdList></Reference><Reference><Citation>Silva JP, Köhler M, Graff C, Oldfors A, Magnuson MA, Berggren PO. Larsson NG. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet. (2000) 26(3):336–40. doi: 10.1038/81649</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/81649</ArticleId><ArticleId IdType="pubmed">11062475</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerbitz KD, Gempel K, Brdiczka D. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes. (1996) 45:113–26. doi: 10.2337/diab.45.2.113</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.45.2.113</ArticleId><ArticleId IdType="pubmed">8549853</ArticleId></ArticleIdList></Reference><Reference><Citation>Phé V, Rouprêt M. Erectile dysfunction and diabetes: A review of the current evidence-based medicine and a synthesis of the main available therapies. Diabetes Metab. (2012) 38:1–13. doi: 10.1016/j.diabet.2011.09.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2011.09.003</ArticleId><ArticleId IdType="pubmed">22056307</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang C, Luo D, Li T, Yang Q, Xie Y, Chen H, et al. . Transplantation of human urine-derived stem cells ameliorates erectile function and cavernosal endothelial function by promoting autophagy of corpus cavernosal endothelial cells in diabetic erectile dysfunction rats. Stem Cells Int. (2019) 2019:2168709. doi: 10.1155/2019/2168709</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2019/2168709</ArticleId><ArticleId IdType="pmc">PMC6754951</ArticleId><ArticleId IdType="pubmed">31582984</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel DP, Craig JR, Jr, Myers JB, Brant WO, Hotaling JM. Serum biomarkers of erectile dysfunction in diabetes mellitus: A systematic review of current literature. Sexual Med Rev. (2017) 5:339–48. doi: 10.1016/j.sxmr.2017.04.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sxmr.2017.04.003</ArticleId><ArticleId IdType="pubmed">28579439</ArticleId></ArticleIdList></Reference><Reference><Citation>Li WJ, Zhou J, Li B, Wang H, Peng YB, Wang Z. PARP inhibition restores erectile function by suppressing corporal smooth muscle apoptosis in diabetic rats. J Sex Med. (2011) 8:1072–82. doi: 10.1111/j.1743-6109.2010.02176.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1743-6109.2010.02176.x</ArticleId><ArticleId IdType="pubmed">21235725</ArticleId></ArticleIdList></Reference><Reference><Citation>Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species. Curr Diabetes Rev. (2008) 4:46–54. doi: 10.2174/157339908783502398</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/157339908783502398</ArticleId><ArticleId IdType="pubmed">18220695</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39634181</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Exploring the pathogenesis, biomarkers, and potential drugs for type 2 diabetes mellitus and acute pancreatitis through a comprehensive bioinformatic analysis.</ArticleTitle><Pagination><StartPage>1405726</StartPage><MedlinePgn>1405726</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1405726</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1405726</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that accounts for > 90% of all diabetes cases. Acute pancreatitis (AP) can be triggered by various factors and is a potentially life-threatening condition. Although T2DM has been shown to have a close relationship with AP, the common mechanisms underlying the two conditions remain unclear.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">We identified common differentially expressed genes (DEGs) in T2DM and AP and used functional enrichment analysis and Mendelian randomization to understand the underlying mechanisms. Subsequently, we used several machine learning algorithms to identify candidate biomarkers and construct a diagnostic nomogram for T2DM and AP. The diagnostic performance of the model was evaluated using ROC, calibration, and DCA curves. Furthermore, we investigated the potential roles of core genes in T2DM and AP using GSEA, xCell, and single-cell atlas and by constructing a ceRNA network. Finally, we identified potential small-molecule compounds with therapeutic effects on T2DM and AP using the CMap database and molecular docking.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 26 DEGs, with 14 upregulated and 12 downregulated genes, were common between T2DM and AP. According to functional and DisGeNET enrichment analysis, these DEGs were mainly enriched in immune effector processes, blood vessel development, dyslipidemia, and hyperlipidemia. Mendelian randomization analyses further suggested that lipids may be a potential link between AP and T2DM. Machine learning algorithms revealed ARHGEF9 and SLPI as common genes associated with the two diseases. ROC, calibration, and DCA curves showed that the two-gene model had good diagnostic efficacy. Additionally, the two genes were found to be closely associated with immune cell infiltration. Finally, imatinib was identified as a potential compound for the treatment of T2DM and AP.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">This study suggests that abnormal lipid metabolism is a potential crosstalk mechanism between T2DM and AP. In addition, we established a two-gene model for the clinical diagnosis of T2DM and AP and identified imatinib as a potential therapeutic agent for both diseases.</AbstractText><CopyrightInformation>Copyright © 2024 Zhong, Yang, Shang, Yang, Li, Liu, Zhang, Liu and Jiang.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Zhong</LastName><ForeName>Lei</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Yang</LastName><ForeName>Xi</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Shang</LastName><ForeName>Yuxuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Yao</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Junchen</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Shuo</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yunshu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jifeng</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jiang</LastName><ForeName>Xingchi</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010195" MajorTopicYN="Y">Pancreatitis</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="N">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000208" MajorTopicYN="N">Acute Disease</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">acute pancreatitis</Keyword><Keyword MajorTopicYN="N">biomarker</Keyword><Keyword MajorTopicYN="N">machine learning</Keyword><Keyword MajorTopicYN="N">molecular docking</Keyword><Keyword MajorTopicYN="N">type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39634181</ArticleId><ArticleId IdType="pmc">PMC11614670</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1405726</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA, Yadav D, et al. . Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. (2016) 1:45–55. doi: 10.1016/S2468-1253(16)30004-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2468-1253(16)30004-8</ArticleId><ArticleId IdType="pubmed">28404111</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. (2019) 16:479–96. doi: 10.1038/s41575-019-0158-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41575-019-0158-2</ArticleId><ArticleId IdType="pubmed">31138897</ArticleId></ArticleIdList></Reference><Reference><Citation>Fonseca Sepulveda EV, Guerrero-Lozano R. Acute pancreatitis and recurrent acute pancreatitis: an exploration of clinical and etiologic factors and outcomes. J Pediatr (Rio J). (2019) 95:713–9. doi: 10.1016/j.jped.2018.06.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jped.2018.06.011</ArticleId><ArticleId IdType="pubmed">30075118</ArticleId></ArticleIdList></Reference><Reference><Citation>Tenner S, Vege SS, Sheth SG, Sauer B, Yang A, Conwell DL, et al. . American college of gastroenterology guidelines: management of acute pancreatitis. Am J Gastroenterol. (2024) 119:419–37. doi: 10.14309/ajg.0000000000002645</Citation><ArticleIdList><ArticleId IdType="doi">10.14309/ajg.0000000000002645</ArticleId><ArticleId IdType="pubmed">38857482</ArticleId></ArticleIdList></Reference><Reference><Citation>Boxhoorn L, Voermans RP, Bouwense SA, Bruno MJ, Verdonk RC, Boermeester MA, et al. . Acute pancreatitis. Lancet. (2020) 396:726–34. doi: 10.1016/S0140-6736(20)31310-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(20)31310-6</ArticleId><ArticleId IdType="pubmed">32891214</ArticleId></ArticleIdList></Reference><Reference><Citation>Gregg EW, Buckley J, Ali MK, Davies J, Flood D, Mehta R, et al. . Improving health outcomes of people with diabetes: target setting for the WHO Global Diabetes Compact. Lancet. (2023) 401:1302–12. doi: 10.1016/S0140-6736(23)00001-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(23)00001-6</ArticleId><ArticleId IdType="pmc">PMC10420388</ArticleId><ArticleId IdType="pubmed">36931289</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh RG, Nguyen NN, DeSouza SV, Pendharkar SA, Petrov MS. Comprehensive analysis of body composition and insulin traits associated with intra-pancreatic fat deposition in healthy individuals and people with new-onset prediabetes/diabetes after acute pancreatitis. Diabetes Obes Metab. (2019) 21:417–23. doi: 10.1111/dom.2019.21.issue-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.2019.21.issue-2</ArticleId><ArticleId IdType="pubmed">30187644</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang L, He Z, Tang X, Liu J. Type 2 diabetes mellitus and the risk of acute pancreatitis: a meta-analysis. Eur J Gastroenterol Hepatol. (2013) 25:225–31. doi: 10.1097/MEG.0b013e32835af154</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MEG.0b013e32835af154</ArticleId><ArticleId IdType="pubmed">23269036</ArticleId></ArticleIdList></Reference><Reference><Citation>Das SL, Singh PP, Phillips AR, Murphy R, Windsor JA, Petrov MS. Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut. (2014) 63:818–31. doi: 10.1136/gutjnl-2013-305062</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/gutjnl-2013-305062</ArticleId><ArticleId IdType="pubmed">23929695</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhi M, Zhu X, Lugea A, Waldron RT, Pandol SJ, Li L. Incidence of new onset diabetes mellitus secondary to acute pancreatitis: A systematic review and meta-analysis. Front Physiol. (2019) 10:637. doi: 10.3389/fphys.2019.00637</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2019.00637</ArticleId><ArticleId IdType="pmc">PMC6558372</ArticleId><ArticleId IdType="pubmed">31231233</ArticleId></ArticleIdList></Reference><Reference><Citation>Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, et al. . Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PloS One. (2010) 5:e11499. doi: 10.1371/journal.pone.0011499</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0011499</ArticleId><ArticleId IdType="pmc">PMC2903480</ArticleId><ArticleId IdType="pubmed">20644627</ArticleId></ArticleIdList></Reference><Reference><Citation>Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE, et al. . Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem. (2011) 286:4216–25. doi: 10.1074/jbc.M110.200295</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M110.200295</ArticleId><ArticleId IdType="pmc">PMC3039383</ArticleId><ArticleId IdType="pubmed">21127054</ArticleId></ArticleIdList></Reference><Reference><Citation>Nesvaderani M, Dhillon BK, Chew T, Tang B, Baghela A, Hancock RE, et al. . Gene expression profiling: identification of novel pathways and potential biomarkers in severe acute pancreatitis. J Am Coll Surg. (2022) 234:803–15. doi: 10.1097/XCS.0000000000000115</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/XCS.0000000000000115</ArticleId><ArticleId IdType="pubmed">35426393</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, Li Y, Ma J, Wan X, Zhao M, Zhang Y, et al. . Identification and immunological characterization of lipid metabolism-related molecular clusters in nonalcoholic fatty liver disease. Lipids Health Dis. (2023) 22:124. doi: 10.1186/s12944-023-01878-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-023-01878-0</ArticleId><ArticleId IdType="pmc">PMC10410946</ArticleId><ArticleId IdType="pubmed">37559129</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan X, Liu J, Zhong L, Zhang Y, Liu C, Gao J, et al. . Identification of lipid metabolism-related biomarkers for diagnosis and molecular classification of atherosclerosis. Lipids Health Dis. (2023) 22:96. doi: 10.1186/s12944-023-01864-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-023-01864-6</ArticleId><ArticleId IdType="pmc">PMC10324206</ArticleId><ArticleId IdType="pubmed">37415143</ArticleId></ArticleIdList></Reference><Reference><Citation>Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. . The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. (2023) 51:D638–46. doi: 10.1093/nar/gkac1000</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nar/gkac1000</ArticleId><ArticleId IdType="pmc">PMC9825434</ArticleId><ArticleId IdType="pubmed">36370105</ArticleId></ArticleIdList></Reference><Reference><Citation>Bai R, Yin P, Xing Z, Wu S, Zhang W, Ma X, et al. . Investigation of GPR143 as a promising novel marker for the progression of skin cutaneous melanoma through bioinformatic analyses and cell experiments. Apoptosis. (2024) 29:372–92. doi: 10.1007/s10495-023-01913-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10495-023-01913-6</ArticleId><ArticleId IdType="pubmed">37945816</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. . Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. (2019) 10:1523. doi: 10.1038/s41467-019-09234-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-019-09234-6</ArticleId><ArticleId IdType="pmc">PMC6447622</ArticleId><ArticleId IdType="pubmed">30944313</ArticleId></ArticleIdList></Reference><Reference><Citation>Rasooly D, Patel CJ. Conducting a reproducible mendelian randomization analysis using the R analytic statistical environment. Curr Protoc Hum Genet. (2019) 101:e82. doi: 10.1002/cphg.v101.1</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/cphg.v101.1</ArticleId><ArticleId IdType="pmc">PMC6424604</ArticleId><ArticleId IdType="pubmed">30645041</ArticleId></ArticleIdList></Reference><Reference><Citation>Bai J, Huang JH, Price CPE, Schauer JM, Suh LA, Harmon R, et al. . Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. (2022) 150:352–361.e7. doi: 10.1016/j.jaci.2022.02.029</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jaci.2022.02.029</ArticleId><ArticleId IdType="pmc">PMC9378510</ArticleId><ArticleId IdType="pubmed">35305978</ArticleId></ArticleIdList></Reference><Reference><Citation>Blanco JL, Porto-Pazos AB, Pazos A, Fernandez-Lozano C. Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection. Sci Rep. (2018) 8:15688. doi: 10.1038/s41598-018-33911-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-018-33911-z</ArticleId><ArticleId IdType="pmc">PMC6200741</ArticleId><ArticleId IdType="pubmed">30356060</ArticleId></ArticleIdList></Reference><Reference><Citation>Rigatti SJ. Random forest. J Insur Med. (2017) 47:31–9. doi: 10.17849/insm-47-01-31-39.1</Citation><ArticleIdList><ArticleId IdType="doi">10.17849/insm-47-01-31-39.1</ArticleId><ArticleId IdType="pubmed">28836909</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang L, Pan X, Zhang Y, Zhao D, Wang L, Yuan G, et al. . Bioinformatics analysis to screen for genes related to myocardial infarction. Front Genet. (2022) 13:990888. doi: 10.3389/fgene.2022.990888</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fgene.2022.990888</ArticleId><ArticleId IdType="pmc">PMC9589498</ArticleId><ArticleId IdType="pubmed">36299582</ArticleId></ArticleIdList></Reference><Reference><Citation>Qin Q, Gu Z, Li F, Pan Y, Zhang T, Fang Y, et al. . A diagnostic model for alzheimer's disease based on blood levels of autophagy-related genes. Front Aging Neurosci. (2022) 14:881890. doi: 10.3389/fnagi.2022.881890</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fnagi.2022.881890</ArticleId><ArticleId IdType="pmc">PMC9133665</ArticleId><ArticleId IdType="pubmed">35645767</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, Yuan Q, Ren J, Li Y, Zhang Y, Shang D. Single-cell sequencing and bulk RNA sequencing reveal a cell differentiation-related multigene panel to predict the prognosis and immunotherapy response of hepatocellular carcinoma. Chin Med J (Engl). (2023) 136:485–7. doi: 10.1097/CM9.0000000000002393</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/CM9.0000000000002393</ArticleId><ArticleId IdType="pmc">PMC10106201</ArticleId><ArticleId IdType="pubmed">36723861</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E, Vickers AJ, et al. . Reporting and interpreting decision curve analysis: A guide for investigators. Eur Urol. (2018) 74:796–804. doi: 10.1016/j.eururo.2018.08.038</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eururo.2018.08.038</ArticleId><ArticleId IdType="pmc">PMC6261531</ArticleId><ArticleId IdType="pubmed">30241973</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo L, Zhou W-H, Cai J-J, Feng M, Zhou M, Hu S-P, et al. . Gene expression profiling identifies downregulation of the neurotrophin-MAPK signaling pathway in female diabetic peripheral neuropathy patients. J Diabetes Res. (2017) 2017:8103904. doi: 10.1155/2017/8103904</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2017/8103904</ArticleId><ArticleId IdType="pmc">PMC5576431</ArticleId><ArticleId IdType="pubmed">28900628</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong X, Zhang J, Wu Q, Wang W, Ye AY, Song W, et al. . Challenges in detecting pre-malignant pancreatic lesions during acute pancreatitis using a serum microRNA assay: a study based on KrasG12D transgenic mice. Oncotarget. (2016) 7:22700–10. doi: 10.18632/oncotarget.v7i16</Citation><ArticleIdList><ArticleId IdType="doi">10.18632/oncotarget.v7i16</ArticleId><ArticleId IdType="pmc">PMC5008393</ArticleId><ArticleId IdType="pubmed">27009811</ArticleId></ArticleIdList></Reference><Reference><Citation>He Y, Hu C, Liu S, Xu M, Liang G, Du D, et al. . Anti-inflammatory effects and molecular mechanisms of shenmai injection in treating acute pancreatitis: network pharmacology analysis and experimental verification. Drug Des Devel Ther. (2022) 16:2479–95. doi: 10.2147/DDDT.S364352</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DDDT.S364352</ArticleId><ArticleId IdType="pmc">PMC9356589</ArticleId><ArticleId IdType="pubmed">35941928</ArticleId></ArticleIdList></Reference><Reference><Citation>Geng R, Huang X, Li L, Guo X, Wang Q, Zheng Y, et al. . Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets. Front Immunol. (2022) 13:1037504. doi: 10.3389/fimmu.2022.1037504</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2022.1037504</ArticleId><ArticleId IdType="pmc">PMC9748153</ArticleId><ArticleId IdType="pubmed">36532015</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, Zhong L, Zhang Y, Ma J, Xie T, Chen X, et al. . Identification of novel biomarkers based on lipid metabolism-related molecular subtypes for moderately severe and severe acute pancreatitis. Lipids Health Dis. (2024) 23:1. doi: 10.1186/s12944-023-01972-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-023-01972-3</ArticleId><ArticleId IdType="pmc">PMC10763093</ArticleId><ArticleId IdType="pubmed">38169383</ArticleId></ArticleIdList></Reference><Reference><Citation>Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. . A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. (2017) 171:1437–1452.e17. doi: 10.1016/j.cell.2017.10.049</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cell.2017.10.049</ArticleId><ArticleId IdType="pmc">PMC5990023</ArticleId><ArticleId IdType="pubmed">29195078</ArticleId></ArticleIdList></Reference><Reference><Citation>Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. (2019) 16:175–84. doi: 10.1038/s41575-018-0087-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41575-018-0087-5</ArticleId><ArticleId IdType="pmc">PMC6597260</ArticleId><ArticleId IdType="pubmed">30482911</ArticleId></ArticleIdList></Reference><Reference><Citation>Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. (2015) 386:85–96. doi: 10.1016/S0140-6736(14)60649-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(14)60649-8</ArticleId><ArticleId IdType="pubmed">25616312</ArticleId></ArticleIdList></Reference><Reference><Citation>Guda NM, Muddana V, Whitcomb DC, Levy P, Garg P, Cote G, et al. . Recurrent acute pancreatitis: international state-of-the-science conference with recommendations. Pancreas. (2018) 47:653–66. doi: 10.1097/MPA.0000000000001053</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MPA.0000000000001053</ArticleId><ArticleId IdType="pubmed">29894415</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu CY, Yeh CN, Hsu JT, Jan YY, Hwang TL. Timing of mortality in severe acute pancreatitis: experience from 643 patients. World J Gastroenterol. (2007) 13:1966–9. doi: 10.3748/wjg.v13.i13.1966</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v13.i13.1966</ArticleId><ArticleId IdType="pmc">PMC4146974</ArticleId><ArticleId IdType="pubmed">17461498</ArticleId></ArticleIdList></Reference><Reference><Citation>Zerem E, Kurtcehajic A, Kunosic S, Zerem Malkocevic D, Zerem O. Current trends in acute pancreatitis: Diagnostic and therapeutic challenges. World J Gastroenterol. (2023) 29:2747–63. doi: 10.3748/wjg.v29.i18.2747</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v29.i18.2747</ArticleId><ArticleId IdType="pmc">PMC10237108</ArticleId><ArticleId IdType="pubmed">37274068</ArticleId></ArticleIdList></Reference><Reference><Citation>Beyer G, Hoffmeister A, Lorenz P, Lynen P, Lerch MM, Mayerle J. Clinical practice guideline-acute and chronic pancreatitis. Dtsch Arztebl Int. (2022) 119:495–501. doi: 10.3238/arztebl.m2022.0223</Citation><ArticleIdList><ArticleId IdType="doi">10.3238/arztebl.m2022.0223</ArticleId><ArticleId IdType="pmc">PMC9669327</ArticleId><ArticleId IdType="pubmed">35945698</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. . IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183:109119. doi: 10.1016/j.diabres.2021.109119</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.109119</ArticleId><ArticleId IdType="pmc">PMC11057359</ArticleId><ArticleId IdType="pubmed">34879977</ArticleId></ArticleIdList></Reference><Reference><Citation>Demir S, Nawroth PP, Herzig S, Ekim Ustunel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci (Weinh). (2021) 8:e2100275. doi: 10.1002/advs.202100275</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/advs.202100275</ArticleId><ArticleId IdType="pmc">PMC8456215</ArticleId><ArticleId IdType="pubmed">34319011</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma X, Nan F, Liang H, Shu P, Fan X, Song X, et al. . Excessive intake of sugar: An accomplice of inflammation. Front Immunol. (2022) 13:988481. doi: 10.3389/fimmu.2022.988481</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2022.988481</ArticleId><ArticleId IdType="pmc">PMC9471313</ArticleId><ArticleId IdType="pubmed">36119103</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic−induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol Med Rep. (2020) 22:603–11. doi: 10.3892/mmr.2020.11175</Citation><ArticleIdList><ArticleId IdType="doi">10.3892/mmr.2020.11175</ArticleId><ArticleId IdType="pmc">PMC7339764</ArticleId><ArticleId IdType="pubmed">32468027</ArticleId></ArticleIdList></Reference><Reference><Citation>Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: A review. JAMA. (2021) 325:382–90. doi: 10.1001/jama.2020.20317</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2020.20317</ArticleId><ArticleId IdType="pubmed">33496779</ArticleId></ArticleIdList></Reference><Reference><Citation>Bharmal SH, Cho J, Alarcon Ramos GC, Ko J, Stuart CE, Modesto AE, et al. . Trajectories of glycaemia following acute pancreatitis: a prospective longitudinal cohort study with 24 months follow-up. J Gastroenterol. (2020) 55:775–88. doi: 10.1007/s00535-020-01682-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00535-020-01682-y</ArticleId><ArticleId IdType="pubmed">32494905</ArticleId></ArticleIdList></Reference><Reference><Citation>Nikkola J, Laukkarinen J, Lahtela J, Seppanen H, Jarvinen S, Nordback I, et al. . The long-term prospective follow-up of pancreatic function after the first episode of acute alcoholic pancreatitis: recurrence predisposes one to pancreatic dysfunction and pancreatogenic diabetes. J Clin Gastroenterol. (2017) 51:183–90. doi: 10.1097/MCG.0000000000000564</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MCG.0000000000000564</ArticleId><ArticleId IdType="pubmed">28060789</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen HN, Yang CC, Chang YH, Lu CL, Li CY. Risk of diabetes mellitus after first-attack acute pancreatitis: A national population-based study. Am J Gastroenterol. (2015) 110:1698–706. doi: 10.1038/ajg.2015.356</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ajg.2015.356</ArticleId><ArticleId IdType="pubmed">26526084</ArticleId></ArticleIdList></Reference><Reference><Citation>Sliwinska-Mosson M, Bil-Lula I, Marek G. The cause and effect relationship of diabetes after acute pancreatitis. Biomedicines. (2023) 11:667. doi: 10.3390/biomedicines11030667</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biomedicines11030667</ArticleId><ArticleId IdType="pmc">PMC10044911</ArticleId><ArticleId IdType="pubmed">36979645</ArticleId></ArticleIdList></Reference><Reference><Citation>Girman CJ, Kou TD, Cai B, Alexander CM, O'Neill EA, Williams-Herman DE, et al. . Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes Metab. (2010) 12:766–71. doi: 10.1111/j.1463-1326.2010.01231.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1463-1326.2010.01231.x</ArticleId><ArticleId IdType="pubmed">20649628</ArticleId></ArticleIdList></Reference><Reference><Citation>Lai SW, Muo CH, Liao KF, Sung FC, Chen PC. Risk of acute pancreatitis in type 2 diabetes and risk reduction on anti-diabetic drugs: a population-based cohort study in Taiwan. Am J Gastroenterol. (2011) 106:1697–704. doi: 10.1038/ajg.2011.155</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ajg.2011.155</ArticleId><ArticleId IdType="pubmed">21577242</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernandez P, Passi N, Modarressi T, Kulkarni V, Soni M, Burke F, et al. . Clinical management of hypertriglyceridemia in the prevention of cardiovascular disease and pancreatitis. Curr Atheroscler Rep. (2021) 23:72. doi: 10.1007/s11883-021-00962-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11883-021-00962-z</ArticleId><ArticleId IdType="pmc">PMC8436578</ArticleId><ArticleId IdType="pubmed">34515873</ArticleId></ArticleIdList></Reference><Reference><Citation>Kiss L, Fur G, Pisipati S, Rajalingamgari P, Ewald N, Singh V, et al. . Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol (Oxf). (2023) 237:e13916. doi: 10.1111/apha.v237.3</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/apha.v237.3</ArticleId><ArticleId IdType="pubmed">36599412</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin XY, Zeng Y, Zhang ZC, Lin ZH, Chen LC, Ye ZS. Incidence and clinical characteristics of hypertriglyceridemic acute pancreatitis: A retrospective single-center study. World J Gastroenterol. (2022) 28:3946–59. doi: 10.3748/wjg.v28.i29.3946</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v28.i29.3946</ArticleId><ArticleId IdType="pmc">PMC9367230</ArticleId><ArticleId IdType="pubmed">36157550</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee M-K, Han K, Kim B, Kim J-D, Jung Kim M, Kim B, et al. . Cumulative exposure to hypertriglyceridemia and risk of type 2 diabetes in young adults. Diabetes Res Clin Pract. (2024) 208:111109. doi: 10.1016/j.diabres.2024.111109</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2024.111109</ArticleId><ArticleId IdType="pubmed">38262520</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb. (2018) 25:771–82. doi: 10.5551/jat.RV17023</Citation><ArticleIdList><ArticleId IdType="doi">10.5551/jat.RV17023</ArticleId><ArticleId IdType="pmc">PMC6143775</ArticleId><ArticleId IdType="pubmed">29998913</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo YY, Li HX, Zhang Y, He WH. Hypertriglyceridemia-induced acute pancreatitis: progress on disease mechanisms and treatment modalities. Discovery Med. (2019) 27:101–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30939294</ArticleId></ArticleIdList></Reference><Reference><Citation>Zafrir B, Saliba W, Jubran A, Hijazi R, Shapira C. Severe hypertriglyceridemia-related pancreatitis: characteristics and predictors of recurrence. Pancreas. (2019) 48:182–6. doi: 10.1097/MPA.0000000000001235</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MPA.0000000000001235</ArticleId><ArticleId IdType="pubmed">30629026</ArticleId></ArticleIdList></Reference><Reference><Citation>Tu J, Zhang J, Ke L, Yang Y, Yang Q, Lu G, et al. . Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: long-term follow-up study. BMC Gastroenterol. (2017) 17:114. doi: 10.1186/s12876-017-0663-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12876-017-0663-0</ArticleId><ArticleId IdType="pmc">PMC5658961</ArticleId><ArticleId IdType="pubmed">29078749</ArticleId></ArticleIdList></Reference><Reference><Citation>Beyer G, Hoffmeister A, Lorenz P, Lynen P, Lerch MM, Mayerle J. Clinical practice guideline—Acute and chronic pancreatitis. Deutsches Arzteblatt Int. (2022) 119:495–501. doi: 10.3238/arztebl.m2022.0223</Citation><ArticleIdList><ArticleId IdType="doi">10.3238/arztebl.m2022.0223</ArticleId><ArticleId IdType="pmc">PMC9669327</ArticleId><ArticleId IdType="pubmed">35945698</ArticleId></ArticleIdList></Reference><Reference><Citation>Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, et al. . Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. BioMed Pharmacother. (2023) 168:115734. doi: 10.1016/j.biopha.2023.115734</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2023.115734</ArticleId><ArticleId IdType="pubmed">37857245</ArticleId></ArticleIdList></Reference><Reference><Citation>Kwiecinska P, Grygier B, Morytko A, Sanecka-Duin A, Majchrzak-Gorecka M, Kwitniewski M, et al. . Secretory leukocyte protease inhibitor regulates nerve reflex-mediated skin barrier function in psoriasis. J Eur Acad Dermatol Venereol. (2022) 36:1266–74. doi: 10.1111/jdv.18065</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdv.18065</ArticleId><ArticleId IdType="pmc">PMC9546283</ArticleId><ArticleId IdType="pubmed">35279880</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang H, Liao H, Gan S, Xiao T, Wu L. ARHGEF9 gene variant leads to developmental and epileptic encephalopathy: Genotypic phenotype analysis and treatment exploration. Mol Genet Genomic Med. (2022) 10:e1967. doi: 10.1002/mgg3.v10.7</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/mgg3.v10.7</ArticleId><ArticleId IdType="pmc">PMC9266599</ArticleId><ArticleId IdType="pubmed">35638461</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai C, Xie X, Zhou J, Fang X, Wang F, Wang M. Identification of TAF1, SAT1, and ARHGEF9 as DNA methylation biomarkers for hepatocellular carcinoma. J Cell Physiol. (2020) 235:611–8. doi: 10.1002/jcp.v235.1</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jcp.v235.1</ArticleId><ArticleId IdType="pubmed">31283007</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma X, Yan W, Xu P, Ma L, Zan Y, Huang L, et al. . LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression. Biol Chem. (2022) 403:945–58. doi: 10.1515/hsz-2022-0153</Citation><ArticleIdList><ArticleId IdType="doi">10.1515/hsz-2022-0153</ArticleId><ArticleId IdType="pubmed">35947460</ArticleId></ArticleIdList></Reference><Reference><Citation>Louvet C, Szot GL, Lang J, Lee MR, Martinier N, Bollag G, et al. . Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U.S.A. (2008) 105:18895–900. doi: 10.1073/pnas.0810246105</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.0810246105</ArticleId><ArticleId IdType="pmc">PMC2596241</ArticleId><ArticleId IdType="pubmed">19015530</ArticleId></ArticleIdList></Reference><Reference><Citation>Gitelman SE, Bundy BN, Ferrannini E, Lim N, Blanchfield JL, DiMeglio LA, et al. . Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. (2021) 9:502–14. doi: 10.1016/S2213-8587(21)00139-X</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(21)00139-X</ArticleId><ArticleId IdType="pmc">PMC8494464</ArticleId><ArticleId IdType="pubmed">34214479</ArticleId></ArticleIdList></Reference><Reference><Citation>Bansod S, Saifi MA, Godugu C. Inhibition of discoidin domain receptors by imatinib prevented pancreatic fibrosis demonstrated in experimental chronic pancreatitis model. Sci Rep. (2021) 11:12894. doi: 10.1038/s41598-021-92461-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-92461-z</ArticleId><ArticleId IdType="pmc">PMC8213731</ArticleId><ArticleId IdType="pubmed">34145346</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39634180</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Personalized nutrition in type 2 diabetes remission: application of digital twin technology for predictive glycemic control.</ArticleTitle><Pagination><StartPage>1485464</StartPage><MedlinePgn>1485464</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1485464</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1485464</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Type 2 Diabetes (T2D) is a complex condition marked by insulin resistance and beta-cell dysfunction. Traditional dietary interventions, such as low-calorie or low-carbohydrate diets, typically overlook individual variability in postprandial glycemic responses (PPGRs), which can lead to suboptimal management of the disease. Recent advancements suggest that personalized nutrition, tailored to individual metabolic profiles, may enhance the effectiveness of T2D management.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">This study aims to present the development and application of a Digital Twin (DT) technology-a machine learning (ML)-powered platform designed to predict and modulate PPGRs in T2D patients. By integrating continuous glucose monitoring (CGM), dietary data, and other physiological inputs, the DT provides individualized dietary recommendations to improve insulin sensitivity, reduce hyperinsulinemia, and support the remission of T2D.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">We developed a sophisticated DT platform that synthesizes real-time data from CGM, dietary logs, and other biometric inputs to create personalized metabolic models for T2D patients. The intervention is delivered via a mobile application, which dynamically adjusts dietary recommendations based on predicted PPGRs. This methodology is validated through a randomized controlled trial (RCT) assessing its impact on various metabolic markers, including HbA1c, metabolic-associated fatty liver disease (MAFLD), blood pressure, body weight, ASCVD risk, albuminuria, and diabetic retinopathy.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Preliminary data from the ongoing RCT and real-world study demonstrate the DT's capacity to generate significant improvements in glycemic control and metabolic health. The DT-driven personalized nutrition plan has been associated with reductions in HbA1c, enhanced beta-cell function, and normalization of hyperinsulinemia, supporting sustained T2D remission. Additionally, the DT's predictions have contributed to improvements in MAFLD markers, blood pressure, and cardiovascular risk factors, highlighting its potential as a comprehensive management tool.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">The DT technology represents a novel and scalable approach to personalized nutrition in T2D management. By addressing individual variability in PPGRs, this method offers a promising alternative to conventional dietary interventions, with the potential to improve long-term outcomes and reduce the global burden of T2D.</AbstractText><CopyrightInformation>Copyright © 2024 Shamanna, Joshi, Thajudeen, Shah, Poon, Mohamed and Mohammed.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shamanna</LastName><ForeName>Paramesh</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Bangalore Diabetes Center, Bangalore, Karnataka, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Joshi</LastName><ForeName>Shashank</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Diabetology and Endocrinology, Lilavati Hospital and Research Center, Mumbai, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thajudeen</LastName><ForeName>Mohamed</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Twin Health, Mountain View, CA, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shah</LastName><ForeName>Lisa</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Twin Health, Mountain View, CA, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Poon</LastName><ForeName>Terrence</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Twin Health, Mountain View, CA, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mohamed</LastName><ForeName>Maluk</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Twin Health, Mountain View, CA, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mohammed</LastName><ForeName>Jahangir</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Twin Health, Mountain View, CA, United States.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000178" MajorTopicYN="N">diet therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057285" MajorTopicYN="Y">Precision Medicine</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069550" MajorTopicYN="N">Machine Learning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015190" MajorTopicYN="N">Blood Glucose Self-Monitoring</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012074" MajorTopicYN="N">Remission Induction</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019518" MajorTopicYN="N">Postprandial Period</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000082222" MajorTopicYN="N">Digital Technology</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">digital twin technology</Keyword><Keyword MajorTopicYN="N">machine learning</Keyword><Keyword MajorTopicYN="N">personalized nutrition</Keyword><Keyword MajorTopicYN="N">predictive glycemic control</Keyword><Keyword MajorTopicYN="N">type 2 diabetes remission</Keyword></KeywordList><CoiStatement>PS, MT, LS, TP, MM and JM are employees of Twin Health Inc. SJ is a Scientist at Twin Health Inc., He has received consulting fees from Franco Indian, Biocon, Zydus Cadila, Glenmark, Torrent and Marico. JS has received speaker honoraria or has served on the advisory board of MSD, Novo Nordisk, Sanofi, Boehringer Ingelheim, Abbott, Astra Zeneca, Serdia, Alkem, Lupin, Bayer Zydus and USV.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39634180</ArticleId><ArticleId IdType="pmc">PMC11615876</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1485464</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Lima JE, Moreira NC, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat Research/Genetic Toxicol Environ Mutagen. (2022) 874:503437. doi: 10.1016/j.mrgentox.2021.503437</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mrgentox.2021.503437</ArticleId><ArticleId IdType="pubmed">35151421</ArticleId></ArticleIdList></Reference><Reference><Citation>Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. (2016) 7:354–95. doi: 10.4239/wjd.v7.i17.354</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v7.i17.354</ArticleId><ArticleId IdType="pmc">PMC5027002</ArticleId><ArticleId IdType="pubmed">27660695</ArticleId></ArticleIdList></Reference><Reference><Citation>Papandonatos GD, Pan Q, Pajewski NM, Delahanty LM, Peter I, Erar B, et al. . Genetic predisposition to weight loss and regain with lifestyle intervention: analyses from the diabetes prevention program and the look AHEAD randomized controlled trials. Diabetes. (2015) 64:4312–21. doi: 10.2337/db15-0441</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db15-0441</ArticleId><ArticleId IdType="pmc">PMC4657576</ArticleId><ArticleId IdType="pubmed">26253612</ArticleId></ArticleIdList></Reference><Reference><Citation>Borgharkar SS, Das SS. Real-world evidence of glycemic control among patients with type 2 diabetes mellitus in India: the TIGHT study. BMJ Open Diabetes Res Care. (2019) 7:e000654. doi: 10.1136/bmjdrc-2019-000654</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2019-000654</ArticleId><ArticleId IdType="pmc">PMC6673766</ArticleId><ArticleId IdType="pubmed">31413840</ArticleId></ArticleIdList></Reference><Reference><Citation>Song J, Oh TJ, Song Y. Individual postprandial glycemic responses to meal types by different carbohydrate levels and their associations with glycemic variability using continuous glucose monitoring. Nutrients. (2023) 15:3571. doi: 10.3390/nu15163571</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu15163571</ArticleId><ArticleId IdType="pmc">PMC10459284</ArticleId><ArticleId IdType="pubmed">37630761</ArticleId></ArticleIdList></Reference><Reference><Citation>Lean M, Brosnahan N, McLoone P, McCombie L, Higgs AB, Ross H, et al. . Feasibility and indicative results from a 12-month low-energy liquid diet treatment and maintenance programme for severe obesity. Br J Gen Practice. (2013) 63:e115–24. doi: 10.3399/bjgp13X663073</Citation><ArticleIdList><ArticleId IdType="doi">10.3399/bjgp13X663073</ArticleId><ArticleId IdType="pmc">PMC3553637</ArticleId><ArticleId IdType="pubmed">23561690</ArticleId></ArticleIdList></Reference><Reference><Citation>Storz MA, Ronco AL. Nutrient intake in low-carbohydrate diets in comparison to the 2020-2025 Dietary Guidelines for Americans: a cross-sectional study. Br J Nutr. (2022) 129:1–14. doi: 10.1017/S0007114522001908</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S0007114522001908</ArticleId><ArticleId IdType="pmc">PMC9991840</ArticleId><ArticleId IdType="pubmed">35730148</ArticleId></ArticleIdList></Reference><Reference><Citation>Vedel-Larsen E, Iepsen EW, Lundgren J, Graff C, Struijk JJ, Hansen T, et al. . Major rapid weight loss induces changes in cardiac repolarization. J Electrocardiol. (2016) 49:467–72. doi: 10.1016/j.jelectrocard.2016.02.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jelectrocard.2016.02.005</ArticleId><ArticleId IdType="pubmed">26925492</ArticleId></ArticleIdList></Reference><Reference><Citation>Janssen TAH, Van Every DW, Phillips SM. The impact and utility of very low-calorie diets: the role of exercise and protein in preserving skeletal muscle mass. Curr Opin Clin Nutr Metab Care. (2023) 26:521–7. doi: 10.1097/MCO.0000000000000980</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MCO.0000000000000980</ArticleId><ArticleId IdType="pmc">PMC10552824</ArticleId><ArticleId IdType="pubmed">37724991</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, et al. . Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. (2021) 372:m4743. doi: 10.1136/bmj.m4743</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m4743</ArticleId><ArticleId IdType="pmc">PMC7804828</ArticleId><ArticleId IdType="pubmed">33441384</ArticleId></ArticleIdList></Reference><Reference><Citation>Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Segal A. Personalized nutrition by prediction of glycemic responses. Cell. (2015) 163:1079–94. doi: 10.1016/j.cell.2015.11.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cell.2015.11.001</ArticleId><ArticleId IdType="pubmed">26590418</ArticleId></ArticleIdList></Reference><Reference><Citation>Mendes-Soares H, Raveh-Sadka T, Azulay S, Edens K, Ben-Shlomo Y, Cohen Y, et al. . Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open. (2019) 2:e188102. doi: 10.1001/jamanetworkopen.2018.8102</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamanetworkopen.2018.8102</ArticleId><ArticleId IdType="pmc">PMC6484621</ArticleId><ArticleId IdType="pubmed">30735238</ArticleId></ArticleIdList></Reference><Reference><Citation>Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. . Human postprandial responses to food and potential for precision nutrition. Nat Med. (2020) 26:964–73. doi: 10.1038/s41591-020-0934-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41591-020-0934-0</ArticleId><ArticleId IdType="pmc">PMC8265154</ArticleId><ArticleId IdType="pubmed">32528151</ArticleId></ArticleIdList></Reference><Reference><Citation>Celis-Morales C, Livingstone KM, Marsaux CF, Macready AL, Fallaize R, O’Donovan CB, et al. . Effect of personalized nutrition on health-related behaviour change: evidence from the Food4me European randomized controlled trial. Int J Epidemiol. (2017) 46:578–88. doi: 10.1093/ije/dyw186</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyw186</ArticleId><ArticleId IdType="pubmed">27524815</ArticleId></ArticleIdList></Reference><Reference><Citation>Fuller A, Fan Z, Day C, Barlow C. Digital Twin: Enabling Technologies, challenges and open research. IEEE Access. (2020) 8:108952–71. doi: 10.1109/Access.6287639</Citation><ArticleIdList><ArticleId IdType="doi">10.1109/Access.6287639</ArticleId></ArticleIdList></Reference><Reference><Citation>Hadley F, Dunlap T, Poon T. Precision treatment with machine learning and digital twin technology for optimal metabolic outcomes. (2021). US11185283B2.</Citation></Reference><Reference><Citation>Mohammed J, Mohamed M, Poon T, Tian W. Precision treatment platform enabled by whole body digital twin technology. (2024). US11957484B2.</Citation></Reference><Reference><Citation>Joshi S, Shamanna P, Dharmalingam M, Vadavi A, Keshavamurthy A, Shah L, et al. . Digital twin-enabled personalized nutrition improves metabolic dysfunction-associated fatty liver disease in type 2 diabetes: results of a 1-year randomized controlled study. Endocr Pract. (2023) 29:960–70. doi: 10.1016/j.eprac.2023.08.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2023.08.016</ArticleId><ArticleId IdType="pubmed">37778441</ArticleId></ArticleIdList></Reference><Reference><Citation>Paramesh S, Mohammed J, Mohamed M, Poon T, Thajudeen M, Keshavamurthy A, et al. . Remission of hypertension at six months of whole body digital twin technology. J Hypertension. (2023) 41:e122. doi: 10.1097/01.hjh.0000940000.06022.66</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/01.hjh.0000940000.06022.66</ArticleId></ArticleIdList></Reference><Reference><Citation>Riddle MC, Cefalu WT, Evans PH, Gerstein HC, Nauck MA, Oh WK, et al. . Consensus report: definition and interpretation of remission in type 2 diabetes. Diabetes Care. (2021) 44:2438–44. doi: 10.2337/dci21-0034</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci21-0034</ArticleId><ArticleId IdType="pmc">PMC8929179</ArticleId><ArticleId IdType="pubmed">34462270</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamanna P, Dharmalingam M, Vadavi A, Keshavamurthy A, Thajudeen M, Bhonsley S, et al. . 1706999 the impact of digital twin technology on hbA1c reduction and ASCVD risk in participants enrolled for type 2 diabetes remission: outcomes of RCCT at 1 year. Endocr Pract. (2024) 30:S78. doi: 10.1016/j.eprac.2024.03.278</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2024.03.278</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamanna P, Joshi S, Dharmalingam M, Vadavi A, Keshavamurthy A, Thajudeen M, et al. . 1707108 impact of digital twin intervention on microalbuminuria progression in participants enrolled for type 2 diabetes remission: outcomes of RCCT at 1 year. Endocr Pract. (2024) 30:S50–1. doi: 10.1016/j.eprac.2024.03.223</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2024.03.223</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamanna P, Dharmalingam M, Vadavi A, Keshavamurthy A, Bhonsley S, Mohamed M, et al. . 1806-LB: improvement in sensory function and achieving remission of type 2 diabetes mellitus through digital twin technology—A one-year intervention study. Diabetes. (2024) 73. doi: 10.2337/db24-1806-LB</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db24-1806-LB</ArticleId></ArticleIdList></Reference><Reference><Citation>Joshi S, Dharmalingam M, Vadavi A, Keshavamurthy A, Bhonsley S, Mohamed M, et al. . 1811-LB: improvement in diabetic retinopathy and achieving remission of type 2 diabetes mellitus through digital twin technology—A one-year intervention study. Diabetes. (2024) 73:1811–LB. doi: 10.2337/db24-1811-LB</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db24-1811-LB</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamanna P, Dharmalingam M, Vadavi A, Keshavamurthy A, Bhonsley S, Thajudeen M, et al. . 20-OR: digital twin (DT) technology in type 2 diabetes remission and glycemic improvement—Eighteen months results from a randomized controlled trial. Diabetes. (2024) 73. doi: 10.2337/db24-20-OR</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db24-20-OR</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah L, Joshi S, Dharmalingam M, Shamanna P, Damodaran S, Mohammed J, et al. . IDF21-0598 Remission of T2DM by digital twin technology across Indian and American cohorts–Initial insights from real-world study. Diabetes Res Clin Pract. (2022) 186. doi: 10.1016/j.diabres.2022.109579</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2022.109579</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah L, Joshi SR, Mohammed J, Mohamed M, Thajudeen M, Kaufman FR, et al. . 851-P: whole body digital twin (WBDT) enabled diabetes reversal—US real-world findings. Diabetes. (2024) 73. doi: 10.2337/db24-851-P</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db24-851-P</ArticleId></ArticleIdList></Reference><Reference><Citation>Shamanna P, Maheshwari A, Keshavamurthy A, Bhat S, Kulkarni A, Shivakumar R, et al. . 1707161 digital twin technology in resolving polycystic ovary syndrome and improving metabolic health: A comprehensive case study. Endocr Pract. (2024) 30:S130. doi: 10.1016/j.eprac.2024.03.386</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2024.03.386</ArticleId></ArticleIdList></Reference><Reference><Citation>Amante DJ, Harlan DM, Lemon SC, McManus DD, Olaitan OO, Pagoto SL, et al. . Evaluation of a diabetes remote monitoring program facilitated by connected glucose meters for patients with poorly controlled type 2 diabetes: randomized crossover trial. JMIR Diabetes. (2021) 6:e25574. doi: 10.2196/25574</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/25574</ArticleId><ArticleId IdType="pmc">PMC7995078</ArticleId><ArticleId IdType="pubmed">33704077</ArticleId></ArticleIdList></Reference><Reference><Citation>Sepah SC, Jiang L, Ellis RJ, McDermott K, Peters AL. Engagement and outcomes in a digital Diabetes Prevention Program: 3-year update. BMJ Open Diabetes Res Care. (2017) 5:e000422. doi: 10.1136/bmjdrc-2017-000422</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjdrc-2017-000422</ArticleId><ArticleId IdType="pmc">PMC5595194</ArticleId><ArticleId IdType="pubmed">28948027</ArticleId></ArticleIdList></Reference><Reference><Citation>Osborn CY, van Ginkel JR, Marrero DG, Rodbard D, Huddleston B, Dachis J. One drop | Mobile on iPhone and apple watch: an evaluation of hbA1c improvement associated with tracking self-care. JMIR Mhealth Uhealth. (2017) 5:e179. doi: 10.2196/mhealth.8781</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/mhealth.8781</ArticleId><ArticleId IdType="pmc">PMC5729227</ArticleId><ArticleId IdType="pubmed">29187344</ArticleId></ArticleIdList></Reference><Reference><Citation>Debong F, Mayer H, Kober J. Real-world assessments of mySugr mobile health app. Diabetes Technol Ther. (2019) 21:S2–35. doi: 10.1089/dia.2019.0019</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/dia.2019.0019</ArticleId><ArticleId IdType="pubmed">31169427</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39634174</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Factors related to type 2 diabetic retinopathy and their clinical application value.</ArticleTitle><Pagination><StartPage>1484197</StartPage><MedlinePgn>1484197</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1484197</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1484197</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To compare the differences in clinical-related factors between patients with type 2 diabetes (T2DM) and those without diabetic retinopathy (DR) and to explore the risk factors or protective factors affecting DR in T2DM patients.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">We performed a retrospective analysis of 380 patients with type 2 diabetes admitted to Handan Central Hospital from June 2023 to May 2024. Clinical data collected included baseline characteristics, hematological tests, metabolic indicators, and information on diabetic complications and comorbidities.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Our findings identified intervention, neck vascular disease, bilateral lower limb venous thrombosis, high creatinine, high glomerular filtration rate, high chloride, high fasting C-peptide, and high lactate dehydrogenase as risk factors for DR. In contrast, High 2-hour postprandial C-peptide is a protective factor for diabetic retinopathy. A logistic regression model was constructed using stepwise regression to predict DR occurrence, achieving an accuracy of 0.80 and an AUC of 0.83.</AbstractText><CopyrightInformation>Copyright © 2024 Lian and Zhu.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Lian</LastName><ForeName>Xue-Nan</ForeName><Initials>XN</Initials><AffiliationInfo><Affiliation>School of Graduate Studies, Hebei North University, Zhangjiakou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology, Handan Central Hospital, Handan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Ming-Ming</ForeName><Initials>MM</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Handan Central Hospital, Handan, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003930" MajorTopicYN="Y">Diabetic Retinopathy</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetic retinopathy</Keyword><Keyword MajorTopicYN="N">lactate dehydrogenase</Keyword><Keyword MajorTopicYN="N">logistic regression</Keyword><Keyword MajorTopicYN="N">protective factors</Keyword><Keyword MajorTopicYN="N">risk factors</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>17</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39634174</ArticleId><ArticleId IdType="pmc">PMC11614660</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1484197</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. . Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA (2017) 317:2515–23. doi: 10.1001/jama.2017.7596</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2017.7596</ArticleId><ArticleId IdType="pmc">PMC5815077</ArticleId><ArticleId IdType="pubmed">28655017</ArticleId></ArticleIdList></Reference><Reference><Citation>Adelson JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. . Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Global Health. (2021) 9:e144–e60. doi: 10.1016/S2214-109X(20)30489-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2214-109X(20)30489-7</ArticleId><ArticleId IdType="pmc">PMC7820391</ArticleId><ArticleId IdType="pubmed">33275949</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. . IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin practice. (2017) 128:40–50. doi: 10.1016/j.diabres.2017.03.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2017.03.024</ArticleId><ArticleId IdType="pubmed">28437734</ArticleId></ArticleIdList></Reference><Reference><Citation>Hou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, et al. . Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. (2023) 14:4296. doi: 10.1038/s41467-023-39864-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-023-39864-w</ArticleId><ArticleId IdType="pmc">PMC10354077</ArticleId><ArticleId IdType="pubmed">37463878</ArticleId></ArticleIdList></Reference><Reference><Citation>Lundeen EA, Burke-Conte Z, Rein DB, Wittenborn JS, Saaddine J, Lee AY, et al. . Prevalence of diabetic retinopathy in the US in 2021. JAMA ophthalmol. (2023) 141:747–54. doi: 10.1001/jamaophthalmol.2023.2289</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamaophthalmol.2023.2289</ArticleId><ArticleId IdType="pmc">PMC10273133</ArticleId><ArticleId IdType="pubmed">37318810</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin S, Ramulu P, Lamoureux EL, Sabanayagam C. Addressing risk factors, screening, and preventative treatment for diabetic retinopathy in developing countries: a review. Clin Exp ophthalmol. (2016) 44:300–20. doi: 10.1111/ceo.2016.44.issue-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ceo.2016.44.issue-4</ArticleId><ArticleId IdType="pubmed">26991970</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirsch IB, Brownlee M. Beyond hemoglobin A1c–need for additional markers of risk for diabetic microvascular complications. JAMA. (2010) 303:2291–2. doi: 10.1001/jama.2010.785</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2010.785</ArticleId><ArticleId IdType="pubmed">20530784</ArticleId></ArticleIdList></Reference><Reference><Citation>Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. (2005) 54:1615–25. doi: 10.2337/diabetes.54.6.1615</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.54.6.1615</ArticleId><ArticleId IdType="pubmed">15919781</ArticleId></ArticleIdList></Reference><Reference><Citation>Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. (2013) 17:20–33. doi: 10.1016/j.cmet.2012.11.012</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2012.11.012</ArticleId><ArticleId IdType="pmc">PMC3546345</ArticleId><ArticleId IdType="pubmed">23312281</ArticleId></ArticleIdList></Reference><Reference><Citation>Fang J, Luo C, Zhang D, He Q, Liu L. Correlation between diabetic retinopathy and diabetic nephropathy: a two-sample Mendelian randomization study. Front endocrinol. (2023) 14:1265711. doi: 10.3389/fendo.2023.1265711</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1265711</ArticleId><ArticleId IdType="pmc">PMC10646564</ArticleId><ArticleId IdType="pubmed">38027162</ArticleId></ArticleIdList></Reference><Reference><Citation>Laddha AP, Kulkarni YA. Daidzein ameliorates diabetic retinopathy in experimental animals. Life Sci. (2021) 265:118779. doi: 10.1016/j.lfs.2020.118779</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.lfs.2020.118779</ArticleId><ArticleId IdType="pubmed">33217441</ArticleId></ArticleIdList></Reference><Reference><Citation>Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. (1995) 15:5179–91. doi: 10.1523/JNEUROSCI.15-07-05179.1995</Citation><ArticleIdList><ArticleId IdType="doi">10.1523/JNEUROSCI.15-07-05179.1995</ArticleId><ArticleId IdType="pmc">PMC6577914</ArticleId><ArticleId IdType="pubmed">7623144</ArticleId></ArticleIdList></Reference><Reference><Citation>Suryavanshi SV, Barve K, Utpat SV, Kulkarni YA. Triphala churna ameliorates retinopathy in diabetic rats. Biomedicine pharmacother = Biomed pharmacotherapie. (2022) 148:112711. doi: 10.1016/j.biopha.2022.112711</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.biopha.2022.112711</ArticleId><ArticleId IdType="pubmed">35168075</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang L, You J, Yao Y, Xie M. High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling. Arquivos brasileiros oftalmologia. (2021) 84:67–73. doi: 10.5935/0004-2749.20210010</Citation><ArticleIdList><ArticleId IdType="doi">10.5935/0004-2749.20210010</ArticleId><ArticleId IdType="pubmed">33470344</ArticleId></ArticleIdList></Reference><Reference><Citation>De La Cruz JP, González-Correa JA, Guerrero A, de la Cuesta FS. Pharmacological approach to diabetic retinopathy. Diabetes/metabolism Res Rev. (2004) 20:91–113. doi: 10.1002/dmrr.v20:2</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.v20:2</ArticleId><ArticleId IdType="pubmed">15037985</ArticleId></ArticleIdList></Reference><Reference><Citation>Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes. (2003) 52:818–23. doi: 10.2337/diabetes.52.3.818</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.52.3.818</ArticleId><ArticleId IdType="pubmed">12606525</ArticleId></ArticleIdList></Reference><Reference><Citation>Adeva M, González-Lucán M, Seco M, Donapetry C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion. (2013) 13:615–29. doi: 10.1016/j.mito.2013.08.011</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mito.2013.08.011</ArticleId><ArticleId IdType="pubmed">24029012</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsieh YS, Yeh MC, Lin YY, Weng SF, Hsu CH, Huang CL, et al. . Is the level of serum lactate dehydrogenase a potential biomarker for glucose monitoring with type 2 diabetes mellitus? Front Endocrinol (Lausanne). (2022) 13:1099805. doi: 10.3389/fendo.2022.1099805</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2022.1099805</ArticleId><ArticleId IdType="pmc">PMC9801409</ArticleId><ArticleId IdType="pubmed">36589820</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang P, Xu W, Liu L, Yang G. Association of lactate dehydrogenase and diabetic retinopathy in US adults with diabetes mellitus. J diabetes. (2024) 16:e13476. doi: 10.1111/1753-0407.13476</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/1753-0407.13476</ArticleId><ArticleId IdType="pmc">PMC10809301</ArticleId><ArticleId IdType="pubmed">37746907</ArticleId></ArticleIdList></Reference><Reference><Citation>Boss JD, Singh PK, Pandya HK, Tosi J, Kim C, Tewari A, et al. . Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Visual science. (2017) 58:5594–603. doi: 10.1167/iovs.17-21973</Citation><ArticleIdList><ArticleId IdType="doi">10.1167/iovs.17-21973</ArticleId><ArticleId IdType="pmc">PMC5667399</ArticleId><ArticleId IdType="pubmed">29084332</ArticleId></ArticleIdList></Reference><Reference><Citation>Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. (2020) 11:583687. doi: 10.3389/fimmu.2020.583687</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2020.583687</ArticleId><ArticleId IdType="pmc">PMC7677305</ArticleId><ArticleId IdType="pubmed">33240272</ArticleId></ArticleIdList></Reference><Reference><Citation>Papageorgiou N, Tousoulis D, Siasos G, Stefanadis C. Is fibrinogen a marker of inflammation in coronary artery disease? Hellenic J cardiology: HJC = Hellenike kardiologike epitheorese. (2010) 51:1–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">20118037</ArticleId></ArticleIdList></Reference><Reference><Citation>Tomić M, Ljubić S, Kaštelan S, Gverović Antunica A, Jazbec A, Poljičanin T. Inflammation, haemostatic disturbance, and obesity: possible link to pathogenesis of diabetic retinopathy in type 2 diabetes. Mediators inflammation. (2013) 2013:818671. doi: 10.1155/2013/818671</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2013/818671</ArticleId><ArticleId IdType="pmc">PMC3865689</ArticleId><ArticleId IdType="pubmed">24363502</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhuang Y, Cai Q, Hu X, Huang H. Association of altered fibrinogen indexes levels as a potential biomarker in determining the possible onset of diabetic retinopathy. Sci Rep. (2023) 13:23065. doi: 10.1038/s41598-023-50738-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-023-50738-5</ArticleId><ArticleId IdType="pmc">PMC10754927</ArticleId><ArticleId IdType="pubmed">38155234</ArticleId></ArticleIdList></Reference><Reference><Citation>Sasongko MB, Wong TY, Jenkins AJ, Nguyen TT, Shaw JE, Wang JJ. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabetic medicine: J Br Diabetic Assoc. (2015) 32:686–91. doi: 10.1111/dme.2015.32.issue-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.2015.32.issue-5</ArticleId><ArticleId IdType="pubmed">25407692</ArticleId></ArticleIdList></Reference><Reference><Citation>Gouliopoulos N, Antonopoulos AS, Siasos G, Moschos MM, Oikonomou E, Kassi E, et al. . Macrovascular function indices for the prediction of diabetic retinopathy development in patients with type 2 diabetes. Eur J Prev Cardiol. (2017) 24:1405–7. doi: 10.1177/2047487317717823</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2047487317717823</ArticleId><ArticleId IdType="pubmed">28657342</ArticleId></ArticleIdList></Reference><Reference><Citation>Park HC, Lee YK, Cho A, Han CH, Noh JW, Shin YJ, et al. . Diabetic retinopathy is a prognostic factor for progression of chronic kidney disease in the patients with type 2 diabetes mellitus. PloS One. (2019) 14:e0220506. doi: 10.1371/journal.pone.0220506</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0220506</ArticleId><ArticleId IdType="pmc">PMC6663021</ArticleId><ArticleId IdType="pubmed">31356653</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen YH, Chen HS, Tarng DC. More impact of microalbuminuria on retinopathy than moderately reduced GFR among type 2 diabetic patients. Diabetes Care. (2012) 35:803–8. doi: 10.2337/dc11-1955</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc11-1955</ArticleId><ArticleId IdType="pmc">PMC3308275</ArticleId><ArticleId IdType="pubmed">22338100</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang J, Xin X, Luo W, Wang R, Wang X, Si S, et al. . Anemia and diabetic kidney disease had joint effect on diabetic retinopathy among patients with type 2 diabetes. Invest Ophthalmol Visual science. (2020) 61:25. doi: 10.1167/iovs.61.14.25</Citation><ArticleIdList><ArticleId IdType="doi">10.1167/iovs.61.14.25</ArticleId><ArticleId IdType="pmc">PMC7757636</ArticleId><ArticleId IdType="pubmed">33351059</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang G, Chen H, Chen W, Zhang M. Prevalence and risk factors for diabetic retinopathy in China: a multi-hospital-based cross-sectional study. Br J ophthalmol. (2017) 101:1591–5. doi: 10.1136/bjophthalmol-2017-310316</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjophthalmol-2017-310316</ArticleId><ArticleId IdType="pmc">PMC5754882</ArticleId><ArticleId IdType="pubmed">28855195</ArticleId></ArticleIdList></Reference><Reference><Citation>Jee D, Lee WK, Kang S. Prevalence and risk factors for diabetic retinopathy: the Korea National Health and Nutrition Examination Survey 2008-2011. Invest Ophthalmol Visual science. (2013) 54:6827–33. doi: 10.1167/iovs.13-12654</Citation><ArticleIdList><ArticleId IdType="doi">10.1167/iovs.13-12654</ArticleId><ArticleId IdType="pubmed">24065813</ArticleId></ArticleIdList></Reference><Reference><Citation>Man RE, Sasongko MB, Wang JJ, MacIsaac R, Wong TY, Sabanayagam C, et al. . The association of estimated glomerular filtration rate with diabetic retinopathy and macular edema. Invest Ophthalmol Visual science. (2015) 56:4810–6. doi: 10.1167/iovs.15-16987</Citation><ArticleIdList><ArticleId IdType="doi">10.1167/iovs.15-16987</ArticleId><ArticleId IdType="pubmed">26218909</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang J, Wang Y, Li L, Zhang R, Guo R, Li H, et al. . Diabetic retinopathy may predict the renal outcomes of patients with diabetic nephropathy. Renal failure. (2018) 40:243–51. doi: 10.1080/0886022X.2018.1456453</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/0886022X.2018.1456453</ArticleId><ArticleId IdType="pmc">PMC6014304</ArticleId><ArticleId IdType="pubmed">29633887</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng W. Factor analysis of diabetic retinopathy in Chinese patients. Diabetes Res Clin practice. (2011) 92:244–52. doi: 10.1016/j.diabres.2011.02.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2011.02.007</ArticleId><ArticleId IdType="pubmed">21388700</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Y, Wan H, Chen Y, Xia F, Zhang W, Wang C, et al. . Association of C-peptide with diabetic vascular complications in type 2 diabetes. Diabetes Metab. (2020) 46:33–40. doi: 10.1016/j.diabet.2019.04.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2019.04.004</ArticleId><ArticleId IdType="pubmed">31026551</ArticleId></ArticleIdList></Reference><Reference><Citation>Bo S, Gentile L, Castiglione A, Prandi V, Canil S, Ghigo E, et al. . C-peptide and the risk for incident complications and mortality in type 2 diabetic patients: a retrospective cohort study after a 14-year follow-up. Eur J endocrinol. (2012) 167:173–80. doi: 10.1530/EJE-12-0085</Citation><ArticleIdList><ArticleId IdType="doi">10.1530/EJE-12-0085</ArticleId><ArticleId IdType="pubmed">22577110</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan T, Gao J, Cai X, Zhang H, Lu J, Lei T. The average 30-minute post-prandial C-peptide predicted diabetic retinopathy progress: a retro-prospective study. BMC endocrine Disord. (2023) 23:63. doi: 10.1186/s12902-023-01300-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-023-01300-x</ArticleId><ArticleId IdType="pmc">PMC10018901</ArticleId><ArticleId IdType="pubmed">36922809</ArticleId></ArticleIdList></Reference><Reference><Citation>Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, et al. . Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (Part 2). J Am Coll Cardiol. (2018) 72:2181–97. doi: 10.1016/j.jacc.2018.08.2147</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2018.08.2147</ArticleId><ArticleId IdType="pmc">PMC6522246</ArticleId><ArticleId IdType="pubmed">30360827</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei B, Zhou L, Shu BL, Huang QY, Chai H, Yuan HY, et al. . Association of diabetic retinopathy with plasma atherosclerotic index, visceral obesity index, and lipid accumulation products: NHANES 2005-2008. Lipids Health disease. (2024) 23:331. doi: 10.1186/s12944-024-02325-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-024-02325-4</ArticleId><ArticleId IdType="pmc">PMC11465674</ArticleId><ArticleId IdType="pubmed">39390607</ArticleId></ArticleIdList></Reference><Reference><Citation>Sasso FC, Pafundi PC, Gelso A, Bono V, Costagliola C, Marfella R, et al. . High HDL cholesterol: A risk factor for diabetic retinopathy? Findings from NO BLIND study. Diabetes Res Clin practice. (2019) 150:236–44. doi: 10.1016/j.diabres.2019.03.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2019.03.028</ArticleId><ArticleId IdType="pubmed">30904748</ArticleId></ArticleIdList></Reference><Reference><Citation>Alonso N, Traveset A, Rubinat E, Ortega E, Alcubierre N, Sanahuja J, et al. . Correction to: Type 2 diabetes-associated carotid plaque burden is increased in patients with retinopathy compared to those without retinopathy. Cardiovasc diabetology. (2018) 17:49. doi: 10.1186/s12933-018-0696-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-018-0696-x</ArticleId><ArticleId IdType="pmc">PMC5885292</ArticleId><ArticleId IdType="pubmed">29622017</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang Y, Zhang X, Li B, Zhu X, Li C, Zhou C, et al. . Association of BMI and waist circumference with diabetic microvascular complications: A prospective cohort study from the UK Biobank and Mendelian randomization analysis. Diabetes Res Clin practice. (2023) 205:110975. doi: 10.1016/j.diabres.2023.110975</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2023.110975</ArticleId><ArticleId IdType="pubmed">37884062</ArticleId></ArticleIdList></Reference><Reference><Citation>Gong D, Fang L, Cai Y, Chong I, Guo J, Yan Z, et al. . Development and evaluation of a risk prediction model for diabetes mellitus type 2 patients with vision-threatening diabetic retinopathy. Front endocrinol. (2023) 14:1244601. doi: 10.3389/fendo.2023.1244601</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1244601</ArticleId><ArticleId IdType="pmc">PMC10484608</ArticleId><ArticleId IdType="pubmed">37693352</ArticleId></ArticleIdList></Reference><Reference><Citation>Bulum T, Tomić M, Vrabec R, Brkljačić N, Ljubić S. Systolic and diastolic blood pressure are independent risk factors for diabetic retinopathy in patients with type 2 diabetes. Biomedicines. (2023) 11:2242. doi: 10.3390/biomedicines11082242</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biomedicines11082242</ArticleId><ArticleId IdType="pmc">PMC10452473</ArticleId><ArticleId IdType="pubmed">37626738</ArticleId></ArticleIdList></Reference><Reference><Citation>Turner R, Holman R, Stratton I, Cull C, Frighi V, Manley S, et al. . UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ. (1998) 317:713–20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC28660</ArticleId><ArticleId IdType="pubmed">9732338</ArticleId></ArticleIdList></Reference><Reference><Citation>Li B, Cheng X, Huang Y, Zhou C, Gu C, Zhu X, et al. . The differences of metabolic profiles, socioeconomic status and diabetic retinopathy in U.S. working-age and elderly adults with diabetes: results from NHANES 1999-2018. Acta diabetologica. (2024) 1–10. doi: 10.1007/s00592-024-02328-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00592-024-02328-8</ArticleId><ArticleId IdType="pubmed">39102050</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu YJ, Hsu CC, Hwang SJ, Lin KD, Lin PC, Huang YF, et al. . Inter-relations between dietary patterns and glycemic control-related biomarkers on risk of retinopathy in type 2 diabetes. Nutrients. (2024) 16:2274. doi: 10.3390/nu16142274</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu16142274</ArticleId><ArticleId IdType="pmc">PMC11279548</ArticleId><ArticleId IdType="pubmed">39064717</ArticleId></ArticleIdList></Reference><Reference><Citation>Platania CBM, Maisto R, Trotta MC, D'Amico M, Rossi S, Gesualdo C, et al. . Retinal and circulating miRNA expression patterns in diabetic retinopathy: An in silico and in vivo approach. Br J Pharmacol. (2019) 176:2179–94. doi: 10.1111/bph.v176.13</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/bph.v176.13</ArticleId><ArticleId IdType="pmc">PMC6555853</ArticleId><ArticleId IdType="pubmed">30883703</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39633391</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1475-2840</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>Cardiovascular diabetology</Title><ISOAbbreviation>Cardiovasc Diabetol</ISOAbbreviation></Journal><ArticleTitle>PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy.</ArticleTitle><Pagination><StartPage>432</StartPage><MedlinePgn>432</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">432</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12933-024-02514-6</ELocationID><Abstract><AbstractText Label="OBJECTIVES">The pathophysiology of diabetic cardiomyopathy (DCM) is a phenomenon of great interest, but its clinical problems have not yet been effectively addressed. Recently, the mechanism of ferroptosis in the pathophysiology of various diseases, including DCM, has attracted widespread attention. Here, we explored the role of PACS2 in ferroptosis in DCM through its downregulation of PACS2 expression.</AbstractText><AbstractText Label="METHODS AND RESULTS">Cardiomyocytes were treated with high glucose and palmitic acid (HGPA), and the detection of cardiomyocyte iron ions, lipid peroxides, and reactive oxygen species (ROS) revealed clear ferroptosis during these treatments. Silencing PACS2 downregulated CPT1A expression and upregulated DHODH expression significantly, reversing HGPA-induced ferroptosis. Further silencing of PACS2 with a CPT1A agonist exacerbated cardiomyocyte ferroptosis while promoting mitochondrial damage in cardiomyocytes. Using a mouse model of type 2 diabetes induced by streptozotocin (STZ) and a high-fat diet (HFD), we found that PACS2 deletion reversed these treatment-induced increases in cellular iron ions, impaired cardiac function, mitochondrial damage and ferroptosis in cardiac muscle tissues.</AbstractText><AbstractText Label="CONCLUSIONS">The PACS2/CPT1A/DHODH signalling pathway may be involved in ferroptosis in DCM by regulating cardiomyocyte mitochondrial function.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Xiang</LastName><ForeName>Hong</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lyu</LastName><ForeName>Qi</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Shuhua</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ouyang</LastName><ForeName>Jie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiao</LastName><ForeName>Di</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Quanjun</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Long</LastName><ForeName>HaiJiao</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zheng</LastName><ForeName>Xinru</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Xiaoping</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China. Xiaoping.Yang@hunnu.edu.cn.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lu</LastName><ForeName>Hongwei</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China. hongweilu@csu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China. hongweilu@csu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cardiovasc Diabetol</MedlineTA><NlmUniqueID>101147637</NlmUniqueID><ISSNLinking>1475-2840</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 2.3.1.21</RegistryNumber><NameOfSubstance UI="D002334">Carnitine O-Palmitoyltransferase</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.3.1.21</RegistryNumber><NameOfSubstance UI="C558401">CPT1B protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance></Chemical><Chemical><RegistryNumber>2V16EO95H1</RegistryNumber><NameOfSubstance UI="D019308">Palmitic Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000079403" MajorTopicYN="Y">Ferroptosis</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058065" MajorTopicYN="Y">Diabetic Cardiomyopathies</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D032383" MajorTopicYN="Y">Myocytes, Cardiac</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002334" MajorTopicYN="Y">Carnitine O-Palmitoyltransferase</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="Y">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018345" MajorTopicYN="Y">Mice, Knockout</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008929" MajorTopicYN="N">Mitochondria, Heart</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019308" MajorTopicYN="N">Palmitic Acid</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="N">Diet, High-Fat</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic cardiomyopathy</Keyword><Keyword MajorTopicYN="N">Ferroptosis</Keyword><Keyword MajorTopicYN="N">Mitochondria</Keyword></KeywordList><CoiStatement>Declarations. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39633391</ArticleId><ArticleId IdType="pmc">PMC11619700</ArticleId><ArticleId IdType="doi">10.1186/s12933-024-02514-6</ArticleId><ArticleId IdType="pii">10.1186/s12933-024-02514-6</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157: 107843.</Citation><ArticleIdList><ArticleId IdType="pubmed">31518657</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.</Citation><ArticleIdList><ArticleId IdType="pubmed">4263660</ArticleId></ArticleIdList></Reference><Reference><Citation>Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2914514</ArticleId><ArticleId IdType="pubmed">20180026</ArticleId></ArticleIdList></Reference><Reference><Citation>Mizamtsidi M, Paschou SA, Grapsa J, Vryonidou A. Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Invest. 2016;46(11):947–53.</Citation><ArticleIdList><ArticleId IdType="pubmed">27600276</ArticleId></ArticleIdList></Reference><Reference><Citation>Lytrivi M, Castell AL, Poitout V, Cnop M. Recent insights into mechanisms of β-cell Lipo- and glucolipotoxicity in type 2 diabetes. J Mol Biol. 2020;432(5):1514–34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7073302</ArticleId><ArticleId IdType="pubmed">31628942</ArticleId></ArticleIdList></Reference><Reference><Citation>Prentki M, Corkey BE. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996;45(3):273–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">8593930</ArticleId></ArticleIdList></Reference><Reference><Citation>Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med. 2012;172(10):761–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3688081</ArticleId><ArticleId IdType="pubmed">22636820</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: a new perspective for a new era. Mol Metab. 2019;30:250–63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6838932</ArticleId><ArticleId IdType="pubmed">31767176</ArticleId></ArticleIdList></Reference><Reference><Citation>Govindaraj J, Sorimuthu Pillai S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015;404(1–2):143–59.</Citation><ArticleIdList><ArticleId IdType="pubmed">25735949</ArticleId></ArticleIdList></Reference><Reference><Citation>Hansen JB, Dos Santos LRB, Liu Y, Prentice KJ, Teudt F, Tonnesen M, Jonas JC, Wheeler MB, Mandrup-Poulsen T. Glucolipotoxic conditions induce β-cell iron import, cytosolic ROS formation and apoptosis. J Mol Endocrinol. 2018;61(2):69–77.</Citation><ArticleIdList><ArticleId IdType="pubmed">30030388</ArticleId></ArticleIdList></Reference><Reference><Citation>Kowluru A, Kowluru RA. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem Pharmacol. 2014;88(3):275–83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10306111</ArticleId><ArticleId IdType="pubmed">24462914</ArticleId></ArticleIdList></Reference><Reference><Citation>Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart. Circulation. 2024;149(9):684–706.</Citation><ArticleIdList><ArticleId IdType="pubmed">37994595</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang Q, You W, Li Y, Sun Y, Zhou Y, Zhang Y, Liu D, Zhan S, Zhu Y, Han X. Glucolipotoxicity-inhibited miR-299-5p regulates pancreatic β-Cell function and survival. Diabetes. 2018;67(11):2280–92.</Citation><ArticleIdList><ArticleId IdType="pubmed">30131392</ArticleId></ArticleIdList></Reference><Reference><Citation>Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol. 2013;168(4):3160–72.</Citation><ArticleIdList><ArticleId IdType="pubmed">23932046</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol. 2021;20(1):2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783984</ArticleId><ArticleId IdType="pubmed">33397369</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol. 2001;1(3):181–93.</Citation><ArticleIdList><ArticleId IdType="pubmed">12213971</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart. 2018;104(4):293–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">28954833</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai L, Kang YJ. Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol. 2003;3(3):219–28.</Citation><ArticleIdList><ArticleId IdType="pubmed">14555788</ArticleId></ArticleIdList></Reference><Reference><Citation>Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J, et al. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res. 2024;55:45–60.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10770120</ArticleId><ArticleId IdType="pubmed">36828120</ArticleId></ArticleIdList></Reference><Reference><Citation>Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 2021;277: 121110.</Citation><ArticleIdList><ArticleId IdType="pubmed">34482088</ArticleId></ArticleIdList></Reference><Reference><Citation>Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3367386</ArticleId><ArticleId IdType="pubmed">22632970</ArticleId></ArticleIdList></Reference><Reference><Citation>Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5685180</ArticleId><ArticleId IdType="pubmed">28985560</ArticleId></ArticleIdList></Reference><Reference><Citation>Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672–80.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6377499</ArticleId><ArticleId IdType="pubmed">30692261</ArticleId></ArticleIdList></Reference><Reference><Citation>Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 2020;127(4):486–501.</Citation><ArticleIdList><ArticleId IdType="pubmed">32349646</ArticleId></ArticleIdList></Reference><Reference><Citation>Swaminathan S, Fonseca VA, Alam MG, Shah SV. The role of iron in diabetes and its complications. Diabetes Care. 2007;30(7):1926–33.</Citation><ArticleIdList><ArticleId IdType="pubmed">17429063</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Q, Sun L, Tan Y, Wang G, Lin X, Cai L. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr Med Chem. 2009;16(1):113–29.</Citation><ArticleIdList><ArticleId IdType="pubmed">19149565</ArticleId></ArticleIdList></Reference><Reference><Citation>White DL, Collinson A. Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts. Adv Nutr. 2013;4(4):403–11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3941820</ArticleId><ArticleId IdType="pubmed">23858089</ArticleId></ArticleIdList></Reference><Reference><Citation>Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">31634899</ArticleId></ArticleIdList></Reference><Reference><Citation>Shu Z, Chen S, Xiang H, Wu R, Wang X, Ouyang J, Zhang J, Liu H, Chen AF, Lu H. AKT/PACS2 participates in renal vascular hyperpermeability by regulating endothelial fatty acid oxidation in diabetic mice. Front Pharmacol. 2022;13: 876937.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9294407</ArticleId><ArticleId IdType="pubmed">35865947</ArticleId></ArticleIdList></Reference><Reference><Citation>Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. Embo j. 2005;24(4):717–29.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC549619</ArticleId><ArticleId IdType="pubmed">15692567</ArticleId></ArticleIdList></Reference><Reference><Citation>Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–35.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4412031</ArticleId><ArticleId IdType="pubmed">25419710</ArticleId></ArticleIdList></Reference><Reference><Citation>Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44.</Citation><ArticleIdList><ArticleId IdType="pubmed">26474213</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang K. Mitochondrial CPT1A: insights into structure, function, and basis for drug development. Front Pharmacol. 2023;14:1160440.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10076611</ArticleId><ArticleId IdType="pubmed">37033619</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25(5–6):495–520.</Citation><ArticleIdList><ArticleId IdType="pubmed">15363638</ArticleId></ArticleIdList></Reference><Reference><Citation>Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P, Rhein S. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond). 2007;113(4):205–12.</Citation><ArticleIdList><ArticleId IdType="pubmed">17319797</ArticleId></ArticleIdList></Reference><Reference><Citation>Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020;42: 101092.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7600388</ArticleId><ArticleId IdType="pubmed">33010471</ArticleId></ArticleIdList></Reference><Reference><Citation>Weber M, Mera P, Casas J, Salvador J, Rodríguez A, Alonso S, Sebastián D, Soler-Vázquez MC, Montironi C, Recalde S, et al. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. Faseb j. 2020;34(9):11816–37.</Citation><ArticleIdList><ArticleId IdType="pubmed">32666604</ArticleId></ArticleIdList></Reference><Reference><Citation>Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593(7860):586–90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8895686</ArticleId><ArticleId IdType="pubmed">33981038</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang M, Song L, Strange C, Dong X, Wang H. Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes. Mol Ther. 2018;26(8):1921–30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6094391</ArticleId><ArticleId IdType="pubmed">30005867</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng Y, Yu X, Zhang J, Chang Y, Xue M, Li X, Lu Y, Li T, Meng Z, Su L, et al. Pancreatic kallikrein protects against diabetic retinopathy in KK Cg-A(y)/J and high-fat diet/streptozotocin-induced mouse models of type 2 diabetes. Diabetologia. 2019;62(6):1074–86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6509079</ArticleId><ArticleId IdType="pubmed">30838453</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun J, Huang X, Niu C, Wang X, Li W, Liu M, Wang Y, Huang S, Chen X, Li X, et al. aFGF alleviates diabetic endothelial dysfunction by decreasing oxidative stress via Wnt/β-catenin-mediated upregulation of HXK2. Redox Biol. 2021;39: 101811.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7772795</ArticleId><ArticleId IdType="pubmed">33360774</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. The attenuation of diabetic nephropathy by Annexin A1 via regulation of lipid metabolism through the AMPK/PPARα/CPT1b pathway. Diabetes. 2021;70(10):2192–203.</Citation><ArticleIdList><ArticleId IdType="pubmed">34103347</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W. GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 2023;1878(3): 188890.</Citation><ArticleIdList><ArticleId IdType="pubmed">37001616</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian Y, Xie Y, Guo Z, Feng P, You Y, Yu Q. 17β-oestradiol inhibits ferroptosis in the hippocampus by upregulating DHODH and further improves memory decline after ovariectomy. Redox Biol. 2023;62: 102708.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10163677</ArticleId><ArticleId IdType="pubmed">37116254</ArticleId></ArticleIdList></Reference><Reference><Citation>Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X. Role of mitochondria in ferroptosis. Mol Cell. 2019;73(2):354–63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6338496</ArticleId><ArticleId IdType="pubmed">30581146</ArticleId></ArticleIdList></Reference><Reference><Citation>Zorzano A, Liesa M, Palacín M. Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance. Arch Physiol Biochem. 2009;115(1):1–12.</Citation><ArticleIdList><ArticleId IdType="pubmed">19267277</ArticleId></ArticleIdList></Reference><Reference><Citation>Diaz-Morales N, Rovira-Llopis S, Bañuls C, Escribano-Lopez I, de Marañon AM, Lopez-Domenech S, Orden S, Roldan-Torres I, Alvarez A, Veses S, et al. Are mitochondrial fusion and fission impaired in leukocytes of type 2 diabetic patients? Antioxid Redox Signal. 2016;25(2):108–15.</Citation><ArticleIdList><ArticleId IdType="pubmed">27043041</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act-protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. J Cell Sci. 2017;130(11):1865–76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5482974</ArticleId><ArticleId IdType="pubmed">28476937</ArticleId></ArticleIdList></Reference><Reference><Citation>Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc. 2009;4(11):1582–90.</Citation><ArticleIdList><ArticleId IdType="pubmed">19816421</ArticleId></ArticleIdList></Reference><Reference><Citation>Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes. 2019;20(1):5–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30311716</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu QR, Zheng DL, Liu PM, Yang H, Li LA, Kuang SJ, Lai YY, Rao F, Xue YM, Lin JJ, et al. High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy. Cell Death Dis. 2021;12(2):216.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7910592</ArticleId><ArticleId IdType="pubmed">33637715</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8897044</ArticleId><ArticleId IdType="pubmed">35256941</ArticleId></ArticleIdList></Reference><Reference><Citation>Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5284490</ArticleId><ArticleId IdType="pubmed">28131082</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39633380</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>19</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6823</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>05</Day></PubDate></JournalIssue><Title>BMC endocrine disorders</Title><ISOAbbreviation>BMC Endocr Disord</ISOAbbreviation></Journal><ArticleTitle>Glycemic control and associated factors in patients with type 2 diabetes in Southwest Ethiopia: a prospective observational study.</ArticleTitle><Pagination><StartPage>262</StartPage><MedlinePgn>262</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">262</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12902-024-01795-y</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetes, a known syndrome marked by hyperglycemia and glucose intolerance, is increasing at an alarming rate worldwide. Over half a billion people worldwide have DM, and most live in low- and middle-income countries. Poor glycemic control is a public health concern in type 2 diabetes mellitus. Glycemic control and identifying factors associated with poor glycemic control can help healthcare providers design programs that improve glycemic control and the quality of services provided to patients.</AbstractText><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">This study was designed to assess the level of glycemic control and associated factors in patients with type 2 diabetes in Jimma Medical Center, Southwest Ethiopia.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This institution-based prospective observational study was conducted among 420 patients with type 2 diabetes at Jimma Medical Center's diabetic clinics. A pretested structured interviewer-administered questionnaire was used to collect data, and a checklist was used to assess patient documents. The data were analyzed using SPSS version 26. The variables linked to poor glycemic control were investigated using binary logistic regression. Variables with p values less than 0.05 were considered statistically significant.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Six-month follow-ups were conducted among 420 patients with type 2 diabetes, among whom 220 (52.38%) were women. The median age of the participants was 54(IQR = 40-60 years old). The proportion of respondents with uncontrolled fasting blood glucose was 58.1%. Sex (AOR = 2.576, 95% CI [2.80-11.479], P = 0.001), age(≥ 60) (AOR = 2.024, 95% CI [1.794-4.646], P = 0.002), diabetes duration > 10 years (AOR = 3.036, 95% CI [2.616-8.306], P = 0.003), type 2 diabetes mellitus on insulin + oral antidiabetic (OADs) (AOR = 2.08, 95% CI [298-3.918], P = 0.004), obesity (AOR = 2.18, 95% CI [(1.218-4.218)], P = 0.003), diabetic complications (AOR = 3.193, 95% CI [2.324-6.05], p = 0.002) and poor self-care practices (AOR = 3.034, 95% CI [5.821-7.02], P = 0.005) were found to be significantly associated with poor glycemic control.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">At the Jimma Medical Center, the prevalence of poor glycemic control was high. Based on these findings, teaching and counseling provided by healthcare providers should focus on improving diabetes self-care activities, weight reduction, and diabetic complications to achieve good glycemic control.</AbstractText><AbstractText Label="CLINICAL TRIAL NUMBER" NlmCategory="BACKGROUND">Not applicable.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Garedo</LastName><ForeName>Aster Wakjira</ForeName><Initials>AW</Initials><AffiliationInfo><Affiliation>School of Pharmacy, Jimma University, Jimma, Ethiopia. asterwakjira@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium. asterwakjira@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tesfaye</LastName><ForeName>Gorfineh Teshome</ForeName><Initials>GT</Initials><AffiliationInfo><Affiliation>Jimma University Medical Center, Jimma, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tamrat</LastName><ForeName>Rahel</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Jimma University School of Medical Laboratory, Jimma, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wynendaele</LastName><ForeName>Evelien</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Translational Research in Immunosenescence, Gerontology and Geriatrics (TRIGG) group, Ghent University Hospital, Ghent, Belgium.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Endocr Disord</MedlineTA><NlmUniqueID>101088676</NlmUniqueID><ISSNLinking>1472-6823</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005002" MajorTopicYN="N" Type="Geographic">Ethiopia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Ethiopia</Keyword><Keyword MajorTopicYN="N">Glycemic control</Keyword><Keyword MajorTopicYN="N">Risk factors</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: The International Council on Harmonization Guidelines for Good Clinical Practice and the Declaration of Helsinki were followed when conducting the study. The Jimma University Institutional Review Board (IRB) granted ethical approval as per protocol (IRB000/249/2023) prior to data collection. A research aim explanation was produced and distributed to all eligible participants in the form of an information sheet. We obtained informed consent from each participant. Parents or legal guardians provided informed consent for participants aged below 18 years. Patient confidentiality was maintained by utilizing the patients’ identification cards. Consent to publish: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>52</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>5</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39633380</ArticleId><ArticleId IdType="pmc">PMC11619663</ArticleId><ArticleId IdType="doi">10.1186/s12902-024-01795-y</ArticleId><ArticleId IdType="pii">10.1186/s12902-024-01795-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Chandio M, Kumar L, Khuwaja S, Memon UA, Bai K, Kashif M et al. Advances in the management of diabetes Mellitus : a focus on Personalized Medicine. 2023;15(8). 10.7759/cureus.43697</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10505357</ArticleId><ArticleId IdType="pubmed">37724233</ArticleId></ArticleIdList></Reference><Reference><Citation>Aloke C, Egwu CO, Aja PM, Obasi NA, Chukwu J, Akumadu BO, et al. Curr Adv Manage Diabetes Mellitus. 2022;1–13. 10.3390/biomedicines10102436.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9599361</ArticleId><ArticleId IdType="pubmed">36289697</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO. Global Report on Diabetes. Isbn. 2022;978(May):6–86. https://www.who.int/publications/i/item/9789241565257</Citation></Reference><Reference><Citation>Yu J, Lee SH, Kim MK. Recent updates to clinical practice guidelines for diabetes Mellitus. Endocrinol Metab (Seoul). 2022;37(1):26–37. 10.3803/enm.2022.105.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8901964</ArticleId><ArticleId IdType="pubmed">35255599</ArticleId></ArticleIdList></Reference><Reference><Citation>IDF. IDF Diabetes Atlas IDF Diabetes Atlas. 2021.</Citation></Reference><Reference><Citation>Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(04):174–88. 10.4103/ajm.ajm_53_20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7791288</ArticleId><ArticleId IdType="pubmed">33437689</ArticleId></ArticleIdList></Reference><Reference><Citation>Care D, Suppl SS. Microvascular Complications and Foot Care : Standards of Medical Care in Diabetes d 2021. 2021;44(January):151–67. 10.2337/dc21-s011</Citation></Reference><Reference><Citation>Mahgoub MO, Ali II, Adeghate JO, Tekes K, Kalász H, Adeghate EA. An update on the Molecular and Cellular basis of Pharmacotherapy in type 2 diabetes Mellitus. Int J Mol Sci. 2023;24(11). 10.3390/ijms24119328.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10253663</ArticleId><ArticleId IdType="pubmed">37298274</ArticleId></ArticleIdList></Reference><Reference><Citation>Talukder A, Hossain MZ. Prevalence of diabetes Mellitus and its Associated factors in Bangladesh: application of two-level logistic regression model. Sci Rep. 2020;10(1):1–7. 10.1038/s41598-020-66084-9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7314753</ArticleId><ArticleId IdType="pubmed">32581295</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmad F, Joshi SH. Self-Care practices and their role in the control of diabetes: a narrative review. Cureus. 2023;15(7):e41409. 10.7759/cureus.41409.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10402910</ArticleId><ArticleId IdType="pubmed">37546053</ArticleId></ArticleIdList></Reference><Reference><Citation>Abera RG, Demesse ES, Boko WD. Evaluation of glycemic control and related factors among outpatients with type 2 diabetes at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia: a cross-sectional study. BMC Endocr Disord. 2022;22:54. 10.1186/s12902-022-00974-z.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8898656</ArticleId><ArticleId IdType="pubmed">35249547</ArticleId></ArticleIdList></Reference><Reference><Citation>Fekadu G, Bula K, Bayisa G, Turi E, Tolossa T, Kasaye HK. Challenges and factors Associated with Poor Glycemic Control among type 2 diabetes Mellitus patients at Nekemte Referral Hospital, Western Ethiopia. J Multidiscip Healthc. 2019;12:963–74. 10.2147/jmdh.s232691.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6878927</ArticleId><ArticleId IdType="pubmed">31819470</ArticleId></ArticleIdList></Reference><Reference><Citation>Shita NG, Iyasu AS. Glycemic control and its associated factors in type 2 diabetes patients at Felege Hiwot and Debre Markos Referral Hospitals. Sci Rep. 2022;12(1):9459. 10.1038/s41598-022-13673-5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9177638</ArticleId><ArticleId IdType="pubmed">35676526</ArticleId></ArticleIdList></Reference><Reference><Citation>Bitew ZW, Alemu A, Jember DA, et al. Prevalence of Glycemic Control and factors Associated with Poor Glycemic Control: a systematic review and Meta-analysis. INQUIRY: J Health Care Organ Provis Financing. 2023;60. 10.1177/00469580231155716.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10071101</ArticleId><ArticleId IdType="pubmed">36852627</ArticleId></ArticleIdList></Reference><Reference><Citation>Yahaya JJ, Doya IF, Morgan ED, Ngaiza AI, Bintabara D. Poor glycemic control and associated factors among patients with type 2 diabetes mellitus : a cross sectional study. Sci Rep. 2023;01234567891–10. 10.1038/s41598-023-36675-3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10267215</ArticleId><ArticleId IdType="pubmed">37316565</ArticleId></ArticleIdList></Reference><Reference><Citation>Sendekie AK, Belachew EA, Dagnew EM. Rate of glycemic control and associated factors in patients with type 2 diabetes mellitus treated with insulin-based therapy at selected hospitals in Northwest Ethiopia: a multicentre cross-sectional study. BMJ Open. 2022;12:e065250. 10.1136/bmjopen-2022-065250.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9454077</ArticleId><ArticleId IdType="pubmed">36691186</ArticleId></ArticleIdList></Reference><Reference><Citation>Lubaki F, Pierre J, Lubaki F, Omole OB, Francis JM. Glycemic control among type 2 diabetes patients in sub. Diabetol Metabolic Syndrome BioMed Cent. 2022;1–78. 10.1186/s13098-022-00902-0. Saharan Africa from 2012 to 2022 : a systematic review and meta analysis.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9487067</ArticleId><ArticleId IdType="pubmed">36127712</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–86. 10.2337/dci22-0034.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10008140</ArticleId><ArticleId IdType="pubmed">36148880</ArticleId></ArticleIdList></Reference><Reference><Citation>Lubaki JF, Omole OB, Msa J. Poor glycemic control : prevalence, factors and implications for the care of patients with type 2 diabetes in Kinshasa, Democratic Republic of the Congo : a cross-sectional study. 2023;(November):1–13. 10.3389/fcdhc.2023.1241882</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10699440</ArticleId><ArticleId IdType="pubmed">38076524</ArticleId></ArticleIdList></Reference><Reference><Citation>Usman MS, Khan MS, Butler J. The Interplay between Diabetes, Cardiovascular Disease, and kidney disease. ADA Clin Compend. 2021;2021(1):13–8. 10.2337/db20211-13. https://www.ncbi.nlm.nih.gov/books/NBK571718/.</Citation><ArticleIdList><ArticleId IdType="pubmed">34279879</ArticleId></ArticleIdList></Reference><Reference><Citation>Dimore AL, Edosa ZK, Mitiku AA. Glycemic control and diabetes complications among adult type 2 diabetic patients at public hospitals in Hadiya Zone, Southern Ethiopia. PLoS ONE. 2023;18(3):e0282962. 10.1371/journal.pone.0282962.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10035868</ArticleId><ArticleId IdType="pubmed">36952453</ArticleId></ArticleIdList></Reference><Reference><Citation>Poonoosamy J, Lopes P, Huret P, Dardari R, Penfornis A, Thomas C, et al. Impact of Intensive Glycemic Treatment on Diabetes Complications-A systematic review. Pharmaceutics. 2023;15(7). 10.3390/pharmaceutics15071791.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10383300</ArticleId><ArticleId IdType="pubmed">37513978</ArticleId></ArticleIdList></Reference><Reference><Citation>Bin Rakhis SAS, AlDuwayhis NM, Aleid N, AlBarrak AN, Aloraini AA. Glycemic Control for type 2 diabetes Mellitus patients: a systematic review. Cureus. 2022. 10.7759/cureus.26180.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9304683</ArticleId><ArticleId IdType="pubmed">35891859</ArticleId></ArticleIdList></Reference><Reference><Citation>Care D, Suppl SS, Brown FM, Bruemmer D, Collins BS, Hilliard ME, et al. Glycemic Targets : Stand Care Diabetes. 2023;46(January):97–110. 10.2337/dc23-s006.</Citation></Reference><Reference><Citation>Alteman RAAAH. The prevalence and determinants of poor glycemic control among adults with type 2 diabetes mellitus in Saudi Arabia. Diabetes, Metab Syndr Obes Targets Ther. 2018;15–21. 10.2147/dmso.s156214</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5797462</ArticleId><ArticleId IdType="pubmed">29430192</ArticleId></ArticleIdList></Reference><Reference><Citation>Yosef T. Poor Glycemic Control and its contributing factors among type 2 diabetes patients at Adama Hospital Medical College in East Ethiopia. 2021;3273–80. 10.2147/dmso.s321756</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8289306</ArticleId><ArticleId IdType="pubmed">34290512</ArticleId></ArticleIdList></Reference><Reference><Citation>Salama MS, Isunju JB, David SK, Muneza F, Ssemanda S, Tumwesigye NM. Prevalence and factors associated with alcohol consumption among persons with diabetes in Kampala, Uganda: a cross sectional study. BMC Public Health. 2021;21(1):1–10. 10.1186/s12889-021-10761-5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8045270</ArticleId><ArticleId IdType="pubmed">33853561</ArticleId></ArticleIdList></Reference><Reference><Citation>Weir CB, Jan A. StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK541070/. BMI Classification Percentile And Cut Off Points. [Updated 2023 Jun 26].</Citation><ArticleIdList><ArticleId IdType="pubmed">31082114</ArticleId></ArticleIdList></Reference><Reference><Citation>Dubale M, Gizaw K, Dessalegn D. Magnitude and predictors of poor glycemic control in patients with diabetes at Jimma Medical Center, Ethiopia. Sci Rep. 2023;13(1):1–11. 10.1038/s41598-023-42774-y</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10518326</ArticleId><ArticleId IdType="pubmed">37743416</ArticleId></ArticleIdList></Reference><Reference><Citation>Bitew ZW, Alemu A, Jember DA, Tadesse E, Getaneh FB, Seid A et al. Prevalence of Glycemic Control and factors Associated with Poor Glycemic Control : a systematic review and Meta-analysis. 2023. 10.1007/978-1-4615-9110-8_12</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10071101</ArticleId><ArticleId IdType="pubmed">36852627</ArticleId></ArticleIdList></Reference><Reference><Citation>Muringo M, Mutai J, Gachoh i J. Factors Associated with glycated hemoglobin levels > 6.5% among Diabetic patients attending Kenyatta National Hospital, Kenya. J Diabetes Mellitus. 2021;11:10–25. 10.4236/jdm.2021.111002.</Citation></Reference><Reference><Citation>Marjanović M, Đido V, Lang VB, Martinović Ž, Ovčina A. The Association of Clinical Characteristics and Lifestyle habits with poor glycemic control in patients with type 2. Diabetes Mellitus. 2021;3(1):79–84. 10.1016/S0140-6736(12)60283-9.</Citation></Reference><Reference><Citation>Hamid A, Dawson AZ, Xu Y, Egede LE. Independent Correlates of Glycemic Control among adults with diabetes in South Africa. Int J Environ Res Public Health. 2024;21(4):486. 10.3390/ijerph21040486.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11050191</ArticleId><ArticleId IdType="pubmed">38673397</ArticleId></ArticleIdList></Reference><Reference><Citation>Id SN, Birhan N, Amare F, Id GM. Rate of glycemic control and associated factors among type two diabetes mellitus patients in Ethiopia : a cross sectional study. 2021;177:1–12. 10.1371/journal.pone.0251506</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8112661</ArticleId><ArticleId IdType="pubmed">33974654</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL et al. Pharmacologic approaches to Glycemic Treatment : standards of Care in Diabetes — 2023. 2023;46(January):140–57. 10.2337/dc23-s009</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9810476</ArticleId><ArticleId IdType="pubmed">36507650</ArticleId></ArticleIdList></Reference><Reference><Citation>Awang H, Muda R, Rusli N. Epidemiology of poor glycemic control among patients with type 2 diabetes Mellitus in Terengganu State of Malaysia. 2022;4(5):89–94. 10.24018/ejmed.2022.4.5.1499</Citation></Reference><Reference><Citation>Dauod AS. Glycemic control among type 2 diabetic patients attending the Family Medicine Health Center and the Diabetic Health Center in Erbil, Iraq : a comparative study. 2018;22(3). 10.24018/ejmed.2022.4.5.1499</Citation></Reference><Reference><Citation>Fredrick C, Otieno T, Mikhail K, Acharya J, Muga N, Ngugi E, Njenga. Suboptimal glycemic control and prevalence of diabetes-related complications in Kenyan population with diabetes: cohort analysis of the seventh wave of the International Diabetes Management practices Study (IDMPS). Endocr Metabolic Sci. 2021;3:100093. 10.1016/j.endmts.2021.100093.</Citation></Reference><Reference><Citation>Abadiga A, Mosisa M, Etafa G. W. Magnitude and prOedictors of poor glycemic control among patients with diabetes attending public hospitals of Western Ethiopia. PLoS One. 2021;16(2):e0247634. 10.1371/journal.pone.0247634</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7906479</ArticleId><ArticleId IdType="pubmed">33630936</ArticleId></ArticleIdList></Reference><Reference><Citation>Sendekie AK, Teshale AB, Tefera YG. Glycemic control in newly insulin-initiated patients with type 2 diabetes mellitus: a retrospective follow-up study at a university hospital in Ethiopia. PLoS ONE. 2022;17(5):e0268639. 10.1371/journal.pone.0268639.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9135271</ArticleId><ArticleId IdType="pubmed">35617250</ArticleId></ArticleIdList></Reference><Reference><Citation>Choe SA, Kim JY, Ro YS, Cho SI. Women are less likely than men to achieve optimal glycemic control after 1 year of treatment: a multi-level analysis of a Korean primary care cohort. PLoS ONE. 2018;13(5):e0196719. https://doi.org/10.1371%2Fjournal.pone.0196719.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5931663</ArticleId><ArticleId IdType="pubmed">29718952</ArticleId></ArticleIdList></Reference><Reference><Citation>Joung KI, Jung GW, Park HH, et al. Gender differences in adverse event reports associated with antidiabetic drugs. Sci Rep. 2020;10:17545. 10.1038/s41598-020-74000-4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7567832</ArticleId><ArticleId IdType="pubmed">33067519</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39633372</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1475-2840</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>Cardiovascular diabetology</Title><ISOAbbreviation>Cardiovasc Diabetol</ISOAbbreviation></Journal><ArticleTitle>SGLT2 inhibitor downregulates ANGPTL4 to mitigate pathological aging of cardiomyocytes induced by type 2 diabetes.</ArticleTitle><Pagination><StartPage>430</StartPage><MedlinePgn>430</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">430</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12933-024-02520-8</ELocationID><Abstract><AbstractText Label="BACKGROUND">Senescence is recognized as a principal risk factor for cardiovascular diseases, with a significant association between the senescence of cardiomyocytes and inferior cardiac function. Furthermore, type 2 diabetes exacerbates this aging process. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) has well-established cardiovascular benefits and, in recent years, has been posited to possess anti-aging properties. However, there are no reported data on their improvement of cardiomyocytes function through the alleviation of aging. Consequently, our study aims to investigate the mechanism by which SGLT2i exerts anti-aging and protective effects at the cardiac level through its action on the FOXO1-ANGPTL4 pathway.</AbstractText><AbstractText Label="METHODS">To elucidate the underlying functions and mechanisms, we established both in vivo and in vitro disease models, utilizing mice with diabetic cardiomyopathy (DCM) induced by type 2 diabetes mellitus (T2DM) through high-fat diet combined with streptozotocin (STZ) administration, and AC16 human cardiomyocyte cell subjected to stimulation with high glucose (HG) and palmitic acid (PA). These models were employed to assess the changes in the senescence phenotype of cardiomyocytes and cardiac function following treatment with SGLT2i. Concurrently, we identified ANGPTL4, a key factor contributing to senescence in DCM, using RNA sequencing (RNA-seq) technology and bioinformatics methods. We further clarified ANGPTL4 role in promoting pathological aging of cardiomyocytes induced by hyperglycemia and hyperlipidemia through knockdown and overexpression of the factor, as well as analyzed the impact of SGLT2i intervention on ANGPTL4 expression. Additionally, we utilized chromatin immunoprecipitation followed by quantitative real-time PCR (ChIP-qPCR) to confirm that FOXO1 is essential for the transcriptional activation of ANGPTL4.</AbstractText><AbstractText Label="RESULTS">The therapeutic intervention with SGLT2i alleviated the senescence phenotype in cardiomyocytes of the DCM mouse model constructed by high-fat feeding combined with STZ, as well as in the AC16 model stimulated by HG and PA, while also improving cardiac function in DCM mice. We observed that the knockdown of ANGPTL4, a key senescence-promoting factor in DCM identified through RNA-seq technology and bioinformatics, mitigated the senescence of cardiomyocytes, whereas overexpression of ANGPTL4 exacerbated it. Moreover, SGLT2i improved the senescence phenotype by suppressing the overexpression of ANGPTL4. In fact, we discovered that SGLT2i exert their effects by regulating the upstream transcription factor FOXO1 of ANGPTL4. Under conditions of hyperglycemia and hyperlipidemia, compared to the control group without FOXO1, the overexpression of FOXO1 in conjunction with SGLT2i intervention significantly reduced both ANGPTL4 mRNA and protein levels. This suggests that the FOXO1-ANGPTL4 axis may be a potential target for the cardioprotective effects of SGLT2i.</AbstractText><AbstractText Label="CONCLUSIONS">Collectively, our study demonstrates that SGLT2i ameliorate the pathological aging of cardiomyocytes induced by a high glucose and high fat metabolic milieu by regulating the interaction between FOXO1 and ANGPTL4, thereby suppressing the transcriptional synthesis of the latter, and consequently restoring cardiac function.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wen</LastName><ForeName>Yun</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xiaofang</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Han</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ye</LastName><ForeName>Haowen</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Ruxin</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ma</LastName><ForeName>Caixia</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Duo</LastName><ForeName>Tianqi</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jiaxin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Xian</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Meixin</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Ying</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Liangyan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Yongting</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Lihong</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China. nd6688@163.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China. nd6688@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>82200417</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>2023A04J1280</GrantID><Agency>Science and Technology Projects in Guangzhou</Agency><Country/></Grant><Grant><GrantID>808026</GrantID><Agency>Talent introduction funding project of the First Affiliated Hospital of Jinan University</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cardiovasc Diabetol</MedlineTA><NlmUniqueID>101147637</NlmUniqueID><ISSNLinking>1475-2840</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000075803">Angiopoietin-Like Protein 4</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000071161">Forkhead Box Protein O1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C407088">Angptl4 protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C467200">Foxo1 protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C490299">Slc5a2 protein, mouse</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C474772">ANGPTL4 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D051297">Sodium-Glucose Transporter 2</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005960">Glucosides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D032383" MajorTopicYN="Y">Myocytes, Cardiac</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000075803" MajorTopicYN="Y">Angiopoietin-Like Protein 4</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058065" MajorTopicYN="Y">Diabetic Cardiomyopathies</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016922" MajorTopicYN="Y">Cellular Senescence</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="Y">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015536" MajorTopicYN="Y">Down-Regulation</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000071161" MajorTopicYN="Y">Forkhead Box Protein O1</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051297" MajorTopicYN="N">Sodium-Glucose Transporter 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">ANGPTL4</Keyword><Keyword MajorTopicYN="N">Cellular senescence</Keyword><Keyword MajorTopicYN="N">Diabetic cardiomyopathy</Keyword><Keyword MajorTopicYN="N">FOXO1</Keyword><Keyword MajorTopicYN="N">SGLT2i</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: Jinan University Experimental Animal Welfare Ethics Committee approved all animal experiments in this study (IACUC-20220512-06). Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>52</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39633372</ArticleId><ArticleId IdType="pmc">PMC11619200</ArticleId><ArticleId IdType="doi">10.1186/s12933-024-02520-8</ArticleId><ArticleId IdType="pii">10.1186/s12933-024-02520-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol. 2022;19(4):250–64.</Citation><ArticleIdList><ArticleId IdType="pubmed">34667279</ArticleId></ArticleIdList></Reference><Reference><Citation>Hughes MJ, McGettrick HM, Sapey E. Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. Eur Respir Rev. 2020;29(155):190102.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9488696</ArticleId><ArticleId IdType="pubmed">32198215</ArticleId></ArticleIdList></Reference><Reference><Citation>Henson SM, Aksentijevic D. Senescence and type 2 diabetic cardiomyopathy: how young can you die of old age. Front Pharmacol. 2021;12:716517.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8529062</ArticleId><ArticleId IdType="pubmed">34690759</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Zheng Y, Wang S, et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell. 2023;14(4):279–93.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10120965</ArticleId><ArticleId IdType="pubmed">37084237</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res. 2022;118(5):1173–87.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8953446</ArticleId><ArticleId IdType="pubmed">33963378</ArticleId></ArticleIdList></Reference><Reference><Citation>Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4852871</ArticleId><ArticleId IdType="pubmed">25417146</ArticleId></ArticleIdList></Reference><Reference><Citation>Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15(9):1082–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">19718037</ArticleId></ArticleIdList></Reference><Reference><Citation>Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17(3):e12746.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5946078</ArticleId><ArticleId IdType="pubmed">29575469</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo S, Deng W, Xing C, Zhou Y, Ning M, Lo EH. Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiol Dis. 2019;126:117–23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8112192</ArticleId><ArticleId IdType="pubmed">30031157</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Liu C, Liu C, Wang Y, Zhang W, Xing Y. Trimetazidine and l–carnitine prevent heart aging and cardiac metabolic impairment in rats via regulating cardiac metabolic substrates. Exp Gerontol. 2019;119:120–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">30639303</ArticleId></ArticleIdList></Reference><Reference><Citation>Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124(8):1160–2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6578576</ArticleId><ArticleId IdType="pubmed">30973809</ArticleId></ArticleIdList></Reference><Reference><Citation>Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5819359</ArticleId><ArticleId IdType="pubmed">29449364</ArticleId></ArticleIdList></Reference><Reference><Citation>Rådholm K, Figtree G, Perkovic V, et al. Canagliflozin and heart failure in type 2 diabetes Mellitus: results from the CANVAS program. Circulation. 2018;138(5):458–68.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6075881</ArticleId><ArticleId IdType="pubmed">29526832</ArticleId></ArticleIdList></Reference><Reference><Citation>Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms. Diabetologia. 2016;59(7):1333–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4901113</ArticleId><ArticleId IdType="pubmed">27112340</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaplinsky E. DAPA-HF trial: dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context. 2020;9:2019–11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7051244</ArticleId><ArticleId IdType="pubmed">32165892</ArticleId></ArticleIdList></Reference><Reference><Citation>Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel GA, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: a proposed process and prioritization. Aging Cell. 2022;21(4):e13596.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9009114</ArticleId><ArticleId IdType="pubmed">35343051</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasan R, Lasker S, Hasan A, et al. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci Rep. 2020;10(1):14459.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7468124</ArticleId><ArticleId IdType="pubmed">32879422</ArticleId></ArticleIdList></Reference><Reference><Citation>Ndibalema AR, Kabuye D, Wen S, Li L, Li X, Fan Q. Empagliflozin protects against proximal renal tubular cell Injury Induced by high glucose via regulation of Hypoxia-Inducible factor 1-Alpha. Diabetes Metab Syndr Obes. 2020;13:1953–67.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7297363</ArticleId><ArticleId IdType="pubmed">32606855</ArticleId></ArticleIdList></Reference><Reference><Citation>Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6359811</ArticleId><ArticleId IdType="pubmed">30710997</ArticleId></ArticleIdList></Reference><Reference><Citation>Klimontov VV, Korbut AI, Taskaeva IS, et al. Empagliflozin alleviates podocytopathy and enhances glomerular nephrin expression in db/db diabetic mice. World J Diabetes. 2020;11(12):596–610.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7754166</ArticleId><ArticleId IdType="pubmed">33384767</ArticleId></ArticleIdList></Reference><Reference><Citation>Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep. 2016;6:26428.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4881020</ArticleId><ArticleId IdType="pubmed">27226136</ArticleId></ArticleIdList></Reference><Reference><Citation>Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.</Citation><ArticleIdList><ArticleId IdType="pubmed">28605608</ArticleId></ArticleIdList></Reference><Reference><Citation>Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming. EBioMedicine. 2022;83:104215.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9396537</ArticleId><ArticleId IdType="pubmed">35973390</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoong C, Chua M. SGLT2 inhibitors as calorie restriction mimetics: insights on Longevity pathways and age-related diseases. Endocrinology. 2021;162(8):bqab079.</Citation><ArticleIdList><ArticleId IdType="pubmed">33857309</ArticleId></ArticleIdList></Reference><Reference><Citation>Mazzieri A, Basta G, Calafiore R, Luca G. GLP-1 RAs and SGLT2i: two antidiabetic agents associated with immune and inflammation modulatory properties through the common AMPK pathway. Front Immunol. 2023;14:1163288.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10694219</ArticleId><ArticleId IdType="pubmed">38053992</ArticleId></ArticleIdList></Reference><Reference><Citation>Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3832985</ArticleId><ArticleId IdType="pubmed">22932268</ArticleId></ArticleIdList></Reference><Reference><Citation>Kraus WE, Bhapkar M, Huffman KM, et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(9):673–83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6707879</ArticleId><ArticleId IdType="pubmed">31303390</ArticleId></ArticleIdList></Reference><Reference><Citation>Katsuumi G, Shimizu I, Suda M et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat Aging. 2024.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11257941</ArticleId><ArticleId IdType="pubmed">38816549</ArticleId></ArticleIdList></Reference><Reference><Citation>Long J, Ren Z, Duan Y et al. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. Geroscience. 2024.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11336130</ArticleId><ArticleId IdType="pubmed">38922380</ArticleId></ArticleIdList></Reference><Reference><Citation>Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators, Stitziel NO, et al. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374(12):1134–44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4850838</ArticleId><ArticleId IdType="pubmed">26934567</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewey FE, Gusarova V, O’Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4900689</ArticleId><ArticleId IdType="pubmed">26933753</ArticleId></ArticleIdList></Reference><Reference><Citation>Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol Med. 2019;25(8):723–34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6779329</ArticleId><ArticleId IdType="pubmed">31235370</ArticleId></ArticleIdList></Reference><Reference><Citation>Basu D, Huggins LA, Scerbo D, et al. Mechanism of increased LDL (low-Density lipoprotein) and decreased triglycerides with SGLT2 (sodium-Glucose cotransporter 2) inhibition. Arterioscler Thromb Vasc Biol. 2018;38(9):2207–16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6207215</ArticleId><ArticleId IdType="pubmed">30354257</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuo T, Chen TC, Yan S, et al. Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin. J Lipid Res. 2014;55(5):919–28.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3995469</ArticleId><ArticleId IdType="pubmed">24565756</ArticleId></ArticleIdList></Reference><Reference><Citation>Sajan MP, Lee MC, Foufelle F, Sajan J, Cleland C, Farese RV. Coordinated regulation of hepatic FoxO1, PGC-1α and SREBP-1c facilitates insulin action and resistance. Cell Signal. 2018;43:62–70.</Citation><ArticleIdList><ArticleId IdType="pubmed">29269047</ArticleId></ArticleIdList></Reference><Reference><Citation>Bamba R, Okamura T, Hashimoto Y, et al. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice. J Cachexia Sarcopenia Muscle. 2022;13(1):574–88.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8818690</ArticleId><ArticleId IdType="pubmed">34854254</ArticleId></ArticleIdList></Reference><Reference><Citation>Vallon V. State-of-the-Art-Review: mechanisms of action of SGLT2 inhibitors and clinical implications. Am J Hypertens. 2024;37(11):841–52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11471837</ArticleId><ArticleId IdType="pubmed">39017631</ArticleId></ArticleIdList></Reference><Reference><Citation>Joubert M, Jagu B, Montaigne D, et al. The sodium-glucose cotransporter 2 inhibitor Dapagliflozin prevents cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes. 2017;66(4):1030–40.</Citation><ArticleIdList><ArticleId IdType="pubmed">28052965</ArticleId></ArticleIdList></Reference><Reference><Citation>Battiprolu PK, Hojayev B, Jiang N, et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 2012;122(3):1109–18.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3287230</ArticleId><ArticleId IdType="pubmed">22326951</ArticleId></ArticleIdList></Reference><Reference><Citation>Qi Y, Zhu Q, Zhang K, et al. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and β-myosin heavy chain gene expression. Circ Heart Fail. 2015;8(1):198–208.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9241109</ArticleId><ArticleId IdType="pubmed">25477432</ArticleId></ArticleIdList></Reference><Reference><Citation>Aryal B, Rotllan N, Araldi E, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4974469</ArticleId><ArticleId IdType="pubmed">27460411</ArticleId></ArticleIdList></Reference><Reference><Citation>Landfors F, Henneman P, Chorell E, Nilsson SK, Kersten S. Drug-target mendelian randomization analysis supports lowering plasma ANGPTL3, ANGPTL4, and APOC3 levels as strategies for reducing cardiovascular disease risk. Eur Heart J Open. 2024;4(3):oeae035.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11182694</ArticleId><ArticleId IdType="pubmed">38895109</ArticleId></ArticleIdList></Reference><Reference><Citation>Dai L, Xie Y, Zhang W, et al. Weighted gene co-expression network analysis identifies ANGPTL4 as a key regulator in diabetic cardiomyopathy via FAK/SIRT3/ROS pathway in cardiomyocyte. Front Endocrinol (Lausanne). 2021;12:705154.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8488438</ArticleId><ArticleId IdType="pubmed">34616362</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39633354</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6823</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>BMC endocrine disorders</Title><ISOAbbreviation>BMC Endocr Disord</ISOAbbreviation></Journal><ArticleTitle>The potential of insulin resistance indices to predict non-alcoholic fatty liver disease in patients with type 2 diabetes.</ArticleTitle><Pagination><StartPage>261</StartPage><MedlinePgn>261</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">261</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12902-024-01794-z</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The triglyceride-glucose (TyG) index and related parameters, as well as the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), have been developed as insulin resistance markers to identify individuals at risk for non-alcoholic fatty liver disease (NAFLD). However, its use for predicting NAFLD in patients with type 2 diabetes mellitus (T2DM) remains unclear. In this study, we aimed to observe the performance of insulin resistance indices in diagnosing NAFLD combined with T2DM and to compare their diagnostic values in clinical practice.</AbstractText><AbstractText Label="PATIENTS AND METHODS" NlmCategory="METHODS">Overall, 268 patients with T2DM from the Endocrinology Department of Jiangsu Provincial Hospital of Traditional Chinese Medicine were enrolled in this study and divided into two groups: an NAFLD group (T2DM with NAFLD) and a T2DM group (T2DM without NAFLD). General information and blood indicators of the participants were collected, and insulin resistance indices were calculated based on these data. Receiver operating characteristic (ROC) analysis was conducted to calculate the area under the curve (AUC) for insulin resistance-related indices, aiming to assess their ability to discriminate between T2DM patients with and without NAFLD.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">ROC analysis revealed that among the five insulin resistance-related indices, four parameters (TyG, TyG-body mass index [BMI], TyG-waist circumference [WC], and TyG- (waist-hip ratio [WHR]) exhibited high predictive performance for identifying NAFLD, except for HOMA-IR (AUCs:0.710,0.738,0.737 and 0.730, respectivly). TyG-BMI demonstrated superior predictive value, especially in males. For males, the AUC for TyG-BMI was 0.764 (95% confidence interval [CI] 0.691-0.827). The sensitivity and specificity for male NAFLD were 90.32% and 47.89%, respectively. Moreover, in the Generalized linear regression models, there were positive associations of TyG, TyG-BMI, TyG-WC, TyG-WHR, and HOMA-IR with controlled attenuation parameter (CAP), with β values of 21.30, 0.745, 0.247, and 2.549 (all P < 0.001), respectively.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">TyG-BMI is a promising predictor of NAFLD combined with T2DM, particularly in lean male patients.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Tian</LastName><ForeName>Jie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Cao</LastName><ForeName>Yutian</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Wenhui</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Aiyao</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Xinyi</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dong</LastName><ForeName>Yinfeng</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China. dongyf@njucm.edu.cn.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Xiqiao</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. zhouxiqiao@njucm.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China. zhouxiqiao@njucm.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Endocr Disord</MedlineTA><NlmUniqueID>101088676</NlmUniqueID><ISSNLinking>1472-6823</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014280">Triglycerides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065626" MajorTopicYN="Y">Non-alcoholic Fatty Liver Disease</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014280" MajorTopicYN="N">Triglycerides</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055105" MajorTopicYN="N">Waist Circumference</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012372" MajorTopicYN="N">ROC Curve</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">BMI</Keyword><Keyword MajorTopicYN="N">Non-alcoholic fatty liver disease</Keyword><Keyword MajorTopicYN="N">ROC curves</Keyword><Keyword MajorTopicYN="N">TyG index-related parameters</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: The study protocol was approved by the Ethics Committee of Jiangsu Province Hospital of Traditional Chinese Medicine, with a waiver of informed consent. All methods were conducted in accordance with relevant guidelines and regulations. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>51</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39633354</ArticleId><ArticleId IdType="pmc">PMC11616383</ArticleId><ArticleId IdType="doi">10.1186/s12902-024-01794-z</ArticleId><ArticleId IdType="pii">10.1186/s12902-024-01794-z</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Quek J, Chan KE, Wong ZY, Tan C, Tan B, Lim WH, Tan DJH, Tang ASP, Tay P, Xiao J, Yong JN, Zeng RW, Chew NWS, Nah B, Kulkarni A, Siddiqui MS, Dan YY, Wong VW-S, Sanyal AJ, Noureddin M, Muthiah M, Ng CH. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. The lancet Gastroenterology & hepatology. 2023;8:20–30.</Citation><ArticleIdList><ArticleId IdType="pubmed">36400097</ArticleId></ArticleIdList></Reference><Reference><Citation>Eslam M, Sanyal AJ, George J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty. Gastroenterology. 2020;158(7):1999–2014. 10.1053/j.gastro.2019.11.312.</Citation><ArticleIdList><ArticleId IdType="pubmed">32044314</ArticleId></ArticleIdList></Reference><Reference><Citation>Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, Abdelmalek MF, Anstee QM, Arab JP, Arrese M, et al. A multisociety Delphi consensus statement on new fatty liver disease. J Hepatol. 2023;79(6):1542–56. 10.1016/j.jhep.2023.06.003.</Citation><ArticleIdList><ArticleId IdType="pubmed">37364790</ArticleId></ArticleIdList></Reference><Reference><Citation>Sherlot SJ, Lai JC, Wong GL, Wong VW, Yip TC. Can we use old NAFLD data under the new MASLD definition. J Hepatol. 2024;80(2):e54–6. 10.1016/j.jhep.2023.07.021.</Citation><ArticleIdList><ArticleId IdType="pubmed">37541393</ArticleId></ArticleIdList></Reference><Reference><Citation>Muzurović E, Mikhailidis DP, Mantzoros C. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and. Metabolism. 2021;119:154770. 10.1016/j.metabol.2021.154770.</Citation><ArticleIdList><ArticleId IdType="pubmed">33864798</ArticleId></ArticleIdList></Reference><Reference><Citation>Kanwal F, Kramer JR, Li L, Dai J, Natarajan Y, Yu X, Asch SM, El-Serag HB. Effect of metabolic traits on the risk of cirrhosis and hepatocellularcancer in nonalcoholic fatty liver disease. Hepatology. 2020;71(3):808–19. 10.1002/hep.31014.</Citation><ArticleIdList><ArticleId IdType="pubmed">31675427</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho EE, Ang CZ, Quek J, Fu CE, Lim LK, Heng ZE, Tan DJ, Lim WH, Yong JN, Zeng R, Chee D, et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetesmellitus: an updated systematic review and meta-analysis. Gut. 2023;72(11):2138–48.</Citation><ArticleIdList><ArticleId IdType="pubmed">37491159</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801.</Citation><ArticleIdList><ArticleId IdType="pubmed">31279902</ArticleId></ArticleIdList></Reference><Reference><Citation>Zou H, Ma X, Zhang F, Xie Y. Comparison of the diagnostic performance of twelve noninvasive scores of metabolic dysfunction-associated fatty liver disease. Lipids Health Dis. 2023;22(1):145.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10481547</ArticleId><ArticleId IdType="pubmed">37674196</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007–2010 korean national health andnutrition examination survey. PLoS One. 2019;14(3):e0212963.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6405083</ArticleId><ArticleId IdType="pubmed">30845237</ArticleId></ArticleIdList></Reference><Reference><Citation>Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">3899825</ArticleId></ArticleIdList></Reference><Reference><Citation>C.M.A. Chinese Society of Hepatology. Guidelines for the prevention and treatment of metabolic dysfunction-associated (non-alcoholic) fatty liver disease (Version 2024). Chin J Hepatol. 2024;32(5):418–34.</Citation><ArticleIdList><ArticleId IdType="pubmed">38858192</ArticleId></ArticleIdList></Reference><Reference><Citation>Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, Guha IN, Cobbold JF, Deeks JJ, Paradis V, Bedossa P, Newsome PN. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(6):1717–30.</Citation><ArticleIdList><ArticleId IdType="pubmed">30689971</ArticleId></ArticleIdList></Reference><Reference><Citation>Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, Kumar M, Lupsor-Platon M, Han KH, Cardoso AC, Ferraioli G, Chan WK, Wong VW, Myers RP, Chayama K, Friedrich-Rust M, Beaugrand M, Shen F, Hiriart JB, Sarin SK, Badea R, Jung KS, Marcellin P, Filice C, Mahadeva S, Wong GL, Crotty P, Masaki K, Bojung J, Bedossa P, Keim V, Wiegand J. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022–30. 10.1016/j.jhep.2016.12.022.</Citation><ArticleIdList><ArticleId IdType="pubmed">28039099</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi CS, Kim MY, Han K, Lee MS. Assessment of β-cell function in human patients. Islets. 2012;4(2):79–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">22627463</ArticleId></ArticleIdList></Reference><Reference><Citation>Hong S, Han K, Park CY. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: a population-based study. BMC Med. 2020;18(1):361.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7687762</ArticleId><ArticleId IdType="pubmed">33234146</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Q, Xiao S, Jiao X, Shen Y. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: evidence from NHANES 2001–2018. Cardiovasc Diabetol. 2023;22(1):279. 10.1186/s12933-023-02030-z.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10583314</ArticleId><ArticleId IdType="pubmed">37848879</ArticleId></ArticleIdList></Reference><Reference><Citation>Liao Y, Zhang R, Shi S, Zhao Y, He Y, Liao L, Lin X, Guo Q, Wang Y, Chen L, Li W, Li S, Chen K, Fang Y. Triglyceride-glucose index linked to all-cause mortality in critically ill patients: a cohort of 3026 patients. Cardiovasc Diabetol. 2022;21(1):128. 10.1186/s12933-022-01563-z.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9270811</ArticleId><ArticleId IdType="pubmed">35804386</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheng G, Lu S, Xie Q, Peng N, Kuang M, Zou Y. The usefulness of obesity and lipid-related indices to predict the presence of Non-alcoholic fatty liver disease. Lipids Health Dis. 2021;20:134.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8502416</ArticleId><ArticleId IdType="pubmed">34629059</ArticleId></ArticleIdList></Reference><Reference><Citation>Li S, Feng L, Ding J, Zhou W, Yuan T, Mao J. Triglyceride glucose-waist circumference: the optimum index to screen nonalcoholic fatty liver disease in non-obese adults. BMC Gastroenterol. 2023;23(1):376.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10621119</ArticleId><ArticleId IdType="pubmed">37919650</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang M, Shao Z, Shen G. Association between triglyceride glucose-related markers and the risk of metabolic-associated fatty liver disease: a cross-sectional study in healthy Chinese participants. BMJ Open. 2023;13(5):e070189.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10163481</ArticleId><ArticleId IdType="pubmed">37130686</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernando DH, Forbes JM, Angus PW, Herath CB. Development and progression of non-alcoholic fatty liver disease: the role of advanced glycation end products. Int J Mol Sci. 2019;20(20):5037.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6834322</ArticleId><ArticleId IdType="pubmed">31614491</ArticleId></ArticleIdList></Reference><Reference><Citation>Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin BA, Zambon A, Barter P, Fruchart JC, Eckel RH, Matsuzawa Y, Després JP. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR working group on visceral obesity. Rev Nat Rev Endocrinol. 2020;16(3):177–89.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7027970</ArticleId><ArticleId IdType="pubmed">32020062</ArticleId></ArticleIdList></Reference><Reference><Citation>Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender differences in insulin resistance: new knowledge and perspectives. Curr Iss Mol Biol. 2023;45(10):7845–61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10605445</ArticleId><ArticleId IdType="pubmed">37886939</ArticleId></ArticleIdList></Reference><Reference><Citation>Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63(3):453–61. 10.1007/s00125-019-05040-3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6997275</ArticleId><ArticleId IdType="pubmed">31754750</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu R, Pan J, Zhou W, Ji G, Dang Y. Recent advances in lean NAFLD. Biomed Pharmacother. 2022;153:113331.</Citation><ArticleIdList><ArticleId IdType="pubmed">35779422</ArticleId></ArticleIdList></Reference><Reference><Citation>Wijarnpreecha K, Li F, Lundin SK, Suresh D, Song MW, Tao C, Chen VL, Lok ASF. Higher mortality among lean patients with non-alcoholic fatty liver disease despite fewer metabolic comorbidities. Aliment Pharmacol Ther. 2023;57(9):1014–27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10682563</ArticleId><ArticleId IdType="pubmed">36815445</ArticleId></ArticleIdList></Reference><Reference><Citation>Zeng P, Cai X, Yu X, Gong L. Markers of insulin resistance associated with non-alcoholic fatty liver disease in non-diabetic population. Sci Rep. 2023;13(1):20470. 10.1038/s41598-023-47269-4.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10665395</ArticleId><ArticleId IdType="pubmed">37993481</ArticleId></ArticleIdList></Reference><Reference><Citation>Tahapary DL, Pratisthita LB, Fitri NA, Marcella C, Wafa S, Kurniawan F, Rizka A, Tarigan TJE, Harbuwono S, Purnamasari D, Soewondo P. Challenges in the diagnosis of insulin resistance: focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581.</Citation><ArticleIdList><ArticleId IdType="pubmed">35939943</ArticleId></ArticleIdList></Reference><Reference><Citation>Yun KJ, Han K, Kim MK, Park YM, Baek KH, Song KH, Kwon HS. Insulin resistance distribution and cut-off value in Koreans from the 2008–2010 Korean National Health and Nutrition Examination survey. PLoS One. 2016;11(4):e0154593. 10.1371/journal.pone.0154593.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4851408</ArticleId><ArticleId IdType="pubmed">27128847</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39633274</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>10</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1471-2334</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>BMC infectious diseases</Title><ISOAbbreviation>BMC Infect Dis</ISOAbbreviation></Journal><ArticleTitle>Interaction between type 2 diabetes and past COVID-19 on active tuberculosis.</ArticleTitle><Pagination><StartPage>1383</StartPage><MedlinePgn>1383</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1383</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12879-024-10244-z</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The global setback in tuberculosis (TB) prevalence and mortality in the post-COVID-19 era has been partially attributed to pandemic-related disruptions in healthcare systems. The additional biological contribution of COVID-19 to TB is less clear. The goal of this study was to determine if there is an association between COVID-19 in the past 18 months and a new TB episode, and the role played by type 2 diabetes mellitus (DM) comorbidity in this relationship.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A cross-sectional study was conducted among 112 new active TB patients and 373 non-TB controls, identified between June 2020 and November 2021 in communities along the Mexican border with Texas. Past COVID-19 was based on self-report or positive serology. Bivariable/multivariable analysis were used to evaluate the odds of new TB in hosts with past COVID-19 and/or DM status.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The odds of new TB were higher among past COVID-19 cases vs. controls, but only significant among DM patients (aOR 2.3). The odds of TB in people with DM was 2.7-fold higher among participants without past COVID-19 and increased to 7.9-fold among those with past COVID-19.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">DM interacts with past COVID-19 synergistically to magnify the risk of TB. Latent TB screening and prophylactic treatment, if positive, is recommended in past COVID-19 persons with DM. Future studies are warranted with a longitudinal design and larger sample size to confirm our findings.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Calles-Cabanillas</LastName><ForeName>Liz E</ForeName><Initials>LE</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aguillón-Durán</LastName><ForeName>Genesis P</ForeName><Initials>GP</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ayala</LastName><ForeName>Doris</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Caso</LastName><ForeName>José A</ForeName><Initials>JA</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Garza</LastName><ForeName>Miguel</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Joya-Ayala</LastName><ForeName>Mateo</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cruz-Gonzalez</LastName><ForeName>America M</ForeName><Initials>AM</Initials><AffiliationInfo><Affiliation>Departamento Estatal de Micobacteriosis, Secretaría de Salud de Tamaulipas, Reynosa 88630, Matamoros 87370 and Ciudad Victoria 87000, Tamaulipas, México.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Loera-Salazar</LastName><ForeName>Raul</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Departamento Estatal de Micobacteriosis, Secretaría de Salud de Tamaulipas, Reynosa 88630, Matamoros 87370 and Ciudad Victoria 87000, Tamaulipas, México.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Prieto-Martinez</LastName><ForeName>Ericka</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Departamento Estatal de Micobacteriosis, Secretaría de Salud de Tamaulipas, Reynosa 88630, Matamoros 87370 and Ciudad Victoria 87000, Tamaulipas, México.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rodríguez-Herrera</LastName><ForeName>Javier E</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>Departamento Estatal de Micobacteriosis, Secretaría de Salud de Tamaulipas, Reynosa 88630, Matamoros 87370 and Ciudad Victoria 87000, Tamaulipas, México.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Garcia-Oropesa</LastName><ForeName>Esperanza M</ForeName><Initials>EM</Initials><AffiliationInfo><Affiliation>Unidad Académica Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thomas</LastName><ForeName>John M</ForeName><Initials>JM</Initials><Suffix>3rd</Suffix><AffiliationInfo><Affiliation>South Texas Diabetes and Obesity Institute and Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Miryoung</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Torrelles</LastName><ForeName>Jordi B</ForeName><Initials>JB</Initials><AffiliationInfo><Affiliation>Population Health and Host Pathogens Interactions Programs and International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78229, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Restrepo</LastName><ForeName>Blanca I</ForeName><Initials>BI</Initials><AffiliationInfo><Affiliation>School of Public Health, University of Texas Health Science Center at Houston, One West University Blvd, SPH Bldg, Brownsville, TX, 78520, USA. Blanca.i.restrepo@uth.tmc.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>South Texas Diabetes and Obesity Institute and Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA. Blanca.i.restrepo@uth.tmc.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Population Health and Host Pathogens Interactions Programs and International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, 78229, USA. Blanca.i.restrepo@uth.tmc.edu.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>T34GM137854</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>T34 GM137854</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30AI168439</GrantID><Agency>National Institute of Allergy and Infectious Diseases</Agency><Country/></Grant><Grant><GrantID>P30 AI168439</GrantID><Acronym>AI</Acronym><Agency>NIAID NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P01 AG051428</GrantID><Acronym>AG</Acronym><Agency>NIA NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P01-AG051428</GrantID><Acronym>AG</Acronym><Agency>NIA NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Infect Dis</MedlineTA><NlmUniqueID>100968551</NlmUniqueID><ISSNLinking>1471-2334</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="UpdateOf"><RefSource>Res Sq. 2024 Mar 14:rs.3.rs-3989104. doi: 10.21203/rs.3.rs-3989104/v1</RefSource><PMID Version="1">38559235</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014376" MajorTopicYN="Y">Tuberculosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013781" MajorTopicYN="N" Type="Geographic">Texas</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008800" MajorTopicYN="N" Type="Geographic">Mexico</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015897" MajorTopicYN="N">Comorbidity</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">COVID-19</Keyword><Keyword MajorTopicYN="N">Cross-sectional study</Keyword><Keyword MajorTopicYN="N">Mexico</Keyword><Keyword MajorTopicYN="N">Tuberculosis</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was approved by institutional review boards in Mexico (110/2018/CEI) and the US (HSC-SPH-19–0308; HSC-SPH-14–1007) and written informed consent was obtained from participants. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>47</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39633274</ArticleId><ArticleId IdType="pmc">PMC11616277</ArticleId><ArticleId IdType="doi">10.1186/s12879-024-10244-z</ArticleId><ArticleId IdType="pii">10.1186/s12879-024-10244-z</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>World-Health-Organization. Global tuberculosis report 2023. Geneva: World Health Organization; 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.</Citation></Reference><Reference><Citation>Migliori GB, Thong PM, Akkerman O, Alffenaar JW, Alvarez-Navascues F, Assao-Neino MM, Bernard PV, Biala JS, Blanc FX, Bogorodskaya EM, et al. Worldwide effects of coronavirus disease pandemic on tuberculosis services, January-April 2020. Emerg Infect Dis. 2020;26(11):2709–12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7588533</ArticleId><ArticleId IdType="pubmed">32917293</ArticleId></ArticleIdList></Reference><Reference><Citation>Shuwa HA, Shaw TN, Knight SB, Wemyss K, McClure FA, Pearmain L, Prise I, Jagger C, Morgan DJ, Khan S, et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med (N Y). 2021;2(6):720–735 e724.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8011689</ArticleId><ArticleId IdType="pubmed">33821250</ArticleId></ArticleIdList></Reference><Reference><Citation>Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11: 827.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7205903</ArticleId><ArticleId IdType="pubmed">32425950</ArticleId></ArticleIdList></Reference><Reference><Citation>Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol. 2023;14:1244556.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10470049</ArticleId><ArticleId IdType="pubmed">37662901</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguillon-Duran GP, Prieto-Martinez E, Ayala D, Garcia J Jr, Thomas JM 3, Garcia JI, Henry BM, Torrelles JB, Turner J, Ledezma-Campos E, et al. COVID-19 and chronic diabetes: the perfect storm for reactivation tuberculosis? A case series. J Med Case Rep. 2021;15(1):621.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8674832</ArticleId><ArticleId IdType="pubmed">34915933</ArticleId></ArticleIdList></Reference><Reference><Citation>Nabity SA, Marks SM, Goswami ND, Smith SR, Timme E, Price SF, Gross L, Self JL, Toren KG, Narita M, et al. Characteristics of and deaths among 333 persons with tuberculosis and COVID-19 in cross-sectional sample from 25 jurisdictions, United States. Emerg Infect Dis. 2023;29(10):2016–23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10521611</ArticleId><ArticleId IdType="pubmed">37647628</ArticleId></ArticleIdList></Reference><Reference><Citation>Harries AD, Kumar AMV, Satyanarayana S, Lin Y, Dlodlo RA, Khogali M, Zachariah R, Kapur A. TB and COVID-19: paying attention to diabetes mellitus. Trans R Soc Trop Med Hyg. 2021;115(6):600–2.</Citation><ArticleIdList><ArticleId IdType="pubmed">34075400</ArticleId></ArticleIdList></Reference><Reference><Citation>Dave JA, Tamuhla T, Tiffin N, Levitt NS, Ross IL, Toet W, Davies MA, Boulle A, Coetzee A, Raubenheimer PJ. Risk factors for COVID-19 hospitalisation and death in people living with diabetes: a virtual cohort study from the Western Cape Province, South Africa. Diabetes Res Clin Pract. 2021;177:108925.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8215881</ArticleId><ArticleId IdType="pubmed">34166703</ArticleId></ArticleIdList></Reference><Reference><Citation>Visca D, Ong CWM, Tiberi S, Centis R, D’Ambrosio L, Chen B, Mueller J, Mueller P, Duarte R, Dalcolmo M, et al. Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology. 2021;27(2):151–65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7825946</ArticleId><ArticleId IdType="pubmed">33547029</ArticleId></ArticleIdList></Reference><Reference><Citation>Erener S. Diabetes, infection risk and COVID-19. Mol Metab. 2020;39:101044.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7308743</ArticleId><ArticleId IdType="pubmed">32585364</ArticleId></ArticleIdList></Reference><Reference><Citation>Gomez DI, Twahirwa M, Schlesinger LS, Restrepo BI. Reduced Mycobacterium tuberculosis association with monocytes from diabetes patients that have poor glucose control. Tuberculosis. 2013;93(2):192–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3580120</ArticleId><ArticleId IdType="pubmed">23131496</ArticleId></ArticleIdList></Reference><Reference><Citation>Dheda K, Perumal T, Moultrie H, Perumal R, Esmail A, Scott AJ, Udwadia Z, Chang KC, Peter J, Pooran A, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir Med. 2022;10(6):603–22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8942481</ArticleId><ArticleId IdType="pubmed">35338841</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumwichar P, Chongsuvivatwong V. COVID-19 pneumonia and the subsequent risk of getting active pulmonary tuberculosis: a population-based dynamic cohort study using national insurance claims databases. EClinicalMedicine. 2023;56: 101825.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9854255</ArticleId><ArticleId IdType="pubmed">36694864</ArticleId></ArticleIdList></Reference><Reference><Citation>Alemu A, Bitew ZW, Seid G, Diriba G, Gashu E, Berhe N, Mariam SH, Gumi B. Tuberculosis in individuals who recovered from COVID-19: a systematic review of case reports. PLoS One. 2022;17(11):e0277807.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9704624</ArticleId><ArticleId IdType="pubmed">36441785</ArticleId></ArticleIdList></Reference><Reference><Citation>Cuentame de Mexico. Poblacion total. Mexico: Instituto Nacional de Estadística y Geografía, INEGI; 2020. https://cuentame.inegi.org.mx/poblacion/habitantes.aspx?tema=P.</Citation></Reference><Reference><Citation>Boletines Epidemiologicos Historicos. Mexico, D.F.: Gobierno de Mexico, Secretaria de Salud; 2023. https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico.</Citation></Reference><Reference><Citation>Texas-Department-of-State-and-Health-Services. Tuberculosis along the Texas-Mexico border. Austin: Texas Department of State and Health Services; 2020. https://www.dshs.texas.gov/sites/default/files/LIDS-TB/publications/TBBorder.pdf.</Citation></Reference><Reference><Citation>Schildknecht KR, Pratt RH, Feng PI, Price SF, Self JL. Tuberculosis - United States, 2022. MMWR Morb Mortal Wkly Rep. 2023;72(12):297–303.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10042618</ArticleId><ArticleId IdType="pubmed">36952282</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisher-Hoch SP, Rentfro A, Salinas J, Perez A, Brown H, Reininger B, Restrepo BI, Wilson J, Hossain M, Rahbar M, et al. Socioeconomic status and prevalence of obesity and diabetes in a Mexican American community, Cameron County, Texas, 2004–2007. Prev Chronic Dis. 2010;7(3):1–10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2879985</ArticleId><ArticleId IdType="pubmed">20394692</ArticleId></ArticleIdList></Reference><Reference><Citation>CDC. Preventing and controlling tuberculosis along the U.S.-Mexico border. MMWR Recomm Rep. 2001;50(RR–1):1–27.</Citation><ArticleIdList><ArticleId IdType="pubmed">11207009</ArticleId></ArticleIdList></Reference><Reference><Citation>Restrepo BI, Camerlin AJ, Rahbar MH, Wang W, Restrepo MA, Zarate I, Mora-Guzman F, Crespo-Solis JG, Briggs J, McCormick JB, et al. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull World Health Organ. 2011;89(5):352–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3089389</ArticleId><ArticleId IdType="pubmed">21556303</ArticleId></ArticleIdList></Reference><Reference><Citation>Scordo JM, Aguillon-Duran GP, Ayala D, Quirino-Cerrillo AP, Rodriguez-Reyna E, Mora-Guzman F, Caso JA, Ledezma-Campos E, Schlesinger LS, Torrelles JB, et al. A prospective cross-sectional study of tuberculosis in elderly hispanics reveals that BCG vaccination at birth is protective whereas diabetes is not a risk factor. PLoS One. 2021;16(7):e0255194.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8321126</ArticleId><ArticleId IdType="pubmed">34324578</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice C, American Diabetes Association Professional Practice C, Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, Green J, Huang E, et al. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S17–38.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Huangfu P, Ugarte-Gil C, Golub J, Pearson F, Critchley J. The effects of diabetes on tuberculosis treatment outcomes: an updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(7):783–96.</Citation><ArticleIdList><ArticleId IdType="pubmed">31439109</ArticleId></ArticleIdList></Reference><Reference><Citation>McQuaid CF, McCreesh N, Read JM, Sumner T, Group CCW, Houben R, White RG, Harris RC. The potential impact of COVID-19-related disruption on tuberculosis burden. Eur Respir J. 2020;56(2):2001718.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7278504</ArticleId><ArticleId IdType="pubmed">32513784</ArticleId></ArticleIdList></Reference><Reference><Citation>Palacios-Gutierrez JJ, Rodriguez-Guardado A, Arias-Guillen M, Alonso-Arias R, Palacios-Penedo S, Garcia-Garcia JM, Balbin M, Perez-Hernandez D, Sandoval-Torrientes M, Torreblanca-Gil A, et al. Clinical and epidemiological correlates of low IFN-Gamma responses in mitogen tube of QuantiFERON assay in tuberculosis infection screening during the COVID-19 pandemic: a Population-based marker of COVID-19 mortality? Arch Bronconeumol. 2022;58(9):649–59.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8842091</ArticleId><ArticleId IdType="pubmed">35185258</ArticleId></ArticleIdList></Reference><Reference><Citation>Thong PM, Chong HT, Chang AJW, Ong CWM. COVID-19, the escalation of diabetes mellitus and the repercussions on tuberculosis. Int J Infect Dis. 2023;130 Suppl 1:S30–3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9993733</ArticleId><ArticleId IdType="pubmed">36898428</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez N, Ketheesan N, West K, Vallerskog T, Kornfeld H. Impaired recognition of Mycobacterium tuberculosis by Alveolar macrophages from diabetic mice. J Infect Dis. 2016;214(11):1629–37.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5144731</ArticleId><ArticleId IdType="pubmed">27630197</ArticleId></ArticleIdList></Reference><Reference><Citation>Cliff JM, Kaufmann SH, McShane H, van Helden P, O’Garra A. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol Rev. 2015;264(1):88–102.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4368415</ArticleId><ArticleId IdType="pubmed">25703554</ArticleId></ArticleIdList></Reference><Reference><Citation>Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362:k2738.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6105930</ArticleId><ArticleId IdType="pubmed">30139910</ArticleId></ArticleIdList></Reference><Reference><Citation>Barreiro A, Prenafeta A, Bech-Sabat G, Roca M, Perozo Mur E, March R, Gonzalez-Gonzalez L, Madrenas L, Corominas J, Fernandez A, et al. Preclinical evaluation of a COVID-19 vaccine candidate based on a recombinant RBD fusion heterodimer of SARS-CoV-2. iScience. 2023;26(3):106126.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9893798</ArticleId><ArticleId IdType="pubmed">36748086</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39632776</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>15</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1463-1326</ISSN><JournalIssue CitedMedium="Internet"><Volume>26 Suppl 7</Volume><Issue>Suppl 7</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Diabetes, obesity & metabolism</Title><ISOAbbreviation>Diabetes Obes Metab</ISOAbbreviation></Journal><ArticleTitle>The clinical importance of measuring glycaemic variability: Utilising new metrics to optimise glycaemic control.</ArticleTitle><Pagination><StartPage>3</StartPage><EndPage>16</EndPage><MedlinePgn>3-16</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/dom.16098</ELocationID><Abstract><AbstractText>With the widespread use of continuous glucose monitoring (CGM), glycaemic variability (GV) is a glucose metric that has been gaining increasing attention. However, unlike other glucose metrics that are easily defined and have clear targets, GV has a large number of different measures given the complexity involved in assessment. While variabilities in HbA1c, fasting and postprandial glucose have been incorporated under the GV banner, short-term variability in glucose, within day and between days, is more in keeping with the correct definition of GV. This review is focused on short-term GV, as assessed by CGM data, although studies calculating GV from capillary glucose testing are also mentioned as appropriate. The different measures of GV are addressed, and their potential role in microvascular and macrovascular complications, as well as patient-related outcomes, discussed. It should be noted that the independent role of GV in vascular pathology is not always clear, given the inconsistent findings in different populations and the close association between GV and hypoglycaemia, itself an established risk factor for adverse outcomes. Therefore, this review attempts, where possible, to disentangle the contribution of GV to diabetes complications from other glycaemic parameters, particularly hypoglycaemia. Evidence to date strongly suggests an independent role for GV in vascular pathology but future large-scale outcome studies are required to fully understand the exact contribution of this metric to vascular complications. This can be followed by setting appropriate GV measures and targets in different diabetes subgroups, in order to optimise glycaemic management and limit the risk of complications.</AbstractText><CopyrightInformation>© 2024 The Author(s). Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ajjan</LastName><ForeName>R A</ForeName><Initials>RA</Initials><Identifier Source="ORCID">0000-0002-1636-3725</Identifier><AffiliationInfo><Affiliation>LIGHT Laboratories, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Obes Metab</MedlineTA><NlmUniqueID>100883645</NlmUniqueID><ISSNLinking>1462-8902</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000085002" MajorTopicYN="Y">Glycemic Control</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015190" MajorTopicYN="Y">Blood Glucose Self-Monitoring</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="Y">Hypoglycemia</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003925" MajorTopicYN="N">Diabetic Angiopathies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="N">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019518" MajorTopicYN="N">Postprandial Period</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000092522" MajorTopicYN="N">Clinical Relevance</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">continuous glucose monitoring</Keyword><Keyword MajorTopicYN="N">glycaemic variability</Keyword><Keyword MajorTopicYN="N">hypoglycaemia</Keyword><Keyword MajorTopicYN="N">macrovascular complications</Keyword><Keyword MajorTopicYN="N">microvascular complications</Keyword><Keyword MajorTopicYN="N">patient‐related outcome measures</Keyword><Keyword MajorTopicYN="N">type 1 diabetes</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>The author reports institutional research grants, honoraria, education support or consulting fees from the Abbott Diabetes Care, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol‐Myers Squibb, Eli Lilly, GlaxoSmithKline, Menarini Pharmaceuticals, Merck Sharp & Dohme and Novo Nordisk.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>16</Day><Hour>11</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>4</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>15</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39632776</ArticleId><ArticleId IdType="pmc">PMC11646482</ArticleId><ArticleId IdType="doi">10.1111/dom.16098</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9‐16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3867999</ArticleId><ArticleId IdType="pubmed">24356592</ArticleId></ArticleIdList></Reference><Reference><Citation>Diabetes Control and Complications Trial Research Group , Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus. N Engl J Med. 1993;329(14):977‐986.</Citation><ArticleIdList><ArticleId IdType="pubmed">8366922</ArticleId></ArticleIdList></Reference><Reference><Citation>UK Prospective Diabetes Study (UKPDS) Group . Intensive blood‐glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837‐853.</Citation><ArticleIdList><ArticleId IdType="pubmed">9742976</ArticleId></ArticleIdList></Reference><Reference><Citation>Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10‐year follow‐up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577‐1589.</Citation><ArticleIdList><ArticleId IdType="pubmed">18784090</ArticleId></ArticleIdList></Reference><Reference><Citation>Ajjan RA. How can we realize the clinical benefits of continuous glucose monitoring? Diabetes Technol Ther. 2017;19(S2):S27‐S36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5444484</ArticleId><ArticleId IdType="pubmed">28541132</ArticleId></ArticleIdList></Reference><Reference><Citation>Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481‐489.</Citation><ArticleIdList><ArticleId IdType="pubmed">20110121</ArticleId></ArticleIdList></Reference><Reference><Citation>Lind M, Svensson AM, Kosiborod M, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972‐1982.</Citation><ArticleIdList><ArticleId IdType="pubmed">25409370</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirsch IB, Xu Y, Dunn TC, et al. Blood glucose derived GMI and HbA1c have similar associations with retinopathy progression: further analysis of the diabetes control and complications trial (DCCT). Diabetologia. 2023;66:S154.</Citation></Reference><Reference><Citation>Zinman B, Marso SP, Christiansen E, et al. Hypoglycemia, cardiovascular outcomes, and death: the LEADER experience. Diabetes Care. 2018;41(8):1783‐1791.</Citation><ArticleIdList><ArticleId IdType="pubmed">29903847</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerbaud E, Darier R, Montaudon M, et al. Glycemic variability is a powerful independent predictive factor of midterm major adverse cardiac events in patients with diabetes with acute coronary syndrome. Diabetes Care. 2019;42(4):674‐681.</Citation><ArticleIdList><ArticleId IdType="pubmed">30728222</ArticleId></ArticleIdList></Reference><Reference><Citation>Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593‐1603.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6973648</ArticleId><ArticleId IdType="pubmed">31177185</ArticleId></ArticleIdList></Reference><Reference><Citation>Jin SM, Kim TH, Bae JC, et al. Clinical factors associated with absolute and relative measures of glycemic variability determined by continuous glucose monitoring: an analysis of 480 subjects. Diabetes Res Clin Pract. 2014;104(2):266‐272.</Citation><ArticleIdList><ArticleId IdType="pubmed">24630619</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilmot EG, Choudhary P, Leelarathna L, Baxter M. Glycaemic variability: the under‐recognized therapeutic target in type 1 diabetes care. Diabetes Obes Metab. 2019;21(12):2599‐2608.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6899456</ArticleId><ArticleId IdType="pubmed">31364268</ArticleId></ArticleIdList></Reference><Reference><Citation>Kovatchev B, Cobelli C. Glucose variability: timing, risk analysis, and relationship to hypoglycemia in diabetes. Diabetes Care. 2016;39(4):502‐510.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4806774</ArticleId><ArticleId IdType="pubmed">27208366</ArticleId></ArticleIdList></Reference><Reference><Citation>Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221‐230.</Citation><ArticleIdList><ArticleId IdType="pubmed">30115599</ArticleId></ArticleIdList></Reference><Reference><Citation>Psoma O, Makris M, Tselepis A, Tsimihodimos V. Short‐term glycemic variability and its association with macrovascular and microvascular complications in patients with diabetes. J Diabetes Sci Technol. 2024;18(4):956‐967.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11307209</ArticleId><ArticleId IdType="pubmed">36576014</ArticleId></ArticleIdList></Reference><Reference><Citation>Kovatchev B. Glycemic variability: risk factors, assessment, and control. J Diabetes Sci Technol. 2019;13(4):627‐635.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6610616</ArticleId><ArticleId IdType="pubmed">30694076</ArticleId></ArticleIdList></Reference><Reference><Citation>Speight J, Choudhary P, Wilmot EG, et al. Impact of glycaemic technologies on quality of life and related outcomes in adults with type 1 diabetes: a narrative review. Diabet Med. 2023;40(1):e14944.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10283013</ArticleId><ArticleId IdType="pubmed">36004676</ArticleId></ArticleIdList></Reference><Reference><Citation>Ajjan RA, Doble E, Holt RIG, Marrero D. Patient related outcome measures (PROMs) in long term conditions‐is it time to bring them into routine clinical practice? BMJ. 2024;386:q1921.</Citation><ArticleIdList><ArticleId IdType="pubmed">39242110</ArticleId></ArticleIdList></Reference><Reference><Citation>Chow E, Bernjak A, Williams S, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738‐1747.</Citation><ArticleIdList><ArticleId IdType="pubmed">24757202</ArticleId></ArticleIdList></Reference><Reference><Citation>Chow E, Iqbal A, Walkinshaw E, et al. Prolonged prothrombotic effects of antecedent hypoglycemia in individuals with type 2 diabetes. Diabetes Care. 2018;41(12):2625‐2633.</Citation><ArticleIdList><ArticleId IdType="pubmed">30327358</ArticleId></ArticleIdList></Reference><Reference><Citation>Wright RJ, Newby DE, Stirling D, Ludlam CA, Macdonald IA, Frier BM. Effects of acute insulin‐induced hypoglycemia on indices of inflammation: putative mechanism for aggravating vascular disease in diabetes. Diabetes Care. 2010;33(7):1591‐1597.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2890364</ArticleId><ArticleId IdType="pubmed">20587725</ArticleId></ArticleIdList></Reference><Reference><Citation>Pearson SM, Whittam B, Kulavarasalingam K, Mitchell‐Gears A, James C, Ajjan RA. Reduction in cardiovascular mortality following severe hypoglycemia in individuals with type 2 diabetes: the role of a pragmatic and structured intervention: structured intervention for community hypoglycemia. Cardiovasc Diabetol. 2021;20(1):18‐27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7802275</ArticleId><ArticleId IdType="pubmed">33435992</ArticleId></ArticleIdList></Reference><Reference><Citation>Frier BM, Schernthaner G, Heller SR. Hypoglycemia and cardiovascular risks. Diabetes Care. 2011;34(Suppl 2):S132‐S137.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3632150</ArticleId><ArticleId IdType="pubmed">21525444</ArticleId></ArticleIdList></Reference><Reference><Citation>Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK. Hypoglycemia and risk of cardiovascular disease and all‐cause mortality in insulin‐treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care. 2015;38(2):316‐322.</Citation><ArticleIdList><ArticleId IdType="pubmed">25492401</ArticleId></ArticleIdList></Reference><Reference><Citation>Yeh JS, Sung SH, Huang HM, et al. Hypoglycemia and risk of vascular events and mortality: a systematic review and meta‐analysis. Acta Diabetol. 2015;53:377‐392.</Citation><ArticleIdList><ArticleId IdType="pubmed">26299389</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang J, Wang LL, Yang YM, Tan HQ, Zhu J. Impact of acute glycemic variability on short‐term outcomes in patients with ST‐segment elevation myocardial infarction: a multicenter population‐based study. Cardiovasc Diabetol. 2024;23(1):155.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11077764</ArticleId><ArticleId IdType="pubmed">38715023</ArticleId></ArticleIdList></Reference><Reference><Citation>Scott ES, Januszewski AS, O'Connell R, et al. Long‐term glycemic variability and vascular complications in type 2 diabetes: post hoc analysis of the FIELD study. J Clin Endocrinol Metab. 2020;105(10):e3638‐e3649.</Citation><ArticleIdList><ArticleId IdType="pubmed">32766757</ArticleId></ArticleIdList></Reference><Reference><Citation>Dungan KM. 1,5‐anhydroglucitol (GlycoMark) as a marker of short‐term glycemic control and glycemic excursions. Expert Rev Mol Diagn. 2008;8(1):9‐19.</Citation><ArticleIdList><ArticleId IdType="pubmed">18088226</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergman M, Abdul‐Ghani M, DeFronzo RA, et al. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract. 2020;165:108233.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7977482</ArticleId><ArticleId IdType="pubmed">32497744</ArticleId></ArticleIdList></Reference><Reference><Citation>Lachin JM, Bebu I, Bergenstal RM, et al. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care. 2017;40(6):777‐783.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5439414</ArticleId><ArticleId IdType="pubmed">28404658</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR. Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther. 2011;13(9):921‐928.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3160264</ArticleId><ArticleId IdType="pubmed">21714681</ArticleId></ArticleIdList></Reference><Reference><Citation>Fleischer J, Cichosz SL, Hansen TK. Comment on Lachin et al. association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care 2017; 40: 777–783. Diabetes Care. 2017;40(11):e164.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5439414</ArticleId><ArticleId IdType="pubmed">28404658</ArticleId></ArticleIdList></Reference><Reference><Citation>Peyser TA, Balo AK, Buckingham BA, Hirsch IB, Garcia A. Glycemic variability percentage: a novel method for assessing glycemic variability from continuous glucose monitor data. Diabetes Technol Ther. 2018;20(1):6‐16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5846572</ArticleId><ArticleId IdType="pubmed">29227755</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodbard D. Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009;11(Suppl 1):S55‐S67.</Citation><ArticleIdList><ArticleId IdType="pubmed">19469679</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergenstal RM, Ahmann AJ, Bailey T, et al. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the ambulatory glucose profile (AGP). Diabetes Technol Ther. 2013;15(3):198‐211.</Citation><ArticleIdList><ArticleId IdType="pubmed">23448694</ArticleId></ArticleIdList></Reference><Reference><Citation>Monnier L, Colette C, Wojtusciszyn A, et al. Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care. 2017;40(7):832‐838.</Citation><ArticleIdList><ArticleId IdType="pubmed">28039172</ArticleId></ArticleIdList></Reference><Reference><Citation>Shah VN, DuBose SN, Li Z, et al. Continuous glucose monitoring profiles in healthy nondiabetic participants: a multicenter prospective study. J Clin Endocrinol Metab. 2019;104(10):4356‐4364.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7296129</ArticleId><ArticleId IdType="pubmed">31127824</ArticleId></ArticleIdList></Reference><Reference><Citation>Cichosz SL, Kronborg T, Laugesen E, et al. From stability to variability: classification of healthy individuals, prediabetes, and type 2 diabetes using glycemic variability indices from continuous glucose monitoring data. Diabetes Technol Ther. 2024. EPub.</Citation><ArticleIdList><ArticleId IdType="pubmed">39115921</ArticleId></ArticleIdList></Reference><Reference><Citation>Julla JB, Jacquemier P, Fagherazzi G, et al. Is the consensual threshold for defining high glucose variability implementable in clinical practice? Diabetes Care. 2021;44(7):1722‐1725.</Citation><ArticleIdList><ArticleId IdType="pubmed">34099517</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirakawa Y, Arima H, Zoungas S, et al. Impact of visit‐to‐visit glycemic variability on the risks of macrovascular and microvascular events and all‐cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care. 2014;37(8):2359‐2365.</Citation><ArticleIdList><ArticleId IdType="pubmed">24812434</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou JJ, Koska J, Bahn G, Reaven P. Glycaemic variation is a predictor of all‐cause mortality in the veteran affairs diabetes trial. Diab Vasc Dis Res. 2019;16(2):178‐185.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7380497</ArticleId><ArticleId IdType="pubmed">31014099</ArticleId></ArticleIdList></Reference><Reference><Citation>Dorajoo SR, Ng JSL, Goh JHF, et al. HbA1c variability in type 2 diabetes is associated with the occurrence of new‐onset albuminuria within three years. Diabetes Res Clin Pract. 2017;128:32‐39.</Citation><ArticleIdList><ArticleId IdType="pubmed">28432897</ArticleId></ArticleIdList></Reference><Reference><Citation>Cardoso CRL, Leite NC, Moram CBM, Salles GF. Long‐term visit‐to‐visit glycemic variability as predictor of micro‐ and macrovascular complications in patients with type 2 diabetes: the Rio de Janeiro type 2 diabetes cohort study. Cardiovasc Diabetol. 2018;17(1):33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6389075</ArticleId><ArticleId IdType="pubmed">29477146</ArticleId></ArticleIdList></Reference><Reference><Citation>Su JB, Zhao LH, Zhang XL, et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc Diabetol. 2018;17(1):47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5874999</ArticleId><ArticleId IdType="pubmed">29598819</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang A, Liu X, Xu J, et al. Visit‐to‐visit variability of fasting plasma glucose and the risk of cardiovascular disease and all‐cause mortality in the general population. J Am Heart Assoc. 2017;6(12):e006757‐e006765.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5779006</ArticleId><ArticleId IdType="pubmed">29187392</ArticleId></ArticleIdList></Reference><Reference><Citation>Soupal J, Skrha J Jr, Fajmon M, et al. Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control. Diabetes Technol Ther. 2014;16(4):198‐203.</Citation><ArticleIdList><ArticleId IdType="pubmed">24401008</ArticleId></ArticleIdList></Reference><Reference><Citation>Nusca A, Lauria Pantano A, Melfi R, et al. Glycemic variability assessed by continuous glucose monitoring and short‐term outcome in diabetic patients undergoing percutaneous coronary intervention: an observational pilot study. J Diabetes Res. 2015;2015:250201.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4529948</ArticleId><ArticleId IdType="pubmed">26273664</ArticleId></ArticleIdList></Reference><Reference><Citation>Jin SM, Kim TH, Oh S, et al. Association between the extent of urinary albumin excretion and glycaemic variability indices measured by continuous glucose monitoring. Diabet Med. 2015;32(2):274‐279.</Citation><ArticleIdList><ArticleId IdType="pubmed">25307609</ArticleId></ArticleIdList></Reference><Reference><Citation>Wakasugi S, Mita T, Katakami N, et al. Associations between continuous glucose monitoring‐derived metrics and diabetic retinopathy and albuminuria in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2021;9(1):e001923.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8061826</ArticleId><ArticleId IdType="pubmed">33879513</ArticleId></ArticleIdList></Reference><Reference><Citation>Sartore G, Chilelli NC, Burlina S, Lapolla A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013;50(3):437‐442.</Citation><ArticleIdList><ArticleId IdType="pubmed">23417155</ArticleId></ArticleIdList></Reference><Reference><Citation>Picconi F, Parravano M, Ylli D, et al. Retinal neurodegeneration in patients with type 1 diabetes mellitus: the role of glycemic variability. Acta Diabetol. 2017;54(5):489‐497.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5385321</ArticleId><ArticleId IdType="pubmed">28238189</ArticleId></ArticleIdList></Reference><Reference><Citation>Stem MS, Dunbar GE, Jackson GR, Farsiu S, Pop‐Busui R, Gardner TW. Glucose variability and inner retinal sensory neuropathy in persons with type 1 diabetes mellitus. Eye (Lond). 2016;30(6):825‐832.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4906457</ArticleId><ArticleId IdType="pubmed">27034201</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu J, Ma X, Zhang L, et al. Glycemic variability assessed by continuous glucose monitoring and the risk of diabetic retinopathy in latent autoimmune diabetes of the adult and type 2 diabetes. J Diabetes Investig. 2019;10(3):753‐759.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6497773</ArticleId><ArticleId IdType="pubmed">30306722</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu F, Zhao LH, Su JB, et al. The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well‐controlled HbA1c. Diabetol Metab Syndr. 2014;6(1):139.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4272789</ArticleId><ArticleId IdType="pubmed">25530811</ArticleId></ArticleIdList></Reference><Reference><Citation>Akaza M, Akaza I, Kanouchi T, Sasano T, Sumi Y, Yokota T. Nerve conduction study of the association between glycemic variability and diabetes neuropathy. Diabetol Metab Syndr. 2018;10:69.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6134701</ArticleId><ArticleId IdType="pubmed">30214502</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan J, Yan X, Li F, Zhang Y, Jiang L, Wang C. Association of glycemic variability assessed by continuous glucose monitoring with subclinical diabetic polyneuropathy in type 2 diabetes patients. J Diabetes Investig. 2022;13(2):328‐335.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8847148</ArticleId><ArticleId IdType="pubmed">34455710</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu YM, Zhao LH, Zhang XL, et al. Association of glycaemic variability evaluated by continuous glucose monitoring with diabetic peripheral neuropathy in type 2 diabetic patients. Endocrine. 2018;60(2):292‐300.</Citation><ArticleIdList><ArticleId IdType="pubmed">29411305</ArticleId></ArticleIdList></Reference><Reference><Citation>Morita M, Sada K, Hidaka S, Ogawa M, Shibata H. Glycemic variability is associated with sural nerve conduction velocity in outpatients with type 2 diabetes: usefulness of a new point‐of‐care device for nerve conduction studies. J Diabetes Investig. 2024;15(8):1075‐1083.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11292385</ArticleId><ArticleId IdType="pubmed">38685597</ArticleId></ArticleIdList></Reference><Reference><Citation>Jia Y, Long D, Yang Y, Wang Q, Wu Q, Zhang Q. Diabetic peripheral neuropathy and glycemic variability assessed by continuous glucose monitoring: a systematic review and meta‐analysis. Diabetes Res Clin Pract. 2024;213:111757.</Citation><ArticleIdList><ArticleId IdType="pubmed">38944250</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaiswal M, McKeon K, Comment N, et al. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014;37(9):2616‐2621.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4140160</ArticleId><ArticleId IdType="pubmed">24973438</ArticleId></ArticleIdList></Reference><Reference><Citation>Iwasaki S, Kozawa J, Fukui K, Iwahashi H, Imagawa A, Shimomura I. Coefficient of variation of R‐R interval closely correlates with glycemic variability assessed by continuous glucose monitoring in insulin‐depleted patients with type 1 diabetes. Diabetes Res Clin Pract. 2015;109(2):397‐403.</Citation><ArticleIdList><ArticleId IdType="pubmed">26047681</ArticleId></ArticleIdList></Reference><Reference><Citation>Naaman SH, Mizrak HI, Lind N, et al. Cardiovascular autonomic neuropathy is associated with increased glucose variability in people with type 1 diabetes. Diabetes Care. 2022;45(10):2461‐2465.</Citation><ArticleIdList><ArticleId IdType="pubmed">35997272</ArticleId></ArticleIdList></Reference><Reference><Citation>Jun JE, Lee SE, Lee YB, et al. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes Metab Res Rev. 2019;35(2):e3092.</Citation><ArticleIdList><ArticleId IdType="pubmed">30345631</ArticleId></ArticleIdList></Reference><Reference><Citation>Gad H, Elgassim E, Mohammed I, et al. Cardiovascular autonomic neuropathy is associated with increased glycemic variability driven by hyperglycemia rather than hypoglycemia in patients with diabetes. Diabetes Res Clin Pract. 2023;200:110670.</Citation><ArticleIdList><ArticleId IdType="pubmed">37169307</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen MMB, Hommel EE, Jorgensen ME, Fleischer J, Hansen CS. Glycemic variability and diabetic neuropathy in young adults with type 1 diabetes. Front Endocrinol (Lausanne). 2020;11:644.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7538646</ArticleId><ArticleId IdType="pubmed">33071962</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu W, Zhu Y, Yang X, et al. Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int J Cardiol. 2016;215:263‐268.</Citation><ArticleIdList><ArticleId IdType="pubmed">27128543</ArticleId></ArticleIdList></Reference><Reference><Citation>Matsutani D, Sakamoto M, Iuchi H, et al. Glycemic variability in continuous glucose monitoring is inversely associated with baroreflex sensitivity in type 2 diabetes: a preliminary report. Cardiovasc Diabetol. 2018;17(1):36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5840775</ArticleId><ArticleId IdType="pubmed">29514695</ArticleId></ArticleIdList></Reference><Reference><Citation>Jun JE, Jin SM, Baek J, et al. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:70.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4462181</ArticleId><ArticleId IdType="pubmed">26041130</ArticleId></ArticleIdList></Reference><Reference><Citation>Andersen A, Bagger JI, Sorensen SK, et al. Associations of hypoglycemia, glycemic variability and risk of cardiac arrhythmias in insulin‐treated patients with type 2 diabetes: a prospective, observational study. Cardiovasc Diabetol. 2021;20(1):241.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8710000</ArticleId><ArticleId IdType="pubmed">34952579</ArticleId></ArticleIdList></Reference><Reference><Citation>Chi H, Song M, Zhang J, Zhou J, Liu D. Relationship between acute glucose variability and cognitive decline in type 2 diabetes: a systematic review and meta‐analysis. PLoS One. 2023;18(9):e0289782.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10473499</ArticleId><ArticleId IdType="pubmed">37656693</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang X, Li S, Wang Y, et al. Glycemic variability evaluated by continuous glucose monitoring system is associated with the 10‐y cardiovascular risk of diabetic patients with well‐controlled HbA1c. Clin Chim Acta. 2016;461:146‐150.</Citation><ArticleIdList><ArticleId IdType="pubmed">27502250</ArticleId></ArticleIdList></Reference><Reference><Citation>Su G, Mi SH, Tao H, et al. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care. 2013;36(4):1026‐1032.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3609497</ArticleId><ArticleId IdType="pubmed">23349547</ArticleId></ArticleIdList></Reference><Reference><Citation>Takahashi H, Iwahashi N, Kirigaya J, et al. Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome. Cardiovasc Diabetol. 2018;17(1):116.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6098663</ArticleId><ArticleId IdType="pubmed">30121076</ArticleId></ArticleIdList></Reference><Reference><Citation>Akirov A, Shochat T, Dotan I, Diker‐Cohen T, Gorshtein A, Shimon I. Glycemic variability and mortality in patients hospitalized in general surgery wards. Surgery. 2019;166(2):184‐192.</Citation><ArticleIdList><ArticleId IdType="pubmed">30979427</ArticleId></ArticleIdList></Reference><Reference><Citation>Gutierrez‐Zuniga R, Alonso de Lecinana M, Delgado‐Mederos R, et al. Beyond hyperglycemia: glycaemic variability as a prognostic factor after acute ischemic stroke. Neurologia (Engl Ed). 2023;38(3):150‐158.</Citation><ArticleIdList><ArticleId IdType="pubmed">37059570</ArticleId></ArticleIdList></Reference><Reference><Citation>El Malahi A, Van Elsen M, Charleer S, et al. Relationship between time in range, glycemic variability, HbA1c, and complications in adults with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2022;107(2):e570‐e581.</Citation><ArticleIdList><ArticleId IdType="pubmed">34534297</ArticleId></ArticleIdList></Reference><Reference><Citation>Foreman YD, van Doorn W, Schaper NC, et al. Greater daily glucose variability and lower time in range assessed with continuous glucose monitoring are associated with greater aortic stiffness: the Maastricht study. Diabetologia. 2021;64(8):1880‐1892.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8245390</ArticleId><ArticleId IdType="pubmed">33991193</ArticleId></ArticleIdList></Reference><Reference><Citation>Taya N, Katakami N, Mita T, et al. Associations of continuous glucose monitoring‐assessed glucose variability with intima‐media thickness and ultrasonic tissue characteristics of the carotid arteries: a cross‐sectional analysis in patients with type 2 diabetes. Cardiovasc Diabetol. 2021;20(1):95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8097791</ArticleId><ArticleId IdType="pubmed">33947398</ArticleId></ArticleIdList></Reference><Reference><Citation>Miyoshi M, Uzui H, Shimizu T, et al. Significance of day‐to‐day glucose variability in patients after acute coronary syndrome. BMC Cardiovasc Disord. 2021;21(1):490.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8504044</ArticleId><ArticleId IdType="pubmed">34629051</ArticleId></ArticleIdList></Reference><Reference><Citation>Yokota S, Tanaka H, Mochizuki Y, et al. Association of glycemic variability with left ventricular diastolic function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2019;18(1):166.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6894492</ArticleId><ArticleId IdType="pubmed">31805945</ArticleId></ArticleIdList></Reference><Reference><Citation>McHugh K, DeVore AD, Wu J, et al. Heart failure with preserved ejection fraction and diabetes: JACC state‐of‐the‐art review. J Am Coll Cardiol. 2019;73(5):602‐611.</Citation><ArticleIdList><ArticleId IdType="pubmed">30732715</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoey H, Aanstoot HJ, Chiarelli F, et al. Good metabolic control is associated with better quality of life in 2,101 adolescents with type 1 diabetes. Diabetes Care. 2001;24(11):1923‐1928.</Citation><ArticleIdList><ArticleId IdType="pubmed">11679458</ArticleId></ArticleIdList></Reference><Reference><Citation>Matlock KA, Broadley M, Hendrieckx C, et al. Changes in quality of life following hypoglycaemia in adults with type 2 diabetes: a systematic review of longitudinal studies. Diabet Med. 2022;39(1):e14706.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9293422</ArticleId><ArticleId IdType="pubmed">34596292</ArticleId></ArticleIdList></Reference><Reference><Citation>Cox DJ, McCall A, Kovatchev B, Sarwat S, Ilag LL, Tan MH. Effects of blood glucose rate of changes on perceived mood and cognitive symptoms in insulin‐treated type 2 diabetes. Diabetes Care. 2007;30(8):2001‐2002.</Citation><ArticleIdList><ArticleId IdType="pubmed">17473060</ArticleId></ArticleIdList></Reference><Reference><Citation>Penckofer S, Quinn L, Byrn M, Ferrans C, Miller M, Strange P. Does glycemic variability impact mood and quality of life? Diabetes Technol Ther. 2012;14(4):303‐310.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3317401</ArticleId><ArticleId IdType="pubmed">22324383</ArticleId></ArticleIdList></Reference><Reference><Citation>Hermanns N, Scheff C, Kulzer B, et al. Association of glucose levels and glucose variability with mood in type 1 diabetic patients. Diabetologia. 2007;50(5):930‐933.</Citation><ArticleIdList><ArticleId IdType="pubmed">17370057</ArticleId></ArticleIdList></Reference><Reference><Citation>Ayano‐Takahara S, Ikeda K, Fujimoto S, et al. Glycemic variability is associated with quality of life and treatment satisfaction in patients with type 1 diabetes. Diabetes Care. 2015;38(1):e1‐e2.</Citation><ArticleIdList><ArticleId IdType="pubmed">25538320</ArticleId></ArticleIdList></Reference><Reference><Citation>Reddy M, Godsland IF, Barnard KD, et al. Glycemic variability and its impact on quality of life in adults with type 1 diabetes. J Diabetes Sci Technol. 2015;10(1):60‐66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4738216</ArticleId><ArticleId IdType="pubmed">26285951</ArticleId></ArticleIdList></Reference><Reference><Citation>Suteau V, Saulnier PJ, Wargny M, et al. Association between sleep disturbances, fear of hypoglycemia and psychological well‐being in adults with type 1 diabetes mellitus, data from cross‐sectional VARDIA study. Diabetes Res Clin Pract. 2020;160:107988.</Citation><ArticleIdList><ArticleId IdType="pubmed">31866527</ArticleId></ArticleIdList></Reference><Reference><Citation>Pylov D, Polonsky W, Imberg H, et al. Treatment satisfaction and well‐being with CGM in people with T1D: an analysis based on the GOLD randomized trial. J Diabetes Sci Technol. 2023;19322968231183974. EPub.</Citation><ArticleIdList><ArticleId IdType="pubmed">37501366</ArticleId></ArticleIdList></Reference><Reference><Citation>Nefs G, Bazelmans E, Marsman D, Snellen N, Tack CJ, de Galan BE. RT‐CGM in adults with type 1 diabetes improves both glycaemic and patient‐reported outcomes, but independent of each other. Diabetes Res Clin Pract. 2019;158:107910.</Citation><ArticleIdList><ArticleId IdType="pubmed">31678626</ArticleId></ArticleIdList></Reference><Reference><Citation>Castellano‐Guerrero AM, Guerrero R, Ruiz‐Aranda D, et al. Gender differences in quality of life in adults with long‐standing type 1 diabetes mellitus. Diabetol Metab Syndr. 2020;12:64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7367231</ArticleId><ArticleId IdType="pubmed">32695233</ArticleId></ArticleIdList></Reference><Reference><Citation>Egbuonu I, Trief PM, Roe C, Weinstock RS. Glycemic outcomes related to depression in adults with type 1 diabetes. J Health Psychol. 2021;26(8):1282‐1290.</Citation><ArticleIdList><ArticleId IdType="pubmed">31495223</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi Q, Ding J, Su H, Du Y, Pan T, Zhong X. Association of long‐term HbA1c variability with anxiety and depression in patients with type 2 diabetes: a cross‐sectional retrospective study. Psychol Res Behav Manag. 2023;16:5053‐5068.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10747221</ArticleId><ArticleId IdType="pubmed">38144235</ArticleId></ArticleIdList></Reference><Reference><Citation>Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681‐1687.</Citation><ArticleIdList><ArticleId IdType="pubmed">16609090</ArticleId></ArticleIdList></Reference><Reference><Citation>Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H‐oxidase activation. Diabetes. 2003;52(11):2795‐2804.</Citation><ArticleIdList><ArticleId IdType="pubmed">14578299</ArticleId></ArticleIdList></Reference><Reference><Citation>Ceriello A, Novials A, Ortega E, et al. Hyperglycemia following recovery from hypoglycemia worsens endothelial damage and thrombosis activation in type 1 diabetes and in healthy controls. Nutr Metab Cardiovasc Dis. 2014;24(2):116‐123.</Citation><ArticleIdList><ArticleId IdType="pubmed">24094827</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohara M, Fukui T, Ouchi M, et al. Relationship between daily and day‐to‐day glycemic variability and increased oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2016;122:62‐70.</Citation><ArticleIdList><ArticleId IdType="pubmed">27810687</ArticleId></ArticleIdList></Reference><Reference><Citation>Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA(1c) levels. Diabetes. 2017;66(9):2472‐2482.</Citation><ArticleIdList><ArticleId IdType="pubmed">28634176</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohara M, Nagaike H, Goto S, et al. Improvements of ambient hyperglycemia and glycemic variability are associated with reduction in oxidative stress for patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;139:253‐261.</Citation><ArticleIdList><ArticleId IdType="pubmed">29501829</ArticleId></ArticleIdList></Reference><Reference><Citation>Dasari PS, Gandomani BS, Teague AM, Pitale A, Otto M, Short KR. Glycemic variability is associated with markers of vascular stress in adolescents. J Pediatr. 2016;172:47‐55 e2.</Citation><ArticleIdList><ArticleId IdType="pubmed">26922105</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoffman RP, Dye AS, Huang H, Bauer JA. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. J Pediatr Endocrinol Metab. 2016;29(10):1129‐1133.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5546213</ArticleId><ArticleId IdType="pubmed">27658133</ArticleId></ArticleIdList></Reference><Reference><Citation>Kietsiriroje N, Pearson SM, O'Mahoney LL, et al. Glucose variability is associated with an adverse vascular profile but only in the presence of insulin resistance in individuals with type 1 diabetes: an observational study. Diab Vasc Dis Res. 2022;19(3):14791641221103217.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9168893</ArticleId><ArticleId IdType="pubmed">35657731</ArticleId></ArticleIdList></Reference><Reference><Citation>Bolinder J, Antuna R, Geelhoed‐Duijvestijn P, Kroger J, Weitgasser R. Novel glucose‐sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non‐masked, randomised controlled trial. Lancet. 2016;388(10057):2254‐2263.</Citation><ArticleIdList><ArticleId IdType="pubmed">27634581</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39632534</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>31</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>07</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1744-7666</ISSN><JournalIssue CitedMedium="Internet"><Volume>26</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Expert opinion on pharmacotherapy</Title><ISOAbbreviation>Expert Opin Pharmacother</ISOAbbreviation></Journal><ArticleTitle>Tirzepatide for overweight and obesity management.</ArticleTitle><Pagination><StartPage>31</StartPage><EndPage>49</EndPage><MedlinePgn>31-49</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1080/14656566.2024.2436595</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="UNASSIGNED">Tirzepatide is a once-weekly dual agonist, acting on glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors. It is approved at the same doses (5, 10 and 15 mg) for both type 2 diabetes (T2D) and chronic weight management.</AbstractText><AbstractText Label="AREAS COVERED" NlmCategory="UNASSIGNED">Following a search in PubMed, clinicaltrials.gov, conference abstracts and Lilly website, we review herein the global phase 3 SURMOUNT program on tirzepatide's safety and efficacy for chronic weight management. Additionally, we discuss findings from the regional SURMOUNT-CN and SURMOUNT-J trials (in East-Asian populations) and the phase 2 SYNERGY-NASH, phase 3 SURMOUNT-OSA and SUMMIT studies on tirzepatide's impact on obesity-related complications. We also explore the clinical implications of SURMOUNT program results, considerations for tirzepatide prescribing for overweight/obesity, ongoing research and evidence gaps.</AbstractText><AbstractText Label="EXPERT OPINION" NlmCategory="UNASSIGNED">Tirzepatide marks a new era in overweight/obesity treatment, enabling many to achieve ≥ 20% weight loss. It is well-tolerated with a safety profile similar to GLP-1 receptor agonists. Tirzepatide also results in clinically important improvements in multiple obesity-related complications including sleep apnea, metabolic-dysfunction associated steatohepatitis, heart failure with preserved ejection fraction and diabetes prevention. Ongoing trials will provide further data on tirzepatide's long-term safety, efficacy (including cardiovascular outcomes) and potential cost-effectiveness for managing overweight/obesity and/or T2D.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hamza</LastName><ForeName>Malak</ForeName><Initials>M</Initials><Identifier Source="ORCID">0009-0005-8483-8197</Identifier><AffiliationInfo><Affiliation>Diabetes Research Centre, University of Leicester, Leicester, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Papamargaritis</LastName><ForeName>Dimitris</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Diabetes Research Centre, University of Leicester, Leicester, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Diabetes and Endocrinology, Kettering General Hospital NHS Trust, Kettering, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Davies</LastName><ForeName>Melanie J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Diabetes Research Centre, University of Leicester, Leicester, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Expert Opin Pharmacother</MedlineTA><NlmUniqueID>100897346</NlmUniqueID><ISSNLinking>1465-6566</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D019440">Anti-Obesity Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>59392-49-3</RegistryNumber><NameOfSubstance UI="D005749">Gastric Inhibitory Polypeptide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000067758">Glucagon-Like Peptide-2 Receptor</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019440" MajorTopicYN="Y">Anti-Obesity Agents</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005749" MajorTopicYN="N">Gastric Inhibitory Polypeptide</DescriptorName><QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="Y">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000067758" MajorTopicYN="N">Glucagon-Like Peptide-2 Receptor</DescriptorName><QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="Y">Obesity</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050177" MajorTopicYN="Y">Overweight</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015431" MajorTopicYN="N">Weight Loss</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">GIP</Keyword><Keyword MajorTopicYN="N">GLP-1</Keyword><Keyword MajorTopicYN="N">Glucose-dependent insulinotropic polypeptide</Keyword><Keyword MajorTopicYN="N">SURMOUNT</Keyword><Keyword MajorTopicYN="N">glucagon-like peptide-1</Keyword><Keyword MajorTopicYN="N">obesity pharmacotherapy</Keyword><Keyword MajorTopicYN="N">tirzepatide</Keyword><Keyword MajorTopicYN="N">weight loss</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>1</Day><Hour>12</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>1</Hour><Minute>43</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39632534</ArticleId><ArticleId IdType="doi">10.1080/14656566.2024.2436595</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39632416</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>07</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1463-1326</ISSN><JournalIssue CitedMedium="Internet"><Volume>27</Volume><Issue>2</Issue><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Diabetes, obesity & metabolism</Title><ISOAbbreviation>Diabetes Obes Metab</ISOAbbreviation></Journal><ArticleTitle>A biweekly DPP-4 inhibitor cofrogliptin monotherapy in Chinese patients with impaired glucose tolerance: A phase 2, multicenter, randomized, double-blind, placebo-controlled, parallel-group trial.</ArticleTitle><Pagination><StartPage>965</StartPage><EndPage>975</EndPage><MedlinePgn>965-975</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/dom.16096</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">To assess the efficacy and safety of cofrogliptin for impaired glucose tolerance (IGT).</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">In this multicenter, double-blind, placebo-controlled phase 2 trial, IGT patients were randomized 1:1:1 to receive cofrogliptin 10 mg, cofrogliptin 25 mg or placebo once biweekly. The primary endpoint was the change from baseline in glucose total AUC<sub>0-3 h</sub> during meal tolerance test (MTT) at week 12.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Among 261 subjects screened, 99 were enrolled. At week 12, significant mean reductions from baseline in glucose total AUC<sub>0-3 h</sub> during MTT were observed in cofrogliptin groups (10 mg: -1.75 mmol h/L, p = 0.01; 25 mg: -1.54 mmol h/L, p = 0.02) versus placebo (0.36 mmol h/L). Significant benefits were also seen with cofrogliptin for secondary endpoints of the change from baseline in C<sub>max</sub> of glucose during MTT 0-3 h at week 12, and the change from baseline in glucose total AUC<sub>0-3 h</sub> and C<sub>max</sub> of glucose during OGTT 0-3 h at week 10 versus placebo. Additionally, more cofrogliptin-treated patients achieved normoglycaemia versus placebo at week 10. The incidence of AEs was generally comparable in all groups, and all of AEs were mild or moderate. No serious AEs or severe hypoglycaemia were reported.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">A 12-week treatment with cofrogliptin provided significant glucose-lowering, and was safe, well tolerated.</AbstractText><CopyrightInformation>© 2024 John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Qinghua</ForeName><Initials>Q</Initials><Identifier Source="ORCID">0000-0003-2082-5360</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheng</LastName><ForeName>Zhifeng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Yufeng</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Beijing Pinggu Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xing</LastName><ForeName>Xiaoyan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Hebei Yanda Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Liping</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xinsheng</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Junqing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Peking university first hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xu</LastName><ForeName>Lingling</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Song</LastName><ForeName>Weihong</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Chenzhou First People's Hospital, Chenzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Fangqiong</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Clinical Medicine, Haisco Pharmaceutical Group Co. Ltd, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Zhanhui</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Clinical Medicine, Haisco Pharmaceutical Group Co. Ltd, Chengdu, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Lixin</ForeName><Initials>L</Initials><Identifier Source="ORCID">0000-0001-6863-1798</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><Agency>Haisco Pharmaceutical Group Co. Ltd</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType><PublicationType UI="D017427">Clinical Trial, Phase II</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Obes Metab</MedlineTA><NlmUniqueID>100883645</NlmUniqueID><ISSNLinking>1462-8902</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D054873">Dipeptidyl-Peptidase IV Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D054873" MajorTopicYN="Y">Dipeptidyl-Peptidase IV Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004311" MajorTopicYN="N">Double-Blind Method</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004334" MajorTopicYN="N">Drug Administration Schedule</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095225" MajorTopicYN="N">East Asian People</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="Y">Glucose Intolerance</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="N">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">biweekly</Keyword><Keyword MajorTopicYN="N">cofrogliptin</Keyword><Keyword MajorTopicYN="N">dipeptidyl peptidase‐4 inhibitors</Keyword><Keyword MajorTopicYN="N">glucose intolerance</Keyword><Keyword MajorTopicYN="N">impaired glucose tolerance</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>0</Hour><Minute>42</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39632416</ArticleId><ArticleId IdType="doi">10.1111/dom.16096</ArticleId></ArticleIdList><ReferenceList><Title>REFERENCES</Title><Reference><Citation>Rezki A, Fysekidis M, Chiheb S, Vicaut E, Cosson E, Valensi P. Acute and long‐term effects of saxagliptin on post‐prandial glycemic response in obese patients with impaired glucose tolerance. Nutr Metab Cardiovasc Dis. 2021;31:1257‐1266.</Citation></Reference><Reference><Citation>Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30‐year results of the Da Qing diabetes prevention outcome study. Lancet Diabetes Endocrinol. 2019;7:452‐461.</Citation></Reference><Reference><Citation>Lindström J, Ilanne‐Parikka P, Peltonen M, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow‐up of the Finnish diabetes prevention study. Lancet. 2006;368:1673‐1679.</Citation></Reference><Reference><Citation>de Vegt F, Dekker JM, Jager A, et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: the Hoorn study. JAMA. 2001;285:2109‐2113.</Citation></Reference><Reference><Citation>International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Belgium, International Diabetes Federation; 2021.</Citation></Reference><Reference><Citation>International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Belgium, International Diabetes Federation; 2019.</Citation></Reference><Reference><Citation>Alberti KG, Zimmet P, Shaw J. International diabetes federation: a consensus on type 2 diabetes prevention. Diabet Med. 2007;24:451‐463.</Citation></Reference><Reference><Citation>Chinese Society of Endocrinology CDS, Chinese Endocrinologist Association. Intervention for adults with pre‐diabetes: a Chinese expert consensus. Chin J Diabetes Mellitus. 2023;2023(15):6.</Citation></Reference><Reference><Citation>Chiasson J‐L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP‐NIDDM randomised trial. The Lancet. 2002;359:2072‐2077.</Citation></Reference><Reference><Citation>The diabetes prevention program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25:2165‐2171.</Citation></Reference><Reference><Citation>Long‐term effects of metformin on diabetes prevention: identification of subgroups that benefited most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. J Diabetes Care. 2019;42:601‐608.</Citation></Reference><Reference><Citation>Dennis JM, Young KG, McGovern AP, et al. Development of a treatment selection algorithm for SGLT2 and DPP‐4 inhibitor therapies in people with type 2 diabetes: a retrospective cohort study. Lancet Digit Health. 2022;4:e873‐e883.</Citation></Reference><Reference><Citation>Rosenstock J, Foley JE, Rendell M, et al. Effects of the dipeptidyl peptidase‐IV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care. 2008;31:30‐35.</Citation></Reference><Reference><Citation>Kaku K, Kadowaki T, Terauchi Y, et al. Sitagliptin improves glycaemic excursion after a meal or after an oral glucose load in Japanese subjects with impaired glucose tolerance. Diabetes Obes Metab. 2015;17:1033‐1041.</Citation></Reference><Reference><Citation>Tan X. Omarigliptin for the treatment of type 2 diabetes. Endocrine. 2016;54:24‐31.</Citation></Reference><Reference><Citation>Kaku K. Safety evaluation of trelagliptin in the treatment of Japanese type 2 diabetes mellitus patients. Expert Opin Drug Saf. 2017;16:1313‐1322.</Citation></Reference><Reference><Citation>Shi D, Chen L, Li G, et al. Pharmacokinetics, pharmacodynamics, and safety of single dose HSK7653 tablets in Chinese subjects with Normal or impaired renal function. Clin Pharmacokinet. 2024;63:227‐239.</Citation></Reference><Reference><Citation>Bai N, Wang J, Liang W, et al. A multicenter, randomized, double‐blind, placebo‐controlled, and dose‐increasing study on the safety, tolerability and PK/PD of multiple doses of HSK7653 by Oral Administration in Patients with type 2 diabetes mellitus in China. Diabetes Ther. 2024;15:183‐199.</Citation></Reference><Reference><Citation>Ren Q, Li L, Su X, et al. Cofrogliptin once every 2 weeks as add‐on therapy to metformin versus daily linagliptin in patients with type 2 diabetes in China: a randomized, double‐blind, non‐inferiority trial. Diabetes Obes Metab. 2024;26:5013‐5024.</Citation></Reference><Reference><Citation>Wang Z, Xu D, Huang L, et al. Effects of saxagliptin on glucose homeostasis and body composition of obese patients with newly diagnosed pre‐diabetes. Diabetes Res Clin Pract. 2017;130:77‐85.</Citation></Reference><Reference><Citation>Basu R, Barosa C, Jones J, et al. Pathogenesis of prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J Clin Endocrinol Metab. 2013;98:E409‐E417.</Citation></Reference><Reference><Citation>Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre‐diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55:3536‐3549.</Citation></Reference><Reference><Citation>Mitrakou A, Kelley D, Mokan M, et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med. 1992;326:22‐29.</Citation></Reference><Reference><Citation>Ferjan S, Janez A, Jensterle M. DPP4 inhibitor sitagliptin AS a potential treatment option in metformin‐intolerant obese women with polycystic ovary syndrome: a pilot randomized study. Endocr Pract. 2018;24:69‐77.</Citation></Reference><Reference><Citation>Ahrén B. Use of DPP‐4 inhibitors in type 2 diabetes: focus on sitagliptin. Diabetes Metab Syndr Obes. 2010;3:31‐41.</Citation></Reference><Reference><Citation>Rosenstock J. Reflecting on type 2 diabetes prevention: more questions than answers! Diabetes Obes Metab. 2007;9(Suppl 1):3‐11.</Citation></Reference><Reference><Citation>Utzschneider KM, Tong J, Montgomery B, et al. The dipeptidyl peptidase‐4 inhibitor vildagliptin improves beta‐cell function and insulin sensitivity in subjects with impaired fasting glucose. Diabetes Care. 2008;31:108‐113.</Citation></Reference><Reference><Citation>Wang X, Wang Y, Yong X, et al. Yogliptin monotherapy in type 2 diabetes: a 12‐week randomized, double‐blind, placebo‐controlled phase II study. J Diabetes. 2022;14:822‐830.</Citation></Reference><Reference><Citation>Meguro S, Matsui S, Itoh HJCMR. Treatment preference for weekly versus daily DPP‐4 inhibitors in patients with type 2 diabetes mellitus: outcomes from the TRINITY trial. Curr Med Res Opin. 2019;35:2071‐2078.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39632119</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Effect of communicating genetic risk of type 2 diabetes and wearable technologies on wearable device-measured behavioural outcomes in East Asians: protocol of a randomised controlled trial.</ArticleTitle><Pagination><StartPage>e082635</StartPage><MedlinePgn>e082635</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e082635</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-082635</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">The communication of information about the risk of type 2 diabetes (T2D) alone has not been associated with changes in habitual behaviours among individuals of European ancestry. In contrast, the use of wearable devices that monitor physical activity (PA) has been associated with behavioural changes in some studies. It is uncertain whether risk communication might enhance the effects of wearable devices. We aim to assess the effects of communicating genetic risk for T2D alone or in combination with wearable device functions on wearable device-measured PA among overweight or obese East Asians.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">In a parallel group, randomised controlled trial, 355 overweight or obese East Asian individuals aged 40-60 years are allocated into one of three groups: one control and two intervention groups. Blood samples will be used for estimation of T2D genetic risk and analysis of metabolic risk markers. Genetic risk of T2D will be estimated based on 113 single-nucleotide polymorphisms associated with T2D among East Asians. All three groups receive a Fitbit device. Both intervention groups will receive T2D genetic risk estimates along with lifestyle advice, but one of the intervention groups additionally uses Fitbit's step goal setting and prompt functions. Questionnaires and physical measurements are administered at baseline, immediately after intervention delivery, and 6 and 12 months post intervention. The primary outcome is time spent in moderate-to-vigorous PA from the Fitbit, which will be assessed at baseline, immediately post intervention, 12 months post intervention and at 6-month follow-up. Secondary outcomes include other wearable device-measured parameters, sedentary time, and sleep, blood pressure, metabolic risk markers, hand grip strength, self-reported PA, fruit and vegetable consumption, smoking, and psychological variables. Between-group differences in the continuous and categorical variables collected at baseline will be examined using Analysis of Variance (ANOVA) and χ<sup>2</sup> tests, respectively. A series of linear mixed effects models with fixed effects of time, group and interaction between time and group will be performed, with adjustment for potential confounders.</AbstractText><AbstractText Label="ETHICS AND DISSEMINATION" NlmCategory="BACKGROUND">The study protocol has undergone review and received approval from the ethics committee of the University of Hong Kong. Findings from our trial will be disseminated through publication in peer-reviewed research journals and presented at international academic conferences.</AbstractText><AbstractText Label="TRIAL REGISTRATION NUMBER" NlmCategory="BACKGROUND">ClinicalTrials.gov, NCT05524909. https://register.</AbstractText><AbstractText Label="CLINICALTRIALS" NlmCategory="RESULTS">gov/ (11 November 2024).</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Youngwon</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong youngwon.kim@hku.hk.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Godino</LastName><ForeName>Job G</ForeName><Initials>JG</Initials><AffiliationInfo><Affiliation>Exercise and Physical Activity Resource Center, Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, California, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheung</LastName><ForeName>Flora Lai Tung</ForeName><Initials>FLT</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Multhaup</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Guardant Health, Redwood City, California, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chan</LastName><ForeName>Derwin King Chung K C</ForeName><Initials>DKCKC</Initials><Identifier Source="ORCID">0000-0001-8200-0263</Identifier><AffiliationInfo><Affiliation>The Education University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Ziyuan</ForeName><Initials>Z</Initials><Identifier Source="ORCID">0009-0000-0176-8685</Identifier><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ho</LastName><ForeName>Harrison Hin Sheung</ForeName><Initials>HHS</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tse</LastName><ForeName>Tsz Him Timothy</ForeName><Initials>THT</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Au Yeung</LastName><ForeName>Shiu Lun Ryan</ForeName><Initials>SLR</Initials><AffiliationInfo><Affiliation>Division of Epidemiology and Biostatistics, University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lou</LastName><ForeName>Shan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Epidemiology and Biostatistics, University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Joni H</ForeName><Initials>JH</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Mengyao</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chung</LastName><ForeName>Brian</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Paediatrics, The University of Hong Kong, HKSAR, Hong Kong.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Griffin</LastName><ForeName>Simon</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>The Primary Care Unit, University of Cambridge, Cambridge, UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>MRC Epidemiology Unit, Cambridge, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><DataBankList CompleteYN="Y"><DataBank><DataBankName>ClinicalTrials.gov</DataBankName><AccessionNumberList><AccessionNumber>NCT05524909</AccessionNumber></AccessionNumberList></DataBank></DataBankList><PublicationTypeList><PublicationType UI="D000078325">Clinical Trial Protocol</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000095225" MajorTopicYN="N">East Asian People</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="N">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000072936" MajorTopicYN="N">Fitness Trackers</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050177" MajorTopicYN="N">Overweight</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000076251" MajorTopicYN="Y">Wearable Electronic Devices</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Behavior</Keyword><Keyword MajorTopicYN="N">GENETICS</Keyword><Keyword MajorTopicYN="N">General diabetes</Keyword><Keyword MajorTopicYN="N">Protocols & guidelines</Keyword><Keyword MajorTopicYN="N">Randomized Controlled Trial</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>21</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39632119</ArticleId><ArticleId IdType="pmc">PMC11624736</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-082635</ArticleId><ArticleId IdType="pii">bmjopen-2023-082635</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Zimmet PZ, Magliano DJ, Herman WH, et al. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2:56–64. doi: 10.1016/S2213-8587(13)70112-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(13)70112-8</ArticleId><ArticleId IdType="pubmed">24622669</ArticleId></ArticleIdList></Reference><Reference><Citation>Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud. 2012;9:6–22. doi: 10.1900/RDS.2012.9.6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1900/RDS.2012.9.6</ArticleId><ArticleId IdType="pmc">PMC3448170</ArticleId><ArticleId IdType="pubmed">22972441</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou B, Lu Y, Hajifathalian K, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. The Lancet. 2016;387:1513–30. doi: 10.1016/S0140-6736(16)00618-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(16)00618-8</ArticleId><ArticleId IdType="pmc">PMC5081106</ArticleId><ArticleId IdType="pubmed">27061677</ArticleId></ArticleIdList></Reference><Reference><Citation>Hallal PC, Andersen LB, Bull FC, et al. Lancet Physical Activity Series Working G. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–57.</Citation><ArticleIdList><ArticleId IdType="pubmed">22818937</ArticleId></ArticleIdList></Reference><Reference><Citation>Luk AOY, Ke C, Lau ESH, et al. Secular trends in incidence of type 1 and type 2 diabetes in Hong Kong: A retrospective cohort study. PLoS Med. 2020;17:e1003052. doi: 10.1371/journal.pmed.1003052.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1003052</ArticleId><ArticleId IdType="pmc">PMC7032690</ArticleId><ArticleId IdType="pubmed">32078650</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Geneva: World Health Organization; 2016. Global report on diabetes.</Citation></Reference><Reference><Citation>Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature New Biol. 2020;582:240–5. doi: 10.1038/s41586-020-2263-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-020-2263-3</ArticleId><ArticleId IdType="pmc">PMC7292783</ArticleId><ArticleId IdType="pubmed">32499647</ArticleId></ArticleIdList></Reference><Reference><Citation>CredenceResearch . United States: Credence Research; 2018. Direct-to-consumer (dtc) genetic testing market by sales channel (online sales, otc sales, doctor’s office), by business model (genome data bank material model, individual health planning model, comprehensive genome tests model, medical precision tests model, restricted trait tests model) - growth, future propects and competitive analysis, 2018 - 2026.</Citation></Reference><Reference><Citation>Sun L, Liang B, Zhu L, et al. The rise of the genetic counseling profession in China. Am J Med Genet C Semin Med Genet. 2019;181:170–6. doi: 10.1002/ajmg.c.31693.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ajmg.c.31693</ArticleId><ArticleId IdType="pmc">PMC6593421</ArticleId><ArticleId IdType="pubmed">30860676</ArticleId></ArticleIdList></Reference><Reference><Citation>Hollands GJ, French DP, Griffin SJ, et al. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. BMJ. 2016;352:i1102. doi: 10.1136/bmj.i1102.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.i1102</ArticleId><ArticleId IdType="pmc">PMC4793156</ArticleId><ArticleId IdType="pubmed">26979548</ArticleId></ArticleIdList></Reference><Reference><Citation>Hann KEJ, Freeman M, Fraser L, et al. Awareness, knowledge, perceptions, and attitudes towards genetic testing for cancer risk among ethnic minority groups: a systematic review. BMC Public Health. 2017;17:503. doi: 10.1186/s12889-017-4375-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12889-017-4375-8</ArticleId><ArticleId IdType="pmc">PMC5445407</ArticleId><ArticleId IdType="pubmed">28545429</ArticleId></ArticleIdList></Reference><Reference><Citation>Barlow-Stewart K, Yeo SS, Meiser B, et al. Toward cultural competence in cancer genetic counseling and genetics education: lessons learned from Chinese-Australians. Genet Med. 2006;8:24–32. doi: 10.1097/01.gim.0000195884.86201.a0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/01.gim.0000195884.86201.a0</ArticleId><ArticleId IdType="pubmed">16418596</ArticleId></ArticleIdList></Reference><Reference><Citation>Spaccarotella CAM, Polimeni A, Migliarino S, et al. Multichannel Electrocardiograms Obtained by a Smartwatch for the Diagnosis of ST-Segment Changes. JAMA Cardiol. 2020;5:1176–80. doi: 10.1001/jamacardio.2020.3994.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamacardio.2020.3994</ArticleId><ArticleId IdType="pmc">PMC7466842</ArticleId><ArticleId IdType="pubmed">32865545</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel MS, Asch DA, Volpp KG. Wearable devices as facilitators, not drivers, of health behavior change. JAMA. 2015;313:459–60. doi: 10.1001/jama.2014.14781.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2014.14781</ArticleId><ArticleId IdType="pubmed">25569175</ArticleId></ArticleIdList></Reference><Reference><Citation>Brickwood KJ, Watson G, O’Brien J, et al. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth. 2019;7:e11819. doi: 10.2196/11819.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/11819</ArticleId><ArticleId IdType="pmc">PMC6484266</ArticleId><ArticleId IdType="pubmed">30977740</ArticleId></ArticleIdList></Reference><Reference><Citation>Piwek L, Ellis DA, Andrews S, et al. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016;13:e1001953. doi: 10.1371/journal.pmed.1001953.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1001953</ArticleId><ArticleId IdType="pmc">PMC4737495</ArticleId><ArticleId IdType="pubmed">26836780</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan AW, Tetzlaff JM, Gøtzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.e7586</ArticleId><ArticleId IdType="pmc">PMC3541470</ArticleId><ArticleId IdType="pubmed">23303884</ArticleId></ArticleIdList></Reference><Reference><Citation>Agena Bioscience . CA: Agena Bioscience; 2020. The massarray system San Diego.https://agenabio.com/products/massarray-system Available.</Citation></Reference><Reference><Citation>Godino JG, van Sluijs EMF, Marteau TM, et al. Lifestyle Advice Combined with Personalized Estimates of Genetic or Phenotypic Risk of Type 2 Diabetes, and Objectively Measured Physical Activity: A Randomized Controlled Trial. PLoS Med. 2016;13:e1002185. doi: 10.1371/journal.pmed.1002185.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1002185</ArticleId><ArticleId IdType="pmc">PMC5127499</ArticleId><ArticleId IdType="pubmed">27898672</ArticleId></ArticleIdList></Reference><Reference><Citation>Multhaup ML, Kita R, Krock B, et al. 23andMe; 2019. White paper 23-19 the science behind 23andme’s type 2 diabetes report. estimating the likelihood of developing type 2 diabetes with polygenic models.</Citation></Reference><Reference><Citation>Godino JG, van Sluijs EMF, Marteau TM, et al. Effect of communicating genetic and phenotypic risk for type 2 diabetes in combination with lifestyle advice on objectively measured physical activity: protocol of a randomised controlled trial. BMC Public Health. 2012;12:444. doi: 10.1186/1471-2458-12-444.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2458-12-444</ArticleId><ArticleId IdType="pmc">PMC3490832</ArticleId><ArticleId IdType="pubmed">22708638</ArticleId></ArticleIdList></Reference><Reference><Citation>Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879–86. doi: 10.1093/jnci/81.24.1879.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jnci/81.24.1879</ArticleId><ArticleId IdType="pubmed">2593165</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheridan SL, Viera AJ, Krantz MJ, et al. Cardiovascular Health Intervention R, Translation Network Work Group on Global Coronary Heart Disease R. The effect of giving global coronary risk information to adults: a systematic review. Arch Intern Med. 2010;170:230–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">20142567</ArticleId></ArticleIdList></Reference><Reference><Citation>WHO WHO strategic communications framework for effective communications. 2017</Citation></Reference><Reference><Citation>Multhaup M, Kita R, Krock B, et al. White paper 23-19: the science behind 23andme’s type 2 diabetes report. 2019</Citation></Reference><Reference><Citation>de Vries HJ, Kooiman TJM, van Ittersum MW, et al. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 2016;24:2078–91. doi: 10.1002/oby.21619.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.21619</ArticleId><ArticleId IdType="pubmed">27670401</ArticleId></ArticleIdList></Reference><Reference><Citation>Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40:423–9. doi: 10.1093/ageing/afr051.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ageing/afr051</ArticleId><ArticleId IdType="pubmed">21624928</ArticleId></ArticleIdList></Reference><Reference><Citation>Grant RW, O’Brien KE, Waxler JL, et al. Personalized genetic risk counseling to motivate diabetes prevention: a randomized trial. Diabetes Care. 2013;36:13–9. doi: 10.2337/dc12-0884.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc12-0884</ArticleId><ArticleId IdType="pmc">PMC3526219</ArticleId><ArticleId IdType="pubmed">22933432</ArticleId></ArticleIdList></Reference><Reference><Citation>Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.</Citation></Reference><Reference><Citation>Peters TM, Moore SC, Xiang YB, et al. Accelerometer-measured physical activity in Chinese adults. Am J Prev Med. 2010;38:583–91. doi: 10.1016/j.amepre.2010.02.012.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2010.02.012</ArticleId><ArticleId IdType="pmc">PMC2897243</ArticleId><ArticleId IdType="pubmed">20494234</ArticleId></ArticleIdList></Reference><Reference><Citation>Cadmus-Bertram LA, Marcus BH, Patterson RE, et al. Randomized Trial of a Fitbit-Based Physical Activity Intervention for Women. Am J Prev Med. 2015;49:414–8. doi: 10.1016/j.amepre.2015.01.020.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2015.01.020</ArticleId><ArticleId IdType="pmc">PMC4993151</ArticleId><ArticleId IdType="pubmed">26071863</ArticleId></ArticleIdList></Reference><Reference><Citation>Penić A, Begić D, Balajić K, et al. Definitions of blinding in randomised controlled trials of interventions published in high-impact anaesthesiology journals: a methodological study and survey of authors. BMJ Open. 2020;10:e035168. doi: 10.1136/bmjopen-2019-035168.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2019-035168</ArticleId><ArticleId IdType="pmc">PMC7200040</ArticleId><ArticleId IdType="pubmed">32284390</ArticleId></ArticleIdList></Reference><Reference><Citation>Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. doi: 10.1186/s12966-015-0314-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-015-0314-1</ArticleId><ArticleId IdType="pmc">PMC4683756</ArticleId><ArticleId IdType="pubmed">26684758</ArticleId></ArticleIdList></Reference><Reference><Citation>Mallinckrodt CH, Lane PW, Schnell D, et al. Recommendations for the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials. Drug Information J. 2008;42:303–19. doi: 10.1177/009286150804200402.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/009286150804200402</ArticleId></ArticleIdList></Reference><Reference><Citation>Lautenbach DM, Christensen KD, Sparks JA, et al. Communicating genetic risk information for common disorders in the era of genomic medicine. Annu Rev Genomics Hum Genet. 2013;14:491–513. doi: 10.1146/annurev-genom-092010-110722.</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-genom-092010-110722</ArticleId><ArticleId IdType="pmc">PMC3862080</ArticleId><ArticleId IdType="pubmed">24003856</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39631943</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1756-1833</ISSN><JournalIssue CitedMedium="Internet"><Volume>387</Volume><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>BMJ (Clinical research ed.)</Title><ISOAbbreviation>BMJ</ISOAbbreviation></Journal><ArticleTitle>Chocolate intake and risk of type 2 diabetes: prospective cohort studies.</ArticleTitle><Pagination><StartPage>e078386</StartPage><MedlinePgn>e078386</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e078386</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmj-2023-078386</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To prospectively investigate the associations between dark, milk, and total chocolate consumption and risk of type 2 diabetes (T2D) in three US cohorts.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">Prospective cohort studies.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">Nurses' Health Study (NHS; 1986-2018), Nurses' Health Study II (NHSII; 1991-2021), and Health Professionals Follow-Up Study (HPFS; 1986-2020).</AbstractText><AbstractText Label="PARTICIPANTS" NlmCategory="METHODS">At study baseline for total chocolate analyses (1986 for NHS and HPFS; 1991 for NHSII), 192 208 participants without T2D, cardiovascular disease, or cancer were included. 111 654 participants were included in the analysis for risk of T2D by intake of chocolate subtypes, assessed from 2006 in NHS and HPFS and from 2007 in NHSII.</AbstractText><AbstractText Label="MAIN OUTCOME MEASURE" NlmCategory="METHODS">Self-reported incident T2D, with patients identified by follow-up questionnaires and confirmed through a validated supplementary questionnaire. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals (CIs) for T2D according to chocolate consumption.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">In the primary analyses for total chocolate, 18 862 people with incident T2D were identified during 4 829 175 person years of follow-up. After adjusting for personal, lifestyle, and dietary risk factors, participants consuming ≥5 servings/week of any chocolate showed a significant 10% (95% CI 2% to 17%; P trend=0.07) lower rate of T2D compared with those who never or rarely consumed chocolate. In analyses by chocolate subtypes, 4771 people with incident T2D were identified. Participants who consumed ≥5 servings/week of dark chocolate showed a significant 21% (5% to 34%; P trend=0.006) lower risk of T2D. No significant associations were found for milk chocolate intake. Spline regression showed a linear dose-response association between dark chocolate intake and risk of T2D (P for linearity=0.003), with a significant risk reduction of 3% (1% to 5%) observed for each serving/week of dark chocolate consumption. Intake of milk, but not dark, chocolate was positively associated with weight gain.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Increased consumption of dark, but not milk, chocolate was associated with lower risk of T2D. Increased consumption of milk, but not dark, chocolate was associated with long term weight gain. Further randomized controlled trials are needed to replicate these findings and further explore the mechanisms.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Binkai</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zong</LastName><ForeName>Geng</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Lu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Manson</LastName><ForeName>JoAnn E</ForeName><Initials>JE</Initials><AffiliationInfo><Affiliation>Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Molin</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rimm</LastName><ForeName>Eric B</ForeName><Initials>EB</Initials><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Frank B</ForeName><Initials>FB</Initials><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Qi</ForeName><Initials>Q</Initials><Identifier Source="ORCID">0000-0002-8480-1563</Identifier><AffiliationInfo><Affiliation>Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA qisun@hsph.harvard.edu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ</MedlineTA><NlmUniqueID>8900488</NlmUniqueID><ISSNLinking>0959-8138</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069956" MajorTopicYN="Y">Chocolate</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016016" MajorTopicYN="N">Proportional Hazards Models</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: All authors have completed the ICMJE uniform disclosure form at https://www.icmje.org/disclosure-of-interest/ and declare: support from the National Institutes of Health for the submitted work. JEM reports receiving investigator initiated grants from Mars Edge. EBR is on the scientific advisory board and has received research funding from the US Department of Agriculture/US Highbush Blueberry growers commodity group.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>20</Hour><Minute>54</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39631943</ArticleId><ArticleId IdType="pmc">PMC11616007</ArticleId><ArticleId IdType="doi">10.1136/bmj-2023-078386</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Saeedi P, Petersohn I, Salpea P, et al. IDF Diabetes Atlas Committee . Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843.</Citation><ArticleIdList><ArticleId IdType="pubmed">31518657</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association . 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020 . Diabetes Care 2020;43(Suppl 1):S14-31.</Citation><ArticleIdList><ArticleId IdType="pubmed">31862745</ArticleId></ArticleIdList></Reference><Reference><Citation>Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the Prevention of Type 2 Diabetes: A Status Report. Am J Lifestyle Med 2015;12:4-20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6125024</ArticleId><ArticleId IdType="pubmed">30202378</ArticleId></ArticleIdList></Reference><Reference><Citation>Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014;383:1999-2007.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4751088</ArticleId><ArticleId IdType="pubmed">24910231</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu YJ, Zhan J, Liu XL, Wang Y, Ji J, He QQ. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin Nutr 2014;33:59-63.</Citation><ArticleIdList><ArticleId IdType="pubmed">23591151</ArticleId></ArticleIdList></Reference><Reference><Citation>Wedick NM, Pan A, Cassidy A, et al. . Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012;95:925-33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3302366</ArticleId><ArticleId IdType="pubmed">22357723</ArticleId></ArticleIdList></Reference><Reference><Citation>Buitrago-Lopez A, Sanderson J, Johnson L, et al. . Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ 2011;343:d4488.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3163382</ArticleId><ArticleId IdType="pubmed">21875885</ArticleId></ArticleIdList></Reference><Reference><Citation>Corti R, Flammer AJ, Hollenberg NK, Lüscher TF. Cocoa and cardiovascular health. Circulation 2009;119:1433-41.</Citation><ArticleIdList><ArticleId IdType="pubmed">19289648</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramos S, Martín MA, Goya L. Effects of Cocoa Antioxidants in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2017;6:84.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5745494</ArticleId><ArticleId IdType="pubmed">29088075</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Sesso HD, Kim E, et al. . Cocoa Extract Supplementation and Risk of Type 2 Diabetes: The Cocoa Supplement and Multivitamin Outcomes Study (COSMOS) Randomized Clinical Trial. Diabetes Care 2023;46:2278-84.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10698212</ArticleId><ArticleId IdType="pubmed">37816167</ArticleId></ArticleIdList></Reference><Reference><Citation>Andújar I, Recio MC, Giner RM, Ríos JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012;2012:906252.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3488419</ArticleId><ArticleId IdType="pubmed">23150750</ArticleId></ArticleIdList></Reference><Reference><Citation>Katz DL, Doughty K, Ali A. Cocoa and chocolate in human health and disease. Antioxid Redox Signal 2011;15:2779-811.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4696435</ArticleId><ArticleId IdType="pubmed">21470061</ArticleId></ArticleIdList></Reference><Reference><Citation>Latif R. Chocolate/cocoa and human health: a review. Neth J Med 2013;71:63-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">23462053</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenberg JA, Buijsse B. Habitual chocolate consumption may increase body weight in a dose-response manner. PLoS One 2013;8:e70271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3737356</ArticleId><ArticleId IdType="pubmed">23950919</ArticleId></ArticleIdList></Reference><Reference><Citation>Kwok CS, Boekholdt SM, Lentjes MAH, et al. . Habitual chocolate consumption and risk of cardiovascular disease among healthy men and women. Heart 2015;101:1279-87.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6284792</ArticleId><ArticleId IdType="pubmed">26076934</ArticleId></ArticleIdList></Reference><Reference><Citation>Matsumoto C, Petrone AB, Sesso HD, Gaziano JM, Djoussé L. Chocolate consumption and risk of diabetes mellitus in the Physicians’ Health Study. Am J Clin Nutr 2015;101:362-7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4307206</ArticleId><ArticleId IdType="pubmed">25646334</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuan S, Li X, Jin Y, Lu J. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 2017;9:688.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5537803</ArticleId><ArticleId IdType="pubmed">28671591</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooper KA, Donovan JL, Waterhouse AL, Williamson G. Cocoa and health: a decade of research. Br J Nutr 2008;99:1-11.</Citation><ArticleIdList><ArticleId IdType="pubmed">17666148</ArticleId></ArticleIdList></Reference><Reference><Citation>de Mutsert R, Sun Q, Willett WC, Hu FB, van Dam RM. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a cohort study. Am J Epidemiol 2014;179:1353-65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4036209</ArticleId><ArticleId IdType="pubmed">24786797</ArticleId></ArticleIdList></Reference><Reference><Citation>Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Womens Health 1997;6:49-62.</Citation><ArticleIdList><ArticleId IdType="pubmed">9065374</ArticleId></ArticleIdList></Reference><Reference><Citation>Bao Y, Bertoia ML, Lenart EB, et al. . Origin, Methods, and Evolution of the Three Nurses’ Health Studies. Am J Public Health 2016;106:1573-81.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4981810</ArticleId><ArticleId IdType="pubmed">27459450</ArticleId></ArticleIdList></Reference><Reference><Citation>Rimm EB, Giovannucci EL, Willett WC, et al. . Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 1991;338:464-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">1678444</ArticleId></ArticleIdList></Reference><Reference><Citation>Willett WC, Sampson L, Stampfer MJ, et al. . Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122:51-65.</Citation><ArticleIdList><ArticleId IdType="pubmed">4014201</ArticleId></ArticleIdList></Reference><Reference><Citation>Salvini S, Hunter DJ, Sampson L, et al. . Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 1989;18:858-67.</Citation><ArticleIdList><ArticleId IdType="pubmed">2621022</ArticleId></ArticleIdList></Reference><Reference><Citation>Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;135:1114-26, discussion 1127-36.</Citation><ArticleIdList><ArticleId IdType="pubmed">1632423</ArticleId></ArticleIdList></Reference><Reference><Citation>Gu X, Wang DD, Sampson L, et al. . Validity and Reproducibility of a Semiquantitative Food Frequency Questionnaire for Measuring Intakes of Foods and Food Groups. Am J Epidemiol 2024;193:170-79.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10773483</ArticleId><ArticleId IdType="pubmed">37552965</ArticleId></ArticleIdList></Reference><Reference><Citation>Ainsworth BE, Haskell WL, Leon AS, et al. . Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 1993;25:71-80.</Citation><ArticleIdList><ArticleId IdType="pubmed">8292105</ArticleId></ArticleIdList></Reference><Reference><Citation>Chasan-Taber S, Rimm EB, Stampfer MJ, et al. . Reproducibility and validity of a self-administered physical activity questionnaire for male health professionals. Epidemiology 1996;7:81-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">8664406</ArticleId></ArticleIdList></Reference><Reference><Citation>Wolf AM, Hunter DJ, Colditz GA, et al. . Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 1994;23:991-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">7860180</ArticleId></ArticleIdList></Reference><Reference><Citation>Chiuve SE, Fung TT, Rimm EB, et al. . Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 2012;142:1009-18.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3738221</ArticleId><ArticleId IdType="pubmed">22513989</ArticleId></ArticleIdList></Reference><Reference><Citation>DeVille NV, Iyer HS, Holland I, et al. . Neighborhood socioeconomic status and mortality in the nurses’ health study (NHS) and the nurses’ health study II (NHSII). Environ Epidemiol 2022;7:e235.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9916023</ArticleId><ArticleId IdType="pubmed">36777531</ArticleId></ArticleIdList></Reference><Reference><Citation>National Diabetes Data Group . Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979;28:1039-57.</Citation><ArticleIdList><ArticleId IdType="pubmed">510803</ArticleId></ArticleIdList></Reference><Reference><Citation>Expert Committee on the Diagnosis and Classification of Diabetes Mellitus . Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003;26(Suppl 1):S5-20.</Citation><ArticleIdList><ArticleId IdType="pubmed">12502614</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association . Standards of medical care in diabetes--2010. Diabetes Care 2010;33(Suppl 1):S11-61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2797382</ArticleId><ArticleId IdType="pubmed">20042772</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med 2001;161:1542-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">11427103</ArticleId></ArticleIdList></Reference><Reference><Citation>Manson JE, Rimm EB, Stampfer MJ, et al. . Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991;338:774-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">1681160</ArticleId></ArticleIdList></Reference><Reference><Citation>Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1:466-73.</Citation><ArticleIdList><ArticleId IdType="pubmed">2090285</ArticleId></ArticleIdList></Reference><Reference><Citation>Troy LM, Hunter DJ, Manson JE, Colditz GA, Stampfer MJ, Willett WC. The validity of recalled weight among younger women. Int J Obes Relat Metab Disord 1995;19:570-2.</Citation><ArticleIdList><ArticleId IdType="pubmed">7489028</ArticleId></ArticleIdList></Reference><Reference><Citation>Cox DR. Regression Models and Life-Tables. J R Stat Soc B 1972;34:187-202.</Citation></Reference><Reference><Citation>Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">2657958</ArticleId></ArticleIdList></Reference><Reference><Citation>Maskarinec G, Jacobs S, Shvetsov Y, et al. . Intake of cocoa products and risk of type-2 diabetes: the multiethnic cohort. Eur J Clin Nutr 2019;73:671-8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6542564</ArticleId><ArticleId IdType="pubmed">29795238</ArticleId></ArticleIdList></Reference><Reference><Citation>Crichton GE, Elias MF, Dearborn P, Robbins M. Habitual chocolate intake and type 2 diabetes mellitus in the Maine-Syracuse Longitudinal Study: (1975-2010): Prospective observations. Appetite 2017;108:263-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">27725277</ArticleId></ArticleIdList></Reference><Reference><Citation>Jackson SE, Smith L, Firth J, et al. . Is there a relationship between chocolate consumption and symptoms of depression? A cross-sectional survey of 13,626 US adults. Depress Anxiety 2019;36:987-95.</Citation><ArticleIdList><ArticleId IdType="pubmed">31356717</ArticleId></ArticleIdList></Reference><Reference><Citation>Miller KB, Hurst WJ, Flannigan N, et al. . Survey of commercially available chocolate- and cocoa-containing products in the United States. 2. Comparison of flavan-3-ol content with nonfat cocoa solids, total polyphenols, and percent cacao. J Agric Food Chem 2009;57:9169-80.</Citation><ArticleIdList><ArticleId IdType="pubmed">19754118</ArticleId></ArticleIdList></Reference><Reference><Citation>Grassi D, Desideri G, Necozione S, et al. . Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 2008;138:1671-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">18716168</ArticleId></ArticleIdList></Reference><Reference><Citation>Davison K, Coates AM, Buckley JD, Howe PRC. Effect of cocoa flavanols and exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes (Lond) 2008;32:1289-96.</Citation><ArticleIdList><ArticleId IdType="pubmed">18504447</ArticleId></ArticleIdList></Reference><Reference><Citation>Mellor DD, Sathyapalan T, Kilpatrick ES, Beckett S, Atkin SL. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients. Diabet Med 2010;27:1318-21.</Citation><ArticleIdList><ArticleId IdType="pubmed">20968113</ArticleId></ArticleIdList></Reference><Reference><Citation>Rostami A, Khalili M, Haghighat N, et al. . High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler 2015;11:21-9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4460349</ArticleId><ArticleId IdType="pubmed">26089927</ArticleId></ArticleIdList></Reference><Reference><Citation>Sesso HD, Manson JE, Aragaki AK, et al. COSMOS Research Group . Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am J Clin Nutr 2022;115:1490-500.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9170467</ArticleId><ArticleId IdType="pubmed">35294962</ArticleId></ArticleIdList></Reference><Reference><Citation>Greenberg JA, Manson JE, Buijsse B, et al. . Chocolate-candy consumption and 3-year weight gain among postmenopausal U.S. women. Obesity (Silver Spring) 2015;23:677-83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4351742</ArticleId><ArticleId IdType="pubmed">25644711</ArticleId></ArticleIdList></Reference><Reference><Citation>Oba S, Nagata C, Nakamura K, et al. . Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. Br J Nutr 2010;103:453-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">19818197</ArticleId></ArticleIdList></Reference><Reference><Citation>Almoosawi S, Fyfe L, Ho C, Al-Dujaili E. The effect of polyphenol-rich dark chocolate on fasting capillary whole blood glucose, total cholesterol, blood pressure and glucocorticoids in healthy overweight and obese subjects. Br J Nutr 2010;103:842-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">19825207</ArticleId></ArticleIdList></Reference><Reference><Citation>Gu L, House SE, Wu X, Ou B, Prior RL. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 2006;54:4057-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">16719534</ArticleId></ArticleIdList></Reference><Reference><Citation>Fraga CG, Litterio MC, Prince PD, Calabró V, Piotrkowski B, Galleano M. Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr 2011;48:63-7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3022066</ArticleId><ArticleId IdType="pubmed">21297914</ArticleId></ArticleIdList></Reference><Reference><Citation>Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int J Mol Sci 2021;22:1509.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7913369</ArticleId><ArticleId IdType="pubmed">33546200</ArticleId></ArticleIdList></Reference><Reference><Citation>Selmi C, Cocchi CA, Lanfredini M, Keen CL, Gershwin ME. Chocolate at heart: the anti-inflammatory impact of cocoa flavanols. Mol Nutr Food Res 2008;52:1340-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">18991246</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension 2010;55:1398-405.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2874202</ArticleId><ArticleId IdType="pubmed">20404222</ArticleId></ArticleIdList></Reference><Reference><Citation>Schroeter H, Heiss C, Balzer J, et al. . (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 2006;103:1024-9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1327732</ArticleId><ArticleId IdType="pubmed">16418281</ArticleId></ArticleIdList></Reference><Reference><Citation>Ludovici V, Barthelmes J, Nägele MP, et al. . Cocoa, Blood Pressure, and Vascular Function. Front Nutr 2017;4:36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5539137</ArticleId><ArticleId IdType="pubmed">28824916</ArticleId></ArticleIdList></Reference><Reference><Citation>Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr 2014;100:65-79.</Citation><ArticleIdList><ArticleId IdType="pubmed">24808490</ArticleId></ArticleIdList></Reference><Reference><Citation>Khan TA, Tayyiba M, Agarwal A, et al. . Relation of Total Sugars, Sucrose, Fructose, and Added Sugars With the Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Mayo Clin Proc 2019;94:2399-414.</Citation><ArticleIdList><ArticleId IdType="pubmed">31806098</ArticleId></ArticleIdList></Reference><Reference><Citation>Farhat G, Drummond S, Fyfe L, Al-Dujaili EA. Dark chocolate: an obesity paradox or a culprit for weight gain? Phytother Res 2014;28:791-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">24000103</ArticleId></ArticleIdList></Reference><Reference><Citation>Seligson FH, Krummel DA, Apgar JL. Patterns of chocolate consumption. Am J Clin Nutr 1994;60(Suppl):1060S-4S.</Citation><ArticleIdList><ArticleId IdType="pubmed">7977152</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39631844</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2052-4897</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>BMJ open diabetes research & care</Title><ISOAbbreviation>BMJ Open Diabetes Res Care</ISOAbbreviation></Journal><ArticleTitle>Effect of flexor tendon tenotomy of the diabetic hammertoe on plantar pressure: a randomized controlled trial.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e004398</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjdrc-2024-004398</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">The aim of this study was to evaluate the effects of flexor tendon tenotomy treatment of the diabetic hammertoe deformity on plantar pressure.</AbstractText><AbstractText Label="RESEARCH DESIGN AND METHODS" NlmCategory="METHODS">The study was a substudy including participants from a randomized study on tenotomy treatment of diabetic hammertoes. This study was conducted between December 20, 2019 and June 22, 2021. Participants were randomized to tenotomy and standard non-surgical treatment <i>or</i> standard non-surgical treatment alone. Barefoot plantar pressure measurement was performed pre-intervention and 3 months post-intervention. Primary outcome was change in peak plantar pressure post tenotomy treatment.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Of the 95 participants screened in the original study, 45 (57.8% male) were included andcompleted this substudy. Of the 45 participants, 22 were randomized to intervention. The average age of participants was 65.6 ((SD±) 9.5) years and 30 (66.7%) had type 2 diabetes.The average peak plantar pressure (PPP) in toe regions of the participants in the intervention group was significantly (p<0.0001) reduced from 205.6 kPa ((Q1-Q3) 152.0-289.1) pre-intervention to 61.3 kPa (39.1-100.5) post-intervention. The average reduction in PPP of toe regions for participants in the intervention group (-145.3 kPa (-225.9 to -56.2)) was significantly (p=0.00017) higher than what was observed for participants in the control group (-1.6 kPa (-30.2 to 27.9)).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study found that tenotomies of the diabetic hammertoe reduces plantar pressure affecting the treated toes. This likely explains the positive effects of tenotomy treatment on diabetic foot ulcers.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Askø Andersen</LastName><ForeName>Jonas</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0001-5213-5888</Identifier><AffiliationInfo><Affiliation>Orthopedic Department, Nordsjaellands Hospital, Hillerød, Denmark jonas.hedegaard.andersen@regionh.dk.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rasmussen</LastName><ForeName>Anne</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Engberg</LastName><ForeName>Susanne</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Novo Nordisk A/S, Bagsvaerd, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bencke</LastName><ForeName>Jesper</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Orthopedic Surgery, Copenhagen University Hospital at Amager-Hvidovre, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Frimodt-Møller</LastName><ForeName>Marie</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kirketerp-Møller</LastName><ForeName>Klaus</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Copenhagen Wound Healing Center Bispebjerg Hospital, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rossing</LastName><ForeName>Peter</ForeName><Initials>P</Initials><Identifier Source="ORCID">0000-0002-1531-4294</Identifier><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open Diabetes Res Care</MedlineTA><NlmUniqueID>101641391</NlmUniqueID><ISSNLinking>2052-4897</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D058971" MajorTopicYN="Y">Tenotomy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D037801" MajorTopicYN="Y">Hammer Toe Syndrome</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011312" MajorTopicYN="Y">Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017719" MajorTopicYN="Y">Diabetic Foot</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013710" MajorTopicYN="N">Tendons</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic Foot</Keyword><Keyword MajorTopicYN="N">Foot Ulcer</Keyword><Keyword MajorTopicYN="N">Plantar Pressure</Keyword></KeywordList><CoiStatement>Competing interests: None of the authors have any competing interests related to this work. Outside of this work: PR has received consultancy and/or speaking fees (to SDCC) from AbbVie, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, Eli Lilly, MSD, Novo Nordisk and Sanofi Aventis, and research grants from Novo Nordisk and AstraZeneca. MF-M has received speaking fees from Boehringer Ingelheim, Novartis, Baxter and Sanofi. KK-M has received consultancy and/or speaking fees from Coloplast, Mölnlycke, SoftOx A/S and Bayer Pharmaceuticals AG. SE is employed in Novo Nordisk A/S.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>20</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39631844</ArticleId><ArticleId IdType="pmc">PMC11624764</ArticleId><ArticleId IdType="doi">10.1136/bmjdrc-2024-004398</ArticleId><ArticleId IdType="pii">12/6/e004398</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma. 2021;17:88–93. doi: 10.1016/j.jcot.2021.01.017.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcot.2021.01.017</ArticleId><ArticleId IdType="pmc">PMC7919962</ArticleId><ArticleId IdType="pubmed">33680841</ArticleId></ArticleIdList></Reference><Reference><Citation>Petrakis I, Kyriopoulos IJ, Ginis A, et al. Losing a foot versus losing a dollar; a systematic review of cost studies in diabetic foot complications. Expert Rev Pharmacoecon Outcomes Res. 2017;17:165–80. doi: 10.1080/14737167.2017.1305891.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/14737167.2017.1305891</ArticleId><ArticleId IdType="pubmed">28283002</ArticleId></ArticleIdList></Reference><Reference><Citation>Tchero H, Kangambega P, Lin L, et al. Cost of diabetic foot in France, Spain, Italy, Germany and United Kingdom: A systematic review. Ann Endocrinol Paris. 2018;79:67–74. doi: 10.1016/j.ando.2017.11.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ando.2017.11.005</ArticleId><ArticleId IdType="pubmed">29544659</ArticleId></ArticleIdList></Reference><Reference><Citation>Armstrong DG, Swerdlow MA, Armstrong AA, et al. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res. 2020;13:16. doi: 10.1186/s13047-020-00383-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13047-020-00383-2</ArticleId><ArticleId IdType="pmc">PMC7092527</ArticleId><ArticleId IdType="pubmed">32209136</ArticleId></ArticleIdList></Reference><Reference><Citation>Federation ID IDF diabetes atlas diabetesatlas.org: international diabetes federation. 2021. [22-Nov-2021]. https://diabetesatlas.org/ Available. Accessed.</Citation><ArticleIdList><ArticleId IdType="pubmed">35914061</ArticleId></ArticleIdList></Reference><Reference><Citation>Lazzarini PA, Crews RT, van Netten JJ, et al. Measuring Plantar Tissue Stress in People With Diabetic Peripheral Neuropathy: A Critical Concept in Diabetic Foot Management. J Diabetes Sci Technol. 2019;13:869–80. doi: 10.1177/1932296819849092.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1932296819849092</ArticleId><ArticleId IdType="pmc">PMC6955461</ArticleId><ArticleId IdType="pubmed">31030546</ArticleId></ArticleIdList></Reference><Reference><Citation>Chatwin KE, Abbott CA, Boulton AJM, et al. The role of foot pressure measurement in the prediction and prevention of diabetic foot ulceration-A comprehensive review. Diabetes Metab Res Rev. 2020;36:e3258. doi: 10.1002/dmrr.3258.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.3258</ArticleId><ArticleId IdType="pmc">PMC7317473</ArticleId><ArticleId IdType="pubmed">31825163</ArticleId></ArticleIdList></Reference><Reference><Citation>Hulshof CM, van Netten JJ, Pijnappels M, et al. The Role of Foot-Loading Factors and Their Associations with Ulcer Development and Ulcer Healing in People with Diabetes: A Systematic Review. J Clin Med. 2020;9:3591. doi: 10.3390/jcm9113591.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm9113591</ArticleId><ArticleId IdType="pmc">PMC7694972</ArticleId><ArticleId IdType="pubmed">33171726</ArticleId></ArticleIdList></Reference><Reference><Citation>Barn R, Waaijman R, Nollet F, et al. Predictors of barefoot plantar pressure during walking in patients with diabetes, peripheral neuropathy and a history of ulceration. PLoS One. 2015;10:e0117443. doi: 10.1371/journal.pone.0117443.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0117443</ArticleId><ArticleId IdType="pmc">PMC4315609</ArticleId><ArticleId IdType="pubmed">25647421</ArticleId></ArticleIdList></Reference><Reference><Citation>Amemiya A, Noguchi H, Oe M, et al. Factors Associated with Callus Formation in the Plantar Region through Gait Measurement in Patients with Diabetic Neuropathy: An Observational Case-Control Study. Sensors (Basel) 2020;20:4863. doi: 10.3390/s20174863.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/s20174863</ArticleId><ArticleId IdType="pmc">PMC7506600</ArticleId><ArticleId IdType="pubmed">32872131</ArticleId></ArticleIdList></Reference><Reference><Citation>Lavery LA, Armstrong DG, Wunderlich RP, et al. Predictive value of foot pressure assessment as part of a population-based diabetes disease management program. Diabetes Care. 2003;26:1069–73. doi: 10.2337/diacare.26.4.1069.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.26.4.1069</ArticleId><ArticleId IdType="pubmed">12663575</ArticleId></ArticleIdList></Reference><Reference><Citation>Abri H, Aalaa M, Sanjari M, et al. Plantar pressure distribution in diverse stages of diabetic neuropathy. J Diabetes Metab Disord. 2019;18:33–9. doi: 10.1007/s40200-019-00387-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40200-019-00387-1</ArticleId><ArticleId IdType="pmc">PMC6582080</ArticleId><ArticleId IdType="pubmed">31275872</ArticleId></ArticleIdList></Reference><Reference><Citation>Bartolo E, Giacomozzi C, Coppini DV, et al. The effect of induced joint restriction on plantar pressure during gait – a pilot study. Gait Posture. 2021;90:23–8. doi: 10.1016/j.gaitpost.2021.07.019.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gaitpost.2021.07.019</ArticleId><ArticleId IdType="pubmed">34365284</ArticleId></ArticleIdList></Reference><Reference><Citation>de Castro JPW, Ferreira FC, Vargas JGF, et al. Accuracy of Foot Pressure Measurement on Predicting the Development of Foot Ulcer in Patients with Diabetes: A Systematic Review and Meta-Analysis. J Diabetes Sci Technol. 2023;17:70–8. doi: 10.1177/19322968211043550.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/19322968211043550</ArticleId><ArticleId IdType="pmc">PMC9846417</ArticleId><ArticleId IdType="pubmed">34590893</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee PY, Kong PW, Pua YH. Reliability of peak foot pressure in patients with previous diabetic foot ulceration. Gait Posture. 2019;70:6–11. doi: 10.1016/j.gaitpost.2019.02.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gaitpost.2019.02.001</ArticleId><ArticleId IdType="pubmed">30771595</ArticleId></ArticleIdList></Reference><Reference><Citation>Waaijman R, de Haart M, Arts MLJ, et al. Risk factors for plantar foot ulcer recurrence in neuropathic diabetic patients. Diabetes Care. 2014;37:1697–705. doi: 10.2337/dc13-2470.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc13-2470</ArticleId><ArticleId IdType="pubmed">24705610</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernando M, Crowther R, Lazzarini P, et al. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech (Bristol, Avon) 2013;28:831–45. doi: 10.1016/j.clinbiomech.2013.08.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.clinbiomech.2013.08.004</ArticleId><ArticleId IdType="pubmed">24035444</ArticleId></ArticleIdList></Reference><Reference><Citation>Holewski JJ, Moss KM, Stess RM, et al. Prevalence of foot pathology and lower extremity complications in a diabetic outpatient clinic. J Rehabil Res Dev. 1989;26:35–44.</Citation><ArticleIdList><ArticleId IdType="pubmed">2666642</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith DG, Barnes BC, Sands AK, et al. Prevalence of radiographic foot abnormalities in patients with diabetes. Foot Ankle Int. 1997;18:342–6. doi: 10.1177/107110079701800606.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/107110079701800606</ArticleId><ArticleId IdType="pubmed">9208292</ArticleId></ArticleIdList></Reference><Reference><Citation>Mansour AA, Dahyak SG. Are foot abnormalities more common in adults with diabetes? A cross-sectional study in basrah, iraq. Perm J. 2008;12:25–30. doi: 10.7812/TPP/08-004.</Citation><ArticleIdList><ArticleId IdType="doi">10.7812/TPP/08-004</ArticleId><ArticleId IdType="pmc">PMC3037137</ArticleId><ArticleId IdType="pubmed">21339918</ArticleId></ArticleIdList></Reference><Reference><Citation>Hedegaard Andersen J, Rasmussen A, Frimodt-Møller M, et al. The effect of needle tenotomy on hammer, mallet and claw toe deformities in patients with diabetes, a retrospective study. J Clin Transl Endocrinol. 2019;18:100208. doi: 10.1016/j.jcte.2019.100208.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcte.2019.100208</ArticleId><ArticleId IdType="pmc">PMC6896484</ArticleId><ArticleId IdType="pubmed">31844632</ArticleId></ArticleIdList></Reference><Reference><Citation>Bus SA, Maas M, de Lange A, et al. Elevated plantar pressures in neuropathic diabetic patients with claw/hammer toe deformity. J Biomech. 2005;38:1918–25. doi: 10.1016/j.jbiomech.2004.07.034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jbiomech.2004.07.034</ArticleId><ArticleId IdType="pubmed">16023481</ArticleId></ArticleIdList></Reference><Reference><Citation>Moayedi M, Arshi AR, Salehi M, et al. Associations between changes in loading pattern, deformity, and internal stresses at the foot with hammer toe during walking; a finite element approach. Comput Biol Med. 2021;135:104598. doi: 10.1016/j.compbiomed.2021.104598.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.compbiomed.2021.104598</ArticleId><ArticleId IdType="pubmed">34346320</ArticleId></ArticleIdList></Reference><Reference><Citation>Bus SA, Sacco ICN, Monteiro-Soares M, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2023 update) Diabetes Metab Res Rev. 2024;40:e3651. doi: 10.1002/dmrr.3651.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.3651</ArticleId><ArticleId IdType="pubmed">37302121</ArticleId></ArticleIdList></Reference><Reference><Citation>Bus SA, van Netten JJ, Lavery LA, et al. IWGDF guidance on the prevention of foot ulcers in at‐risk patients with diabetes. Diabetes Metabolism Res . 2016;32:16–24. doi: 10.1002/dmrr.2696.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.2696</ArticleId><ArticleId IdType="pubmed">26334001</ArticleId></ArticleIdList></Reference><Reference><Citation>Askø Andersen J, Rasmussen A, Engberg S, et al. Flexor Tendon Tenotomy Treatment of the Diabetic Foot: A Multicenter Randomized Controlled Trial. Diabetes Care. 2022;45:2492–500. doi: 10.2337/dc22-0085.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-0085</ArticleId><ArticleId IdType="pubmed">36151947</ArticleId></ArticleIdList></Reference><Reference><Citation>Schaper NC, van Netten JJ, Apelqvist J, et al. Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update) Diabetes Metab Res Rev. 2024;40:e3657. doi: 10.1002/dmrr.3657.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/dmrr.3657</ArticleId><ArticleId IdType="pubmed">37243927</ArticleId></ArticleIdList></Reference><Reference><Citation>Health DNBo . Copenhagen: Danish National Board of Health; 2011. Diabetic foot ulcers - a health technology assessment.</Citation></Reference><Reference><Citation>Association WM 2018. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ Available.</Citation></Reference><Reference><Citation>Use TICfHoTRfPfH E6(R2) guideline “good clinical practice” (GCP) 2021</Citation></Reference><Reference><Citation>Jørsboe PH, Speedtsberg MB, Kallemose T, et al. Plantar forces mid-term after hemiarthroplasty with HemiCAP for hallux rigidus. Foot Ankle Surg. 2020;26:432–8. doi: 10.1016/j.fas.2019.05.012.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.fas.2019.05.012</ArticleId><ArticleId IdType="pubmed">31153732</ArticleId></ArticleIdList></Reference><Reference><Citation>Waaijman R, Bus SA. The interdependency of peak pressure and pressure–time integral in pressure studies on diabetic footwear: No need to report both parameters. Gait Posture. 2012;35:1–5. doi: 10.1016/j.gaitpost.2011.07.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.gaitpost.2011.07.006</ArticleId><ArticleId IdType="pubmed">21944877</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu X, Yu G-R, Chen Y-X, et al. The characteristics and clinical significance of plantar pressure distribution in patients with diabetic toe deformity: a dynamic plantar pressure analysis. J Int Med Res. 2011;39:2352–9. doi: 10.1177/147323001103900635.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/147323001103900635</ArticleId><ArticleId IdType="pubmed">22289554</ArticleId></ArticleIdList></Reference><Reference><Citation>Mueller MJ, Hastings M, Commean PK, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech. 2003;36:1009–17. doi: 10.1016/s0021-9290(03)00078-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0021-9290(03)00078-2</ArticleId><ArticleId IdType="pubmed">12757810</ArticleId></ArticleIdList></Reference><Reference><Citation>Claisse PJ, Binning J, Potter J. Effect of orthotic therapy on claw toe loading: results of significance testing at pressure sensor units. J Am Podiatr Med Assoc. 2004;94:246–54. doi: 10.7547/0940246.</Citation><ArticleIdList><ArticleId IdType="doi">10.7547/0940246</ArticleId><ArticleId IdType="pubmed">15153586</ArticleId></ArticleIdList></Reference><Reference><Citation>Armstrong DG, Lavery LA, Kimbriel HR, et al. Activity patterns of patients with diabetic foot ulceration: patients with active ulceration may not adhere to a standard pressure off-loading regimen. Diabetes Care. 2003;26:2595–7. doi: 10.2337/diacare.26.9.2595.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.26.9.2595</ArticleId><ArticleId IdType="pubmed">12941724</ArticleId></ArticleIdList></Reference><Reference><Citation>Mens MA, van Netten JJ, Busch-Westbroek TE, et al. Biomechanical and musculoskeletal changes after flexor tenotomy to reduce the risk of diabetic neuropathic toe ulcer recurrence. Diabet Med. 2022;39:e14761. doi: 10.1111/dme.14761.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14761</ArticleId><ArticleId IdType="pmc">PMC9299875</ArticleId><ArticleId IdType="pubmed">34877692</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonanno DR, Gillies EJ. Flexor Tenotomy Improves Healing and Prevention of Diabetes-Related Toe Ulcers: A Systematic Review. J Foot Ankle Surg. 2017;56:600–4. doi: 10.1053/j.jfas.2017.02.011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.jfas.2017.02.011</ArticleId><ArticleId IdType="pubmed">28476394</ArticleId></ArticleIdList></Reference><Reference><Citation>Schrier JCM, Louwerens JW, Verheyen CCPM. Opinions on lesser toe deformities among Dutch orthopaedic departments. Foot Ankle Int. 2007;28:1265–70. doi: 10.3113/FAI.2007.1265.</Citation><ArticleIdList><ArticleId IdType="doi">10.3113/FAI.2007.1265</ArticleId><ArticleId IdType="pubmed">18173990</ArticleId></ArticleIdList></Reference><Reference><Citation>Bus SA, Maas M, Michels RPJ, et al. Role of intrinsic muscle atrophy in the etiology of claw toe deformity in diabetic neuropathy may not be as straightforward as widely believed. Diabetes Care. 2009;32:1063–7. doi: 10.2337/dc08-2174.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc08-2174</ArticleId><ArticleId IdType="pmc">PMC2681028</ArticleId><ArticleId IdType="pubmed">19279305</ArticleId></ArticleIdList></Reference><Reference><Citation>Boulton AJ. The pathogenesis of diabetic foot problems: an overview. Diabet Med. 1996;13 Suppl 1:S12–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">8741822</ArticleId></ArticleIdList></Reference><Reference><Citation>van Schie CHM, Vermigli C, Carrington AL, et al. Muscle weakness and foot deformities in diabetes: relationship to neuropathy and foot ulceration in caucasian diabetic men. Diabetes Care. 2004;27:1668–73. doi: 10.2337/diacare.27.7.1668.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.27.7.1668</ArticleId><ArticleId IdType="pubmed">15220244</ArticleId></ArticleIdList></Reference><Reference><Citation>Fawzy OA, Arafa AI, El Wakeel MA, et al. Plantar pressure as a risk assessment tool for diabetic foot ulceration in egyptian patients with diabetes. Clin Med Insights Endocrinol Diabetes. 2014;7:31–9. doi: 10.4137/CMED.S17088.</Citation><ArticleIdList><ArticleId IdType="doi">10.4137/CMED.S17088</ArticleId><ArticleId IdType="pmc">PMC4257475</ArticleId><ArticleId IdType="pubmed">25520564</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39631843</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2052-4897</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>BMJ open diabetes research & care</Title><ISOAbbreviation>BMJ Open Diabetes Res Care</ISOAbbreviation></Journal><ArticleTitle>Comparative risk of type 2 diabetes development between women with gestational diabetes and women with impaired glucose tolerance over two decades: a multiethnic prospective cohort in New Zealand.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e004210</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjdrc-2024-004210</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">To evaluate the long-term risk of developing type 2 diabetes (T2D) among women with a history of gestational diabetes mellitus (GDM) compared with those with impaired glucose tolerance (IGT).</AbstractText><AbstractText Label="RESEARCH DESIGN AND METHODS" NlmCategory="METHODS">Using data from a primary care dataset linked with multiple health registries, this longitudinal study analyzed demographics, clinical data, and lifestyle factors of women diagnosed with GDM or IGT, assessing T2D incidence over 25 years, using Cox regression models.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Women with GDM, especially those over 35 years of Māori ethnicity, or socioeconomic deprivation, exhibited an elevated risk of T2D compared with those with IGT. The first 5 years post partum emerged as a critical window for intervention.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study underscores the importance of early, targeted post-GDM interventions to mitigate T2D risk. It highlights the necessity of personalized post-GDM interventions to reduce T2D incidence which consider age, ethnicity, and socioeconomic status to maximize effectiveness.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Dahai</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0002-8449-7725</Identifier><AffiliationInfo><Affiliation>Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China d.yu@keele.ac.uk Da.Simmons@westernsydney.edu.au czw202112@zzu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzholu, Henan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Medicine, Keele University, Keele, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fu</LastName><ForeName>Hang</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Zhanzheng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzholu, Henan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pickering</LastName><ForeName>Karen</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Diabetes Foundation Aotearoa, Auckland, New Zealand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Baker</LastName><ForeName>John</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Counties Manukau District Health Board, Auckland, New Zealand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cutfield</LastName><ForeName>Richard</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Diabetes Foundation Aotearoa, Auckland, New Zealand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Orr-Walker</LastName><ForeName>Brandon J</ForeName><Initials>BJ</Initials><AffiliationInfo><Affiliation>Counties Manukau District Health Board, Auckland, New Zealand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sundborn</LastName><ForeName>Gerhard</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>University of Auckland, Auckland, New Zealand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cai</LastName><ForeName>Yamei</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzholu, Henan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Zheng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzholu, Henan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Chengzeng</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China d.yu@keele.ac.uk Da.Simmons@westernsydney.edu.au czw202112@zzu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Simmons</LastName><ForeName>David</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China d.yu@keele.ac.uk Da.Simmons@westernsydney.edu.au czw202112@zzu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Translational Health Research Institute, Western Sydney University, Sydney, New South Wales, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open Diabetes Res Care</MedlineTA><NlmUniqueID>101641391</NlmUniqueID><ISSNLinking>2052-4897</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016640" MajorTopicYN="Y">Diabetes, Gestational</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009520" MajorTopicYN="N" Type="Geographic">New Zealand</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="Y">Glucose Intolerance</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005006" MajorTopicYN="N">Ethnicity</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="N">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Mellitus, Type 2</Keyword><Keyword MajorTopicYN="N">Diabetes, Gestational</Keyword><Keyword MajorTopicYN="N">Healthcare Disparities</Keyword><Keyword MajorTopicYN="N">Prediabetic State</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>20</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39631843</ArticleId><ArticleId IdType="pmc">PMC11660319</ArticleId><ArticleId IdType="doi">10.1136/bmjdrc-2024-004210</ArticleId><ArticleId IdType="pii">12/6/e004210</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10:14790. doi: 10.1038/s41598-020-71908-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-020-71908-9</ArticleId><ArticleId IdType="pmc">PMC7478957</ArticleId><ArticleId IdType="pubmed">32901098</ArticleId></ArticleIdList></Reference><Reference><Citation>Ratner RE, Christophi CA, Metzger BE, et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab. 2008;93:4774–9. doi: 10.1210/jc.2008-0772.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2008-0772</ArticleId><ArticleId IdType="pmc">PMC2626441</ArticleId><ArticleId IdType="pubmed">18826999</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoffman L, Nolan C, Wilson JD, et al. Gestational diabetes mellitus--management guidelines. Australas Diab Pregnancy Soc Med J Aust. 1998;169:93–7. doi: 10.5694/j.1326-5377.1998.tb140192.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.5694/j.1326-5377.1998.tb140192.x</ArticleId><ArticleId IdType="pubmed">9700346</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu D, Qu B, Osuagwu UL, et al. Association Between Onset of Type 2 Diabetes and Risk of Atrial Fibrillation in New Zealanders With Impaired Glucose Tolerance Over 25 Years. JAHA . 2023;12:e030159. doi: 10.1161/JAHA.123.030159.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/JAHA.123.030159</ArticleId><ArticleId IdType="pmc">PMC10547295</ArticleId><ArticleId IdType="pubmed">37702092</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25:1862–8. doi: 10.2337/diacare.25.10.1862.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.25.10.1862</ArticleId><ArticleId IdType="pubmed">12351492</ArticleId></ArticleIdList></Reference><Reference><Citation>Simmons D, Fleming CE, Cutfield R, et al. The Diabetes Care Support Service for general practitioners in Auckland. Z Med J. 1997;110:48–50.</Citation><ArticleIdList><ArticleId IdType="pubmed">9076284</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Professional Practice Committee 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45:S17–38. doi: 10.2337/dc22-S002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-S002</ArticleId><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Bellamy L, Casas J-P, Hingorani AD, et al. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9. doi: 10.1016/S0140-6736(09)60731-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(09)60731-5</ArticleId><ArticleId IdType="pubmed">19465232</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu D, Zhao Z, Osuagwu UL, et al. Ethnic differences in mortality and hospital admission rates between Māori, Pacific, and European New Zealanders with type 2 diabetes between 1994 and 2018: a retrospective, population-based, longitudinal cohort study. Lancet Glob Health. 2021;9:e209–17. doi: 10.1016/S2214-109X(20)30412-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2214-109X(20)30412-5</ArticleId><ArticleId IdType="pubmed">33069275</ArticleId></ArticleIdList></Reference><Reference><Citation>Diaz-Santana MV, O’Brien KM, Park Y-MM, et al. Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus. Diabetes Care. 2022;45:864–70. doi: 10.2337/dc21-1430.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-1430</ArticleId><ArticleId IdType="pmc">PMC9016728</ArticleId><ArticleId IdType="pubmed">35104325</ArticleId></ArticleIdList></Reference><Reference><Citation>You H, Hu J, Liu Y, et al. Risk of type 2 diabetes mellitus after gestational diabetes mellitus: A systematic review & meta-analysis. Indian J Med Res. 2021;154:62–77. doi: 10.4103/ijmr.IJMR_852_18.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ijmr.IJMR_852_18</ArticleId><ArticleId IdType="pmc">PMC8715678</ArticleId><ArticleId IdType="pubmed">34782531</ArticleId></ArticleIdList></Reference><Reference><Citation>Vounzoulaki E, Khunti K, Abner SC, et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. doi: 10.1136/bmj.m1361.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.m1361</ArticleId><ArticleId IdType="pmc">PMC7218708</ArticleId><ArticleId IdType="pubmed">32404325</ArticleId></ArticleIdList></Reference><Reference><Citation>Francis EC, Powe CE, Lowe WL, Jr, et al. Refining the diagnosis of gestational diabetes mellitus: a systematic review and meta-analysis. Commun Med (Lond) 2023;3:185. doi: 10.1038/s43856-023-00393-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s43856-023-00393-8</ArticleId><ArticleId IdType="pmc">PMC10728189</ArticleId><ArticleId IdType="pubmed">38110524</ArticleId></ArticleIdList></Reference><Reference><Citation>Saydah SH, Imperatore G, Beckles GL. Socioeconomic status and mortality: contribution of health care access and psychological distress among U.S. adults with diagnosed diabetes. Diabetes Care. 2013;36:49–55. doi: 10.2337/dc11-1864.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc11-1864</ArticleId><ArticleId IdType="pmc">PMC3526248</ArticleId><ArticleId IdType="pubmed">22933434</ArticleId></ArticleIdList></Reference><Reference><Citation>Simmons D, Gupta Y, Hernandez TL, et al. Call to action for a life course approach. Lancet. 2024;404:193–214. doi: 10.1016/S0140-6736(24)00826-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(24)00826-2</ArticleId><ArticleId IdType="pubmed">38909623</ArticleId></ArticleIdList></Reference><Reference><Citation>Akinyemi OA, Omokhodion OV, Fasokun ME, et al. Screening for Gestational Diabetes Mellitus: Is There a Need for Early Screening for All Women in Developing Countries? Cureus. 2023;15:e35533. doi: 10.7759/cureus.35533.</Citation><ArticleIdList><ArticleId IdType="doi">10.7759/cureus.35533</ArticleId><ArticleId IdType="pmc">PMC10054911</ArticleId><ArticleId IdType="pubmed">37007361</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primers . 2015;1:15018. doi: 10.1038/nrdp.2015.18.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrdp.2015.18</ArticleId><ArticleId IdType="pmc">PMC7724636</ArticleId><ArticleId IdType="pubmed">27188921</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen MH, Bistrup C, Rubin KH, et al. Kidney Disease in Women With Previous Gestational Diabetes Mellitus: A Nationwide Register-Based Cohort Study. Diabetes Care. 2024;47:401–8. doi: 10.2337/dc23-1092.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc23-1092</ArticleId><ArticleId IdType="pubmed">38100751</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang H, Zhou X, Tian L, et al. Passive smoking and risk of gestational diabetes mellitus: A systematic review and meta-analysis. Tob Induc Dis. 2023;21:115. doi: 10.18332/tid/169722.</Citation><ArticleIdList><ArticleId IdType="doi">10.18332/tid/169722</ArticleId><ArticleId IdType="pmc">PMC10501223</ArticleId><ArticleId IdType="pubmed">37718995</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim S, Chellumuthi C, Crook N, et al. Low prevalence of retinopathy, but high prevalence of nephropathy among Maori with newly diagnosed diabetes—Te Wai o Rona: Diabetes Prevention Strategy. Diabetes Res Clin Pract. 2008;80:271–4. doi: 10.1016/j.diabres.2007.12.018.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2007.12.018</ArticleId><ArticleId IdType="pubmed">18242758</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Standards of Care in Diabetes-2023 Abridged for Primary Care Providers. Clin Diabetes. 2022;41:4–31. doi: 10.2337/cd23-as01.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/cd23-as01</ArticleId><ArticleId IdType="pmc">PMC9845083</ArticleId><ArticleId IdType="pubmed">36714254</ArticleId></ArticleIdList></Reference><Reference><Citation>Marott SCW, Nordestgaard BG, Tybjærg-Hansen A, et al. Components of the Metabolic Syndrome and Risk of Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101:3212–21. doi: 10.1210/jc.2015-3777.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2015-3777</ArticleId><ArticleId IdType="pubmed">27285293</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle> -<PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39631243</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1873-460X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of diabetes and its complications</Title><ISOAbbreviation>J Diabetes Complications</ISOAbbreviation></Journal><ArticleTitle>Impact of visit-to-visit glycated hemoglobin variability on diabetes distress and its subscales.</ArticleTitle><Pagination><StartPage>108924</StartPage><MedlinePgn>108924</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jdiacomp.2024.108924</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1056-8727(24)00250-2</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">This study aimed to investigate the correlations between glycated hemoglobin (HbA1C) variability and diabetes distress (DD) and its subscales in older patients with type 2 diabetes mellitus.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The cross-sectional study analyzed 175 patients with type 2 diabetes mellitus, aged ≥60 years, and underwent HbA1C testing at least three times within a 2-year. HbA1C variability was assessed using the coefficient of variation (CV), standard deviation (SD), variability independent of the mean (VIM), and variability score. DD was assessed using a diabetes distress scale (DDS) questionnaire. We analyzed four DDS subscales, including emotional burden (EB), regimen distress (RD), interpersonal distress (ID), and physician distress (PD). Significant DD was defined as a total score ≥ 34.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">All four indices of HbA1C variability were positively correlated with DDS (r = 0.19, P = 0.01 in CV; r = 0.19, P = 0.01 in SD; r = 0.19, P = 0.02 in VIM; and r = 0.18, P = 0.02 in variability score). For the DD subscales, only EB showed a significant correlation with HbA1C variability (β = 0.72, SE = 0.35 in CV; β = 0.70, SE = 0.35 in SD; β = 0.66, SE = 0.31 in VIM; and β = 0.77, SE = 0.35 in variability score).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">HbA1C variability was independently linked to DD, particularly the EB subscale in older type 2 diabetes patients. This underscores the need for DD screening and intervention in patients with high HbA1C variability, irrespective of their HbA1C levels or depressive symptoms.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hong</LastName><ForeName>So-Hyeon</ForeName><Initials>SH</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jee</LastName><ForeName>Yongho</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sung</LastName><ForeName>Yeon-Ah</ForeName><Initials>YA</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hong</LastName><ForeName>Young Sun</ForeName><Initials>YS</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Song</LastName><ForeName>Do Kyeong</ForeName><Initials>DK</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jung</LastName><ForeName>Hyein</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Hyejin</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea. Electronic address: hyejinlee@ewha.ac.kr.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Diabetes Complications</MedlineTA><NlmUniqueID>9204583</NlmUniqueID><ISSNLinking>1056-8727</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000079225" MajorTopicYN="N">Psychological Distress</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013315" MajorTopicYN="N">Stress, Psychological</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011795" MajorTopicYN="N">Surveys and Questionnaires</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009819" MajorTopicYN="N">Office Visits</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes distress</Keyword><Keyword MajorTopicYN="N">Emotional burden</Keyword><Keyword MajorTopicYN="N">HbA1C variability</Keyword><Keyword MajorTopicYN="N">Long-term variability</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>5</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>7</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39631243</ArticleId><ArticleId IdType="doi">10.1016/j.jdiacomp.2024.108924</ArticleId><ArticleId IdType="pii">S1056-8727(24)00250-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39631068</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2561-326X</ISSN><JournalIssue CitedMedium="Internet"><Volume>8</Volume><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>JMIR formative research</Title><ISOAbbreviation>JMIR Form Res</ISOAbbreviation></Journal><ArticleTitle>A 360° Approach to Personalize Lifestyle Treatment in Primary Care for People With Type 2 Diabetes: Feasibility Study.</ArticleTitle><Pagination><StartPage>e57312</StartPage><MedlinePgn>e57312</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e57312</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.2196/57312</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Given the multifactorial nature of type 2 diabetes (T2D), health care for this condition would benefit from a holistic approach and multidisciplinary consultation. To address this, we developed the web-based 360-degree (360°) diagnostic tool, which assesses 4 key domains: "body" (physical health parameters), "thinking and feeling" (eg, mental health and stress), "behavior" (lifestyle factors), and "environment" (eg, work and housing conditions).</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">This work examines the acceptability, implementation, and potential effects of the 360° diagnostic tool and subsequent tailored treatment (360° approach) in a 6-month intervention and feasibility study conducted in standard primary health care settings in the Netherlands.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A single-group design with baseline, 3-month, and 6-month follow-ups was used. A total of 15 people with T2D and their health care providers from 2 practices participated in a 6-month intervention, which included the 360° diagnosis, tailored treatment, and both individual and group consultations. The 360° diagnosis involved clinical measurements for the "body" domain and self-reports for the "thinking and feeling," "behavior," and "environment" domains. After multidisciplinary consultations involving the general practitioner, pharmacist, nurse practitioner (NP), and dietitian, the NP and dietitian provided tailored advice, lifestyle treatment, and ongoing support. At the end of the intervention, face-to-face semistructured interviews were conducted with health care professionals (n=6) and participants (n=13) to assess the acceptability and implementation of the 360° approach in primary health care. Additionally, data from 14 participants on the "thinking and feeling" and "behavior" domains at baseline, 3 months, and 6 months were analyzed to assess changes over time.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The semistructured interviews revealed that both participants with T2D and health care professionals were generally positive about various aspects of the 360° approach, including onboarding, data collection with the 360° diagnosis, consultations and advice from the NP and dietitian, the visual representation of parameters in the profile wheel, counseling during the intervention (including professional collaboration), and the group meetings. The interviews also identified factors that promoted or hindered the implementation of the 360° approach. Promoting factors included (1) the care, attention, support, and experience of professionals; (2) the multidisciplinary team; (3) social support; and (4) the experience of positive health effects. Hindering factors included (1) too much information, (2) survey-related issues, and (3) time-consuming counseling. In terms of effects over time, improvements were observed at 3 months in mental health, diabetes-related problems, and fast-food consumption. At 6 months, there was a reduction in perceived stress and fast-food consumption. Additionally, fruit intake decreased at both 3 and 6 months.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our findings suggest that the 360° approach is acceptable to both people with T2D and health care professionals, implementable, and potentially effective in fostering positive health changes. Overall, it appears feasible to implement the 360° approach in standard primary health care.</AbstractText><AbstractText Label="TRIAL REGISTRATION" NlmCategory="BACKGROUND">Netherlands Trial Register NL-7509/NL-OMON45788; https://onderzoekmetmensen.nl/nl/trial/45788.</AbstractText><CopyrightInformation>©Zeena Harakeh, Iris de Hoogh, Anne-Margreeth Krijger-Dijkema, Susanne Berbée, Gino Kalkman, Pepijn van Empelen, Wilma Otten. Originally published in JMIR Formative Research (https://formative.jmir.org), 04.12.2024.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Harakeh</LastName><ForeName>Zeena</ForeName><Initials>Z</Initials><Identifier Source="ORCID">0000-0002-6571-4894</Identifier><AffiliationInfo><Affiliation>Department of Child Health, TNO, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Hoogh</LastName><ForeName>Iris</ForeName><Initials>I</Initials><Identifier Source="ORCID">0000-0002-1952-4774</Identifier><AffiliationInfo><Affiliation>Department of Microbiology and Systems Biology, TNO, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Krijger-Dijkema</LastName><ForeName>Anne-Margreeth</ForeName><Initials>AM</Initials><Identifier Source="ORCID">0009-0008-0736-2369</Identifier><AffiliationInfo><Affiliation>Academic Pharmacy Stevenshof, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Berbée</LastName><ForeName>Susanne</ForeName><Initials>S</Initials><Identifier Source="ORCID">0009-0001-3149-4475</Identifier><AffiliationInfo><Affiliation>Health Center Stevenshof, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kalkman</LastName><ForeName>Gino</ForeName><Initials>G</Initials><Identifier Source="ORCID">0000-0001-8533-5384</Identifier><AffiliationInfo><Affiliation>Department of Risk Analysis for Products in Development, TNO, Netherlands Organization for Applied Scientific Research, Utrecht, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Empelen</LastName><ForeName>Pepijn</ForeName><Initials>P</Initials><Identifier Source="ORCID">0000-0002-9809-7650</Identifier><AffiliationInfo><Affiliation>Department of Child Health, TNO, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Otten</LastName><ForeName>Wilma</ForeName><Initials>W</Initials><Identifier Source="ORCID">0000-0001-8613-7638</Identifier><AffiliationInfo><Affiliation>Department of Sustainable Productivity and Employability, TNO, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>Canada</Country><MedlineTA>JMIR Form Res</MedlineTA><NlmUniqueID>101726394</NlmUniqueID><ISSNLinking>2561-326X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000523" MajorTopicYN="N">psychology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011320" MajorTopicYN="Y">Primary Health Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005240" MajorTopicYN="Y">Feasibility Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009426" MajorTopicYN="N" Type="Geographic">Netherlands</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008019" MajorTopicYN="N">Life Style</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057285" MajorTopicYN="N">Precision Medicine</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diagnostic tool</Keyword><Keyword MajorTopicYN="N">feasibility study</Keyword><Keyword MajorTopicYN="N">health professionals</Keyword><Keyword MajorTopicYN="N">holistic approach</Keyword><Keyword MajorTopicYN="N">intervention</Keyword><Keyword MajorTopicYN="N">personalized treatment</Keyword><Keyword MajorTopicYN="N">primary care</Keyword><Keyword MajorTopicYN="N">shared decision-making</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>Conflicts of Interest: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>2</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>8</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>16</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39631068</ArticleId><ArticleId IdType="pmc">PMC11656500</ArticleId><ArticleId IdType="doi">10.2196/57312</ArticleId><ArticleId IdType="pii">v8i1e57312</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Lindekilde N, Rutters F, Henriksen JE, Lasgaard M, Schram MT, Rubin KH, Kivimäki Mika, Nefs G, Pouwer F. Psychiatric disorders as risk factors for type 2 diabetes: an umbrella review of systematic reviews with and without meta-analyses. Diabetes Res Clin Pract. 2021 Jun;176:108855. doi: 10.1016/j.diabres.2021.108855. - -S0168-8227(21)00214-X</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.108855</ArticleId><ArticleId IdType="pubmed">33965448</ArticleId></ArticleIdList></Reference><Reference><Citation>Mezuk B, Chaikiat Å, Li X, Sundquist J, Kendler KS, Sundquist K. Depression, neighborhood deprivation and risk of type 2 diabetes. Health Place. 2013 Sep;23:63–9. doi: 10.1016/j.healthplace.2013.05.004. - -S1353-8292(13)00073-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.healthplace.2013.05.004</ArticleId><ArticleId IdType="pmc">PMC3773725</ArticleId><ArticleId IdType="pubmed">23771166</ArticleId></ArticleIdList></Reference><Reference><Citation>National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Symptoms and causes of diabetes. NIDDK. 2021. May 14, [2021-05-14]. - https://www.niddk.nih.gov/health-information/diabetes/overview/symptoms-causes#type2 -.</Citation></Reference><Reference><Citation>Pouwer F, Kupper N, Adriaanse MC. Does emotional stress cause type 2 diabetes mellitus? A review from the European Depression in Diabetes (EDID) Research Consortium. Discov Med. 2010 Feb;9(45):112–8. - -</Citation><ArticleIdList><ArticleId IdType="pubmed">20193636</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalra S, Jena B, Yeravdekar R. Emotional and psychological needs of people with diabetes. Indian J Endocr Metab. 2018;22(5):696. doi: 10.4103/ijem.ijem_579_17.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/ijem.ijem_579_17</ArticleId><ArticleId IdType="pmc">PMC6166557</ArticleId><ArticleId IdType="pubmed">30294583</ArticleId></ArticleIdList></Reference><Reference><Citation>Nielen M, Poos R, Korevaar J. Comorbiditeit bij Diabetes Mellitus. [Comorbidity in Diabetes Mellitus] Utrecht, The Netherlands: Nivel; 2020.</Citation></Reference><Reference><Citation>Meijer W, Leemrijse C, Horsselenberg M, Van Dijk L. Huisarts, Diëtist en Patiënten met Diabetes Mellitus Type. [General Practitioner, Dietician and Patients With Diabetes Mellitus Type] Utrecht, The Netherlands: Nivel; 2022.</Citation></Reference><Reference><Citation>Bain SC, Cummings MH, McKay GA. Multidisciplinary approach to management and care of patients with type 2 diabetes mellitus. EMJ Diabet. 2019;7:73–81. doi: 10.33590/emjdiabet/10314374.</Citation><ArticleIdList><ArticleId IdType="doi">10.33590/emjdiabet/10314374</ArticleId></ArticleIdList></Reference><Reference><Citation>Huber M, van Vliet M, Giezenberg M, Winkens B, Heerkens Y, Dagnelie PC, Knottnerus JA. Towards a 'patient-centred' operationalisation of the new dynamic concept of health: a mixed methods study. BMJ Open. 2016 Jan 12;6(1):e010091. doi: 10.1136/bmjopen-2015-010091. - -bmjopen-2015-010091</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2015-010091</ArticleId><ArticleId IdType="pmc">PMC4716212</ArticleId><ArticleId IdType="pubmed">26758267</ArticleId></ArticleIdList></Reference><Reference><Citation>Harakeh Z, de Hoogh IM, van Keulen H, Kalkman G, van Someren E, van Empelen P, Otten W. 360° diagnostic tool to personalize lifestyle advice in primary care for people with type 2 diabetes: development and usability study. JMIR Form Res. 2023 Mar 07;7:e37305. doi: 10.2196/37305. - -v7i1e37305</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/37305</ArticleId><ArticleId IdType="pmc">PMC10031445</ArticleId><ArticleId IdType="pubmed">36881463</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowen D, Kreuter M, Spring B, Cofta-Woerpel L, Linnan L, Weiner D, Bakken S, Kaplan C, Squiers L, Fabrizio C, Fernandez M. How we design feasibility studies. Am J Prev Med. 2009 May;36(5):452–7. doi: 10.1016/j.amepre.2009.02.002. - -S0749-3797(09)00096-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amepre.2009.02.002</ArticleId><ArticleId IdType="pmc">PMC2859314</ArticleId><ArticleId IdType="pubmed">19362699</ArticleId></ArticleIdList></Reference><Reference><Citation>de Hoogh IM, Oosterman JE, Otten W, Krijger A, Berbée-Zadelaar Susanne, Pasman WJ, van Ommen B, Pijl H, Wopereis S. The effect of a lifestyle intervention on type 2 diabetes pathophysiology and remission: the Stevenshof pilot study. Nutrients. 2021 Jun 25;13(7):2193. doi: 10.3390/nu13072193. - -nu13072193</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu13072193</ArticleId><ArticleId IdType="pmc">PMC8308398</ArticleId><ArticleId IdType="pubmed">34202194</ArticleId></ArticleIdList></Reference><Reference><Citation>Ware JJ, Sherbourne C. The MOS 36-ltem Short-Form Health Survey (SF-36) Medical Care. 1992;30(6):473–483. doi: 10.1097/00005650-199206000-00002. - -</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/00005650-199206000-00002</ArticleId><ArticleId IdType="pubmed">1593914</ArticleId></ArticleIdList></Reference><Reference><Citation>Topp CW, Østergaard Søren Dinesen, Søndergaard Susan, Bech P. The WHO-5 Well-Being Index: a systematic review of the literature. Psychother Psychosom. 2015;84(3):167–76. doi: 10.1159/000376585. - -000376585</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000376585</ArticleId><ArticleId IdType="doi">10.1159/000376585</ArticleId><ArticleId IdType="pubmed">25831962</ArticleId></ArticleIdList></Reference><Reference><Citation>Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. Journal of Health and Social Behavior. 1983 Dec;24(4):385–396. doi: 10.2307/2136404.</Citation><ArticleIdList><ArticleId IdType="doi">10.2307/2136404</ArticleId><ArticleId IdType="pubmed">6668417</ArticleId></ArticleIdList></Reference><Reference><Citation>McGuire BE, Morrison TG, Hermanns N, Skovlund S, Eldrup E, Gagliardino J, Kokoszka A, Matthews D, Pibernik-Okanović M, Rodríguez-Saldaña J, de Wit M, Snoek FJ. Short-form measures of diabetes-related emotional distress: the Problem Areas in Diabetes Scale (PAID)-5 and PAID-1. Diabetologia. 2010 Jan;53(1):66–9. doi: 10.1007/s00125-009-1559-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-009-1559-5</ArticleId><ArticleId IdType="pubmed">19841892</ArticleId></ArticleIdList></Reference><Reference><Citation>Lemmens P, Tan ES, Knibbe RA. Measuring quantity and frequency of drinking in a general population survey: a comparison of five indices. J Stud Alcohol. 1992 Sep;53(5):476–86. doi: 10.15288/jsa.1992.53.476.</Citation><ArticleIdList><ArticleId IdType="doi">10.15288/jsa.1992.53.476</ArticleId><ArticleId IdType="pubmed">1405641</ArticleId></ArticleIdList></Reference><Reference><Citation>Mudde A, Willemsen M, Kremers S, De Vries H. Meetinstrumenten voor Onderzoek naar Stoppen Met Roken. [Measures for Research on Smoking and Quit-Smoking Behavior] Den Haag, the Netherlands: Stivoro; 2000.</Citation></Reference><Reference><Citation>Fagerström K O. Towards better diagnoses and more individual treatment of tobacco dependence. Br J Addict. 1991 May;86(5):543–7. doi: 10.1111/j.1360-0443.1991.tb01805.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1360-0443.1991.tb01805.x</ArticleId><ArticleId IdType="pubmed">1859916</ArticleId></ArticleIdList></Reference><Reference><Citation>Voedingscentrum. [2024-11-18]. - https://www.voedingscentrum.nl/nl/gezond-eten-met-de-schijf-van-vijf/wat-staat-in-de-schijf-van-vijf-en-wat-niet.aspx -.</Citation></Reference><Reference><Citation>Diabetes Fonds. [2024-11-18]. - https://www.diabetesfonds.nl/over-diabetes/eten-met-diabetes -.</Citation></Reference><Reference><Citation>Wendel-Vos G, Schuit AJ, Saris W, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. Journal of Clinical Epidemiology. 2003 Dec;56(12):1163–1169. doi: 10.1016/S0895-4356(03)00220-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0895-4356(03)00220-8</ArticleId><ArticleId IdType="pubmed">14680666</ArticleId></ArticleIdList></Reference><Reference><Citation>Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain-specific sitting: a study of reliability and validity. Med Sci Sports Exerc. 2010 Jun;42(6):1094–102. doi: 10.1249/MSS.0b013e3181c5ec18.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/MSS.0b013e3181c5ec18</ArticleId><ArticleId IdType="pubmed">19997030</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmitt A, Kulzer B, Ehrmann D, Haak T, Hermanns N. A self-report measure of diabetes self-management for type 1 and type 2 diabetes: The Diabetes Self-Management Questionnaire-Revised (DSMQ-R) - clinimetric evidence from five studies. Front Clin Diabetes Healthc. 2022;2:823046. doi: 10.3389/fcdhc.2021.823046. - -</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fcdhc.2021.823046</ArticleId><ArticleId IdType="pmc">PMC10012087</ArticleId><ArticleId IdType="pubmed">36994332</ArticleId></ArticleIdList></Reference><Reference><Citation>Bell CC. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA. 1994 Sep 14;272(10):828–9. doi: 10.1001/jama.1994.03520100096046.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.1994.03520100096046</ArticleId></ArticleIdList></Reference><Reference><Citation>Fassaert T, Lauriks S, van de Weerd Stef, Theunissen J, Kikkert M, Dekker J, Buster M, de Wit M. Psychometric properties of the Dutch version of the Self-Sufficiency Matrix (SSM-D) Community Ment Health J. 2014 Jul;50(5):583–90. doi: 10.1007/s10597-013-9683-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10597-013-9683-6</ArticleId><ArticleId IdType="pubmed">24337475</ArticleId></ArticleIdList></Reference><Reference><Citation>Constand MK, MacDermid JC, Dal Bello-Haas V, Law M. Scoping review of patient-centered care approaches in healthcare. BMC Health Serv Res. 2014 Jun 19;14:271. doi: 10.1186/1472-6963-14-271. - -1472-6963-14-271</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1472-6963-14-271</ArticleId><ArticleId IdType="doi">10.1186/1472-6963-14-271</ArticleId><ArticleId IdType="pmc">PMC4079171</ArticleId><ArticleId IdType="pubmed">24947822</ArticleId></ArticleIdList></Reference><Reference><Citation>Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology. 1983;51(3):390–395. doi: 10.1037/0022-006X.51.3.390.</Citation><ArticleIdList><ArticleId IdType="doi">10.1037/0022-006X.51.3.390</ArticleId><ArticleId IdType="pubmed">6863699</ArticleId></ArticleIdList></Reference><Reference><Citation>Ajzen I. The theory of planned behavior. Organizational Behavior and Human Decision Processes. 1991 Dec;50(2):179–211. doi: 10.1016/0749-5978(91)90020-T.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0749-5978(91)90020-T</ArticleId></ArticleIdList></Reference><Reference><Citation>Preuhs K, Klein Velderman M, van Empelen P. Possibilities and challenges of delivering health-related small group interventions online: scoping review. Interact J Med Res. 2023 Jun 20;12:e43783. doi: 10.2196/43783. - -v12i1e43783</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/43783</ArticleId><ArticleId IdType="pmc">PMC10337360</ArticleId><ArticleId IdType="pubmed">37338971</ArticleId></ArticleIdList></Reference><Reference><Citation>Corser W, Holmes-Rovner M, Lein C, Gossain V. A shared decision-making primary care intervention for type 2 diabetes. Diabetes Educ. 2007;33(4):700–8. doi: 10.1177/0145721707304086.33/4/700</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721707304086</ArticleId><ArticleId IdType="pubmed">17684171</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamhane S, Rodriguez-Gutierrez R, Hargraves I, Montori VM. Shared decision-making in diabetes care. Curr Diab Rep. 2015 Dec;15(12):112. doi: 10.1007/s11892-015-0688-0.10.1007/s11892-015-0688-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11892-015-0688-0</ArticleId><ArticleId IdType="pubmed">26458383</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39630807</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1414-431X</ISSN><JournalIssue CitedMedium="Internet"><Volume>57</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas</Title><ISOAbbreviation>Braz J Med Biol Res</ISOAbbreviation></Journal><ArticleTitle>Machine learning approaches and genetic determinants that influence the development of type 2 diabetes mellitus: a genetic association study in Brazilian patients.</ArticleTitle><Pagination><StartPage>e13957</StartPage><MedlinePgn>e13957</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e13957</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1590/1414-431X2024e13957</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0100-879X2024000100689</ELocationID><Abstract><AbstractText>This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Santos</LastName><ForeName>K F</ForeName><Initials>KF</Initials><Identifier Source="ORCID">0000-0002-0555-3072</Identifier><AffiliationInfo><Affiliation>Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Assunção</LastName><ForeName>L P</ForeName><Initials>LP</Initials><Identifier Source="ORCID">0000-0002-1743-8151</Identifier><AffiliationInfo><Affiliation>Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Santos</LastName><ForeName>R S</ForeName><Initials>RS</Initials><Identifier Source="ORCID">0000-0002-9480-4362</Identifier><AffiliationInfo><Affiliation>Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reis</LastName><ForeName>A A S</ForeName><Initials>AAS</Initials><Identifier Source="ORCID">0000-0002-8281-7334</Identifier><AffiliationInfo><Affiliation>Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>Brazil</Country><MedlineTA>Braz J Med Biol Res</MedlineTA><NlmUniqueID>8112917</NlmUniqueID><ISSNLinking>0100-879X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 2.5.1.18</RegistryNumber><NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.5.1.-</RegistryNumber><NameOfSubstance UI="C413545">glutathione S-transferase T1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.5.1.18</RegistryNumber><NameOfSubstance UI="D051549">Glutathione S-Transferase pi</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001938" MajorTopicYN="N" Type="Geographic">Brazil</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="Y">Genetic Predisposition to Disease</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005838" MajorTopicYN="Y">Genotype</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056726" MajorTopicYN="N">Genetic Association Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051549" MajorTopicYN="N">Glutathione S-Transferase pi</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>9</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>13</Hour><Minute>45</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39630807</ArticleId><ArticleId IdType="pmc">PMC11653484</ArticleId><ArticleId IdType="doi">10.1590/1414-431X2024e13957</ArticleId><ArticleId IdType="pii">S0100-879X2024000100689</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>American Diabetes Association Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41:S13–S27. doi: 10.2337/dc18-S002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc18-S002</ArticleId><ArticleId IdType="pubmed">29222373</ArticleId></ArticleIdList></Reference><Reference><Citation>International Diabetes Federation (IDF) IDF Diabetes Atlas. 10th ed. Brussels: 2021. Available at: < https://www.diabetesatlas.org>.</Citation></Reference><Reference><Citation>Day S, Wu W, Mason R, Rochon PA. Measuring the data gap: inclusion of sex and gender reporting in diabetes research. Res Integr Peer Rev. 2019;4:9. doi: 10.1186/s41073-019-0068-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s41073-019-0068-4</ArticleId><ArticleId IdType="pmc">PMC6503434</ArticleId><ArticleId IdType="pubmed">31080635</ArticleId></ArticleIdList></Reference><Reference><Citation>Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020:8609213. doi: 10.1155/2020/8609213.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2020/8609213</ArticleId><ArticleId IdType="pmc">PMC7085395</ArticleId><ArticleId IdType="pubmed">32215179</ArticleId></ArticleIdList></Reference><Reference><Citation>Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018;7:8. doi: 10.1038/s41389-017-0025-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41389-017-0025-3</ArticleId><ArticleId IdType="pmc">PMC5833873</ArticleId><ArticleId IdType="pubmed">29362397</ArticleId></ArticleIdList></Reference><Reference><Citation>Suthar PC, Purkait P, Uttaravalli K, Sarkar BN, Ameta R, Sikdar M. Glutathione S-transferase M1 and T1 null genotype frequency distribution among four tribal populations of western India. J Genet. 2018;97:11–24. doi: 10.1007/s12041-018-0888-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12041-018-0888-x</ArticleId><ArticleId IdType="pubmed">29666321</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang M, Li Y, Lin L, Song G, Deng T. GSTM1 null genotype and GSTP1 ILE105Val polymorphism are associated with alzheimer's disease: a meta-analysis. Mol Neurobiol. 2016;53:1355–1364. doi: 10.1007/s12035-015-9092-7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12035-015-9092-7</ArticleId><ArticleId IdType="pubmed">25633095</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsiao CF, Sheu WWH, Hung YJ, Lin MW, Curb D, Ranadex K, et al. The effects of the renin-angiotensin-aldosterone system gene polymorphisms on insulin resistance in hypertensive families. J Renin-Angiotensin-Aldosterone Syst. 2012;13:446–454. doi: 10.1177/1470320312438790.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1470320312438790</ArticleId><ArticleId IdType="pmc">PMC4111239</ArticleId><ArticleId IdType="pubmed">22419662</ArticleId></ArticleIdList></Reference><Reference><Citation>Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–1346. doi: 10.1172/JCI114844.</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI114844</ArticleId><ArticleId IdType="pmc">PMC296868</ArticleId><ArticleId IdType="pubmed">1976655</ArticleId></ArticleIdList></Reference><Reference><Citation>Rahimi Z. The role of renin angiotensin aldosterone system genes in diabetic nephropathy. Can J Diabetes. 2016;40:178–183. doi: 10.1016/j.jcjd.2015.08.016.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2015.08.016</ArticleId><ArticleId IdType="pubmed">26619914</ArticleId></ArticleIdList></Reference><Reference><Citation>Lieb W, Graf J, Götz A, König IR, Mayer B, Fischer M, et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men: results of the MONICA Augsburg echocardiographic substudy. J Mol Med (Berl) 2006;84:88–96. doi: 10.1007/s00109-005-0718-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00109-005-0718-5</ArticleId><ArticleId IdType="pubmed">16283142</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang W, Huang W, Su S, Li B, Zhao W, Chen S, et al. Association study of ACE2 (angiotensin I-converting enzyme 2) gene polymorphisms with coronary heart disease and myocardial infarction in a Chinese Han population. Clin Sci (Lond) 2006;111:333–340. doi: 10.1042/CS20060020.</Citation><ArticleIdList><ArticleId IdType="doi">10.1042/CS20060020</ArticleId><ArticleId IdType="pubmed">16822235</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhong J, Yan Z, Liu D, Ni Y, Zhao Z, Zhu S, et al. Association of angiotensin-converting enzyme 2 gene A/G polymorphism and elevated blood pressure in Chinese patients with metabolic syndrome. J Lab Clin Med. 2006;147:91–95. doi: 10.1016/j.lab.2005.10.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.lab.2005.10.001</ArticleId><ArticleId IdType="pmc">PMC7127450</ArticleId><ArticleId IdType="pubmed">16459167</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Q, Fang W, Ma L, Wang ZD, Yang YM, Lu YQ. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes. Medicine (Baltimore) 2018;97:e0415. doi: 10.1097/MD.0000000000010415.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000010415</ArticleId><ArticleId IdType="pmc">PMC5908634</ArticleId><ArticleId IdType="pubmed">29642210</ArticleId></ArticleIdList></Reference><Reference><Citation>Holt RCL, Ralph AS, Webb NJA, Watson CJ, Clark AGB, Mathieson PW, et al. Steroid-sensitive nephrotic syndrome and vascular endothelial growth factor gene polymorphisms. Eur J Immunogenet. 2003;30:1–3. doi: 10.1046/j.1365-2370.2003.00360.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1046/j.1365-2370.2003.00360.x</ArticleId><ArticleId IdType="pubmed">12558813</ArticleId></ArticleIdList></Reference><Reference><Citation>da Costa CCP, de Lima NS, Bento DCP, Santos RS, Reis AAS. A strong association between VEGF-A rs28357093 and amyotrophic lateral sclerosis: a Brazilian genetic study. Mol Biol Rep. 2022;49:9129–9133. doi: 10.1007/s11033-022-07647-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11033-022-07647-z</ArticleId><ArticleId IdType="pubmed">35733060</ArticleId></ArticleIdList></Reference><Reference><Citation>Fekih-Mrissa N, Mrad M, Ibrahim H, Akremi I, Sayeh A, Jaidane A, et al. Methylenetetrahydrofolate Reductase (MTHFR) (C677T and A1298C) polymorphisms and vascular complications in patients with type 2 diabetes. Can J Diabetes. 2017;41:366–371. doi: 10.1016/j.jcjd.2016.11.007.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcjd.2016.11.007</ArticleId><ArticleId IdType="pubmed">28341195</ArticleId></ArticleIdList></Reference><Reference><Citation>de Lima NS, da Costa CCP, Assunção LP, Santos KF, Bento DCP, Reis AAS, et al. One‐carbon metabolism pathway genes and their non‐association with the development of amyotrophic lateral sclerosis. J Cell Biochem. 2022;123:620–627. doi: 10.1002/jcb.30208.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jcb.30208</ArticleId><ArticleId IdType="pubmed">34994003</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng J, Tao F, Liu Y, Venners SA, Hsu YH, Jiang S, et al. Associations of methylenetetrahydrofolate reductase C677T genotype with blood pressure levels in Chinese population with essential hypertension. Clin Exp Hypertens. 2018;40:207–212. doi: 10.1080/10641963.2017.1281937.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/10641963.2017.1281937</ArticleId><ArticleId IdType="pubmed">29436860</ArticleId></ArticleIdList></Reference><Reference><Citation>Li A, Shi Y, Xu L, Zhang Y, Zhao H, Li Q, et al. A possible synergistic effect of MTHFR C677T polymorphism on homocysteine level variations increased risk for ischemic stroke. Medicine (Baltimore) 2017;96:e9300. doi: 10.1097/MD.0000000000009300.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MD.0000000000009300</ArticleId><ArticleId IdType="pmc">PMC5758196</ArticleId><ArticleId IdType="pubmed">29390494</ArticleId></ArticleIdList></Reference><Reference><Citation>Amer MA, Ghattas MH, Abo-Elmatty DM, Abou-El-Ela SH. Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk. Genet Mol Res. 2011;10:3722–3730. doi: 10.4238/2011.October.31.14.</Citation><ArticleIdList><ArticleId IdType="doi">10.4238/2011.October.31.14</ArticleId><ArticleId IdType="pubmed">22058002</ArticleId></ArticleIdList></Reference><Reference><Citation>Little J, Higgins JPT, Ioannidis JPA, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of genetic association studies (STREGA)- An extension of the STROBE statement. Genet Epidemiol. 2009;33:581–598. doi: 10.1002/gepi.20410.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gepi.20410</ArticleId><ArticleId IdType="pubmed">19278015</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin MH, Tseng CH, Tseng CC, Huang CH, Chong CK, Tseng CP. Real-time PCR for rapid genotyping of angiotensin-converting enzyme insertion/deletion polymorphism. Clin Biochem. 2001;34:661–666. doi: 10.1016/S0009-9120(01)00281-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0009-9120(01)00281-8</ArticleId><ArticleId IdType="pubmed">11849627</ArticleId></ArticleIdList></Reference><Reference><Citation>Santos KF, Azevedo RM, Bento DCP, Santos RS, Reis AAS. No association between GSTM1 and GSTT1 deletion polymorphisms and Amyotrophic Lateral Sclerosis: a genetic study in Brazilian patients. Meta Gene. 2021;30:100979. doi: 10.1016/j.mgene.2021.100979.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mgene.2021.100979</ArticleId></ArticleIdList></Reference><Reference><Citation>Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis. 1997;18:641–644. doi: 10.1093/carcin/18.4.641.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/carcin/18.4.641</ArticleId><ArticleId IdType="pubmed">9111193</ArticleId></ArticleIdList></Reference><Reference><Citation>Keku T, Millikan R, Worley K, Winkel S, Eaton A, Biscocho L, et al. 5,10-Methylenetetrahydrofolate reductase codon 677 and 1298 polymorphisms and colon cancer in African Americans and whites. Cancer Epidemiol Biomarkers Prev. 2002;11:1611–1621.</Citation><ArticleIdList><ArticleId IdType="pubmed">12496052</ArticleId></ArticleIdList></Reference><Reference><Citation>Benjafield AV, Wang WYS, Morris BJ. No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension. Am J Hypertens. 2004;17:624–628. doi: 10.1016/j.amjhyper.2004.02.022.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjhyper.2004.02.022</ArticleId><ArticleId IdType="pmc">PMC7110370</ArticleId><ArticleId IdType="pubmed">15233982</ArticleId></ArticleIdList></Reference><Reference><Citation>Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Res. 2004;33:261–304. doi: 10.1177/0049124104268644.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0049124104268644</ArticleId></ArticleIdList></Reference><Reference><Citation>Sen PC, Hajra M, Ghosh M. In: Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing. Mandal J, Bhattacharya D, editors. Vol. 937. Springer; Singapore: 2020. Supervised classification algorithms in machine learning: a survey and review.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/978-981-13-7403-6_11</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohamed S, Ashraf R, Ghanem A, Sakr M, Mohamed R. Supervised machine learning techniques: A comparison. 2022. https://www.researchgate.net/publication/363870735</Citation></Reference><Reference><Citation>López OAM, López AM, Crossa J. Multivariate Statistical Machine Learning Methods for Genomic Prediction. Springer Cham. 2022 doi: 10.1007/978-3-030-89010-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/978-3-030-89010-0</ArticleId><ArticleId IdType="pubmed">36103587</ArticleId></ArticleIdList></Reference><Reference><Citation>Chafai N, Hayah I, Houaga I, Badaoui B. A review of machine learning models applied to genomic prediction in animal breeding. Front Genet. 2023;14:1150596. doi: 10.3389/fgene.2023.1150596.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fgene.2023.1150596</ArticleId><ArticleId IdType="pmc">PMC10516561</ArticleId><ArticleId IdType="pubmed">37745853</ArticleId></ArticleIdList></Reference><Reference><Citation>Nath S, Das S, Bhowmik A, Ghosh SK, Choudhury Y. The GSTM1 and GSTT1 null genotypes increase the risk for type 2 diabetes mellitus and the subsequent development of diabetic complications: a meta-analysis. Curr Diabetes Rev. 2019;15:31–43. doi: 10.2174/1573399814666171215120228.</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1573399814666171215120228</ArticleId><ArticleId IdType="pubmed">29243583</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu LS, Wang D, Tang R, Wang Q, Zheng L, Wei J, et al. Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus risk: a systematic review and meta-analysis. Front Genet. 2022;13:959291. doi: 10.3389/fgene.2022.959291.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fgene.2022.959291</ArticleId><ArticleId IdType="pmc">PMC9676647</ArticleId><ArticleId IdType="pubmed">36419826</ArticleId></ArticleIdList></Reference><Reference><Citation>Mergani A, Mansour AA, Askar T, Zahran RN, Mustafa AM, Mohammed MA, et al. Glutathione S-transferase Pi-Ile 105 Val polymorphism and susceptibility to T2DM in population from Turabah region of Saudi Arabia. Biochem Genet. 2016;54:544–551. doi: 10.1007/s10528-016-9740-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10528-016-9740-2</ArticleId><ArticleId IdType="pubmed">27368697</ArticleId></ArticleIdList></Reference><Reference><Citation>Staels W, Heremans Y, Heimberg H, De Leu N. VEGF-A and blood vessels: a beta cell perspective. Diabetologia. 2019;62:1961–1968. doi: 10.1007/s00125-019-4969-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-019-4969-z</ArticleId><ArticleId IdType="pubmed">31414144</ArticleId></ArticleIdList></Reference><Reference><Citation>Younas H, Ijaz T, Choudhry N. Investigation of angiotensin-1 converting enzyme 2 gene (G8790A) polymorphism in patients of type 2 diabetes mellitus with diabetic nephropathy in Pakistani population. PLoS One. 2022;17:e0264038. doi: 10.1371/journal.pone.0264038.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0264038</ArticleId><ArticleId IdType="pmc">PMC8853542</ArticleId><ArticleId IdType="pubmed">35176079</ArticleId></ArticleIdList></Reference><Reference><Citation>Rao DK, Shaik NA, Imran A, Murthy DK, Ganti E, Chinta C, et al. Variations in the GST activity are associated with single and combinations of GST genotypes in both male and female diabetic patients. Mol Biol Rep. 2014;41:841–848. doi: 10.1007/s11033-013-2924-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11033-013-2924-5</ArticleId><ArticleId IdType="pubmed">24381101</ArticleId></ArticleIdList></Reference><Reference><Citation>Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. Pharmacogenomics J. 2019;19:315–336. doi: 10.1038/s41397-019-0082-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41397-019-0082-4</ArticleId><ArticleId IdType="pmc">PMC6650341</ArticleId><ArticleId IdType="pubmed">30723314</ArticleId></ArticleIdList></Reference><Reference><Citation>McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine learning for detecting gene-gene interactions. Appl Bioinformatics. 2006;5:77–88. doi: 10.2165/00822942-200605020-00002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2165/00822942-200605020-00002</ArticleId><ArticleId IdType="pmc">PMC3244050</ArticleId><ArticleId IdType="pubmed">16722772</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39630627</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>A systematic review and meta-analysis of physical exercise non-adherence and its determinants among type 2 diabetic patients in Ethiopia.</ArticleTitle><Pagination><StartPage>e0314389</StartPage><MedlinePgn>e0314389</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0314389</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0314389</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Physical exercise non-adherence is one of the leading risk behavioral factors for type two diabetic patients and one of the leading causes of mortality of patients worldwide. Therefore, the current study was conducted to determine the pooled prevalence and its determinants of non-adherence to physical exercise among type two diabetes adult patients in Ethiopia.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Studies were searched systematically using International databases from PubMed, Google Scholar, Cochrane Library, Embase, and CINAHL. The quality of articles that were searched was assessed using the New Castle Ottawa scale for a cross-sectional study design. Statistical analysis was performed using STATA version 14 and a meta-analysis was carried out using a random effect model method. Assessment of the certainty evidence's was done by applying the GRADE method. The Preferred Reporting Item for Systematic Review and Meta-analyses (PRISMA) guideline was followed for reporting results. The title and the protocol of this meta-analysis were registered at the online database PROSPERO registration number CRD42023430579.</AbstractText><AbstractText Label="RESULT" NlmCategory="RESULTS">From the total 1711 records screened, 7 studies with 3437 participants who fulfilled the inclusion criteria were included in this systematic review. The estimated pooled prevalence of exercise non-adherence in Ethiopia was 50.59%. Being female (OR = 1.27, 95% CI (1.82, 1.97)), primary level education (OR = 1.19, 95% CI (1.01, 1.39)) and rural residency (OR = 4.87, 95% CI (2.80, 8.48)) were significantly associated with exercise non-adherence.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">According to papers evaluated by the GRADE assessment the certainty of evidence's was poor. More than half of the diabetes patients had physical exercise non-adherence. Strategies such as emotional support, health education, and emphasis on rural diabetic patients can improve the problem of non-adherence.</AbstractText><CopyrightInformation>Copyright: © 2024 Abate et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Abate</LastName><ForeName>Hailemicahel Kindie</ForeName><Initials>HK</Initials><Identifier Source="ORCID">0000-0002-6252-3574</Identifier><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Azage</LastName><ForeName>Abere Woretaw</ForeName><Initials>AW</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zegeye</LastName><ForeName>Alebachew Ferede</ForeName><Initials>AF</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tsega</LastName><ForeName>Sintayehu Sime</ForeName><Initials>SS</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Agimas</LastName><ForeName>Muluken Chanie</ForeName><Initials>MC</Initials><AffiliationInfo><Affiliation>Institute of Public Health Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mekonnen</LastName><ForeName>Habtamu Sewunet</ForeName><Initials>HS</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nega</LastName><ForeName>Gashaw Adane</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beko</LastName><ForeName>Zarko Wako</ForeName><Initials>ZW</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mekonnen</LastName><ForeName>Chilot Kassa</ForeName><Initials>CK</Initials><AffiliationInfo><Affiliation>Department Medical Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005002" MajorTopicYN="N" Type="Geographic">Ethiopia</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010349" MajorTopicYN="N">Patient Compliance</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>7</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>13</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39630627</ArticleId><ArticleId IdType="pmc">PMC11616846</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0314389</ArticleId><ArticleId IdType="pii">PONE-D-23-20714</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Brett L, Traynor V, Stapley P. Effects of physical exercise on health and well-being of individuals living with a dementia in nursing homes: a systematic review. Journal of the American Medical Directors Association. 2016;17(2):104–16. doi: 10.1016/j.jamda.2015.08.016</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jamda.2015.08.016</ArticleId><ArticleId IdType="pubmed">26432622</ArticleId></ArticleIdList></Reference><Reference><Citation>Cho NH, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al.. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice. 2018;138:271–81. doi: 10.1016/j.diabres.2018.02.023</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2018.02.023</ArticleId><ArticleId IdType="pubmed">29496507</ArticleId></ArticleIdList></Reference><Reference><Citation>Chestnov O. World Health Organization global action plan for the prevention and control of noncommunicable diseases. Geneva, Switzerland. 2013.</Citation></Reference><Reference><Citation>Saleh F, Mumu SJ, Ara F, Hafez MA, Ali L. Non-adherence to self-care practices & medication and health related quality of life among patients with type 2 diabetes: a cross-sectional study. BMC Public Health. 2014;14:431.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4019601</ArticleId><ArticleId IdType="pubmed">24885315</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu Y, Cheng K, Wang H, Xu Z, Zhang R, Cheng W, et al.. Exercise Adherence and Compliance and Its Related Factors Among Elderly Patients with Type 2 Diabetes in China: A Cross-Sectional Study. Patient preference and adherence. 2022;16:3329–39. doi: 10.2147/PPA.S374120</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/PPA.S374120</ArticleId><ArticleId IdType="pmc">PMC9785139</ArticleId><ArticleId IdType="pubmed">36568916</ArticleId></ArticleIdList></Reference><Reference><Citation>Parajuli J, Saleh F, Thapa N, Ali L. Factors associated with nonadherence to diet and physical activity among Nepalese type 2 diabetes patients; a cross sectional study. BMC Res Notes. 2014;7:758. doi: 10.1186/1756-0500-7-758</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1756-0500-7-758</ArticleId><ArticleId IdType="pmc">PMC4230343</ArticleId><ArticleId IdType="pubmed">25344089</ArticleId></ArticleIdList></Reference><Reference><Citation>Ganiyu AB, Mabuza LH, Malete NH, Govender I, Ogunbanjo GA. Non-adherence to diet and exercise recommendations amongst patients with type 2 diabetes mellitus attending Extension II Clinic in Botswana. African Journal of Primary Health Care and Family Medicine. 2013;5(1):1–6.</Citation></Reference><Reference><Citation>World Health Organization t. Global recommendations on physical activity for health: World Health Organization; 2010.</Citation><ArticleIdList><ArticleId IdType="pubmed">26180873</ArticleId></ArticleIdList></Reference><Reference><Citation>Vagetti GC, Barbosa Filho VC, Moreira NB, de Oliveira V, Mazzardo O, de Campos W. The prevalence and correlates of meeting the current physical activity for health guidelines in older people: a cross-sectional study in Brazilian women. Archives of gerontology and geriatrics. 2013;56(3):492–500. doi: 10.1016/j.archger.2012.12.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.archger.2012.12.003</ArticleId><ArticleId IdType="pubmed">23305826</ArticleId></ArticleIdList></Reference><Reference><Citation>Dela F, Prats C, Helge JW. Exercise interventions to prevent and manage type 2 diabetes: physiological mechanisms. Diabetes and Physical Activity. 2014;60:36–47. doi: 10.1159/000357334</Citation><ArticleIdList><ArticleId IdType="doi">10.1159/000357334</ArticleId><ArticleId IdType="pubmed">25226799</ArticleId></ArticleIdList></Reference><Reference><Citation>Sherifali D, Berard LD, Gucciardi E, MacDonald B, MacNeill G, Committee DCCPGE. Self-management education and support. Canadian Journal of Diabetes. 2018;42:S36–S41.</Citation><ArticleIdList><ArticleId IdType="pubmed">29650109</ArticleId></ArticleIdList></Reference><Reference><Citation>Diedrich A, Munroe DJ, Romano M. Promoting physical activity for persons with diabetes. The Diabetes Educator. 2010;36(1):132–40. doi: 10.1177/0145721709352382</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721709352382</ArticleId><ArticleId IdType="pubmed">20019197</ArticleId></ArticleIdList></Reference><Reference><Citation>Al Tunaiji H, Davis JC, Mackey DC, Khan KM. Population attributable fraction of type 2 diabetes due to physical inactivity in adults: a systematic review. BMC Public Health. 2014;14(1):1–9. doi: 10.1186/1471-2458-14-469</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2458-14-469</ArticleId><ArticleId IdType="pmc">PMC4083369</ArticleId><ArticleId IdType="pubmed">24885278</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu H, Chen S, Liu M, Nie H, Lu H. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging and disease. 2020;11(3):668. doi: 10.14336/AD.2020.0502</Citation><ArticleIdList><ArticleId IdType="doi">10.14336/AD.2020.0502</ArticleId><ArticleId IdType="pmc">PMC7220287</ArticleId><ArticleId IdType="pubmed">32489711</ArticleId></ArticleIdList></Reference><Reference><Citation>Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J, et al.. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes care. 2002;25(10):1729–36. doi: 10.2337/diacare.25.10.1729</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.25.10.1729</ArticleId><ArticleId IdType="pubmed">12351469</ArticleId></ArticleIdList></Reference><Reference><Citation>Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, et al.. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119(25):3244–62. doi: 10.1161/CIRCULATIONAHA.109.192521</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.109.192521</ArticleId><ArticleId IdType="pubmed">19506108</ArticleId></ArticleIdList></Reference><Reference><Citation>Heisler M. Different models to mobilize peer support to improve diabetes self-management and clinical outcomes: evidence, logistics, evaluation considerations and needs for future research. Family practice. 2010;27(suppl_1):i23-i32. doi: 10.1093/fampra/cmp003</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/fampra/cmp003</ArticleId><ArticleId IdType="pmc">PMC2902359</ArticleId><ArticleId IdType="pubmed">19293400</ArticleId></ArticleIdList></Reference><Reference><Citation>Nelson KM, Reiber G, Boyko EJ. Diet and exercise among adults with type 2 diabetes: findings from the third national health and nutrition examination survey (NHANES III). Diabetes care. 2002;25(10):1722–8. doi: 10.2337/diacare.25.10.1722</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.25.10.1722</ArticleId><ArticleId IdType="pubmed">12351468</ArticleId></ArticleIdList></Reference><Reference><Citation>Mumu S, Saleh F, Ara F, Afnan F, Ali L. Non-adherence to life-style modification and its factors among type 2 diabetic patients. Indian Journal of Public Health. 2014;58(1):40–4. doi: 10.4103/0019-557X.128165</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/0019-557X.128165</ArticleId><ArticleId IdType="pubmed">24748356</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooper HC, Booth K, Gill G. Patients’ perspectives on diabetes health care education. Health Education Research. 2003;18(2):191–206. doi: 10.1093/her/18.2.191</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/her/18.2.191</ArticleId><ArticleId IdType="pubmed">12729178</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al.. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79. doi: 10.2337/dc16-1728</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc16-1728</ArticleId><ArticleId IdType="pmc">PMC6908414</ArticleId><ArticleId IdType="pubmed">27926890</ArticleId></ArticleIdList></Reference><Reference><Citation>Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute. 2011;2(1):1–12.</Citation></Reference><Reference><Citation>Hartling L, Milne A, Hamm MP, Vandermeer B, Ansari M, Tsertsvadze A, et al.. Testing the Newcastle Ottawa Scale showed low reliability between individual reviewers. Journal of clinical epidemiology. 2013;66(9):982–93. doi: 10.1016/j.jclinepi.2013.03.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jclinepi.2013.03.003</ArticleId><ArticleId IdType="pubmed">23683848</ArticleId></ArticleIdList></Reference><Reference><Citation>Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al.. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International journal of surgery. 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijsu.2021.105906</ArticleId><ArticleId IdType="pubmed">33789826</ArticleId></ArticleIdList></Reference><Reference><Citation>Eshete A, Mohammed S, Shine S, Eshetie Y, Assefa Y, Tadesse N. Effect of physical activity promotion program on adherence to physical exercise among patients with type II diabetes in North Shoa Zone Amhara region: a quasi-experimental study. BMC Public Health. 2023;23(1):1–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10114377</ArticleId><ArticleId IdType="pubmed">37072775</ArticleId></ArticleIdList></Reference><Reference><Citation>Koyra HC, Doda BE. Physical exercise and factors affecting among adult diabetic patients at Wolaita Soddo University teaching referral hospital, Southern Ethiopia. International Journal of Physical Education, Sports and Health. 2017;4(5):82–6.</Citation></Reference><Reference><Citation>Tesfa E, Demeke D. Prevalence of and risk factors for hypertension in Ethiopia: A systematic review and meta‐analysis. Health Science Reports. 2021;4(3):e372. doi: 10.1002/hsr2.372</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hsr2.372</ArticleId><ArticleId IdType="pmc">PMC8459032</ArticleId><ArticleId IdType="pubmed">34589614</ArticleId></ArticleIdList></Reference><Reference><Citation>Munn Z, Tufanaru C, Aromataris E. JBI’s systematic reviews: data extraction and synthesis. AJN The American Journal of Nursing. 2014;114(7):49–54. doi: 10.1097/01.NAJ.0000451683.66447.89</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/01.NAJ.0000451683.66447.89</ArticleId><ArticleId IdType="pubmed">25742352</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al.. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes care. 2010;33(12):e147–e67. doi: 10.2337/dc10-9990</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-9990</ArticleId><ArticleId IdType="pmc">PMC2992225</ArticleId><ArticleId IdType="pubmed">21115758</ArticleId></ArticleIdList></Reference><Reference><Citation>Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research synthesis methods. 2010;1(2):97–111. doi: 10.1002/jrsm.12</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/jrsm.12</ArticleId><ArticleId IdType="pubmed">26061376</ArticleId></ArticleIdList></Reference><Reference><Citation>Rucker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC medical research methodology. 2008;8:79. doi: 10.1186/1471-2288-8-79</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-2288-8-79</ArticleId><ArticleId IdType="pmc">PMC2648991</ArticleId><ArticleId IdType="pubmed">19036172</ArticleId></ArticleIdList></Reference><Reference><Citation>Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994:1088–101.</Citation><ArticleIdList><ArticleId IdType="pubmed">7786990</ArticleId></ArticleIdList></Reference><Reference><Citation>Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. What is "quality of evidence" and why is it important to clinicians? BMJ (Clinical research ed). 2008;336(7651):995–8. doi: 10.1136/bmj.39490.551019.BE</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.39490.551019.BE</ArticleId><ArticleId IdType="pmc">PMC2364804</ArticleId><ArticleId IdType="pubmed">18456631</ArticleId></ArticleIdList></Reference><Reference><Citation>Tamirat A, Abebe L, Kirose G. Prediction of physical activity among Type-2 diabetes patients attending Jimma University specialized Hospital, southwest Ethiopia: Application of health belief model. Science. 2014;2(6):524–31.</Citation></Reference><Reference><Citation>Abate HK, Ferede YM, Mekonnen CK. Adherence to physical exercise recommendations among type 2 diabetes patients during the COVID-19 pandemic. International Journal of Africa Nursing Sciences. 2022;16:100407. doi: 10.1016/j.ijans.2022.100407</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijans.2022.100407</ArticleId><ArticleId IdType="pmc">PMC8924031</ArticleId><ArticleId IdType="pubmed">35309376</ArticleId></ArticleIdList></Reference><Reference><Citation>Zenu S, Abebe E, Reshad M, Dessie Y, Debalke R, Berkessa T. Non-adherence to the World Health Organization’s physical activity recommendations and associated factors among healthy adults in urban centers of Southwest Ethiopia. PLOS Global Public Health. 2023;3(1):e0001451. doi: 10.1371/journal.pgph.0001451</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pgph.0001451</ArticleId><ArticleId IdType="pmc">PMC10021407</ArticleId><ArticleId IdType="pubmed">36962928</ArticleId></ArticleIdList></Reference><Reference><Citation>Enyew A, Nigussie K, Mihrete T, Jemal M, Kedir S, Alemu E, et al.. Prevalence and associated factors of physical inactivity among adult diabetes mellitus patients in Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Scientific Reports. 2023;13(1):118. doi: 10.1038/s41598-022-26895-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-022-26895-4</ArticleId><ArticleId IdType="pmc">PMC9813006</ArticleId><ArticleId IdType="pubmed">36599905</ArticleId></ArticleIdList></Reference><Reference><Citation>Edmealem A, Ademe S, Tegegne B. Level of physical activity and its associated factors among type II diabetes patients in dessie referral Hospital, northeast Ethiopia. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2020;13:4067. doi: 10.2147/DMSO.S279772</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S279772</ArticleId><ArticleId IdType="pmc">PMC7605610</ArticleId><ArticleId IdType="pubmed">33149646</ArticleId></ArticleIdList></Reference><Reference><Citation>Debalke R, Zinab B, Belachew T. Non adherence to physical activity recommendations and associated factors among Type 2 Diabetic patients in Illubabor zone, South West Ethiopia. Glob J Obes Diabetes Metab Syndr. 2022;9(1):001–6.</Citation></Reference><Reference><Citation>Zeleke Negera G, Charles Epiphanio D. Prevalence and predictors of nonadherence to diet and physical activity recommendations among type 2 diabetes patients in Southwest Ethiopia: a cross-sectional study. International journal of endocrinology. 2020;2020. doi: 10.1155/2020/1512376</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2020/1512376</ArticleId><ArticleId IdType="pmc">PMC7064825</ArticleId><ArticleId IdType="pubmed">32190048</ArticleId></ArticleIdList></Reference><Reference><Citation>Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al.. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. Jama. 2011;305(17):1790–9. doi: 10.1001/jama.2011.576</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2011.576</ArticleId><ArticleId IdType="pubmed">21540423</ArticleId></ArticleIdList></Reference><Reference><Citation>Bassin SR, Srinath R. The Impact of Physical Activity in Patients With Type 2 Diabetes. American Journal of Lifestyle Medicine. 2023:15598276231180541.</Citation></Reference><Reference><Citation>Vilafranca Cartagena M, Tort-Nasarre G, Rubinat Arnaldo E. Barriers and facilitators for physical activity in adults with type 2 diabetes mellitus: A scoping review. International journal of environmental research and public health. 2021;18(10):5359. doi: 10.3390/ijerph18105359</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph18105359</ArticleId><ArticleId IdType="pmc">PMC8157366</ArticleId><ArticleId IdType="pubmed">34069859</ArticleId></ArticleIdList></Reference><Reference><Citation>Abubakari A-R, Lauder W, Jones M, Kirk A, Agyemang C, Bhopal R. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public health. 2009;123(9):602–14. doi: 10.1016/j.puhe.2009.07.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.puhe.2009.07.009</ArticleId><ArticleId IdType="pubmed">19748643</ArticleId></ArticleIdList></Reference><Reference><Citation>Jeon CY, Lokken RP, Hu FB, Van Dam RM. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes care. 2007;30(3):744–52. doi: 10.2337/dc06-1842</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc06-1842</ArticleId><ArticleId IdType="pubmed">17327354</ArticleId></ArticleIdList></Reference><Reference><Citation>Bullard T, Ji M, An R, Trinh L, Mackenzie M, Mullen SP. A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC public health. 2019;19(1):1–11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6534868</ArticleId><ArticleId IdType="pubmed">31126260</ArticleId></ArticleIdList></Reference><Reference><Citation>Amin M, Kerr D, Atiase Y, Aldwikat RK, Driscoll A. Effect of Physical Activity on Metabolic Syndrome Markers in Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Sports. 2023;11(5):101. doi: 10.3390/sports11050101</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/sports11050101</ArticleId><ArticleId IdType="pmc">PMC10222387</ArticleId><ArticleId IdType="pubmed">37234057</ArticleId></ArticleIdList></Reference><Reference><Citation>Plotnikoff RC, Costigan SA, Karunamuni ND, Lubans DR. Community-based physical activity interventions for treatment of type 2 diabetes: a systematic review with meta-analysis. Frontiers in Endocrinology. 2013;4:3. doi: 10.3389/fendo.2013.00003</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2013.00003</ArticleId><ArticleId IdType="pmc">PMC3557414</ArticleId><ArticleId IdType="pubmed">23372566</ArticleId></ArticleIdList></Reference><Reference><Citation>Allet L, Giet O, Barral J, Junod N, Durrer D, Amati F, et al.. Educational Level Is Related to Physical Fitness in Patients with Type 2 Diabetes–A Cross-Sectional Study. PloS one. 2016;11(10):e0164176. doi: 10.1371/journal.pone.0164176</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0164176</ArticleId><ArticleId IdType="pmc">PMC5061350</ArticleId><ArticleId IdType="pubmed">27732627</ArticleId></ArticleIdList></Reference><Reference><Citation>Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleveland Clinic journal of medicine. 2017;84(7 Suppl 1):S15. doi: 10.3949/ccjm.84.s1.03</Citation><ArticleIdList><ArticleId IdType="doi">10.3949/ccjm.84.s1.03</ArticleId><ArticleId IdType="pmc">PMC5846677</ArticleId><ArticleId IdType="pubmed">28708479</ArticleId></ArticleIdList></Reference><Reference><Citation>Nazeer T, Tahir A, Din S, Asif M, Alam A, Shoaib M, et al.. Level of physical activity among diabetic patients of rural and urban areas. PJMHS. 2020;14(1):219–22.</Citation></Reference><Reference><Citation>Carrillo-Balam G, Cantoral A, Rodríguez-Carmona Y, Christensen DL. Health-care coverage and access to health care in the context of type 2 diabetes and hypertension in rural Mexico: a systematic literature review. Public Health. 2020;181:8–15. doi: 10.1016/j.puhe.2019.11.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.puhe.2019.11.017</ArticleId><ArticleId IdType="pubmed">31918156</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39630283</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1539-0829</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>Current diabetes reports</Title><ISOAbbreviation>Curr Diab Rep</ISOAbbreviation></Journal><ArticleTitle>Advancing Type 2 Diabetes Prevention through Text-Messaging Interventions: A Narrative Review.</ArticleTitle><Pagination><StartPage>9</StartPage><MedlinePgn>9</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">9</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11892-024-01568-w</ELocationID><Abstract><AbstractText Label="PURPOSE OF REVIEW" NlmCategory="OBJECTIVE">Text-messaging interventions effectively prevent and manage numerous health conditions. This scoping review evaluates recent literature on text-messaging interventions focused on diabetes prevention, highlighting their development, associated outcomes, reach, and potential sustainability.</AbstractText><AbstractText Label="RECENT FINDINGS" NlmCategory="RESULTS">A total of 28 studies met eligibility criteria and were included in this review. Text-messaging was often used as a primary intervention method, focusing on promoting weight loss through physical activity and dietary changes. Studies also explored hybrid approaches integrating text-messaging with in-person sessions or other digital platforms. Intervention development involved multi-phase content creation, often leveraging established diabetes prevention curricula. Studies generally reported high feasibility and acceptability, although effectiveness was mixed. Cost-effectiveness comparisons favored text-messaging over traditional in-person programs. Implementation strategies aligned interventions with existing healthcare workflows, facilitating scalability and integration into routine care practices. Text-messaging interventions demonstrate considerable promise but require further refinement to ensure their effectiveness, particularly in enhancing participant engagement to ensure effectiveness and sustainability. Future research should focus on refining intervention content, integrating interactive features, and expanding cost-effectiveness evaluations to support broader implementation in real-world settings.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Formagini</LastName><ForeName>Taynara</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Family Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, San Diego, CA, 92093, USA. tformagini@health.ucsd.edu.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gonzalez</LastName><ForeName>Christopher J</ForeName><Initials>CJ</Initials><AffiliationInfo><Affiliation>Division of General Internal Medicine, Weill Cornell Medicine, New York, NY, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dias</LastName><ForeName>Julie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Biological Sciences, University of Central Florida, Orlando, FL, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arredondo</LastName><ForeName>Elva M</ForeName><Initials>EM</Initials><AffiliationInfo><Affiliation>Psychology Department, San Diego State University, San Diego, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hekler</LastName><ForeName>Eric</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, San Diego, CA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>O'Brien</LastName><ForeName>Matthew J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Department of Medicine, Division of General Internal Medicine and Geriatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>K24HL173681</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>T32 HL079891</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>K24 HL173681</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>T32HL079891</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30 DK092949</GrantID><Acronym>DK</Acronym><Agency>NIDDK NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30DK092949</GrantID><Agency>Chicago Center for Diabetes Translation Research</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Curr Diab Rep</MedlineTA><NlmUniqueID>101093791</NlmUniqueID><ISSNLinking>1534-4827</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="N">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006293" MajorTopicYN="N">Health Promotion</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D060145" MajorTopicYN="Y">Text Messaging</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000094703" MajorTopicYN="N">Cost-Effectiveness Analysis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetes Prevention Program (DPP)</Keyword><Keyword MajorTopicYN="N">Narrative review</Keyword><Keyword MajorTopicYN="N">Text messaging</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes prevention</Keyword></KeywordList><CoiStatement>Declarations. Human/Animal Studies Informed Consent Statement: This article does not contain any studies with human or animal subjects performed by any of the authors. Competing Interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>11</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>4</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39630283</ArticleId><ArticleId IdType="pmc">PMC11618152</ArticleId><ArticleId IdType="doi">10.1007/s11892-024-01568-w</ArticleId><ArticleId IdType="pii">10.1007/s11892-024-01568-w</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Knowler WCB-CE, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1370926</ArticleId><ArticleId IdType="pubmed">11832527</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan X-R, Li G-w, Hu Y-H, Wang J-X, Yang W-Y, An Z-X, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.</Citation><ArticleIdList><ArticleId IdType="pubmed">9096977</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar A, Vijay V, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.</Citation><ArticleIdList><ArticleId IdType="pubmed">16391903</ArticleId></ArticleIdList></Reference><Reference><Citation>Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish diabetes Prevention Study (DPS) Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">14633807</ArticleId></ArticleIdList></Reference><Reference><Citation>Ali MK, Echouffo-Tcheugui JB, Williamson DF. How effective were lifestyle interventions in real-world settings that were modeled on the diabetes Prevention Program? Health Aff. 2012;31(1):67–75.</Citation><ArticleIdList><ArticleId IdType="pubmed">22232096</ArticleId></ArticleIdList></Reference><Reference><Citation>Aziz Z, Absetz P, Oldroyd J, Pronk NP, Oldenburg B. A systematic review of real-world diabetes prevention programs: learnings from the last 15 years. Implement Sci. 2015;10:1–17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4681022</ArticleId><ArticleId IdType="pubmed">26670418</ArticleId></ArticleIdList></Reference><Reference><Citation>Mudaliar U, Zabetian A, Goodman M, Echouffo-Tcheugui JB, Albright AL, Gregg EW, et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med. 2016;13(7):e1002095.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4961455</ArticleId><ArticleId IdType="pubmed">27459705</ArticleId></ArticleIdList></Reference><Reference><Citation>Albright AL, Gregg EW. Preventing type 2 diabetes in communities across the US: the National Diabetes Prevention Program. Am J Prev Med. 2013;44(4):S346–51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4539613</ArticleId><ArticleId IdType="pubmed">23498297</ArticleId></ArticleIdList></Reference><Reference><Citation>Centers for Disease Control and Prevention (CDC). Diabetes Prevention Recognition Program Application. Registry of All Recognized Organizations: U.S. Department of Health & Human Services; [ https://dprp.cdc.gov/Registry</Citation></Reference><Reference><Citation>Centers for Disease Control and Prevention (CDC). About CDC’s First National Prediabetes Awareness Campaign. U.S. Centers for Disease Control and Prevention; 2024.</Citation></Reference><Reference><Citation>National DPP Coverage Toolkit. National Diabetes Prevention Program Coverage Toolkit: Participating Payers and Employers. 2020 [ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415384/</Citation></Reference><Reference><Citation>Hill-Briggs F, Adler NE, Berkowitz SA, Chin MH, Gary-Webb TL, Navas-Acien A, et al. Social determinants of health and diabetes: a scientific review. Diabetes Care. 2021;44(1):258.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7783927</ArticleId><ArticleId IdType="pubmed">33139407</ArticleId></ArticleIdList></Reference><Reference><Citation>Centers for Disease Control and Prevention (CDC). National Diabetes statistics Report. U.S. Centers for Disease Control and Prevention; 2024.</Citation></Reference><Reference><Citation>Ely EK, Ng BP, Cannon MJ. Delivering the National Diabetes Prevention Program: Assessment of outcomes in In-Person and virtual organizations. J Diabetes Res. 2023;2023(1):8894593.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10622599</ArticleId><ArticleId IdType="pubmed">37928892</ArticleId></ArticleIdList></Reference><Reference><Citation>Formagini T, Brooks JV, Roberts A, Bullard KM, Zhang Y, Saelee R, et al. Prediabetes prevalence and awareness by race, ethnicity, and educational attainment among US adults. Front Public Health. 2023;11:1277657.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10758124</ArticleId><ArticleId IdType="pubmed">38164446</ArticleId></ArticleIdList></Reference><Reference><Citation>Gruss SM, Nhim K, Gregg E, Bell M, Luman E, Albright A. Public health approaches to type 2 diabetes prevention: the US National Diabetes Prevention Program and beyond. Curr Diab Rep. 2019;19:1–11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6682852</ArticleId><ArticleId IdType="pubmed">31385061</ArticleId></ArticleIdList></Reference><Reference><Citation>Cannon MJ, Masalovich S, Ng BP, Soler RE, Jabrah R, Ely EK, et al. Retention among participants in the National Diabetes Prevention Program lifestyle change program, 2012–2017. Diabetes Care. 2020;43(9):2042–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11000538</ArticleId><ArticleId IdType="pubmed">32616617</ArticleId></ArticleIdList></Reference><Reference><Citation>Parsons AS, Raman V, Starr B, Zezza M, Rehm CD. Medicare underpayment for diabetes Prevention Program: implications for DPP suppliers. Am J Manag Care. 2018;24(10):475–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">30325189</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritchie ND, Baucom KJ, Sauder KA. Current perspectives on the impact of the National Diabetes Prevention Program: building on successes and overcoming challenges. Diabetes, Metabolic Syndrome and Obesity. 2020:2949-57.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7445538</ArticleId><ArticleId IdType="pubmed">32903871</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergman M, Buysschaert M, Schwarz PE, Albright A, Narayan KV, Yach D. Diabetes prevention: global health policy and perspectives from the ground. Diabetes Manage (London England). 2012;2(4):309.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4556601</ArticleId><ArticleId IdType="pubmed">26339296</ArticleId></ArticleIdList></Reference><Reference><Citation>Mohan V. National Diabetes prevention programmes in LMICs are now a necessity. Lancet Global Health. 2023;11(10):e1480–1.</Citation><ArticleIdList><ArticleId IdType="pubmed">37734780</ArticleId></ArticleIdList></Reference><Reference><Citation>Ibrahim M, Tuomilehto J, Aschner P, Beseler L, Cahn A, Eckel RH, et al. Global status of diabetes prevention and prospects for action: a consensus statement. Diab/Metab Res Rev. 2018;34(6):e3021.</Citation><ArticleIdList><ArticleId IdType="pubmed">29757486</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuomilehto J, Uusitupa M, Gregg EW, Lindström J. Type 2 diabetes prevention programs—from proof-of-concept trials to national intervention and beyond. J Clin Med. 2023;12(5):1876.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10003211</ArticleId><ArticleId IdType="pubmed">36902668</ArticleId></ArticleIdList></Reference><Reference><Citation>Cannon MJ, Ng BP, Lloyd K, Reynolds J, Ely EK. Delivering the National Diabetes Prevention Program: Assessment of Enrollment in In-Person and Virtual Organizations. Journal of Diabetes Research. 2022;2022.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8804550</ArticleId><ArticleId IdType="pubmed">35118160</ArticleId></ArticleIdList></Reference><Reference><Citation>Pew Research Center. Mobile Fact Sheet: Pew Research Center. 2021 [ https://www.pewresearch.org/internet/fact-sheet/mobile/</Citation></Reference><Reference><Citation>World Economic Forum. Charted: There are more mobile phones than people in the world: Statista; 2023 [ https://www.weforum.org/agenda/2023/04/charted-there-are-more-phones-than-people-in-the-world/#:~:text=According%20to%20the%20International%20Telecommunication,Image%3A%20Statista</Citation></Reference><Reference><Citation>Joiner KL, Nam S, Whittemore R. Lifestyle interventions based on the diabetes prevention program delivered via eHealth: a systematic review and meta-analysis. Prev Med. 2017;100:194–207.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5699208</ArticleId><ArticleId IdType="pubmed">28456513</ArticleId></ArticleIdList></Reference><Reference><Citation>Bian RR, Piatt GA, Sen A, Plegue MA, De Michele ML, Hafez D, et al. The effect of technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med Internet Res. 2017;19(3):e76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5387112</ArticleId><ArticleId IdType="pubmed">28347972</ArticleId></ArticleIdList></Reference><Reference><Citation>Grock S, Ku J-h, Kim J, Moin T. A review of technology-assisted interventions for diabetes prevention. Curr Diab Rep. 2017;17:1–12.</Citation><ArticleIdList><ArticleId IdType="pubmed">28942537</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen V, Ara P, Simmons D, Osuagwu UL. The role of Digital Health Technology Interventions in the Prevention of type 2 diabetes Mellitus: a systematic review. Clin Med Insights: Endocrinol Diabetes. 2024;17:11795514241246419.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11110501</ArticleId><ArticleId IdType="pubmed">38779330</ArticleId></ArticleIdList></Reference><Reference><Citation>Villegas V, Shah A, Manson JE, Tobias DK. Prevention of type 2 diabetes through remotely administered lifestyle programs: a systematic review. Contemp Clin Trials. 2022;119:106817.</Citation><ArticleIdList><ArticleId IdType="pubmed">35691488</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Rhoon L, Byrne M, Morrissey E, Murphy J, McSharry J. A systematic review of the behaviour change techniques and digital features in technology-driven type 2 diabetes prevention interventions. Digit Health. 2020;6:2055207620914427.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7093696</ArticleId><ArticleId IdType="pubmed">32269830</ArticleId></ArticleIdList></Reference><Reference><Citation>Buss VH, Leesong S, Barr M, Varnfield M, Harris M. Primary prevention of cardiovascular disease and type 2 diabetes mellitus using mobile health technology: systematic review of the literature. J Med Internet Res. 2020;22(10):e21159.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7661239</ArticleId><ArticleId IdType="pubmed">33118936</ArticleId></ArticleIdList></Reference><Reference><Citation>Teo JYC, Ramachandran HJ, Jiang Y, Seah CWA, Lim ST, Nguyen HD, et al. The characteristics and acceptance of technology-enabled diabetes prevention programs (t‐DPP) amongst individuals with prediabetes: a scoping review. J Clin Nurs. 2023;32(17–18):5562–78.</Citation><ArticleIdList><ArticleId IdType="pubmed">36775886</ArticleId></ArticleIdList></Reference><Reference><Citation>Muralidharan S, Ranjani H, Anjana RM, Allender S, Mohan V. Mobile health technology in the prevention and management of type 2 diabetes. Indian J Endocrinol Metabol. 2017;21(2):334–40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5367240</ArticleId><ArticleId IdType="pubmed">28459035</ArticleId></ArticleIdList></Reference><Reference><Citation>Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for health: a systematic review of reviews. Annu Rev Public Health. 2015;36:393–415.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4406229</ArticleId><ArticleId IdType="pubmed">25785892</ArticleId></ArticleIdList></Reference><Reference><Citation>Siopis G, Chey T, Allman-Farinelli M. A systematic review and meta‐analysis of interventions for weight management using text messaging. J Hum Nutr Dietetics. 2015;28:1–15.</Citation><ArticleIdList><ArticleId IdType="pubmed">24480032</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith DM, Duque L, Huffman JC, Healy BC, Celano CM. Text message interventions for physical activity: a systematic review and meta-analysis. Am J Prev Med. 2020;58(1):142–51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6956854</ArticleId><ArticleId IdType="pubmed">31759805</ArticleId></ArticleIdList></Reference><Reference><Citation>Stowell M, Dobson R, Garner K, Baig M, Nehren N, Whittaker R. Digital interventions for self-management of prediabetes: a scoping review. PLoS ONE. 2024;19(5):e0303074.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11086829</ArticleId><ArticleId IdType="pubmed">38728296</ArticleId></ArticleIdList></Reference><Reference><Citation>Alamnia TT, Tesfaye W, Kelly M. The effectiveness of text message delivered interventions for weight loss in developing countries: a systematic review and meta-analysis. Obes Rev. 2022;23(1):e13339.</Citation><ArticleIdList><ArticleId IdType="pubmed">34519151</ArticleId></ArticleIdList></Reference><Reference><Citation>Gentili A, Failla G, Melnyk A, Puleo V, Tanna GLD, Ricciardi W, et al. The cost-effectiveness of digital health interventions: a systematic review of the literature. Front Public Health. 2022;10:787135.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9403754</ArticleId><ArticleId IdType="pubmed">36033812</ArticleId></ArticleIdList></Reference><Reference><Citation>Cartujano-Barrera F, Arana-Chicas E, Ramírez-Mantilla M, Perales J, Cox LS, Ellerbeck EF et al. Every day I think about your messages: assessing text messaging engagement among latino smokers in a mobile cessation program. Patient Prefer Adherence. 2019;22(13):1213–1219.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6659777</ArticleId><ArticleId IdType="pubmed">31413549</ArticleId></ArticleIdList></Reference><Reference><Citation>Patton SR, Coffman MJ, De Haven MJ, Miller C, Krinner LM. Text message intervention for latino adults to improve diabetes outcomes. Hispanic Health Care Int. 2022;20(4):248–55.</Citation><ArticleIdList><ArticleId IdType="pubmed">35274994</ArticleId></ArticleIdList></Reference><Reference><Citation>GlobalStats S. Desktop vs Mobile vs Tablet Market Share Worldwide. Dec 2010-May 2024 2024 [ https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-201012-202405</Citation></Reference><Reference><Citation>Rinaldi G, Hijazi A, Haghparast-Bidgoli H. Cost and cost-effectiveness of mHealth interventions for the prevention and control of type 2 diabetes mellitus: a systematic review. Diabetes Res Clin Pract. 2020;162:108084.</Citation><ArticleIdList><ArticleId IdType="pubmed">32061819</ArticleId></ArticleIdList></Reference><Reference><Citation>MacPherson MM, Merry KJ, Locke SR, Jung ME. mHealth prompts within diabetes prevention programs: a scoping review. Mhealth. 2022;8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9014231</ArticleId><ArticleId IdType="pubmed">35449504</ArticleId></ArticleIdList></Reference><Reference><Citation>Perng W, Conway R, Mayer-Davis E, Dabelea D. Youth-onset type 2 diabetes: the epidemiology of an awakening epidemic. Diabetes Care. 2023;46(3):490–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10090267</ArticleId><ArticleId IdType="pubmed">36812420</ArticleId></ArticleIdList></Reference><Reference><Citation>Covidence systematic review software, Melbourne. Australia: Veritas Health Innovation; [Available from: www.covidence.org.</Citation></Reference><Reference><Citation>Cheung NW, Simmons D, Marschner S, Thiagalingam A, Pasupathy D, Smith BJ, et al. Randomised controlled trial of a Customised text messaging and activity monitor program for Lifestyle Improvement after Gestational Diabetes. Nutrients. 2024;16(6):820.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10974605</ArticleId><ArticleId IdType="pubmed">38542731</ArticleId></ArticleIdList></Reference><Reference><Citation>Bootwong P, Intarut N. The effects of text messages for promoting physical activities in prediabetes: a randomized controlled trial. Telemedicine e-Health. 2022;28(6):896–903.</Citation><ArticleIdList><ArticleId IdType="pubmed">34619066</ArticleId></ArticleIdList></Reference><Reference><Citation>Khunti K, Griffin S, Brennan A, Dallosso H, Davies MJ, Eborall HC, et al. Promoting physical activity in a multi-ethnic population at high risk of diabetes: the 48-month PROPELS randomised controlled trial. BMC Med. 2021;19(1):130.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8173914</ArticleId><ArticleId IdType="pubmed">34078362</ArticleId></ArticleIdList></Reference><Reference><Citation>Staite E, Bayley A, Al-Ozairi E, Stewart K, Hopkins D, Rundle J, et al. A wearable technology delivering a web-based diabetes prevention program to people at high risk of type 2 diabetes: randomized controlled trial. JMIR mHealth uHealth. 2020;8(7):e15448.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7391669</ArticleId><ArticleId IdType="pubmed">32459651</ArticleId></ArticleIdList></Reference><Reference><Citation>Nanditha A, Thomson H, Susairaj P, Srivanichakorn W, Oliver N, Godsland IF, et al. A pragmatic and scalable strategy using mobile technology to promote sustained lifestyle changes to prevent type 2 diabetes in India and the UK: a randomised controlled trial. Diabetologia. 2020;63:486–96.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6997257</ArticleId><ArticleId IdType="pubmed">31919539</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown SA, Winter MA, Becker HA, García AA, Velasquez MM, Tanaka H, et al. Transitioning from an In-Person intervention to Augmented text Messaging during COVID-19 in Mexican americans with prediabetes: the Starr County Diabetes Prevention Randomized Clinical Trial. Sci Diabetes Self-management Care. 2024;50(2):107–15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11062239</ArticleId><ArticleId IdType="pubmed">38454633</ArticleId></ArticleIdList></Reference><Reference><Citation>Arora S, Lam CN, Burner E, Menchine M. Implementation and evaluation of an Automated text message–based Diabetes Prevention Program for adults with pre-diabetes. J Diabetes Sci Technol. 2024;18(5):1139–45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11418517</ArticleId><ArticleId IdType="pubmed">36946537</ArticleId></ArticleIdList></Reference><Reference><Citation>Formagini T, Teruel Camargo J, Perales-Puchalt J, Drees BM, Fracachan Cabrera M, Ramírez M. A culturally and linguistically adapted text-message diabetes Prevention Program for latinos: feasibility, acceptability, and preliminary effectiveness. Translational Behav Med. 2024;14(2):138–47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11491928</ArticleId><ArticleId IdType="pubmed">37715986</ArticleId></ArticleIdList></Reference><Reference><Citation>Stewart JL, Hatzigeorgiou C, Davis CL, Ledford CJ. DPPFit: developing and testing a technology-based adaptation of the Diabetes Prevention Program (DPP) to address prediabetes in a primary care setting. J Am Board Family Med. 2022;35(3):548–58.</Citation><ArticleIdList><ArticleId IdType="pubmed">35641047</ArticleId></ArticleIdList></Reference><Reference><Citation>Fischer HH, Durfee MJ, Raghunath SG, Ritchie ND. Short message service text message support for weight loss in patients with prediabetes: pragmatic trial. JMIR Diabetes. 2019;4(2):e12985.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6487341</ArticleId><ArticleId IdType="pubmed">30985289</ArticleId></ArticleIdList></Reference><Reference><Citation>Stephens TN, Joerin A, Rauws M, Werk LN. Feasibility of pediatric obesity and prediabetes treatment support through Tess, the AI behavioral coaching chatbot. Translational Behav Med. 2019;9(3):440–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">31094445</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim MT, Kim KB, Nguyen TH, Ko J, Zabora J, Jacobs E, et al. Motivating people to sustain healthy lifestyles using persuasive technology: a pilot study of Korean americans with prediabetes and type 2 diabetes. Patient Educ Couns. 2019;102(4):709–17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6440831</ArticleId><ArticleId IdType="pubmed">30391298</ArticleId></ArticleIdList></Reference><Reference><Citation>Rollo ME, Baldwin JN, Hutchesson M, Aguiar EJ, Wynne K, Young A, et al. The feasibility and preliminary efficacy of an eHealth lifestyle program in women with recent gestational diabetes mellitus: a pilot study. Int J Environ Res Public Health. 2020;17(19):7115.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7579575</ArticleId><ArticleId IdType="pubmed">32998401</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheung NW, Blumenthal C, Smith BJ, Hogan R, Thiagalingam A, Redfern J, et al. A pilot randomised controlled trial of a text messaging intervention with customisation using linked data from wireless wearable activity monitors to improve risk factors following gestational diabetes. Nutrients. 2019;11(3):590.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6470941</ArticleId><ArticleId IdType="pubmed">30862052</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritchie ND, Gutiérrez-Raghunath S, Durfee MJ, Fischer H. Supplemental text message support with the National Diabetes Prevention Program: pragmatic comparative effectiveness trial. JMIR mHealth uHealth. 2020;8(6):e15478.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7333069</ArticleId><ArticleId IdType="pubmed">32554385</ArticleId></ArticleIdList></Reference><Reference><Citation>Vargas MC, Pineda GJ, Talamantes V, Toledo MJL, Owen A, Carcamo P, et al. Design and rationale of behavioral nudges for diabetes prevention (BEGIN): a pragmatic, cluster randomized trial of text messaging and a decision aid intervention for primary care patients with prediabetes. Contemp Clin Trials. 2023;130:107216.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10330561</ArticleId><ArticleId IdType="pubmed">37169219</ArticleId></ArticleIdList></Reference><Reference><Citation>Carter EW, Vadari HS, Stoll S, Rogers B, Resnicow K, Heisler M, et al. Study protocol: behavioral economics and self-determination theory to change diabetes risk (BEST change). Contemp Clin Trials. 2023;124:107038.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10259647</ArticleId><ArticleId IdType="pubmed">36460265</ArticleId></ArticleIdList></Reference><Reference><Citation>Galmes-Panades AM, Angullo E, Mira-Martínez S, Bennasar-Veny M, Zamanillo-Campos R, Gómez-Juanes R, et al. Development and evaluation of a digital health intervention to prevent type 2 diabetes in primary care: the PREDIABETEXT study protocol for a randomised clinical trial. Int J Environ Res Public Health. 2022;19(22):14706.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9690330</ArticleId><ArticleId IdType="pubmed">36429423</ArticleId></ArticleIdList></Reference><Reference><Citation>Catley D, Puoane T, Tsolekile L, Resnicow K, Fleming K, Hurley EA, et al. Adapting the Diabetes Prevention Program for low and middle-income countries: protocol for a cluster randomised trial to evaluate ‘Lifestyle Africa’. BMJ Open. 2019;9(11):e031400.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6858109</ArticleId><ArticleId IdType="pubmed">31719084</ArticleId></ArticleIdList></Reference><Reference><Citation>Alzeidan R, Shata Z, Hassounah MM, Baghdadi LR, Hersi A, Fayed A, et al. Effectiveness of digital health using the transtheoretical model to prevent or delay type 2 diabetes in impaired glucose tolerance patients: protocol for a randomized control trial. BMC Public Health. 2019;19:1–11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6873582</ArticleId><ArticleId IdType="pubmed">31752774</ArticleId></ArticleIdList></Reference><Reference><Citation>Gupta Y, Kapoor D, Josyula L, Praveen D, Naheed A, Desai A, et al. A lifestyle intervention programme for the prevention of type 2 diabetes mellitus among south Asian women with gestational diabetes mellitus [LIVING study]: protocol for a randomized trial. Diabet Med. 2019;36(2):243–51.</Citation><ArticleIdList><ArticleId IdType="pubmed">30368898</ArticleId></ArticleIdList></Reference><Reference><Citation>Sinclair Ki, Carty C, Gonzales K, Nikolaus C, Gillespie L, Buchwald D. Strong men, strong communities: design of a randomized controlled trial of a diabetes prevention intervention for American Indian and Alaska native men. Am J Men’s Health. 2020;14(4):1557988320945457.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7412907</ArticleId><ArticleId IdType="pubmed">32757825</ArticleId></ArticleIdList></Reference><Reference><Citation>Soltero EG, Lopez C, Musaad SM, O’Connor TM, Thompson D. Fit24, a digital health intervention to reduce type 2 diabetes risk among hispanic youth: protocol for a feasibility pilot study. Contemp Clin Trials. 2023;127:107117.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10065958</ArticleId><ArticleId IdType="pubmed">36775009</ArticleId></ArticleIdList></Reference><Reference><Citation>MacPherson MM, Cranston KD, Locke SR, Bourne JE, Jung ME. Using the behavior change wheel to develop text messages to promote diet and physical activity adherence following a diabetes prevention program. Translational Behav Med. 2021;11(8):1585–95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8604265</ArticleId><ArticleId IdType="pubmed">34008852</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodriguez DV, Lawrence K, Luu S, Yu JL, Feldthouse DM, Gonzalez J, et al. Development of a computer-aided text message platform for user engagement with a digital diabetes Prevention Program: a case study. J Am Med Inform Assoc. 2022;29(1):155–62.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8714274</ArticleId><ArticleId IdType="pubmed">34664647</ArticleId></ArticleIdList></Reference><Reference><Citation>Hill J, Faber M, George C, Peer N, Mulabisano T, Mostert S, et al. The development of text messages to support people at risk of diabetes in Low-Resourced communities: the South African diabetes Prevention Programme. Nutrients. 2023;15(21):4692.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10647382</ArticleId><ArticleId IdType="pubmed">37960345</ArticleId></ArticleIdList></Reference><Reference><Citation>Soltero E, Lopez C, Mihail S, Hernandez A, Musaad SM, O’Connor TM, et al. An SMS text message–based type 2 diabetes Prevention Program for hispanic adolescents with obesity: qualitative co-design process. JMIR Formative Res. 2023;7(1):e46606.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10433019</ArticleId><ArticleId IdType="pubmed">37531191</ArticleId></ArticleIdList></Reference><Reference><Citation>MacPherson M, Cranston K, Johnston C, Locke S, Jung ME. Evaluation and refinement of a bank of SMS text messages to promote behavior change adherence following a diabetes prevention program: survey study. JMIR Formative Res. 2021;5(8):e28163.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8433931</ArticleId><ArticleId IdType="pubmed">34448713</ArticleId></ArticleIdList></Reference><Reference><Citation>Diabetes Prevention Program Research Group. The Diabetes Prevention Program (DPP) description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1282458</ArticleId><ArticleId IdType="pubmed">12453955</ArticleId></ArticleIdList></Reference><Reference><Citation>U.S. Centers for Disease Control and Prevention (CDC). National Diabetes Prevention Program: PreventT2 Curriculum and Handouts 2024 [ https://www.cdc.gov/diabetes-prevention/php/lifestyle-change-resources/t2-curriculum.html#:~:text=The%20PreventT2%20curriculum%20is%20based,%2C%20physical%20activity%2C%20and%20diet</Citation></Reference><Reference><Citation>Taylor SE. Social support: a review. Oxf Handb Health Psychol. 2011;1:189–214.</Citation></Reference><Reference><Citation>Baucom KJ, Bauman T, Gutierrez Chavez M, Nemirovsky Y, Aguirre MC, Ramos C, et al. Barriers to participation and lifestyle change among lower versus higher income participants in the National Diabetes Prevention Program: lifestyle coach perspectives. Translational Behav Med. 2022;12(8):860–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9385121</ArticleId><ArticleId IdType="pubmed">35554612</ArticleId></ArticleIdList></Reference><Reference><Citation>Bishop J, Irby MB, Isom S, Blackwell CS, Vitolins MZ, Skelton JA. Diabetes prevention, weight loss, and social support: program participants’ perceived influence on the health behaviors of their social support system. Fam Community Health. 2013;36(2):158–71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3828626</ArticleId><ArticleId IdType="pubmed">23455686</ArticleId></ArticleIdList></Reference><Reference><Citation>O’Neal LJ, Scarton L, Dhar B. Group social support facilitates adoption of healthier behaviors among black women in a community-initiated national diabetes prevention program. Health Promot Pract. 2022;23(6):916–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">34628960</ArticleId></ArticleIdList></Reference><Reference><Citation>McCurley JL, Gutierrez AP, Gallo LC. Diabetes prevention in US hispanic adults: a systematic review of culturally tailored interventions. Am J Prev Med. 2017;52(4):519–29.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5362335</ArticleId><ArticleId IdType="pubmed">27989451</ArticleId></ArticleIdList></Reference><Reference><Citation>Zare H, Delgado P, Spencer M, Thorpe RJ Jr, Thomas L, Gaskin DJ, et al. Using Community Health Workers to address barriers to Participation and Retention in Diabetes Prevention Program: a Concept Paper. J Prim Care Community Health. 2022;13:21501319221134563.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9638527</ArticleId><ArticleId IdType="pubmed">36331112</ArticleId></ArticleIdList></Reference><Reference><Citation>O’Mara-Eves A, Brunton G, Oliver S, Kavanagh J, Jamal F, Thomas J. The effectiveness of community engagement in public health interventions for disadvantaged groups: a meta-analysis. BMC Public Health. 2015;15:1–23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4374501</ArticleId><ArticleId IdType="pubmed">25885588</ArticleId></ArticleIdList></Reference><Reference><Citation>Gunn CM, Martinez LSS, Battaglia TA, Lobb R, Chassler D, Hakim D, et al. Integrating community engagement with implementation science to advance the measurement of translational science. J Clin Translational Sci. 2022;6(1):e107.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9549478</ArticleId><ArticleId IdType="pubmed">36285013</ArticleId></ArticleIdList></Reference><Reference><Citation>Lythreatis S, Singh SK, El-Kassar A-N. The digital divide: a review and future research agenda. Technol Forecast Soc Chang. 2022;175:121359.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39630236</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1470-8728</ISSN><JournalIssue CitedMedium="Internet"><Volume>481</Volume><Issue>23</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>04</Day></PubDate></JournalIssue><Title>The Biochemical journal</Title><ISOAbbreviation>Biochem J</ISOAbbreviation></Journal><ArticleTitle>Biochemical basis and therapeutic potential of mitochondrial uncoupling in cardiometabolic syndrome.</ArticleTitle><Pagination><StartPage>1831</StartPage><EndPage>1854</EndPage><MedlinePgn>1831-1854</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1042/BCJ20240005</ELocationID><Abstract><AbstractText>Mild uncoupling of oxidative phosphorylation is an intrinsic property of all mitochondria, allowing for adjustments in cellular energy metabolism to maintain metabolic homeostasis. Small molecule uncouplers have been extensively studied for their potential to increase metabolic rate, and recent research has focused on developing safe and effective mitochondrial uncoupling agents for the treatment of obesity and cardiometabolic syndrome (CMS). Here, we provide a brief overview of CMS and cover the recent mechanisms by which chemical uncouplers regulate CMS-associated risk-factors and comorbidities, including dyslipidemia, insulin resistance, steatotic liver disease, type 2 diabetes, and atherosclerosis. Additionally, we review the current landscape of uncoupling agents, focusing on repurposed FDA-approved drugs and compounds in advanced preclinical or early-stage clinical development. Lastly, we discuss recent molecular insights by which chemical uncouplers enhance cellular energy expenditure, highlighting their potential as a new addition to the current CMS drug landscape, and outline several limitations that need to be addressed before these agents can successfully be introduced into clinical practice.</AbstractText><CopyrightInformation>© 2024 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Dos Santos</LastName><ForeName>Bernardo Gindri</ForeName><Initials>BG</Initials><AffiliationInfo><Affiliation>Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Brisnovali</LastName><ForeName>Niki F</ForeName><Initials>NF</Initials><AffiliationInfo><Affiliation>Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goedeke</LastName><ForeName>Leigh</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Biochem J</MedlineTA><NlmUniqueID>2984726R</NlmUniqueID><ISSNLinking>0264-6021</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014475">Uncoupling Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D024821" MajorTopicYN="Y">Metabolic Syndrome</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008928" MajorTopicYN="Y">Mitochondria</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014475" MajorTopicYN="Y">Uncoupling Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010085" MajorTopicYN="N">Oxidative Phosphorylation</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">insulin resistance</Keyword><Keyword MajorTopicYN="N">metabolic syndromes</Keyword><Keyword MajorTopicYN="N">mitochondria</Keyword><Keyword MajorTopicYN="N">mitochondrial respiration</Keyword><Keyword MajorTopicYN="N">oxidative phosphorylation</Keyword><Keyword MajorTopicYN="N">uncoupling proteins</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>11</Hour><Minute>13</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39630236</ArticleId><ArticleId IdType="doi">10.1042/BCJ20240005</ArticleId><ArticleId IdType="pii">235328</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39629799</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>31</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1744-7666</ISSN><JournalIssue CitedMedium="Internet"><Volume>26</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Expert opinion on pharmacotherapy</Title><ISOAbbreviation>Expert Opin Pharmacother</ISOAbbreviation></Journal><ArticleTitle>Evaluating semaglutide + LAI-287 (IcoSema) for the treatment of diabetes mellitus type II.</ArticleTitle><Pagination><StartPage>1</StartPage><EndPage>7</EndPage><MedlinePgn>1-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1080/14656566.2024.2436593</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="UNASSIGNED">A stepwise coordinated multiple therapeutic targeted approach to the treatment of type 2 diabetes includes starting with lifestyle modification, oral antihyperglycemic agents, non-insulin injectables (Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and both short and long-acting insulins. Ultra-long-acting insulins offer more convenient administration. As in any chronic disease, the introduction of a novel medication must balance safety, efficacy, financial cost, as well as improved patient convenience and adherence.</AbstractText><AbstractText Label="AREAS COVERED" NlmCategory="UNASSIGNED">This manuscript describes IcoSema - a new investigational fixed-ratio combination of basal insulin icodec and the GLP-1 RA semaglutide. The key trials from the clinical development process of insulin icodec, semaglutide, and IcoSema are reviewed with important endpoints highlighted.</AbstractText><AbstractText Label="EXPERT OPINION" NlmCategory="UNASSIGNED">Once-weekly IcoSema offers glycemic efficacy that is non-inferior to glargine+aspart, similar risk of hypoglycemia, significant reduction in body weight, the convenience of use, and favorable safety profile with most adverse events being gastrointestinal.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Siamashvili</LastName><ForeName>Maka</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Davis</LastName><ForeName>Stephen N</ForeName><Initials>SN</Initials><AffiliationInfo><Affiliation>Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D003160">Comparative Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Expert Opin Pharmacother</MedlineTA><NlmUniqueID>100897346</NlmUniqueID><ISSNLinking>1465-6566</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>53AXN4NNHX</RegistryNumber><NameOfSubstance UI="C000591245">semaglutide</NameOfSubstance></Chemical><Chemical><RegistryNumber>62340-29-8</RegistryNumber><NameOfSubstance UI="D004763">Glucagon-Like Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000097789">Glucagon-Like Peptide-1 Receptor Agonists</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004763" MajorTopicYN="Y">Glucagon-Like Peptides</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004338" MajorTopicYN="Y">Drug Combinations</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000097789" MajorTopicYN="N">Glucagon-Like Peptide-1 Receptor Agonists</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">IcoSema</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">icodec</Keyword><Keyword MajorTopicYN="N">insulin</Keyword><Keyword MajorTopicYN="N">semaglutide</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>1</Day><Hour>12</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>7</Hour><Minute>53</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39629799</ArticleId><ArticleId IdType="doi">10.1080/14656566.2024.2436593</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39629644</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0006-9248</ISSN><JournalIssue CitedMedium="Print"><Volume>125</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Bratislavske lekarske listy</Title><ISOAbbreviation>Bratisl Lek Listy</ISOAbbreviation></Journal><ArticleTitle>The sodium-glucose cotransporter-2 inhibitors in patients with chronic kidney disease with or without kidney transplantation - a single centre study.</ArticleTitle><Pagination><StartPage>759</StartPage><EndPage>765</EndPage><MedlinePgn>759-765</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.4149/BLL_2024_116</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND"> The sodium-glucose cotransporter-2 inhibitors (SGLT2i) represent the first-line treatment for chronic kidney disease. The question remains of their benefit and safety for patients after kidney transplantation. The study aimed to show the renoprotective effect and safety of use in patients with chronic kidney disease with or without kidney transplantation.</AbstractText><AbstractText Label="MATERIAL" NlmCategory="METHODS"> This is a prospective monocentric study of the Transplant-Nephrology Department in Martin in which patients with chronic kidney disease with or without kidney transplant in therapy with dapagliflozin were included (n=79). The changes in glomerular filtration rate, albuminuria and side effects associated with SGLT2i were studied in patients with chronic kidney disease with or without kidney transplantation and in patients with or without diabetes mellitus.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS"> Patients without diabetes mellitus achieved a significantly higher decrease in albuminuria at the time of the third month of follow-up (p=0.0396), with the continuation of the decrease until the average follow-up (10.9 months) (p=0.7866) than patients with diabetes mellitus. During the observed period, we recorded the cessation of the primary decrease in glomerular filtration with a return to the baseline values. In our group, we did not confirm a significant occurrence of adverse effects associated with dapagliflozin.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS"> SGLT2i significantly reduces albuminuria and stabilizes glomerular filtration in patients with chronic kidney disease. Based on our analysis, treatment with gliflozins is effective and safe for patients after kidney transplantation (Tab. 4, Fig. 6, Ref. 16).</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kleinova</LastName><ForeName>Patricia</ForeName><Initials>P</Initials></Author><Author ValidYN="Y"><LastName>Granak</LastName><ForeName>Karol</ForeName><Initials>K</Initials></Author><Author ValidYN="Y"><LastName>Vnucak</LastName><ForeName>Matej</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Beliancinova</LastName><ForeName>Monika</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Blichova</LastName><ForeName>Timea</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Dedinska</LastName><ForeName>Ivana</ForeName><Initials>I</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Slovakia</Country><MedlineTA>Bratisl Lek Listy</MedlineTA><NlmUniqueID>0065324</NlmUniqueID><ISSNLinking>0006-9248</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001559">Benzhydryl Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>1ULL0QJ8UC</RegistryNumber><NameOfSubstance UI="C529054">dapagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005960">Glucosides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016030" MajorTopicYN="Y">Kidney Transplantation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001559" MajorTopicYN="Y">Benzhydryl Compounds</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005919" MajorTopicYN="Y">Glomerular Filtration Rate</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005960" MajorTopicYN="Y">Glucosides</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000419" MajorTopicYN="Y">Albuminuria</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">chronic kidney disease</Keyword><Keyword MajorTopicYN="N">kidney transplant recipients</Keyword><Keyword MajorTopicYN="N">side effects SGLT2i.</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>12</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>6</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>5</Hour><Minute>53</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39629644</ArticleId><ArticleId IdType="doi">10.4149/BLL_2024_116</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39629047</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Print">1664-2392</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Frontiers in endocrinology</Title><ISOAbbreviation>Front Endocrinol (Lausanne)</ISOAbbreviation></Journal><ArticleTitle>Efficacy and safety of once-weekly insulin versus once-daily insulin in patients with type 1 and type 2 diabetes mellitus: an updated meta-analysis of randomized controlled trials.</ArticleTitle><Pagination><StartPage>1459127</StartPage><MedlinePgn>1459127</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1459127</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fendo.2024.1459127</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">This meta-analysis was performed to obtain a comprehensive overview of the differences between once-weekly basal insulin (including icodec and basal insulin Fc) and once-daily basal insulin (including glargine and degludec) in patients with type 1 and type 2 diabetes mellitus.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">PubMed, EMBASE, and Cochrane Library were systematically searched for eligible studies up to 2 January 2024.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 12 studies were included, comprising 5,895 patients, with 3,104 (52.7%) using once-weekly insulin and 2,791 (47.3%) using once-daily insulin. In the pooled data, glycated hemoglobin (HbA1c) change from baseline [mean difference (MD) -0.11%; 95% confidence interval (CI) -0.20 to -0.01%] and the odds of achieving an end-of-trial HbA1c <7% (OR 1.41, 95% CI 1.13, 1.77) demonstrated a significantly good glycemic control in the once-weekly insulin group, especially in insulin-naïve type 2 diabetics or patients using icodec. Body weight increase for once-weekly insulin was 0.43 kg compared to controls (95% CI 0.09 to 0.76 kg). In addition, once-weekly insulin was correlated with a higher risk of level 1 hypoglycemia (OR 1.42, 95% CI 1.26 to 1.6). There was no significant difference in fasting plasma glucose (MD 2.46 mg/dL; 95% CI -2.60 to 7.52 mg/dL), time in range (MD 2.03%; 95% CI -0.50 to 4.56%), and level 2 or 3 hypoglycemic events (OR 1.19; 95% CI 0.93 to 1.53).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Once-weekly basal insulin is safe and effective in modestly reducing HbA1c with similar level 2 or 3 hypoglycemic events compared to once-daily insulin, although the risk of level 1 hypoglycemia and weight gain was slightly increased.</AbstractText><AbstractText Label="SYSTEMATIC REVIEW REGISTRATION" NlmCategory="UNASSIGNED">https://www.crd.york.ac.uk/PROSPERO, Identifier CRD42024496812.</AbstractText><CopyrightInformation>Copyright © 2024 Xue, Shen, Tang, Deng and Dai.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Xue</LastName><ForeName>Mei</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Shen</LastName><ForeName>Pan</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Dermatology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>Jun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Deng</LastName><ForeName>Xuan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dai</LastName><ForeName>Zhe</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D003160">Comparative Study</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D017418">Meta-Analysis</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>19</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Endocrinol (Lausanne)</MedlineTA><NlmUniqueID>101555782</NlmUniqueID><ISSNLinking>1664-2392</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D049528">Insulin, Long-Acting</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004334" MajorTopicYN="Y">Drug Administration Schedule</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="N">Hypoglycemia</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="Y">Insulin</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D049528" MajorTopicYN="N">Insulin, Long-Acting</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016032" MajorTopicYN="Y">Randomized Controlled Trials as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">glycosylated hemoglobin (HbA1c)</Keyword><Keyword MajorTopicYN="N">hypoglycemia</Keyword><Keyword MajorTopicYN="N">once-daily insulin</Keyword><Keyword MajorTopicYN="N">once-weekly insulin</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>4</Hour><Minute>44</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39629047</ArticleId><ArticleId IdType="pmc">PMC11611561</ArticleId><ArticleId IdType="doi">10.3389/fendo.2024.1459127</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Lewis GF, Brubaker PL. The discovery of insulin revisited: lessons for the modern era. J Clin Invest. (2021) 131:e142239. doi: 10.1172/jci142239</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/jci142239</ArticleId><ArticleId IdType="pmc">PMC7773348</ArticleId><ArticleId IdType="pubmed">33393501</ArticleId></ArticleIdList></Reference><Reference><Citation>Nkonge KM, Nkonge DK, Nkonge TN. Insulin therapy for the management of diabetes mellitus: A narrative review of innovative treatment strategies. Diabetes Ther. (2023) 14:1801–31. doi: 10.1007/s13300-023-01468-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-023-01468-4</ArticleId><ArticleId IdType="pmc">PMC10570256</ArticleId><ArticleId IdType="pubmed">37736787</ArticleId></ArticleIdList></Reference><Reference><Citation>Niswender KD. Basal insulin: physiology, pharmacology, and clinical implications. Postgrad Med. (2011) 123:17–26. doi: 10.3810/pgm.2011.07.2300</Citation><ArticleIdList><ArticleId IdType="doi">10.3810/pgm.2011.07.2300</ArticleId><ArticleId IdType="pubmed">21680985</ArticleId></ArticleIdList></Reference><Reference><Citation>Heise T. The future of insulin therapy. Diabetes Res Clin Pract. (2021) 175:108820. doi: 10.1016/j.diabres.2021.108820</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2021.108820</ArticleId><ArticleId IdType="pubmed">33865915</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenstock J, Del Prato S. Basal weekly insulins: the way of the future! Metabolism. (2022) 126:154924. doi: 10.1016/j.metabol.2021.154924</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2021.154924</ArticleId><ArticleId IdType="pubmed">34728221</ArticleId></ArticleIdList></Reference><Reference><Citation>Kjeldsen TB, Hubálek F, Hjørringgaard CU, Tagmose TM, Nishimura E, Stidsen CE, et al. . Molecular engineering of insulin icodec, the first acylated insulin analog for once-weekly administration in humans. J Med Chem. (2021) 64:8942–50. doi: 10.1021/acs.jmedchem.1c00257</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/acs.jmedchem.1c00257</ArticleId><ArticleId IdType="pubmed">33944562</ArticleId></ArticleIdList></Reference><Reference><Citation>Heise T, Chien J, Beals JM, Benson C, Klein O, Moyers JS, et al. . Pharmacokinetic and pharmacodynamic properties of the novel basal insulin Fc (insulin efsitora alfa), an insulin fusion protein in development for once-weekly dosing for the treatment of patients with diabetes. Diabetes Obes Metab. (2023) 25:1080–90. doi: 10.1111/dom.14956</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14956</ArticleId><ArticleId IdType="pubmed">36541037</ArticleId></ArticleIdList></Reference><Reference><Citation>DiMarchi RD, Mayer JP. Icodec advances the prospect of once-weekly insulin injection. J Med Chem. (2021) 64:8939–41. doi: 10.1021/acs.jmedchem.1c00983</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/acs.jmedchem.1c00983</ArticleId><ArticleId IdType="pubmed">34133152</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenstock J, Bajaj HS, Janež A, Silver R, Begtrup K, Hansen MV, et al. . Once-weekly insulin for type 2 diabetes without previous insulin treatment. N Engl J Med. (2020) 383:2107–16. doi: 10.1056/NEJMoa2022474</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa2022474</ArticleId><ArticleId IdType="pubmed">32960514</ArticleId></ArticleIdList></Reference><Reference><Citation>Frias J, Chien J, Zhang Q, Chigutsa E, Landschulz W, Syring K, et al. . Safety and efficacy of once-weekly basal insulin Fc in people with type 2 diabetes previously treated with basal insulin: a multicentre, open-label, randomised, phase 2 study. Lancet Diabetes Endocrinol. (2023) 11:158–68. doi: 10.1016/s2213-8587(22)00388-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2213-8587(22)00388-6</ArticleId><ArticleId IdType="pubmed">36758572</ArticleId></ArticleIdList></Reference><Reference><Citation>Philis-Tsimikas A, Asong M, Franek E, Jia T, Rosenstock J, Stachlewska K, et al. . Switching to once-weekly insulin icodec versus once-daily insulin degludec in individuals with basal insulin-treated type 2 diabetes (ONWARDS 2): a phase 3a, randomised, open label, multicentre, treat-to-target trial. Lancet Diabetes Endocrinol. (2023) 11:414–25. doi: 10.1016/s2213-8587(23)00093-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s2213-8587(23)00093-1</ArticleId><ArticleId IdType="pubmed">37148899</ArticleId></ArticleIdList></Reference><Reference><Citation>Bajaj HS, Aberle J, Davies M, Donatsky AM, Frederiksen M, Yavuz DG, et al. . Once-weekly insulin icodec with dosing guide app versus once-daily basal insulin analogues in insulin-naive type 2 diabetes (ONWARDS 5): A randomized trial. Ann Intern Med. (2023) 176:1476–85. doi: 10.7326/m23-1288</Citation><ArticleIdList><ArticleId IdType="doi">10.7326/m23-1288</ArticleId><ArticleId IdType="pubmed">37748181</ArticleId></ArticleIdList></Reference><Reference><Citation>Philis-Tsimikas A, Bajaj HS, Begtrup K, Cailleteau R, Gowda A, Lingvay I, et al. . Rationale and design of the phase 3a development programme (ONWARDS 1-6 trials) investigating once-weekly insulin icodec in diabetes. Diabetes Obes Metab. (2023) 25:331–41. doi: 10.1111/dom.14871</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14871</ArticleId><ArticleId IdType="pmc">PMC10092674</ArticleId><ArticleId IdType="pubmed">36106652</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh AK, Singh A, Singh R, Misra A. Once-weekly basal insulin icodec: Looking ONWARDS from pharmacology to clinical trials. Diabetes Metab Syndr. (2022) 16:102615. doi: 10.1016/j.dsx.2022.102615</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2022.102615</ArticleId><ArticleId IdType="pubmed">36108418</ArticleId></ArticleIdList></Reference><Reference><Citation>Karakasis P, Patoulias D, Pamporis K, Popovic DS, Stachteas P, Bougioukas KI, et al. . Efficacy and safety of once-weekly versus once-daily basal insulin analogues in the treatment of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes Metab. (2023) 25:3648–61. doi: 10.1111/dom.15259</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.15259</ArticleId><ArticleId IdType="pubmed">37667676</ArticleId></ArticleIdList></Reference><Reference><Citation>Ribeiro ESR, de Miranda Gauza M, Guisso MES, da Silva JON, Kohara SK. Once-Weekly Insulin Icodec vs. Once-Daily Insulin Glargine U100 for type 2 diabetes: a systematic review and meta-analysis of phase 2 randomized controlled trials. Arch Endocrinol Metab. (2023) 67:e000614. doi: 10.20945/2359-3997000000614</Citation><ArticleIdList><ArticleId IdType="doi">10.20945/2359-3997000000614</ArticleId><ArticleId IdType="pmc">PMC10665058</ArticleId><ArticleId IdType="pubmed">37249450</ArticleId></ArticleIdList></Reference><Reference><Citation>Mukhopadhyay P, Chatterjee P, Pandit K, Sanyal D, Ghosh S. Once-weekly insulin icodec as compared to once-daily basal insulins: A meta-analysis. Endocr Pract. (2024) 30:128–34. doi: 10.1016/j.eprac.2023.11.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2023.11.004</ArticleId><ArticleId IdType="pubmed">37984730</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang P, Zhang Y, Xu W, He J, Peng L, Feng Y, et al. . Efficacy and safety of once-weekly insulin regimes on glycemic control for type 2 diabetes: A systematic review and network meta-analysis. Diabetol Metab Syndr. (2024) 16:3. doi: 10.1186/s13098-023-01240-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-023-01240-5</ArticleId><ArticleId IdType="pmc">PMC10763463</ArticleId><ArticleId IdType="pubmed">38172995</ArticleId></ArticleIdList></Reference><Reference><Citation>Abuelazm M, Ibrahim AA, Khlidj Y, Badr A, Amin AM, Elzeftawy MA, et al. . Once-weekly insulin icodec versus once-daily long-acting insulin for type II diabetes: A meta-analysis of randomized controlled trials. J Endocr Soc. (2024) 8:bvad177. doi: 10.1210/jendso/bvad177</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jendso/bvad177</ArticleId><ArticleId IdType="pmc">PMC10783254</ArticleId><ArticleId IdType="pubmed">38213906</ArticleId></ArticleIdList></Reference><Reference><Citation>Bajaj HS, Bergenstal RM, Christoffersen A, Davies MJ, Gowda A, Isendahl J, et al. . Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in type 2 diabetes inadequately controlled on daily basal insulin: A phase 2 randomized controlled trial. Diabetes Care. (2021) 44:1586–94. doi: 10.2337/dc20-2877</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-2877</ArticleId><ArticleId IdType="pmc">PMC8323191</ArticleId><ArticleId IdType="pubmed">33875485</ArticleId></ArticleIdList></Reference><Reference><Citation>Lingvay I, Buse JB, Franek E, Hansen MV, Koefoed MM, Mathieu C, et al. . A randomized, open-label comparison of once-weekly insulin icodec titration strategies versus once-daily insulin glargine U100. Diabetes Care. (2021) 44:1595–603. doi: 10.2337/dc20-2878</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-2878</ArticleId><ArticleId IdType="pmc">PMC8323172</ArticleId><ArticleId IdType="pubmed">33875484</ArticleId></ArticleIdList></Reference><Reference><Citation>Bue-Valleskey JM, Kazda CM, Ma C, Chien J, Zhang Q, Chigutsa E, et al. . Once-weekly basal insulin fc demonstrated similar glycemic control to once-daily insulin degludec in insulin-naive patients with type 2 diabetes: A phase 2 randomized control trial. Diabetes Care. (2023) 46:1060–7. doi: 10.2337/dc22-2396</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-2396</ArticleId><ArticleId IdType="pmc">PMC10154646</ArticleId><ArticleId IdType="pubmed">36944059</ArticleId></ArticleIdList></Reference><Reference><Citation>Lingvay I, Asong M, Desouza C, Gourdy P, Kar S, Vianna A, et al. . Once-weekly insulin icodec vs once-daily insulin degludec in adults with insulin-naive type 2 diabetes: the ONWARDS 3 randomized clinical trial. Jama. (2023) 330:228–37. doi: 10.1001/jama.2023.11313</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2023.11313</ArticleId><ArticleId IdType="pmc">PMC10354685</ArticleId><ArticleId IdType="pubmed">37354562</ArticleId></ArticleIdList></Reference><Reference><Citation>Mathieu C, Ásbjörnsdóttir B, Bajaj HS, Lane W, Matos A, Murthy S, et al. . Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in individuals with basal-bolus insulin-treated type 2 diabetes (ONWARDS 4): a phase 3a, randomised, open-label, multicentre, treat-to-target, non-inferiority trial. Lancet. (2023) 401:1929–40. doi: 10.1016/s0140-6736(23)00520-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(23)00520-2</ArticleId><ArticleId IdType="pubmed">37156252</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosenstock J, Bain SC, Gowda A, Jódar E, Liang B, Lingvay I, et al. . Weekly Icodec versus Daily Glargine U100 in Type 2 Diabetes without Previous Insulin. N Engl J Med. (2023) 389:297–308. doi: 10.1056/NEJMoa2303208</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa2303208</ArticleId><ArticleId IdType="pubmed">37356066</ArticleId></ArticleIdList></Reference><Reference><Citation>Russell-Jones D, Babazono T, Cailleteau R, Engberg S, Irace C, Kjaersgaard MIS, et al. . Once-weekly insulin icodec versus once-daily insulin degludec as part of a basal-bolus regimen in individuals with type 1 diabetes (ONWARDS 6): a phase 3a, randomised, open-label, treat-to-target trial. Lancet. (2023) 402:1636–47. doi: 10.1016/s0140-6736(23)02179-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(23)02179-7</ArticleId><ArticleId IdType="pubmed">37863084</ArticleId></ArticleIdList></Reference><Reference><Citation>Kazda CM, Bue-Valleskey JM, Chien J, Zhang Q, Chigutsa E, Landschulz W, et al. . Novel once-weekly basal insulin fc achieved similar glycemic control with a safety profile comparable to insulin degludec in patients with type 1 diabetes. Diabetes Care. (2023) 46:1052–9. doi: 10.2337/dc22-2395</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc22-2395</ArticleId><ArticleId IdType="pmc">PMC10154655</ArticleId><ArticleId IdType="pubmed">36920867</ArticleId></ArticleIdList></Reference><Reference><Citation>Lovre D, Fonseca V. Benefits of timely basal insulin control in patients with type 2 diabetes. J Diabetes Complications. (2015) 29:295–301. doi: 10.1016/j.jdiacomp.2014.11.018</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2014.11.018</ArticleId><ArticleId IdType="pubmed">25536866</ArticleId></ArticleIdList></Reference><Reference><Citation>León-Jiménez D, Miramontes-González JP, Márquez-López L, Astudillo-Martín F, Beltrán-Romero LM, Moreno-Obregón F, et al. . Basal insulin analogues in people with diabetes and chronic kidney disease. Diabetes Med. (2022) 39:e14679. doi: 10.1111/dme.14679</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.14679</ArticleId><ArticleId IdType="pubmed">34449911</ArticleId></ArticleIdList></Reference><Reference><Citation>Gonzalvo JD. Introduction to basal insulin therapy: clinical management of diabetes. Am J Manag Care. (2018) 24:S87–s92.</Citation><ArticleIdList><ArticleId IdType="pubmed">29620816</ArticleId></ArticleIdList></Reference><Reference><Citation>Mody R, Huang Q, Yu M, Zhao R, Patel H, Grabner M, et al. . Adherence, persistence, glycaemic control and costs among patients with type 2 diabetes initiating dulaglutide compared with liraglutide or exenatide once weekly at 12-month follow-up in a real-world setting in the United States. Diabetes Obes Metab. (2019) 21:920–9. doi: 10.1111/dom.13603</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13603</ArticleId><ArticleId IdType="pmc">PMC6590811</ArticleId><ArticleId IdType="pubmed">30520248</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R, et al. . Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. Jama. (2022) 327:138–50. doi: 10.1001/jama.2021.23619</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2021.23619</ArticleId><ArticleId IdType="pmc">PMC8753508</ArticleId><ArticleId IdType="pubmed">35015037</ArticleId></ArticleIdList></Reference><Reference><Citation>Capehorn MS, Catarig AM, Furberg JK, Janez A, Price HC, Tadayon S, et al. . Efficacy and safety of once-weekly semaglutide 1.0mg vs once-daily liraglutide 1.2mg as add-on to 1-3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. (2020) 46:100–9. doi: 10.1016/j.diabet.2019.101117</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2019.101117</ArticleId><ArticleId IdType="pubmed">31539622</ArticleId></ArticleIdList></Reference><Reference><Citation>Karagiannis T, Avgerinos I, Liakos A, Del Prato S, Matthews DR, Tsapas A, et al. . Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. (2022) 65:1251–61. doi: 10.1007/s00125-022-05715-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-022-05715-4</ArticleId><ArticleId IdType="pmc">PMC9112245</ArticleId><ArticleId IdType="pubmed">35579691</ArticleId></ArticleIdList></Reference><Reference><Citation>Frias JP, Deenadayalan S, Erichsen L, Knop FK, Lingvay I, Macura S, et al. . Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet. (2023) 402:720–30. doi: 10.1016/s0140-6736(23)01163-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0140-6736(23)01163-7</ArticleId><ArticleId IdType="pubmed">37364590</ArticleId></ArticleIdList></Reference><Reference><Citation>Vora J, Christensen T, Rana A, Bain SC. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a meta-analysis of endpoints in phase 3a trials. Diabetes Ther. (2014) 5:435–46. doi: 10.1007/s13300-014-0076-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-014-0076-9</ArticleId><ArticleId IdType="pmc">PMC4269648</ArticleId><ArticleId IdType="pubmed">25081590</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryan PM, Seltzer S, Hayward NE, Rodriguez DA, Sless RT, Hawkes CP. Safety and efficacy of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity: A meta-analysis. J Pediatr. (2021) 236:137–147.e113. doi: 10.1016/j.jpeds.2021.05.009</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jpeds.2021.05.009</ArticleId><ArticleId IdType="pubmed">33984333</ArticleId></ArticleIdList></Reference><Reference><Citation>Carver C. Insulin treatment and the problem of weight gain in type 2 diabetes. Diabetes Educ. (2006) 32:910–7. doi: 10.1177/0145721706294259</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721706294259</ArticleId><ArticleId IdType="pubmed">17102158</ArticleId></ArticleIdList></Reference><Reference><Citation>Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. (2014) 105:141–50. doi: 10.1016/j.diabres.2014.04.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2014.04.006</ArticleId><ArticleId IdType="pubmed">24798950</ArticleId></ArticleIdList></Reference><Reference><Citation>Li CJ, Li J, Zhang QM, Lv L, Chen R, Lv CF, et al. . Efficacy and safety comparison between liraglutide as add-on therapy to insulin and insulin dose-increase in Chinese subjects with poorly controlled type 2 diabetes and abdominal obesity. Cardiovasc Diabetol. (2012) 11:142. doi: 10.1186/1475-2840-11-142</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1475-2840-11-142</ArticleId><ArticleId IdType="pmc">PMC3533748</ArticleId><ArticleId IdType="pubmed">23153177</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. . Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne). (2023) 14:1161521. doi: 10.3389/fendo.2023.1161521</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1161521</ArticleId><ArticleId IdType="pmc">PMC10161731</ArticleId><ArticleId IdType="pubmed">37152942</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39627688</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>04</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1689-1392</ISSN><JournalIssue CitedMedium="Internet"><Volume>29</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>Cellular & molecular biology letters</Title><ISOAbbreviation>Cell Mol Biol Lett</ISOAbbreviation></Journal><ArticleTitle>Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM.</ArticleTitle><Pagination><StartPage>148</StartPage><MedlinePgn>148</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">148</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s11658-024-00668-5</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats. Then, various bioinformatics tools and functional experiments were used to investigate the characteristic changes in the cellular profile of diabetic PVAT SVF, their implications, and the underlying mechanisms.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Our study reveals the single-cell landscape of the SVF of PVAT, demonstrating its considerable heterogeneity and significant alterations in T2DM, including an enhanced inflammatory response and elevated proportions of macrophages and natural killer (NK) cells. Moreover, macrophages are critical hubs for cross-talk among various cell populations. Notably, we identified a decreased Pdpn<sup>+</sup> macrophage subpopulation in the PVAT of T2DM rats and confirmed this in mice and humans. In vitro and in vivo studies demonstrated that Pdpn<sup>+</sup> macrophages alleviated insulin resistance and modulated adipokine/cytokine expression in adipocytes via the Pla2g2d-DHA/EPA-GPR120 pathway. This subset also enhances the function of vascular endothelial and smooth muscle cells, inhibits vascular inflammation and oxidative stress, and improves vasodilatory function, thereby protecting blood vessels.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Pdpn<sup>+</sup> macrophages exhibit significant vascular protective effects by alleviating insulin resistance and modulating adipokine/cytokine expression in PVAT adipocytes. This macrophage subtype may therefore play pivotal roles in mitigating vascular complications in T2DM. Our findings also underscore the critical role of immune-metabolic cross-talk in maintaining tissue homeostasis.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Li</LastName><ForeName>Jiaxuan</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250021, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Chinese Ministry of Education, Shandong First Medical University, Jinan, 250021, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Tian</LastName><ForeName>Zhenyu</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Tongxue</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jin</LastName><ForeName>Jiajia</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xinjie</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Biology, University College London, London, NW1 2HE, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xie</LastName><ForeName>Panpan</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, 252000, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>Haiyan</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gu</LastName><ForeName>Junfei</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Yingjie</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, 250021, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Chinese Ministry of Education, Shandong First Medical University, Jinan, 250021, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Xiaowei</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Shucui</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Xuefang</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Dong</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, China. guodonglc@126.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Zhe</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China. wangzhe.zqy@email.sdu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China. wangzhe.zqy@email.sdu.edu.cn.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Qunye</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China. wz.zhangqy@sdu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>2021YFA1301102</GrantID><Agency>National Key R&D Program of China</Agency><Country/></Grant><Grant><GrantID>82070820</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>82170495</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>82100449</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>2018CXGC1218</GrantID><Agency>Major Science and Technology Innovation Project of Shandong Province</Agency><Country/></Grant><Grant><GrantID>202225044</GrantID><Agency>Clinical Medical Science and Technology Innovation Plan of Jinan</Agency><Country/></Grant><Grant><GrantID>ZR2021QH027</GrantID><Agency>Shandong Provincial Natural Science Foundation</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cell Mol Biol Lett</MedlineTA><NlmUniqueID>9607427</NlmUniqueID><ISSNLinking>1425-8153</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000273" MajorTopicYN="Y">Adipose Tissue</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008264" MajorTopicYN="Y">Macrophages</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059010" MajorTopicYN="Y">Single-Cell Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017667" MajorTopicYN="N">Adipocytes</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Pdpn + macrophage</Keyword><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">PVAT</Keyword><Keyword MajorTopicYN="N">SVF</Keyword><Keyword MajorTopicYN="N">Single-cell</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was performed in accordance with the principles of the Helsinki Declaration and Basel Declaration. The collection of human samples was approved by the Ethics Committee of Liaocheng People’s Hospital (no. 2024263; date: 30 January 2024), and informed consent was obtained from all participants. All animal experiments were approved by the Animal Ethics Committee of Shandong Provincial Hospital (No. 2022-127; Date: 18 February 2022). Consent for publication: All authors have gave their consent for publication. Competing interests: All authors declare that they have no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>23</Hour><Minute>50</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39627688</ArticleId><ArticleId IdType="pmc">PMC11616190</ArticleId><ArticleId IdType="doi">10.1186/s11658-024-00668-5</ArticleId><ArticleId IdType="pii">10.1186/s11658-024-00668-5</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9639302</ArticleId><ArticleId IdType="pubmed">32398868</ArticleId></ArticleIdList></Reference><Reference><Citation>Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care. 2010;33(2):442–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2809299</ArticleId><ArticleId IdType="pubmed">20103560</ArticleId></ArticleIdList></Reference><Reference><Citation>Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293–302.</Citation><ArticleIdList><ArticleId IdType="pubmed">24663222</ArticleId></ArticleIdList></Reference><Reference><Citation>Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, et al. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med. 2019;25(9):1390–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">31501611</ArticleId></ArticleIdList></Reference><Reference><Citation>Azul L, Leandro A, Boroumand P, Klip A, Seiça R, Sena CM. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radical Biol Med. 2020;146:264–74.</Citation><ArticleIdList><ArticleId IdType="pubmed">31698080</ArticleId></ArticleIdList></Reference><Reference><Citation>Tai G-J, Ma Y-J, Feng J-L, Li J-P, Qiu S, Yu Q-Q, et al. NLRP3 inflammasome-mediated premature immunosenescence drives diabetic vascular aging dependent on the induction of perivascular adipose tissue dysfunction. Cardiovasc Res. 2024:cvae079.</Citation><ArticleIdList><ArticleId IdType="pubmed">38643484</ArticleId></ArticleIdList></Reference><Reference><Citation>Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers: a clinical consensus statement from the European Society of Cardiology Working Group on Coronary Pathophysiology and Micro-circulation. Eur Heart J. 2023;44(38):3827–44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10568001</ArticleId><ArticleId IdType="pubmed">37599464</ArticleId></ArticleIdList></Reference><Reference><Citation>Meijer RI, Serné EH, Korkmaz HI, van der Peet DL, de Boer MP, Niessen HW, et al. Insulin-induced changes in skeletal muscle microvascular perfusion are dependent upon perivascular adipose tissue in women. Diabetologia. 2015;58(8):1907–15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4499111</ArticleId><ArticleId IdType="pubmed">26003324</ArticleId></ArticleIdList></Reference><Reference><Citation>Turaihi AH, Serné EH, Molthoff CF, Koning JJ, Knol J, Niessen HW, et al. Perivascular adipose tissue controls insulin-stimulated perfusion, mitochondrial protein expression, and glucose uptake in muscle through adipomuscular arterioles. Diabetes. 2020;69(4):603–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">32005705</ArticleId></ArticleIdList></Reference><Reference><Citation>Meijer RI, Bakker W, Alta C-LA, Sipkema P, Yudkin JS, Viollet B, et al. Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice. Diabetes. 2013;62(2):590–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3554353</ArticleId><ArticleId IdType="pubmed">23048187</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmed A, Bibi A, Valoti M, Fusi F. Perivascular adipose tissue and vascular smooth muscle tone: friends or foes? Cells. 2023;12(8):1196.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10136477</ArticleId><ArticleId IdType="pubmed">37190105</ArticleId></ArticleIdList></Reference><Reference><Citation>Fu M, Shu S, Peng Z, Liu X, Chen X, Zeng Z, et al. Single-cell RNA sequencing of coronary perivascular adipose tissue from end-stage heart failure patients identifies SPP1+ macrophage subpopulation as a target for alleviating fibrosis. Arterioscler Thromb Vasc Biol. 2023;43(11):2143–64.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10597444</ArticleId><ArticleId IdType="pubmed">37706320</ArticleId></ArticleIdList></Reference><Reference><Citation>Okamoto E-I, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation. 2001;104(18):2228–35.</Citation><ArticleIdList><ArticleId IdType="pubmed">11684636</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei T, Gao J, Huang C, Song B, Sun M, Shen W. SIRT3 (Sirtuin-3) prevents Ang II (Angiotensin II)-induced macrophage metabolic switch improving perivascular adipose tissue function. Arterioscler Thromb Vasc Biol. 2021;41(2):714–30.</Citation><ArticleIdList><ArticleId IdType="pubmed">33327751</ArticleId></ArticleIdList></Reference><Reference><Citation>Park SY, Kim KH, Seo KW, Bae JU, Kim YH, Lee SJ, et al. Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway. J Pathol. 2014;232(1):87–97.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4285806</ArticleId><ArticleId IdType="pubmed">24089355</ArticleId></ArticleIdList></Reference><Reference><Citation>Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev. 2019;99(4):1701–63.</Citation><ArticleIdList><ArticleId IdType="pubmed">31339053</ArticleId></ArticleIdList></Reference><Reference><Citation>Kotsias F, Hoffmann E, Amigorena S, Savina A. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells. Antioxid Redox Signal. 2013;18(6):714–29.</Citation><ArticleIdList><ArticleId IdType="pubmed">22827577</ArticleId></ArticleIdList></Reference><Reference><Citation>Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16–23.</Citation><ArticleIdList><ArticleId IdType="pubmed">17192460</ArticleId></ArticleIdList></Reference><Reference><Citation>Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3422549</ArticleId><ArticleId IdType="pubmed">21997792</ArticleId></ArticleIdList></Reference><Reference><Citation>Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5852626</ArticleId><ArticleId IdType="pubmed">28838042</ArticleId></ArticleIdList></Reference><Reference><Citation>Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, Peris E, Cui C, Hoffman A, et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 2017;20(13):3149–61.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5646237</ArticleId><ArticleId IdType="pubmed">28954231</ArticleId></ArticleIdList></Reference><Reference><Citation>Gu W, Nowak WN, Xie Y, Le Bras A, Hu Y, Deng J, et al. Single-cell RNA-sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling. Arterioscler Thromb Vasc Biol. 2019;39(10):2049–66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6766361</ArticleId><ArticleId IdType="pubmed">31340667</ArticleId></ArticleIdList></Reference><Reference><Citation>Committee ADAPP, Committee: ADAPP. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Suppl 1):S17–S38.</Citation><ArticleIdList><ArticleId IdType="pubmed">34964875</ArticleId></ArticleIdList></Reference><Reference><Citation>Danda RS, Habiba NM, Rincon-Choles H, Bhandari BK, Barnes JL, Abboud HE, et al. Kidney involvement in a nongenetic rat model of type 2 diabetes. Kidney Int. 2005;68(6):2562–71.</Citation><ArticleIdList><ArticleId IdType="pubmed">16316331</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2615629</ArticleId><ArticleId IdType="pubmed">19033363</ArticleId></ArticleIdList></Reference><Reference><Citation>Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14(2):482–517.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6607905</ArticleId><ArticleId IdType="pubmed">30664679</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán S, Kövamees O, Nordin F, et al. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. J Am Coll Cardiol. 2018;72(7):769–80.</Citation><ArticleIdList><ArticleId IdType="pubmed">30092954</ArticleId></ArticleIdList></Reference><Reference><Citation>Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 2014;34(8):1723–30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4103955</ArticleId><ArticleId IdType="pubmed">24947528</ArticleId></ArticleIdList></Reference><Reference><Citation>Xia T, Duan W, Zhang Z, Fang B, Zhang B, Xu B, et al. Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chem. 2021;335: 127513.</Citation><ArticleIdList><ArticleId IdType="pubmed">32745838</ArticleId></ArticleIdList></Reference><Reference><Citation>Norris PC, Dennis EA. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci. 2012;109(22):8517–22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3365225</ArticleId><ArticleId IdType="pubmed">22586114</ArticleId></ArticleIdList></Reference><Reference><Citation>Nilsen MS, Jersin RÅ, Ulvik A, Madsen A, McCann A, Svensson P-A, et al. 3-Hydroxyisobutyrate, a strong marker of insulin resistance in type 2 diabetes and obesity that modulates white and brown adipocyte metabolism. Diabetes. 2020;69(9):1903–16.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7968520</ArticleId><ArticleId IdType="pubmed">32586980</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu Y-y, Cui S-c, Zheng T-n, Ma H-j, Xie Z-f, Jiang H-w, et al. Sarsasapogenin improves adipose tissue inflammation and ameliorates insulin resistance in high-fat diet-fed C57BL/6J mice. Acta Pharmacol Sin. 2021;42(2):272–81.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8027656</ArticleId><ArticleId IdType="pubmed">32699264</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijay R, Hua X, Meyerholz DK, Miki Y, Yamamoto K, Gelb M, et al. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome–CoV infection. J Exp Med. 2015;212(11):1851.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4612096</ArticleId><ArticleId IdType="pubmed">26392224</ArticleId></ArticleIdList></Reference><Reference><Citation>Sato H, Taketomi Y, Miki Y, Murase R, Yamamoto K, Murakami M. Secreted phospholipase PLA2G2D contributes to metabolic health by mobilizing ω3 polyunsaturated fatty acids in WAT. Cell Rep. 2020;31(5): 107579.</Citation><ArticleIdList><ArticleId IdType="pubmed">32375030</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang D, Leung PS. Potential roles of GPR120 and its agonists in the management of diabetes. Drug Des Dev Ther. 2014;8:1013–27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4122337</ArticleId><ArticleId IdType="pubmed">25114508</ArticleId></ArticleIdList></Reference><Reference><Citation>Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174(20):3496–513.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5610164</ArticleId><ArticleId IdType="pubmed">28063251</ArticleId></ArticleIdList></Reference><Reference><Citation>Almabrouk T, Ewart M, Salt I, Kennedy S. Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol. 2014;171(3):595–617.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3969075</ArticleId><ArticleId IdType="pubmed">24490856</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee YS, Kim J-w, Osborne O, Sasik R, Schenk S, Chen A, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4114226</ArticleId><ArticleId IdType="pubmed">24906151</ArticleId></ArticleIdList></Reference><Reference><Citation>Qi X-Y, Qu S-L, Xiong W-H, Rom O, Chang L, Jiang Z-S. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol. 2018;17(1):134.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6180425</ArticleId><ArticleId IdType="pubmed">30305178</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator–activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126(9):1067–78.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3493564</ArticleId><ArticleId IdType="pubmed">22855570</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim HW, Belin de Chantemèle EJ, Weintraub NL. Perivascular adipocytes in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39(11):2220–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6812617</ArticleId><ArticleId IdType="pubmed">31510794</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan XX, Ruan CC, Liu XY, Kong LR, Ma Y, Wu QH, et al. Perivascular adipose tissue-derived stromal cells contribute to vascular remodeling during aging. Aging Cell. 2019;18(4): e12969.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6612678</ArticleId><ArticleId IdType="pubmed">31087498</ArticleId></ArticleIdList></Reference><Reference><Citation>Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, et al. Modulation of vascular reactivity by perivascular adipose tissue (PVAT). Curr Hypertens Rep. 2018;20(5):44.</Citation><ArticleIdList><ArticleId IdType="pubmed">29736674</ArticleId></ArticleIdList></Reference><Reference><Citation>Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31(4):908–13.</Citation><ArticleIdList><ArticleId IdType="pubmed">21273560</ArticleId></ArticleIdList></Reference><Reference><Citation>Moore JP, Vinh A, Tuck KL, Sakkal S, Krishnan SM, Chan CT, et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am J Physiol-Heart Circul Physiol. 2015;309(5):H906–17.</Citation><ArticleIdList><ArticleId IdType="pubmed">26071547</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo N, Liu J, Chung BH, Yang Q, Klein RL, Garvey WT, et al. Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes. 2010;59(4):791–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2844826</ArticleId><ArticleId IdType="pubmed">20350970</ArticleId></ArticleIdList></Reference><Reference><Citation>Arkan MC, Hevener AL, Greten FR, Maeda S, Li Z-W, Long JM, et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">15685170</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhu Q, An YA, Kim M, Zhang Z, Zhao S, Zhu Y, et al. Suppressing adipocyte inflammation promotes insulin resistance in mice. Mol Metab. 2020;39: 101010.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7272509</ArticleId><ArticleId IdType="pubmed">32408016</ArticleId></ArticleIdList></Reference><Reference><Citation>Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes. 1996;45(7):881–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">8666137</ArticleId></ArticleIdList></Reference><Reference><Citation>Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–74.</Citation><ArticleIdList><ArticleId IdType="pubmed">29545365</ArticleId></ArticleIdList></Reference><Reference><Citation>MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018;9(1):4383.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6197289</ArticleId><ArticleId IdType="pubmed">30348985</ArticleId></ArticleIdList></Reference><Reference><Citation>Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4031686</ArticleId><ArticleId IdType="pubmed">23535595</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18(6):816–30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3939841</ArticleId><ArticleId IdType="pubmed">24315368</ArticleId></ArticleIdList></Reference><Reference><Citation>Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11(10):592–605.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4578711</ArticleId><ArticleId IdType="pubmed">26260145</ArticleId></ArticleIdList></Reference><Reference><Citation>DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22.</Citation><ArticleIdList><ArticleId IdType="pubmed">27189025</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">17167471</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">8608603</ArticleId></ArticleIdList></Reference><Reference><Citation>Czupryn A, Zhou Y-D, Chen X, McNay D, Anderson MP, Flier JS, et al. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science. 2011;334(6059):1133–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3770458</ArticleId><ArticleId IdType="pubmed">22116886</ArticleId></ArticleIdList></Reference><Reference><Citation>Suriano F, Vieira-Silva S, Falony G, Roumain M, Paquot A, Pelicaen R, et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 2021;9(1):147.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8240277</ArticleId><ArticleId IdType="pubmed">34183063</ArticleId></ArticleIdList></Reference><Reference><Citation>Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diab Investig. 2014;5(4):349–58.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4210077</ArticleId><ArticleId IdType="pubmed">25411593</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee M, Li H, Zhao H, Suo M, Liu D. Effects of hydroxysafflor yellow A on the PI3K/AKT pathway and apoptosis of pancreatic β-cells in type 2 diabetes mellitus rats. Diab Metab Syndr Obes. 2020;13:1097–107.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7154009</ArticleId><ArticleId IdType="pubmed">32308459</ArticleId></ArticleIdList></Reference><Reference><Citation>Sato H, Taketomi Y, Ushida A, Isogai Y, Kojima T, Hirabayashi T, et al. The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab. 2014;20(1):119–32.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4079757</ArticleId><ArticleId IdType="pubmed">24910243</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng J, Meyerholz D, Wong L-YR, Gelb M, Murakami M, Perlman S. Coronavirus-specific antibody production in middle-aged mice requires phospholipase A2G2D. J Clin Investig. 2021;131(11):e147201.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8266207</ArticleId><ArticleId IdType="pubmed">34060490</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang C-P, Lee C-C, Wu D-Y, Chen S-Y, Lee T-M. Differential effects of EPA and DHA on PPARγ-mediated sympathetic innervation in infarcted rat hearts by GPR120-dependent and-independent mechanisms. J Nutr Biochem. 2022;103:108950.</Citation><ArticleIdList><ArticleId IdType="pubmed">35121022</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee B-C, Kim M-S, Pae M, Yamamoto Y, Eberlé D, Shimada T, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 2016;23(4):685–98.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4833527</ArticleId><ArticleId IdType="pubmed">27050305</ArticleId></ArticleIdList></Reference><Reference><Citation>Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16(4):376–85.</Citation><ArticleIdList><ArticleId IdType="pubmed">25729921</ArticleId></ArticleIdList></Reference><Reference><Citation>Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol. 2014;193(9):4477–84.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4201970</ArticleId><ArticleId IdType="pubmed">25261477</ArticleId></ArticleIdList></Reference><Reference><Citation>Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, et al. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol. 2016;196(6):2552–60.</Citation><ArticleIdList><ArticleId IdType="pubmed">26873994</ArticleId></ArticleIdList></Reference><Reference><Citation>Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol. 2015;194(4):1954–62.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4323953</ArticleId><ArticleId IdType="pubmed">25595780</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39627441</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2045-2322</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>Scientific reports</Title><ISOAbbreviation>Sci Rep</ISOAbbreviation></Journal><ArticleTitle>Volatile organic compounds exposure in relation to glucose homeostasis and type 2 diabetes in older adults from the NHANES.</ArticleTitle><Pagination><StartPage>30075</StartPage><MedlinePgn>30075</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">30075</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-024-81255-8</ELocationID><Abstract><AbstractText>The impact of volatile organic compounds (VOCs) on type 2 diabetes (T2D) among older adults is unknown. The multiple linear regression model and the multiple binary logistic regression were used to evaluate the relationships between mVOCs and glucose homeostasis/T2D, respectively. Among the 19 mVOCs, the higher levels of urinary N-acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA, compound CID:44146439) and N-acetyl-S-(2-hydroxypropyl)-L-cysteine (HPMMA, compound CID:107774684) were significantly associated with higher odds of T2D (OR = 1.16, 95% confidence interval [CI]:1.01-1.34 for 2HPMA; and OR = 1.27, 95% CI:1.04-1.54 for HPMMA). In addition, higher concentrations of multiple mVOCs in urine were significantly correlated with glucose homeostasis biomarkers, including 2HPMA and 2-thioxothiazolidine-4-carboxylic acid (TTCA, compound CID:3034757) with fasting glucose, HPMMA and mandelic acid (MA, compound CID:1292) with HbA1c, phenylglyoxylic acid (PGA, compound CID:11915) with serum insulin, HbA1c and HOMA-IR. Our findings suggested that exposure to VOCs were associated with increased odds of T2D in older adults, which might be mediated by impaired glucose homeostasis. Mitigating VOCs should be a necessary component of public health strategies aimed at reducing the burden of type 2 diabetes.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Chenyang</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>College of Geography and Environmental Science, Henan University, Kaifeng, 475004, Henan, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Henan Urban Plan and Design Institute Co., Ltd, Zhengzhou, 450044, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jinjun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Henan Urban Plan and Design Institute Co., Ltd, Zhengzhou, 450044, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Lingling</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Guo</LastName><ForeName>Jing</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Nutrition and Food Hygiene, School of Public Health of Zhengzhou University, Zhengzhou, 450001, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Kinesiology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, 450001, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jinjie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, 450001, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xinxin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Nutrition and Food Hygiene, School of Public Health of Zhengzhou University, Zhengzhou, 450001, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Lifeng</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Junxi</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, No. 26, Jingwu Road, Zhengzhou, 450002, Henan, China. zhangjunxi0378@126.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Suo</LastName><ForeName>Xiangying</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Epidemiology and Health Statistics, School of Public Health of Zhengzhou University, No.100, Science Avenue, Zhengzhou, 450001, Henan, China. xy_suo123@163.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Sci Rep</MedlineTA><NlmUniqueID>101563288</NlmUniqueID><ISSNLinking>2045-2322</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>IY9XDZ35W2</RegistryNumber><NameOfSubstance UI="D005947">Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000652" MajorTopicYN="N">urine</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055549" MajorTopicYN="Y">Volatile Organic Compounds</DescriptorName><QualifierName UI="Q000652" MajorTopicYN="N">urine</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="Y">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000652" MajorTopicYN="N">urine</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Environmental pollutant</Keyword><Keyword MajorTopicYN="N">Glucose homeostasis</Keyword><Keyword MajorTopicYN="N">NHANES</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword><Keyword MajorTopicYN="N">Volatile organic compounds</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: Not applicable. The data in this study was obtained from NHANES website. This study did not include personal information. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>23</Hour><Minute>39</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39627441</ArticleId><ArticleId IdType="pmc">PMC11615312</ArticleId><ArticleId IdType="doi">10.1038/s41598-024-81255-8</ArticleId><ArticleId IdType="pii">10.1038/s41598-024-81255-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Digital, N. Report 1: Care Processes and Treatment Targets 2020-21, Full Report - NHS Digital 2022. https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/core-report-1-2020-21</Citation></Reference><Reference><Citation>Bellary, S., Kyrou, I., Brown, J. E. & Bailey, C. J. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat. Reviews Endocrinol.17(9), 534–548 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">34172940</ArticleId></ArticleIdList></Reference><Reference><Citation>Song, Y. et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J. Diabetes. 8(4), 516–532 (2016).</Citation><ArticleIdList><ArticleId IdType="pubmed">26119400</ArticleId></ArticleIdList></Reference><Reference><Citation>Martínez-Pinna, J. et al. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am. J. Physiol. Endocrinol. Metab.324(6), E488–e505 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10228669</ArticleId><ArticleId IdType="pubmed">37134142</ArticleId></ArticleIdList></Reference><Reference><Citation>Baker, N. A. et al. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ. Health Perspect.121(1), 105–110 (2013).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3553436</ArticleId><ArticleId IdType="pubmed">23099484</ArticleId></ArticleIdList></Reference><Reference><Citation>La Merrill, M. et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One. 9(7), e103337 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4116186</ArticleId><ArticleId IdType="pubmed">25076055</ArticleId></ArticleIdList></Reference><Reference><Citation>Moon, M. K. et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J. Endocrinol.226(1), 35–42 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">25972359</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin, Y. et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am. J. Physiol. Endocrinol. Metab.301(3), E527–E538 (2011).</Citation><ArticleIdList><ArticleId IdType="pubmed">21673306</ArticleId></ArticleIdList></Reference><Reference><Citation>Bo, Y. & Zhu, Y. Organophosphate esters exposure in relation to glucose homeostasis and type 2 diabetes in adults: a national cross-sectional study from the national health and nutrition survey. Chemosphere301, 134669 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35460677</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, X. et al. Exposure to volatile organic compounds is a risk factor for diabetes: a cross-sectional study. Chemosphere338, 139424 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37419158</ArticleId></ArticleIdList></Reference><Reference><Citation>Alwis, K. U., Blount, B. C., Britt, A. S., Patel, D. & Ashley, D. L. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta. 750, 152–160 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11261307</ArticleId><ArticleId IdType="pubmed">23062436</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, S. et al. Urinary metabolites of multiple volatile organic compounds, oxidative stress biomarkers, and gestational diabetes mellitus: Association analyses. Sci. Total Environ.875, 162370 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">36842580</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, I. et al. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Int. J. Hyg. Environ. Health. 240, 113886 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34864598</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogbodo, J. O., Arazu, A. V., Iguh, T. C., Onwodi, N. J. & Ezike, T. C. Volatile organic compounds: a proinflammatory activator in autoimmune diseases. Front. Immunol.13, 928379 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9373925</ArticleId><ArticleId IdType="pubmed">35967306</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou, X., Zhou, X., Wang, C. & Zhou, H. Environmental and human health impacts of volatile organic compounds: a perspective review. Chemosphere. 313(2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">36513206</ArticleId></ArticleIdList></Reference><Reference><Citation>Wahlang, B. et al. Associations between residential exposure to volatile organic compounds and liver injury markers. Toxicol. Sci.185(1), 50–63 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8714366</ArticleId><ArticleId IdType="pubmed">34668566</ArticleId></ArticleIdList></Reference><Reference><Citation>Riggs, D. W. et al. Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol. Appl. Pharmacol.15(437), 115877 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10045232</ArticleId><ArticleId IdType="pubmed">35045333</ArticleId></ArticleIdList></Reference><Reference><Citation>McGraw, K. E. et al. Exposure to volatile organic compounds - acrolein, 1,3-butadiene, and crotonaldehyde - is associated with vascular dysfunction. Environ. Res.196, 110903 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8119348</ArticleId><ArticleId IdType="pubmed">33636185</ArticleId></ArticleIdList></Reference><Reference><Citation>Bönisch, U. et al. Volatile organic compounds enhance allergic airway inflammation in an experimental mouse model. PLoS One. 7(7), e39817 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3389035</ArticleId><ArticleId IdType="pubmed">22802943</ArticleId></ArticleIdList></Reference><Reference><Citation>Rusyn, I. et al. Key characteristics of human hepatotoxicants as a basis for identification and characterization of the causes of liver toxicity. Hepatology74(6), 3486–3496 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8901129</ArticleId><ArticleId IdType="pubmed">34105804</ArticleId></ArticleIdList></Reference><Reference><Citation>Penn, A. & Snyder, C. A. 1,3-Butadiene exposure and cardiovascular disease. Mutat. Res.621(1–2), 42–49 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17420031</ArticleId></ArticleIdList></Reference><Reference><Citation>McGraw, K. E. et al. Exposure to volatile organic compounds – acrolein, 1,3-butadiene, and crotonaldehyde – is associated with vascular dysfunction. Environ. Res.196(2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8119348</ArticleId><ArticleId IdType="pubmed">33636185</ArticleId></ArticleIdList></Reference><Reference><Citation>Perez, C. M. et al. Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhal Toxicol.27(1), 54–63 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4767015</ArticleId><ArticleId IdType="pubmed">25600140</ArticleId></ArticleIdList></Reference><Reference><Citation>Perez, C. M. et al. Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicol. Sci.132(2), 467–477 (2013).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3937591</ArticleId><ArticleId IdType="pubmed">23335627</ArticleId></ArticleIdList></Reference><Reference><Citation>O’Toole, T. E. et al. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a. Toxicol. Sci.140(2), 271–282 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4176051</ArticleId><ArticleId IdType="pubmed">24812010</ArticleId></ArticleIdList></Reference><Reference><Citation>Lang, A. L. & Beier, J. I. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biol. Chem.399(11), 1237–1248 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6181143</ArticleId><ArticleId IdType="pubmed">29924722</ArticleId></ArticleIdList></Reference><Reference><Citation>Wahlang, B. et al. Mechanisms of environmental contributions to fatty liver disease. Curr. Environ. Health Rep.6(3), 80–94 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6698418</ArticleId><ArticleId IdType="pubmed">31134516</ArticleId></ArticleIdList></Reference><Reference><Citation>Rubinstein, M. L., Delucchi, K., Benowitz, N. L. & Ramo, D. E. Adolescent exposure to toxic volatile organic chemicals from E-cigarettes. Pediatrics. 141(4), (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5869331</ArticleId><ArticleId IdType="pubmed">29507165</ArticleId></ArticleIdList></Reference><Reference><Citation>Goniewicz, M. L. et al. Exposure to Nicotine and selected toxicants in cigarette smokers who switched to electronic cigarettes: a longitudinal within-subjects observational study. Nicotine Tob. Res.19(2), 160–167 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5234360</ArticleId><ArticleId IdType="pubmed">27613896</ArticleId></ArticleIdList></Reference><Reference><Citation>Lunn, R. M. et al. Cancer hazard evaluations for contemporary needs: highlights from New National Toxicology Program evaluations and methodological advancements. J. Natl. Cancer Inst.114(11), 1441–1448 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9949597</ArticleId><ArticleId IdType="pubmed">36029241</ArticleId></ArticleIdList></Reference><Reference><Citation>Faller, T. H., Csanády, G. A., Kreuzer, P. E., Baur, C. M. & Filser, J. G. Kinetics of propylene oxide metabolism in microsomes and cytosol of different organs from mouse, rat, and humans. Toxicol. Appl. Pharmacol.172(1), 62–74 (2001).</Citation><ArticleIdList><ArticleId IdType="pubmed">11264024</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, W. et al. Associations of propylene oxide exposure with fasting plasma glucose and diabetes: roles of oxidative DNA damage and lipid peroxidation. Environ. Pollut.292, (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34737025</ArticleId></ArticleIdList></Reference><Reference><Citation>Marques, M. M. et al. Carcinogenicity of acrolein, crotonaldehyde, and arecoline. Lancet Oncol.22(1), 19–20 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33248467</ArticleId></ArticleIdList></Reference><Reference><Citation>Bagchi, P. et al. Crotonaldehyde exposure in U.S. tobacco smokers and nonsmokers: NHANES 2005–2006 and 2011–2012. Environ. Res.163, 1–9 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5878724</ArticleId><ArticleId IdType="pubmed">29407484</ArticleId></ArticleIdList></Reference><Reference><Citation>Wahlang, B. et al. Associations between residential volatile organic compound exposures and liver injury markers: the role of biological sex and race. Environ. Res.. 221, (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9957966</ArticleId><ArticleId IdType="pubmed">36610539</ArticleId></ArticleIdList></Reference><Reference><Citation>Lei, T., Qian, H., Yang, J. & Hu, Y. The association analysis between exposure to volatile organic chemicals and obesity in the general USA population: a cross-sectional study from NHANES program. Chemosphere. 315 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">36608892</ArticleId></ArticleIdList></Reference><Reference><Citation>McGraw, K. E. et al. Exposure to volatile Organic compounds is Associated with hypertension in black adults: the Jackson Heart Study. Environ. Res.223, (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10134439</ArticleId><ArticleId IdType="pubmed">36796615</ArticleId></ArticleIdList></Reference><Reference><Citation>EPA. The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants. https://www3.epa.gov/airtoxics/orig189.html (2010).</Citation></Reference><Reference><Citation>Ciucanu, I., Kaykhaii, M., Montero, L., Pawliszyn, J. & Szubra, J. Continuous monitoring of thermooxidative degradation products of polystyrene by membrane extraction with sorbent interface and gas chromatography. J. Chromatogr. Sci.40(6), 350–354 (2002).</Citation><ArticleIdList><ArticleId IdType="pubmed">12137208</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu, L. et al. Long-term effect of styrene and ethylbenzene exposure on fasting plasma glucose: a gene-environment interaction study. J. Hazard. Mater.452, (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37030230</ArticleId></ArticleIdList></Reference><Reference><Citation>Niaz, K. et al. Molecular mechanisms of action of styrene toxicity in blood plasma and liver. Environ. Toxicol.32(10), 2256–2266 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28678435</ArticleId></ArticleIdList></Reference><Reference><Citation>Niaz, K. et al. Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells. Environ. Toxicol. Pharmacol.54, 62–73 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28688303</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39627353</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>27</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2045-2322</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>Scientific reports</Title><ISOAbbreviation>Sci Rep</ISOAbbreviation></Journal><ArticleTitle>A retrospective study of seasonal variation in sodium-glucose co-transporter 2 inhibitor-related adverse events using the Japanese adverse drug event report database.</ArticleTitle><Pagination><StartPage>30072</StartPage><MedlinePgn>30072</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">30072</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-024-81698-z</ELocationID><Abstract><AbstractText>Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a class of drugs used in the clinical management of patients with type 2 diabetes, and their prescriptions have been increasing in recent years. Herein, we performed a retrospective analysis of seasonal variation in SGLT2 inhibitor-associated adverse events recorded in the Japanese Adverse Drug Event Report (JADER) database, an adverse event reporting database which reflects real-world clinical practice. To this end, seasonal variations in SGLT2 inhibitor-related dehydration, cerebral infarction, urinary tract infection, and ketoacidosis were analyzed. Six SGLT2 inhibitors prescribed in Japan (ipragliflozin, empagliflozin, luseogliflozin, canagliflozin, dapagliflozin, and tofogliflozin) were included. The reporting ratio (RR) for SGLT2 inhibitor adverse events per month in the JADER database from April 2014 to December 2023 was determined. The RR for dehydration-related adverse events was highest in the summer months of July and August, as well as in the winter months of December, January, and February. The highest RR for cerebral infarction was in February. No association with seasonal variations in the occurrence of ketoacidosis related to dehydration was observed. Healthcare providers should take adequate precautions against dehydration caused by SGLT2 inhibitors, not only in summer but also in winter. These findings are instructive and informational for health care professionals involved in diabetes care.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Matsumoto</LastName><ForeName>Kiyoka</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goto</LastName><ForeName>Fumiya</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Maezawa</LastName><ForeName>Mika</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakao</LastName><ForeName>Satoshi</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Miyasaka</LastName><ForeName>Koumi</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hirofuji</LastName><ForeName>Sakiko</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shiota</LastName><ForeName>Kohei</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ichihara</LastName><ForeName>Nanaka</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamashita</LastName><ForeName>Moe</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nokura</LastName><ForeName>Yuka</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamazaki</LastName><ForeName>Tomofumi</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sugishita</LastName><ForeName>Kana</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tanaka</LastName><ForeName>Hideyuki</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tamaki</LastName><ForeName>Hirofumi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501- 1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ishiguro</LastName><ForeName>Motoyuki</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Ishiguro Clinic, 6-37, Masaki-kita, Gifu, 502-0881, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Iguchi</LastName><ForeName>Kazuhiro</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501- 1196, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakamura</LastName><ForeName>Mitsuhiro</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan. mnakamura@gifu-pu.ac.jp.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>21K11100</GrantID><Agency>Japan Society for the Promotion of Science</Agency><Country/></Grant><Grant><GrantID>21K11100</GrantID><Agency>Japan Society for the Promotion of Science</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Sci Rep</MedlineTA><NlmUniqueID>101563288</NlmUniqueID><ISSNLinking>2045-2322</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005960">Glucosides</NameOfSubstance></Chemical><Chemical><RegistryNumber>1ULL0QJ8UC</RegistryNumber><NameOfSubstance UI="C529054">dapagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0SAC974Z85</RegistryNumber><NameOfSubstance UI="D000068896">Canagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>HDC1R2M35U</RegistryNumber><NameOfSubstance UI="C570240">empagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>3N2N8OOR7X</RegistryNumber><NameOfSubstance UI="C572941">ipragliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001559">Benzhydryl Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>P8DD8KX4O4</RegistryNumber><NameOfSubstance UI="C575086">6-((4-ethylphenyl)methyl)-3',4',5',6'-tetrahydro-6'-(hydroxymethyl)spiro(isobenzofuran-1(3H),2'-(2H)pyran)-3',4',5'-triol</NameOfSubstance></Chemical><Chemical><RegistryNumber>506T60A25R</RegistryNumber><NameOfSubstance UI="D013012">Sorbitol</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013876">Thiophenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>C596HWF74Z</RegistryNumber><NameOfSubstance UI="C549343">1,5-anhydro-1-(5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl)-1-thioglucitol</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007564" MajorTopicYN="N" Type="Geographic">Japan</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000068896" MajorTopicYN="N">Canagliflozin</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016907" MajorTopicYN="N">Adverse Drug Reaction Reporting Systems</DescriptorName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001559" MajorTopicYN="N">Benzhydryl Compounds</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016208" MajorTopicYN="N">Databases, Factual</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName><QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013012" MajorTopicYN="N">Sorbitol</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013876" MajorTopicYN="N">Thiophenes</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D064420" MajorTopicYN="N">Drug-Related Side Effects and Adverse Reactions</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014552" MajorTopicYN="N">Urinary Tract Infections</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000095225" MajorTopicYN="N">East Asian People</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Adverse events</Keyword><Keyword MajorTopicYN="N">Dehydration</Keyword><Keyword MajorTopicYN="N">Seasonal variation</Keyword><Keyword MajorTopicYN="N">Sodium-glucose co-transporter 2 inhibitors</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes mellitus</Keyword></KeywordList><CoiStatement>Declarations. Competing interests: The authors declare no competing interests. Ethical approval: Ethical approval was not sought for this study because the study was a database-related observational study which did not directly involve any research subjects. All results were obtained from data openly available online from the PMDA website ( www.pmda.go.jp ). All data from the JADER database were fully anonymized by the relevant regulatory authority before we accessed them. Our research does not fall within the purview of any of the following laws and guidelines: “Clinical Trials Act (Act No. 16 of April 14, 2017),” “Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and Medical Devices (Law number: Act No. 145 of 1960, Last Version: Amendment of Act No. 50 of 2015),” “Guideline for good clinical practice E6 (R1), https://www.pmda.go.jp/int-activities/int-harmony/ich/0076.html ,” “Ethical guidelines for human genome and gene analysis research, https://www.mhlw.go.jp/general/seido/kousei/i-kenkyu/genome/0504sisin.html ,” and “Ethical Guidelines for Medical and Health Research Involving Human Subjects, https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyujigyou/i-kenkyu/index.html .” Therefore, it is not subject to ethical examination. The study was an observational study without any research subjects. No consent to participate was required due to the retrospective nature of this study.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>23</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39627353</ArticleId><ArticleId IdType="pmc">PMC11615253</ArticleId><ArticleId IdType="doi">10.1038/s41598-024-81698-z</ArticleId><ArticleId IdType="pii">10.1038/s41598-024-81698-z</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Bryce, S. & Gordon, M. Sodium-glucose cotranspoter-2(SGLT2) inhibitors: a clinician’s guide. Diabetes Metab. Syndr. Obes.12, 2125–2136 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6799898</ArticleId><ArticleId IdType="pubmed">31686884</ArticleId></ArticleIdList></Reference><Reference><Citation>Komoroski, B. et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin. Pharmacol. Ther.85, 520–526 (2009).</Citation><ArticleIdList><ArticleId IdType="pubmed">19129748</ArticleId></ArticleIdList></Reference><Reference><Citation>Caparrotta, T. M. et al. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) exposure and outcomes in type 2 diabetes: A systematic review of population-based observational studies. Diabetes Ther.12, 991–1028 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7994468</ArticleId><ArticleId IdType="pubmed">33665777</ArticleId></ArticleIdList></Reference><Reference><Citation>Blau, J. E., Tella, S. H., Taylor, S. I. & Rother, K. I. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab. Res. Rev.33, e2924 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5950709</ArticleId><ArticleId IdType="pubmed">28736981</ArticleId></ArticleIdList></Reference><Reference><Citation>Fadini, G. P., Bonora, B. M. & Avogaro, A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA adverse event reporting system. Diabetologia60, 1385–1389 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28500396</ArticleId></ArticleIdList></Reference><Reference><Citation>Tuttle, K. R. et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: Report of a scientific workshop sponsored by the national kidney foundation. Diabetes70, 1–16 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8162454</ArticleId><ArticleId IdType="pubmed">33106255</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueda, P. et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study. BMJ363, k4365 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6233755</ArticleId><ArticleId IdType="pubmed">30429124</ArticleId></ArticleIdList></Reference><Reference><Citation>Sakaeda, T. et al. Susceptibility to serious skin and subcutaneous tissue disorder and skin tissue distribution of sodium-dependent glucose co-transporter type-2 (SGLT2) inhibitors. Int. J. Med. Sci.15, 937–943 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6036094</ArticleId><ArticleId IdType="pubmed">30008607</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakao, S. et al. Evaluation of drug-induced photosensitivity using the Japanese adverse drug Event Report (JADER) database. Biol. Pharm. Bull.40, 2158–2165 (2018).</Citation><ArticleIdList><ArticleId IdType="pubmed">29199239</ArticleId></ArticleIdList></Reference><Reference><Citation>Marrero, O., Hung, E. Y. & Hauben, M. Seasonal and geographic variation in adverse event reporting. Drugs Real. World Outcomes. 3, 297–306 (2016).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5042937</ArticleId><ArticleId IdType="pubmed">27747826</ArticleId></ArticleIdList></Reference><Reference><Citation>Japan Meteorological Agency. Tokyo (Japan) monthly average of daily mean temperature (°C), https://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3.php?prec_no=44_no=47662, cited 29 June, 2024.</Citation></Reference><Reference><Citation>Tanaka, S. et al. Seasonal variation in hydration status among community-dwelling elderly in Japan. Geriatr. Gerontol. Int.20, 904–910 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">32827223</ArticleId></ArticleIdList></Reference><Reference><Citation>Tsutsumi, M., Sato, M. & Kobayashi, T. A study on seasonal changes of the amount of body water of elderly people in a care house in summer and winter using the electrical impedance method. Bull. School Nurs. Yamaguchi Prefectural Univ.8, 19–23 (2003).</Citation></Reference><Reference><Citation>Joanna, O., Magdalena, M. & Paweł, T. Hydration status in men working in different thermal environments: A pilot study. Int. J. Environ. Res. Public. Health. 19, 5627 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9104106</ArticleId><ArticleId IdType="pubmed">35565019</ArticleId></ArticleIdList></Reference><Reference><Citation>Fukunaga, A., Koyama, H., Fuse, T. & Haraguchi, A. The onset of cerebral infarction may be affected by differences in atmospheric pressure distribution patterns. Front. Neurol.14, 1230574 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10423876</ArticleId><ArticleId IdType="pubmed">37583952</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhatia, K., Mohanty, S., Tripathi, B. K., Gupta, T. B. & Mittal, M. K. Predictors of early neurological deterioration in patients with acute ischemic stroke with special reference to blood urea nitrogen (BUN)/creatinine ratio and urine specific gravity. Indian J. Med. Res.41, 299–307 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4442327</ArticleId><ArticleId IdType="pubmed">25963490</ArticleId></ArticleIdList></Reference><Reference><Citation>Jauch, E. C. et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke44, 870–947 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23370205</ArticleId></ArticleIdList></Reference><Reference><Citation>Kelly, J. et al. Dehydration and venous thromboembolism after acute stroke. QJM97, 293–296 (2004).</Citation><ArticleIdList><ArticleId IdType="pubmed">15100423</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim, Y. H., Park, M. S., Kim, Y., Kim, H. & Hong, Y. C. Effects of cold and hot temperature on dehydration: A mechanism of cardiovascular burden. Int. J. Biometeorol.59, 1035–1043 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">25344017</ArticleId></ArticleIdList></Reference><Reference><Citation>Narita, K., Hoshide, S. & Kario, K. Seasonal variation in blood pressure: Current evidence and recommendations for hypertension management. Hypertens. Res.44, 1363–1372 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">34489592</ArticleId></ArticleIdList></Reference><Reference><Citation>Imai, T. et al. Risk of urogenital bacterial infection with sodium-glucose cotransporter-2 inhibitors: A retrospective cohort study using a claims database. Diabetes Ther.15, 1821–1830 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11263449</ArticleId><ArticleId IdType="pubmed">38958909</ArticleId></ArticleIdList></Reference><Reference><Citation>Dave, C. V. et al. Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: A population-based cohort study. Ann. Intern. Med.171, 248–256 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6989379</ArticleId><ArticleId IdType="pubmed">31357213</ArticleId></ArticleIdList></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Canaglu® (canagliflozin) (Approval. (2014). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/400315_3969022F1029_1_22, cited 14 September, 2024.</Citation></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Jardiance® (empagliflozin) (Approval: 2015), (2024). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/650168_3969023F1023_1_17, cited 14.</Citation></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Suglat® (ipragliflozin) (Approval: 2014), (2024). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/800126_3969018F1022_1_14, cited 14.</Citation></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Canalia® (canagliflozin, teneligliptin) combination tablets (Approval: 2017), (2024). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/400315_3969106F1028_1_14, cited 14.</Citation></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Tradiance® (empagliflozin, linagliptin) combination tablets (Approval: 2018), (2024). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/650168_3969108F1027_1_04, cited 14.</Citation></Reference><Reference><Citation>Pharmaceuticals and Medical Devices Agency, Sujanu® (ipragliflozin, sitagliptin) combination tablets (Approval: 2018), (2024). https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/170050_3969107F1022_1_09, cited 14.</Citation></Reference><Reference><Citation>Evans, S. J., Waller, P. C. & Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf.10, 483–486 (2001).</Citation><ArticleIdList><ArticleId IdType="pubmed">11828828</ArticleId></ArticleIdList></Reference><Reference><Citation>Ichihara, N. et al. Analysis of metformin-associated lactic acidosis using Japanese adverse drug event report database. BPB Rep.7, 76–80 (2024).</Citation></Reference><Reference><Citation>Sakurai, S. et al. Progressive multifocal leukoencephalopathy analyzed using the Japanese adverse drug Event Report database. J. Neurol. Sci.455, 122789 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37984106</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39627335</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2045-2322</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>Scientific reports</Title><ISOAbbreviation>Sci Rep</ISOAbbreviation></Journal><ArticleTitle>Association of systemic immunity-inflammation index with type 2 diabetes and insulin resistance in NHANES 2005-2018.</ArticleTitle><Pagination><StartPage>30133</StartPage><MedlinePgn>30133</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">30133</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-024-79763-8</ELocationID><Abstract><AbstractText>Although the interplay between inflammation and diabetes is increasingly recognized, it is unclear whether the systemic immunity-inflammation index (SII), as a biomarker of systemic inflammatory response, is associated with type 2 diabetes (T2D) and insulin resistance (IR). This cross-sectional study was performed in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018, and finally enrolled 17,017 participants. To explore the relationship between SII and T2D and IR, a series of statistical analyses were conducted including weighted multivariate linear regression, logistic regression, and subgroup analysis. The fully adjusted multivariate linear regression revealed a positive correlation between SII and fasting plasma glucose (β = 0.13, 95% CI: 0.01, 0.24), fasting serum insulin (β = 12.90, 95% CI: 6.77, 19.04), and homeostasis model assessment of insulin resistance (β = 0.68, 95% CI: 0.25, 1.10). A per-SD increase in SII was found to be associated with a 4% increase in the odds of T2D, and a 5% increase in the odds of IR. The trend was significant across all SII quartile groups. Subgroup analysis revealed a stronger positive association existed between SII and T2D and IR in female, younger, and obese populations. SII was positively associated with the risk of T2D and IR, indicating that reducing SII levels may help prevent these conditions in the general population.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Zhao</LastName><ForeName>Qinying</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Xuan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xu</LastName><ForeName>Jialu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rao</LastName><ForeName>Xiaojuan</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Ming</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China. mingliu@tmu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>2022YFE0131400</GrantID><Agency>National Key R&amp;D Program</Agency><Country/></Grant><Grant><GrantID>82220108014</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>TJYXZDXK-030A</GrantID><Agency>Tianjin Key Medical Discipline (Specialty) Construction Project</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Sci Rep</MedlineTA><NlmUniqueID>101563288</NlmUniqueID><ISSNLinking>2045-2322</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009749" MajorTopicYN="Y">Nutrition Surveys</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Insulin resistance</Keyword><Keyword MajorTopicYN="N">NHANES</Keyword><Keyword MajorTopicYN="N">Systemic immunity-inflammation index</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declarations. Competing interests: The authors declare no competing interests. Informed consent: Consent to participate was obtained and the National Center for Health Statistics ethics committee approved the protocol of the NHANES study. The data is publicly available ( https://www.cdc.gov/nchs/nhanes/index.htm ).</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>4</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>23</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39627335</ArticleId><ArticleId IdType="pmc">PMC11615196</ArticleId><ArticleId IdType="doi">10.1038/s41598-024-79763-8</ArticleId><ArticleId IdType="pii">10.1038/s41598-024-79763-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ong, K. L. et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of Disease Study 2021. Lancet. 402, 203–234 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Green, A. et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 64, 2741–2750 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8563635</ArticleId><ArticleId IdType="pubmed">34599655</ArticleId></ArticleIdList></Reference><Reference><Citation>Lontchi-Yimagou, E., Sobngwi, E., Matsha, T. E. & Kengne, A. P. Diabetes mellitus and inflammation. Curr. Diab. Rep.13, 435–444 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23494755</ArticleId></ArticleIdList></Reference><Reference><Citation>Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 56, 2356–2370 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17579207</ArticleId></ArticleIdList></Reference><Reference><Citation>Kamata, K. et al. Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid. 21, 191–201 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4196506</ArticleId><ArticleId IdType="pubmed">25007035</ArticleId></ArticleIdList></Reference><Reference><Citation>Martino, L. et al. Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia. 58, 2554–2562 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">26276263</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao, H. L. et al. Prevalence and clinicopathological characteristics of islet amyloid in Chinese patients with type 2 diabetes. Diabetes. 52, 2759–2766 (2003).</Citation><ArticleIdList><ArticleId IdType="pubmed">14578294</ArticleId></ArticleIdList></Reference><Reference><Citation>Navarro, J. F. & Mora, C. Role of inflammation in diabetic complications. Nephrol. dialysis Transplantation. 20, 2601–2604 (2005).</Citation><ArticleIdList><ArticleId IdType="pubmed">16188894</ArticleId></ArticleIdList></Reference><Reference><Citation>Larsen, C. M. et al. Interleukin-1–receptor antagonist in type 2 diabetes. N. Engl. J. Med.356, 1517–1526 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17429083</ArticleId></ArticleIdList></Reference><Reference><Citation>Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes care. 35, 1654–1662 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3402269</ArticleId><ArticleId IdType="pubmed">22699287</ArticleId></ArticleIdList></Reference><Reference><Citation>Rissanen, A., Howard, C., Botha, J., Thuren, T. & Investigators, G. Effect of anti-IL‐1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo‐controlled trial. Diabetes Obes. Metabolism. 14, 1088–1096 (2012).</Citation><ArticleIdList><ArticleId IdType="pubmed">22726220</ArticleId></ArticleIdList></Reference><Reference><Citation>Hu, B. et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res.20, 6212–6222 (2014).</Citation><ArticleIdList><ArticleId IdType="pubmed">25271081</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, B., Wang, J., Li, Y., Li, K. & Zhang, Q. The association between systemic immune-inflammation index and rheumatoid arthritis: evidence from NHANES 1999–2018. Arthritis Res. Therapy. 25, 34 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9985219</ArticleId><ArticleId IdType="pubmed">36871051</ArticleId></ArticleIdList></Reference><Reference><Citation>Song, Y. et al. Systemic immune-inflammation index is associated with hepatic steatosis: evidence from NHANES 2015–2018. Front. Immunol.13, 1058779 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9718528</ArticleId><ArticleId IdType="pubmed">36466832</ArticleId></ArticleIdList></Reference><Reference><Citation>Geraghty, J. R. et al. Systemic immune-inflammation index predicts delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 89, 1071–1079 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8600162</ArticleId><ArticleId IdType="pubmed">34560777</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, J. H. et al. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J. Gastroenterol.23, 6261 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5603492</ArticleId><ArticleId IdType="pubmed">28974892</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo, W. et al. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes patients: evidence from NHANES 2011–2018. Front. Endocrinol.13, 1071465 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9763451</ArticleId><ArticleId IdType="pubmed">36561561</ArticleId></ArticleIdList></Reference><Reference><Citation>Özata Gündoğdu, K., Doğan, E., Çelik, E. & Alagöz, G. Serum inflammatory marker levels in serous macular detachment secondary to diabetic macular edema. Eur. J. Ophthalmol.32, 3637–3643 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35225038</ArticleId></ArticleIdList></Reference><Reference><Citation>Woolf, A. D. Strong bones in later life. Bull. World Health Organ.77, 368 (1999).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2557658</ArticleId><ArticleId IdType="pubmed">10361751</ArticleId></ArticleIdList></Reference><Reference><Citation>Shan, Z. et al. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999–2016. Jama. 322, 1178–1187 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6763999</ArticleId><ArticleId IdType="pubmed">31550032</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace, T. M., Levy, J. C. & Matthews, D. R. Use and abuse of HOMA modeling. Diabetes care. 27, 1487–1495 (2004).</Citation><ArticleIdList><ArticleId IdType="pubmed">15161807</ArticleId></ArticleIdList></Reference><Reference><Citation>Care, D. Standards of medical care in diabetes 2019. Diabetes Care. 42, S124–138 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">30559237</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, Y. et al. Associations of triglycerides/high-density lipoprotein cholesterol ratio with insulin resistance, impaired glucose tolerance, and diabetes in American adults at different vitamin D3 levels. Front. Endocrinol.12, 735736 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8854269</ArticleId><ArticleId IdType="pubmed">35185778</ArticleId></ArticleIdList></Reference><Reference><Citation>Vilar-Gomez, E. et al. High‐quality diet, physical activity, and college education are associated with low risk of NAFLD among the US population. Hepatology. 75, 1491–1506 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34668597</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, P. H., Macfarlane, D. J., Lam, T. H. & Stewart, S. M. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int. J. Behav. Nutr. Phys. Activity. 8, 1–11 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3214824</ArticleId><ArticleId IdType="pubmed">22018588</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson, C. L. et al. National health and nutrition examination survey. Analytic guidelines, 1999–2010. (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">25090154</ArticleId></ArticleIdList></Reference><Reference><Citation>Cruz, N. G. et al. The linkage between inflammation and type 2 diabetes. Diabetes Res. Clin. Pract.99, 85–92 (2013).</Citation><ArticleIdList><ArticleId IdType="pubmed">23245808</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang, C. et al. Association of systemic immune-inflammation-index with all-cause and cause-specific mortality among type 2 diabetes: a cohort study base on population. Endocrine, 1–13 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11076376</ArticleId><ArticleId IdType="pubmed">38048013</ArticleId></ArticleIdList></Reference><Reference><Citation>Qin, Z. et al. Systemic immune-inflammation index is associated with increased urinary albumin excretion: a population-based study. Front. Immunol.13, 863640 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8977553</ArticleId><ArticleId IdType="pubmed">35386695</ArticleId></ArticleIdList></Reference><Reference><Citation>Herbert, A., Bryant, T., Campbell, M. & Smith, J. Investigation of the effect of occult invasive cancer on progress towards successful cervical screening. J. Med. Screen.5, 92–98 (1998).</Citation><ArticleIdList><ArticleId IdType="pubmed">9718528</ArticleId></ArticleIdList></Reference><Reference><Citation>Nie, Y., Zhou, H., Wang, J. & Kan, H. Association between systemic immune-inflammation index and diabetes: a population-based study from the NHANES. Front. Endocrinol.14, 1245199 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10644783</ArticleId><ArticleId IdType="pubmed">38027115</ArticleId></ArticleIdList></Reference><Reference><Citation>Faulds, M. H., Zhao, C., Dahlman-Wright, K. & Gustafsson, J. A. THEMATIC REVIEW the diversity of sex steroid action: regulation of metabolism by estrogen signaling. J. Endocrinol.212, 3–12 (2012).</Citation><ArticleIdList><ArticleId IdType="pubmed">21511884</ArticleId></ArticleIdList></Reference><Reference><Citation>Se, S. Inflammation and insulin resistance. J. Clin. Invest.116, 1793–1801 (2006).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1483173</ArticleId><ArticleId IdType="pubmed">16823477</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39627150</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Analysing physical activity measures and clustering in patients with type 2 diabetes in secondary care: insights from the DIAbetes and LifEstyle Cohort Twente (DIALECT)-an observational cohort study.</ArticleTitle><Pagination><StartPage>e082059</StartPage><MedlinePgn>e082059</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e082059</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2023-082059</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">To analyse variance in accelerometer-based physical activity (PA) measures in patients with type 2 diabetes, identify the most distinctive PA measures and classify patients into different PA clusters based on these measures.</AbstractText><AbstractText Label="DESIGN" NlmCategory="METHODS">DIAbetes and LifEstyle Cohort Twente (DIALECT), an observational cohort study.</AbstractText><AbstractText Label="SETTING" NlmCategory="METHODS">Secondary care in the Netherlands.</AbstractText><AbstractText Label="PARTICIPANT" NlmCategory="METHODS">253 patients, with three excluded due to insufficient data. The cohort was predominantly male (66%) with an average age of 64.7 years.</AbstractText><AbstractText Label="PRIMARY AND SECONDARY OUTCOME MEASURES" NlmCategory="METHODS">The primary outcomes of DIALECT were all-cause mortality, microvascular and macrovascular diseases. The secondary outcomes are blood pressure levels, kidney function indicators and albuminuria levels RESULTS: Principal component analysis (PCA) was applied to 53 accelerometer-derived PA measures. Principal components were identified using a scree plot, key measures determining the principal components were derived and <i>k-</i>mean cluster analysis was applied to the components. The main PA measures were steps/day, active time, zero steps, total sedentary behaviour (SB) bout duration and total moderate to vigorous physical activity (MVPA) bout duration. Based on three PCA components, three clusters were identified. The inactive cluster had a higher BMI, diabetes duration, age and SB bout duration, and lower steps/day and MVPA bout duration compared with the other clusters (p<0.05). The active cluster still scores low on MVPA bout duration (18 min/week) and high on SB bout duration (5.0 hours/day).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">PA behaviour in patients can be categorised into three distinct clusters. The identified PA measures and behaviour clusters offer promising opportunities for tailored lifestyle treatment. However, further studies are needed to determine which PA measures are clinically most relevant, validate the usefulness of this classification and evaluate whether tailoring lifestyle advice according to these clusters adds clinical value.</AbstractText><AbstractText Label="TRIAL REGISTRATION NUMBER" NlmCategory="BACKGROUND">NTR5855.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>den Braber</LastName><ForeName>Niala</ForeName><Initials>N</Initials><Identifier Source="ORCID">0000-0002-9098-3439</Identifier><AffiliationInfo><Affiliation>Biomedical Signal and Systems, University of Twente, Enschede, The Netherlands nialadb@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Internal Medicine, Ziekenhuisgroep Twente, Almelo, Overijssel, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vollenbroek-Hutten</LastName><ForeName>Miriam M</ForeName><Initials>MM</Initials><Identifier Source="ORCID">0000-0001-8730-1487</Identifier><AffiliationInfo><Affiliation>Biomedical Signal and Systems, University of Twente, Enschede, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kappert</LastName><ForeName>Kilian D R</ForeName><Initials>KDR</Initials><Identifier Source="ORCID">0000-0002-1278-205X</Identifier><AffiliationInfo><Affiliation>Biomedical Signal and Systems, University of Twente, Enschede, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Internal Medicine, Ziekenhuisgroep Twente, Almelo, Overijssel, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Laverman</LastName><ForeName>Gozewijn D</ForeName><Initials>GD</Initials><Identifier Source="ORCID">0000-0002-8716-7115</Identifier><AffiliationInfo><Affiliation>Biomedical Signal and Systems, University of Twente, Enschede, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Internal Medicine, Ziekenhuisgroep Twente, Almelo, Overijssel, The Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="Y">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009426" MajorTopicYN="N" Type="Geographic">Netherlands</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D061725" MajorTopicYN="Y">Accelerometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057185" MajorTopicYN="N">Sedentary Behavior</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D063127" MajorTopicYN="N">Secondary Care</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008019" MajorTopicYN="N">Life Style</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Clinical Decision-Making</Keyword><Keyword MajorTopicYN="N">General diabetes</Keyword><Keyword MajorTopicYN="N">Information technology</Keyword><Keyword MajorTopicYN="N">eHealth</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>22</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39627150</ArticleId><ArticleId IdType="pmc">PMC11624807</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2023-082059</ArticleId><ArticleId IdType="pii">bmjopen-2023-082059</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15:131. doi: 10.1186/s12916-017-0901-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12916-017-0901-x</ArticleId><ArticleId IdType="pmc">PMC5516328</ArticleId><ArticleId IdType="pubmed">28720102</ArticleId></ArticleIdList></Reference><Reference><Citation>Chudyk A, Petrella RJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care. 2011;34:1228–37. doi: 10.2337/dc10-1881.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-1881</ArticleId><ArticleId IdType="pmc">PMC3114506</ArticleId><ArticleId IdType="pubmed">21525503</ArticleId></ArticleIdList></Reference><Reference><Citation>Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29:2518–27. doi: 10.2337/dc06-1317.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc06-1317</ArticleId><ArticleId IdType="pubmed">17065697</ArticleId></ArticleIdList></Reference><Reference><Citation>Marrero DG, Peyrot M, Garfield S. Promoting behavioral science research in diabetes. Diabetes Care. 2001;24:1–2. doi: 10.2337/diacare.24.1.1.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.24.1.1</ArticleId><ArticleId IdType="pubmed">11194211</ArticleId></ArticleIdList></Reference><Reference><Citation>Colberg SR, Sigal RJ, Yardley JE, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79. doi: 10.2337/dc16-1728.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc16-1728</ArticleId><ArticleId IdType="pmc">PMC6908414</ArticleId><ArticleId IdType="pubmed">27926890</ArticleId></ArticleIdList></Reference><Reference><Citation>Dunstan DW, Howard B, Healy GN, et al. Too much sitting--a health hazard. Diabetes Res Clin Pract. 2012;97:368–76. doi: 10.1016/j.diabres.2012.05.020.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2012.05.020</ArticleId><ArticleId IdType="pubmed">22682948</ArticleId></ArticleIdList></Reference><Reference><Citation>Kennerly AM, Kirk A. Physical activity and sedentary behaviour of adults with type 2 diabetes: a systematic review. Pract Diab. 2018;35:86. doi: 10.1002/pdi.2169.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/pdi.2169</ArticleId></ArticleIdList></Reference><Reference><Citation>Lyons EJ, Lewis ZH, Mayrsohn BG, et al. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014;16:e192. doi: 10.2196/jmir.3469.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/jmir.3469</ArticleId><ArticleId IdType="pmc">PMC4147713</ArticleId><ArticleId IdType="pubmed">25131661</ArticleId></ArticleIdList></Reference><Reference><Citation>Vanessa Kercher M, Francisco Jacobo Gómez Chávez L, Cortés-Almanzar P, et al. Fitness trends from around the globe. 2023</Citation></Reference><Reference><Citation>Batrakoulis A. European survey of fitness trends for 2020. ACSM’s Health Fit J. 2019;23:28–35. doi: 10.1249/FIT.0000000000000523.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/FIT.0000000000000523</ArticleId></ArticleIdList></Reference><Reference><Citation>Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. doi: 10.1186/1479-5868-8-79.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1479-5868-8-79</ArticleId><ArticleId IdType="pmc">PMC3197470</ArticleId><ArticleId IdType="pubmed">21798015</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferguson T, Rowlands AV, Olds T, et al. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015;12:42. doi: 10.1186/s12966-015-0201-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-015-0201-9</ArticleId><ArticleId IdType="pmc">PMC4416251</ArticleId><ArticleId IdType="pubmed">25890168</ArticleId></ArticleIdList></Reference><Reference><Citation>Tudor-Locke C, Mora-Gonzalez J, Ducharme SW, et al. Walking cadence (steps/min) and intensity in 61-85-year-old adults: the CADENCE-Adults study. Int J Behav Nutr Phys Act. 2021;18:129.:129. doi: 10.1186/s12966-021-01199-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-021-01199-4</ArticleId><ArticleId IdType="pmc">PMC8461976</ArticleId><ArticleId IdType="pubmed">34556146</ArticleId></ArticleIdList></Reference><Reference><Citation>Tudor-Locke C, Han H, Aguiar EJ, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52:776–88. doi: 10.1136/bjsports-2017-097628.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsports-2017-097628</ArticleId><ArticleId IdType="pmc">PMC6029645</ArticleId><ArticleId IdType="pubmed">29858465</ArticleId></ArticleIdList></Reference><Reference><Citation>Boerema ST, van Velsen L, Vollenbroek MM, et al. Pattern measures of sedentary behaviour in adults: A literature review. Dig Health. 2020;6 doi: 10.1177/2055207620905418.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2055207620905418</ArticleId><ArticleId IdType="pmc">PMC7013117</ArticleId><ArticleId IdType="pubmed">32095261</ArticleId></ArticleIdList></Reference><Reference><Citation>Yom-Tov E, Feraru G, Kozdoba M, et al. Encouraging Physical Activity in Patients With Diabetes: Intervention Using a Reinforcement Learning System. J Med Internet Res. 2017;19:e338. doi: 10.2196/jmir.7994.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/jmir.7994</ArticleId><ArticleId IdType="pmc">PMC5654735</ArticleId><ArticleId IdType="pubmed">29017988</ArticleId></ArticleIdList></Reference><Reference><Citation>Jamilah M, Zakaria A, Md. Shakaff AY, et al. Principal component analysis - engineering applications. 2012. Principal component analysis – a realization of classification success in multi sensor data fusion.</Citation></Reference><Reference><Citation>Thompson D, Batterham AM. Towards integrated physical activity profiling. PLoS One. 2013;8:e56427. doi: 10.1371/journal.pone.0056427.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0056427</ArticleId><ArticleId IdType="pmc">PMC3577906</ArticleId><ArticleId IdType="pubmed">23437131</ArticleId></ArticleIdList></Reference><Reference><Citation>den Braber N, Vollenbroek-Hutten MMR, Westerik KM, et al. Glucose Regulation Beyond HbA1c in Type 2 Diabetes Treated With Insulin: Real-World Evidence From the DIALECT-2 Cohort. Diabetes Care. 2021;44:2238–44. doi: 10.2337/dc20-2241.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-2241</ArticleId><ArticleId IdType="pmc">PMC8740938</ArticleId><ArticleId IdType="pubmed">34301732</ArticleId></ArticleIdList></Reference><Reference><Citation>Gant CM, Binnenmars SH, Berg E van den, et al. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management: Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente (DIALECT) Nutrients. 2017;9:3–11.:709. doi: 10.3390/nu9070709.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu9070709</ArticleId><ArticleId IdType="pmc">PMC5537824</ArticleId><ArticleId IdType="pubmed">28684676</ArticleId></ArticleIdList></Reference><Reference><Citation>Hagedoorn IJM, den Braber N, Oosterwijk MM, et al. Low Physical Activity in Patients with Complicated Type 2 Diabetes Mellitus Is Associated with Low Muscle Mass and Low Protein Intake. J Clin Med. 2020;9:1–12.:3104. doi: 10.3390/jcm9103104.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm9103104</ArticleId><ArticleId IdType="pmc">PMC7601707</ArticleId><ArticleId IdType="pubmed">32992990</ArticleId></ArticleIdList></Reference><Reference><Citation>Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62. doi: 10.1136/bjsports-2020-102955.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bjsports-2020-102955</ArticleId><ArticleId IdType="pmc">PMC7719906</ArticleId><ArticleId IdType="pubmed">33239350</ArticleId></ArticleIdList></Reference><Reference><Citation>Wolvers MDJ, Bussmann JBJ, Bruggeman-Everts FZ, et al. Physical Behavior Profiles in Chronic Cancer-Related Fatigue. Int J Behav Med. 2018;25:30–7. doi: 10.1007/s12529-017-9670-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12529-017-9670-3</ArticleId><ArticleId IdType="pmc">PMC5803288</ArticleId><ArticleId IdType="pubmed">28699090</ArticleId></ArticleIdList></Reference><Reference><Citation>Pate RR, O’Neill JR, Lobelo F. The Evolving Definition of “Sedentary.”. Exerc Sport Sci Rev. 2008;36:173–8. doi: 10.1097/JES.0b013e3181877d1a.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/JES.0b013e3181877d1a</ArticleId><ArticleId IdType="pubmed">18815485</ArticleId></ArticleIdList></Reference><Reference><Citation>Mendes M de A, da Silva I, Ramires V, et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE. 2018;13:e0200701. doi: 10.1371/journal.pone.0200701.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0200701</ArticleId><ArticleId IdType="pmc">PMC6053180</ArticleId><ArticleId IdType="pubmed">30024953</ArticleId></ArticleIdList></Reference><Reference><Citation>Mesquita R, Spina G, Pitta F, et al. Physical activity patterns and clusters in 1001 patients with COPD. Chron Respir Dis. 2017;14:256–69. doi: 10.1177/1479972316687207.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1479972316687207</ArticleId><ArticleId IdType="pmc">PMC5720232</ArticleId><ArticleId IdType="pubmed">28774199</ArticleId></ArticleIdList></Reference><Reference><Citation>Thakare YS, Bagal SB. Performance Evaluation of K-means Clustering Algorithm with Various Distance Metrics. IJCA. 2015;110:12–6. doi: 10.5120/19360-0929.</Citation><ArticleIdList><ArticleId IdType="doi">10.5120/19360-0929</ArticleId></ArticleIdList></Reference><Reference><Citation>Luxburg U. Clustering Stability: An Overview. Found Trends Mach Learn. 2010;2:235–74. doi: 10.1561/2200000008.</Citation><ArticleIdList><ArticleId IdType="doi">10.1561/2200000008</ArticleId></ArticleIdList></Reference><Reference><Citation>Kraus WE, Janz KF, Powell KE, et al. Daily Step Counts for Measuring Physical Activity Exposure and Its Relation to Health. Med Sci Sports Exerc. 2019;51:1206–12. doi: 10.1249/MSS.0000000000001932.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/MSS.0000000000001932</ArticleId><ArticleId IdType="pmc">PMC6527133</ArticleId><ArticleId IdType="pubmed">31095077</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee I-M, Shiroma EJ, Kamada M, et al. Association of Step Volume and Intensity With All-Cause Mortality in Older Women. JAMA Intern Med. 2019;179:1105–12. doi: 10.1001/jamainternmed.2019.0899.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jamainternmed.2019.0899</ArticleId><ArticleId IdType="pmc">PMC6547157</ArticleId><ArticleId IdType="pubmed">31141585</ArticleId></ArticleIdList></Reference><Reference><Citation>Saint-Maurice PF, Troiano RP, Bassett DR, Jr, et al. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. JAMA . 2020;323:1151–60. doi: 10.1001/jama.2020.1382.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2020.1382</ArticleId><ArticleId IdType="pmc">PMC7093766</ArticleId><ArticleId IdType="pubmed">32207799</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Ploeg HP, Chey T, Korda RJ, et al. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172:494–500. doi: 10.1001/archinternmed.2011.2174.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/archinternmed.2011.2174</ArticleId><ArticleId IdType="pubmed">22450936</ArticleId></ArticleIdList></Reference><Reference><Citation>Batrakoulis A, Jamurtas AZ, Fatouros IG. Exercise and Type II Diabetes Mellitus: A Brief Guide for Exercise Professionals. Strength Cond J. 2022;44:64–72. doi: 10.1519/SSC.0000000000000731.</Citation><ArticleIdList><ArticleId IdType="doi">10.1519/SSC.0000000000000731</ArticleId></ArticleIdList></Reference><Reference><Citation>Batrakoulis A, Jamurtas AZ, Fatouros IG. High-Intensity Interval Training in Metabolic Diseases Physiological Adaptations. ACSM’s Health Fit J. 2021;25:54–9. doi: 10.1249/FIT.0000000000000703.</Citation><ArticleIdList><ArticleId IdType="doi">10.1249/FIT.0000000000000703</ArticleId></ArticleIdList></Reference><Reference><Citation>Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. doi: 10.1186/s12966-015-0314-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12966-015-0314-1</ArticleId><ArticleId IdType="pmc">PMC4683756</ArticleId><ArticleId IdType="pubmed">26684758</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39626843</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>06</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1532-8600</ISSN><JournalIssue CitedMedium="Internet"><Volume>163</Volume><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Metabolism: clinical and experimental</Title><ISOAbbreviation>Metabolism</ISOAbbreviation></Journal><ArticleTitle>Human subjects with impaired beta-cell function and glucose tolerance have higher levels of intra-islet intact GLP-1.</ArticleTitle><Pagination><StartPage>156087</StartPage><MedlinePgn>156087</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.metabol.2024.156087</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0026-0495(24)00315-9</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">A number of studies have suggested that pancreatic α cells produce intact GLP-1, thereby constituting a gut-independent paracrine incretin system. However, the debate on whether human α cells contain intact GLP-1 and whether this relates to the presence of diabetes is still ongoing. This study aimed to determine the presence of proglucagon-derived peptides, including GLP-1 isoforms, in pancreas biopsies obtained during partial pancreatectomy from metabolically profiled human donors, stratified according to pre-surgery glucose tolerance.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We enrolled 61 individuals with no known history of type 2 diabetes (31F/30M, age 64.6 ± 10.6 yrs., BMI 24.2 ± 3.68 kg/m<sup>2</sup>) scheduled for partial pancreatectomy for periampullary neoplasm. Differences in glucose tolerance and insulin secretion/sensitivity were assessed using preoperative 2 h OGTT, 4 h-Mixed Meal Test and Hyperinsulinemic Euglycemic Clamp. Subjects were subsequently classified as normal glucose tolerant (NGT, n = 19), impaired glucose tolerant (IGT, n = 20) or newly diagnosed diabetes (DM) (n = 22). We measured total GLP-1, intact GLP-1, glucagon, insulin, and C-peptide in pancreas biopsies and plasma from these subjects and correlated the results with their secretory and metabolic parameters.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Extractable levels of total GLP-1 were 23.9 ± 2.66 pmol/g, while intact GLP-1 levels were 1.15 ± 0.18 pmol/g. When we examined proglucagon derived peptides (adjusted for glucagon levels), in subjects classified according to glucose tolerance, we observed similar levels of total GLP-1, however, intact GLP-1 was significantly increased in IGT and DM groups and inversely associated with beta cell glucose sensitivity and insulin secretion in vivo.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data show that development of glucose intolerance and beta cell dysfunction are significantly associated with increased levels of intra-islet intact GLP-1, a potentially beneficial adaptation of the paracrine regulation of insulin secretion in type 2 diabetes.</AbstractText><CopyrightInformation>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mezza</LastName><ForeName>Teresa</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wewer Albrechtsen</LastName><ForeName>Nicolai J</ForeName><Initials>NJ</Initials><AffiliationInfo><Affiliation>Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Di Giuseppe</LastName><ForeName>Gianfranco</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ferraro</LastName><ForeName>Pietro Manuel</ForeName><Initials>PM</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Sezione di Nefrologia, Dipartimento di Medicina, Università degli Studi di Verona, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Soldovieri</LastName><ForeName>Laura</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ciccarelli</LastName><ForeName>Gea</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Brunetti</LastName><ForeName>Michela</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Quero</LastName><ForeName>Giuseppe</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alfieri</LastName><ForeName>Sergio</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nista</LastName><ForeName>Enrico Celestino</ForeName><Initials>EC</Initials><AffiliationInfo><Affiliation>Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gasbarrini</LastName><ForeName>Antonio</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tondolo</LastName><ForeName>Vincenzo</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Digestive Surgery Unit, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mari</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Institute of Neuroscience, National Council of Research - Padua (IT), Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pontecorvi</LastName><ForeName>Alfredo</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Giaccari</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy. Electronic address: andrea.giaccari@unicatt.it.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Holst</LastName><ForeName>Jens J</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address: jjholst@sund.ku.dk.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Metabolism</MedlineTA><NlmUniqueID>0375267</NlmUniqueID><ISSNLinking>0026-0495</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>89750-14-1</RegistryNumber><NameOfSubstance UI="D052216">Glucagon-Like Peptide 1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D052216" MajorTopicYN="Y">Glucagon-Like Peptide 1</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="Y">Glucose Intolerance</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="Y">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="Y">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007515" MajorTopicYN="N">Islets of Langerhans</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015309" MajorTopicYN="N">Glucose Clamp Technique</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010180" MajorTopicYN="N">Pancreatectomy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Alpha-cells</Keyword><Keyword MajorTopicYN="N">Glucagon-like peptide 1</Keyword><Keyword MajorTopicYN="N">Islets biology</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest Authors have no conflicts to declare.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>0</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>19</Hour><Minute>28</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39626843</ArticleId><ArticleId IdType="doi">10.1016/j.metabol.2024.156087</ArticleId><ArticleId IdType="pii">S0026-0495(24)00315-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39626773</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>07</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1752-8984</ISSN><JournalIssue CitedMedium="Internet"><Volume>21</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Season>Nov-Dec</Season></PubDate></JournalIssue><Title>Diabetes & vascular disease research</Title><ISOAbbreviation>Diab Vasc Dis Res</ISOAbbreviation></Journal><ArticleTitle>The association between osteoprotegerin and arterial stiffness in a 10-year longitudinal study of patients with type 2 diabetes.</ArticleTitle><Pagination><StartPage>14791641241304435</StartPage><MedlinePgn>14791641241304435</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">14791641241304435</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1177/14791641241304435</ELocationID><Abstract><AbstractText><b>Introduction</b>: Osteoprotegerin (OPG) inhibits vascular calcification which is central to pathogenesis of arterial stiffness. However, it promotes inflammation by upregulating expression of vascular cell adhesion molecule-1(VCAM-1), thereby contributing to arterial stiffness. We investigated longitudinal association between OPG and arterial stiffness in type 2 diabetes (T2D), causality of the association and mediation by VCAM-1. <b>Methods</b>: This was a prospective cohort study of T2D patients (<i>N</i> = 1877, mean age 57.0 ± 10.8) with 10 years' follow-up. Baseline plasma OPG was measured using immunoassay. Pulse wave velocity (PWV) was assessed using applanation tonometry. We examined association between OPG and follow-up PWV using linear mixed model. One-sample Mendelian Randomization (MR) was conducted with rs1385492 as OPG-associated single nucleotide polymorphism (SNP). <b>Results</b>: Baseline natural log (Ln)-transformed OPG was positively associated with baseline and follow-up PWV with adjusted coefficients 0.43 (95%CI 0.05, 0.80; <i>p</i> = .026) and 0.51 (95%CI 0.06 to 0.97; <i>p</i> = .028) respectively. Genetically-predicted higher levels of plasma OPG was associated with higher last follow-up PWV with coefficient 10.81 (95%CI 2.97, 18.65; <i>p</i> = .007) per unit increase in LnOPG. Higher VCAM-1 accounted for 10.2% of association between LnOPG and follow-up PWV. <b>Discussion</b>: Baseline plasma OPG was associated with higher follow-up PWV in patients with T2D, with genetic evidence from MR. This association may be mediated, at least in part, by VCAM-1.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Low</LastName><ForeName>Serena</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">609710</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pek</LastName><ForeName>Sharon</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moh</LastName><ForeName>Angela</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian-Jun</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pandian</LastName><ForeName>Bhuvaneswari</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ang</LastName><ForeName>Keven</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>Wern Ee</ForeName><Initials>WE</Initials><AffiliationInfo><Affiliation>National Healthcare Group Polyclinics, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">63707</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lim</LastName><ForeName>Ziliang</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>National Healthcare Group Polyclinics, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">63707</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Subramaniam</LastName><ForeName>Tavintharan</ForeName><Initials>T</Initials><Identifier Source="ORCID">0000-0002-5365-8899</Identifier><AffiliationInfo><Affiliation>Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">609710</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sum</LastName><ForeName>Chee Fang</ForeName><Initials>CF</Initials><AffiliationInfo><Affiliation>Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">609710</Identifier></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lim</LastName><ForeName>Su Chi</ForeName><Initials>SC</Initials><Identifier Source="ORCID">0000-0003-1742-5817</Identifier><AffiliationInfo><Affiliation>Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">150819</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">609710</Identifier></AffiliationInfo><AffiliationInfo><Affiliation>Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Saw Swee Hock School of Public Health, National University of Singapore, Singapore.</Affiliation><Identifier Source="RINGGOLD">203377</Identifier></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diab Vasc Dis Res</MedlineTA><NlmUniqueID>101234011</NlmUniqueID><ISSNLinking>1479-1641</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053244">Osteoprotegerin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C506030">TNFRSF11B protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D019010">Vascular Cell Adhesion Molecule-1</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D053244" MajorTopicYN="Y">Osteoprotegerin</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059289" MajorTopicYN="Y">Vascular Stiffness</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019010" MajorTopicYN="Y">Vascular Cell Adhesion Molecule-1</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D063177" MajorTopicYN="Y">Pulse Wave Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="N">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003925" MajorTopicYN="N">Diabetic Angiopathies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">arterial stiffness</Keyword><Keyword MajorTopicYN="N">osteoprotegerin</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>19</Hour><Minute>13</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39626773</ArticleId><ArticleId IdType="pmc">PMC11615981</ArticleId><ArticleId IdType="doi">10.1177/14791641241304435</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>International Diabetes Federation . IDF diabetes atlas. 10th ed. Brussels, Belgium: International Diabetes Federation, 2021.</Citation></Reference><Reference><Citation>Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14: 88–98.</Citation><ArticleIdList><ArticleId IdType="pubmed">29219149</ArticleId></ArticleIdList></Reference><Reference><Citation>Bansal S, Burman A, Tripathi AK. Advanced glycation end products: key mediator and therapeutic target of cardiovascular complications in diabetes. World J Diabetes 2023; 14: 1146–1162.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10473940</ArticleId><ArticleId IdType="pubmed">37664478</ArticleId></ArticleIdList></Reference><Reference><Citation>Antonopoulos AS, Siasos G, Oikonomou E, et al. Arterial stiffness and microvascular disease in type 2 diabetes. Eur J Clin Invest 2021; 51: e13380.</Citation><ArticleIdList><ArticleId IdType="pubmed">33368197</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JM, Kim SS, Kim IJ, et al. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: the REBOUND study. Cardiovasc Diabetol 2020; 19: 143.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7510263</ArticleId><ArticleId IdType="pubmed">32962704</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharif S, Visseren FLJ, Spiering W, et al. Arterial stiffness as a risk factor for cardiovascular events and all-cause mortality in people with Type 2 diabetes. Diabet Med 2019; 36: 1125–1132.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6767543</ArticleId><ArticleId IdType="pubmed">30920676</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsu BG, Shih MH, Chen YC, et al. High serum osteoprotegerin is associated with arterial stiffness in kidney transplant patients. Tohoku J Exp Med 2015; 236: 247–253.</Citation><ArticleIdList><ArticleId IdType="pubmed">26156285</ArticleId></ArticleIdList></Reference><Reference><Citation>Pateinakis P, Papagianni A, Douma S, et al. Associations of fetuin-A and osteoprotegerin with arterial stiffness and early atherosclerosis in chronic hemodialysis patients. BMC Nephrol 2013; 14: 122.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3700830</ArticleId><ArticleId IdType="pubmed">23758931</ArticleId></ArticleIdList></Reference><Reference><Citation>Schoppet M, Al-Fakhri N, Franke FE, et al. Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Mönckeberg's sclerosis and atherosclerosis. J Clin Endocrinol Metab 2004; 89: 4104–4112.</Citation><ArticleIdList><ArticleId IdType="pubmed">15292354</ArticleId></ArticleIdList></Reference><Reference><Citation>Min H, Morony S, Sarosi I, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 2000; 192: 463–474.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2193236</ArticleId><ArticleId IdType="pubmed">10952716</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee CT, Chua S, Hsu CY, et al. Biomarkers associated with vascular and valvular calcification in chronic hemodialysis patients. Dis Markers 2013; 34: 229–235.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3810241</ArticleId><ArticleId IdType="pubmed">23396289</ArticleId></ArticleIdList></Reference><Reference><Citation>Chae SY, Chung W, Kim YH, et al. The correlation of serum osteoprotegerin with non-traditional cardiovascular risk factors and arterial stiffness in patients with pre-dialysis chronic kidney disease: results from the KNOW-CKD study. J Kor Med Sci 2018; 33: e322.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6306329</ArticleId><ArticleId IdType="pubmed">30595681</ArticleId></ArticleIdList></Reference><Reference><Citation>Fehérvári L, Frigy A, Kocsis L, et al. Serum osteoprotegerin and carotid intima-media thickness are related to high arterial stiffness in heart failure with reduced ejection fraction. Diagnostics 2021; 11: 764.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8145213</ArticleId><ArticleId IdType="pubmed">33923139</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee CJ, Wang JH, Chen ML, et al. Serum osteoprotegerin is associated with arterial stiffness assessed according to the cardio-ankle vascular index in hypertensive patients. J Atherosclerosis Thromb 2015; 22: 304–312.</Citation><ArticleIdList><ArticleId IdType="pubmed">25318352</ArticleId></ArticleIdList></Reference><Reference><Citation>Hou JS, Lin YL, Wang CH, et al. Serum osteoprotegerin is an independent marker of central arterial stiffness as assessed using carotid-femoral pulse wave velocity in hemodialysis patients: a cross sectional study. BMC Nephrol 2019; 20: 184.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6533647</ArticleId><ArticleId IdType="pubmed">31122190</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee JE, Kim HJ, Moon SJ, et al. Serum osteoprotegerin is associated with vascular stiffness and the onset of new cardiovascular events in hemodialysis patients. Korean J Intern Med 2013; 28: 668–677.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3846992</ArticleId><ArticleId IdType="pubmed">24307842</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakashima A, Carrero JJ, Qureshi AR, et al. Plasma osteoprotegerin, arterial stiffness, and mortality in normoalbuminemic Japanese hemodialysis patients. Osteoporos Int 2011; 22: 1695–1701.</Citation><ArticleIdList><ArticleId IdType="pubmed">20812007</ArticleId></ArticleIdList></Reference><Reference><Citation>Sendic S, Mansouri L, Hong MG, et al. Soluble CD14 and osteoprotegerin associate with ankle-brachial index as a measure of arterial stiffness in patients with mild-to-moderate chronic kidney disease in a five-year prospective study. Cardiorenal Med 2023; 13: 189–201.</Citation><ArticleIdList><ArticleId IdType="pubmed">37231818</ArticleId></ArticleIdList></Reference><Reference><Citation>Beyazal MS, Erdoǧan T, Devrimsel G, et al. Relationship of osteoprotegerin to pulse wave velocity and carotid intima-media thickness in rheumatoid arthritis patients. Z Rhematol 2016; 75: 723–728.</Citation><ArticleIdList><ArticleId IdType="pubmed">26555551</ArticleId></ArticleIdList></Reference><Reference><Citation>Csiky B, Sági B, Peti A, et al. The impact of osteocalcin, osteoprotegerin and osteopontin on arterial stiffness in chronic renal failure patients on hemodialysis. Kidney Blood Press Res 2017; 42: 1312–1321.</Citation><ArticleIdList><ArticleId IdType="pubmed">29258085</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung CH, Lee WY, Kim SY, et al. The relationship between coronary artery calcification score, plasma osteoprotegerin level and arterial stiffness in asymptomatic type 2 DM. Acta Diabetol 2010; 47(Suppl 1): 145–152.</Citation><ArticleIdList><ArticleId IdType="pubmed">19787288</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim MS, Kim WJ, Khera AV, et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur Heart J 2021; 42: 3388–3403.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8423481</ArticleId><ArticleId IdType="pubmed">34333589</ArticleId></ArticleIdList></Reference><Reference><Citation>Dessein PH, López-Mejias R, González-Juanatey C, et al. Independent relationship of osteoprotegerin concentrations with endothelial activation and carotid atherosclerosis in patients with severe rheumatoid arthritis. J Rheumatol 2014; 41: 429–436.</Citation><ArticleIdList><ArticleId IdType="pubmed">24488413</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng H, Song Z, Xu H, et al. MicroRNA-1185 promotes arterial stiffness though modulating VCAM-1 and E-selectin expression. Cell Physiol Biochem 2017; 41: 2183–2193.</Citation><ArticleIdList><ArticleId IdType="pubmed">28441665</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Liu JJ, Sum CF, et al. Ethnic disparity in central arterial stiffness and its determinants among Asians with type 2 diabetes. Atherosclerosis 2015; 242: 22–28.</Citation><ArticleIdList><ArticleId IdType="pubmed">26162317</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujii M, Tomiyama H, Nakano H, et al. Differences in longitudinal associations of cardiovascular risk factors with arterial stiffness and pressure wave reflection in middle-aged Japanese men. Hypertens Res 2021; 44: 98–106.</Citation><ArticleIdList><ArticleId IdType="pubmed">32724134</ArticleId></ArticleIdList></Reference><Reference><Citation>Kawamoto R, Tabara Y, Kusunoki T, et al. A slightly high-normal glucose level is associated with increased arterial stiffness in Japanese community-dwelling persons with pre-diabetes. Vasc Med 2013; 18: 251–256.</Citation><ArticleIdList><ArticleId IdType="pubmed">24029540</ArticleId></ArticleIdList></Reference><Reference><Citation>Leto G, Tartaglione L, Rotondi S, et al. Diastolic pressure and ACR are modifiable risk factors of arterial stiffness in T2DM without cardiovascular disease. J Clin Endocrinol Metab 2022; 107: e3857–e3865.</Citation><ArticleIdList><ArticleId IdType="pubmed">35595474</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilson J, Webb AJS. Systolic blood pressure and longitudinal progression of arterial stiffness: a quantitative meta-analysis. J Am Heart Assoc 2020; 9: e017804.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7660776</ArticleId><ArticleId IdType="pubmed">32856498</ArticleId></ArticleIdList></Reference><Reference><Citation>Xie X, Ma YT, Yang YN, et al. Decreased estimated glomerular filtration rate (eGFR) is not an independent risk factor of arterial stiffness in Chinese women. Blood Pres 2013; 22: 73–79.</Citation><ArticleIdList><ArticleId IdType="pubmed">22853697</ArticleId></ArticleIdList></Reference><Reference><Citation>Newcombe PJ, Connolly S, Seaman S, et al. A two-step method for variable selection in the analysis of a case-cohort study. Int J Epidemiol 2018; 47: 597–604.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5913627</ArticleId><ArticleId IdType="pubmed">29136145</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods 2019; 10: 486–496.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6973275</ArticleId><ArticleId IdType="pubmed">30861319</ArticleId></ArticleIdList></Reference><Reference><Citation>Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 2014; 23: R89–98.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4170722</ArticleId><ArticleId IdType="pubmed">25064373</ArticleId></ArticleIdList></Reference><Reference><Citation>Howey R, Shin SY, Relton C, et al. Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data. PLoS Genet 2020; 16: e1008198.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7067488</ArticleId><ArticleId IdType="pubmed">32119656</ArticleId></ArticleIdList></Reference><Reference><Citation>Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 2019; 4: 186.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7384151</ArticleId><ArticleId IdType="pubmed">32760811</ArticleId></ArticleIdList></Reference><Reference><Citation>Gurung RL, Dorajoo R, Yiamunaa M., et al. Association of genetic variants for plasma LRG1 with rapid decline in kidney function in patients with type 2 diabetes. J Clin Endocrinol Metab 2021; 106: 2384–2394.</Citation><ArticleIdList><ArticleId IdType="pubmed">33889958</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012; 44: 821–824.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3386377</ArticleId><ArticleId IdType="pubmed">22706312</ArticleId></ArticleIdList></Reference><Reference><Citation>Chao P, Zhang X, Zhang L, et al. Causal effects for genetic variants of osteoprotegerin on the risk of acute myocardial infarction and coronary heart disease: a two-sample Mendelian randomization study. Front Cardiovasc Med 2023; 10: 1041231.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10028206</ArticleId><ArticleId IdType="pubmed">36960470</ArticleId></ArticleIdList></Reference><Reference><Citation>Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–311.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC29783</ArticleId><ArticleId IdType="pubmed">11125122</ArticleId></ArticleIdList></Reference><Reference><Citation>Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 1986; 51: 1173–1182.</Citation><ArticleIdList><ArticleId IdType="pubmed">3806354</ArticleId></ArticleIdList></Reference><Reference><Citation>Pavlovska I, Kunzova S, Jakubik J, et al. Associations between high triglycerides and arterial stiffness in a population-based sample: kardiovize Brno 2030 study. Lipids Health Dis 2020; 19: 170.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7362636</ArticleId><ArticleId IdType="pubmed">32669093</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian X, Zuo Y, Chen S, et al. Hypertension, arterial stiffness, and diabetes: a prospective cohort study. Hypertension 2022; 79: 1487–1496.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9172905</ArticleId><ArticleId IdType="pubmed">35574838</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang J, Liu L, Zhou Y, et al. Increased fasting glucose and the prevalence of arterial stiffness: a cross-sectional study in Chinese adults. Neurol Res 2014; 36: 427–433.</Citation><ArticleIdList><ArticleId IdType="pubmed">24702596</ArticleId></ArticleIdList></Reference><Reference><Citation>Montagnana M, Lippi G, Danese E, et al. The role of osteoprotegerin in cardiovascular disease. Ann Med 2013; 45: 254–264.</Citation><ArticleIdList><ArticleId IdType="pubmed">23110639</ArticleId></ArticleIdList></Reference><Reference><Citation>Secchiero P, Corallini F, Pandolfi A, et al. An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 2006; 169: 2236–2244.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1762477</ArticleId><ArticleId IdType="pubmed">17148684</ArticleId></ArticleIdList></Reference><Reference><Citation>Mangan SH, Van Campenhout A, Rush C, et al. Osteoprotegerin upregulates endothelial cell adhesion molecule response to tumor necrosis factor-alpha associated with induction of angiopoietin-2. Cardiovasc Res 2007; 76: 494–505.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2128766</ArticleId><ArticleId IdType="pubmed">17706953</ArticleId></ArticleIdList></Reference><Reference><Citation>Georgakis MK, Gill D. Mendelian randomization studies in stroke: exploration of risk factors and drug targets with human genetic data. Stroke 2021; 52: 2992–3003.</Citation><ArticleIdList><ArticleId IdType="pubmed">34399585</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39626509</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2352-3964</ISSN><JournalIssue CitedMedium="Internet"><Volume>110</Volume><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>EBioMedicine</Title><ISOAbbreviation>EBioMedicine</ISOAbbreviation></Journal><ArticleTitle>The role of exosomes for sustained specific cardiorespiratory and metabolic improvements in males with type 2 diabetes after detraining.</ArticleTitle><Pagination><StartPage>105471</StartPage><MedlinePgn>105471</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">105471</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ebiom.2024.105471</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S2352-3964(24)00507-3</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">High-intensity interval training (HIIT) has been shown to improve cardiorespiratory fitness (V˙O<sub>2</sub> max) but may ameliorate insulin sensitivity only in insulin-resistant humans. It is yet unclear whether these benefits persist after detraining and to which extent duration and effectiveness of metabolic improvements differ between individuals without and with prediabetes or type 2 diabetes (T2D). Understanding these differences is relevant for developing targeted exercise training modes for individuals with different stages of dysglycemia.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Men with (20 T2D) and without T2D (12 insulin-sensitive, IS-NDM; 10 insulin-resistant, IR-NDM) underwent hyperinsulinemic-euglycemic clamps, spiroergometry, ectopic lipid quantification and muscle biopsies at baseline, after 12-week HIIT and after 4-week detraining.</AbstractText><AbstractText Label="FINDINGS" NlmCategory="RESULTS">After detraining, the HIIT-stimulated V˙O<sub>2</sub> max declined in T2D and IR-NDM, but remained higher compared to baseline in all groups. The HIIT-induced changes in hepatic insulin sensitivity and ectopic lipid content were sustained after detraining in T2D and IR-NDM, whereas improvements of whole-body insulin sensitivity were abolished in T2D. T2D and IR-NDM showed persistent increases in the number of small extracellular vesicles, which carry among others antioxidant proteins. The ratio of reduced-to-oxidized glutathione further decreased after detraining in all groups, whereas changes in proteins involved in mitochondrial turnover were dependent on insulin sensitivity, with some evidence for upregulation of fusion and mitophagy in T2D and IR-NDM and upregulation of fission in IS-NDM. Levels of different lipolytic proteins were reduced in all participants after detraining.</AbstractText><AbstractText Label="INTERPRETATION" NlmCategory="CONCLUSIONS">HIIT offers sustained improvement of energy metabolism and hepatic insulin sensitivity in insulin-resistant humans, but long-term adherence is required to maintain these benefits.</AbstractText><AbstractText Label="FUNDING" NlmCategory="BACKGROUND">Funding bodies that contributed to this study are listed in the Acknowledgements section.</AbstractText><CopyrightInformation>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mastrototaro</LastName><ForeName>Lucia</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Apostolopoulou</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hartwig</LastName><ForeName>Sonja</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Strassburger</LastName><ForeName>Klaus</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lipaeva</LastName><ForeName>Polina</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Trinks</LastName><ForeName>Nina</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Karusheva</LastName><ForeName>Yanislava</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gancheva</LastName><ForeName>Sofiya</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Trenkamp</LastName><ForeName>Sandra</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lehr</LastName><ForeName>Stefan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Al-Hasani</LastName><ForeName>Hadi</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Szendroedi</LastName><ForeName>Julia</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Roden</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany. Electronic address: michael.roden@ddz.de.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>EBioMedicine</MedlineTA><NlmUniqueID>101647039</NlmUniqueID><ISSNLinking>2352-3964</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055354" MajorTopicYN="Y">Exosomes</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000072696" MajorTopicYN="N">High-Intensity Interval Training</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000072599" MajorTopicYN="N">Cardiorespiratory Fitness</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Detraining</Keyword><Keyword MajorTopicYN="N">Exercise</Keyword><Keyword MajorTopicYN="N">Insulin sensitivity</Keyword><Keyword MajorTopicYN="N">Inter-organ crosstalk</Keyword><Keyword MajorTopicYN="N">Small extracellular vesicles</Keyword></KeywordList><CoiStatement>Declaration of interests MR is currently on scientific advisory boards of Boehringer Ingelheim, Lilly, Novo Nordisk and has received personal fees from Echosens, Novo Nordisk and Target RWE, honoraria for lectures from Astra-Zeneca, Boehringer-Ingelheim, Novo Nordisk, Kenes Group, Madrigal, MSD and investigator-initiated research support from Boehringer-Ingelheim and Novo Nordisk. The research of MR is supported by grants from the European Community (HORIZON-HLTH-2022-STAYHLTH-02-01: Panel A) to the INTERCEPT-T2D consortium and German Research Foundation (DFG, GRK2576 Vivid). All other authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>4</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>9</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39626509</ArticleId><ArticleId IdType="pmc">PMC11652844</ArticleId><ArticleId IdType="doi">10.1016/j.ebiom.2024.105471</ArticleId><ArticleId IdType="pii">S2352-3964(24)00507-3</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Phielix E., Meex R., Moonen-Kornips E., Hesselink M.K., Schrauwen P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia. 2010;53:1714–1721. doi: 10.1007/s00125-010-1764-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-010-1764-2</ArticleId><ArticleId IdType="pmc">PMC2892060</ArticleId><ArticleId IdType="pubmed">20422397</ArticleId></ArticleIdList></Reference><Reference><Citation>Toledo F.G., Menshikova E.V., Ritov V.B., et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007;56:2142–2147. doi: 10.2337/db07-0141.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db07-0141</ArticleId><ArticleId IdType="pubmed">17536063</ArticleId></ArticleIdList></Reference><Reference><Citation>Philp A.M., Saner N.J., Lazarou M., Ganley I.G., Philp A. The influence of aerobic exercise on mitochondrial quality control in skeletal muscle. J Physiol. 2021;599:3463–3476. doi: 10.1113/JP279411.</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/JP279411</ArticleId><ArticleId IdType="pubmed">33369731</ArticleId></ArticleIdList></Reference><Reference><Citation>Koliaki C., Roden M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu Rev Nutr. 2016;36:337–367. doi: 10.1146/annurev-nutr-071715-050656.</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-nutr-071715-050656</ArticleId><ArticleId IdType="pubmed">27146012</ArticleId></ArticleIdList></Reference><Reference><Citation>Brandt N., Gunnarsson T.P., Bangsbo J., Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6 doi: 10.14814/phy2.13651.</Citation><ArticleIdList><ArticleId IdType="doi">10.14814/phy2.13651</ArticleId><ArticleId IdType="pmc">PMC5889490</ArticleId><ArticleId IdType="pubmed">29626392</ArticleId></ArticleIdList></Reference><Reference><Citation>Louche K., Badin P.M., Montastier E., et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab. 2013;98:4863–4871. doi: 10.1210/jc.2013-2058.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2013-2058</ArticleId><ArticleId IdType="pubmed">24178794</ArticleId></ArticleIdList></Reference><Reference><Citation>Alsted T.J., Nybo L., Schweiger M., et al. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab. 2009;296:E445–E453. doi: 10.1152/ajpendo.90912.2008.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.90912.2008</ArticleId><ArticleId IdType="pubmed">19106247</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu L., Zhang Y., Chen N., Shi X., Tsang B., Yu Y.H. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679–1689. doi: 10.1172/JCI30565.</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI30565</ArticleId><ArticleId IdType="pmc">PMC1866250</ArticleId><ArticleId IdType="pubmed">17510710</ArticleId></ArticleIdList></Reference><Reference><Citation>Roden M., Shulman G.I. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60. doi: 10.1038/s41586-019-1797-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-019-1797-8</ArticleId><ArticleId IdType="pubmed">31802013</ArticleId></ArticleIdList></Reference><Reference><Citation>Fritzen A.M., Andersen S.P., Qadri K.A.N., et al. Effect of aerobic exercise training and deconditioning on oxidative capacity and muscle mitochondrial enzyme machinery in young and elderly individuals. J Clin Med. 2020;9:3113. doi: 10.3390/jcm9103113.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm9103113</ArticleId><ArticleId IdType="pmc">PMC7601902</ArticleId><ArticleId IdType="pubmed">32993104</ArticleId></ArticleIdList></Reference><Reference><Citation>Mora-Rodriguez R., Ortega J.F., Hamouti N., et al. Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutr Metabol Cardiovasc Dis. 2014;24:792–798. doi: 10.1016/j.numecd.2014.01.011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.numecd.2014.01.011</ArticleId><ArticleId IdType="pubmed">24656853</ArticleId></ArticleIdList></Reference><Reference><Citation>Tokmakidis S.P., Touvra A.M., Douda H.T., Smilios I., Kotsa K., Volaklis K.A. Training, detraining, and retraining effects on glycemic control and physical fitness in women with type 2 diabetes. Horm Metab Res. 2014;46:974–979. doi: 10.1055/s-0034-1390483.</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0034-1390483</ArticleId><ArticleId IdType="pubmed">25369073</ArticleId></ArticleIdList></Reference><Reference><Citation>Mujika I., Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 2000;30:79–87. doi: 10.2165/00007256-200030020-00002.</Citation><ArticleIdList><ArticleId IdType="doi">10.2165/00007256-200030020-00002</ArticleId><ArticleId IdType="pubmed">10966148</ArticleId></ArticleIdList></Reference><Reference><Citation>Prior S.J., Goldberg A.P., Ortmeyer H.K., et al. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes. 2015;64:3386–3395. doi: 10.2337/db14-1771.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db14-1771</ArticleId><ArticleId IdType="pmc">PMC4587640</ArticleId><ArticleId IdType="pubmed">26068543</ArticleId></ArticleIdList></Reference><Reference><Citation>Bajpeyi S., Tanner C.J., Slentz C.A., et al. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J Appl Physiol (1985) 2009;106:1079–1085. doi: 10.1152/japplphysiol.91262.2008.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/japplphysiol.91262.2008</ArticleId><ArticleId IdType="pmc">PMC2698641</ArticleId><ArticleId IdType="pubmed">19196913</ArticleId></ArticleIdList></Reference><Reference><Citation>Kakehi S., Tamura Y., Ikeda S.I., et al. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am J Physiol Endocrinol Metab. 2021;321:E766–E781. doi: 10.1152/ajpendo.00254.2020.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00254.2020</ArticleId><ArticleId IdType="pubmed">34719943</ArticleId></ArticleIdList></Reference><Reference><Citation>Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725.</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/jphysiol.2011.224725</ArticleId><ArticleId IdType="pmc">PMC3381816</ArticleId><ArticleId IdType="pubmed">22289907</ArticleId></ArticleIdList></Reference><Reference><Citation>Phillips B.E., Kelly B.M., Lilja M., et al. A practical and time-efficient high-intensity interval training program modifies cardio-metabolic risk factors in adults with risk factors for type II diabetes. Front Endocrinol (Lausanne) 2017;8:229. doi: 10.3389/fendo.2017.00229.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2017.00229</ArticleId><ArticleId IdType="pmc">PMC5596071</ArticleId><ArticleId IdType="pubmed">28943861</ArticleId></ArticleIdList></Reference><Reference><Citation>Granata C., Oliveira R.S., Little J.P., Renner K., Bishop D.J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 2016;30:3413–3423. doi: 10.1096/fj.201500100R.</Citation><ArticleIdList><ArticleId IdType="doi">10.1096/fj.201500100R</ArticleId><ArticleId IdType="pubmed">27402675</ArticleId></ArticleIdList></Reference><Reference><Citation>Little J.P., Safdar A., Wilkin G.P., Tarnopolsky M.A., Gibala M.J. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588:1011–1022. doi: 10.1113/jphysiol.2009.181743.</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/jphysiol.2009.181743</ArticleId><ArticleId IdType="pmc">PMC2849965</ArticleId><ArticleId IdType="pubmed">20100740</ArticleId></ArticleIdList></Reference><Reference><Citation>Larsen S., Danielsen J.H., Sondergard S.D., et al. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports. 2015;25:e59–e69. doi: 10.1111/sms.12252.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/sms.12252</ArticleId><ArticleId IdType="pubmed">24845952</ArticleId></ArticleIdList></Reference><Reference><Citation>Sogaard D., Baranowski M., Larsen S., et al. Muscle-saturated bioactive lipids are increased with aging and influenced by high-intensity interval training. Int J Mol Sci. 2019;20:1240. doi: 10.3390/ijms20051240.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms20051240</ArticleId><ArticleId IdType="pmc">PMC6429484</ArticleId><ArticleId IdType="pubmed">30871020</ArticleId></ArticleIdList></Reference><Reference><Citation>Little J.P., Gillen J.B., Percival M.E., et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985) 2011;111:1554–1560. doi: 10.1152/japplphysiol.00921.2011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/japplphysiol.00921.2011</ArticleId><ArticleId IdType="pubmed">21868679</ArticleId></ArticleIdList></Reference><Reference><Citation>Apostolopoulou M., Mastrototaro L., Hartwig S., et al. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin resistant males. Sci Adv. 2021;7 doi: 10.1126/sciadv.abi9551.</Citation><ArticleIdList><ArticleId IdType="doi">10.1126/sciadv.abi9551</ArticleId><ArticleId IdType="pmc">PMC8500512</ArticleId><ArticleId IdType="pubmed">34623918</ArticleId></ArticleIdList></Reference><Reference><Citation>Coswig V.S., Barbalho M., Raiol R., Del Vecchio F.B., Ramirez-Campillo R., Gentil P. Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. J Transl Med. 2020;18:88. doi: 10.1186/s12967-020-02261-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12967-020-02261-8</ArticleId><ArticleId IdType="pmc">PMC7027031</ArticleId><ArticleId IdType="pubmed">32066460</ArticleId></ArticleIdList></Reference><Reference><Citation>Nowotny B., Zahiragic L., Bierwagen A., et al. Low-energy diets differing in fibre, red meat and coffee intake equally improve insulin sensitivity in type 2 diabetes: a randomised feasibility trial. Diabetologia. 2015;58:255–264. doi: 10.1007/s00125-014-3457-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-014-3457-8</ArticleId><ArticleId IdType="pubmed">25425219</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferrannini E., Buzzigoli G., Bonadonna R., et al. Insulin resistance in essential hypertension. N Engl J Med. 1987;317:350–357. doi: 10.1056/NEJM198708063170605.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJM198708063170605</ArticleId><ArticleId IdType="pubmed">3299096</ArticleId></ArticleIdList></Reference><Reference><Citation>Hagströmer M., Oja P., Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Publ Health Nutr. 2006;9:755–762. doi: 10.1079/phn2005898.</Citation><ArticleIdList><ArticleId IdType="doi">10.1079/phn2005898</ArticleId><ArticleId IdType="pubmed">16925881</ArticleId></ArticleIdList></Reference><Reference><Citation>Kahl S., Gancheva S., Strassburger K., et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: a randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care. 2019;43:298–305. doi: 10.2337/dc19-0641.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc19-0641</ArticleId><ArticleId IdType="pubmed">31540903</ArticleId></ArticleIdList></Reference><Reference><Citation>Apostolopoulou M., Strassburger K., Herder C., et al. Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes. Diabetologia. 2016;59:2203–2207. doi: 10.1007/s00125-016-4038-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-016-4038-9</ArticleId><ArticleId IdType="pubmed">27376543</ArticleId></ArticleIdList></Reference><Reference><Citation>Szendroedi J., Saxena A., Weber K.S., et al. Cohort profile: the German Diabetes Study (GDS) Cardiovasc Diabetol. 2016;15:59. doi: 10.1186/s12933-016-0374-9.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-016-0374-9</ArticleId><ArticleId IdType="pmc">PMC4823856</ArticleId><ArticleId IdType="pubmed">27053136</ArticleId></ArticleIdList></Reference><Reference><Citation>Livingstone R.S., Begovatz P., Kahl S., et al. Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA. 2014;27:397–405. doi: 10.1007/s10334-013-0421-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10334-013-0421-4</ArticleId><ArticleId IdType="pubmed">24306514</ArticleId></ArticleIdList></Reference><Reference><Citation>Pafili K., Kahl S., Mastrototaro L., et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J Hepatol. 2022;77:1504–1514. doi: 10.1016/j.jhep.2022.08.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2022.08.010</ArticleId><ArticleId IdType="pubmed">35988689</ArticleId></ArticleIdList></Reference><Reference><Citation>Griffith O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106:207–212. doi: 10.1016/0003-2697(80)90139-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0003-2697(80)90139-6</ArticleId><ArticleId IdType="pubmed">7416462</ArticleId></ArticleIdList></Reference><Reference><Citation>Alexa A., Rahnenfuhrer J., Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. doi: 10.1093/bioinformatics/btl140.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btl140</ArticleId><ArticleId IdType="pubmed">16606683</ArticleId></ArticleIdList></Reference><Reference><Citation>Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btw313</ArticleId><ArticleId IdType="pubmed">27207943</ArticleId></ArticleIdList></Reference><Reference><Citation>Herder C., Maalmi H., Saatmann N., et al. Correlates of skeletal muscle mass and differences between novel subtypes in recent-onset diabetes. J Clin Endocrinol Metab. 2024;109:e1238–e1248. doi: 10.1210/clinem/dgad605.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgad605</ArticleId><ArticleId IdType="pmc">PMC10876398</ArticleId><ArticleId IdType="pubmed">37831076</ArticleId></ArticleIdList></Reference><Reference><Citation>Saatmann N., Zaharia O.P., Strassburger K., et al. Physical fitness and cardiovascular risk factors in novel diabetes subgroups. J Clin Endocrinol Metab. 2022;107:1127–1139. doi: 10.1210/clinem/dgab810.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgab810</ArticleId><ArticleId IdType="pmc">PMC8947222</ArticleId><ArticleId IdType="pubmed">34748634</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden P., Thavarajah T., Zhu P., McDonell M., Thiele H., Marshall J.G. Quantitative statistical analysis of standard and human blood proteins from liquid chromatography, electrospray ionization, and tandem mass spectrometry. J Proteome Res. 2012;11:2032–2047. doi: 10.1021/pr2000013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1021/pr2000013</ArticleId><ArticleId IdType="pubmed">22316523</ArticleId></ArticleIdList></Reference><Reference><Citation>Schrepfer E., Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61:683–694. doi: 10.1016/j.molcel.2016.02.022.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.molcel.2016.02.022</ArticleId><ArticleId IdType="pubmed">26942673</ArticleId></ArticleIdList></Reference><Reference><Citation>Aquilano K., Baldelli S., Ciriolo M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi: 10.3389/fphar.2014.00196.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2014.00196</ArticleId><ArticleId IdType="pmc">PMC4144092</ArticleId><ArticleId IdType="pubmed">25206336</ArticleId></ArticleIdList></Reference><Reference><Citation>Ouerghi N., Fradj M.K.B., Bezrati I., et al. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol Sport. 2017;34:385–392. doi: 10.5114/biolsport.2017.69827.</Citation><ArticleIdList><ArticleId IdType="doi">10.5114/biolsport.2017.69827</ArticleId><ArticleId IdType="pmc">PMC5819474</ArticleId><ArticleId IdType="pubmed">29472742</ArticleId></ArticleIdList></Reference><Reference><Citation>Morrison D.J., Kowalski G.M., Grespan E., Mari A., Bruce C.R., Wadley G.D. Measurement of postprandial glucose fluxes in response to acute and chronic endurance exercise in healthy humans. Am J Physiol Endocrinol Metab. 2018;314:E503–E511. doi: 10.1152/ajpendo.00316.2017.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpendo.00316.2017</ArticleId><ArticleId IdType="pubmed">29351488</ArticleId></ArticleIdList></Reference><Reference><Citation>Nishida Y., Tokuyama K., Nagasaka S., et al. Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a two-compartment-labeled minimal model. Diabetes. 2004;53:315–320. doi: 10.2337/diabetes.53.2.315.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.53.2.315</ArticleId><ArticleId IdType="pubmed">14747280</ArticleId></ArticleIdList></Reference><Reference><Citation>Knudsen S.H., Karstoft K., Pedersen B.K., van Hall G., Solomon T.P. The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum. Physiol Rep. 2014;2 doi: 10.14814/phy2.12114.</Citation><ArticleIdList><ArticleId IdType="doi">10.14814/phy2.12114</ArticleId><ArticleId IdType="pmc">PMC4246585</ArticleId><ArticleId IdType="pubmed">25168869</ArticleId></ArticleIdList></Reference><Reference><Citation>Xourafa G., Korbmacher M., Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024;20:27–49. doi: 10.1038/s41574-023-00898-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-023-00898-1</ArticleId><ArticleId IdType="pubmed">37845351</ArticleId></ArticleIdList></Reference><Reference><Citation>Befroy D.E., Petersen K.F., Dufour S., Mason G.F., Rothman D.L., Shulman G.I. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc Natl Acad Sci U S A. 2008;105:16701–16706. doi: 10.1073/pnas.0808889105.</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.0808889105</ArticleId><ArticleId IdType="pmc">PMC2570428</ArticleId><ArticleId IdType="pubmed">18936488</ArticleId></ArticleIdList></Reference><Reference><Citation>Pesta D., Hoppel F., Macek C., et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1078–R1087. doi: 10.1152/ajpregu.00285.2011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpregu.00285.2011</ArticleId><ArticleId IdType="pubmed">21775647</ArticleId></ArticleIdList></Reference><Reference><Citation>Axelrod C.L., Fealy C.E., Mulya A., Kirwan J.P. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro-elongation phenotype. Acta Physiol (Oxf) 2019;225 doi: 10.1111/apha.13216.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/apha.13216</ArticleId><ArticleId IdType="pmc">PMC6416060</ArticleId><ArticleId IdType="pubmed">30408342</ArticleId></ArticleIdList></Reference><Reference><Citation>Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front Physiol. 2019;10:1088. doi: 10.3389/fphys.2019.01088.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphys.2019.01088</ArticleId><ArticleId IdType="pmc">PMC6713923</ArticleId><ArticleId IdType="pubmed">31507451</ArticleId></ArticleIdList></Reference><Reference><Citation>Botella J., Saner N., Granata C. Guardian of mitochondrial function: an expanded role of Parkin in skeletal muscle. J Physiol. 2018;596:6139–6140. doi: 10.1113/JP276841.</Citation><ArticleIdList><ArticleId IdType="doi">10.1113/JP276841</ArticleId><ArticleId IdType="pmc">PMC6292800</ArticleId><ArticleId IdType="pubmed">30296348</ArticleId></ArticleIdList></Reference><Reference><Citation>Drake J.C., Laker R.C., Wilson R.J., Zhang M., Yan Z. Exercise-induced mitophagy in skeletal muscle occurs in the absence of stabilization of Pink1 on mitochondria. Cell Cycle. 2019;18:1–6. doi: 10.1080/15384101.2018.1559556.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/15384101.2018.1559556</ArticleId><ArticleId IdType="pmc">PMC6343730</ArticleId><ArticleId IdType="pubmed">30558471</ArticleId></ArticleIdList></Reference><Reference><Citation>Bergman B.C., Goodpaster B.H. Exercise and muscle lipid content, composition, and localization: influence on muscle insulin sensitivity. Diabetes. 2020;69:848–858. doi: 10.2337/dbi18-0042.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dbi18-0042</ArticleId><ArticleId IdType="pubmed">32312901</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryan B.J., Schleh M.W., Ahn C., et al. Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J Clin Endocrinol Metab. 2020;105:e2941–e2959. doi: 10.1210/clinem/dgaa345.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgaa345</ArticleId><ArticleId IdType="pmc">PMC7347288</ArticleId><ArticleId IdType="pubmed">32492705</ArticleId></ArticleIdList></Reference><Reference><Citation>Amati F., Dube J.J., Alvarez-Carnero E., et al. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes. 2011;60:2588–2597. doi: 10.2337/db10-1221.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db10-1221</ArticleId><ArticleId IdType="pmc">PMC3178290</ArticleId><ArticleId IdType="pubmed">21873552</ArticleId></ArticleIdList></Reference><Reference><Citation>Taschler U., Radner F.P., Heier C., et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem. 2011;286:17467–17477. doi: 10.1074/jbc.M110.215434.</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M110.215434</ArticleId><ArticleId IdType="pmc">PMC3093820</ArticleId><ArticleId IdType="pubmed">21454566</ArticleId></ArticleIdList></Reference><Reference><Citation>Schenk S., Horowitz J.F. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007;117:1690–1698. doi: 10.1172/JCI30566.</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI30566</ArticleId><ArticleId IdType="pmc">PMC1866251</ArticleId><ArticleId IdType="pubmed">17510709</ArticleId></ArticleIdList></Reference><Reference><Citation>Badin P.M., Louche K., Mairal A., et al. Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans. Diabetes. 2011;60:1734–1742. doi: 10.2337/db10-1364.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db10-1364</ArticleId><ArticleId IdType="pmc">PMC3114384</ArticleId><ArticleId IdType="pubmed">21498783</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen L., Pan L., Zeng Y., Zhu X., You L. CPNE1 regulates myogenesis through the PERK-eIF2alpha pathway mediated by endoplasmic reticulum stress. Cell Tissue Res. 2023;391:545–560. doi: 10.1007/s00441-022-03720-y.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00441-022-03720-y</ArticleId><ArticleId IdType="pmc">PMC9974702</ArticleId><ArticleId IdType="pubmed">36525128</ArticleId></ArticleIdList></Reference><Reference><Citation>Wollam J., Riopel M., Xu Y.J., et al. Microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance. Diabetes. 2019;68:1415–1426. doi: 10.2337/db18-1307.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db18-1307</ArticleId><ArticleId IdType="pmc">PMC6609982</ArticleId><ArticleId IdType="pubmed">31010956</ArticleId></ArticleIdList></Reference><Reference><Citation>Gomez Garcia A., Rivera Rodriguez M., Gomez Alonso C., Rodriguez Ochoa D.Y., Alvarez Aguilar C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab J. 2015;39:59–65. doi: 10.4093/dmj.2015.39.1.59.</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2015.39.1.59</ArticleId><ArticleId IdType="pmc">PMC4342538</ArticleId><ArticleId IdType="pubmed">25729714</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X., Jiang B., Hao H., Liu Z. CARD9 signaling, inflammation, and diseases. Front Immunol. 2022;13 doi: 10.3389/fimmu.2022.880879.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2022.880879</ArticleId><ArticleId IdType="pmc">PMC9005907</ArticleId><ArticleId IdType="pubmed">35432375</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Khalili L., de Castro Barbosa T., Ostling J., et al. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. Am J Physiol Cell Physiol. 2014;307:C774–C787. doi: 10.1152/ajpcell.00110.2014.</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpcell.00110.2014</ArticleId><ArticleId IdType="pubmed">25143351</ArticleId></ArticleIdList></Reference><Reference><Citation>McClain D.A., Sharma N.K., Jain S., et al. Adipose tissue transferrin and insulin resistance. J Clin Endocrinol Metab. 2018;103:4197–4208. doi: 10.1210/jc.2018-00770.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2018-00770</ArticleId><ArticleId IdType="pmc">PMC6194856</ArticleId><ArticleId IdType="pubmed">30099506</ArticleId></ArticleIdList></Reference><Reference><Citation>Moreno-Navarrete J.M., Novelle M.G., Catalan V., et al. Insulin resistance modulates iron-related proteins in adipose tissue. Diabetes Care. 2014;37:1092–1100. doi: 10.2337/dc13-1602.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc13-1602</ArticleId><ArticleId IdType="pubmed">24496804</ArticleId></ArticleIdList></Reference><Reference><Citation>Matsuo Y., Tanaka M., Yamakage H., et al. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome. Metabolism. 2015;64:1490–1499. doi: 10.1016/j.metabol.2015.07.016.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2015.07.016</ArticleId><ArticleId IdType="pmc">PMC4936918</ArticleId><ArticleId IdType="pubmed">26298466</ArticleId></ArticleIdList></Reference><Reference><Citation>Lieb D.C., Brotman J.J., Hatcher M.A., et al. Adipose tissue 12/15 lipoxygenase pathway in human obesity and diabetes. J Clin Endocrinol Metab. 2014;99:E1713–E1720. doi: 10.1210/jc.2013-4461.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2013-4461</ArticleId><ArticleId IdType="pmc">PMC4154098</ArticleId><ArticleId IdType="pubmed">24955608</ArticleId></ArticleIdList></Reference><Reference><Citation>Woo J.S., Derleth C., Stratton J.R., Levy W.C. The influence of age, gender, and training on exercise efficiency. J Am Coll Cardiol. 2006;47:1049–1057. doi: 10.1016/j.jacc.2005.09.066.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2005.09.066</ArticleId><ArticleId IdType="pubmed">16516092</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39625957</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>15</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1553-7404</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>PLoS genetics</Title><ISOAbbreviation>PLoS Genet</ISOAbbreviation></Journal><ArticleTitle>Disentangling the consequences of type 2 diabetes on targeted metabolite profiles using causal inference and interaction QTL analyses.</ArticleTitle><Pagination><StartPage>e1011346</StartPage><MedlinePgn>e1011346</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e1011346</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1011346</ELocationID><Abstract><AbstractText>Circulating metabolite levels have been associated with type 2 diabetes (T2D), but the extent to which T2D affects metabolite levels and their genetic regulation remains to be elucidated. In this study, we investigate the interplay between genetics, metabolomics, and T2D risk in the UK Biobank dataset using the Nightingale panel composed of 249 metabolites, 92% of which correspond to lipids (HDL, IDL, LDL, VLDL) and lipoproteins. By integrating these data with large-scale T2D GWAS from the DIAMANTE meta-analysis through Mendelian randomization analyses, we find 79 metabolites with a causal association to T2D, all spanning lipid-related classes except for Glucose and Tyrosine. Twice as many metabolites are causally affected by T2D liability, spanning almost all tested classes, including branched-chain amino acids. Secondly, using an interaction quantitative trait locus (QTL) analysis, we describe four metabolites consistently replicated in an independent dataset from the Estonian Biobank, for which genetic loci in two different genomic regions show attenuated regulation in T2D cases compared to controls. The significant variants from the interaction QTL analysis are significant QTLs for the corresponding metabolites in the general population but are not associated with T2D risk, pointing towards consequences of T2D on the genetic regulation of metabolite levels. Finally, through differential level analyses, we find 165 metabolites associated with microvascular, macrovascular, or both types of T2D complications, with only a few discriminating between complication classes. Of the 165 metabolites, 40 are not causally linked to T2D in either direction, suggesting biological mechanisms specific to the occurrence of complications. Overall, this work provides a map of the consequences of T2D on Nightingale targeted metabolite levels and on their genetic regulation, enabling a better understanding of the T2D trajectory leading to complications.</AbstractText><CopyrightInformation>Copyright: © 2024 Bocher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Bocher</LastName><ForeName>Ozvan</ForeName><Initials>O</Initials><Identifier Source="ORCID">0000-0002-2467-9236</Identifier><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Singh</LastName><ForeName>Archit</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-3983-6126</Identifier><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Munich School for Data Science (MUDS), Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Yue</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0000-0003-1671-7017</Identifier><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Võsa</LastName><ForeName>Urmo</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reimann</LastName><ForeName>Ene</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arruda</LastName><ForeName>Ana</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-6550-9794</Identifier><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Munich School for Data Science (MUDS), Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barysenska</LastName><ForeName>Andrei</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-9571-6292</Identifier><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kolde</LastName><ForeName>Anastassia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rayner</LastName><ForeName>Nigel W</ForeName><Initials>NW</Initials><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>Estonian Biobank research team</CollectiveName></Author><Author ValidYN="Y"><LastName>Esko</LastName><ForeName>Tõnu</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mägi</LastName><ForeName>Reedik</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeggini</LastName><ForeName>Eleftheria</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>TUM school of medicine and health, Technical University Munich and Klinikum Rechts der Isar, Munich, Germany.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS Genet</MedlineTA><NlmUniqueID>101239074</NlmUniqueID><ISSNLinking>1553-7390</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008074">Lipoproteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008055">Lipids</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055106" MajorTopicYN="Y">Genome-Wide Association Study</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D057182" MajorTopicYN="N">Mendelian Randomization Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008074" MajorTopicYN="N">Lipoproteins</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006113" MajorTopicYN="N" Type="Geographic">United Kingdom</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>12</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>13</Day><Hour>20</Hour><Minute>6</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>13</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39625957</ArticleId><ArticleId IdType="pmc">PMC11642953</ArticleId><ArticleId IdType="doi">10.1371/journal.pgen.1011346</ArticleId><ArticleId IdType="pii">PGENETICS-D-24-00669</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al.. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022. May;54(5):560–72. doi: 10.1038/s41588-022-01058-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-022-01058-3</ArticleId><ArticleId IdType="pmc">PMC9179018</ArticleId><ArticleId IdType="pubmed">35551307</ArticleId></ArticleIdList></Reference><Reference><Citation>Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al.. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018. Nov;50(11):1505–13. doi: 10.1038/s41588-018-0241-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-018-0241-6</ArticleId><ArticleId IdType="pmc">PMC6287706</ArticleId><ArticleId IdType="pubmed">30297969</ArticleId></ArticleIdList></Reference><Reference><Citation>Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, et al.. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature. 2024. Feb 19. doi: 10.1038/s41586-024-07019-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-024-07019-6</ArticleId><ArticleId IdType="pmc">PMC10937372</ArticleId><ArticleId IdType="pubmed">38374256</ArticleId></ArticleIdList></Reference><Reference><Citation>Julkunen H, Cichonska A, Tiainen M, Koskela H, Nybo K, Makela V, et al.. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023. Feb 3;14(1):604. doi: 10.1038/s41467-023-36231-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41467-023-36231-7</ArticleId><ArticleId IdType="pmc">PMC9898515</ArticleId><ArticleId IdType="pubmed">36737450</ArticleId></ArticleIdList></Reference><Reference><Citation>Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, et al.. Metabolomics and Type 2 Diabetes Risk: An Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care. 2022. Apr 1;45(4):1013–24. doi: 10.2337/dc21-1705</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc21-1705</ArticleId><ArticleId IdType="pmc">PMC9016744</ArticleId><ArticleId IdType="pubmed">35349649</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al.. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011. Apr;17(4):448–53. doi: 10.1038/nm.2307</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nm.2307</ArticleId><ArticleId IdType="pmc">PMC3126616</ArticleId><ArticleId IdType="pubmed">21423183</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun Y, Gao HY, Fan ZY, He Y, Yan YX. Metabolomics Signatures in Type 2 Diabetes: A Systematic Review and Integrative Analysis. J Clin Endocrinol Metab. 2020. Apr 1;105(4). doi: 10.1210/clinem/dgz240</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgz240</ArticleId><ArticleId IdType="pubmed">31782507</ArticleId></ArticleIdList></Reference><Reference><Citation>Jin Q, Ma RCW. Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies. Cells. 2021. Oct 21;10(11). doi: 10.3390/cells10112832</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cells10112832</ArticleId><ArticleId IdType="pmc">PMC8616415</ArticleId><ArticleId IdType="pubmed">34831057</ArticleId></ArticleIdList></Reference><Reference><Citation>Nightingale Health Biobank Collaborative G, Jeffrey CB, Tõnu E, Krista F, Luke J-D, Pekka J, et al. Metabolomic and genomic prediction of common diseases in 477,706 participants in three national biobanks. medRxiv. 2023:2023.06.09.23291213.</Citation></Reference><Reference><Citation>Bragg F, Trichia E, Aguilar-Ramirez D, Besevic J, Lewington S, Emberson J. Predictive value of circulating NMR metabolic biomarkers for type 2 diabetes risk in the UK Biobank study. BMC Med. 2022. May 3;20(1):159.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9063288</ArticleId><ArticleId IdType="pubmed">35501852</ArticleId></ArticleIdList></Reference><Reference><Citation>Buergel T, Steinfeldt J, Ruyoga G, Pietzner M, Bizzarri D, Vojinovic D, et al.. Metabolomic profiles predict individual multidisease outcomes. Nat Med. 2022. Nov;28(11):2309–20. doi: 10.1038/s41591-022-01980-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41591-022-01980-3</ArticleId><ArticleId IdType="pmc">PMC9671812</ArticleId><ArticleId IdType="pubmed">36138150</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafo MR, et al.. Mendelian randomization. Nat Rev Methods Primers. 2022. Feb 10;2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7614635</ArticleId><ArticleId IdType="pubmed">37325194</ArticleId></ArticleIdList></Reference><Reference><Citation>Porcu E, Gilardi F, Darrous L, Yengo L, Bararpour N, Gasser M, et al.. Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes. Sci Rep. 2021. Mar 18;11(1):6197. doi: 10.1038/s41598-021-85684-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-85684-7</ArticleId><ArticleId IdType="pmc">PMC7973501</ArticleId><ArticleId IdType="pubmed">33737653</ArticleId></ArticleIdList></Reference><Reference><Citation>Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al.. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med. 2016. Nov;13(11):e1002179. doi: 10.1371/journal.pmed.1002179</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1002179</ArticleId><ArticleId IdType="pmc">PMC5127513</ArticleId><ArticleId IdType="pubmed">27898682</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin X, Li J, Bose D, Okamoto J, Kwon A, Jackson AU, et al.. Metabolome-wide Mendelian randomization characterizes heterogeneous and shared causal effects of metabolites on human health. medRxiv. 2023. Jun 29. doi: 10.1101/2023.06.26.23291721</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/2023.06.26.23291721</ArticleId><ArticleId IdType="pmc">PMC10327254</ArticleId><ArticleId IdType="pubmed">37425837</ArticleId></ArticleIdList></Reference><Reference><Citation>Mosley JD, Shi M, Agamasu D, Vaitinadin NS, Murthy VL, Shah RV, et al.. Branched-chain amino acids and type 2 diabetes: a bidirectional Mendelian randomization analysis. Obesity (Silver Spring). 2024. Feb;32(2):423–35. doi: 10.1002/oby.23951</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.23951</ArticleId><ArticleId IdType="pmc">PMC10827349</ArticleId><ArticleId IdType="pubmed">38269471</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu J, van Klinken JB, Semiz S, van Dijk KW, Verhoeven A, Hankemeier T, et al.. A Mendelian Randomization Study of Metabolite Profiles, Fasting Glucose, and Type 2 Diabetes. Diabetes. 2017. Nov;66(11):2915–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">28847883</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith ML, Bull CJ, Holmes MV, Davey Smith G, Sanderson E, Anderson EL, et al.. Distinct metabolic features of genetic liability to type 2 diabetes and coronary artery disease: a reverse Mendelian randomization study. EBioMedicine. 2023. Apr;90:104503. doi: 10.1016/j.ebiom.2023.104503</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ebiom.2023.104503</ArticleId><ArticleId IdType="pmc">PMC10009453</ArticleId><ArticleId IdType="pubmed">36870196</ArticleId></ArticleIdList></Reference><Reference><Citation>Karjalainen MK, Karthikeyan S, Oliver-Williams C, Sliz E, Allara E, Fung WT, et al.. Genome-wide characterization of circulating metabolic biomarkers. Nature. 2024. Mar 6. doi: 10.1038/s41586-024-07148-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-024-07148-y</ArticleId><ArticleId IdType="pmc">PMC10990933</ArticleId><ArticleId IdType="pubmed">38448586</ArticleId></ArticleIdList></Reference><Reference><Citation>Bar N, Korem T, Weissbrod O, Zeevi D, Rothschild D, Leviatan S, et al.. A reference map of potential determinants for the human serum metabolome. Nature. 2020. Dec;588(7836):135–40. doi: 10.1038/s41586-020-2896-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41586-020-2896-2</ArticleId><ArticleId IdType="pubmed">33177712</ArticleId></ArticleIdList></Reference><Reference><Citation>Litwak L, Goh SY, Hussein Z, Malek R, Prusty V, Khamseh ME. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab Syndr. 2013. Oct 24;5(1):57. doi: 10.1186/1758-5996-5-57</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1758-5996-5-57</ArticleId><ArticleId IdType="pmc">PMC3854020</ArticleId><ArticleId IdType="pubmed">24228724</ArticleId></ArticleIdList></Reference><Reference><Citation>Tomofuji Y, Suzuki K, Kishikawa T, Shojima N, Hosoe J, Inagaki K, et al.. Identification of serum metabolome signatures associated with retinal and renal complications of type 2 diabetes. Commun Med (Lond). 2023. Jan 9;3(1):5. doi: 10.1038/s43856-022-00231-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s43856-022-00231-3</ArticleId><ArticleId IdType="pmc">PMC9829655</ArticleId><ArticleId IdType="pubmed">36624208</ArticleId></ArticleIdList></Reference><Reference><Citation>Harris K, Oshima M, Sattar N, Wurtz P, Jun M, Welsh P, et al.. Plasma fatty acids and the risk of vascular disease and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE study. Diabetologia. 2020. Aug;63(8):1637–47. doi: 10.1007/s00125-020-05162-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-020-05162-z</ArticleId><ArticleId IdType="pmc">PMC7351876</ArticleId><ArticleId IdType="pubmed">32385604</ArticleId></ArticleIdList></Reference><Reference><Citation>Welsh P, Rankin N, Li Q, Mark PB, Wurtz P, Ala-Korpela M, et al.. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia. 2018. Jul;61(7):1581–91. doi: 10.1007/s00125-018-4619-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-018-4619-x</ArticleId><ArticleId IdType="pmc">PMC6445481</ArticleId><ArticleId IdType="pubmed">29728717</ArticleId></ArticleIdList></Reference><Reference><Citation>Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al.. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015. Mar;12(3):e1001779. doi: 10.1371/journal.pmed.1001779</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1001779</ArticleId><ArticleId IdType="pmc">PMC4380465</ArticleId><ArticleId IdType="pubmed">25826379</ArticleId></ArticleIdList></Reference><Reference><Citation>Jacky Man Yuen M, Baoting H, Tommy Hon Ting W, Ying L, Shan L, Kenneth L, et al.. Evaluating the role of amino acids in type 2 diabetes risk: a Mendelian randomization study. medRxiv. 2023:2023.08.27.23294702.</Citation></Reference><Reference><Citation>Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T, Pennells L, et al.. Quality control and removal of technical variation of NMR metabolic biomarker data in ~120,000 UK Biobank participants. Sci Data. 2023. Jan 31;10(1):64. doi: 10.1038/s41597-023-01949-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41597-023-01949-y</ArticleId><ArticleId IdType="pmc">PMC9887579</ArticleId><ArticleId IdType="pubmed">36720882</ArticleId></ArticleIdList></Reference><Reference><Citation>Auer PL, Reiner AP, Leal SM. The effect of phenotypic outliers and non-normality on rare-variant association testing. Eur J Hum Genet. 2016. Aug;24(8):1188–94. doi: 10.1038/ejhg.2015.270</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ejhg.2015.270</ArticleId><ArticleId IdType="pmc">PMC4970685</ArticleId><ArticleId IdType="pubmed">26733287</ArticleId></ArticleIdList></Reference><Reference><Citation>Gopalan A, Mishra P, Alexeeff SE, Blatchins MA, Kim E, Man AH, et al.. Prevalence and predictors of delayed clinical diagnosis of Type 2 diabetes: a longitudinal cohort study. Diabet Med. 2018. Dec;35(12):1655–62. doi: 10.1111/dme.13808</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.13808</ArticleId><ArticleId IdType="pmc">PMC6481650</ArticleId><ArticleId IdType="pubmed">30175870</ArticleId></ArticleIdList></Reference><Reference><Citation>Eastwood SV, Mathur R, Atkinson M, Brophy S, Sudlow C, Flaig R, et al.. Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank. PLoS One. 2016;11(9):e0162388. doi: 10.1371/journal.pone.0162388</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0162388</ArticleId><ArticleId IdType="pmc">PMC5025160</ArticleId><ArticleId IdType="pubmed">27631769</ArticleId></ArticleIdList></Reference><Reference><Citation>Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G, et al.. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med. 2022. Jun 13;20(1):210. doi: 10.1186/s12916-022-02399-w</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12916-022-02399-w</ArticleId><ArticleId IdType="pmc">PMC9190170</ArticleId><ArticleId IdType="pubmed">35692035</ArticleId></ArticleIdList></Reference><Reference><Citation>Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al.. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021. Jul;53(7):1097–103. doi: 10.1038/s41588-021-00870-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41588-021-00870-7</ArticleId><ArticleId IdType="pubmed">34017140</ArticleId></ArticleIdList></Reference><Reference><Citation>Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007. Sep;81(3):559–75. doi: 10.1086/519795</Citation><ArticleIdList><ArticleId IdType="doi">10.1086/519795</ArticleId><ArticleId IdType="pmc">PMC1950838</ArticleId><ArticleId IdType="pubmed">17701901</ArticleId></ArticleIdList></Reference><Reference><Citation>Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005. Sep;95(3):221–7. doi: 10.1038/sj.hdy.6800717</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/sj.hdy.6800717</ArticleId><ArticleId IdType="pubmed">16077740</ArticleId></ArticleIdList></Reference><Reference><Citation>Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al.. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018. May 30;7. doi: 10.7554/eLife.34408</Citation><ArticleIdList><ArticleId IdType="doi">10.7554/eLife.34408</ArticleId><ArticleId IdType="pmc">PMC5976434</ArticleId><ArticleId IdType="pubmed">29846171</ArticleId></ArticleIdList></Reference><Reference><Citation>Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al.. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol. 2018. Aug 1;47(4):1264–78. doi: 10.1093/ije/dyy101</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyy101</ArticleId><ArticleId IdType="pmc">PMC6124632</ArticleId><ArticleId IdType="pubmed">29961852</ArticleId></ArticleIdList></Reference><Reference><Citation>Laakso M, Fernandes Silva L. Statins and risk of type 2 diabetes: mechanism and clinical implications. Front Endocrinol (Lausanne). 2023;14:1239335. doi: 10.3389/fendo.2023.1239335</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2023.1239335</ArticleId><ArticleId IdType="pmc">PMC10546337</ArticleId><ArticleId IdType="pubmed">37795366</ArticleId></ArticleIdList></Reference><Reference><Citation>Cholesterol Treatment Trialists’ Collaboration. Electronic address cnoau, Cholesterol Treatment Trialists C. Effects of statin therapy on diagnoses of new-onset diabetes and worsening glycaemia in large-scale randomised blinded statin trials: an individual participant data meta-analysis. Lancet Diabetes Endocrinol. 2024. May;12(5):306–19.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7615958</ArticleId><ArticleId IdType="pubmed">38554713</ArticleId></ArticleIdList></Reference><Reference><Citation>Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010. Sep 1;26(17):2190–1. doi: 10.1093/bioinformatics/btq340</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/bioinformatics/btq340</ArticleId><ArticleId IdType="pmc">PMC2922887</ArticleId><ArticleId IdType="pubmed">20616382</ArticleId></ArticleIdList></Reference><Reference><Citation>Klimentidis YC, Arora A, Newell M, Zhou J, Ordovas JM, Renquist BJ, et al.. Phenotypic and Genetic Characterization of Lower LDL Cholesterol and Increased Type 2 Diabetes Risk in the UK Biobank. Diabetes. 2020. Oct;69(10):2194–205. doi: 10.2337/db19-1134</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db19-1134</ArticleId><ArticleId IdType="pmc">PMC7506834</ArticleId><ArticleId IdType="pubmed">32493714</ArticleId></ArticleIdList></Reference><Reference><Citation>Andersson C, Lyass A, Larson MG, Robins SJ, Vasan RS. Low-density-lipoprotein cholesterol concentrations and risk of incident diabetes: epidemiological and genetic insights from the Framingham Heart Study. Diabetologia. 2015. Dec;58(12):2774–80. doi: 10.1007/s00125-015-3762-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-015-3762-x</ArticleId><ArticleId IdType="pmc">PMC4631796</ArticleId><ArticleId IdType="pubmed">26409460</ArticleId></ArticleIdList></Reference><Reference><Citation>Feng Q, Wei WQ, Chung CP, Levinson RT, Sundermann AC, Mosley JD, et al.. Relationship between very low low-density lipoprotein cholesterol concentrations not due to statin therapy and risk of type 2 diabetes: A US-based cross-sectional observational study using electronic health records. PLoS Med. 2018. Aug;15(8):e1002642. doi: 10.1371/journal.pmed.1002642</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pmed.1002642</ArticleId><ArticleId IdType="pmc">PMC6112635</ArticleId><ArticleId IdType="pubmed">30153257</ArticleId></ArticleIdList></Reference><Reference><Citation>Khankari NK, Keaton JM, Walker VM, Lee KM, Shuey MM, Clarke SL, et al.. Using Mendelian randomisation to identify opportunities for type 2 diabetes prevention by repurposing medications used for lipid management. EBioMedicine. 2022. Jun;80:104038. doi: 10.1016/j.ebiom.2022.104038</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ebiom.2022.104038</ArticleId><ArticleId IdType="pmc">PMC9062817</ArticleId><ArticleId IdType="pubmed">35500537</ArticleId></ArticleIdList></Reference><Reference><Citation>Smit RAJ, Trompet S, Leong A, Goodarzi MO, Postmus I, Warren H, et al.. Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study. Pharmacogenomics J. 2020. Jun;20(3):462–70. doi: 10.1038/s41397-019-0125-x</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41397-019-0125-x</ArticleId><ArticleId IdType="pmc">PMC7260089</ArticleId><ArticleId IdType="pubmed">31801993</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao J, Zhang Y, Wei F, Song J, Cao Z, Chen C, et al.. Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: a prospective study with 8-year follow-ups in two cohorts. J Transl Med. 2019. Dec 3;17(1):403. doi: 10.1186/s12967-019-02156-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12967-019-02156-3</ArticleId><ArticleId IdType="pmc">PMC6894231</ArticleId><ArticleId IdType="pubmed">31801571</ArticleId></ArticleIdList></Reference><Reference><Citation>McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al.. The Ensembl Variant Effect Predictor. Genome Biol. 2016. Jun 6;17(1):122. doi: 10.1186/s13059-016-0974-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13059-016-0974-4</ArticleId><ArticleId IdType="pmc">PMC4893825</ArticleId><ArticleId IdType="pubmed">27268795</ArticleId></ArticleIdList></Reference><Reference><Citation>Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012. Jan 14;379(9811):165–80. doi: 10.1016/S0140-6736(11)60178-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(11)60178-5</ArticleId><ArticleId IdType="pubmed">21840587</ArticleId></ArticleIdList></Reference><Reference><Citation>Tofte N, Vogelzangs N, Mook-Kanamori D, Brahimaj A, Nano J, Ahmadizar F, et al.. Plasma Metabolomics Identifies Markers of Impaired Renal Function: A Meta-analysis of 3089 Persons with Type 2 Diabetes. J Clin Endocrinol Metab. 2020. Jul 1;105(7). doi: 10.1210/clinem/dgaa173</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/clinem/dgaa173</ArticleId><ArticleId IdType="pubmed">32271379</ArticleId></ArticleIdList></Reference><Reference><Citation>Rhee SY, Jung ES, Park HM, Jeong SJ, Kim K, Chon S, et al.. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics. 2018;14(7):89. doi: 10.1007/s11306-018-1383-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11306-018-1383-3</ArticleId><ArticleId IdType="pmc">PMC6013531</ArticleId><ArticleId IdType="pubmed">29950956</ArticleId></ArticleIdList></Reference><Reference><Citation>Moosaie F, Davatgari RM, Firouzabadi FD, Esteghamati S, Deravi N, Meysamie A, et al.. Lipoprotein(a) and Apolipoproteins as Predictors for Diabetic Retinopathy and Its Severity in Adults With Type 2 Diabetes: A Case-Cohort Study. Can J Diabetes. 2020. Jul;44(5):414–21.</Citation><ArticleIdList><ArticleId IdType="pubmed">32205075</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan-Do R, MacDonald PE. Impaired "Glycine"-mia in Type 2 Diabetes and Potential Mechanisms Contributing to Glucose Homeostasis. Endocrinology. 2017. May 1;158(5):1064–73. doi: 10.1210/en.2017-00148</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/en.2017-00148</ArticleId><ArticleId IdType="pubmed">28323968</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim JE, Kang JO, Ha TW, Jung HU, Kim DJ, Baek EJ, et al.. Gene-environment interaction in type 2 diabetes in Korean cohorts: Interaction of a type 2 diabetes polygenic risk score with triglyceride and cholesterol on fasting glucose levels. Genet Epidemiol. 2022. Jul;46(5–6):285–302. doi: 10.1002/gepi.22454</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/gepi.22454</ArticleId><ArticleId IdType="pubmed">35481584</ArticleId></ArticleIdList></Reference><Reference><Citation>Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015. Mar 10;313(10):1029–36. doi: 10.1001/jama.2015.1206</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2015.1206</ArticleId><ArticleId IdType="pubmed">25756439</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartwig FP, Tilling K, Davey Smith G, Lawlor DA, Borges MC. Bias in two-sample Mendelian randomization when using heritable covariable-adjusted summary associations. Int J Epidemiol. 2021. Nov 10;50(5):1639–50. doi: 10.1093/ije/dyaa266</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ije/dyaa266</ArticleId><ArticleId IdType="pmc">PMC8580279</ArticleId><ArticleId IdType="pubmed">33619569</ArticleId></ArticleIdList></Reference><Reference><Citation>Higuchi S, Izquierdo MC, Haeusler RA. Unexplained reciprocal regulation of diabetes and lipoproteins. Curr Opin Lipidol. 2018. Jun;29(3):186–93. doi: 10.1097/MOL.0000000000000521</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MOL.0000000000000521</ArticleId><ArticleId IdType="pmc">PMC6150711</ArticleId><ArticleId IdType="pubmed">29708925</ArticleId></ArticleIdList></Reference><Reference><Citation>Masson W, Lobo M, Siniawski D, Huerin M, Molinero G, Valero R, et al.. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab. 2018. Dec;44(6):508–13. doi: 10.1016/j.diabet.2018.02.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2018.02.005</ArticleId><ArticleId IdType="pubmed">29523487</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanderson E, Spiller W, Bowden J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat Med. 2021. Nov 10;40(25):5434–52. doi: 10.1002/sim.9133</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/sim.9133</ArticleId><ArticleId IdType="pmc">PMC9479726</ArticleId><ArticleId IdType="pubmed">34338327</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39625868</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2291-5222</ISSN><JournalIssue CitedMedium="Internet"><Volume>12</Volume><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>JMIR mHealth and uHealth</Title><ISOAbbreviation>JMIR Mhealth Uhealth</ISOAbbreviation></Journal><ArticleTitle>The Role of Smartwatch Technology in the Provision of Care for Type 1 or 2 Diabetes Mellitus or Gestational Diabetes: Systematic Review.</ArticleTitle><Pagination><StartPage>e54826</StartPage><MedlinePgn>e54826</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e54826</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.2196/54826</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">The use of smart technology in the management of all forms of diabetes mellitus has grown significantly in the past 10 years. Technologies such as the smartwatch have been proposed as a method of assisting in the monitoring of blood glucose levels as well as other alert prompts such as medication adherence and daily physical activity targets. These important outcomes reach across all forms of diabetes and have the potential to increase compliance of self-monitoring with the aim of improving long-term outcomes such as hemoglobin A1c (HbA1c).</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">This systematic review aims to explore the literature for evidence of smartwatch technology in type 1, 2, and gestational diabetes.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">A systematic review was undertaken by searching Ovid MEDLINE and CINAHL databases. A second search using all identified keywords and index terms was performed on Ovid MEDLINE (January 1966 to August 2023), Embase (January 1980 to August 2023), Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library, latest issue), CINAHL (from 1982), IEEE Xplore, ACM Digital Libraries, and Web of Science databases. Type 1, type 2, and gestational diabetes were eligible for inclusion. Quantitative studies such as prospective cohort or randomized clinical trials that explored the feasibility, usability, or effect of smartwatch technology in people with diabetes were eligible. Outcomes of interest were changes in blood glucose or HbA1c, physical activity levels, medication adherence, and feasibility or usability scores.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Of the 8558 titles and abstracts screened, 5 studies were included for qualitative synthesis in this review. A total of 322 participants with either type 1 or type 2 diabetes mellitus were included in the review. A total of 4 studies focused on the feasibility and usability of smartwatch technology in diabetes management. One study conducted a proof-of-concept randomized clinical trial including smartwatch technology for exercise time prescriptions for participants with type 2 diabetes mellitus. Adherence of participants to smartwatch technology varied between included studies, with one reporting input submissions of 58% and another reporting that participants logged 50% more entries than they were required to. One study reported significantly improved glycemic control with integrated smartwatch technology, with increased exercise prescriptions; however, this study was not powered and required a longer observational period.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">This systematic review has highlighted the lack of robust randomized clinical trials that explore the efficacy of smartwatch technology in the management of patients with type 1, type 2, and gestational diabetes. Further research is required to establish the role of integrated smartwatch technology in important outcomes such as glycemic control, exercise participation, drug adherence, and diet monitoring in people with all forms of diabetes mellitus.</AbstractText><CopyrightInformation>© Sergio Diez Alvarez, Antoni Fellas, Katie Wynne, Derek Santos, Dean Sculley, Shamasunder Acharya, Pooshan Navathe, Xavier Gironès, Andrea Coda. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Diez Alvarez</LastName><ForeName>Sergio</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0002-3393-5764</Identifier><AffiliationInfo><Affiliation>School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, University Drive, Callaghan, Newcastle, 2308, Australia, 61409916949.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fellas</LastName><ForeName>Antoni</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-1557-6232</Identifier><AffiliationInfo><Affiliation>School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Equity in Health and Wellbeing Research Program, Hunter Medical Research Institute, Newcastle, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wynne</LastName><ForeName>Katie</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0002-7980-3337</Identifier><AffiliationInfo><Affiliation>School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, University Drive, Callaghan, Newcastle, 2308, Australia, 61409916949.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Equity in Health and Wellbeing Research Program, Hunter Medical Research Institute, Newcastle, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Endocrinology, John Hunter Hospital, Newcastle, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Santos</LastName><ForeName>Derek</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0001-9936-715X</Identifier><AffiliationInfo><Affiliation>Queen Margaret University, School of Health Sciences, Edinburgh, United Kingdom.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>University of Gibraltar, Gibraltar, Gibraltar.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sculley</LastName><ForeName>Dean</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0003-3972-8309</Identifier><AffiliationInfo><Affiliation>School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, University of Newcastle, Newcastle, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Acharya</LastName><ForeName>Shamasunder</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-4565-1571</Identifier><AffiliationInfo><Affiliation>School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, University Drive, Callaghan, Newcastle, 2308, Australia, 61409916949.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Endocrinology, John Hunter Hospital, Newcastle, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Navathe</LastName><ForeName>Pooshan</ForeName><Initials>P</Initials><Identifier Source="ORCID">0000-0003-1768-355X</Identifier><AffiliationInfo><Affiliation>Central Queensland Health, Rockhampton, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gironès</LastName><ForeName>Xavier</ForeName><Initials>X</Initials><Identifier Source="ORCID">0000-0002-2329-5927</Identifier><AffiliationInfo><Affiliation>Department of Research and Universities, Government of Catalonia-Generalitat de Catalunya, Barcelona, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Coda</LastName><ForeName>Andrea</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-0427-6672</Identifier><AffiliationInfo><Affiliation>School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, Australia.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Equity in Health and Wellbeing Research Program, Hunter Medical Research Institute, Newcastle, Australia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D000078182">Systematic Review</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>Canada</Country><MedlineTA>JMIR Mhealth Uhealth</MedlineTA><NlmUniqueID>101624439</NlmUniqueID><ISSNLinking>2291-5222</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016640" MajorTopicYN="Y">Diabetes, Gestational</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015190" MajorTopicYN="N">Blood Glucose Self-Monitoring</DescriptorName><QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000076251" MajorTopicYN="N">Wearable Electronic Devices</DescriptorName><QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName><QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName><QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">blood glucose</Keyword><Keyword MajorTopicYN="N">diabetes</Keyword><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">digital health</Keyword><Keyword MajorTopicYN="N">feasibility</Keyword><Keyword MajorTopicYN="N">flash glucose monitoring</Keyword><Keyword MajorTopicYN="N">gestational diabetes</Keyword><Keyword MajorTopicYN="N">glucose monitoring</Keyword><Keyword MajorTopicYN="N">mHealth</Keyword><Keyword MajorTopicYN="N">medication adherence</Keyword><Keyword MajorTopicYN="N">mobile health</Keyword><Keyword MajorTopicYN="N">mobile phone</Keyword><Keyword MajorTopicYN="N">self-monitoring</Keyword><Keyword MajorTopicYN="N">smartphones</Keyword><Keyword MajorTopicYN="N">smartwatch</Keyword><Keyword MajorTopicYN="N">smartwatch technology</Keyword><Keyword MajorTopicYN="N">systematic review</Keyword><Keyword MajorTopicYN="N">usability</Keyword></KeywordList><CoiStatement>None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>11</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>7</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>8</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>13</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39625868</ArticleId><ArticleId IdType="pmc">PMC11629918</ArticleId><ArticleId IdType="doi">10.2196/54826</ArticleId><ArticleId IdType="pii">v12i1e54826</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Brzan PP, Rotman E, Pajnkihar M, Klanjsek P. Mobile applications for control and self management of diabetes: a systematic review. J Med Syst. 2016 Sep;40(9):1–10. doi: 10.1007/s10916-016-0564-8. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10916-016-0564-8</ArticleId><ArticleId IdType="pubmed">27520615</ArticleId></ArticleIdList></Reference><Reference><Citation>Aikens JE, Zivin K, Trivedi R, Piette JD. Diabetes self-management support using mHealth and enhanced informal caregiving. J Diabetes Complicat. 2014 Mar;28(2):171–176. doi: 10.1016/j.jdiacomp.2013.11.008. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2013.11.008</ArticleId><ArticleId IdType="pmc">PMC3943823</ArticleId><ArticleId IdType="pubmed">24374137</ArticleId></ArticleIdList></Reference><Reference><Citation>Whitehead L, Seaton P. The effectiveness of self-management mobile phone and tablet apps in long-term condition management: a systematic review. J Med Internet Res. 2016 May 16;18(5):e97. doi: 10.2196/jmir.4883. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/jmir.4883</ArticleId><ArticleId IdType="pmc">PMC4886099</ArticleId><ArticleId IdType="pubmed">27185295</ArticleId></ArticleIdList></Reference><Reference><Citation>Reeder B, David A. Health at hand: a systematic review of smart watch uses for health and wellness. J Biomed Inform. 2016 Oct;63:269–276. doi: 10.1016/j.jbi.2016.09.001. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jbi.2016.09.001</ArticleId><ArticleId IdType="pubmed">27612974</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu R, Liaqat D, de Lara E, et al. Feasibility of using a smartwatch to intensively monitor patients with chronic obstructive pulmonary disease: prospective cohort study. JMIR Mhealth Uhealth. 2018 Jun 14;6(6):e10046. doi: 10.2196/10046. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/10046</ArticleId><ArticleId IdType="pmc">PMC6024103</ArticleId><ArticleId IdType="pubmed">29903700</ArticleId></ArticleIdList></Reference><Reference><Citation>Teixeira E, Fonseca H, Diniz-Sousa F, et al. Wearable devices for physical activity and healthcare monitoring in elderly people: a critical review. Geriatrics (Basel) 2021 Apr 7;6(2):38. doi: 10.3390/geriatrics6020038. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/geriatrics6020038</ArticleId><ArticleId IdType="pmc">PMC8167657</ArticleId><ArticleId IdType="pubmed">33917104</ArticleId></ArticleIdList></Reference><Reference><Citation>Chon KH, McManus DD. Detection of atrial fibrillation using a smartwatch. Nat Rev Cardiol. 2018 Nov;15(11):657–658. doi: 10.1038/s41569-018-0057-1. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41569-018-0057-1</ArticleId><ArticleId IdType="pmc">PMC6324540</ArticleId><ArticleId IdType="pubmed">29985453</ArticleId></ArticleIdList></Reference><Reference><Citation>Rafl J, Bachman TE, Rafl-Huttova V, Walzel S, Rozanek M. Commercial smartwatch with pulse oximeter detects short-time hypoxemia as well as standard medical-grade device: validation study. Digit Health. 2022;8:20552076221132127. doi: 10.1177/20552076221132127. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/20552076221132127</ArticleId><ArticleId IdType="pmc">PMC9554125</ArticleId><ArticleId IdType="pubmed">36249475</ArticleId></ArticleIdList></Reference><Reference><Citation>Henriksen A, Haugen Mikalsen M, Woldaregay AZ, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018 Mar 22;20(3):e110. doi: 10.2196/jmir.9157. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/jmir.9157</ArticleId><ArticleId IdType="pmc">PMC5887043</ArticleId><ArticleId IdType="pubmed">29567635</ArticleId></ArticleIdList></Reference><Reference><Citation>Tierney MJ, Tamada JA, Potts RO, et al. The GlucoWatch biographer: a frequent automatic and noninvasive glucose monitor. Ann Med. 2000 Dec;32(9):632–641. doi: 10.3109/07853890009002034. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.3109/07853890009002034</ArticleId><ArticleId IdType="pubmed">11209971</ArticleId></ArticleIdList></Reference><Reference><Citation>Årsand E, Muzny M, Bradway M, Muzik J, Hartvigsen G. Performance of the first combined smartwatch and smartphone diabetes diary application study. J Diabetes Sci Technol. 2015 May;9(3):556–563. doi: 10.1177/1932296814567708. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1932296814567708</ArticleId><ArticleId IdType="pmc">PMC4604524</ArticleId><ArticleId IdType="pubmed">25591859</ArticleId></ArticleIdList></Reference><Reference><Citation>Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998 Jun;52(6):377–384. doi: 10.1136/jech.52.6.377. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/jech.52.6.377</ArticleId><ArticleId IdType="pmc">PMC1756728</ArticleId><ArticleId IdType="pubmed">9764259</ArticleId></ArticleIdList></Reference><Reference><Citation>Brozek JL, Akl EA, Alonso-Coello P, et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy. 2009 May;64(5):669–677. doi: 10.1111/j.1398-9995.2009.01973.x. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1398-9995.2009.01973.x</ArticleId><ArticleId IdType="pubmed">19210357</ArticleId></ArticleIdList></Reference><Reference><Citation>Garg SK, Shah VN, Akturk HK, Beatson C, Snell-Bergeon JK. Role of mobile technology to improve diabetes care in adults with type 1 diabetes: the Remote-T1D Study iBGStar® in type 1 diabetes management. Diabetes Ther. 2017 Aug;8(4):811–819. doi: 10.1007/s13300-017-0272-5. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-017-0272-5</ArticleId><ArticleId IdType="pmc">PMC5544609</ArticleId><ArticleId IdType="pubmed">28555339</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang HC, Chang FY, Tsai TM, Chen CH, Chen YY. Development and clinical trial of a smartphone-based colorimetric detection system for self-monitoring of blood glucose. Biomed Opt Express. 2020 Apr 1;11(4):2166–2177. doi: 10.1364/BOE.389638. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1364/BOE.389638</ArticleId><ArticleId IdType="pmc">PMC7173904</ArticleId><ArticleId IdType="pubmed">32341874</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirst JE, Mackillop L, Loerup L, Gibson OJ, Farmer AJ, Bartlett K, et al. GDm-Health: a pilot study examining acceptability of mobile phone assisted remote blood glucose monitoring for women with gestational diabetes mellitus. Reprod Sci. 2014;21(3):252A–253A.</Citation></Reference><Reference><Citation>Keith-Hynes P, Mize B, Robert A, Place J. The Diabetes Assistant: a smartphone-based system for real-time control of blood glucose. Electronics (Basel) 2014;3(4):609–623. doi: 10.3390/electronics3040609. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/electronics3040609</ArticleId></ArticleIdList></Reference><Reference><Citation>Asante E, Bam V, Diji AKA, et al. Pilot mobile phone intervention in promoting type 2 diabetes management in an urban area in Ghana: a randomized controlled trial. Diabetes Educ. 2020 Oct;46(5):455–464. doi: 10.1177/0145721720954070. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721720954070</ArticleId><ArticleId IdType="pubmed">32998649</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhai Y, Yu W. A mobile app for diabetes management: impact on self-efficacy among patients with type 2 diabetes at a community hospital. Med Sci Monit. 2020 Nov 16;26:e926719. doi: 10.12659/MSM.926719. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.12659/MSM.926719</ArticleId><ArticleId IdType="pmc">PMC7678242</ArticleId><ArticleId IdType="pubmed">33196634</ArticleId></ArticleIdList></Reference><Reference><Citation>Poulter SE, Meloncelli N, Mack M. Use of a smartphone-based, interactive blood glucose management system in women with gestational diabetes mellitus: a pilot study. Diabetes Res Clin Pract. 2022 Mar;185:109224. doi: 10.1016/j.diabres.2022.109224. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2022.109224</ArticleId><ArticleId IdType="pubmed">35122904</ArticleId></ArticleIdList></Reference><Reference><Citation>Pamungkas RA, Usman AM, Chamroonsawasdi K, Abdurrasyid A smartphone application of diabetes coaching intervention to prevent the onset of complications and to improve diabetes self-management: a randomized control trial. Diabetes Metab Syndr Clin Res Rev. 2022 Jul;16(7):102537. doi: 10.1016/j.dsx.2022.102537. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2022.102537</ArticleId><ArticleId IdType="pubmed">35724489</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang Y, Lee EY, Kim HS, Lee SH, Yoon KH, Cho JH. Effect of a mobile phone-based glucose-monitoring and feedback system for type 2 diabetes management in multiple primary care clinic settings: cluster randomized controlled trial. JMIR Mhealth Uhealth. 2020 Feb 26;8(2):e16266. doi: 10.2196/16266. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/16266</ArticleId><ArticleId IdType="pmc">PMC7066511</ArticleId><ArticleId IdType="pubmed">32130172</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu Y, Yan Q, Li H, et al. Effects of mobile phone application combined with or without self-monitoring of blood glucose on glycemic control in patients with diabetes: A randomized controlled trial. J Diabetes Investig. 2019 Sep;10(5):1365–1371. doi: 10.1111/jdi.13031. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.13031</ArticleId><ArticleId IdType="pmc">PMC6717828</ArticleId><ArticleId IdType="pubmed">30815973</ArticleId></ArticleIdList></Reference><Reference><Citation>Gunawardena KC, Jackson R, Robinett I, et al. The influence of the smart glucose manager mobile application on diabetes management. J Diabetes Sci Technol. 2019 Jan;13(1):75–81. doi: 10.1177/1932296818804522. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1932296818804522</ArticleId><ArticleId IdType="pmc">PMC6313277</ArticleId><ArticleId IdType="pubmed">30264583</ArticleId></ArticleIdList></Reference><Reference><Citation>Garnweidner-Holme L, Henriksen L, Torheim LE, Lukasse M. Effect of the Pregnant+ smartphone app on the dietary behavior of women with gestational diabetes mellitus: secondary analysis of a randomized controlled trial. JMIR Mhealth Uhealth. 2020 Nov 4;8(11):e18614. doi: 10.2196/18614. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/18614</ArticleId><ArticleId IdType="pmc">PMC7673980</ArticleId><ArticleId IdType="pubmed">33146620</ArticleId></ArticleIdList></Reference><Reference><Citation>Martos-Cabrera MB, Velando-Soriano A, Pradas-Hernández L, et al. Smartphones and apps to control glycosylated hemoglobin (HbA1c) level in diabetes: a systematic review and meta-analysis. J Clin Med. 2020 Mar 4;9(3):693. doi: 10.3390/jcm9030693. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm9030693</ArticleId><ArticleId IdType="pmc">PMC7141208</ArticleId><ArticleId IdType="pubmed">32143452</ArticleId></ArticleIdList></Reference><Reference><Citation>Kerr D, King F, Klonoff DC. Digital health interventions for diabetes: everything to gain and nothing to lose. Diabetes Spectr. 2019 Aug;32(3):226–230. doi: 10.2337/ds18-0085. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/ds18-0085</ArticleId><ArticleId IdType="pmc">PMC6695261</ArticleId><ArticleId IdType="pubmed">31462878</ArticleId></ArticleIdList></Reference><Reference><Citation>Hartz J, Yingling L, Powell-Wiley TM. Use of mobile health technology in the prevention and management of diabetes mellitus. Curr Cardiol Rep. 2016 Dec;18(12):130. doi: 10.1007/s11886-016-0796-8. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11886-016-0796-8</ArticleId><ArticleId IdType="pubmed">27826901</ArticleId></ArticleIdList></Reference><Reference><Citation>Kebede MM, Zeeb H, Peters M, Heise TL, Pischke CR. Effectiveness of digital interventions for improving glycemic control in persons with poorly controlled type 2 diabetes: a systematic review, meta-analysis, and meta-regression analysis. Diabetes Technol Ther. 2018 Nov;20(11):767–782. doi: 10.1089/dia.2018.0216. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/dia.2018.0216</ArticleId><ArticleId IdType="pubmed">30257102</ArticleId></ArticleIdList></Reference><Reference><Citation>Constantin J, Mesana L, Pruce D, Syed IA. PDB14 - mobile apps for medication adherence in diabetes. Val Health. 2018 Oct;21:S121. doi: 10.1016/j.jval.2018.09.720. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jval.2018.09.720</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Hajri M, Al-Kawari S, Al-Kharusi A, et al. Why mobile apps for type II diabetes fail to actualize behavioral change among adolescents? Diabetes Technol Ther. 2020;22:A235</Citation></Reference><Reference><Citation>Yang Y, Lee J, Kang B, et al. Effect of smartphone-based glucose monitoring and feedback system on diabetes management in multiple private clinics setting. [24-11-2024];Diabetes. 2016 65:A318. https://kiss.kstudy.com/Detail/Ar?key=3437056 URL. Accessed.</Citation></Reference><Reference><Citation>Li C. The effect of case management model based on mobile health on self-management and blood glucose control of type 2 diabetes patients. [24-11-2024];J Diabetes Investig. 2018 Dec;9(S1):47–161. doi: 10.1111/jdi.12939. https://onlinelibrary.wiley.com/doi/10.1111/jdi.12939 URL. Accessed. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.12939</ArticleId><ArticleId IdType="doi">10.1111/jdi.12939</ArticleId></ArticleIdList></Reference><Reference><Citation>Aravamudhan A, Jain N, Lewis I, Samuels T, Hogan V, Lipova O. Impact of continuous and flash glucose monitoring on HbA1c, quality of life indicators and hypoglycaemia confidence in children and young people with type 1 diabetes. [24-11-2024];Pediatr Diabetes. 2018 Oct;19:41–150. doi: 10.1111/pedi.12746. https://onlinelibrary.wiley.com/doi/10.1111/pedi.12746 URL. Accessed. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/pedi.12746</ArticleId><ArticleId IdType="doi">10.1111/pedi.12746</ArticleId></ArticleIdList></Reference><Reference><Citation>Fleming GA, Petrie JR, Bergenstal RM, Holl RW, Peters AL, Heinemann L. Diabetes digital app technology: benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care. 2020 Jan;43(1):250–260. doi: 10.2337/dci19-0062. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci19-0062</ArticleId><ArticleId IdType="pubmed">31806649</ArticleId></ArticleIdList></Reference><Reference><Citation>Kebede MM, Pischke CR. Popular diabetes apps and the impact of diabetes app use on self-care behaviour: a survey among the digital community of persons with diabetes on social media. Front Endocrinol (Lausanne) 2019;10:135. doi: 10.3389/fendo.2019.00135. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fendo.2019.00135</ArticleId><ArticleId IdType="pmc">PMC6407478</ArticleId><ArticleId IdType="pubmed">30881349</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappon G, Cossu L, Boscari F, Bruttomesso D, Sparacino G, Facchinetti A. An integrated mobile platform for automated data collection and real-time patient monitoring in diabetes clinical trials. J Diabetes Sci Technol. 2022 Nov;16(6):1555–1559. doi: 10.1177/19322968211024620. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/19322968211024620</ArticleId><ArticleId IdType="pmc">PMC9631529</ArticleId><ArticleId IdType="pubmed">34218721</ArticleId></ArticleIdList></Reference><Reference><Citation>Diabetes Research in Children Network (DIRECNET) Study Group The accuracy of the GlucoWatch G2 biographer in children with type 1 diabetes: results of the diabetes research in children network (DirecNet) accuracy study. Diabetes Technol Ther. 2003;5(5):791–800. doi: 10.1089/152091503322526996. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/152091503322526996</ArticleId><ArticleId IdType="pmc">PMC2302793</ArticleId><ArticleId IdType="pubmed">14633344</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim EK, Kwak SH, Baek S, et al. Feasibility of a patient-centered, smartphone-based, diabetes care system: a pilot study. Diabetes Metab J. 2016 Jun;40(3):192–201. doi: 10.4093/dmj.2016.40.3.192. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2016.40.3.192</ArticleId><ArticleId IdType="pmc">PMC4929223</ArticleId><ArticleId IdType="pubmed">27098508</ArticleId></ArticleIdList></Reference><Reference><Citation>Shaw RJ, Yang Q, Barnes A, et al. Self-monitoring diabetes with multiple mobile health devices. J Am Med Inform Assoc. 2020 May 1;27(5):667–676. doi: 10.1093/jamia/ocaa007. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jamia/ocaa007</ArticleId><ArticleId IdType="pmc">PMC7309229</ArticleId><ArticleId IdType="pubmed">32134447</ArticleId></ArticleIdList></Reference><Reference><Citation>Dehghani Zahedani A, Shariat Torbaghan S, Rahili S, et al. Improvement in glucose regulation using a digital tracker and continuous glucose monitoring in healthy adults and those with type 2 diabetes. Diabetes Ther. 2021 Jul;12(7):1871–1886. doi: 10.1007/s13300-021-01081-3. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-021-01081-3</ArticleId><ArticleId IdType="pmc">PMC8266934</ArticleId><ArticleId IdType="pubmed">34047962</ArticleId></ArticleIdList></Reference><Reference><Citation>Chang CR, Russell BM, Cyriac T, Francois ME. Using continuous glucose monitoring to prescribe a time to exercise for individuals with type 2 diabetes. J Clin Med. 2023 Apr 30;12(9):3237. doi: 10.3390/jcm12093237. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm12093237</ArticleId><ArticleId IdType="pmc">PMC10179271</ArticleId><ArticleId IdType="pubmed">37176677</ArticleId></ArticleIdList></Reference><Reference><Citation>Valero M, Pola P, Falaiye O, et al. Development of a noninvasive blood glucose monitoring system prototype: pilot study. JMIR Form Res. 2022 Aug 26;6(8):e38664. doi: 10.2196/38664. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/38664</ArticleId><ArticleId IdType="pmc">PMC9463623</ArticleId><ArticleId IdType="pubmed">36018623</ArticleId></ArticleIdList></Reference><Reference><Citation>Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. Appl Spectrosc Rev. 2019 Aug 9;54(7):543–572. doi: 10.1080/05704928.2018.1486324. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/05704928.2018.1486324</ArticleId></ArticleIdList></Reference><Reference><Citation>Martín-Timón I, Del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes. 2015 Jul 10;6(7):912–926. doi: 10.4239/wjd.v6.i7.912. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v6.i7.912</ArticleId><ArticleId IdType="pmc">PMC4499525</ArticleId><ArticleId IdType="pubmed">26185599</ArticleId></ArticleIdList></Reference><Reference><Citation>Sehgal S, De Bock M, Williman J, et al. Study protocol: safety and efficacy of smart watch integrated do-it-yourself continuous glucose monitoring in adults with type 1 diabetes, a randomised controlled trial. J Diabetes Metab Disord. 2021 Dec;20(2):2103–2113. doi: 10.1007/s40200-021-00923-y. doi.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s40200-021-00923-y</ArticleId><ArticleId IdType="pmc">PMC8630291</ArticleId><ArticleId IdType="pubmed">34900846</ArticleId></ArticleIdList></Reference><Reference><Citation>Corbett JP, Hsu L, Brown SA, et al. Smartwatch gesture-based meal reminders improve glycaemic control. Diabetes Obes Metab. 2022 Aug;24(8):1667–1670. doi: 10.1111/dom.14737. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14737</ArticleId><ArticleId IdType="pmc">PMC9262849</ArticleId><ArticleId IdType="pubmed">35491517</ArticleId></ArticleIdList></Reference><Reference><Citation>Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J Gastroenterol Hepatol. 2019 Feb;34(2):346–354. doi: 10.1111/jgh.14451. doi. Medline.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jgh.14451</ArticleId><ArticleId IdType="pubmed">30151918</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39625861</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1752-8062</ISSN><JournalIssue CitedMedium="Internet"><Volume>17</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Clinical and translational science</Title><ISOAbbreviation>Clin Transl Sci</ISOAbbreviation></Journal><ArticleTitle>Effect of carrot intake on glucose tolerance, microbiota, and gene expression in a type 2 diabetes mouse model.</ArticleTitle><Pagination><StartPage>e70090</StartPage><MedlinePgn>e70090</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e70090</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1111/cts.70090</ELocationID><Abstract><AbstractText>Type 2 diabetes (T2D) pathophysiology involves insulin resistance (IR) and inadequate insulin secretion. Current T2D management includes dietary adjustments and/or oral medications such as thiazolidinediones (TZDs). Carrots have shown to contain bioactive acetylenic oxylipins that are partial agonists of the peroxisome proliferator-activated receptor γ (Pparg) that mimic the antidiabetic effect of TZDs without any adverse effects. TZDs exert hypoglycemic effects through activation of Pparg and through the regulation of the gut microbiota (GM) producing short-chain fatty acids (SCFAs), which impact glucose and energy homeostasis, promote intestinal gluconeogenesis, and influence insulin signaling pathways. This study investigated the metabolic effects of carrot intake in a T2D mouse model, elucidating underlying mechanisms. Mice were fed a low-fat diet (LFD), high-fat diet (HFD), or adjusted HFD supplemented with 10% carrot powder for 16 weeks. Oral glucose tolerance tests were conducted at weeks 0 and 16. Fecal, cecum, and colon samples, as well as tissue samples, were collected at week 16 during the autopsy. Results showed improved oral glucose tolerance in the HFD carrot group compared to HFD alone after 16 weeks. GM analysis demonstrated increased diversity and compositional changes in the cecum of mice fed HFD with carrot relative to HFD. These findings suggest the potential effect of carrots in T2D management, possibly through modulation of GM. Gene expression analysis revealed no significant alterations in adipose or muscle tissue between diet groups. Further research into carrot-derived bioactive compounds and their mechanisms of action is warranted for developing effective dietary strategies against T2D.</AbstractText><CopyrightInformation>© 2024 The Author(s). Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kobaek-Larsen</LastName><ForeName>Morten</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0002-5097-9283</Identifier><AffiliationInfo><Affiliation>Department of Clinical Research, University of Southern Denmark, Odense M, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Maschek</LastName><ForeName>Sina</ForeName><Initials>S</Initials><Identifier Source="ORCID">0009-0001-2408-729X</Identifier><AffiliationInfo><Affiliation>Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kolstrup</LastName><ForeName>Stefanie Hansborg</ForeName><Initials>SH</Initials><AffiliationInfo><Affiliation>Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Højlund</LastName><ForeName>Kurt</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0002-0891-4224</Identifier><AffiliationInfo><Affiliation>Department of Clinical Research, University of Southern Denmark, Odense M, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Steno Diabetes Center Odense, Odense University Hospital, Odense C, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nielsen</LastName><ForeName>Dennis Sandris</ForeName><Initials>DS</Initials><Identifier Source="ORCID">0000-0001-8121-1114</Identifier><AffiliationInfo><Affiliation>Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hansen</LastName><ForeName>Axel Kornerup</ForeName><Initials>AK</Initials><Identifier Source="ORCID">0000-0003-1575-2507</Identifier><AffiliationInfo><Affiliation>Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Christensen</LastName><ForeName>Lars Porskjær</ForeName><Initials>LP</Initials><Identifier Source="ORCID">0000-0002-5035-9201</Identifier><AffiliationInfo><Affiliation>Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>122-A5125</GrantID><Agency>Odense University Hospital Fund for Free Research</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Clin Transl Sci</MedlineTA><NlmUniqueID>101474067</NlmUniqueID><ISSNLinking>1752-8054</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D047495">PPAR gamma</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018552" MajorTopicYN="Y">Daucus carota</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000178" MajorTopicYN="N">diet therapy</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069196" MajorTopicYN="Y">Gastrointestinal Microbiome</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="N">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="N">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018752" MajorTopicYN="N">Diet, Fat-Restricted</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D047495" MajorTopicYN="N">PPAR gamma</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000178" MajorTopicYN="N">diet therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>The authors declared no competing interests for this work.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>9</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>18</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>12</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>3</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39625861</ArticleId><ArticleId IdType="pmc">PMC11613996</ArticleId><ArticleId IdType="doi">10.1111/cts.70090</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ogurtsova K, Da RFJ, Huang Y, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40‐50. doi:10.1016/j.diabres.2017.03.024</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2017.03.024</ArticleId><ArticleId IdType="pubmed">28437734</ArticleId></ArticleIdList></Reference><Reference><Citation>Qin J, Li Y, Cai Z, et al. A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55‐60. doi:10.1038/nature11450</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature11450</ArticleId><ArticleId IdType="pubmed">23023125</ArticleId></ArticleIdList></Reference><Reference><Citation>Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired, and diabetic glucose control. Nature. 2013;498:99‐103. doi:10.1038/nature12198</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nature12198</ArticleId><ArticleId IdType="pubmed">23719380</ArticleId></ArticleIdList></Reference><Reference><Citation>Mlinar B, Marc J, Janež A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta. 2007;375:20‐35. doi:10.1016/j.cca.2006.07.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cca.2006.07.005</ArticleId><ArticleId IdType="pubmed">16956601</ArticleId></ArticleIdList></Reference><Reference><Citation>Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol. 2005;5:122‐128. doi:10.1016/j.coph.2005.01.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.coph.2005.01.006</ArticleId><ArticleId IdType="pubmed">15780819</ArticleId></ArticleIdList></Reference><Reference><Citation>Blandino G, Inturri R, Lazzara F, Di RM, Malaguarnera L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab. 2016;42:303‐315. doi:10.1016/j.diabet.2016.04.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabet.2016.04.004</ArticleId><ArticleId IdType="pubmed">27179626</ArticleId></ArticleIdList></Reference><Reference><Citation>Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetes Care. 2018;41:2669‐2701. doi:10.2337/dci18-0033</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dci18-0033</ArticleId><ArticleId IdType="pmc">PMC6245208</ArticleId><ArticleId IdType="pubmed">30291106</ArticleId></ArticleIdList></Reference><Reference><Citation>Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals. 2021;14:806. doi:10.3390/ph14080806</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ph14080806</ArticleId><ArticleId IdType="pmc">PMC8398612</ArticleId><ArticleId IdType="pubmed">34451903</ArticleId></ArticleIdList></Reference><Reference><Citation>McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59:426‐435. doi:10.1007/s00125-015-3844-9</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-015-3844-9</ArticleId><ArticleId IdType="pmc">PMC4742508</ArticleId><ArticleId IdType="pubmed">26780750</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasan AU, Rahman A, Kobori H. Interactions between host PPARs and gut microbiota in health and disease. Int J Mol Sci. 2019;20:387. doi:10.3390/ijms20020387</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijms20020387</ArticleId><ArticleId IdType="pmc">PMC6359605</ArticleId><ArticleId IdType="pubmed">30658440</ArticleId></ArticleIdList></Reference><Reference><Citation>Ellekilde M, Krych L, Hansen CH, et al. Characterization of the gut microbiota in leptin deficient obese mice – correlation to inflammatory and diabetic parameters. Res Vet Sci. 2014;96:241‐250. doi:10.1016/j.rvsc.2014.01.007</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.rvsc.2014.01.007</ArticleId><ArticleId IdType="pubmed">24556473</ArticleId></ArticleIdList></Reference><Reference><Citation>Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731. doi:10.3389/fimmu.2020.571731</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2020.571731</ArticleId><ArticleId IdType="pmc">PMC7596417</ArticleId><ArticleId IdType="pubmed">33178196</ArticleId></ArticleIdList></Reference><Reference><Citation>Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA. 1994;91:4854‐4858. doi:10.1073/pnas.91.11.4854</Citation><ArticleIdList><ArticleId IdType="doi">10.1073/pnas.91.11.4854</ArticleId><ArticleId IdType="pmc">PMC43887</ArticleId><ArticleId IdType="pubmed">8197147</ArticleId></ArticleIdList></Reference><Reference><Citation>Alam F, Islam MA, Khalil MI, Gan SH. Metabolic control of type 2 diabetes by targeting the GLUT4 glucose transporter: intervention approaches. Curr Pharm Des. 2016;22:3034‐3049. doi:10.2174/1381612822666160307145801</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/1381612822666160307145801</ArticleId><ArticleId IdType="pubmed">26951104</ArticleId></ArticleIdList></Reference><Reference><Citation>Zieleniak A, Wójcik M, Woźniak LA. Structure and physiological functions of the human peroxisome proliferator‐activated receptor gamma. Arch Immunol Ther Exp (Warsz). 2008;56:331‐345. doi:10.1007/s00005-008-0037-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00005-008-0037-y</ArticleId><ArticleId IdType="pubmed">18836859</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen LP, El‐Houri RB. Development of an in vitro screening platform for the identification of partial PPARγ agonists as a source for antidiabetic lead compounds. Molecules. 2018;23:2431. doi:10.3390/molecules23102431</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules23102431</ArticleId><ArticleId IdType="pmc">PMC6222920</ArticleId><ArticleId IdType="pubmed">30248999</ArticleId></ArticleIdList></Reference><Reference><Citation>La Cour Poulsen L, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23:631‐639. doi:10.1016/j.semcdb.2012.01.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.semcdb.2012.01.003</ArticleId><ArticleId IdType="pubmed">22273692</ArticleId></ArticleIdList></Reference><Reference><Citation>Cariou B, Charbonnel B, Staels B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol Metab. 2012;23:205‐215. doi:10.1016/j.tem.2012.03.001</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.tem.2012.03.001</ArticleId><ArticleId IdType="pubmed">22513163</ArticleId></ArticleIdList></Reference><Reference><Citation>Bruning JB, Chalmers MJ, Prasad S, et al. Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure. 2007;15:1258‐1271. doi:10.1016/j.str.2007.07.014</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.str.2007.07.014</ArticleId><ArticleId IdType="pubmed">17937915</ArticleId></ArticleIdList></Reference><Reference><Citation>El‐Houri RB, Mortier J, Murgueitio MS, Wolber G, Christensen LP. Identification of PPARγ agonists from natural sources using different in silico approaches. Planta Med. 2015;81:488‐494. doi:10.1055/s-0034-1383119</Citation><ArticleIdList><ArticleId IdType="doi">10.1055/s-0034-1383119</ArticleId><ArticleId IdType="pubmed">25251562</ArticleId></ArticleIdList></Reference><Reference><Citation>Lizcano F, Vargas D. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism. Genet Mol Biol. 2013;36:134‐139. doi:10.1590/S1415-47572013005000002</Citation><ArticleIdList><ArticleId IdType="doi">10.1590/S1415-47572013005000002</ArticleId><ArticleId IdType="pmc">PMC3615519</ArticleId><ArticleId IdType="pubmed">23569420</ArticleId></ArticleIdList></Reference><Reference><Citation>Sell H, Berger JP, Samson P, et al. Peroxisome proliferator‐activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology. 2004;145:3925‐3934. doi:10.1210/en.2004-0321</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/en.2004-0321</ArticleId><ArticleId IdType="pubmed">15131020</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X, Rossmeisl M, McClaine J, Riachi M, Harper ME, Kozak LP. Paradoxical resistance to diet‐induced obesity in UCP1‐deficient mice. J Clin Invest. 2003;111:399‐407. doi:10.1172/JCI15737</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI15737</ArticleId><ArticleId IdType="pmc">PMC151850</ArticleId><ArticleId IdType="pubmed">12569166</ArticleId></ArticleIdList></Reference><Reference><Citation>Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2:137‐189. doi:10.1016/S0944-7113(11)80059-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0944-7113(11)80059-0</ArticleId><ArticleId IdType="pubmed">23196156</ArticleId></ArticleIdList></Reference><Reference><Citation>Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277‐1294. doi:10.2337/diacare.26.4.1277</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.26.4.1277</ArticleId><ArticleId IdType="pubmed">12663610</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Waltenberger B, Pferschy‐Wenzig EM, et al. Natural product agonists of peroxisome proliferator‐activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92:73‐89. doi:10.1016/j.bcp.2014.07.018</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.bcp.2014.07.018</ArticleId><ArticleId IdType="pmc">PMC4212005</ArticleId><ArticleId IdType="pubmed">25083916</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen KB, Minet A, Svenstrup H, et al. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator‐activated receptor (PPAR), adipocyte differentiation and insulin‐stimulated glucose uptake. Phytother Res. 2009;23:1316‐1325. doi:10.1002/ptr.2782</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ptr.2782</ArticleId><ArticleId IdType="pubmed">19172665</ArticleId></ArticleIdList></Reference><Reference><Citation>El‐Houri RB, Kotowska D, Christensen KB, et al. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct. 2015;6:2135‐2144. doi:10.1039/c5fo00223k</Citation><ArticleIdList><ArticleId IdType="doi">10.1039/c5fo00223k</ArticleId><ArticleId IdType="pubmed">25970571</ArticleId></ArticleIdList></Reference><Reference><Citation>Atanasov AG, Blunder M, Fakhrudin N, et al. Polyacetylenes from Notopterygium incisum – new selective partial agonists of peroxisome proliferator‐activated receptor‐gamma. PLoS One. 2013;8:e61755. doi:10.1371/journal.pone.0061755</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0061755</ArticleId><ArticleId IdType="pmc">PMC3632601</ArticleId><ArticleId IdType="pubmed">23630612</ArticleId></ArticleIdList></Reference><Reference><Citation>Andersen CB, Walther AR, Pipó‐Ollé E, et al. Falcarindiol purified from carrots leads to elevated levels of lipid droplets and upregulation of peroxisome proliferator‐activated receptor‐γ gene expression in cellular models. Front Pharmacol. 2020;11:565524. doi:10.3389/fphar.2020.565524</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fphar.2020.565524</ArticleId><ArticleId IdType="pmc">PMC7485416</ArticleId><ArticleId IdType="pubmed">32982759</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity, and analysis. J Pharm Biomed Anal. 2006;41:683‐693. doi:10.1016/j.jpba.2006.01.057</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jpba.2006.01.057</ArticleId><ArticleId IdType="pubmed">16520011</ArticleId></ArticleIdList></Reference><Reference><Citation>Kobaek‐Larsen M, Baatrup G, Khataei Notabi M, et al. Dietary polyacetylenic oxylipins falcarinol and falcarindiol prevent inflammation and colorectal neoplastic transformation: a mechanistic and dose‐response study in a rat model. Nutrients. 2019;11:2223. doi:10.3390/nu11092223</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu11092223</ArticleId><ArticleId IdType="pmc">PMC6769548</ArticleId><ArticleId IdType="pubmed">31540047</ArticleId></ArticleIdList></Reference><Reference><Citation>Christensen LP. Bioactive C17 and C18 acetylenic oxylipins from terrestrial plants as potential lead compounds for anticancer drug development. Molecules. 2020;25:2568. doi:10.3390/molecules25112568</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/molecules25112568</ArticleId><ArticleId IdType="pmc">PMC7321150</ArticleId><ArticleId IdType="pubmed">32486470</ArticleId></ArticleIdList></Reference><Reference><Citation>Kobaek‐Larsen M, El‐Houri RB, Christensen LP, Al‐Najami I, Fretté X, Baatrup G. Dietary polyacetylenes, falcarinol and falcarindiol, isolated from carrots prevents the formation of neoplastic lesions in the colon of azoxymethane‐induced rats. Food Funct. 2017;8:964‐974. doi:10.1039/c7fo00110j</Citation><ArticleIdList><ArticleId IdType="doi">10.1039/c7fo00110j</ArticleId><ArticleId IdType="pubmed">28197615</ArticleId></ArticleIdList></Reference><Reference><Citation>Kobaek‐Larsen M, Nielsen DS, Kot W, Krych Ł, Christensen LP, Baatrup G. Effect of the dietary polyacetylenes falcarinol and falcarindiol on the gut microbiota composition in a rat model of colorectal cancer. BMC Res Notes. 2018;11:411. doi:10.1186/s13104-018-3527-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13104-018-3527-y</ArticleId><ArticleId IdType="pmc">PMC6020439</ArticleId><ArticleId IdType="pubmed">29945666</ArticleId></ArticleIdList></Reference><Reference><Citation>Michalik L, Desvergne B, Wahli W. Peroxisome‐proliferator‐activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4:61‐70. doi:10.1038/nrc1254</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrc1254</ArticleId><ArticleId IdType="pubmed">14708026</ArticleId></ArticleIdList></Reference><Reference><Citation>Mähler Convenor M, Berard M, Feinstein R, et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48:178‐192. doi:10.1177/0023677213516312</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0023677213516312</ArticleId><ArticleId IdType="pubmed">24496575</ArticleId></ArticleIdList></Reference><Reference><Citation>Casimiro I, Stull ND, Tersey SA, Mirmira RG. Phenotypic sexual dimorphism in response to dietary fat manipulation in C57BL/6J mice. J Diabetes Complications. 2021;35:107795. doi:10.1016/j.jdiacomp.2020.107795</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2020.107795</ArticleId><ArticleId IdType="pmc">PMC7856196</ArticleId><ArticleId IdType="pubmed">33308894</ArticleId></ArticleIdList></Reference><Reference><Citation>Arildsen AW, Zachariassen LF, Krych L, Hansen AK, Hansen CHF. Delayed gut colonization shapes future allergic responses in a murine model of atopic dermatitis. Front Immunol. 2021;12:650621. doi:10.3389/fimmu.2021.650621</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fimmu.2021.650621</ArticleId><ArticleId IdType="pmc">PMC8010263</ArticleId><ArticleId IdType="pubmed">33815411</ArticleId></ArticleIdList></Reference><Reference><Citation>Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA‐gene database project: improved data processing and web‐based tools. Nucleic Acids Res. 2013;41:D590‐D596. doi:10.1093/nar/gks1219</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/nar/gks1219</ArticleId><ArticleId IdType="pmc">PMC3531112</ArticleId><ArticleId IdType="pubmed">23193283</ArticleId></ArticleIdList></Reference><Reference><Citation>Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13059-014-0550-8</ArticleId><ArticleId IdType="pmc">PMC4302049</ArticleId><ArticleId IdType="pubmed">25516281</ArticleId></ArticleIdList></Reference><Reference><Citation>Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet‐induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37:1163‐1167. doi:10.2337/diab.37.9.1163</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.37.9.1163</ArticleId><ArticleId IdType="pubmed">3044882</ArticleId></ArticleIdList></Reference><Reference><Citation>Schmid GM, Converset V, Walter N, et al. Effect of high‐fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics. 2004;4:2270‐2282. doi:10.1002/pmic.200300810</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/pmic.200300810</ArticleId><ArticleId IdType="pubmed">15274121</ArticleId></ArticleIdList></Reference><Reference><Citation>Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig. 2018;9:5‐12. doi:10.1111/jdi.12673</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.12673</ArticleId><ArticleId IdType="pmc">PMC5754518</ArticleId><ArticleId IdType="pubmed">28390093</ArticleId></ArticleIdList></Reference><Reference><Citation>Gulhane M, Murray L, Lourie R, et al. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL‐22. Sci Rep. 2016;6:28990. doi:10.1038/srep28990</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/srep28990</ArticleId><ArticleId IdType="pmc">PMC4924095</ArticleId><ArticleId IdType="pubmed">27350069</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao Y, Wang Q‐Y, Zeng L‐T, et al. Long‐term high‐fat high‐fructose diet induces type 2 diabetes in rats through oxidative stress. Nutrients. 2022;14:2181. doi:10.3390/nu14112181</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14112181</ArticleId><ArticleId IdType="pmc">PMC9182436</ArticleId><ArticleId IdType="pubmed">35683981</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu Z, Imlay JA. When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol. 2021;19:774‐785. doi:10.1038/s41579-021-00583-y</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41579-021-00583-y</ArticleId><ArticleId IdType="pmc">PMC9191689</ArticleId><ArticleId IdType="pubmed">34183820</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueki A, Goto K, Kaku N, Ueki K. Aminipila butyrica gen. nov., sp. nov., a strictly anaerobic, arginine‐decomposing bacterium isolated from a methanogenic reactor of cattle waste. Int J Syst Evol Microbiol. 2018;68:443‐448. doi:10.1099/ijsem.0.002534</Citation><ArticleIdList><ArticleId IdType="doi">10.1099/ijsem.0.002534</ArticleId><ArticleId IdType="pubmed">29235979</ArticleId></ArticleIdList></Reference><Reference><Citation>Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type‐2 diabetes. Nutrients. 2022;14:166. doi:10.3390/nu14010166</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu14010166</ArticleId><ArticleId IdType="pmc">PMC8747253</ArticleId><ArticleId IdType="pubmed">35011044</ArticleId></ArticleIdList></Reference><Reference><Citation>Woźniak D, Cichy W, Przysławski J, Drzymała‐Czyż S. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci. 2021;66:284‐292. doi:10.1016/j.advms.2021.05.003</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.advms.2021.05.003</ArticleId><ArticleId IdType="pubmed">34098509</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39625456</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>12</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>12</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1948-7185</ISSN><JournalIssue CitedMedium="Internet"><Volume>15</Volume><Issue>49</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>12</Day></PubDate></JournalIssue><Title>The journal of physical chemistry letters</Title><ISOAbbreviation>J Phys Chem Lett</ISOAbbreviation></Journal><ArticleTitle>Heterotypic Interactions of Amyloid β and the Islet Amyloid Polypeptide Produce Mixed Aggregates with Non-Native Fibril Structure.</ArticleTitle><Pagination><StartPage>12197</StartPage><EndPage>12205</EndPage><MedlinePgn>12197-12205</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jpclett.4c02827</ELocationID><Abstract><AbstractText>Amyloid aggregates are hallmarks of the pathology of a wide range of diseases, including type 2 diabetes (T2D) and Alzheimer's disease (AD). Much epidemiological and pathological evidence points to significant overlap between AD and T2D. Individuals with T2D have a higher likelihood of developing AD; moreover, colocalized aggregates of amyloid β (Aβ) and the islet amyloid polypeptide (IAPP), the two main peptides implicated in the formation of toxic amyloid aggregates in AD and T2D, have also been identified in the brain. However, how these peptides interact with each other is not well understood, and the structural facets of heterotypic mixed fibrils formed via such interactions remain elusive. Here we use atomic force microscopy augmented with infrared spectroscopy to probe the secondary structure of individual aggregates formed via heterotypic interactions of Aβ and IAPP and provide unequivocal direct evidence of mixed aggregates. Furthermore, we show that co-aggregation of the peptides from the monomeric stage leads to the formation of unique polymorphs, in which both peptides undergo structural deviation from their native states, whereas seeding with preformed IAPP fibrils leads to aggregates similar to native Aβ. These findings highlight how heterotypic interactions between amyloidogenic peptides can lead to polymorphic diversity proteinopathies.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Baghel</LastName><ForeName>Divya</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ghosh</LastName><ForeName>Ayanjeet</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0001-9458-3910</Identifier><AffiliationInfo><Affiliation>Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Phys Chem Lett</MedlineTA><NlmUniqueID>101526034</NlmUniqueID><ISSNLinking>1948-7185</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D058228">Islet Amyloid Polypeptide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016229">Amyloid beta-Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D066329">Protein Aggregates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000682">Amyloid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D058228" MajorTopicYN="Y">Islet Amyloid Polypeptide</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016229" MajorTopicYN="Y">Amyloid beta-Peptides</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018625" MajorTopicYN="Y">Microscopy, Atomic Force</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D066329" MajorTopicYN="Y">Protein Aggregates</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>12</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>10</Hour><Minute>43</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39625456</ArticleId><ArticleId IdType="doi">10.1021/acs.jpclett.4c02827</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39625348</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1757-9996</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><PubDate><Year>2024</Year><Month>Dec</Month><Day>03</Day></PubDate></JournalIssue><Title>Oral health & preventive dentistry</Title><ISOAbbreviation>Oral Health Prev Dent</ISOAbbreviation></Journal><ArticleTitle>Clinical Outcomes and Cytokine Profile of Standard and Short Implant-supported Prostheses in Diabetics Treated for Periodontal Disease: A 5-year Study.</ArticleTitle><Pagination><StartPage>623</StartPage><EndPage>630</EndPage><MedlinePgn>623-630</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.3290/j.ohpd.b5866861</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">The present cross-sectional study aimed to assess the clinico-radiographic parameters as well as salivary levels of receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), interleukin (IL)-6, and tumor necrosis factor-alpha (TNF-α) around standard and short dental implants (SDIs)-supported fixed partial denture in partially dentate type-II diabetes mellitus (T2DM) patients treated for periodontitis.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">The study comprised 4 groups: group 1 included T2DM patients with standard implants (n = 20); group II included non-T2DM patients with standard implants (n = 20); group III included T2DM patients with SDIs (n = 20); and group IV included non-T2DM patients with SDIs (n = 20). Participants eligible for the study included medically diagnosed T2DM patients with glycated hemoglobin (HbA1c) levels ≥ 6.5%, and non-T2DM participants with HbA1c levels between 4.0% and 5.0%. All had undergone previous periodontal therapy and had at least one standard implant and one SDI in the posterior maxillary or mandibular region. Exclusions were subjects with systemic conditions other than T2DM, recent use of steroids or antimicrobials, pregnancy or lactation, edentulism, misaligned dentition, or alcohol/tobacco use. Treatment involved non-surgical periodontal therapy, implant placement, and prosthetic procedures, with assessments including clinical (plaque index [PI], bleeding on probing [BOP], probing depth [PD]), radiographic (crestal bone loss [CBL]) parameters, and salivary cytokine levels including RANKL, OPG, IL-6, and TNF-α.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The study groups, each comprising 20 participants, showed no significant differences in demographics, restoration type, T2DM duration, family history, body mass index, or brushing routine (p>0.05). At baseline and 5-year follow-up, T2DM participants exhibited poorer periodontal parameters compared to non-T2DM, with higher PI (baseline: 62.2 ± 5.8% vs 29.6 ± 3.7%; 5-year follow-up: 69.2 ± 6.1% vs 32.8 ± 3.8%), BOP (baseline: 30.5 ± 3.2% vs 18.2 ± 2.6%; 5-year follow-up: 35.5 ± 3.9% vs 20.5 ± 2.5%), PD (baseline: 5.5 ± 1.1 mm vs 3.1 ± 0.9 mm; 5-year follow-up: 4.2 ± 0.8 mm vs 2.4 ± 0.7 mm), and CBL (baseline: 4.4 ± 0.4 mm vs 2.0 ± 0.2 mm; 5-yearfollow-up: 4.9 ± 0.5 mm vs 2.3 ± 0.3 mm), regardless of implant type. Salivary cytokine levels (RANKL, OPG, IL-6, TNF-α) were consistently higher in T2DM groups than non-T2DM across both implant types. Participants with SDIs showed comparable clinico-radiographic outcomes and salivary levels of cytokines to standard implants.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The application of SDI-supported rehabilitation in T2DM and non-diabetics showed comparable clinico-radiographic outcomes and salivary levels of cytokines to standard dental implants. Furthermore, T2DM patients exhibit poorer periodontal health and elevated inflammatory markers in patients with standard implants and SDIs.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>AlHelal</LastName><ForeName>Abdulaziz A</ForeName><Initials>AA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Oral Health Prev Dent</MedlineTA><NlmUniqueID>101167768</NlmUniqueID><ISSNLinking>1602-1622</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014409">Tumor Necrosis Factor-alpha</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015850">Interleukin-6</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015921">Dental Implants</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053245">RANK Ligand</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053244">Osteoprotegerin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019094" MajorTopicYN="Y">Dental Prosthesis, Implant-Supported</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="Y">Cytokines</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014409" MajorTopicYN="Y">Tumor Necrosis Factor-alpha</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015850" MajorTopicYN="N">Interleukin-6</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015921" MajorTopicYN="N">Dental Implants</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D053245" MajorTopicYN="N">RANK Ligand</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012463" MajorTopicYN="N">Saliva</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D053244" MajorTopicYN="N">Osteoprotegerin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003830" MajorTopicYN="N">Denture, Partial, Fixed</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010518" MajorTopicYN="N">Periodontitis</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">RANKL</Keyword><Keyword MajorTopicYN="N">bone loss</Keyword><Keyword MajorTopicYN="N">inflammation</Keyword><Keyword MajorTopicYN="N">short implant</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>12</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>12</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>9</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39625348</ArticleId><ArticleId IdType="doi">10.3290/j.ohpd.b5866861</ArticleId><ArticleId IdType="pii">5866861</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39623849</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1819-2718</ISSN><JournalIssue CitedMedium="Internet"><Volume>36</Volume><Issue>3</Issue><PubDate><Year>2024</Year><Season>Jul-Sep</Season></PubDate></JournalIssue><Title>Journal of Ayub Medical College, Abbottabad : JAMC</Title><ISOAbbreviation>J Ayub Med Coll Abbottabad</ISOAbbreviation></Journal><ArticleTitle>IRISIN AS A NOVEL DIAGNOSTIC BIOMARKER FOR INFLAMMATORY DISEASES: A REVIEW.</ArticleTitle><Pagination><StartPage>636</StartPage><EndPage>641</EndPage><MedlinePgn>636-641</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.55519/JAMC-03-12344</ELocationID><Abstract><AbstractText>Inflammatory biomarkers are molecules that can offer vital information on the intricate chain of happenings and molecular processes underpinning the pathophysiology of any inflammatory disease. They can be measured in various biological samples such as blood, urine, or saliva, and are used as indicators of the presence and severity of inflammation. Measuring salivary inflammatory biomarkers is a non-invasive and relatively easy way to monitor inflammation, and it has been shown to be a useful tool in the diagnosis and management of various oral and systemic inflammatory diseases. Irisin is a novel anti-inflammatory protein and its implication and diagnostic role in inflammation have been widely studied; however, not much have been studied in oral inflammation per se. Irisin is predominantly downregulated in several inflammatory conditions, including obesity, type 2 diabetes, periodontitis, and cardiovascular diseases. This suggests that irisin may be involved in the inflammatory process, but more research is needed, especially of salivary irisin to understand its precise role. Overall, the role of irisin as an inflammatory biomarker is still an area of active research, and more studies are needed to determine its diagnostic and therapeutic potential. This review highlights the diagnostic and therapeutic potential of irisin in various systemic and oral inflammatory conditions.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Rana</LastName><ForeName>Sadia</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>School of Dental Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan-Malaysia, Sharif Medical and Dental College Lahore-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wahab</LastName><ForeName>Norsila Abdul</ForeName><Initials>NA</Initials><AffiliationInfo><Affiliation>School of Dental Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan-Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shima Shahidan</LastName><ForeName>Wan Nazatul</ForeName><Initials>WN</Initials><AffiliationInfo><Affiliation>School of Dental Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan-Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Atif</LastName><ForeName>Saira</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>CMH Lahore Medical College & Institute of Dentistry, National University of Medical Sciences-Pakistan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fahim</LastName><ForeName>Ayesha</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Islamic International Dental College, Riphah International University Islamabad-Pakistan.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Pakistan</Country><MedlineTA>J Ayub Med Coll Abbottabad</MedlineTA><NlmUniqueID>8910750</NlmUniqueID><ISSNLinking>1025-9589</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005353">Fibronectins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C577593">FNDC5 protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005353" MajorTopicYN="Y">Fibronectins</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="Y">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012463" MajorTopicYN="N">Saliva</DescriptorName><QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010518" MajorTopicYN="N">Periodontitis</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diagnostic biomarkers; Inflammatory diseases; Salivary irisin; Serum irisin</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>2</Hour><Minute>33</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39623849</ArticleId><ArticleId IdType="doi">10.55519/JAMC-03-12344</ArticleId><ArticleId IdType="pii">11586/3581</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39623445</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>06</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1741-7015</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>BMC medicine</Title><ISOAbbreviation>BMC Med</ISOAbbreviation></Journal><ArticleTitle>Multiomics profiling of DNA methylation, microRNA, and mRNA in skeletal muscle from monozygotic twin pairs discordant for type 2 diabetes identifies dysregulated genes controlling metabolism.</ArticleTitle><Pagination><StartPage>572</StartPage><MedlinePgn>572</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">572</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12916-024-03789-y</ELocationID><Abstract><AbstractText Label="BACKGROUND">A large proportion of skeletal muscle insulin resistance in type 2 diabetes (T2D) is caused by environmental factors.</AbstractText><AbstractText Label="METHODS">By applying multiomics mRNA, microRNA (miRNA), and DNA methylation platforms in biopsies from 20 monozygotic twin pairs discordant for T2D, we aimed to delineate the epigenetic and transcriptional machinery underlying non-genetic muscle insulin resistance in T2D.</AbstractText><AbstractText Label="RESULTS">Using gene set enrichment analysis (GSEA), we found decreased mRNA expression of genes involved in extracellular matrix organization, branched-chain amino acid catabolism, metabolism of vitamins and cofactors, lipid metabolism, muscle contraction, signaling by receptor tyrosine kinases pathways, and translocation of glucose transporter 4 (GLUT4) to the plasma membrane in muscle from twins with T2D. Differential expression levels of one or more predicted target relevant miRNA(s) were identified for approximately 35% of the dysregulated GSEA pathways. These include miRNAs with a significant overrepresentation of targets involved in GLUT4 translocation (miR-4643 and miR-548z), signaling by receptor tyrosine kinases pathways (miR-607), and muscle contraction (miR-4658). Acquired DNA methylation changes in skeletal muscle were quantitatively small in twins with T2D compared with the co-twins without T2D. Key methylation and expression results were validated in muscle, myotubes, and/or myoblasts from unrelated subjects with T2D and controls. Finally, mimicking T2D-associated changes by overexpressing miR-548 and miR-607 in cultured myotubes decreased expression of target genes, GLUT4 and FGFR4, respectively, and impaired insulin-stimulated phosphorylation of Akt (Ser473) and TBC1D4.</AbstractText><AbstractText Label="CONCLUSIONS">Together, we show that T2D is associated with non- and epigenetically determined differential transcriptional regulation of pathways regulating skeletal muscle metabolism and contraction.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ling</LastName><ForeName>Charlotte</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden. charlotte.ling@med.lu.se.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vavakova</LastName><ForeName>Magdalena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ahmad Mir</LastName><ForeName>Bilal</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Säll</LastName><ForeName>Johanna</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Perfilyev</LastName><ForeName>Alexander</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Martin</LastName><ForeName>Melina</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jansson</LastName><ForeName>Per-Anders</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Bruna Straket 16, Level 2/3, Gothenburg, 413 45, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Davegårdh</LastName><ForeName>Cajsa</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Asplund</LastName><ForeName>Olof</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hansson</LastName><ForeName>Ola</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vaag</LastName><ForeName>Allan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Steno Diabetes Center Copenhagen, Herlev, Denmark.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Lund University Diabetes Centre, Lund University, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Endocrinology, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nilsson</LastName><ForeName>Emma</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, 205 02, Sweden.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>2016-02486</GrantID><Agency>Vetenskapsrådet</Agency><Country/></Grant><Grant><GrantID>2018-02567</GrantID><Agency>Vetenskapsrådet</Agency><Country/></Grant><Grant><GrantID>2021-00628</GrantID><Agency>Vetenskapsrådet</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D018486">Twin Study</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Med</MedlineTA><NlmUniqueID>101190723</NlmUniqueID><ISSNLinking>1741-7015</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018482" MajorTopicYN="Y">Muscle, Skeletal</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D035683" MajorTopicYN="Y">MicroRNAs</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014430" MajorTopicYN="Y">Twins, Monozygotic</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012333" MajorTopicYN="Y">RNA, Messenger</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095028" MajorTopicYN="N">Multiomics</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DNA methylation</Keyword><Keyword MajorTopicYN="N">Discordant monozygotic twins</Keyword><Keyword MajorTopicYN="N">Epigenetics</Keyword><Keyword MajorTopicYN="N">Gene expression</Keyword><Keyword MajorTopicYN="N">MicroRNA (miRNA)</Keyword><Keyword MajorTopicYN="N">Skeletal muscle</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes (T2D)</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: All study participants provided informed written consent and the study was approved by the local ethics committees (461/2006 and 520/2008) and conducted in accordance with the principles of the Helsinki Declaration. Consent for publication: Not applicable. Competing interests: No potential conflicts of interest relevant to this article were reported.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>6</Hour><Minute>25</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>23</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39623445</ArticleId><ArticleId IdType="pmc">PMC11613913</ArticleId><ArticleId IdType="doi">10.1186/s12916-024-03789-y</ArticleId><ArticleId IdType="pii">10.1186/s12916-024-03789-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">7030826</ArticleId></ArticleIdList></Reference><Reference><Citation>DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149–55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC423730</ArticleId><ArticleId IdType="pubmed">3894418</ArticleId></ArticleIdList></Reference><Reference><Citation>Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1992;89(3):782–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC442922</ArticleId><ArticleId IdType="pubmed">1541672</ArticleId></ArticleIdList></Reference><Reference><Citation>Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widén E, Schalin C, Groop L. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med. 1989;321(6):337–43.</Citation><ArticleIdList><ArticleId IdType="pubmed">2664520</ArticleId></ArticleIdList></Reference><Reference><Citation>Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.</Citation><ArticleIdList><ArticleId IdType="pubmed">12808457</ArticleId></ArticleIdList></Reference><Reference><Citation>Palsgaard J, Brøns C, Friedrichsen M, Dominguez H, Jensen M, Storgaard H, Spohr C, Torp-Pedersen C, Borup R, De Meyts P, Vaag A. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways. PLoS ONE. 2009;4(8): e6575.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2719801</ArticleId><ArticleId IdType="pubmed">19668377</ArticleId></ArticleIdList></Reference><Reference><Citation>Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC166252</ArticleId><ArticleId IdType="pubmed">12832613</ArticleId></ArticleIdList></Reference><Reference><Citation>Parikh HM, Elgzyri T, Alibegovic A, Hiscock N, Ekström O, Eriksson KF, Vaag A, Groop LC, Ström K, Hansson O. Relationship between insulin sensitivity and gene expression in human skeletal muscle. BMC Endocr Disord. 2021;21(1):32.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7912896</ArticleId><ArticleId IdType="pubmed">33639916</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol. 2022;18(7):433–48.</Citation><ArticleIdList><ArticleId IdType="pubmed">35513492</ArticleId></ArticleIdList></Reference><Reference><Citation>Bork-Jensen J, Scheele C, Christophersen DV, Nilsson E, Friedrichsen M, Fernandez-Twinn DS, Grunnet LG, Litman T, Holmstrøm K, Vind B, et al. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia. 2015;58(2):363–73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4287682</ArticleId><ArticleId IdType="pubmed">25403480</ArticleId></ArticleIdList></Reference><Reference><Citation>Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, Fernandez AF, Friedrichsen M, Vind BF, Højlund K, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS ONE. 2012;7(12): e51302.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3519577</ArticleId><ArticleId IdType="pubmed">23251491</ArticleId></ArticleIdList></Reference><Reference><Citation>Asplund O, Rung J, Groop L, Prasad BR, Hansson O: MuscleAtlasExplorer: a web service for studying gene expression in human skeletal muscle. Database (Oxford). 2020;2020:baaa111.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7747357</ArticleId><ArticleId IdType="pubmed">33338203</ArticleId></ArticleIdList></Reference><Reference><Citation>Su J, Ekman C, Oskolkov N, Lahti L, Ström K, Brazma A, Groop L, Rung J, Hansson O. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet Muscle. 2015;5:35.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4600214</ArticleId><ArticleId IdType="pubmed">26457177</ArticleId></ArticleIdList></Reference><Reference><Citation>Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, et al. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun. 2021;12(1):2431.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8065135</ArticleId><ArticleId IdType="pubmed">33893273</ArticleId></ArticleIdList></Reference><Reference><Citation>Dayeh T, Tuomi T, Almgren P, Perfilyev A, Jansson PA, de Mello VD, Pihlajamäki J, Vaag A, Groop L, Nilsson E, Ling C. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics. 2016;11(7):482–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4939923</ArticleId><ArticleId IdType="pubmed">27148772</ArticleId></ArticleIdList></Reference><Reference><Citation>Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.</Citation><ArticleIdList><ArticleId IdType="pubmed">12538238</ArticleId></ArticleIdList></Reference><Reference><Citation>Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–d655.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5753187</ArticleId><ArticleId IdType="pubmed">29145629</ArticleId></ArticleIdList></Reference><Reference><Citation>Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.</Citation><ArticleIdList><ArticleId IdType="pubmed">21839163</ArticleId></ArticleIdList></Reference><Reference><Citation>Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6): e1003572.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3694844</ArticleId><ArticleId IdType="pubmed">23825961</ArticleId></ArticleIdList></Reference><Reference><Citation>Kehl T, Kern F, Backes C, Fehlmann T, Stöckel D, Meese E, Lenhof HP, Keller A. miRPathDB 2.0: a novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020;48(D1):D142–d147.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7145528</ArticleId><ArticleId IdType="pubmed">31691816</ArticleId></ArticleIdList></Reference><Reference><Citation>Davegårdh C, Broholm C, Perfilyev A, Henriksen T, García-Calzón S, Peijs L, Hansen NS, Volkov P, Kjøbsted R, Wojtaszewski JF, et al. Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects. BMC Med. 2017;15(1):39.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5320752</ArticleId><ArticleId IdType="pubmed">28222718</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.</Citation><ArticleIdList><ArticleId IdType="pubmed">16632515</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling C, Davegårdh C, Säll J, Perfilyev A, Nilsson E, Scheele C: mRNA expression data for human muscle cells from individuals with type 2 diabetes and controls. https://www.ncbinlmnihgov/geo/query/acccgi?acc=GSE166467 2021.</Citation></Reference><Reference><Citation>Ling C, Davegårdh C, Säll J, Perfilyev A, Nilsson E, Scheele C: DNA methylation data for human muscle cells from individuals with type 2 diabetes and controls. In: https://www.ncbinlmnihgov/geo/query/acccgi?acc=GSE166652. 2021.</Citation></Reference><Reference><Citation>Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC170937</ArticleId><ArticleId IdType="pubmed">12883005</ArticleId></ArticleIdList></Reference><Reference><Citation>Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci U S A. 2019;116(23):11299–308.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6561277</ArticleId><ArticleId IdType="pubmed">31110021</ArticleId></ArticleIdList></Reference><Reference><Citation>Ding X, Iyer R, Novotny C, Metzger D, Zhou HH, Smith GI, Yoshino M, Yoshino J, Klein S, Swaminath G, et al. Inhibition of Grb14, a negative modulator of insulin signaling, improves glucose homeostasis without causing cardiac dysfunction. Sci Rep. 2020;10(1):3417.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7042267</ArticleId><ArticleId IdType="pubmed">32099031</ArticleId></ArticleIdList></Reference><Reference><Citation>Gusarova V, O’Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, Van Hout CV, Murray MF, Mahajan A, Nielsen JB, et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun. 2018;9(1):2252.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5997992</ArticleId><ArticleId IdType="pubmed">29899519</ArticleId></ArticleIdList></Reference><Reference><Citation>Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ, et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 2007;4(5): e158.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1858708</ArticleId><ArticleId IdType="pubmed">17472435</ArticleId></ArticleIdList></Reference><Reference><Citation>Zambelli F, Pesole G, Pavesi G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res. 2009;37(Web Server issue):W247–252.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2703934</ArticleId><ArticleId IdType="pubmed">19487240</ArticleId></ArticleIdList></Reference><Reference><Citation>Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–d92.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7145627</ArticleId><ArticleId IdType="pubmed">31701148</ArticleId></ArticleIdList></Reference><Reference><Citation>Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3965103</ArticleId><ArticleId IdType="pubmed">24275495</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6509280</ArticleId><ArticleId IdType="pubmed">30982733</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmad K, Choi I, Lee YH: Implications of skeletal muscle extracellular matrix remodeling in metabolic disorders: diabetes perspective. Int J Mol Sci. 2020;21(11):3845.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7312063</ArticleId><ArticleId IdType="pubmed">32481704</ArticleId></ArticleIdList></Reference><Reference><Citation>Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab. 2015;26(7):357–66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4490038</ArticleId><ArticleId IdType="pubmed">26059707</ArticleId></ArticleIdList></Reference><Reference><Citation>Sjögren RJO, Rizo-Roca D, Chibalin AV, Chorell E, Furrer R, Katayama S, Harada J, Karlsson HKR, Handschin C, Moritz T, et al. Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes. Diabetologia. 2021;64(9):2077–91.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8382616</ArticleId><ArticleId IdType="pubmed">34131782</ArticleId></ArticleIdList></Reference><Reference><Citation>Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2732163</ArticleId><ArticleId IdType="pubmed">19502541</ArticleId></ArticleIdList></Reference><Reference><Citation>Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 2019;29(2):417–429.e414.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6365191</ArticleId><ArticleId IdType="pubmed">30449684</ArticleId></ArticleIdList></Reference><Reference><Citation>Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101(7):1519–29.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC508730</ArticleId><ArticleId IdType="pubmed">9525995</ArticleId></ArticleIdList></Reference><Reference><Citation>Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, Schmidt AF, Imamura F, Stewart ID, Perry JR, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 2016;13(11): e1002179.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5127513</ArticleId><ArticleId IdType="pubmed">27898682</ArticleId></ArticleIdList></Reference><Reference><Citation>Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, Busche S, Yuan W, Nisbet J, Sekowska M, et al. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet. 2013;93(5):876–90.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3824131</ArticleId><ArticleId IdType="pubmed">24183450</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009;41(2):240–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">19151718</ArticleId></ArticleIdList></Reference><Reference><Citation>Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63(9):2962–76.</Citation><ArticleIdList><ArticleId IdType="pubmed">24812430</ArticleId></ArticleIdList></Reference><Reference><Citation>Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B, Abdul Aziz NK, Carlin JB, Morley R, Saffery R, Craig JM. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010;19(21):4176–88.</Citation><ArticleIdList><ArticleId IdType="pubmed">20699328</ArticleId></ArticleIdList></Reference><Reference><Citation>Kvaløy K, Page CM, Holmen TL. Epigenome-wide methylation differences in a group of lean and obese women - a HUNT Study. Sci Rep. 2018;8(1):16330.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6218540</ArticleId><ArticleId IdType="pubmed">30397228</ArticleId></ArticleIdList></Reference><Reference><Citation>Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, Peronaci M, Lalowski M, Soliymani R, Mezzatesta C, et al. SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun. 2018;9(1):2192.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5989213</ArticleId><ArticleId IdType="pubmed">29875417</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, et al. Variations in DNA elucidate molecular networks that cause disease. Nature. 2008;452(7186):429–35.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2841398</ArticleId><ArticleId IdType="pubmed">18344982</ArticleId></ArticleIdList></Reference><Reference><Citation>Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Rönn T, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3): e1004160.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3945174</ArticleId><ArticleId IdType="pubmed">24603685</ArticleId></ArticleIdList></Reference><Reference><Citation>Nilsson E, Matte A, Perfilyev A, de Mello VD, Käkelä P, Pihlajamäki J, Ling C. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab. 2015;100(11):E1491–1501.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4702449</ArticleId><ArticleId IdType="pubmed">26418287</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou SS, Zhou YM, Li D, Lun YZ. Dietary methyl-consuming compounds and metabolic syndrome. Hypertens Res. 2011;34(12):1239–45.</Citation><ArticleIdList><ArticleId IdType="pubmed">21814217</ArticleId></ArticleIdList></Reference><Reference><Citation>Krajinovic M. MTHFD1 gene: role in disease susceptibility and pharmacogenetics. Pharmacogenomics. 2008;9(7):829–32.</Citation><ArticleIdList><ArticleId IdType="pubmed">18597647</ArticleId></ArticleIdList></Reference><Reference><Citation>Groth M, Moissiard G, Wirtz M, Wang H, Garcia-Salinas C, Ramos-Parra PA, Bischof S, Feng S, Cokus SJ, John A, et al. MTHFD1 controls DNA methylation in Arabidopsis. Nat Commun. 2016;7:11640.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4909953</ArticleId><ArticleId IdType="pubmed">27291711</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718–25.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2780862</ArticleId><ArticleId IdType="pubmed">19940235</ArticleId></ArticleIdList></Reference><Reference><Citation>Volkov P, Bacos K, Ofori JK, Esguerra JL, Eliasson L, Ronn T, Ling C. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes. 2017;66(4):1074–85.</Citation><ArticleIdList><ArticleId IdType="pubmed">28052964</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol Metab. 2017;28(8):597–611.</Citation><ArticleIdList><ArticleId IdType="pubmed">28602209</ArticleId></ArticleIdList></Reference><Reference><Citation>Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1995;92(4):983–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC42621</ArticleId><ArticleId IdType="pubmed">7862678</ArticleId></ArticleIdList></Reference><Reference><Citation>Williamson A, Norris DM, Yin X, Broadaway KA, Moxley AH, Vadlamudi S, Wilson EP, Jackson AU, Ahuja V, Andersen MK, et al. Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake. Nat Genet. 2023;55(6):973–83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7614755</ArticleId><ArticleId IdType="pubmed">37291194</ArticleId></ArticleIdList></Reference><Reference><Citation>Ronn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, et al. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun. 2023;14(1):8040.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10716521</ArticleId><ArticleId IdType="pubmed">38086799</ArticleId></ArticleIdList></Reference><Reference><Citation>Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10(3):189–98.</Citation><ArticleIdList><ArticleId IdType="pubmed">19723495</ArticleId></ArticleIdList></Reference><Reference><Citation>Nilsson E, Vavakova M, Perfilyev A, Säll J, Jansson PA, Poulsen P, Esguerra JLS, Eliasson L, Vaag A, Göransson O, Ling C. Differential DNA methylation and expression of miRNAs in adipose tissue from twin pairs discordant for type 2 diabetes. Diabetes. 2021;70(10):2402–18.</Citation><ArticleIdList><ArticleId IdType="pubmed">34315727</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39623437</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>03</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>13</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1475-2840</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>Cardiovascular diabetology</Title><ISOAbbreviation>Cardiovasc Diabetol</ISOAbbreviation></Journal><ArticleTitle>Adipsin improves diabetic hindlimb ischemia through SERPINE1 dependent angiogenesis.</ArticleTitle><Pagination><StartPage>429</StartPage><MedlinePgn>429</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">429</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12933-024-02526-2</ELocationID><Abstract><AbstractText Label="BACKGROUND">Adipsin (complement factor D, CFD), as the first described adipokine, is well-known for its regulatory effects in diabetic cardiovascular complications. However, its role in diabetic hind-limb ischemia was not clarified. This study aimed to evaluate the possible therapeutic effect of Adipsin in hind-limb ischemia in type 2 diabetic mice and to elucidate the molecular mechanisms involved.</AbstractText><AbstractText Label="METHODS">A high-fat diet and streptozotocin (HFD/STZ)-induced diabetic mouse model, and a transgenic mouse model with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg) were employed. Hindlimb ischemia was established by femoral artery ligation, and blood flow recovery was monitored using Laser Doppler perfusion imaging. Molecular mechanisms underlying Adipsin-potentiated angiogenesis were examined using RNA sequencing and co-immunoprecipitation/mass spectrometry (Co-IP/MS) analyses.</AbstractText><AbstractText Label="RESULTS">Adipsin expression was upregulated in non-diabetic mice following HLI, while suppressed in diabetic mice, indicating its potential role in ischemic recovery which is impaired in diabetes. Adipsin-Tg mice exhibited significantly improved blood flow recovery, increased capillary density, and enhanced muscle regeneration in comparison with non-transgenic (NTg) diabetic mice. Adipsin facilitated proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) under hyperglycemic and hypoxic conditions. Additionally, it enhanced phosphorylation of AKT, ERK, and eNOS pathways both in vivo and in vitro. RNA sequencing and co-immunoprecipitation/mass spectrometry (Co-IP/MS) analyses identified that Adipsin promoted angiogenesis by interacting with SERBP1, which disrupted the binding of SERBP1 to SERPINE1 mRNA, resulting in reduced SERPINE1 expression and the subsequent activation of the VEGFR2 signaling cascade.</AbstractText><AbstractText Label="CONCLUSIONS">Adipsin promotes angiogenesis and facilitates blood perfusion recovery in diabetic mice with HLI by downregulating SERPINE1 through interaction with SERBP1. These findings elucidate a novel therapeutic potential for Adipsin in the management of PAD in diabetic patients, highlighting its role in enhancing angiogenesis and tissue repair.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Zhang</LastName><ForeName>Xiaohua</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Jiang</LastName><ForeName>Mengyuan</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Zhang</LastName><ForeName>Xuebin</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zuo</LastName><ForeName>Yixuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Huanle</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Tingting</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Xijing 986 Hospital Department, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Liyu</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>Jie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dai</LastName><ForeName>Xinchun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ge</LastName><ForeName>Wen</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Chuang</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Fang</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Basic Medical Teaching Experiment Center, Basic Medical College, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Jiye</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yue</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Yangyang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qiang</LastName><ForeName>Huanhuan</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Xiaojie</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Dongdong</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China. wintersun3@fmmu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>82470358</GrantID><Agency>National Natural Science Foundation of China</Agency><Country/></Grant><Grant><GrantID>2024RS-CXTD-78</GrantID><Agency>Shaanxi Provincial Science and Technology Innovation Team</Agency><Country/></Grant><Grant><GrantID>BKJWS221J004</GrantID><Agency>Key logistic research projects</Agency><Country/></Grant><Grant><GrantID>2020</GrantID><Agency>Top Young Talents Special Support Program in Shaanxi Province</Agency><Country/></Grant><Grant><GrantID>XJZT24CZ13</GrantID><Agency>Xijing Hospital Research Promotion Program</Agency><Country/></Grant><Grant><GrantID>2024SF2-GJHX-27</GrantID><Agency>Shaanxi Province Key Technology Research Project</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cardiovasc Diabetol</MedlineTA><NlmUniqueID>101147637</NlmUniqueID><ISSNLinking>1475-2840</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 3.4.21.46</RegistryNumber><NameOfSubstance UI="D011416">Complement Factor D</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.46</RegistryNumber><NameOfSubstance UI="C493488">CFD protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D043925">Angiogenesis Inducing Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007511" MajorTopicYN="Y">Ischemia</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006614" MajorTopicYN="Y">Hindlimb</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018919" MajorTopicYN="Y">Neovascularization, Physiologic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="Y">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="Y">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012039" MajorTopicYN="Y">Regional Blood Flow</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D061307" MajorTopicYN="Y">Human Umbilical Vein Endothelial Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011416" MajorTopicYN="Y">Complement Factor D</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018482" MajorTopicYN="Y">Muscle, Skeletal</DescriptorName><QualifierName UI="Q000098" MajorTopicYN="N">blood supply</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008822" MajorTopicYN="Y">Mice, Transgenic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003925" MajorTopicYN="N">Diabetic Angiopathies</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020127" MajorTopicYN="N">Recovery of Function</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D043925" MajorTopicYN="N">Angiogenesis Inducing Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000082644" MajorTopicYN="N">Microvascular Density</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000096482" MajorTopicYN="N">Angiogenesis</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Adipsin</Keyword><Keyword MajorTopicYN="N">Angiogenesis</Keyword><Keyword MajorTopicYN="N">Diabetes</Keyword><Keyword MajorTopicYN="N">Endothelial cells</Keyword><Keyword MajorTopicYN="N">Hindlimb ischemia</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: All experimental animal procedures were approved by the Animal Care and Use Committee of the Air Force Medical University and followed the Animal Research Advisory Committee of the National Institutes of Health guidelines (Approval ID: 20201017). Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>6</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>23</Hour><Minute>52</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39623437</ArticleId><ArticleId IdType="pmc">PMC11613494</ArticleId><ArticleId IdType="doi">10.1186/s12933-024-02526-2</ArticleId><ArticleId IdType="pii">10.1186/s12933-024-02526-2</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400:1803–20.</Citation><ArticleIdList><ArticleId IdType="pubmed">36332637</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8:152.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10086073</ArticleId><ArticleId IdType="pubmed">37037849</ArticleId></ArticleIdList></Reference><Reference><Citation>Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci. 2021;8:2100275.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8456215</ArticleId><ArticleId IdType="pubmed">34319011</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang S, Zhu L, Han R, Sun L, Li J, Dou J. Pathophysiology of peripheral arterial disease in diabetes mellitus. J Diabetes. 2017;9:133–40.</Citation><ArticleIdList><ArticleId IdType="pubmed">27556728</ArticleId></ArticleIdList></Reference><Reference><Citation>Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47:921–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">16516072</ArticleId></ArticleIdList></Reference><Reference><Citation>Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24:1433–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">11473082</ArticleId></ArticleIdList></Reference><Reference><Citation>Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116:1509–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">25908725</ArticleId></ArticleIdList></Reference><Reference><Citation>Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4049445</ArticleId><ArticleId IdType="pubmed">21593862</ArticleId></ArticleIdList></Reference><Reference><Citation>Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93.</Citation><ArticleIdList><ArticleId IdType="pubmed">12778167</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Duan Y, Zhang X, Jiang M, Man W, Zhang Y, et al. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med. 2023;21:197.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10224320</ArticleId><ArticleId IdType="pubmed">37237266</ArticleId></ArticleIdList></Reference><Reference><Citation>Martin A, Komada MR, Sane DC. Abnormal angiogenesis in diabetes mellitus. Med Res Rev. 2003;23:117–45.</Citation><ArticleIdList><ArticleId IdType="pubmed">12500286</ArticleId></ArticleIdList></Reference><Reference><Citation>Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Sci (N Y NY). 1987;237:402–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">3299705</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu Y, Ma M, Ippolito GC, Schroeder HW, Carroll MC, Volanakis JE. Complement activation in factor D-deficient mice. Proc Natl Acad Sci USA. 2001;98:14577–82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC64724</ArticleId><ArticleId IdType="pubmed">11724962</ArticleId></ArticleIdList></Reference><Reference><Citation>Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987;237:402–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">3299705</ArticleId></ArticleIdList></Reference><Reference><Citation>Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014;158:41–53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4128197</ArticleId><ArticleId IdType="pubmed">24995977</ArticleId></ArticleIdList></Reference><Reference><Citation>Dahlke K, Wrann CD, Sommerfeld O, Soßdorf M, Recknagel P, Sachse S, et al. Distinct different contributions of the alternative and classical complement activation pathway for the innate host response during sepsis. J Immunol. 2011;186:3066–75.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3512104</ArticleId><ArticleId IdType="pubmed">21263075</ArticleId></ArticleIdList></Reference><Reference><Citation>Zwaini Z, Dai H, Stover C, Yang B. Role of complement properdin in renal ischemia-reperfusion injury. CGT. 2018;17:411–23.</Citation><ArticleIdList><ArticleId IdType="pubmed">29446739</ArticleId></ArticleIdList></Reference><Reference><Citation>Gómez-Banoy N, Guseh JS, Li G, Rubio-Navarro A, Chen T, Poirier B, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med. 2019;25:1739–47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7256970</ArticleId><ArticleId IdType="pubmed">31700183</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang M-Y, Man W-R, Zhang X-B, Zhang X-H, Duan Y, Lin J, et al. Adipsin inhibits Irak2 mitochondrial translocation and improves fatty acid β-oxidation to alleviate diabetic cardiomyopathy. Military Med Res. 2023;10:63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10712050</ArticleId><ArticleId IdType="pubmed">38072993</ArticleId></ArticleIdList></Reference><Reference><Citation>Foussard N, Rouault P, Cornuault L, Reynaud A, Buys ES, Chapouly C, et al. Praliciguat promotes ischemic Leg reperfusion in leptin receptor-deficient mice. Circul Res. 2023;132:34–48.</Citation><ArticleIdList><ArticleId IdType="pubmed">36448444</ArticleId></ArticleIdList></Reference><Reference><Citation>Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation. 2003;108:205–10.</Citation><ArticleIdList><ArticleId IdType="pubmed">12821542</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim E, Seo SH, Hwang Y, Ryu YC, Kim H, Lee K-M et al. Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair. Exp Mol Med. 2023;1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10474114</ArticleId><ArticleId IdType="pubmed">37524876</ArticleId></ArticleIdList></Reference><Reference><Citation>Bao XL, Dai Y, Lu L, Wang XQ, Ding FH, Shen WF, et al. Vasostatin-2 associates with coronary collateral vessel formation in diabetic patients and promotes angiogenesis via angiotensin-converting enzyme 2. Eur Heart J. 2023;44:1732–44.</Citation><ArticleIdList><ArticleId IdType="pubmed">36861348</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang Y, Cao Y, Zheng R, Xiong Z, Zhu Z, Gao F, et al. Fibroblast-specific activation of Rnd3 protects against cardiac remodeling in diabetic cardiomyopathy via suppression of Notch and TGF-β signaling. Theranostics. 2022;12:7250–66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9691359</ArticleId><ArticleId IdType="pubmed">36438502</ArticleId></ArticleIdList></Reference><Reference><Citation>Simons M. An inside view: VEGF receptor trafficking and signaling. Physiol (Bethesda). 2012;27:213–22.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4037811</ArticleId><ArticleId IdType="pubmed">22875452</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang L, Feng Y, Xie X, Wu H, Su XN, Qi J, et al. Neuropilin-1 aggravates liver cirrhosis by promoting angiogenesis via VEGFR2-dependent PI3K/Akt pathway in hepatic sinusoidal endothelial cells. EBioMedicine. 2019;43:525–36.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6558257</ArticleId><ArticleId IdType="pubmed">31060904</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee MY, Gamez-Mendez A, Zhang J, Zhuang Z, Vinyard DJ, Kraehling J et al. Endothelial cell autonomous role of Akt1: regulation of vascular tone and ischemia-induced arteriogenesis. Arterioscler Thromb Vasc Biol. 2018;38:870–9.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6503971</ArticleId><ArticleId IdType="pubmed">29449333</ArticleId></ArticleIdList></Reference><Reference><Citation>Praetner M, Zuchtriegel G, Holzer M, Uhl B, Schaubächer J, Mittmann L, et al. Plasminogen activator Inhibitor-1 promotes neutrophil infiltration and tissue injury on ischemia–reperfusion. ATVB. 2018;38:829–42.</Citation><ArticleIdList><ArticleId IdType="pubmed">29371242</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu J, Strawn TL, Luo M, Wang L, Li R, Ren M, et al. Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler Thromb Vasc Biol. 2015;35:111–20.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4270947</ArticleId><ArticleId IdType="pubmed">25378411</ArticleId></ArticleIdList></Reference><Reference><Citation>Heaton JH, Dlakic WM, Dlakic M, Gelehrter TD. Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the Type-1 plasminogen activator inhibitor mRNA. J Biol Chem. 2001;276:3341–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">11001948</ArticleId></ArticleIdList></Reference><Reference><Citation>Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association. Circulation. 2021;144:e171–91.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9847212</ArticleId><ArticleId IdType="pubmed">34315230</ArticleId></ArticleIdList></Reference><Reference><Citation>Weinberg MD, Lau JF, Rosenfield K, Olin JW. Peripheral artery disease. Part 2: medical and endovascular treatment. Nat Rev Cardiol. 2011;8:429–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">21670746</ArticleId></ArticleIdList></Reference><Reference><Citation>Inampudi C, Akintoye E, Ando T, Briasoulis A. Angiogenesis in peripheral arterial disease. Curr Opin Pharmacol. 2018;39:60–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">29529399</ArticleId></ArticleIdList></Reference><Reference><Citation>Boucher JM, Bautch VL. Antiangiogenic VEGF-A in peripheral artery disease. Nat Med. 2014;20:1383–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">25473918</ArticleId></ArticleIdList></Reference><Reference><Citation>Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the Northern trial. Mol Ther. 2009;17:1109–15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2835194</ArticleId><ArticleId IdType="pubmed">19352324</ArticleId></ArticleIdList></Reference><Reference><Citation>Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M, et al. Role for the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol. 2003;162:449–55.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1851150</ArticleId><ArticleId IdType="pubmed">12547703</ArticleId></ArticleIdList></Reference><Reference><Citation>Man W, Song X, Xiong Z, Gu J, Lin J, Gu X, et al. Exosomes derived from pericardial adipose tissues attenuate cardiac remodeling following myocardial infarction by adipsin-regulated iron homeostasis. Front Cardiovasc Med. 2022;9:1003282.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9510661</ArticleId><ArticleId IdType="pubmed">36172581</ArticleId></ArticleIdList></Reference><Reference><Citation>Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired Adipsin expression in genetic and acquired obesity. Science. 1987;237:405–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">3299706</ArticleId></ArticleIdList></Reference><Reference><Citation>Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling. Circul Res. 2000;86:4–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">10625297</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang C, He H, Dai J, Li Y, He J, Yang W, et al. KANK4 promotes arteriogenesis by potentiating VEGFR2 signaling in a TALIN-1–dependent manner. ATVB. 2022;42:772–88.</Citation><ArticleIdList><ArticleId IdType="pubmed">35477278</ArticleId></ArticleIdList></Reference><Reference><Citation>Midkine controls arteriogenesis by. Regulating the bioavailability of vascular endothelial growth factor a and the expression of nitric oxide synthase 1 and 3. EBioMedicine. 2018;27:237–46.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5828057</ArticleId><ArticleId IdType="pubmed">29233575</ArticleId></ArticleIdList></Reference><Reference><Citation>Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.</Citation><ArticleIdList><ArticleId IdType="pubmed">16163360</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou C, Kuang Y, Li Q, Duan Y, Liu X, Yue J, et al. Endothelial S1pr2 regulates post-ischemic angiogenesis via AKT/eNOS signaling pathway. Theranostics. 2022;12:5172–88.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9274736</ArticleId><ArticleId IdType="pubmed">35836816</ArticleId></ArticleIdList></Reference><Reference><Citation>Rahman FA, Krause MP. PAI-1, the plasminogen system, and skeletal muscle. IJMS. 2020;21:7066.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7582753</ArticleId><ArticleId IdType="pubmed">32993026</ArticleId></ArticleIdList></Reference><Reference><Citation>Dellas C, Loskutoff DJ. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost. 2005;93:631–40.</Citation><ArticleIdList><ArticleId IdType="pubmed">15841306</ArticleId></ArticleIdList></Reference><Reference><Citation>Pannacciulli N, de Mitrio V, Marino R, Giorgino R, de Pergola G. Effect of glucose tolerance status on PAI-1 plasma levels in overweight and obese subjects. Obes Res. 2002;10:717–25.</Citation><ArticleIdList><ArticleId IdType="pubmed">12181379</ArticleId></ArticleIdList></Reference><Reference><Citation>Altalhi R, Pechlivani N, Ajjan RA. PAI-1 in diabetes: pathophysiology and role as a therapeutic target. IJMS. 2021;22:3170.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8003717</ArticleId><ArticleId IdType="pubmed">33804680</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu Z, Castellino FJ, Ploplis VA. Plasminogen activator inhibitor-1 (PAI-1) is cardioprotective in mice by maintaining microvascular integrity and cardiac architecture. Blood. 2010;115:2038–47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2837335</ArticleId><ArticleId IdType="pubmed">20009036</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefansson S, Petitclerc E, Wong MKK, McMahon GA, Brooks PC, Lawrence DA. Inhibition of angiogenesis in vivo by plasminogen activator Inhibitor-1. J Biol Chem. 2001;276:8135–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">11083866</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan S-L, Bishop N, Li Z, Cipolla MJ. Inhibition of PAI (plasminogen activator Inhibitor)-1 improves brain collateral perfusion and Injury after acute ischemic stroke in aged hypertensive rats. Stroke. 2018;49:1969–76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6202199</ArticleId><ArticleId IdType="pubmed">29991657</ArticleId></ArticleIdList></Reference><Reference><Citation>Tashiro Y, Nishida C, Sato-Kusubata K, Ohki-Koizumi M, Ishihara M, Sato A, et al. Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood. 2012;119:6382–93.</Citation><ArticleIdList><ArticleId IdType="pubmed">22573404</ArticleId></ArticleIdList></Reference><Reference><Citation>Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature. 1996;383:441–3.</Citation><ArticleIdList><ArticleId IdType="pubmed">8837777</ArticleId></ArticleIdList></Reference><Reference><Citation>Yuan Y, Zhou D, Chen F, Yang Z, Gu W, Zhang K. SIX5-activated LINC01468 promotes lung adenocarcinoma progression by recruiting SERBP1 to regulate SERPINE1 mRNA stability and recruiting USP5 to facilitate PAI1 protein deubiquitylation. Cell Death Dis. 2022;13:1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8987051</ArticleId><ArticleId IdType="pubmed">35387981</ArticleId></ArticleIdList></Reference><Reference><Citation>Shilenok I, Kobzeva K, Stetskaya T, Freidin M, Soldatova M, Deykin A, et al. SERPINE1 mRNA binding protein 1 is associated with ischemic stroke risk: a comprehensive molecular–genetic and bioinformatics analysis of SERBP1 SNPs. IJMS. 2023;24:8716.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10217814</ArticleId><ArticleId IdType="pubmed">37240062</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39622811</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2041-1723</ISSN><JournalIssue CitedMedium="Internet"><Volume>15</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>Nature communications</Title><ISOAbbreviation>Nat Commun</ISOAbbreviation></Journal><ArticleTitle>OSGEP regulates islet β-cell function by modulating proinsulin translation and maintaining ER stress homeostasis in mice.</ArticleTitle><Pagination><StartPage>10479</StartPage><MedlinePgn>10479</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">10479</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41467-024-54905-8</ELocationID><Abstract><AbstractText>Proinsulin translation and folding is crucial for glucose homeostasis. However, islet β-cell control of Proinsulin translation remains incompletely understood. Here, we identify OSGEP, an enzyme responsible for t<sup>6</sup>A<sub>37</sub> modification of tRNA<sup>NNU</sup> that tunes glucose metabolism in β-cells. Global Osgep deletion causes glucose intolerance, while β-cell-specific deletion induces hyperglycemia and glucose intolerance due to impaired insulin activity. Transcriptomics and proteomics reveal activation of the unfolded protein response (UPR) and apoptosis signaling pathways in Osgep-deficient islets, linked to an increase in misfolded Proinsulin from reduced t<sup>6</sup>A<sub>37</sub> modification. Osgep overexpression in pancreas rescues insulin secretion and mitigates diabetes in high-fat diet mice. Osgep enhances translational fidelity and alleviates UPR signaling, highlighting its potential as a therapeutic target for diabetes. Individuals carrying the C allele at rs74512655, which promotes OSGEP transcription, may show reduced susceptibility to T2DM. These findings show OSGEP is essential for islet β-cells and a potential diabetes therapy target.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yujie</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Pharmacy, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Xuechun</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Haijun</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Ruimeng</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhu</LastName><ForeName>Peng</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Rong</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Tianyuan</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Yongchao</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ye</LastName><ForeName>Zhi</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Xi</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Rong</ForeName><Initials>R</Initials><Identifier Source="ORCID">0000-0003-3435-7289</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Wei</ForeName><Initials>W</Initials><Identifier Source="ORCID">0000-0002-6190-3129</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Honghao</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Qing</ForeName><Initials>Q</Initials><Identifier Source="ORCID">0000-0002-1787-4180</Identifier><AffiliationInfo><Affiliation>Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China. liqing9251026@csu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China. liqing9251026@csu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China. liqing9251026@csu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China. liqing9251026@csu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>82373963</GrantID><Agency>National Natural Science Foundation of China (National Science Foundation of China)</Agency><Country/></Grant><Grant><GrantID>82171467</GrantID><Agency>National Natural Science Foundation of China (National Science Foundation of China)</Agency><Country/></Grant><Grant><GrantID>82371477</GrantID><Agency>National Natural Science Foundation of China (National Science Foundation of China)</Agency><Country/></Grant><Grant><GrantID>2024JJ5569</GrantID><Agency>Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Nat Commun</MedlineTA><NlmUniqueID>101528555</NlmUniqueID><ISSNLinking>2041-1723</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9035-68-1</RegistryNumber><NameOfSubstance UI="D011384">Proinsulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>IY9XDZ35W2</RegistryNumber><NameOfSubstance UI="D005947">Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011384" MajorTopicYN="Y">Proinsulin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="Y">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059865" MajorTopicYN="Y">Endoplasmic Reticulum Stress</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056811" MajorTopicYN="Y">Unfolded Protein Response</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="Y">Glucose Intolerance</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="N">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078790" MajorTopicYN="N">Insulin Secretion</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>1</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>23</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622811</ArticleId><ArticleId IdType="pmc">PMC11612026</ArticleId><ArticleId IdType="doi">10.1038/s41467-024-54905-8</ArticleId><ArticleId IdType="pii">10.1038/s41467-024-54905-8</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Wang, P. et al. Diabetes mellitus–advances and challenges in human β-cell proliferation. Nat. Rev. Endocrinol.11, 201–212 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">25687999</ArticleId></ArticleIdList></Reference><Reference><Citation>Gurzov, E. N. et al. Novel strategies to protect and visualize pancreatic β cells in diabetes. Trends Endocrinol. Metab.31, 905–917 (2020).</Citation><ArticleIdList><ArticleId IdType="pubmed">33160815</ArticleId></ArticleIdList></Reference><Reference><Citation>Weir, G. C., Gaglia, J. & Bonner-Weir, S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol.8, 249–256 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7098467</ArticleId><ArticleId IdType="pubmed">32006519</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalwat, M. A. & Cobb, M. H. Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharm. Ther.179, 17–30 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7269041</ArticleId><ArticleId IdType="pubmed">28527919</ArticleId></ArticleIdList></Reference><Reference><Citation>Eizirik, D. L., Cardozo, A. K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev.29, 42–61 (2008).</Citation><ArticleIdList><ArticleId IdType="pubmed">18048764</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghosh, R., Colon-Negron, K. & Papa, F. R. Endoplasmic reticulum stress, degeneration of pancreatic islet β-cells, and therapeutic modulation of the unfolded protein response in diabetes. Mol. Metab.27s, S60–s68 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6768499</ArticleId><ArticleId IdType="pubmed">31500832</ArticleId></ArticleIdList></Reference><Reference><Citation>Laybutt, D. R. et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia50, 752–763 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17268797</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilinski, D. & Dus, M. N(6)-adenosine methylation controls the translation of insulin mRNA. Nat. Struct. Mol. Biol.30, 1260–1264 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37488356</ArticleId></ArticleIdList></Reference><Reference><Citation>Scheuner, D. & Kaufman, R. J. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev.29, 317–333 (2008).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2528859</ArticleId><ArticleId IdType="pubmed">18436705</ArticleId></ArticleIdList></Reference><Reference><Citation>Arrondel, C. et al. Defects in t(6)A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat. Commun.10, 3967 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6722078</ArticleId><ArticleId IdType="pubmed">31481669</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, J. T. et al. Commonality and diversity in tRNA substrate recognition in t6A biogenesis by eukaryotic KEOPSs. Nucleic Acids Res50, 2223–2239 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8887486</ArticleId><ArticleId IdType="pubmed">35104889</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou, J. B. et al. Molecular basis for t6A modification in human mitochondria. Nucleic Acids Res48, 3181–3194 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7102964</ArticleId><ArticleId IdType="pubmed">32047918</ArticleId></ArticleIdList></Reference><Reference><Citation>Su, C., Jin, M., & Zhang, W. Conservation and Diversification of tRNA t(6)A-Modifying Enzymes across the Three Domains of Life. Int. J. Mol. Sci., 23, 10.3390/ijms232113600 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9654439</ArticleId><ArticleId IdType="pubmed">36362385</ArticleId></ArticleIdList></Reference><Reference><Citation>Thiaville, P. C. et al. Essentiality of threonylcarbamoyladenosine (t(6)A), a universal tRNA modification, in bacteria. Mol. Microbiol98, 1199–1221 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4963248</ArticleId><ArticleId IdType="pubmed">26337258</ArticleId></ArticleIdList></Reference><Reference><Citation>Thiaville, P. C. et al. Global translational impacts of the loss of the tRNA modification t(6)A in yeast. Micro. Cell3, 29–45 (2016).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4717488</ArticleId><ArticleId IdType="pubmed">26798630</ArticleId></ArticleIdList></Reference><Reference><Citation>Galperin, M. Y. & Koonin, E. V. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res32, 5452–5463 (2004).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC524295</ArticleId><ArticleId IdType="pubmed">15479782</ArticleId></ArticleIdList></Reference><Reference><Citation>Braun, D. A. et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat. Genet49, 1529–1538 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5819591</ArticleId><ArticleId IdType="pubmed">28805828</ArticleId></ArticleIdList></Reference><Reference><Citation>Ng, A. P. et al. Cleavage of misfolded nuclear receptor corepressor confers resistance to unfolded protein response-induced apoptosis. Cancer Res66, 9903–9912 (2006).</Citation><ArticleIdList><ArticleId IdType="pubmed">17047052</ArticleId></ArticleIdList></Reference><Reference><Citation>Krausel, V. et al. The transcription factor ATF4 mediates endoplasmic reticulum stress-related podocyte injury and slit diaphragm defects. Kidney Int103, 872–885 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">36587794</ArticleId></ArticleIdList></Reference><Reference><Citation>Solimena, M. et al. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia61, 641–657 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5803296</ArticleId><ArticleId IdType="pubmed">29185012</ArticleId></ArticleIdList></Reference><Reference><Citation>Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab.24, 593–607 (2016).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5069352</ArticleId><ArticleId IdType="pubmed">27667667</ArticleId></ArticleIdList></Reference><Reference><Citation>Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res27, 208–222 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5287227</ArticleId><ArticleId IdType="pubmed">27864352</ArticleId></ArticleIdList></Reference><Reference><Citation>Stott, N. L. & Marino, J. S. High fat rodent models of type 2 diabetes: from rodent to human. Nutrients, 12, 10.3390/nu12123650 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7761287</ArticleId><ArticleId IdType="pubmed">33261000</ArticleId></ArticleIdList></Reference><Reference><Citation>Lu, Y. et al. Obesity-induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J. Clin. Invest130, 3791–3804 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7324200</ArticleId><ArticleId IdType="pubmed">32510471</ArticleId></ArticleIdList></Reference><Reference><Citation>Nagarajan, S. R. et al. Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism. Proc. Nutr. Soc.81, 1–11 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34726148</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei, F. Y. & Tomizawa, K. tRNA modifications and islet function. Diabetes Obes. Metab.20, 20–27 (2018). p.</Citation><ArticleIdList><ArticleId IdType="pubmed">30230180</ArticleId></ArticleIdList></Reference><Reference><Citation>Abdullahi, A. et al. Modeling acute ER stress in vivo and in vitro. Shock47, 506–513 (2017). p.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5348263</ArticleId><ArticleId IdType="pubmed">27755507</ArticleId></ArticleIdList></Reference><Reference><Citation>Naso, M. F. et al. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs31, 317–334 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5548848</ArticleId><ArticleId IdType="pubmed">28669112</ArticleId></ArticleIdList></Reference><Reference><Citation>Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet51, 1339–1348 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">31427789</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun, J. et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol. Asp. Med42, 105–118 (2015).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4404191</ArticleId><ArticleId IdType="pubmed">25579745</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, J. H. & Lee, J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int. J. Mol. Sci. 10.3390/ijms23094843 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9104816</ArticleId><ArticleId IdType="pubmed">35563231</ArticleId></ArticleIdList></Reference><Reference><Citation>Morris, G. E. & Korner, A. The effect of glucose on insulin biosynthesis by isolated islets of Langerhans of the rat. Biochim Biophys. Acta208, 404–413 (1970).</Citation><ArticleIdList><ArticleId IdType="pubmed">4918635</ArticleId></ArticleIdList></Reference><Reference><Citation>Haataja, L. et al. Distinct states of proinsulin misfolding in MIDY. Cell Mol. Life Sci.78, 6017–6031 (2021). p.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8316239</ArticleId><ArticleId IdType="pubmed">34245311</ArticleId></ArticleIdList></Reference><Reference><Citation>Beenstock, J. & Sicheri, F. The structural and functional workings of KEOPS. Nucleic Acids Res49, 10818–10834 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8565320</ArticleId><ArticleId IdType="pubmed">34614169</ArticleId></ArticleIdList></Reference><Reference><Citation>Machnicka, M. A. et al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol.11, 1619–1629 (2014).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4615829</ArticleId><ArticleId IdType="pubmed">25611331</ArticleId></ArticleIdList></Reference><Reference><Citation>de Crécy-Lagard, V. et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res47, 2143–2159 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6412123</ArticleId><ArticleId IdType="pubmed">30698754</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, C. W. et al. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat. Commun.13, 4621 (2022). p.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9360004</ArticleId><ArticleId IdType="pubmed">35941159</ArticleId></ArticleIdList></Reference><Reference><Citation>Arragain, S. et al. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem.285, 28425–28433 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2937867</ArticleId><ArticleId IdType="pubmed">20584901</ArticleId></ArticleIdList></Reference><Reference><Citation>Wei, F. Y. et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest121, 3598–3608 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3163968</ArticleId><ArticleId IdType="pubmed">21841312</ArticleId></ArticleIdList></Reference><Reference><Citation>Kautz, S. et al. Early insulin therapy prevents beta cell loss in a mouse model for permanent neonatal diabetes (Munich Ins2(C95S). Diabetologia55, 382–391 (2012).</Citation><ArticleIdList><ArticleId IdType="pubmed">22095234</ArticleId></ArticleIdList></Reference><Reference><Citation>Pollo-Oliveira, L. et al. Loss of elongator- and keops-dependent trna modifications leads to severe growth phenotypes and protein aggregation in yeast. Biomolecules10, 10.3390/biom10020322 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7072221</ArticleId><ArticleId IdType="pubmed">32085421</ArticleId></ArticleIdList></Reference><Reference><Citation>Rojas-Benítez, D., Eggers, C., & Glavic, A. Modulation of the proteostasis machinery to overcome stress caused by diminished levels of t6A-Modified tRNAs in Drosophila. Biomolecules, 7, 10.3390/biom7010025 (2017).</Citation></Reference><Reference><Citation>Eizirik, D. L. & Cnop, M. ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci. Signal3, pe7 (2010).</Citation><ArticleIdList><ArticleId IdType="pubmed">20179270</ArticleId></ArticleIdList></Reference><Reference><Citation>Herrema, H. et al. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab.34, 1004–1022.e8 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">35793654</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee, H., et al. Stress-induced β cell early senescence confers protection against type 1 diabetes. Cell Metab. 10.3390/ijms232113600 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10842515</ArticleId><ArticleId IdType="pubmed">37949065</ArticleId></ArticleIdList></Reference><Reference><Citation>Walsh, E. E. et al. Safety and immunogenicity of two rna-based covid-19 vaccine candidates. N. Engl. J. Med383, 2439–2450 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7583697</ArticleId><ArticleId IdType="pubmed">33053279</ArticleId></ArticleIdList></Reference><Reference><Citation>Tong, D. et al. Single-dose AAV-based vaccine induces a high level of neutralizing antibodies against SARS-CoV-2 in rhesus macaques. Protein Cell14, 69–73 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9871966</ArticleId><ArticleId IdType="pubmed">36726759</ArticleId></ArticleIdList></Reference><Reference><Citation>Zheng, Y. et al. Activation of pancreatic acinar fxr protects against pancreatitis via osgin1-mediated restoration of efficient autophagy. Res. (Wash. D. C.)2022, 9784081 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9667885</ArticleId><ArticleId IdType="pubmed">36405253</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, M. et al. Efficient gene delivery and expression in pancreas and pancreatic tumors by capsid-optimized AAV8 Vectors. Hum. Gene Ther. Methods28, 49–59 (2017).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5314986</ArticleId><ArticleId IdType="pubmed">28125909</ArticleId></ArticleIdList></Reference><Reference><Citation>Pomerantz, S. C. & McCloskey, J. A. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol.193, 796–824 (1990).</Citation><ArticleIdList><ArticleId IdType="pubmed">1706064</ArticleId></ArticleIdList></Reference><Reference><Citation>Srinivasan, M. et al. The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. Embo j.30, 873–881 (2011).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3049205</ArticleId><ArticleId IdType="pubmed">21183954</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo, J. et al. YRDC mediates the resistance of lenvatinib in hepatocarcinoma cells via modulating the translation of KRAS. Front Pharm.12, 744578 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8517968</ArticleId><ArticleId IdType="pubmed">34658879</ArticleId></ArticleIdList></Reference><Reference><Citation>Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics26, 1572–1573 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2881355</ArticleId><ArticleId IdType="pubmed">20427518</ArticleId></ArticleIdList></Reference><Reference><Citation>Hou, J. et al. Temporal transcriptomic and proteomic landscapes of deteriorating pancreatic islets in type 2 diabetic rats. Diabetes66, 2188–2200 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28559245</ArticleId></ArticleIdList></Reference><Reference><Citation>Yu, G. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics16, 284–287 (2012).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3339379</ArticleId><ArticleId IdType="pubmed">22455463</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma, J. et al. iProX: an integrated proteome resource. Nucleic Acids Res47, D1211–d1217 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6323926</ArticleId><ArticleId IdType="pubmed">30252093</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res50, D1522–d1527 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8728291</ArticleId><ArticleId IdType="pubmed">34871441</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39622719</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>11</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0578-1426</ISSN><JournalIssue CitedMedium="Print"><Volume>63</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>01</Day></PubDate></JournalIssue><Title>Zhonghua nei ke za zhi</Title><ISOAbbreviation>Zhonghua Nei Ke Za Zhi</ISOAbbreviation></Journal><ArticleTitle>[Glucokinase activators: the first step in regulating intracellular glucose metabolism].</ArticleTitle><Pagination><StartPage>1170</StartPage><EndPage>1174</EndPage><MedlinePgn>1170-1174</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.3760/cma.j.cn112138-20240713-00448</ELocationID><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Y</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinolgy, First Medical Center of Chinese PLA General Hospital, Beijing100039, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Y J</ForeName><Initials>YJ</Initials><AffiliationInfo><Affiliation>Department of Endocrinolgy, First Medical Center of Chinese PLA General Hospital, Beijing100039, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mu</LastName><ForeName>Y M</ForeName><Initials>YM</Initials><AffiliationInfo><Affiliation>Department of Endocrinolgy, First Medical Center of Chinese PLA General Hospital, Beijing100039, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>chi</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>China</Country><MedlineTA>Zhonghua Nei Ke Za Zhi</MedlineTA><NlmUniqueID>16210490R</NlmUniqueID><ISSNLinking>0578-1426</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 2.7.1.2</RegistryNumber><NameOfSubstance UI="D005941">Glucokinase</NameOfSubstance></Chemical><Chemical><RegistryNumber>IY9XDZ35W2</RegistryNumber><NameOfSubstance UI="D005947">Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005941" MajorTopicYN="Y">Glucokinase</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005947" MajorTopicYN="Y">Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="chi"><AbstractText>在2型糖尿病(T2DM)病理生理机制探索中发现,作为人体葡萄糖传感器的葡萄糖激酶(GK)对于血糖稳态调节具有重要作用。GK的激活是启动葡萄糖代谢的首个步骤,GK可在胰脏、肝脏、肠道和下丘脑等器官/系统中通过多种途径调控血糖水平。以GK为靶点的葡萄糖激酶激活剂(GKA)历经数十年的研发,于近年取得了重大突破。GKA能够修复GK的功能,显著降低血糖并改善血糖稳态,是治疗T2DM患者的新一类降糖药物靶点。本文简要阐述了GK在葡萄糖代谢中的关键作用,并总结了GKA的作用机制及其应用现状。.</AbstractText></OtherAbstract></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>21</Hour><Minute>50</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622719</ArticleId><ArticleId IdType="doi">10.3760/cma.j.cn112138-20240713-00448</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39622714</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0578-1426</ISSN><JournalIssue CitedMedium="Print"><Volume>63</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>01</Day></PubDate></JournalIssue><Title>Zhonghua nei ke za zhi</Title><ISOAbbreviation>Zhonghua Nei Ke Za Zhi</ISOAbbreviation></Journal><ArticleTitle>[Progress of type 2 diabetes in the past decade].</ArticleTitle><Pagination><StartPage>1137</StartPage><EndPage>1143</EndPage><MedlinePgn>1137-1143</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.3760/cma.j.cn112138-20240904-00552</ELocationID><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Y P</ForeName><Initials>YP</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital, Beijing100039, China School of Medicine, Nankai University, Tianjin300071, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mu</LastName><ForeName>Y M</ForeName><Initials>YM</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital, Beijing100039, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>chi</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>China</Country><MedlineTA>Zhonghua Nei Ke Za Zhi</MedlineTA><NlmUniqueID>16210490R</NlmUniqueID><ISSNLinking>0578-1426</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading></MeshHeadingList><OtherAbstract Type="Publisher" Language="chi"><AbstractText>糖尿病是最常见的内分泌系统疾病。糖尿病患病率近十年仍处于上升趋势,且2型糖尿病趋于年轻化,糖尿病的疾病负担正在逐渐加重。餐后1 h血糖≥8.6 mmol/L成为中间高血糖的诊断标准。糖尿病的管理理念朝着减重降脂、心肾获益的综合性目标发展。胰高血糖素样肽-1受体激动剂及钠-葡萄糖共转运蛋白2抑制剂在合并心肾疾病或风险的糖尿病患者中的治疗地位显著提高。本文对近十年来2型糖尿病流行病学趋势、发病机制、治疗策略,以及药物和器械等相关领域的进展进行回顾。.</AbstractText></OtherAbstract></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>21</Hour><Minute>50</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622714</ArticleId><ArticleId IdType="doi">10.3760/cma.j.cn112138-20240904-00552</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39622567</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-6055</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>BMJ open</Title><ISOAbbreviation>BMJ Open</ISOAbbreviation></Journal><ArticleTitle>Home self-management of type 2 diabetes with diabetes technologies in northern France: a focused ethnographic study protocol.</ArticleTitle><Pagination><StartPage>e084475</StartPage><MedlinePgn>e084475</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e084475</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjopen-2024-084475</ELocationID><Abstract><AbstractText Label="INTRODUCTION" NlmCategory="BACKGROUND">Type 2 diabetes is a chronic condition associated with impaired glucose tolerance and a high prevalence of comorbidity, polypharmacy and medication safety incidents. Little is known about the patient work associated with using diabetes management technologies by patients and their informal caregivers at home. This study aims to apply a systems engineering approach to better understand this work.</AbstractText><AbstractText Label="METHODS AND ANALYSIS" NlmCategory="METHODS">This is a qualitative focused ethnographic study using interview and photography. Adults, living independently at home, with type 2 diabetes who have been using insulin as part of their treatment regimen for a minimum of 6 months and who are using at least one diabetes management technology without support of a professional at home are eligible for inclusion. Participants will be recruited through advertisements on social media, in diabetes clinics and by contacting associations of persons living with diabetes and diabetes specialists. Participant consent will be taken, interviews will be undertaken in the participant's home, audio-recorded and photographs securely saved. The Systems Engineering Initiative for Patient Safety (SEIPS) model will frame the data coding and we will develop new codes to accommodate data outside the SEIPS model. Results will be interpreted to produce a description of work processes, work system elements and interactions that support or jeopardise the achievement of safety. This protocol will follow the consolidated criteria for reporting qualitative research checklist for the reporting of qualitative research interviews.</AbstractText><AbstractText Label="ETHICAL CONSIDERATIONS AND DISSEMINATION" NlmCategory="UNASSIGNED">This protocol was approved by the University of Lille's Behavioural Sciences Ethics Committee. The study will comply with data protection legislation: the protocol has been declared by the Data Protection Officer of the University of Lille to the National Commission on Informatics and Liberty. We plan to disseminate our findings via presentations at relevant patient/public, professional, academic and scientific meetings, and publish in a peer-reviewed journal.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Marcilly</LastName><ForeName>Romaric</ForeName><Initials>R</Initials><Identifier Source="ORCID">0000-0002-7077-7267</Identifier><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France, Lille, France romaric.marcilly@univ-lille.fr.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Inserm, CIC-IT 1403, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Quindroit</LastName><ForeName>Paul</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lemaitre</LastName><ForeName>Madleen</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>CHU Lille, Department of Diabetology, Endocrinology, Metabolism and Nutrition Lille University Hospital, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vambergue</LastName><ForeName>Anne</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>CHU Lille, Department of Diabetology, Endocrinology, Metabolism and Nutrition Lille University Hospital, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>European Genomic Institute for Diabetes, University School of Medicine, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Avez</LastName><ForeName>Eric</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Patient and Public Involvement panel, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bubeck</LastName><ForeName>Arnaud</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Diabète LAB, Fédération Française des Diabétiques, 88 rue de la Roquette, 75011 Paris, France, Paris, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hehn</LastName><ForeName>Coline</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Diabète LAB, Fédération Française des Diabétiques, 88 rue de la Roquette, 75011 Paris, France, Paris, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beuscart</LastName><ForeName>Jean-Baptiste</ForeName><Initials>JB</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Grimes</LastName><ForeName>Tamasine C</ForeName><Initials>TC</Initials><Identifier Source="ORCID">0000-0002-7154-3243</Identifier><AffiliationInfo><Affiliation>School of Pharmacy, Trinity College Dublin, Dublin, Ireland.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open</MedlineTA><NlmUniqueID>101552874</NlmUniqueID><ISSNLinking>2044-6055</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000884" MajorTopicYN="Y">Anthropology, Cultural</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D036301" MajorTopicYN="Y">Qualitative Research</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000073278" MajorTopicYN="Y">Self-Management</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005602" MajorTopicYN="N" Type="Geographic">France</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017028" MajorTopicYN="N">Caregivers</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007407" MajorTopicYN="N">Interviews as Topic</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">BIOTECHNOLOGY & BIOINFORMATICS</Keyword><Keyword MajorTopicYN="N">General diabetes</Keyword><Keyword MajorTopicYN="N">QUALITATIVE RESEARCH</Keyword><Keyword MajorTopicYN="N">Self-Management</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>20</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622567</ArticleId><ArticleId IdType="pmc">PMC11624803</ArticleId><ArticleId IdType="doi">10.1136/bmjopen-2024-084475</ArticleId><ArticleId IdType="pii">bmjopen-2024-084475</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Basu S, Yudkin JS, Kehlenbrink S, et al. Estimation of global insulin use for type 2 diabetes, 2018-30: a microsimulation analysis. Lancet Diabetes Endocrinol. 2019;7:25–33. doi: 10.1016/S2213-8587(18)30303-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(18)30303-6</ArticleId><ArticleId IdType="pubmed">30470520</ArticleId></ArticleIdList></Reference><Reference><Citation>Safford MM, Russell L, Suh D-C, et al. How Much Time Do Patients with Diabetes Spend on Self-Care? J Am Board Fam Med. 2005;18:262–70. doi: 10.3122/jabfm.18.4.262.</Citation><ArticleIdList><ArticleId IdType="doi">10.3122/jabfm.18.4.262</ArticleId><ArticleId IdType="pubmed">15994472</ArticleId></ArticleIdList></Reference><Reference><Citation>Russell LB, Suh D-C, Safford MA. Time requirements for diabetes self-management: too much for many? J Fam Pract. 2005;54:52–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">15623407</ArticleId></ArticleIdList></Reference><Reference><Citation>Iyengar V, Wolf A, Brown A, et al. Challenges in Diabetes Care: Can Digital Health Help Address Them? Clin Diabetes. 2016;34:133–41. doi: 10.2337/diaclin.34.3.133.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diaclin.34.3.133</ArticleId><ArticleId IdType="pmc">PMC5019009</ArticleId><ArticleId IdType="pubmed">27621530</ArticleId></ArticleIdList></Reference><Reference><Citation>Strauss AL.Continual Permutations of Action .New Brunswick, N.J: AldineTransaction; 2008</Citation></Reference><Reference><Citation>Despras J, Guedj A-M, Soula-Dion S, et al. Assessment of insulin adherence in diabetic outpatients: An observational study. Ann Pharm Fr. 2022;80:827–36. doi: 10.1016/j.pharma.2022.05.001. Available.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pharma.2022.05.001</ArticleId><ArticleId IdType="pubmed">35568247</ArticleId></ArticleIdList></Reference><Reference><Citation>American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71. doi: 10.2337/dc12-s064.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc12-s064</ArticleId><ArticleId IdType="pmc">PMC3632174</ArticleId><ArticleId IdType="pubmed">22187472</ArticleId></ArticleIdList></Reference><Reference><Citation>Silbert R, Salcido-Montenegro A, Rodriguez-Gutierrez R, et al. Hypoglycemia Among Patients with Type 2 Diabetes: Epidemiology, Risk Factors, and Prevention Strategies. Curr Diab Rep. 2018;18:53. doi: 10.1007/s11892-018-1018-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11892-018-1018-0</ArticleId><ArticleId IdType="pmc">PMC6117835</ArticleId><ArticleId IdType="pubmed">29931579</ArticleId></ArticleIdList></Reference><Reference><Citation>Geller AI, Conrad AO, Weidle NJ, et al. Outpatient insulin-related adverse events due to mix-up errors: Findings from two national surveillance systems, United States, 2012-2017. Pharmacoepidemiol Drug Saf. 2021;30:573–81. doi: 10.1002/pds.5212.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/pds.5212</ArticleId><ArticleId IdType="pmc">PMC9540655</ArticleId><ArticleId IdType="pubmed">33625786</ArticleId></ArticleIdList></Reference><Reference><Citation>Alcántara-Aragón V. Improving patient self-care using diabetes technologies. Ther Adv Endocrinol Metab. 2019;10:2042018818824215. doi: 10.1177/2042018818824215.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/2042018818824215</ArticleId><ArticleId IdType="pmc">PMC6351708</ArticleId><ArticleId IdType="pubmed">30728941</ArticleId></ArticleIdList></Reference><Reference><Citation>Daly A, Hovorka R. Technology in the management of type 2 diabetes: Present status and future prospects. Diabetes Obes Metab. 2021;23:1722–32. doi: 10.1111/dom.14418.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.14418</ArticleId><ArticleId IdType="pmc">PMC7611289</ArticleId><ArticleId IdType="pubmed">33950566</ArticleId></ArticleIdList></Reference><Reference><Citation>Toschi E, Munshi MN. Benefits and Challenges of Diabetes Technology Use in Older Adults. Endocrinol Metab Clin North Am. 2020;49:57–67. doi: 10.1016/j.ecl.2019.10.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ecl.2019.10.001</ArticleId><ArticleId IdType="pmc">PMC6983469</ArticleId><ArticleId IdType="pubmed">31980121</ArticleId></ArticleIdList></Reference><Reference><Citation>Karol AB, O’Malley G, Fallurin R, et al. Automated Insulin Delivery Systems as a Treatment for Type 2 Diabetes Mellitus: A Review. Endocr Pract. 2023;29:214–20. doi: 10.1016/j.eprac.2022.10.001.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eprac.2022.10.001</ArticleId><ArticleId IdType="pubmed">36241017</ArticleId></ArticleIdList></Reference><Reference><Citation>Hanaire H, Atlan C, Benhamou P-Y, et al. Éducation à l’utilisation pratique et à l’interprétation de la Mesure Continue du Glucose : position d’experts français. Méd Mal Métab. 2017;11:S1–37. doi: 10.1016/S1957-2557(18)30030-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1957-2557(18)30030-0</ArticleId></ArticleIdList></Reference><Reference><Citation>Sauvanet J-P, Halimi S. Technique d’injection de l’insuline : que font les patients diabétiques en France ? Méd Mal Métab. 2017;11:406–15. doi: 10.1016/S1957-2557(17)30098-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S1957-2557(17)30098-6</ArticleId></ArticleIdList></Reference><Reference><Citation>Holden RJ, Schubert CC, Mickelson RS. The patient work system: an analysis of self-care performance barriers among elderly heart failure patients and their informal caregivers. Appl Ergon. 2015;47:133–50. doi: 10.1016/j.apergo.2014.09.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apergo.2014.09.009</ArticleId><ArticleId IdType="pmc">PMC4258227</ArticleId><ArticleId IdType="pubmed">25479983</ArticleId></ArticleIdList></Reference><Reference><Citation>Valdez RS, Holden RJ, Novak LL, et al. Transforming consumer health informatics through a patient work framework: connecting patients to context. J Am Med Inform Assoc. 2015;22:2–10. doi: 10.1136/amiajnl-2014-002826.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/amiajnl-2014-002826</ArticleId><ArticleId IdType="pmc">PMC4433363</ArticleId><ArticleId IdType="pubmed">25125685</ArticleId></ArticleIdList></Reference><Reference><Citation>Carayon P, Schoofs Hundt A, Karsh B-T, et al. Work system design for patient safety: the SEIPS model. Qual Saf Health Care. 2006;15:i50–8. doi: 10.1136/qshc.2005.015842.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/qshc.2005.015842</ArticleId><ArticleId IdType="pmc">PMC2464868</ArticleId><ArticleId IdType="pubmed">17142610</ArticleId></ArticleIdList></Reference><Reference><Citation>Carayon P, Wooldridge A, Hoonakker P, et al. SEIPS 3.0: Human-centered design of the patient journey for patient safety. Appl Ergon. 2020;84:103033. doi: 10.1016/j.apergo.2019.103033.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apergo.2019.103033</ArticleId><ArticleId IdType="pmc">PMC7152782</ArticleId><ArticleId IdType="pubmed">31987516</ArticleId></ArticleIdList></Reference><Reference><Citation>Holden RJ, Carayon P, Gurses AP, et al. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics. 2013;56:1669–86. doi: 10.1080/00140139.2013.838643.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/00140139.2013.838643</ArticleId><ArticleId IdType="pmc">PMC3835697</ArticleId><ArticleId IdType="pubmed">24088063</ArticleId></ArticleIdList></Reference><Reference><Citation>Werner NE, Ponnala S, Doutcheva N, et al. Human factors/ergonomics work system analysis of patient work: state of the science and future directions. Int J Qual Health Care. 2021;33:60–71. doi: 10.1093/intqhc/mzaa099.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/intqhc/mzaa099</ArticleId><ArticleId IdType="pmc">PMC7802067</ArticleId><ArticleId IdType="pubmed">33432984</ArticleId></ArticleIdList></Reference><Reference><Citation>Fadare O, Witry M. “There Is Method to This Madness” A Qualitative Investigation of Home Medication Management by Older Adults. Pharmacy (Basel) 2023;11:42. doi: 10.3390/pharmacy11020042.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/pharmacy11020042</ArticleId><ArticleId IdType="pmc">PMC10037564</ArticleId><ArticleId IdType="pubmed">36961020</ArticleId></ArticleIdList></Reference><Reference><Citation>Doucette WR, Vinel S, Pennathur P. Initial development of the Systems Approach to Home Medication Management (SAHMM) model. Res Soc Admin Pharm. 2017;13:39–47. doi: 10.1016/j.sapharm.2015.12.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2015.12.013</ArticleId><ArticleId IdType="pubmed">26853834</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma J, Sun X, Wang X, et al. Factors Affecting Patient Adherence to Inhalation Therapy: An Application of SEIPS Model 2.0. Pat Prefer Adherence. 2023;17:531–45. doi: 10.2147/PPA.S395327.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/PPA.S395327</ArticleId><ArticleId IdType="pmc">PMC9990505</ArticleId><ArticleId IdType="pubmed">36896268</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin K, Jung J, Coiera E, et al. How Patient Work Changes Over Time for People With Multimorbid Type 2 Diabetes: Qualitative Study. J Med Internet Res. 2021;23:e25992. doi: 10.2196/25992.</Citation><ArticleIdList><ArticleId IdType="doi">10.2196/25992</ArticleId><ArticleId IdType="pmc">PMC8323019</ArticleId><ArticleId IdType="pubmed">34264193</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin K, Coiera E, Jung J, et al. Consumer workarounds during the COVID-19 pandemic: analysis and technology implications using the SAMR framework. J Am Med Inform Assoc. 2022;29:1244–52. doi: 10.1093/jamia/ocac061.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/jamia/ocac061</ArticleId><ArticleId IdType="pmc">PMC9129121</ArticleId><ArticleId IdType="pubmed">35477787</ArticleId></ArticleIdList></Reference><Reference><Citation>Rogvi SÁ, Guassora AD, Tvistholm N, et al. “It Is a Full-time Job to Be Ill”: Patient Work Involved in Attending Formal Diabetes Care Among Socially Vulnerable Danish Type 2 Diabetes Patients. Qual Health Res. 2021;31:2629–40. doi: 10.1177/10497323211041590.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/10497323211041590</ArticleId><ArticleId IdType="pubmed">34612745</ArticleId></ArticleIdList></Reference><Reference><Citation>Spencer-Bonilla G, Serrano V, Gao C, et al. Patient Work and Treatment Burden in Type 2 Diabetes: A Mixed-Methods Study. Mayo Clin Proc Innov Qual Outcomes . 2021;5:359–67. doi: 10.1016/j.mayocpiqo.2021.01.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.mayocpiqo.2021.01.006</ArticleId><ArticleId IdType="pmc">PMC8105508</ArticleId><ArticleId IdType="pubmed">33997635</ArticleId></ArticleIdList></Reference><Reference><Citation>Werner NE, Jolliff AF, Casper G, et al. Home is where the head is: a distributed cognition account of personal health information management in the home among those with chronic illness. Ergonomics. 2018;61:1065–78. doi: 10.1080/00140139.2018.1435910.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/00140139.2018.1435910</ArticleId><ArticleId IdType="pmc">PMC7909619</ArticleId><ArticleId IdType="pubmed">29402181</ArticleId></ArticleIdList></Reference><Reference><Citation>Novak LL, Baum HBA, Gray MH, et al. Everyday objects and spaces: How they afford resilience in diabetes routines. Appl Ergon. 2020;88:103185. doi: 10.1016/j.apergo.2020.103185.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.apergo.2020.103185</ArticleId><ArticleId IdType="pubmed">32678790</ArticleId></ArticleIdList></Reference><Reference><Citation>Wahbeh A, El-Gayar O, Sarnikar S. A close look at socio-technical design features of mobile applications for diabetes self-management. Health Technol. 2021;11:227–38. doi: 10.1007/s12553-020-00497-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12553-020-00497-4</ArticleId></ArticleIdList></Reference><Reference><Citation>Diabète Ministère santé prév 2023. 2023. https://sante.gouv.fr/soins-et-maladies/maladies/article/diabete Available.</Citation></Reference><Reference><Citation>International Diabetes Federation . Int Diabetes Fed; 2024. [19-Jul-2024]. Diabetes facts & figures.https://idf.org/about-diabetes/diabetes-facts-figures/ Available. Accessed.</Citation></Reference><Reference><Citation>SFD 2023 - ENTRED 3 Nouv Données Sur Popul Diabét Fr Univadis; [11-Aug-2023]. SFD2023-entred 3: nouvelles données sur les populations diabétiques françaises.https://www.univadis.fr/viewarticle/sfd-2023-entred-3-nouvelles-donn%25C3%25A9es-sur-les-populations-2023a10006w5 Available. Accessed.</Citation></Reference><Reference><Citation>Litarri C. Rôle du pharmacien dans la prise en charge du patient diabétique à l’officine: évaluation de la mise en place d’un entretien pharmaceutique. 2022</Citation></Reference><Reference><Citation>Ménard P. Mise en place de l’entretien pharmaceutique “diabète de type 2. 2020</Citation></Reference><Reference><Citation>Or Z, Gandré C, Seppänen A-V, et al. France: Health System Review. Health Syst Transit. 2023;25:1–276.</Citation><ArticleIdList><ArticleId IdType="pubmed">37489947</ArticleId></ArticleIdList></Reference><Reference><Citation>Marcilly R, Lemaitre M, Maalem S, et al. Inter-Professional Communications During Follow-Up of Type 2 Diabetes Patients: An Exploratory Study. Stud Health Technol Inform. 2023;302:636–40. doi: 10.3233/SHTI230226.</Citation><ArticleIdList><ArticleId IdType="doi">10.3233/SHTI230226</ArticleId><ArticleId IdType="pubmed">37203768</ArticleId></ArticleIdList></Reference><Reference><Citation>France: Country Health Profile 2021. Brussels: European Observatory on Health Systems and Policies; 2021. OECD/european observatory on health systems and policies.</Citation></Reference><Reference><Citation>Autosurveillance de la glycémie n.d. https://www.ameli.fr/assure/sante/themes/diabete/diabete-symptomes-evolution/autosurveillance-glycemie Available.</Citation></Reference><Reference><Citation>Tisserand P. Un premier système de surveillance du glucose en continu remboursé aux patients sous insulinothérapie non intensifiée. [18-Jul-2023]. https://blog.quantum-sante.fr/systeme-surveillance-glucose-continu-rembourse Available. Accessed.</Citation></Reference><Reference><Citation>Wicks P, Richards T, Denegri S, et al. Patients’ roles and rights in research. n.d. Available.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.k3193</ArticleId><ArticleId IdType="pubmed">30045909</ArticleId></ArticleIdList></Reference><Reference><Citation>Ocloo J, Garfield S, Franklin BD, et al. Exploring the theory, barriers and enablers for patient and public involvement across health, social care and patient safety: a systematic review of reviews. Health Res Policy Syst. 2021;19:8. doi: 10.1186/s12961-020-00644-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12961-020-00644-3</ArticleId><ArticleId IdType="pmc">PMC7816359</ArticleId><ArticleId IdType="pubmed">33472647</ArticleId></ArticleIdList></Reference><Reference><Citation>Hemming L, Pratt D, Bhatti P, et al. Involving an individual with lived-experience in a co-analysis of qualitative data. Health Expect. 2021;24:766–75. doi: 10.1111/hex.13188.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/hex.13188</ArticleId><ArticleId IdType="pmc">PMC8235892</ArticleId><ArticleId IdType="pubmed">33788373</ArticleId></ArticleIdList></Reference><Reference><Citation>Garfield S, Wheeler C, Boucher C, et al. Medicines management at home during the COVID-19 pandemic: a qualitative study exploring the UK patient/carer perspective. Int J Pharm Pract. 2021;29:458–64.:riab050. doi: 10.1093/ijpp/riab050.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ijpp/riab050</ArticleId><ArticleId IdType="pmc">PMC8436399</ArticleId><ArticleId IdType="pubmed">34343311</ArticleId></ArticleIdList></Reference><Reference><Citation>Müller F. Methods and Aspects of Field Research. Des. Ethnogr: Cham:Springer International Publishing; 2021. pp. 31–76.</Citation></Reference><Reference><Citation>Ozavci G, Bucknall T, Woodward-Kron R, et al. Towards patient-centred communication in the management of older patients’ medications across transitions of care: A focused ethnographic study. J Clin Nurs. 2022;31:3235–49. doi: 10.1111/jocn.16162.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jocn.16162</ArticleId><ArticleId IdType="pmc">PMC9786755</ArticleId><ArticleId IdType="pubmed">34873761</ArticleId></ArticleIdList></Reference><Reference><Citation>Muller MJ, Matheson L, Page C, et al. Methods & tools: participatory heuristic evaluation. interactions . 1998;5:13–8. doi: 10.1145/285213.285219.</Citation><ArticleIdList><ArticleId IdType="doi">10.1145/285213.285219</ArticleId></ArticleIdList></Reference><Reference><Citation>Knoblauch H. Focused Ethnography. Forum Qual Soc Res. 2005 doi: 10.17169/fqs-6.3.20.</Citation><ArticleIdList><ArticleId IdType="doi">10.17169/fqs-6.3.20</ArticleId></ArticleIdList></Reference><Reference><Citation>Patton MQ. Qualitative Research and Evaluation Methods. 3 ed. Thousand Oaks, Calif: Sage Publications; 2002.</Citation></Reference><Reference><Citation>Bourgeault IL, Dingwall R, editors . The SAGE handbook of qualitative methods in health research. Los Angeles: SAGE; 2010. De vries rg.</Citation></Reference><Reference><Citation>Malterud K, Siersma VD, Guassora AD. Sample Size in Qualitative Interview Studies: Guided by Information Power. Qual Health Res. 2016;26:1753–60. doi: 10.1177/1049732315617444.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1049732315617444</ArticleId><ArticleId IdType="pubmed">26613970</ArticleId></ArticleIdList></Reference><Reference><Citation>Look KA, Stone JA. Medication management activities performed by informal caregivers of older adults. Res Soc Admin Pharm. 2018;14:418–26. doi: 10.1016/j.sapharm.2017.05.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2017.05.005</ArticleId><ArticleId IdType="pmc">PMC5690891</ArticleId><ArticleId IdType="pubmed">28528023</ArticleId></ArticleIdList></Reference><Reference><Citation>Gorman RK, Wellbeloved-Stone CA, Valdez RS. Uncovering the invisible patient work system through a case study of breast cancer self-management. Ergonomics. 2018;61:1575–90. doi: 10.1080/00140139.2018.1503339.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/00140139.2018.1503339</ArticleId><ArticleId IdType="pubmed">30044709</ArticleId></ArticleIdList></Reference><Reference><Citation>Keller SC, Cosgrove SE, Kohut M, et al. Hazards from physical attributes of the home environment among patients on outpatient parenteral antimicrobial therapy. Am J Infect Control. 2019;47:425–30. doi: 10.1016/j.ajic.2018.09.020.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ajic.2018.09.020</ArticleId><ArticleId IdType="pmc">PMC6893846</ArticleId><ArticleId IdType="pubmed">30471975</ArticleId></ArticleIdList></Reference><Reference><Citation>Guest G, Bunce A, Johnson L. How Many Interviews Are Enough?: An Experiment with Data Saturation and Variability. Field methods. 2006;18:59–82. doi: 10.1177/1525822X05279903.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1525822X05279903</ArticleId></ArticleIdList></Reference><Reference><Citation>Lang A, Macdonald M, Marck P, et al. Seniors managing multiple medications: using mixed methods to view the home care safety lens. BMC Health Serv Res. 2015;15:548. doi: 10.1186/s12913-015-1193-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12913-015-1193-5</ArticleId><ArticleId IdType="pmc">PMC4677040</ArticleId><ArticleId IdType="pubmed">26651331</ArticleId></ArticleIdList></Reference><Reference><Citation>Dijkstra NE, Sino CGM, Schuurmans MJ, et al. Medication self-management: Considerations and decisions by older people living at home. Res Soc Admin Pharm. 2022;18:2410–23. doi: 10.1016/j.sapharm.2020.09.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.sapharm.2020.09.004</ArticleId><ArticleId IdType="pubmed">33627223</ArticleId></ArticleIdList></Reference><Reference><Citation>Miles MB, Huberman AM. Analyse Des Données Qualitatives: Méthodes En Sciences Humaines. Belgica: De Boeck Universite; 2003.</Citation></Reference><Reference><Citation>Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19:349–57. doi: 10.1093/intqhc/mzm042.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/intqhc/mzm042</ArticleId><ArticleId IdType="pubmed">17872937</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39622320</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0301-2603</ISSN><JournalIssue CitedMedium="Print"><Volume>52</Volume><Issue>6</Issue><PubDate><Year>2024</Year><Month>Nov</Month></PubDate></JournalIssue><Title>No shinkei geka. Neurological surgery</Title><ISOAbbreviation>No Shinkei Geka</ISOAbbreviation></Journal><ArticleTitle>[Pharmacological Treatment for Type 2 Diabetes].</ArticleTitle><Pagination><StartPage>1144</StartPage><EndPage>1154</EndPage><MedlinePgn>1144-1154</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.11477/mf.1436205031</ELocationID><Abstract><AbstractText>Diabetes management primarily aims to achieve a life expectancy and quality of life similar to that of people without diabetes. The key to achieving this goal is the effective prevention and management of both the microvascular and macrovascular complications associated with diabetes. Although glycated hemoglobin levels of less than 7% are recommended to minimize complications, individual targets should be set considering variables such as age, duration of diabetes, risk of hypoglycemia, organ function, support system, general health status, and social background. Treatment decisions should be individualized according to each patient's diabetes status and guided by the latest evidence on diabetes pharmacotherapy.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Otsuka</LastName><ForeName>Hideaki</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nagamine</LastName><ForeName>Tomoko</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Iwabu</LastName><ForeName>Masato</ForeName><Initials>M</Initials></Author></AuthorList><Language>jpn</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D004740">English Abstract</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Japan</Country><MedlineTA>No Shinkei Geka</MedlineTA><NlmUniqueID>0377015</NlmUniqueID><ISSNLinking>0301-2603</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>3</Day><Hour>0</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>19</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622320</ArticleId><ArticleId IdType="doi">10.11477/mf.1436205031</ArticleId><ArticleId IdType="pii">1436205031</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39622099</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>21</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-0534</ISSN><JournalIssue CitedMedium="Internet"><Volume>184</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Computers in biology and medicine</Title><ISOAbbreviation>Comput Biol Med</ISOAbbreviation></Journal><ArticleTitle>Differences in brain spindle density during sleep between patients with and without type 2 diabetes.</ArticleTitle><Pagination><StartPage>109484</StartPage><MedlinePgn>109484</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.compbiomed.2024.109484</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0010-4825(24)01569-5</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Sleep spindles may be implicated in sensing and regulation of peripheral glucose. Whether spindle density in patients with type 2 diabetes mellitus (T2DM) differs from that of healthy subjects is unknown.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Our retrospective analysis of polysomnography (PSG) studies identified 952 patients with T2DM and 952 sex-, age- and BMI-matched control subjects. We extracted spindles from PSG electroencephalograms and used rank-based statistical methods to test for differences between subjects with and without diabetes. We also explored potential modifiers of spindle density differences. We replicated our analysis on independent data from the Sleep Heart Health Study.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">We found that patients with T2DM exhibited about half the spindle density during sleep as matched controls (P < 0.0001). The replication dataset showed similar trends. The patient-minus-control paired difference in spindle density for pairs where the patient had major complications were larger than corresponding paired differences in pairs where the patient lacked major complications, despite both patient groups having significantly lower spindle density compared to their respective control subjects. Patients with a prescription for a glucagon-like peptide 1 receptor agonist had significantly higher spindle density than those without one (P ≤ 0.03). Spindle density in patients with T2DM monotonically decreased as their highest recorded HbA1C level increased (P ≤ 0.003).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">T2DM patients had significantly lower spindle density than control subjects; the size of that difference was correlated with markers of disease severity (complications and glycemic control). These findings expand our understanding of the relationships between sleep and glucose regulation.</AbstractText><CopyrightInformation>Published by Elsevier Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Yeung</LastName><ForeName>Deryck</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Talukder</LastName><ForeName>Amlan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shi</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Umbach</LastName><ForeName>David M</ForeName><Initials>DM</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Yuanyuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Motsinger-Reif</LastName><ForeName>Alison</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hwang</LastName><ForeName>Janice J</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism and Department of Internal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fan</LastName><ForeName>Zheng</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Division of Sleep Medicine and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Leping</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA. Electronic address: li3@niehs.nih.gov.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>ZIA ES101765</GrantID><Acronym>ImNIH</Acronym><Agency>Intramural NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Comput Biol Med</MedlineTA><NlmUniqueID>1250250</NlmUniqueID><ISSNLinking>0010-4825</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004569" MajorTopicYN="Y">Electroencephalography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017286" MajorTopicYN="Y">Polysomnography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012890" MajorTopicYN="N">Sleep</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Brain</Keyword><Keyword MajorTopicYN="N">EEG</Keyword><Keyword MajorTopicYN="N">GLP-1RA</Keyword><Keyword MajorTopicYN="N">Hemoglobin A1C</Keyword><Keyword MajorTopicYN="N">Polysomnography</Keyword><Keyword MajorTopicYN="N">Spindle</Keyword><Keyword MajorTopicYN="N">T2DM</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2026</Year><Month>1</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>21</Day><Hour>16</Hour><Minute>43</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622099</ArticleId><ArticleId IdType="mid">NIHMS2039512</ArticleId><ArticleId IdType="pmc">PMC11663128</ArticleId><ArticleId IdType="doi">10.1016/j.compbiomed.2024.109484</ArticleId><ArticleId IdType="pii">S0010-4825(24)01569-5</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>International-Diabetes-Federation, IDF Diabetes Atlas, 10th edn., (2021).</Citation></Reference><Reference><Citation>Bastaki S. Diabetes mellitus and its treatment, International Journal of Diabetes and Metabolism, 13 (2019) 111–134.</Citation></Reference><Reference><Citation>DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R, Type 2 diabetes mellitus, Nat Rev Dis Primers, 1 (2015)15019.</Citation><ArticleIdList><ArticleId IdType="pubmed">27189025</ArticleId></ArticleIdList></Reference><Reference><Citation>Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark A, Type 1 diabetes mellitus, Nat Rev Dis Primers, 3 (2017) 17016.</Citation><ArticleIdList><ArticleId IdType="pubmed">28358037</ArticleId></ArticleIdList></Reference><Reference><Citation>Olokoba AB, Obateru OA, Olokoba LB, Type 2 diabetes mellitus: a review of current trends, Oman Med J, 27 (2012) 269–273.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3464757</ArticleId><ArticleId IdType="pubmed">23071876</ArticleId></ArticleIdList></Reference><Reference><Citation>Reed J, Bain S, Kanamarlapudi V, A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives, Diabetes Metab Syndr Obes, 14 (2021) 3567–3602.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8369920</ArticleId><ArticleId IdType="pubmed">34413662</ArticleId></ArticleIdList></Reference><Reference><Citation>van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B, The global burden of diabetes and its complications: an emerging pandemic, Eur J Cardiovasc Prev Rehabil, 17 Suppl 1 (2010) S3–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">20489418</ArticleId></ArticleIdList></Reference><Reference><Citation>Tomic D, Shaw JE, Magliano DJ, The burden and risks of emerging complications of diabetes mellitus, Nat Rev Endocrinol, 18 (2022) 525–539.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9169030</ArticleId><ArticleId IdType="pubmed">35668219</ArticleId></ArticleIdList></Reference><Reference><Citation>GBD-Diabetes-Collaborators, Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 402 (2023) 203–234.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10364581</ArticleId><ArticleId IdType="pubmed">37356446</ArticleId></ArticleIdList></Reference><Reference><Citation>Chuai Y, Dai B, Liu X, Hu M, Wang Y, Zhang H, Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults, BMC Oral Health, 23 (2023) 303.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10193670</ArticleId><ArticleId IdType="pubmed">37198606</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X, Dai B, Chuai Y, Hu M, Zhang H, Associations between vitamin D levels and periodontal attachment loss, Clin Oral Investig, 27 (2023) 4727–4733.</Citation><ArticleIdList><ArticleId IdType="pubmed">37291391</ArticleId></ArticleIdList></Reference><Reference><Citation>Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R, Periodontitis and diabetes: a two-way relationship, Diabetologia, 55 (2012) 21–31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3228943</ArticleId><ArticleId IdType="pubmed">22057194</ArticleId></ArticleIdList></Reference><Reference><Citation>Kodl CT, Seaquist ER, Cognitive dysfunction and diabetes mellitus, Endocr Rev, 29 (2008) 494–511.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2528851</ArticleId><ArticleId IdType="pubmed">18436709</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Despa F, Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications, Nat Rev Endocrinol, 14 (2018) 591–604.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6397437</ArticleId><ArticleId IdType="pubmed">30022099</ArticleId></ArticleIdList></Reference><Reference><Citation>Barbiellini Amidei C, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, Kivimaki M, Dugravot A, Sabia S, Singh-Manoux A, Association Between Age at Diabetes Onset and Subsequent Risk of Dementia, JAMA, 325 (2021) 1640–1649.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8080220</ArticleId><ArticleId IdType="pubmed">33904867</ArticleId></ArticleIdList></Reference><Reference><Citation>Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P, Risk of dementia in diabetes mellitus: a systematic review, Lancet Neurol, 5 (2006) 64–74.</Citation><ArticleIdList><ArticleId IdType="pubmed">16361024</ArticleId></ArticleIdList></Reference><Reference><Citation>Kellar D, Craft S, Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches, Lancet Neurol, 19 (2020) 758–766.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9661919</ArticleId><ArticleId IdType="pubmed">32730766</ArticleId></ArticleIdList></Reference><Reference><Citation>Sims-Robinson C, Kim B, Rosko A, Feldman EL, How does diabetes accelerate Alzheimer disease pathology?, Nat Rev Neurol, 6 (2010) 551–559.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3199576</ArticleId><ArticleId IdType="pubmed">20842183</ArticleId></ArticleIdList></Reference><Reference><Citation>Moreno-Gonzalez I, Edwards Iii G, Salvadores N, Shahnawaz M, Diaz-Espinoza R, Soto C, Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding, Mol Psychiatry, 22 (2017) 1327–1334.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5495631</ArticleId><ArticleId IdType="pubmed">28044060</ArticleId></ArticleIdList></Reference><Reference><Citation>Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S, Buettner C, Stoeckel LE, Holtzman DM, Nathan DM, Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums, Nat Rev Neurol, 14 (2018) 168–181.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6098968</ArticleId><ArticleId IdType="pubmed">29377010</ArticleId></ArticleIdList></Reference><Reference><Citation>Antal B, McMahon LP, Sultan SF, Lithen A, Wexler DJ, Dickerson B, Ratai EM, Mujica-Parodi LR, Type 2 diabetes mellitus accelerates brain aging and cognitive decline: Complementary findings from UK Biobank and meta-analyses, Elife, 11 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9132576</ArticleId><ArticleId IdType="pubmed">35608247</ArticleId></ArticleIdList></Reference><Reference><Citation>Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM, Diabetes mellitus and the risk of dementia: The Rotterdam Study, Neurology, 53 (1999) 1937–1942.</Citation><ArticleIdList><ArticleId IdType="pubmed">10599761</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M, Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study, Neurology, 75 (2010) 1195–1202.</Citation><ArticleIdList><ArticleId IdType="pubmed">20739645</ArticleId></ArticleIdList></Reference><Reference><Citation>Hyllienmark L, Maltez J, Dandenell A, Ludvigsson J, Brismar T, EEG abnormalities with and without relation to severe hypoglycaemia in adolescents with type 1 diabetes, Diabetologia, 48 (2005) 412–419.</Citation><ArticleIdList><ArticleId IdType="pubmed">15739116</ArticleId></ArticleIdList></Reference><Reference><Citation>Tasali E, Leproult R, Ehrmann DA, Van Cauter E, Slow-wave sleep and the risk of type 2 diabetes in humans, Proc Natl Acad Sci U S A, 105 (2008) 1044–1049.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2242689</ArticleId><ArticleId IdType="pubmed">18172212</ArticleId></ArticleIdList></Reference><Reference><Citation>Johnson JM, Curtis F, Durrant SJ, Characterising the relationship between sleep stages and associated spectral power in diabetes, Sleep Epidemiology, 2 (2022) 100048.</Citation></Reference><Reference><Citation>Adamantidis AR, Gutierrez Herrera C, Gent TC, Oscillating circuitries in the sleeping brain, Nature Reviews Neuroscience, 20 (2019) 746–762.</Citation><ArticleIdList><ArticleId IdType="pubmed">31616106</ArticleId></ArticleIdList></Reference><Reference><Citation>Buzsáki G, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning, Hippocampus, 25 (2015) 1073–1188.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4648295</ArticleId><ArticleId IdType="pubmed">26135716</ArticleId></ArticleIdList></Reference><Reference><Citation>Cox R, Ruber T, Staresina BP, Fell J, Sharp Wave-Ripples in Human Amygdala and Their Coordination with Hippocampus during NREM Sleep, Cereb Cortex Commun, 1 (2020) tgaa051.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7521160</ArticleId><ArticleId IdType="pubmed">33015623</ArticleId></ArticleIdList></Reference><Reference><Citation>Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, Vadera S, Walker MP, Lin JJ, Knight RT, Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans, Nat Commun, 10 (2019) 3572.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6687745</ArticleId><ArticleId IdType="pubmed">31395890</ArticleId></ArticleIdList></Reference><Reference><Citation>Mölle M, Yeshenko O, Marshall L, Sara SJ, Born J, Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep, J Neurophysiol, 96 (2006) 62–70.</Citation><ArticleIdList><ArticleId IdType="pubmed">16611848</ArticleId></ArticleIdList></Reference><Reference><Citation>Ngo HV, Fell J, Staresina B, Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples, Elife, 9 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7363445</ArticleId><ArticleId IdType="pubmed">32657268</ArticleId></ArticleIdList></Reference><Reference><Citation>Oyanedel CN, Duran E, Niethard N, Inostroza M, Born J, Temporal associations between sleep slow oscillations, spindles and ripples, Eur J Neurosci, 52 (2020) 4762–4778.</Citation><ArticleIdList><ArticleId IdType="pubmed">32654249</ArticleId></ArticleIdList></Reference><Reference><Citation>Siapas AG, Wilson MA, Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep, Neuron, 21 (1998) 1123–1128.</Citation><ArticleIdList><ArticleId IdType="pubmed">9856467</ArticleId></ArticleIdList></Reference><Reference><Citation>Staresina BP, Niediek J, Borger V, Surges R, Mormann F, How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep, Nature Neuroscience, 26 (2023) 1429–1437.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10400429</ArticleId><ArticleId IdType="pubmed">37429914</ArticleId></ArticleIdList></Reference><Reference><Citation>Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH, Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples, eLife, 9 (2020) e51972.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7096182</ArticleId><ArticleId IdType="pubmed">32167467</ArticleId></ArticleIdList></Reference><Reference><Citation>Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ, Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning, Learn Mem, 15 (2008) 222–228.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2327264</ArticleId><ArticleId IdType="pubmed">18385477</ArticleId></ArticleIdList></Reference><Reference><Citation>Geva-Sagiv M, Mankin EA, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir I Y. Fried, Augmenting hippocampal–prefrontal neuronal synchrony during sleep enhances memory consolidation in humans, Nature Neuroscience, 26 (2023) 1100–1110.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10244181</ArticleId><ArticleId IdType="pubmed">37264156</ArticleId></ArticleIdList></Reference><Reference><Citation>Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M, Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development, Elife, 12 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10672804</ArticleId><ArticleId IdType="pubmed">37999945</ArticleId></ArticleIdList></Reference><Reference><Citation>Tingley D, McClain K, Kaya E, Carpenter J, Buzsáki G, A metabolic function of the hippocampal sharp wave-ripple, Nature, 597 (2021) 82–86.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9214835</ArticleId><ArticleId IdType="pubmed">34381214</ArticleId></ArticleIdList></Reference><Reference><Citation>Vallat R, Shah VD, Walker MP, Coordinated human sleeping brainwaves map peripheral body glucose homeostasis, Cell Rep Med, 4 (2023) 101100.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10394167</ArticleId><ArticleId IdType="pubmed">37421946</ArticleId></ArticleIdList></Reference><Reference><Citation>Spiegel K, Leproult R, Van Cauter E, Impact of sleep debt on metabolic and endocrine function, Lancet, 354 (1999) 1435–1439.</Citation><ArticleIdList><ArticleId IdType="pubmed">10543671</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappuccio FP, D’Elia L, Strazzullo P, Miller MA, Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis, Diabetes Care, 33 (2010) 414–420.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2809295</ArticleId><ArticleId IdType="pubmed">19910503</ArticleId></ArticleIdList></Reference><Reference><Citation>Schipper SBJ, Van Veen MM, Elders PJM, van Straten A, Van Der Werf YD, Knutson KL, Rutters F, Sleep disorders in people with type 2 diabetes and associated health outcomes: a review of the literature, Diabetologia, 64 (2021) 2367–2377.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8494668</ArticleId><ArticleId IdType="pubmed">34401953</ArticleId></ArticleIdList></Reference><Reference><Citation>Farabi SS, Carley DW, Quinn L, EEG power and glucose fluctuations are coupled during sleep in young adults with type 1 diabetes, Clin Neurophysiol, 127 (2016) 2739–2746.</Citation><ArticleIdList><ArticleId IdType="pubmed">27417046</ArticleId></ArticleIdList></Reference><Reference><Citation>Noga DA, Meth E, Pacheco AP, Tan X, Cedernaes J, van Egmond LT, Xue P, Benedict C, Habitual Short Sleep Duration, Diet, and Development of Type 2 Diabetes in Adults, JAMA Netw Open, 7 (2024)e241147.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10915681</ArticleId><ArticleId IdType="pubmed">38441893</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen DM, Taporoski TP, Alexandria SJ, Aaby DA, Beijamini F, Krieger JE, von Schantz M, Pereira A, Knutson KL, Altered sleep architecture in diabetes and prediabetes: findings from the Baependi Heart Study, medRxiv, (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37658822</ArticleId></ArticleIdList></Reference><Reference><Citation>Briancon-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J, The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms, Diabetol Metab Syndr, 7 (2015) 25.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4381534</ArticleId><ArticleId IdType="pubmed">25834642</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS, Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep, J Clin Invest, 88 (1991) 934–942.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC295490</ArticleId><ArticleId IdType="pubmed">1885778</ArticleId></ArticleIdList></Reference><Reference><Citation>Allada R, Bass J, Circadian Mechanisms in Medicine, N Engl J Med, 384 (2021) 550–561.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8108270</ArticleId><ArticleId IdType="pubmed">33567194</ArticleId></ArticleIdList></Reference><Reference><Citation>Wright KP Jr., McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED, Entrainment of the human circadian clock to the natural light-dark cycle, Curr Biol, 23 (2013) 1554–1558.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4020279</ArticleId><ArticleId IdType="pubmed">23910656</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I, Sleep spindles in humans: insights from intracranial EEG and unit recordings, J Neurosci, 31 (2011) 17821–17834.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3270580</ArticleId><ArticleId IdType="pubmed">22159098</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernandez LMJ, Lüthi A, Sleep Spindles: Mechanisms and Functions, Physiological Reviews, 100 (2020) 805–868.</Citation><ArticleIdList><ArticleId IdType="pubmed">31804897</ArticleId></ArticleIdList></Reference><Reference><Citation>Purcell SM, Manoach DS, Demanuele C, Cade BE, Mariani S, Cox R, Panagiotaropoulou G, Saxena R, Pan JQ, Smoller JW, Redline S, Stickgold R, Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource, Nature Communications, 8 (2017) 15930.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5490197</ArticleId><ArticleId IdType="pubmed">28649997</ArticleId></ArticleIdList></Reference><Reference><Citation>Peyrache A, Seibt J, A mechanism for learning with sleep spindles, Philosophical Transactions of the Royal Society B: Biological Sciences, 375 (2020) 20190230.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7209910</ArticleId><ArticleId IdType="pubmed">32248788</ArticleId></ArticleIdList></Reference><Reference><Citation>Schönauer M, Pöhlchen D, Sleep spindles, Curr Biol, 28 (2018) R1129–rll30.</Citation><ArticleIdList><ArticleId IdType="pubmed">30300592</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, Watson A, Bria P, Tononi G, Reduced sleep spindle activity in schizophrenia patients, Am J Psychiatry, 164 (2007) 483–492.</Citation><ArticleIdList><ArticleId IdType="pubmed">17329474</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang G-Q, Cui L, Mueller R, Tao S, Kim M, Rueschman M, Mariani S, Mobley D, Redline S, The National Sleep Research Resource: towards a sleep data commons, Journal of the American Medical Informatics Association, 25 (2018) 1351–1358.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6188513</ArticleId><ArticleId IdType="pubmed">29860441</ArticleId></ArticleIdList></Reference><Reference><Citation>Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM, Wahl PW, The Sleep Heart Health Study: design, rationale, and methods, Sleep, 20 (1997) 1077–1085.</Citation><ArticleIdList><ArticleId IdType="pubmed">9493915</ArticleId></ArticleIdList></Reference><Reference><Citation>Bentsen MA, Mirzadeh Z, Schwartz MW, Revisiting How the Brain Senses Glucose—And Why, Cell Metabolism, 29 (2019) 11–17.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6326855</ArticleId><ArticleId IdType="pubmed">30527741</ArticleId></ArticleIdList></Reference><Reference><Citation>Marty N, Dallaporta M, Thorens B, Brain Glucose Sensing, Counterregulation, and Energy Homeostasis, Physiology, 22 (2007) 241–251.</Citation><ArticleIdList><ArticleId IdType="pubmed">17699877</ArticleId></ArticleIdList></Reference><Reference><Citation>Roh E, Song DK, Kim M-S, Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism, Experimental & Molecular Medicine, 48 (2016) e216–e216.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4892882</ArticleId><ArticleId IdType="pubmed">26964832</ArticleId></ArticleIdList></Reference><Reference><Citation>López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F, Brain Glucose-Sensing Mechanism and Energy Homeostasis, Mol Neurobiol, 56 (2019) 769–796.</Citation><ArticleIdList><ArticleId IdType="pubmed">29796992</ArticleId></ArticleIdList></Reference><Reference><Citation>Talukder A, Yeung D, Li Y, Anandanadarajah N, Umbach DM, Fan Z, Li L, Comparison of power spectra from overnight electroencephalography between patients with Down syndrome and matched control subjects, J Sleep Res, (2024) el4187.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11347723</ArticleId><ArticleId IdType="pubmed">38410055</ArticleId></ArticleIdList></Reference><Reference><Citation>Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M, MEG and EEG data analysis with MNE-Python, Front Neurosci, 7 (2013) 267.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3872725</ArticleId><ArticleId IdType="pubmed">24431986</ArticleId></ArticleIdList></Reference><Reference><Citation>Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL, Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis, Physiology (Bethesda), 32 (2017) 60–92.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5343535</ArticleId><ArticleId IdType="pubmed">27927806</ArticleId></ArticleIdList></Reference><Reference><Citation>Vallat R, Walker MP, An open-source, high-performance tool for automated sleep staging, eLife, 10 (2021) e70092.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8516415</ArticleId><ArticleId IdType="pubmed">34648426</ArticleId></ArticleIdList></Reference><Reference><Citation>Drucker DJ, Habener JF, Holst JJ, Discovery, characterization, and clinical development of the glucagon-like peptides, J Clin Invest, 127 (2017) 4217–4227.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5707151</ArticleId><ArticleId IdType="pubmed">29202475</ArticleId></ArticleIdList></Reference><Reference><Citation>Seaquist ER, The final frontier: how does diabetes affect the brain?, Diabetes, 59 (2010) 4–5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2797942</ArticleId><ArticleId IdType="pubmed">20040482</ArticleId></ArticleIdList></Reference><Reference><Citation>Moheet A, Mangia S, Seaquist ER, Impact of diabetes on cognitive function and brain structure, Ann N Y Acad Sci, 1353 (2015) 60–71.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4837888</ArticleId><ArticleId IdType="pubmed">26132277</ArticleId></ArticleIdList></Reference><Reference><Citation>van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA, Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression, Lancet Diabetes Endocrinol, 8 (2020) 325–336.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11044807</ArticleId><ArticleId IdType="pubmed">32135131</ArticleId></ArticleIdList></Reference><Reference><Citation>Jacobson AM, Braffett BH, Erus G, Ryan CM, Biessels GJ, Luchsinger JA, Bebu I, Gubitosi-Klug RA, Desiderio L, Lorenzi GM, Trapani VR, Lachin JM, Bryan RN, Habes M, Nasrallah IM, Group DER, Brain Structure Among Middle-aged and Older Adults With Long-standing Type 1 Diabetes in the DCCT/EDIC Study, Diabetes Care, 45 (2022) 1779–1787.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9346989</ArticleId><ArticleId IdType="pubmed">35699949</ArticleId></ArticleIdList></Reference><Reference><Citation>Henson J, Covenant A, Hall AP, Herring L, Rowlands AV, Yates T, Davies MJ, Waking Up to the Importance of Sleep in Type 2 Diabetes Management: A Narrative Review, Diabetes Care, 47 (2024) 331–343.</Citation><ArticleIdList><ArticleId IdType="pubmed">38394635</ArticleId></ArticleIdList></Reference><Reference><Citation>Fishbein AB, Knutson KL, Zee PC, Circadian disruption and human health, J Clin Invest, 131 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8483747</ArticleId><ArticleId IdType="pubmed">34596053</ArticleId></ArticleIdList></Reference><Reference><Citation>Gentry NW, Ashbrook LH, Fu YH, Ptacek LJ, Human circadian variations, J Clin Invest, 131 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8363277</ArticleId><ArticleId IdType="pubmed">34396981</ArticleId></ArticleIdList></Reference><Reference><Citation>Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP, Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting, Neuron, 97 (2018) 221–230.e224.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5754239</ArticleId><ArticleId IdType="pubmed">29249289</ArticleId></ArticleIdList></Reference><Reference><Citation>Vlahou EL, Thurm F, Kolassa l.-T., Schlee W, Resting-state slow wave power, healthy aging and cognitive performance, Scientific Reports, 4 (2014) 5101.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4037748</ArticleId><ArticleId IdType="pubmed">24869503</ArticleId></ArticleIdList></Reference><Reference><Citation>Baggio LL, Drucker DJ, Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight, J Clin Invest, 124 (2014) 4223–4226.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4191040</ArticleId><ArticleId IdType="pubmed">25202976</ArticleId></ArticleIdList></Reference><Reference><Citation>Andersen A, Lund A, Knop FK, Vilsbøll T, Glucagon-like peptide 1 in health and disease, Nat Rev Endocrinol, 14 (2018) 390–403.</Citation><ArticleIdList><ArticleId IdType="pubmed">29728598</ArticleId></ArticleIdList></Reference><Reference><Citation>Nauck MA, Quast DR, Wefers J, Meier JJ, GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art, Molecular Metabolism, 46 (2021) 101102.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8085572</ArticleId><ArticleId IdType="pubmed">33068776</ArticleId></ArticleIdList></Reference><Reference><Citation>Ussher JR, Drucker DJ, Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action, Nature Reviews Cardiology, 20 (2023) 463–474.</Citation><ArticleIdList><ArticleId IdType="pubmed">36977782</ArticleId></ArticleIdList></Reference><Reference><Citation>Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, Yabut JM, Seeley RJ, Brown TJ, Drucker DJ, Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation, Cell Metab, 36 (2024) 130–143.el35.</Citation><ArticleIdList><ArticleId IdType="pubmed">38113888</ArticleId></ArticleIdList></Reference><Reference><Citation>Grieco M, Giorgi A, Gentile MC, d’Erme M, Morano S, Maras B, Filardi T, Glucagon-Like Peptide-1: A Focus on Neurodegenerative Diseases, Front Neurosci, 13 (2019) 1112.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6813233</ArticleId><ArticleId IdType="pubmed">31680842</ArticleId></ArticleIdList></Reference><Reference><Citation>Cryer PE, Hypoglycemia, functional brain failure, and brain death, Journal of Clinical Investigation, 117 (2007) 868–870.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1838950</ArticleId><ArticleId IdType="pubmed">17404614</ArticleId></ArticleIdList></Reference><Reference><Citation>Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N Engl J Med, 329 (1993) 977–986.</Citation><ArticleIdList><ArticleId IdType="pubmed">8366922</ArticleId></ArticleIdList></Reference><Reference><Citation>Carrillo-Larco RM, Guzman-Vilca WC, Xu X, Bernabe-Ortiz A, Mean age and body mass index at type 2 diabetes diagnosis: Pooled analysis of 56 health surveys across income groups and world regions, Diabetic Medicine, 41 (2024) el5174.</Citation><ArticleIdList><ArticleId IdType="pubmed">37422703</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirjalili S, Jangir P, Saremi S, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Applied Intelligence, 46 (2017) 79–95.</Citation></Reference><Reference><Citation>Kalita K, Naga Ramesh JV, Čep R, Pandya SB, Jangir P, Abualigah L, Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems, Heliyon, 10 (2024) e26665.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10937593</ArticleId><ArticleId IdType="pubmed">38486727</ArticleId></ArticleIdList></Reference><Reference><Citation>Harris MI, Hadden WC, Knowler WC, Bennett PH, Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20-74 yr, Diabetes, 36 (1987) 523–534.</Citation><ArticleIdList><ArticleId IdType="pubmed">3817306</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39622055</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>16</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1539-3704</ISSN><JournalIssue CitedMedium="Internet"><Volume>177</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Annals of internal medicine</Title><ISOAbbreviation>Ann Intern Med</ISOAbbreviation></Journal><ArticleTitle>After COVID-19 diagnosis, risk for incident type 2 diabetes was elevated for up to 2 y.</ArticleTitle><Pagination><StartPage>JC142</StartPage><MedlinePgn>JC142</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.7326/ANNALS-24-02887-JC</ELocationID><Abstract><AbstractText>Taylor K, Eastwood S, Walker V, et al. <b>Incidence of diabetes after SARS-CoV-2 infection in England and the implications of COVID-19 vaccination: a retrospective cohort study of 16 million people.</b> Lancet Diabetes Endocrinol. 2024;12:558-568. 39054034.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Vassilopoulos</LastName><ForeName>Stephanos</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA (S.V.).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mylonakis</LastName><ForeName>Eleftherios</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Houston Methodist Hospital, Houston, Texas, USA (E.M.).</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Ann Intern Med</MedlineTA><NlmUniqueID>0372351</NlmUniqueID><ISSNLinking>0003-4819</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000086663">COVID-19 Vaccines</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000086382" MajorTopicYN="Y">COVID-19</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004739" MajorTopicYN="N" Type="Geographic">England</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000086663" MajorTopicYN="N">COVID-19 Vaccines</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement><b>Disclosures:</b> Disclosure forms are available with the article online.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>16</Day><Hour>18</Hour><Minute>18</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>17</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39622055</ArticleId><ArticleId IdType="doi">10.7326/ANNALS-24-02887-JC</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39621725</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Electronic-eCollection"><Journal><ISSN IssnType="Electronic">1932-6203</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>PloS one</Title><ISOAbbreviation>PLoS One</ISOAbbreviation></Journal><ArticleTitle>Activity of glucose-6-phosphate dehydrogenease and its correlation with inflammatory factors in diabetic retinopathy.</ArticleTitle><Pagination><StartPage>e0312452</StartPage><MedlinePgn>e0312452</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e0312452</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0312452</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">This study aims to explore glucose-6-phosphate dehydrogenase (G6PD) activity in diabetic retinopathy (DR) and its correlation with inflammatory factors, elucidating the regulatory role of G6PD in DR pathology.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">A total of 151 T2DM patients were divided into three groups: diabetes without retinopathy (DNR, n = 59), non-proliferative retinopathy (NPDR, n = 46) and proliferative retinopathy (PDR, n = 49). Plasma G6PD activity was measured by a Randox G6PD kit and compared between these groups. Then the G6PD activity was correlated with inflammatory cytokines and metabolic parameters in these patients. A STZ-induced diabetic rat model was established, G6PD activity was validated by western blot and immunofluorescence staining in the retina of this model.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Plasma G6PD activity decreased in the order of DNR, NPDR and PDR groups (P<0.01). G6PD activity was negatively correlated with IL-6, IL-8, TNF-α, cholesterol, and LDL (r = -0.1625, -0.1808, -0.1865, -0.1747, r = -0.1807, P<0.05). Multiple regression analysis showed TNF-α, IL-6, and LDL were independent related factors for G6PD. Logistic regression analysis showed G6PD, triglyceride, cholesterol, IL-8, TNF-α, and macular edema were influencing factors for T2DM with DR. Western Blot analysis indicated a significant reduction of G6PD expression in the retina, and immunofluorescence staining showed distribution of G6PD especially in the retinal endothelium cell decreased.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">G6PD may play an important role in DR occurrence and progression, with decreased expression correlating closely with lipid metabolism and inflammatory factors.</AbstractText><CopyrightInformation>Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Dan</ForeName><Initials>D</Initials><Identifier Source="ORCID">0009-0002-2738-5679</Identifier><AffiliationInfo><Affiliation>Department of Ophthalmology, The Second Clinical Medical College, Jinan University, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheng</LastName><ForeName>Chuchu</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, The Second People's Hospital of Futian District, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Lan</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeng</LastName><ForeName>Qiqiao</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zi</LastName><ForeName>Tao</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Gongyi</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sun</LastName><ForeName>Hongyan</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Cunzi</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Ming-Ming</ForeName><Initials>MM</Initials><AffiliationInfo><Affiliation>Department of Ophthalmology, The Shenzhen People's Hospital, Shenzhen, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>PLoS One</MedlineTA><NlmUniqueID>101285081</NlmUniqueID><ISSNLinking>1932-6203</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>EC 1.1.1.49</RegistryNumber><NameOfSubstance UI="D005954">Glucosephosphate Dehydrogenase</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016207">Cytokines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014409">Tumor Necrosis Factor-alpha</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015850">Interleukin-6</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003930" MajorTopicYN="Y">Diabetic Retinopathy</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005954" MajorTopicYN="Y">Glucosephosphate Dehydrogenase</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012160" MajorTopicYN="N">Retina</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014409" MajorTopicYN="N">Tumor Necrosis Factor-alpha</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015850" MajorTopicYN="N">Interleukin-6</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017207" MajorTopicYN="N">Rats, Sprague-Dawley</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors have declared that no competing interests exist.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>13</Hour><Minute>54</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39621725</ArticleId><ArticleId IdType="pmc">PMC11611225</ArticleId><ArticleId IdType="doi">10.1371/journal.pone.0312452</ArticleId><ArticleId IdType="pii">PONE-D-24-26543</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014;103:137e149. doi: 10.1016/j.diabres.2013.11.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2013.11.002</ArticleId><ArticleId IdType="pubmed">24630390</ArticleId></ArticleIdList></Reference><Reference><Citation>Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmology 2016;44: 260e277. doi: 10.1111/ceo.12696</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ceo.12696</ArticleId><ArticleId IdType="pubmed">26716602</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2015;2:17. doi: 10.1186/s40662-015-0026-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s40662-015-0026-2</ArticleId><ArticleId IdType="pmc">PMC4657234</ArticleId><ArticleId IdType="pubmed">26605370</ArticleId></ArticleIdList></Reference><Reference><Citation>Boyer DS, Hopkins JJ, Sorof J, Ehrlich JS. Anti-vascular endothelial growth factor therapy for diabetic macular edema. Ther Adv Endocrinol Metab 2013;4:151e169.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3855829</ArticleId><ArticleId IdType="pubmed">24324855</ArticleId></ArticleIdList></Reference><Reference><Citation>Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy. Diabetes Care 2004;27:2540e2553.</Citation><ArticleIdList><ArticleId IdType="pubmed">15451934</ArticleId></ArticleIdList></Reference><Reference><Citation>Joanne W Y Yau, Sophie L Rogers, Ryo Kawasaki, Ecosse L Lamoureux, Jonathan W Kowalski, Toke Bek, et al.. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556e564.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3322721</ArticleId><ArticleId IdType="pubmed">22301125</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappellini MD, Fiorelli G, Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008; 371(9606):64–74. doi: 10.1016/S0140-6736(08)60073-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(08)60073-2</ArticleId><ArticleId IdType="pubmed">18177777</ArticleId></ArticleIdList></Reference><Reference><Citation>Luzzatto L., Seneca E., G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications, Br. J. Haematol 164 (4) (2014) 469–480. doi: 10.1111/bjh.12665</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/bjh.12665</ArticleId><ArticleId IdType="pmc">PMC4153881</ArticleId><ArticleId IdType="pubmed">24372186</ArticleId></ArticleIdList></Reference><Reference><Citation>Wan G.H., Tsai S.C., Chiu D.T., Decreased blood activity of glucose-6-phosphate dehydrogenase associates with increased risk for diabetes mellitus, Endocrine 19 (2) (2002) 191–195. doi: 10.1385/ENDO:19:2:191</Citation><ArticleIdList><ArticleId IdType="doi">10.1385/ENDO:19:2:191</ArticleId><ArticleId IdType="pubmed">12588050</ArticleId></ArticleIdList></Reference><Reference><Citation>Gaskin R.S., Estwick D., Peddi R., G6PD deficiency: its role in the high prevalence of hypertension and diabetes mellitus, Ethn. Dis 11 (4) (2001) 749–754.</Citation><ArticleIdList><ArticleId IdType="pubmed">11763298</ArticleId></ArticleIdList></Reference><Reference><Citation>Manganelli G., Masullo U., Passarelli S., Filosa S., Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits, Cardiovasc.Haematol.Disord.—Drug Targets 13 (1) (2013) 73–82.</Citation><ArticleIdList><ArticleId IdType="pubmed">23534950</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang H.C., Cheng M.L., Ho H.Y., Chiu D.T., The microbicidal and cytoregulatory roles of NADPH oxidases, Microb. Infect 13 (2) (2011) 109–120. doi: 10.1016/j.micinf.2010.10.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.micinf.2010.10.008</ArticleId><ArticleId IdType="pubmed">20971207</ArticleId></ArticleIdList></Reference><Reference><Citation>Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 2011;300:C723–42. doi: 10.1152/ajpcell.00462.2010</Citation><ArticleIdList><ArticleId IdType="doi">10.1152/ajpcell.00462.2010</ArticleId><ArticleId IdType="pmc">PMC3074624</ArticleId><ArticleId IdType="pubmed">21209361</ArticleId></ArticleIdList></Reference><Reference><Citation>Ho H.Y., Cheng M.L., Chiu D.T., Glucose-6-phosphate dehydrogenase–from oxidative stress to cellular functions and degenerative diseases, Redox Rep 12 (3) (2007)109–118. doi: 10.1179/135100007X200209</Citation><ArticleIdList><ArticleId IdType="doi">10.1179/135100007X200209</ArticleId><ArticleId IdType="pubmed">17623517</ArticleId></ArticleIdList></Reference><Reference><Citation>Leto T.L., Morand S., Hurt D., Ueyama T., Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases, Antioxidants Redox Signal 11 (10) (2009) 2607–2619. doi: 10.1089/ars.2009.2637</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/ars.2009.2637</ArticleId><ArticleId IdType="pmc">PMC2782575</ArticleId><ArticleId IdType="pubmed">19438290</ArticleId></ArticleIdList></Reference><Reference><Citation>Babior B.M., NADPH oxidase: an update, Blood 93 (5) (1999) 1464–1476.</Citation><ArticleIdList><ArticleId IdType="pubmed">10029572</ArticleId></ArticleIdList></Reference><Reference><Citation>Singel K.L., Segal B.H., NOX2-dependent regulation of inflammation, Clin. Sci. (Lond.) 130 (7) (2016) 479–490. doi: 10.1042/CS20150660</Citation><ArticleIdList><ArticleId IdType="doi">10.1042/CS20150660</ArticleId><ArticleId IdType="pmc">PMC5513728</ArticleId><ArticleId IdType="pubmed">26888560</ArticleId></ArticleIdList></Reference><Reference><Citation>McCubrey J.A., Lahair M.M., Franklin R.A., Reactive oxygen species-induced activation of the MAP kinase signaling pathways, Antioxidants Redox Signal 8 (9–10) (2006) 1775–1789. doi: 10.1089/ars.2006.8.1775</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/ars.2006.8.1775</ArticleId><ArticleId IdType="pubmed">16987031</ArticleId></ArticleIdList></Reference><Reference><Citation>Son Y., Cheong Y.K., Kim N.H., Chung H.T., Kang D.G., Pae H.O., Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct 2011 (2011) 792639. doi: 10.1155/2011/792639</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2011/792639</ArticleId><ArticleId IdType="pmc">PMC3100083</ArticleId><ArticleId IdType="pubmed">21637379</ArticleId></ArticleIdList></Reference><Reference><Citation>Liang Y., Zhou Y., Shen P., NF-kappaB and its regulation on the immune system, Cell. Mol. Immunol 1 (5) (2004) 343–350.</Citation><ArticleIdList><ArticleId IdType="pubmed">16285893</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang HC, Cheng ML, Hua YS, Wu YH, Lin HR, Liu HY, et al., Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway. J Inflamm (Lond). 2015. Apr 24;12:34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4419400</ArticleId><ArticleId IdType="pubmed">25945076</ArticleId></ArticleIdList></Reference><Reference><Citation>Peiró C, Romacho T, Azcutia V, Villalobos L, Fernández E, Bolaños JP, et al., Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovasc Diabetol. 2016. Jun 1;15:82. doi: 10.1186/s12933-016-0397-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-016-0397-2</ArticleId><ArticleId IdType="pmc">PMC4888494</ArticleId><ArticleId IdType="pubmed">27245224</ArticleId></ArticleIdList></Reference><Reference><Citation>Ham M, Lee JW, Choi AH, Jang H, Choi G, Park J, et al., Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol Cell Biol. 2013. Jun;33(12):2425–35. doi: 10.1128/MCB.01260-12</Citation><ArticleIdList><ArticleId IdType="doi">10.1128/MCB.01260-12</ArticleId><ArticleId IdType="pmc">PMC3700093</ArticleId><ArticleId IdType="pubmed">23572562</ArticleId></ArticleIdList></Reference><Reference><Citation>Lai YK, Lai NM, Lee SW. Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: a systematic review and meta-analysis. Ann Hematol. 2017;96(5):839–45. doi: 10.1007/s00277-017-2945-6</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00277-017-2945-6</ArticleId><ArticleId IdType="pubmed">28197721</ArticleId></ArticleIdList></Reference><Reference><Citation>Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, et al.. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem. 2003;278(34):32100–6. doi: 10.1074/jbc.M301293200</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M301293200</ArticleId><ArticleId IdType="pubmed">12777375</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39621499</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1548-7148</ISSN><JournalIssue CitedMedium="Internet"><Volume>35</Volume><Issue>4</Issue><PubDate><MedlineDate>2024 Oct-Dec 01</MedlineDate></PubDate></JournalIssue><Title>Journal of addictions nursing</Title><ISOAbbreviation>J Addict Nurs</ISOAbbreviation></Journal><ArticleTitle>Nurse-Led Evidence-Based Diabetes Prevention Study: An Innovative Risk Reduction Program for Clients With Substance Use Disorders.</ArticleTitle><Pagination><StartPage>203</StartPage><EndPage>215</EndPage><MedlinePgn>203-215</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1097/JAN.0000000000000601</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Clients with substance use disorders (SUDs) have a substantial risk of developing Type 2 diabetes mellitus (T2DM). The connection between SUD and DM stems from rapid cell damage, pancreatic beta-cell dysfunction, and glucose dysregulation due to increased oxidative stress and decreased antioxidant activity. This study aims to reduce the risk of T2DM among individuals undergoing SUD recovery treatments.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">This nurse-led diabetes prevention program, a 1-year-long, peer-based intervention, was implemented among clients at a federally funded, stand-alone drug addictions treatment center based on evidence that lifestyle modifications in dietary control, physical activity, and health behaviors can halt or delay the progression of Type 2 diabetes. Four trained peer educators delivered diabetes prevention interventions to a sample of individuals in drug addiction treatment in Nigeria. The nurse program leader provided weekly mentoring and guidance to the peer educators and collected, reviewed, and analyzed study participants' logs of weights and self-reported lifestyle modifications.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">There were significant differences in participants' behaviors pre- and post-lifestyle interventions, except in dairy product intakes as well as cigarette and cannabis use.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This diabetes prevention program is innovative and effective with this at-risk population. Interventions were delivered with minor financial resources.</AbstractText><AbstractText Label="IMPLICATIONS FOR NURSING AND PATIENT CARE" NlmCategory="UNASSIGNED">SUD treatment must address physical and psychological health and consider the heightened risks of chronic illness in this population. Preventing somatic diseases, such as T2DM, is vital to long-term health and well-being.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Adejumo</LastName><ForeName>Oluremi A</ForeName><Initials>OA</Initials><Identifier Source="ORCID">0000-0001-8563-1079</Identifier></Author><Author ValidYN="Y"><LastName>Ogunbiyi</LastName><ForeName>Elizabeth O</ForeName><Initials>EO</Initials></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Ling-Yin</ForeName><Initials>LY</Initials><Identifier Source="ORCID">0009-0003-8112-4899</Identifier></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Addict Nurs</MedlineTA><NlmUniqueID>9616159</NlmUniqueID><ISSNLinking>1088-4602</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019966" MajorTopicYN="Y">Substance-Related Disorders</DescriptorName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000451" MajorTopicYN="N">nursing</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D040242" MajorTopicYN="Y">Risk Reduction Behavior</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057184" MajorTopicYN="N">Practice Patterns, Nurses'</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>18</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>36</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39621499</ArticleId><ArticleId IdType="doi">10.1097/JAN.0000000000000601</ArticleId><ArticleId IdType="pii">00060867-202410000-00007</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Abubakar I., Dalglish S., Angell B., Sanuade O., Abimbola S., Adamu A. L., Adetifa I. M. O., Colbourn T., Ogunlesi A. O., Onwujekwe O., Owoaje E. T., Okeke I. N., Adeyemo A., Aliyu G., Aliyu M. H., Aliyu S. H., Ameh E. A., Archbong B., Ezeh A., Zanna F. H. (2022). The Lancet Nigeria Commission: Investing in health and the future of the nation. Lancet, 399(10330), 1155–1200. https://doi.org/10.1016/S0140-6736(21)02488-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(21)02488-0</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguwa C., Carrasco T., Odongo N., Riblet N., Odongo N., Riblet N. (2023). Barriers to treatment as a hindrance to health and wellbeing of individuals with mental illnesses in Africa: A systematic review. International Journal of Mental Health and Addiction, 21, 2354–2370. https://doi.org/10.1007/s11469-021-00726-5</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11469-021-00726-5</ArticleId></ArticleIdList></Reference><Reference><Citation>Al-Oraibi A., Nellums L. B., Chattopadhyay K. (2021). COVID-19, conflict, and non-communicable diseases among refugees. EClinicalMedicine Commentary, 34, 100813. https://doi.org/10.1016/j.eclinm.2021.100813</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eclinm.2021.100813</ArticleId></ArticleIdList></Reference><Reference><Citation>Angell B., Sanuade O., Adetifa I. M. O., Okeke I. N., Adamu A. L., Aliyu M. H., Ameh E. A., Kyari F., Gadanya M. A., Mabayoje D. A., Yinka-Ogunleye A., Oni T., Jalo R. I., Tsiga-Ahmed F. I., Dalglish S. L., Abimbola S., Colbourn T., Onwujekwe O., Owoaje E. T., Abubakar I. (2022). Population health outcomes in Nigeria compared with other west African countries, 1998–2019: A systematic analysis for the global burden of disease study. Lancet, 399, 1117–1129. https://doi.org/10.1016/S0140-6736(21)02722-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0140-6736(21)02722-7</ArticleId></ArticleIdList></Reference><Reference><Citation>Armoon B., Fleury M. J., Bayat A. H., Bayani A., Mohammadi R., Griffiths M. D., Griffiths M. D. (2022). Quality of life and its correlated factors among patients with substance use disorders: A systematic review and meta-analysis. Archives of Public Health, 80(1), 179. https://doi.org/10.1186/s13690-022-00940-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13690-022-00940-0</ArticleId></ArticleIdList></Reference><Reference><Citation>Bashir M. A., Yahaya A. I., Muhammad M., Yusuf A. H., Mukhtur I. G. (2021). Prediabetes burden in Nigeria: A systematic review and meta-analysis. Frontiers in Public Health, 9, 762429. https://doi.org/10.3389/fpubh.2021.762429</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpubh.2021.762429</ArticleId></ArticleIdList></Reference><Reference><Citation>Berríos-Cárcamo P., Quezada M., Quintanilla M. E., Morales P., Ezquer M., Herrera-Marschitz M., Israel Y., Ezquer F. (2020). Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules. Antioxidants (Basel), 9(9), 830. https://doi.org/10.3390/antiox9090830</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/antiox9090830</ArticleId></ArticleIdList></Reference><Reference><Citation>Brooks L. K., Kalyanaraman N., Malek R. (2019). Diabetes care for patients experiencing homelessness: Beyond metformin and sulfonylureas. The American Journal of Medicine, 132(4), 408–412. https://doi.org/10.1016/j.amjmed.2018.10.033</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjmed.2018.10.033</ArticleId></ArticleIdList></Reference><Reference><Citation>Centers for Disease Control and Prevention. (2012–2023). Prevent T2 participant training guide. https://www.cdc.gov/diabetes/prevention/pdf/t2/T2-Participants-Combined.pdf</Citation></Reference><Reference><Citation>European Society of Cardiology. (2014). Finnish diabetes association risk chart: Type 2 diabetes risk assessment form. https://www.escardio.org/static-file/Escardio/Press-media/press-releases2014/diabetes-risk-chart-2014.pdf</Citation></Reference><Reference><Citation>Franklin H., Haines A. (2019). Global environmental change and noncommunicable disease risks. Annual Reviews of Public Health, 40, 261–282. https://www.annualreviews.org/doi/10.1146/annurev-publhealth-040218-043706</Citation><ArticleIdList><ArticleId IdType="doi">10.1146/annurev-publhealth-040218-043706</ArticleId></ArticleIdList></Reference><Reference><Citation>Galaviz K. I., Weber M. B., Straus A., Haw J. S., Narayan K. M. V., Alialaviz K. I., Weber M. B., Straus A., Haw J. S., Narayan K. M. V., Alialaviz K. I., Weber M. B., Straus M. A., Haw J. S., Narayan K. M. V., Ali M. K. (2018). Global diabetes prevention interventions: A systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care, 41(7), 1526–1534. https://doi.org/10.2337/dc17-2222</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc17-2222</ArticleId></ArticleIdList></Reference><Reference><Citation>Hodson D. Z., Estoundi Y. M., Parikh S., Boum Y. II (2023). Striving towards true equity in global health: A checklist for bilateral research partnerships. PLOS Global Public Health, 3(1), e0001418. https://doi.org/10.1371/journal.pgph.0001418</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pgph.0001418</ArticleId></ArticleIdList></Reference><Reference><Citation>Hulbert L. R., Michael S. L., Charter-Harris J., Atkins C., Skeete R. A., Cannon M. J. (2022). Effectiveness of incentives for improving diabetes-related health indicators in chronic disease lifestyle modification programs: A systematic review and meta-analysis. Preventing Chronic Disease, 19, 220151. https://doi.org/10.5888/pcd19.220151</Citation><ArticleIdList><ArticleId IdType="doi">10.5888/pcd19.220151</ArticleId></ArticleIdList></Reference><Reference><Citation>Intellectus Statistics. (2023). Intellectus Statistics [Online computer software]. https://analyze.intellectusstatistics.com/</Citation></Reference><Reference><Citation>International Diabetes Federation. (2022). IDF Diabetes Atlas 2022 reports: Diabetes around the world in 2021. https://diabetesatlas.org/#:~:text=537%20million%20adults%20(20%2D79,2021%20%2D%201%20every%205%20seconds</Citation></Reference><Reference><Citation>International Diabetes Federation. (2023). IDF Diabetes Atlas 10th edition 2021: Nigeria diabetes report 2000–2045 at a glance. https://diabetesatlas.org/data/en/country/145/ng.html</Citation></Reference><Reference><Citation>International Trade Administration. (2023). Nigeria—Country commercial guide: Healthcare. https://www.trade.gov/country-commercial-guides/nigeria-healthcare</Citation></Reference><Reference><Citation>Kilbourne A. M., Neumann M. S., Pincus H. A., Bauer M. S., Stall R. (2007). Implementing evidence-based interventions in health care: Application of the replicating effective programs framework. Implementation Science, 2, 42. https://doi.org/10.1186/1748-5908-2-42</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1748-5908-2-42</ArticleId></ArticleIdList></Reference><Reference><Citation>Lardier D. T., Coakley K. E., Holladay K. R., Amorim F. T., Zuhl M. N. (2021). Exercise as a useful intervention to reduce alcohol consumption and improve physical fitness in individuals with alcohol use disorder: A systematic review and meta-analysis. Frontiers in Psychology, 12, 675285. https://doi.org/10.3389/fpsyg.2021.675285</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fpsyg.2021.675285</ArticleId></ArticleIdList></Reference><Reference><Citation>Leal J., Ahrabian D., Davies M. J., Gray M. J., Khunti K., Yates T., Gray A. M. (2017). Cost-effectiveness of a pragmatic structured education intervention for the prevention of type 2 diabetes: Economic evaluation of data from the Let's Prevent Diabetes cluster-randomized controlled trial. BMJ Open, 7(1), e013592. https://doi.org/10.1136/bmjopen-2016-013592</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2016-013592</ArticleId></ArticleIdList></Reference><Reference><Citation>Li X. H., Yu F. F., Zhou Y. H., He J. (2016). Association between alcohol consumption and the risk of incident type 2 diabetes: A systematic review and dose-response meta-analysis. The American Journal of Clinical Nutrition, 103(3), 818–829. https://doi.org/10.3945/ajcn.115.114389</Citation><ArticleIdList><ArticleId IdType="doi">10.3945/ajcn.115.114389</ArticleId></ArticleIdList></Reference><Reference><Citation>Mercer T., Chang A. C., Fischer L., Gardner A., Kerubo I., Tran D. N., Laktabai J., Pataki S. (2019). Mitigating the burden of diabetes in sub-Saharan Africa through an integrated diagonal health systems approach. Diabetes, Metabolic Syndrome and Obesity, 12, 2261–2272. https://doi.org/10.2147/DMSO.S207427</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S207427</ArticleId></ArticleIdList></Reference><Reference><Citation>Mishu M. P., Uphoff E., Aslam F., Philip S., Wright J., Tirbhowan N., Ajjan R. A., Al Azdi Z., Stubbs B., Churchill R., Siddiqi N. (2021). Interventions for preventing type 2. Diabetes in adults with mental disorders in low- and middle-income countries. Cochrane Database of Systematic Reviews, 2, CD013281. https://doi.org/10.1002/14651858.CD013281.pub2</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/14651858.CD013281.pub2</ArticleId></ArticleIdList></Reference><Reference><Citation>National Institute of Diabetes and Digestive and Kidney Diseases. (2022). Diabetes prevention program. https://www.niddk.nih.gov/about-niddk/research-areas/diabetes/diabetes-prevention-program-dpp</Citation></Reference><Reference><Citation>Neamah H. H., Sebert-Kuhlmann A. K., Tabak R. G. (2016). Effectiveness of program modification strategies of the diabetes prevention program: A systematic review. The Diabetes Educator, 42(2), 153–165. https://doi.org/10.1177/0145721716630386</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/0145721716630386</ArticleId></ArticleIdList></Reference><Reference><Citation>Obembe T. A., Olajide A. T., Asuzu M. C. (2018). Managerial dynamics influencing doctor-nurse conflicts in two Nigerian hospitals. Journal of Family Med Prim Care, 7(4), 684–692. https://doi.org/10.4103/jfmpc.jfmpc_353_17</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/jfmpc.jfmpc_353_17</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogbera A. O., Ekpebegh C. (2014). Diabetes mellitus in Nigeria: The past, present and future. World Journal of Diabetes, 5(6), 905–911. https://doi.org/10.4239/wjd.v5.i6.905</Citation><ArticleIdList><ArticleId IdType="doi">10.4239/wjd.v5.i6.905</ArticleId></ArticleIdList></Reference><Reference><Citation>Ojo O., Wang X. H., Ojo O. O., Ibe J. (2018). The effects of substance abuse on blood glucose parameters in patients with diabetes: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 15(12), 2691. https://doi.org/10.3390/ijerph15122691</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph15122691</ArticleId></ArticleIdList></Reference><Reference><Citation>Olanrewaju T. O., Aderibigbe A., Popoola A. A., Braimoh K. T., Buhari M. O., Adedoyin O. T., Kuranga S. A., Biliaminu S. A., Chijioke A., Ajape A. A., Grobbee D. E., Blankestijn P. J., Klipstein-Grobusch K.; Ilorin Renal Study Group (2020). Prevalence of chronic kidney disease and risk factors in North-Central Nigeria: A population-based survey. BMC Nephrology, 21(1), 467. https://doi.org/10.1186/s12882-020-02126-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12882-020-02126-8</ArticleId></ArticleIdList></Reference><Reference><Citation>Peer N., Balakrishna Y., Durao S. (2020). Screening for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 5(5), CD005266. https://doi.org/10.1002/14651858.CD005266.pub2</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/14651858.CD005266.pub2</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramchand R., Ahluwalia S. C., Xenakis L., Apaydin E., Raaen L., Grimm G. (2017). A systematic review of peer-supported interventions for health promotion and disease prevention. Preventive Medicine, 101, 156–170. https://doi.org/10.1016/j.ypmed.2017.06.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ypmed.2017.06.008</ArticleId></ArticleIdList></Reference><Reference><Citation>Sagastum D., Siero I., Mertens E., Cottam J., Colizzi C., Penalvo J. L. (2022). The effectiveness of lifestyle interventions on type 2 diabetes and gestational diabetes incidence and cardio-metabolic outcomes: A systematic review and meta-analysis of evidence from low- and middle-income countries. eClinicalMedicine, 53, 101650. https://doi.org/10.1016/j.eclinm.2022.101650</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.eclinm.2022.101650</ArticleId></ArticleIdList></Reference><Reference><Citation>Shirvani T., Javadivala Z., Azimi S., Shagbaghi A., Fathifar Z., Bhalla H. D. R., Abdekhoda M., Nadrian H. (2021). Community-based educational interventions for prevention of type II diabetes: A global systematic review and meta-analysis. Systematic Reviews, 10, 81. https://doi.org/10.1186/s13643-021-01619-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13643-021-01619-3</ArticleId></ArticleIdList></Reference><Reference><Citation>Sigurdson S. A. (2022). Dairy journey in Africa: Why Nigeria. https://www.dairyglobal.net/world-of-dairy/country-focus/a-dairy-journey-in-africa-why-nigeria/</Citation></Reference><Reference><Citation>Sowunmi O., Bhakta D. (2022). Prevalence of prediabetes in an urban Nigerian population using the Finnish diabetes risk score. The North African Journal of Food and Nutrition Research, 6(14), 144–153. https://doi.org/10.51745/najfnr.6.14.144-153</Citation><ArticleIdList><ArticleId IdType="doi">10.51745/najfnr.6.14.144-153</ArticleId></ArticleIdList></Reference><Reference><Citation>Stanojlović M., Davidson L. (2021). Targeting the barriers in the substance use disorder continuum of care with peer recovery support. Substance Abuse, 15, 178221820976988. https://doi.org/10.1177/1178221820976988</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1178221820976988</ArticleId></ArticleIdList></Reference><Reference><Citation>Substance Abuse and Mental Health Services Administration (2013). Diabetes cares for clients in behavioral health treatment. SAMHSA Advisory, 12(1), 1–12. https://store.samhsa.gov/sites/default/files/d7/priv/sma13-4780.pdf</Citation></Reference><Reference><Citation>Substance Abuse and Mental Health Services Administration. (2023). Harm reduction: Harm reduction at SAMHSA. https://www.samhsa.gov/find-help/harm-reduction</Citation></Reference><Reference><Citation>Sustainable Development Report. (2023). Nigeria: Sustainable Development Goals [SDG] dashboards and trends. https://dashboards.sdgindex.org/profiles/nigeria</Citation></Reference><Reference><Citation>Tella E. E., Yunusa I., Hassan J. H., Chindo I. A., Oti V. B. (2021). Prevalence, contributing factors and management strategies (self-management education) of type 2 diabetes patients in Nigeria: A review. International Journal of Diabetes and Clinical Research, 8(3), 1–10. https://doi.org/10.23937/2377-3634/1410148</Citation><ArticleIdList><ArticleId IdType="doi">10.23937/2377-3634/1410148</ArticleId></ArticleIdList></Reference><Reference><Citation>United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf</Citation></Reference><Reference><Citation>United Nations Office on Drugs and Crime. (2018). World drug report: Drug and age drugs and associated issues among young people and older people: Executive summary. https://www.unodc.org/wdr2018/prelaunch/WDR18_Booklet_4_YOUTH.pdf</Citation></Reference><Reference><Citation>United Nations Office on Drugs and Crime. (2019). Drug use in Nigeria: Executive summary. https://www.unodc.org/documents/data-and-analysis/statistics/Drugs/Drug_use_Survey_Nigeria_2019_executive-summary.pdf</Citation></Reference><Reference><Citation>United Nations Office on Drugs and Crime. (2021). UNODC world drug report 2021: Pandemic effects ramp up drug risks, as youth underestimate cannabis dangers. https://www.unodc.org/nigeria/en/unodc-world-drug-report-2021_-pandemic-effects-ramp-up-drug-risks--as-youth-underestimate-cannabis-dangers.html</Citation></Reference><Reference><Citation>United Nations Office on Drugs and Crime. (2023). UNODC world drug report 2023 warns of converging crises as illicit drug markets continue to expand. https://www.unodc.org/unodc/en/press/releases/2023/June/unodc-world-drug-report-2023-warns-of-converging-crises-as-illicit-drug-markets-continue-to-expand.html</Citation></Reference><Reference><Citation>United States Department of Agriculture. (2018). Dietary guidelines for Americans 2015–2020. https://www.choosemyplate.gov/dietary-guidelines</Citation></Reference><Reference><Citation>Viola T. W., Orso R., Florian L. F., Garcia M. G., Gomes M. G. S., Mardini E. M., Niederauer J. P. O., Zaparte A., Grassi-Oliveira R. (2023). Effects of substance use disorder on oxidative and antioxidative stress markers: A systematic review and meta-analysis. Addiction Biology, 28(1), e13254. https://doi.org/10.1111/adb.13254</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/adb.13254</ArticleId></ArticleIdList></Reference><Reference><Citation>Whittington M. D., Goggin K., Tsolekile L., Puoane T., Fox A. T., Resnicow K., Fleming K. K., Smyth J. M., Materia F. T., Hurley E. A., Vitolins M. Z., Lambert E. V., Levitt N. S., Catley D. (2023). Cost-effectiveness of lifestyle Africa: An adaptation of the diabetes prevention programme for delivery by community health workers in urban South Africa. Global Health Action, 16(1), 2212952. https://doi.org/10.1080/16549716.2023.2212952</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/16549716.2023.2212952</ArticleId></ArticleIdList></Reference><Reference><Citation>Winhusen T., Theobald J., Kaelber D. C., Lewis D. (2019). Medical complications associated with substance use disorders in patients with type 2 diabetes and hypertension: Electronic health record findings. Addiction, 114(8), 1462–1470. https://doi.org/10.1111/add.14607</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/add.14607</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization. (2023). Diabetes: Key facts. https://www.who.int/news-room/fact-sheets/detail/diabetes</Citation></Reference><Reference><Citation>Wu L. T., Ghitza U. E., Zhu H., Spratt S., Swartz M., Mannelli P. (2018). Substance use disorders and medical comorbidities among high-need, high-risk patients with diabetes. Drug and Alcohol Dependence, 186, 86–93. https://doi.org/10.1016/j.drugalcdep.2018.01.008</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.drugalcdep.2018.01.008</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39621105</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>14</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>14</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1432-0428</ISSN><JournalIssue CitedMedium="Internet"><Volume>68</Volume><Issue>2</Issue><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Diabetologia</Title><ISOAbbreviation>Diabetologia</ISOAbbreviation></Journal><ArticleTitle>Evidence on the effectiveness and equity of population-based policies to reduce the burden of type 2 diabetes: a narrative review.</ArticleTitle><Pagination><StartPage>281</StartPage><EndPage>294</EndPage><MedlinePgn>281-294</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s00125-024-06330-1</ELocationID><Abstract><AbstractText>There is increasing evidence for the effectiveness of population-based policies to reduce the burden of type 2 diabetes. Yet, there are concerns about the equity effects of some policies, whereby socioeconomically disadvantaged populations are not reached or are adversely affected. There is a lack of knowledge on the effectiveness and equity of policies that are both population based (i.e. targeting both at-risk and low-risk populations) and low agency (i.e. not requiring personal resources to benefit from the policy). In this narrative review, we selected 16 policies that were both population based and low agency and reviewed the evidence on their effectiveness and equity. Substantial evidence suggests that fruit and vegetable subsidies, unhealthy food taxes, mass media campaigns, and school nutrition and physical activity education are effective in promoting healthier lifestyle behaviours. Less evidence was available for mandatory food reformulation, reduced portion sizes, marketing restrictions and restriction of availability and promotion of unhealthy products, although the available evidence suggested that these policies were effective in reducing unhealthy food choices. Effects could rarely be quantified across different studies due to substantial heterogeneity. There is an overall lack of evidence on equity effects of population-based policies, although available studies mostly concluded that the policies had favourable equity effects, with the exception of food-labelling policies. Each of the policies is likely to have a relatively modest effect on population-level diabetes risks, which emphasises the importance of combining different policy measures. Future research should consider the type of evidence needed to demonstrate the real-world effectiveness and equity of population-based diabetes prevention policies.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Mackenbach</LastName><ForeName>Joreintje D</ForeName><Initials>JD</Initials><Identifier Source="ORCID">0000-0002-2783-721X</Identifier><AffiliationInfo><Affiliation>Amsterdam UMC location Vrije Universiteit, Epidemiology and Data Science, Amsterdam, the Netherlands. j.mackenbach@amsterdamumc.nl.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Amsterdam Public Health Research Institute, Amsterdam, the Netherlands. j.mackenbach@amsterdamumc.nl.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Upstream Team, Amsterdam, the Netherlands. j.mackenbach@amsterdamumc.nl.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stuber</LastName><ForeName>Josine M</ForeName><Initials>JM</Initials><Identifier Source="ORCID">0000-0001-7825-018X</Identifier><AffiliationInfo><Affiliation>Amsterdam UMC location Vrije Universiteit, Epidemiology and Data Science, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Upstream Team, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beulens</LastName><ForeName>Joline W J</ForeName><Initials>JWJ</Initials><Identifier Source="ORCID">0000-0003-4521-9500</Identifier><AffiliationInfo><Affiliation>Amsterdam UMC location Vrije Universiteit, Epidemiology and Data Science, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Upstream Team, Amsterdam, the Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>024.004.017</GrantID><Agency>Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research</Agency><Country/></Grant><Grant><GrantID>874627</GrantID><Agency>Horizon 2020 Framework Programme</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Diabetologia</MedlineTA><NlmUniqueID>0006777</NlmUniqueID><ISSNLinking>0012-186X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006291" MajorTopicYN="N">Health Policy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015444" MajorTopicYN="N">Exercise</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006293" MajorTopicYN="N">Health Promotion</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Agency</Keyword><Keyword MajorTopicYN="N">Obesity</Keyword><Keyword MajorTopicYN="N">Population-level approaches</Keyword><Keyword MajorTopicYN="N">Prevention</Keyword><Keyword MajorTopicYN="N">Review</Keyword><Keyword MajorTopicYN="N">WHO Best Buys</Keyword></KeywordList><CoiStatement>Funding: This work is part of EXPOSOME-NL which is funded through the Gravitation programme of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organisation for Scientific Research (NWO grant number 024.004.017). This work is also part of the EXPANSE project which is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement number 874627. The funders were not involved in the design of the study; the collection, analysis, and interpretation of data; writing the report; and did not impose any restrictions regarding the publication of the report. Authors’ relationships and activities: The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work. Contribution statement: JDM and JWJB contributed to the conceptualisation of the article. All authors contributed to the formal analysis of findings. JDM and JMS wrote the original draft. All authors reviewed and edited the article and approved the final version to be published.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>14</Day><Hour>12</Hour><Minute>35</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>11</Hour><Minute>15</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39621105</ArticleId><ArticleId IdType="doi">10.1007/s00125-024-06330-1</ArticleId><ArticleId IdType="pii">10.1007/s00125-024-06330-1</ArticleId><ArticleId IdType="pmc">PMC11732888</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Haw JS, Galaviz KI, Straus AN et al (2017) Long-term sustainability of diabetes prevention approaches. JAMA Int Med 177(12):1808–1817. 10.1001/jamainternmed.2017.6040</Citation></Reference><Reference><Citation>Zhou X, Siegel KR, Ng BP et al (2020) Cost-effectiveness of diabetes prevention interventions targeting high-risk individuals and whole populations: a systematic review. Diabetes Care 43(7):1593–1616. 10.2337/dci20-0018</Citation><ArticleIdList><ArticleId IdType="pubmed">33534726</ArticleId></ArticleIdList></Reference><Reference><Citation>Rui L, Zhang P, Barker LE, Chowdhury FM, Zhang X (2010) Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review. Diabetes Care 33(8):1872–1894. 10.2337/dc10-0843</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2909081</ArticleId><ArticleId IdType="pubmed">20668156</ArticleId></ArticleIdList></Reference><Reference><Citation>Chinn DJ, White M, Howel D, Harland JOE, Drinkwater CK (2006) Factors associated with non-participation in a physical activity promotion trial. Public Health 120:309–319. 10.1016/j.puhe.2005.11.003</Citation><ArticleIdList><ArticleId IdType="pubmed">16473376</ArticleId></ArticleIdList></Reference><Reference><Citation>Magnée T, Burdorf A, Brug J et al (2013) Equity-specific effects of 26 Dutch obesity-related lifestyle interventions. Am J Public Health 44(6):e61–e70. 10.1016/j.amepre.2012.11.041</Citation></Reference><Reference><Citation>Roumen C, Feskens EJM, Corpeleijn E, Mensink M, Saris WHM, Blaak EE (2011) Predictors of lifestyle intervention outcome and dropout: the SLIM study. Eur J Clin Nutr 65(10):1141–1147. 10.1038/ejcn.2011.74</Citation><ArticleIdList><ArticleId IdType="pubmed">21587283</ArticleId></ArticleIdList></Reference><Reference><Citation>Gesche J, Renault K, Nørgaard K, Nilas L (2014) Representativeness of participants in a lifestyle intervention study in obese pregnant women - the difference between study participants and non-participants. Obesity Facts 7(6):351–360. 10.1159/000369769</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5644893</ArticleId><ArticleId IdType="pubmed">25428213</ArticleId></ArticleIdList></Reference><Reference><Citation>Roberts S, Barry E, Craig D, Airoldi M, Bevan G, Greenhalgh T (2017) Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open 7(11):e017184. 10.1136/bmjopen-2017-017184</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5695352</ArticleId><ArticleId IdType="pubmed">29146638</ArticleId></ArticleIdList></Reference><Reference><Citation>Roberts S, Craig D, Adler A, McPherson K, Greenhalgh T (2018) Economic evaluation of type 2 diabetes prevention programmes: Markov model of low- and high-intensity lifestyle programmes and metformin in participants with different categories of intermediate hyperglycaemia. BMC Med 16:16. 10.1186/s12916-017-0984-4</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5798197</ArticleId><ArticleId IdType="pubmed">29378576</ArticleId></ArticleIdList></Reference><Reference><Citation>Rose G (1985) Sick individuals and sick populations. Int J Epidemiol 14(1):32–38. 10.1093/ije/14.1.32</Citation><ArticleIdList><ArticleId IdType="pubmed">3872850</ArticleId></ArticleIdList></Reference><Reference><Citation>Roberts S, Pilard L, Chen J, Hirst J, Rutter H, Greenhalgh T (2019) Efficacy of population-wide diabetes and obesity prevention programs: an overview of systematic reviews on proximal, intermediate, and distal outcomes and a meta-analysis of impact on BMI. Obes Rev 20(7):947–963. 10.1111/obr.12821</Citation><ArticleIdList><ArticleId IdType="pubmed">31039603</ArticleId></ArticleIdList></Reference><Reference><Citation>White M (2016) Population approaches to prevention of type 2 diabetes. PloS Med 13(7):e1002080. 10.1371/journal.pmed.1002080</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4942121</ArticleId><ArticleId IdType="pubmed">27404268</ArticleId></ArticleIdList></Reference><Reference><Citation>Adams J, Mytton O, White M, Monsivais P (2016) Why are some population interventinos for diet and obesity more equitable and effective than others? The role of individual agency. PloS Med 13(4):e1001990. 10.1371/journal.pmed.1001990</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4821622</ArticleId><ArticleId IdType="pubmed">27046234</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization (2023) More ways, to save more lives, for less money: World Health Assembly adopts more best buys to tackle noncommunicable diseases. Available from: www.who.int/news/item/26-05-2023-more-ways--to-save-more-lives--for-less-money----world-health-assembly-adopts-more-best-buys--to-tackle-noncommunicable-diseases. Accessed: 4 June 2024</Citation></Reference><Reference><Citation>Garrott K, Ogilvie D, Panter J et al (2024) Development and application of the Demands for Population Health Interventions (Depth) framework for categorising the agentic demands of population health interventions. BMC Global Public Health 2:13. 10.1186/s44263-024-00043-8</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11622985</ArticleId><ArticleId IdType="pubmed">39681925</ArticleId></ArticleIdList></Reference><Reference><Citation>Yao J, Tan CS, Chen C, Tan J, Lim N, Müller-Riemenschneider F (2019) Bright spots, physical activity investments that work: National Steps Challenge, Singapore: a nationwide mHealth physical activity programme. Br J Sports Med 54(17):1047–1048. 10.1136/bjsports-2019-101662</Citation><ArticleIdList><ArticleId IdType="pubmed">31857340</ArticleId></ArticleIdList></Reference><Reference><Citation>Kohler S, Dippon L, Helsper N et al (2023) Population-based physical activity pomotion with a focus on health equity: a review of reviews. Int J Equity Health 22(1):18. 10.1186/s12939-023-01834-5</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9878967</ArticleId><ArticleId IdType="pubmed">36703145</ArticleId></ArticleIdList></Reference><Reference><Citation>Wolfenden L, Barnes C, Lane C et al (2021) Consolidating evidence on the effectiveness of interventions promoting fruit and vegetable consumption: an umbrella review. Int J Behav Nutr Phys Act 18(1):11. 10.1186/s12966-020-01046-y</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7798190</ArticleId><ArticleId IdType="pubmed">33430879</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas MM, Phongsavan P, McGill B, O’Hara BJ, Bauman AE (2018) A review of the impact of physical activity mass media campaigns on low compared to high socioeconomic groups. Health Educ Res 33(5):429–446. 10.1093/her/cyy032</Citation><ArticleIdList><ArticleId IdType="pubmed">30203025</ArticleId></ArticleIdList></Reference><Reference><Citation>Abu-Omar K, Rütten A, Burlacu I, Schätzlein V, Messing S, Suhrcke M (2017) The cost-effectiveness of physical activity interventions: a systematic review of reviews. Prev Med Rep 8:72–78. 10.1016/j.pmedr.2017.08.006</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5573782</ArticleId><ArticleId IdType="pubmed">28856084</ArticleId></ArticleIdList></Reference><Reference><Citation>Pinheiro MB, Howard K, Sherrington C et al (2022) Economic evaluation of physical activity mass media campaigns across the globe: a systematic review. Int J Behav Nutr Phys Act 19(1):107. 10.1186/s12966-022-01340-x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9419405</ArticleId><ArticleId IdType="pubmed">36028860</ArticleId></ArticleIdList></Reference><Reference><Citation>Gelius P, Messing S, Goodwin L, Schow D, Abu-Omar K (2020) What are effective policies for promoting physical activity? A systematic review of reviews. Prev Med Rep 18:101095. 10.1016/j.pmedr.2020.101095</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7182760</ArticleId><ArticleId IdType="pubmed">32346500</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin G, Werner K, Alqunaiebet A et al (2024) The cost-effectiveness of school-based interventions for chronic diseases: a systematic review. Cost Effectiveness Resource Allocation 22(1):26. 10.1186/s12962-024-00511-w</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11008027</ArticleId><ArticleId IdType="pubmed">38605333</ArticleId></ArticleIdList></Reference><Reference><Citation>Vaughan KL, Cade JE, Hetherington MM, Webster J, Evans CEL (2024) The impact of school-based cooking classes on vegetable intake, cooking skills and food literacy of children aged 4–12 years: a systematic review of the evidence 2001–2021. Appetite 195:107238. 10.1016/j.appet.2024.107238</Citation><ArticleIdList><ArticleId IdType="pubmed">38331100</ArticleId></ArticleIdList></Reference><Reference><Citation>Flores-Vázquez AS, Rodríguez-Rocha NP, Herrera-Echauri DD, Macedo-Ojeda G (2024) A systematic review of educational nutrition interventions based on behavioral theories in school adolescents. Appetite 192:107087. 10.1016/j.appet.2023.107087</Citation><ArticleIdList><ArticleId IdType="pubmed">37865297</ArticleId></ArticleIdList></Reference><Reference><Citation>Balderas-Arteaga N, Mendez K, Gonzalez-Rocha A, Pacheco-Miranda S, Bonvecchio A, Denova-Gutiérrez E (2024) Healthy lifestyle interventions within the curriculum in school-age children: systematic review and meta-analysis. Health Promot Int 39(2):daae020. 10.1093/heapro/daae020</Citation><ArticleIdList><ArticleId IdType="pubmed">38470184</ArticleId></ArticleIdList></Reference><Reference><Citation>Hirsch JA, DeVries DN, Brauer M, Frank LD, Winters M (2018) Impact of new rapid transit on physical activity: a meta-analysis. Prev Med Rep 10:184–190. 10.1016/j.pmedr.2018.03.008</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5984234</ArticleId><ArticleId IdType="pubmed">29868365</ArticleId></ArticleIdList></Reference><Reference><Citation>Kärmeniemi M, Lankila T, Ikäheimo T, Koivumaa-Honkanen H, Korpelainen R (2018) The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Ann Behav Med 52(3):239–251. 10.1093/abm/kax043</Citation><ArticleIdList><ArticleId IdType="pubmed">29538664</ArticleId></ArticleIdList></Reference><Reference><Citation>Panter J, Guell C, Humphreys D, Ogilvie D (2019) Can changing the physical environment promote walking and cycling? A systematic review of what works and how. Health Place 58:102161. 10.1016/j.healthplace.2019.102161</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6737987</ArticleId><ArticleId IdType="pubmed">31301599</ArticleId></ArticleIdList></Reference><Reference><Citation>Dehkordi ZSF, Khatami SM, Ranjbar E (2022) The associations between urban form and major non-communicable diseases: a systematic review. J Urban Health 99(5):941–958. 10.1007/s11524-022-00652-4</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9561495</ArticleId><ArticleId IdType="pubmed">35776285</ArticleId></ArticleIdList></Reference><Reference><Citation>Hunter RF, Cleland C, Cleary A et al (2019) Environmental, health, wellbeing, social and equity effects of urban green space interventions: a meta-narrative evidence synthesis. Environ Int 130:104923. 10.1016/j.envint.2019.104923</Citation><ArticleIdList><ArticleId IdType="pubmed">31228780</ArticleId></ArticleIdList></Reference><Reference><Citation>Amuda AT, Berkowitz SA (2019) Diabetes and the built environment: evidence and policies. Curr Diabetes Rep 19(7):35. 10.1007/s11892-019-1162-1</Citation></Reference><Reference><Citation>Zhang Y, Koene M, Reijneveld SA et al (2022) The impact of interventions in the built environment on physical activity levels: a systematic umbrella review. Int J Behav Nutr Phys Act 19(1):156. 10.1186/s12966-022-01399-6</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9773501</ArticleId><ArticleId IdType="pubmed">36550583</ArticleId></ArticleIdList></Reference><Reference><Citation>Jansson AK, Lubans DR, Smith JJ, Duncan MJ, Haslam R, Plotnikoff RC (2019) A systematic review of outdoor gym use: current evidence and future directions. J Sci Med Sports 22(12):1335–1343. 10.1016/j.jsams.2019.08.003</Citation></Reference><Reference><Citation>Lee JLC, Lo TLT, Ho RTH (2018) Understanding outdoor gyms in public open spaces: a systematic review and integrative synthesis of qualitative and quantitative evidence. Int J Environ Res Public Health 15(4):590. 10.3390/ijerph15040590</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5923632</ArticleId><ArticleId IdType="pubmed">29587402</ArticleId></ArticleIdList></Reference><Reference><Citation>Robinson E, Khuttan M, McFarland-Lesser I, Patel Z, Jones A (2022) Calorie reformulation: a systematic review and meta-analysis examining the effect of manipulating food energy density on daily energy intake. Int J Behav Nutr Phys Act 19(1):48. 10.1186/s12966-022-01287-z</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9026919</ArticleId><ArticleId IdType="pubmed">35459185</ArticleId></ArticleIdList></Reference><Reference><Citation>Hashem KM, He FJ, MacGregor GA (2019) Effects of product reformulation on sugar intake and health-a systematic review and meta-analysis. Nutr Rev 77(3):181–196. 10.1093/nutrit/nuy015</Citation><ArticleIdList><ArticleId IdType="pubmed">30624760</ArticleId></ArticleIdList></Reference><Reference><Citation>Federici C, Detzel P, Petracca F, Dainelli L, Fattore G (2019) The impact of food reformulation on nutrient intakes and health, a systematic review of modelling studies. BMC Nutr 5:2. 10.1186/s40795-018-0263-6</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7050744</ArticleId><ArticleId IdType="pubmed">32153917</ArticleId></ArticleIdList></Reference><Reference><Citation>Boyland E, McGale L, Maden M, Hounsome J, Boland A, Jones A (2022) Systematic review of the effect of policies to restrict the marketing of foods and non-alcoholic beverages to which children are exposed. Obes Rev 23(8):e13447. 10.1111/obr.13447</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9541016</ArticleId><ArticleId IdType="pubmed">35384238</ArticleId></ArticleIdList></Reference><Reference><Citation>Hollands GJ, Carter P, Anwer S et al (2019) Altering the availability or proximity of food, alcohol, and tobacco products to change their selection and consumption. Cochrane Database Syst Rev Issue 9, Art. no.: CD012573. 10.1002/14651858.CD012573.pub3</Citation></Reference><Reference><Citation>Robinson E, McFarland-Lesser I, Patel Z, Jones A (2023) Downsizing food: a systematic review and meta-analysis examining the effect of reducing served food portion sizes on daily energy intake and body weight. Br J Nutr 129(5):888–903. 10.1017/S0007114522000903</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9975786</ArticleId><ArticleId IdType="pubmed">35387692</ArticleId></ArticleIdList></Reference><Reference><Citation>Higgins KA, Hudson JL, Hayes AMR et al (2022) Systematic review and meta-analysis on the effect of portion size and ingestive frequency on energy intake and body weight among adults in randomized controlled feeding trials. Adv Nutr 13(1):248–268. 10.1093/advances/nmab112</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8803498</ArticleId><ArticleId IdType="pubmed">34687532</ArticleId></ArticleIdList></Reference><Reference><Citation>Maniadakis N, Kapaki V, Damianidi L, Kourlaba G (2013) A systematic review of the effectiveness of taxes on nonalcoholic beverages and high-in-fat foods as a means to prevent obesity trends. Clinicoecon Outcomes Res 5:519–543. 10.2147/CEOR.S49659</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3810203</ArticleId><ArticleId IdType="pubmed">24187507</ArticleId></ArticleIdList></Reference><Reference><Citation>Thow AM, Downs S, Jan S (2014) A systematic review of the effectiveness of food taxes and subsidies to improve diets: understanding the recent evidence. Nutr Rev 72(9):551–565. 10.1111/nure.12123</Citation><ArticleIdList><ArticleId IdType="pubmed">25091552</ArticleId></ArticleIdList></Reference><Reference><Citation>Niebylski ML, Redburn KA, Duhaney T, Campbell NR (2015) Healthy food subsidies and unhealthy food taxation: a systematic review of the evidence. Nutrition 31(6):787–795. 10.1016/j.nut.2014.12.010</Citation><ArticleIdList><ArticleId IdType="pubmed">25933484</ArticleId></ArticleIdList></Reference><Reference><Citation>Backholer K, Sarink D, Beauchamp A et al (2016) The impact of a tax on sugar-sweetened beverages according to socio-economic position: a systematic review of the evidence. Public Health Nutr 19(17):3070–3084. 10.1017/S136898001600104X</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10270974</ArticleId><ArticleId IdType="pubmed">27182835</ArticleId></ArticleIdList></Reference><Reference><Citation>Nakhimovsky SS, Feigl AB, Avila C, O’Sullivan G, MacGregor-Skinner E, Spranca M (2016) Taxes on sugar-sweetened beverages to reduce overweight and obesity in middle-income countries: a systematic review. Plos One 11(9):e0163358. 10.1371/journal.pone.0163358</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5036809</ArticleId><ArticleId IdType="pubmed">27669014</ArticleId></ArticleIdList></Reference><Reference><Citation>Itria A, Borges SS, Rinaldi AEM, Nucci LB, Enes CC (2021) Taxing sugar-sweetened beverages as a policy to reduce overweight and obesity in countries of different income classifications: a systematic review. Public Health Nutr 24(16):5550–5560. 10.1017/S1368980021002901</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10195460</ArticleId><ArticleId IdType="pubmed">34218837</ArticleId></ArticleIdList></Reference><Reference><Citation>Wright A, Smith KE, Hellowell M (2017) Policy lessons from health taxes: a systematic review of empirical studies. BMC Public Health 17(1):583. 10.1186/s12889-017-4497-z</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5477308</ArticleId><ArticleId IdType="pubmed">28629470</ArticleId></ArticleIdList></Reference><Reference><Citation>Mounsey S, Veerman L, Jan S, Thow AM (2020) The macroeconomic impacts of diet-related fiscal policy for NCD prevention: a systematic review. Econ Hum Biol 37:100854. 10.1016/j.ehb.2020.100854</Citation><ArticleIdList><ArticleId IdType="pubmed">32062400</ArticleId></ArticleIdList></Reference><Reference><Citation>Dodd R, Santos JA, Tan M et al (2020) Effectiveness and feasibility of taxing salt and foods high in sodium: a systematic review of the evidence. Adv Nutr 11(6):1616–1630. 10.1093/advances/nmaa067</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7666895</ArticleId><ArticleId IdType="pubmed">32561920</ArticleId></ArticleIdList></Reference><Reference><Citation>Andreyeva T, Marple K, Moore TE, Powell LM (2022) Evaluation of economic and health outcomes associated with food taxes and subsidies: a systematic review and meta-analysis. JAMA Netw Open 5(6):e2214371. 10.1001/jamanetworkopen.2022.14371</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9161015</ArticleId><ArticleId IdType="pubmed">35648401</ArticleId></ArticleIdList></Reference><Reference><Citation>Uthman OA, Court R, Anjorin S et al (2023) The potential impact of policies and structural interventions in reducing cardiovascular disease and mortality: a systematic review of simulation-based studies. Health Technol Assess 14:1–32. 10.3310/NMFG0214</Citation></Reference><Reference><Citation>Huangfu P, Pearson F, Abu-Hijleh FM et al (2024) Impact of price reductions, subsidies, or financial incentives on healthy food purchases and consumption: a systematic review and meta-analysis. Lancet Planet Health 8(3):e197–e212. 10.1016/S2542-5196(24)00004-4</Citation><ArticleIdList><ArticleId IdType="pubmed">38453385</ArticleId></ArticleIdList></Reference><Reference><Citation>Gittelsohn J, Trude ACB, Kim H (2017) Pricing strategies to encourage availability, purchase, and consumption of healthy foods and beverages: a systematic review. Prev Chronic Dis 14:E107. 10.5888/pcd14.170213</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5672888</ArticleId><ArticleId IdType="pubmed">29101767</ArticleId></ArticleIdList></Reference><Reference><Citation>Afshin A, Peñalvo JL, Del Gobbo L et al (2017) The prospective impact of food pricing on improving dietary consumption: a systematic review and meta-analysis. Plos One 12(3):e0172277. 10.1371/journal.pone.0172277</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5332034</ArticleId><ArticleId IdType="pubmed">28249003</ArticleId></ArticleIdList></Reference><Reference><Citation>Powell LM, Chriqui JF, Khan T, Wada R, Chaloupka FJ (2013) Assessing the potential effectiveness of food and beverage taxes and subsidies for improving public health: a systematic review of prices, demand and body weight outcomes. Obes Rev 14(2):110–128. 10.1111/obr.12002</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3556391</ArticleId><ArticleId IdType="pubmed">23174017</ArticleId></ArticleIdList></Reference><Reference><Citation>An R (2013) Effectiveness of subsidies in promoting healthy food purchases and consumption: a review of field experiments. Public Health Nutr 16(7):1215–1228. 10.1017/S1368980012004715</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3898771</ArticleId><ArticleId IdType="pubmed">23122423</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomson K, Hillier-Brown F, Todd A, McNamara C, Huijts T, Bambra C (2018) The effects of public health policies on health inequalities in high-income countries: an umbrella review. BMC Public Health 18(1):869. 10.1186/s12889-018-5677-1</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6044092</ArticleId><ArticleId IdType="pubmed">30005611</ArticleId></ArticleIdList></Reference><Reference><Citation>Olstad DL, Ancilotto R, Teychenne M et al (2017) Can targeted policies reduce obesity and improve obesity-related behaviours in socioeconomically disadvantaged populations? A systematic review. Obes Rev 18(7):791–807. 10.1111/obr.12546</Citation><ArticleIdList><ArticleId IdType="pubmed">28434185</ArticleId></ArticleIdList></Reference><Reference><Citation>Cornelsen L, Green R, Tuner R et al (2015) What happens to patterns of food consumption when food prices change? Evidence from a systematic review and meta-analysis of food price elasticities globally. Health Econ 24(12):1548–1559. 10.1002/hec.3107</Citation><ArticleIdList><ArticleId IdType="pubmed">25236930</ArticleId></ArticleIdList></Reference><Reference><Citation>Black AP, Brimblecombe J, Eyles H, Morris P, Vally H, O’Dea K (2012) Food subsidy programs and the health and nutritional status of disadvantaged families in high income countries: a systematic review. BMC Public Health 12:1099. 10.1186/1471-2458-12-1099</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3559269</ArticleId><ArticleId IdType="pubmed">23256601</ArticleId></ArticleIdList></Reference><Reference><Citation>Cecchini M, Warin L (2016) Impact of food labelling systems on food choices and eating behaviours: a systematic review and meta-analysis of randomized studies. Obes Rev 17(3):201–210. 10.1111/obr.12364</Citation><ArticleIdList><ArticleId IdType="pubmed">26693944</ArticleId></ArticleIdList></Reference><Reference><Citation>Song J, Brown MK, Tan M et al (2021) Impact of color-coded and warning nutrition labelling schemes: a systematic review and network meta-analysis. PloS Med 18(10):e1003765. 10.1371/journal.pmed.1003765</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8491916</ArticleId><ArticleId IdType="pubmed">34610024</ArticleId></ArticleIdList></Reference><Reference><Citation>Croker H, Packer J, Russell SJ, Stansfield C, Viner RM (2020) Front of pack nutritional labelling schemes: a systematic review and meta-analysis of recent evidence relating to objectively measured consumption and purchasing. J Hum Nutr Diet 33(4):518–537. 10.1111/jhn.12758</Citation><ArticleIdList><ArticleId IdType="pubmed">32364292</ArticleId></ArticleIdList></Reference><Reference><Citation>An R, Shi Y, Shen J et al (2021) Effect of front-of-package nutrition labeling on food purchases: a systematic review. Public Health 191:59–67. 10.1016/j.puhe.2020.06.035</Citation><ArticleIdList><ArticleId IdType="pubmed">33517247</ArticleId></ArticleIdList></Reference><Reference><Citation>Anastasiou K, Miller M, Dickinson K (2019) The relationship between food label use and dietary intake in adults: a systematic review. Appetite 138:280–291. 10.1016/j.appet.2019.03.025</Citation><ArticleIdList><ArticleId IdType="pubmed">31010704</ArticleId></ArticleIdList></Reference><Reference><Citation>Daley AJ, McGee E, Bayliss S, Coombe A, Parretti HM (2020) Effects of physical activity calorie equivalent food labelling to reduce food selection and consumption: systematic review and meta-analysis of randomised controlled studies. J Epidemiol Commun Health 74(3):269–275. 10.1136/jech-2019-213216</Citation></Reference><Reference><Citation>Shrestha A, Cullerton K, White KM, Mays J, Sendall M (2023) Impact of front-of-pack nutrition labelling in consumer understanding and use across socio-economic status: a systematic review. Appetite 187:106587. 10.1016/j.appet.2023.106587</Citation><ArticleIdList><ArticleId IdType="pubmed">37169260</ArticleId></ArticleIdList></Reference><Reference><Citation>Feteira-Santos R, Fernandes J, Virgolino A et al (2020) Effectiveness of interpretive front-of-pack nutritional labelling schemes on the promotion of healthier food choices: a systematic review. Int J Evid Based Healthc 18(1):24–37. 10.1097/XEB.0000000000000214</Citation><ArticleIdList><ArticleId IdType="pubmed">31895716</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown H, Xiang H, Albani V et al (2022) No new fast-food outlets allowed! Evaluating the effect of planning policy on the local food environment in the North East of England. Soc Sci Med 306:115126. 10.1016/j.socscimed.2022.115126</Citation><ArticleIdList><ArticleId IdType="pubmed">35724588</ArticleId></ArticleIdList></Reference><Reference><Citation>Brown H, Kirkman S, Albani V et al (2021) The impact of school exclusion zone planning guidance on the number and type of food outlets in an English local authority: a longitudinal analysis. Health Place 70:102600. 10.1016/j.healthplace.2021.102600</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8361782</ArticleId><ArticleId IdType="pubmed">34118573</ArticleId></ArticleIdList></Reference><Reference><Citation>Jilcott Pitts SB, Acheson MLM, Ward RK et al (2015) Disparities in healthy food zoning, farmers’ market availability, and fruit and vegetable consumption among North Carolina residents. Arch Public Health 73(1):35. 10.1186/s13690-015-0085-9</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4548560</ArticleId><ArticleId IdType="pubmed">26309736</ArticleId></ArticleIdList></Reference><Reference><Citation>Sturm R, Hattori A (2015) Diet and obesity in Los Angeles County 2007–2012: is there a measurable effect of the 2008 “Fast-Food Ban”? Soc Sci Med 133:205–211. 10.1016/j.socscimed.2015.03.004</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4410074</ArticleId><ArticleId IdType="pubmed">25779774</ArticleId></ArticleIdList></Reference><Reference><Citation>Chapman LE, Burstein S, Sadeghzadeh C, Sheppard B, De Marco M (2023) Evaluation of a healthy checkout lane “nudge” on grocery and convenience store sales of a price-promoted nutritious food. Health Promot Int 24(1):111–120. 10.1177/15248399211048463</Citation></Reference><Reference><Citation>Huitink M, Poelman MP, Seidell JC, Kuijper LDJ, Hoekstra T, Dijkstra C (2020) Can healthy checkout counters improve food purchases? Two real-life experiments in Dutch supermarkets. Int J Environ Res Public Health 17(22):8611. 10.3390/ijerph17228611</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7699573</ArticleId><ArticleId IdType="pubmed">33228189</ArticleId></ArticleIdList></Reference><Reference><Citation>Lam CCV, Ejlerskov KT, White M, Adams J (2018) Voluntary policies on checkout foods and healthfulness of foods displayed at, or near, supermarket checkout areas: a cross-sectional survey. Public Health Nutr 21(18):3462–3468. 10.1017/S1368980018002501</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6314468</ArticleId><ArticleId IdType="pubmed">30311598</ArticleId></ArticleIdList></Reference><Reference><Citation>Adjoian T, Dannefer R, Willingham C, Brathwaite C, Franklin S (2017) Healthy checkout lines: a study in urban supermarkets. J Nutr Educ Behav 49(8):615–622. 10.1016/j.jneb.2017.02.004</Citation><ArticleIdList><ArticleId IdType="pubmed">28889850</ArticleId></ArticleIdList></Reference><Reference><Citation>Winkler LL, Christensen U, Glümer C et al (2016) Substituting sugar confectionery with fruit and healthy snacks at checkout – a win-win strategy for consumers and food stores? A study on consumer attitudes and sales effects of a healthy supermarket intervention. BMC Public Health 16(1):1184. 10.1186/s12889-016-3849-4</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5120526</ArticleId><ArticleId IdType="pubmed">27876025</ArticleId></ArticleIdList></Reference><Reference><Citation>Falbe J, White JS, Sigala DM, Grummon AH, Solar SE, Powell LM (2021) The potential for healthy checkout policies to advance nutrition equity. Nutrients 13(11):4181. 10.3390/nu13114181</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8618319</ArticleId><ArticleId IdType="pubmed">34836436</ArticleId></ArticleIdList></Reference><Reference><Citation>Briggs ADM, Mytton OT, Kehlbacher A et al (2017) Health impact assessment of the UK soft drinks industry levy: a comparative risk assessment modelling study. Lancet Public Health 2(1):e15–e22. 10.1016/S2468-2667(16)30037-8</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5543265</ArticleId><ArticleId IdType="pubmed">28804786</ArticleId></ArticleIdList></Reference><Reference><Citation>Yeung CHC, Gohil P, Rangan AM et al (2017) Modelling of the impact of universal added sugar reduction through food reformulation. Sci Rep 7:17392. 10.1038/s41598-017-17417-8</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5727294</ArticleId><ArticleId IdType="pubmed">29234031</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma Y, He FJ, Yin Y, Hashem KM, MacGregor GA (2016) Gradual reduction of sugar in soft drinks without substitution as a strategy to reduce overweight, obesity, and type 2 diabetes: a modelling study. Lancet Diabetes Endocrinol 4(2):105–114. 10.1016/S2213-8587(15)00477-5</Citation><ArticleIdList><ArticleId IdType="pubmed">26777597</ArticleId></ArticleIdList></Reference><Reference><Citation>Hendriksen MA, Tijhuis MJ, Fransen HP, Verhagen H, Hoekstra J (2010) Impact of substituting added sugar in carbonated soft drinks by intense sweeteners in young adults in the Netherlands: example of a benefit–risk approach. Eur J Nutr 50:41–51. 10.1007/s00394-010-0113-z</Citation><ArticleIdList><ArticleId IdType="pubmed">20429009</ArticleId></ArticleIdList></Reference><Reference><Citation>Basu S, Lewis K (2014) Reducing added sugars in the food supply through a cap-and-trade approach. Am J Public Health 104(12):2432–2438. 10.2105/AJPH.2014.302170</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4232150</ArticleId><ArticleId IdType="pubmed">25365146</ArticleId></ArticleIdList></Reference><Reference><Citation>Mytton OL, Boyland E, Adams J et al (2020) The potential health impact of restricting less-healthy food and beverage advertising on UK television between 05.30 and 21.00 hours: a modelling study. PloS Med 17(10):e1003212. 10.1371/journal.pmed.1003212</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7553286</ArticleId><ArticleId IdType="pubmed">33048922</ArticleId></ArticleIdList></Reference><Reference><Citation>Pechey R, Hollands GJ, Marteau TM (2022) Explaining the effect on food selection of altering availability: two experimental studies on the role of relative preferences. BMC Public Health 22(1):868. 10.1186/s12889-022-13067-2</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9063226</ArticleId><ArticleId IdType="pubmed">35501746</ArticleId></ArticleIdList></Reference><Reference><Citation>Pechey R, Marteau TM (2018) Availability of healthier vs. less healthy food and food choice: an online experiment. BMC Public Health 18(1):1296. 10.1186/s12889-018-6112-3</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6264049</ArticleId><ArticleId IdType="pubmed">30486801</ArticleId></ArticleIdList></Reference><Reference><Citation>Sy S, Peñalvo J, Abrahams-Gessel S et al (2016) Abstract P280: changes in food prices improved cardiovascular disease (CVD) outcomes. Circulation 133(suppl_1): AP280 (Abstract). 10.1161/circ.133.suppl_1.p280</Citation></Reference><Reference><Citation>Choi SE, Seligman H, Basu S (2017) Cost effectiveness of subsidizing fruit and vegetable purchases through the supplemental nutrition assistance program. Am J Prev Med 52:e147–e155. 10.1016/j.amepre.2016.12.013</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5401647</ArticleId><ArticleId IdType="pubmed">28153648</ArticleId></ArticleIdList></Reference><Reference><Citation>Huse O, Ananthapavan J, Sacks G et al (2020) The potential cost-effectiveness of mandatory restrictions on price promotions for sugar-sweetened beverages in Australia. Int J Obes 44(5):1011–1020. 10.1038/s41366-019-0495-9</Citation></Reference><Reference><Citation>Synek S, Koenigstorfer J (2019) Health effects from bicycle commuting to work: insights from participants of the German company-bicycle leasing program. J Transp Health 15:100619. 10.1016/j.jth.2019.100619</Citation></Reference><Reference><Citation>Ma X, Yuan Y, Van Oort N, Hoogendoorn S (2020) Bike-sharing systems’ impact on modal shift: a case study in Delft, the Netherlands. J Clean Prod 259:120846. 10.1016/j.jclepro.2020.120846</Citation></Reference><Reference><Citation>Ogilvie F, Goodman A (2012) Inequalities in usage of a public bicycle sharing scheme: socio-demographic predictors of uptake and usage of the London (UK) cycle hire scheme. Prev Med 55(1):40–45. 10.1016/j.ypmed.2012.05.002</Citation><ArticleIdList><ArticleId IdType="pubmed">22588228</ArticleId></ArticleIdList></Reference><Reference><Citation>Goodman A, Cheshire J (2014) Inequalities in the London bicycle sharing system revisited: impacts of extending the scheme to poorer areas but then doubling prices. J Transp Geogr 41:272–279. 10.1016/j.jtrangeo.2014.04.004</Citation></Reference><Reference><Citation>Böcker L, Anderson E (2020) Interest-adoption discrepancies, mechanisms of mediation and socio-spatial inclusiveness in bike-sharing: the case of nine urban regions in Norway. Transp Res Part A 140:266–277. 10.1016/j.tra.2020.08.020</Citation></Reference><Reference><Citation>Duran-Rodas D, Villeneuve D, Pereira FC, Wulfhorst G (2020) How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment. Transp Res Part A 140:299–319. 10.1016/j.tra.2020.08.007</Citation></Reference><Reference><Citation>Dalton AM, Jones AP, Panter JR, Ogilvie D (2013) Neighbourhood, route and workplace-related environmental characteristics predict adults’ mode of travel to work. Plos One 8(6):e67575. 10.1371/journal.pone.0067575</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3686740</ArticleId><ArticleId IdType="pubmed">23840743</ArticleId></ArticleIdList></Reference><Reference><Citation>Knott CS, Sharp SJ, Mytton OT, Ogilvie D, Panter J (2019) Changes in workplace car parking and commute mode: a natural experimental study. J Epidemiol Commun Health 73(1):42–49. 10.1136/jech-2018-210983</Citation></Reference><Reference><Citation>Tangari AH, Bui M, Haws KL, Liu PJ (2019) That’s not so bad, I’ll eat more! Backfiring effects of calories-per-serving informatie on snack consumption. J Mark 83(1):133–150. 10.1177/0022242918815895</Citation></Reference><Reference><Citation>Zandstra EH, Willems AA, Lion R (2018) Making salt-reduced products more appealing to consumers: impact of front-of-pack messages on liking and table salt use over time. Public Health Nutr 21(15):2762–2772. 10.1017/S1368980018001714</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10260815</ArticleId><ArticleId IdType="pubmed">30064528</ArticleId></ArticleIdList></Reference><Reference><Citation>Colchero MA, Molina M, Guerrero-López CM (2017) After Mexico implemented a tax, purchases of sugar-sweetened beverages decreased and water increased: difference by place of residence, household composition, and income level. J Nutr 147(8):1552–1557. 10.3945/jn.117.251892</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5525113</ArticleId><ArticleId IdType="pubmed">28615377</ArticleId></ArticleIdList></Reference><Reference><Citation>Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world? Behav Brain Sci 33(2–3):61–83. 10.1017/S0140525X0999152X</Citation><ArticleIdList><ArticleId IdType="pubmed">20550733</ArticleId></ArticleIdList></Reference><Reference><Citation>Gruss SM, Nhim K, Gregg E, Bell M, Luman E, Albright A (2019) Public health approaches to type 2 diabetes prevention: the US National Diabetes Prevention Program and beyond. Curr Diabetes Rep 19(9):78. 10.1007/s11892-019-1200-z</Citation></Reference><Reference><Citation>Wareham NJ (2015) Mind the gap: efficacy versus effectiveness of lifestyle interventions to prevent diabetes. Lancet Diabetes Endocrinol 3(3):160–161. 10.1016/S2213-8587(15)70015-X</Citation><ArticleIdList><ArticleId IdType="pubmed">25652128</ArticleId></ArticleIdList></Reference><Reference><Citation>Valabhji J (2024) Bridging the worlds of research and policy making. Lancet Diabetes Endocrinol 12(4):229–230. 10.1016/S2213-8587(24)00067-6</Citation><ArticleIdList><ArticleId IdType="pubmed">38514240</ArticleId></ArticleIdList></Reference><Reference><Citation>de Vocht F, Katikireddi SV, McQuire C, Tilling K, Hickman M, Craig P (2021) Conceptualising natural and quasi experiments in public health. BMC Med Res Methodol 21:32. 10.1186/s12874-021-01224-x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7879679</ArticleId><ArticleId IdType="pubmed">33573595</ArticleId></ArticleIdList></Reference><Reference><Citation>Craig P, Katikireddi SV, Leyland A, Popham F (2017) Natural experiments: an overview of methods, approaches, and contributions to public health intervention research. Annu Rev Public Health 38:39–56. 10.1146/annurev-publhealth-031816-044327</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6485604</ArticleId><ArticleId IdType="pubmed">28125392</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernán MA, Wang W, Leaf DE (2022) Target trial emulation. A framework for causal inference from observational data. JAMA 328(24):2446–2447. 10.1001/jama.2022.21383</Citation><ArticleIdList><ArticleId IdType="pubmed">36508210</ArticleId></ArticleIdList></Reference><Reference><Citation>Lawlor DA, Tilling K, Smith GD (2017) Triangulation in aetiological epidemiology. Int J Epidemiol 45(6):1866–1886. 10.1093/ije/dyw314</Citation></Reference><Reference><Citation>Hammerton G, Munafò MR (2021) Causal inference with observational data: the need for triangulation of evidence. Psychol Med 51:563–578. 10.1017/S0033291720005127</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8020490</ArticleId><ArticleId IdType="pubmed">33682654</ArticleId></ArticleIdList></Reference><Reference><Citation>Soares-Weiser K, Lasserson T, Jorgensen KJ et al (2020) Policy makers must act on incomplete evidence in responding to COVID‐19. Cochrane Database Syst Rev, Issue 11, Art. no.: ED000149. 10.1002/14651858.ED000149</Citation></Reference><Reference><Citation>Zulman DM, Vijan S, Omenn GS, Hayward RA (2008) The relative merits of population-based and targeted prevention strategies. Milbank Q 86(4):557–580. 10.1111/j.1468-0009.2008.00534.x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2690369</ArticleId><ArticleId IdType="pubmed">19120980</ArticleId></ArticleIdList></Reference><Reference><Citation>Cairney P, Oliver K (2017) Evidence-based policymaking is not like evidence-based medicine, so how far should you go to bridge the divide between evidence and policy? Health Res Policy Syst 15:35. 10.1186/s12961-017-0192-x</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5407004</ArticleId><ArticleId IdType="pubmed">28446185</ArticleId></ArticleIdList></Reference><Reference><Citation>Kingdon JW (1984) Agendas, alternatives and public policies. Little Brown & Co, Boston, MA</Citation></Reference><Reference><Citation>Baumgartner FR, Jones BD, Mortensen PB (2018) Punctuated-equilibrium theory: explaining stability and change in public policymaking. In: Weible CM, Sabatier PA (eds) Theories of the policy process, 4th edn. Routledge, New York, NY, pp 155–187. 10.4324/9780429494284-3</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39620343</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1670-4959</ISSN><JournalIssue CitedMedium="Internet"><Volume>110</Volume><Issue>12</Issue><PubDate><Year>2024</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Laeknabladid</Title><ISOAbbreviation>Laeknabladid</ISOAbbreviation></Journal><ArticleTitle>[SGLT2 inhibitors - A novel treatment for congestive heart failure and chronic kidney disease].</ArticleTitle><Pagination><StartPage>558</StartPage><EndPage>563</EndPage><MedlinePgn>558-563</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.17992/lbl.2024.12.817</ELocationID><Abstract><AbstractText>SGLT2 inhibitors increase renal excretion of sodium and glucose by blocking the SGLT2 transporters in the proximal tubule. Not only do they lower blood sugars levels but also have positive effects on blood pressure and weight. They lead to more efficient energy metabolism in the heart and kidneys, increase the production of red blood cells and decrease fibrosis and inflammation in the heart and the kidneys. Large double blind randomized trials have shown both cardiac and renal protective effects. Patient with heart failure, both with reduced and preserved ejection fraction have shown to benefit from treatment with SGLT2 inhibitors. They have lower risk of death due to cardiovascular causes and decreased risk of hospitalization because of heart failure compared to patient treated with placebo both with and without diabetes type 2. SGLT2 inhibitors are shown to decrease risk of chronic kidney disease stage 5 and dialysis, death due of cardiovascular events and doubling of serum creatinine in patients with chronic kidney disease both with and without diabetes type 2. They are now recommended for treatment of heart failure and chronic kidney disease with the highest evidence grade. SGLT2 inhibitors do not increase risk of hypoglycemia or acute kidney injury but do have a serious uncommon adverse effect that are normoglycemic ketoacidosis and Fournier's gangrene that physicians need to be alert to.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Eliasdottir</LastName><ForeName>Sigridur Birna</ForeName><Initials>SB</Initials><AffiliationInfo><Affiliation>MD, MS. Sahlgrenska University Hospital, Gothenburg, Sweden.</Affiliation></AffiliationInfo></Author></AuthorList><Language>ice</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType><PublicationType UI="D004740">English Abstract</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Iceland</Country><MedlineTA>Laeknabladid</MedlineTA><NlmUniqueID>7901326</NlmUniqueID><ISSNLinking>0023-7213</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Chronic kidney disease</Keyword><Keyword MajorTopicYN="N">Congestive heart failur</Keyword><Keyword MajorTopicYN="N">Diabetes type 2</Keyword><Keyword MajorTopicYN="N">Mechanism</Keyword><Keyword MajorTopicYN="N">SGLT2 inhbitors</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>34</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39620343</ArticleId><ArticleId IdType="doi">10.17992/lbl.2024.12.817</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39620193</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>18</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2308-118X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>2</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Journal of the ASEAN Federation of Endocrine Societies</Title><ISOAbbreviation>J ASEAN Fed Endocr Soc</ISOAbbreviation></Journal><ArticleTitle>Initiating or Switching to Insulin Degludec/Insulin Aspart in Adults With Type 2 Diabetes in the Philippines: Results from a Prospective, Non-interventional, Real-World Study.</ArticleTitle><Pagination><StartPage>61</StartPage><EndPage>69</EndPage><MedlinePgn>61-69</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.15605/jafes.039.02.02</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">Blood glucose levels of the majority of Filipino patients with type 2 diabetes (T2D) remain uncontrolled. Insulin degludec/insulin aspart (IDegAsp) is a fixed-ratio co-formulation of the long-acting basal insulin degludec and the rapidacting prandial insulin aspart. The real-world ARISE (A Ryzodeg<sup>®</sup> Initiation and Switch Effectiveness) study investigated clinical outcomes across six countries in people with T2D who initiated IDegAsp. This publication presents the clinical outcomes of the Filipino cohort from a subgroup analysis of the ARISE study.</AbstractText><AbstractText Label="METHODOLOGY" NlmCategory="UNASSIGNED">This 26-week, open-label, non-interventional study examined outcomes in adults with T2D initiating or switching to IDegAsp (N=185) from other antidiabetic treatments per local clinical guidance.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">Compared with the baseline, there was a significant improvement in glycated hemoglobin at the end of the study (EOS) (estimated difference [ED] -1.4% [95% confidence interval -1.7, -1.1]; <i>P</i> <0.0001). Fasting plasma glucose (ED -46.1 mg/dL [-58.2, -34.0]; <i>P</i> <0.0001) and body weight (ED -1.0 kg [-2.0, -0.1]; <i>P</i> = 0.028) were significantly reduced at EOS compared with baseline. IDegAsp was associated with a decrease in the incidence of self-reported healthcare resource utilization. Adverse events were reported in eight (4.3%) participants.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Initiating or switching to IDegAsp was associated with improved glycemic control, lower body weight, and lower HRU for people with T2D in the Philippines. No new, unexpected AEs were reported.</AbstractText><CopyrightInformation>© 2024 Journal of the ASEAN Federation of Endocrine Societies.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Nicodemus</LastName><ForeName>Nemencio</ForeName><Initials>N</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Manila Doctors Hospital, Manila, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ang-Golangco</LastName><ForeName>Nerissa</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Makati Medical Center, Makati, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aquitania</LastName><ForeName>Grace</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Davao Doctors Hospital, Davao, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ardeña</LastName><ForeName>Gregory Joseph Ryan</ForeName><Initials>GJR</Initials><AffiliationInfo><Affiliation>Panay Health Care Multi-Purpose Cooperative Hospital, Kalibo, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dampil</LastName><ForeName>Oliver Allan</ForeName><Initials>OA</Initials><AffiliationInfo><Affiliation>Providence Hospital, Quezon City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fernando</LastName><ForeName>Richard Elwyn</ForeName><Initials>RE</Initials><AffiliationInfo><Affiliation>Saint Luke's Medical Center, Quezon City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Flor</LastName><ForeName>Nicole-Therese</ForeName><Initials>NT</Initials><AffiliationInfo><Affiliation>Novo Nordisk Philippines, Taguig City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kho</LastName><ForeName>Sjoberg</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>University of Santo Tomas Hospital, Manila, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mirasol</LastName><ForeName>Roberto</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Manila Doctors Hospital, Manila, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Panelo</LastName><ForeName>Araceli</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>University of the East Ramon Magsaysay Memorial Medical Center, Quezon City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pasaporte</LastName><ForeName>Francis</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Fancom Medical Plaza and Diagnostics, Iloilo City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Puno-Rocamora</LastName><ForeName>Mercerose</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Novo Nordisk Philippines, Taguig City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shoeb</LastName><ForeName>Ahsan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Novo Nordisk Philippines, Taguig City, Philippines.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tolentino</LastName><ForeName>Marsha</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Perpetual Succour Hospital, Cebu, Philippines.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016448">Multicenter Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>08</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>Philippines</Country><MedlineTA>J ASEAN Fed Endocr Soc</MedlineTA><NlmUniqueID>8608483</NlmUniqueID><ISSNLinking>0857-1074</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D049528">Insulin, Long-Acting</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C578220">insulin degludec, insulin aspart drug combination</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C517652">hemoglobin A1c protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010679" MajorTopicYN="N" Type="Geographic">Philippines</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D049528" MajorTopicYN="Y">Insulin, Long-Acting</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004338" MajorTopicYN="Y">Drug Combinations</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="Y">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D057915" MajorTopicYN="N">Drug Substitution</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">insulin aspart drug combination;</Keyword><Keyword MajorTopicYN="N">insulin aspart;</Keyword><Keyword MajorTopicYN="N">insulin degludec</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>Nicole-Therese Flor, Mercerose Puno-Rocamora, and Ahsan Shoeb are employees of Novo Nordisk Philippines, Taguig City, Philippines and hold stocks in Novo Nordisk.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>8</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2023</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39620193</ArticleId><ArticleId IdType="pmc">PMC11604473</ArticleId><ArticleId IdType="doi">10.15605/jafes.039.02.02</ArticleId><ArticleId IdType="pii">JAFES-39-2-61</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes – Global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11. PMID: 32175717 PMCID: DOI: 10.2991/jegh.k.191028.001</Citation><ArticleIdList><ArticleId IdType="doi">10.2991/jegh.k.191028.001</ArticleId><ArticleId IdType="pmc">PMC7310804</ArticleId><ArticleId IdType="pubmed">32175717</ArticleId></ArticleIdList></Reference><Reference><Citation>International Diabetes Federation . Diabetes Atlas, 10th ed. https://diabetesatlas.org/. Accessed December 2, 2022.</Citation></Reference><Reference><Citation>Republic of the Philippines National Nutrition Council . The obesity epidemic. Accessed December 2, 2022.</Citation></Reference><Reference><Citation>Ma RC, Chan JC. Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281(1):64–91. PMID: 23551121 PMCID: DOI: 10.1111/nyas.12098.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/nyas.12098</ArticleId><ArticleId IdType="pmc">PMC3708105</ArticleId><ArticleId IdType="pubmed">23551121</ArticleId></ArticleIdList></Reference><Reference><Citation>Paz-Pacheco E, Jimeno C. Diabetes care in the Philippines. J ASEAN Fed Endocr Soc. 2015;30(2):118. DOI: 10.15605/jafes.030.02.17.</Citation><ArticleIdList><ArticleId IdType="doi">10.15605/jafes.030.02.17</ArticleId></ArticleIdList></Reference><Reference><Citation>Fojas MC, Lantion-Ang FL, Jimeno CA, et al. . Complications and cardiovascular risk factors among newly-diagnosed type 2 diabetics in Manila. Philipp J Int Med. 2009:47(3);99–105. https://drive.google.com/file/d/1KzdeGegJwEn-lPx7-U0tZMAbTKoFZL_P/view.</Citation></Reference><Reference><Citation>Shah A, Kanaya AM. Diabetes and associated complications in the South Asian population. Curr Cardiol Rep. 2014;16:476. PMID: 24643902 PMCID: DOI: 10.1007/s11886-014-0476-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11886-014-0476-5</ArticleId><ArticleId IdType="pmc">PMC4026332</ArticleId><ArticleId IdType="pubmed">24643902</ArticleId></ArticleIdList></Reference><Reference><Citation>Tan GH. Diabetes care in the Philippines. Ann Glob Health. 2015;81(6):863–869. PMID: 27108153 DOI: 10.1016/j.aogh.2015.10.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.aogh.2015.10.004</ArticleId><ArticleId IdType="pubmed">27108153</ArticleId></ArticleIdList></Reference><Reference><Citation>Jimeno C, Sobrepena LM, Mirasol RC. DiabCare 2008: Survey on glycaemic control and the status of diabetes care and complications among patients with type 2 diabetes mellitus in the Philippines. Philipp J Int Med. 2012;50(1):15–22.</Citation></Reference><Reference><Citation>Jimeno C, Sy RA, De la Pena P, et al. . Direct medical costs of type 2 diabetes mellitus in the Philippines: Findings from two hospital databases and physician surveys. BMJ Open. 2021;11:e049737. PMID: 34635519 PMCID: DOI: 10.1136/bmjopen-2021-049737.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmjopen-2021-049737</ArticleId><ArticleId IdType="pmc">PMC8506878</ArticleId><ArticleId IdType="pubmed">34635519</ArticleId></ArticleIdList></Reference><Reference><Citation>Eala MAB, Besa JJ, Mag-Usara RCQ, Arcellana AES, Jimeno CA. Access to insulin and diabetes care in the Philippines. Lancet Diabetes Endocrinol. 2022;10(1):16. PMID: 34826392 DOI:10.1016/S2213-8587(21)00309-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(21)00309-0</ArticleId><ArticleId IdType="pubmed">34826392</ArticleId></ArticleIdList></Reference><Reference><Citation>Republic of the Philippines Department of Health . What is insulin access program? -https://www.doh.gov.ph/faqs/What-is-Insulin-Access-Program. Accessed December 2, 2022.</Citation></Reference><Reference><Citation>Republic of the Philippines Department of Health . [Department Circular No 2022–0537] Health Technology Assessment Council (HTAC) Recommendation for the inclusion of insulin glargine and non inclusion of insulin determir for patients with type 1 or type 2 diabetes mellitus in the Philippine National Formulary (PNF). 2022. https://hta.dost.gov.ph/department-circular-no-2022-0537-health-technology-assessment-council-htac-recommendation-for-the-inclusion-of-insulin-glargine-and-non-inclusion-of-insulin-detemir-for-patients-with-type-1-or/. Accessed December 2, 2022.</Citation></Reference><Reference><Citation>Republic of the Philippines Department of Health . The Philippine National Formulary. https://pharma.doh.gov.ph/the-philippine-national-formulary/. Accessed January 10, 2023.</Citation></Reference><Reference><Citation>Lambojon K, Chang J, Saeed A, et al. . Prices, availability and affordability of medicines with value-added tax exemption: A crosssectional survey in the Philippines. Int J Environ Res Public Health. 2020;17(14):5242. PMID: 32708060 PMCID: DOI: 10.3390/ijerph17145242.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/ijerph17145242</ArticleId><ArticleId IdType="pmc">PMC7400398</ArticleId><ArticleId IdType="pubmed">32708060</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryzodeg® -Summary of product characteristics; 2017. https://www.ema.europa.eu/en/documents/product-information/ryzodeg-epar-product-information_en.pdf. Accessed December 2, 2022.</Citation></Reference><Reference><Citation>Franek E, Haluzík M, Canecki Varžić S, et al. . Twice-daily insulin degludec/insulin aspart provides superior fasting plasma glucose control and a reduced rate of hypoglycaemia compared with biphasic insulin aspart 30 in insulin-naïve adults with type 2 diabetes. Diabet Med. 2016;33(4):497–505. PMID: 26435365 PMCID: DOI: 10.1111/dme.12982.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dme.12982</ArticleId><ArticleId IdType="pmc">PMC5063147</ArticleId><ArticleId IdType="pubmed">26435365</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaneko S, Chow F, Choi DS, et al. . Insulin degludec/insulin aspart versus biphasic insulin aspart 30 in Asian patients with type 2 diabetes inadequately controlled on basal or pre-/self-mixed insulin: A 26-week, randomised, treat-to-target trial. Diabetes Res Clin Pract. 2015;107(1):139–47. PMID: 25498130 DOI: 10.1016/j.diabres.2014.09.026.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2014.09.026</ArticleId><ArticleId IdType="pubmed">25498130</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodbard HW, Cariou B, Pieber TR, Endahl LA, Zacho J, Cooper JG. Treatment intensification with an insulin degludec (IDeg)/insulin aspart (IAsp) co-formulation twice daily compared with basal IDeg and prandial IAsp in type 2 diabetes: A randomized, controlled phase III trial. Diabetes Obes Metab. 2016;18(3):274–80. PMID: 26592732 PMCID: DOI: 10.1111/dom.12609.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.12609</ArticleId><ArticleId IdType="pmc">PMC5066701</ArticleId><ArticleId IdType="pubmed">26592732</ArticleId></ArticleIdList></Reference><Reference><Citation>Onishi Y, Ono Y, Rab0l R, Endahl L, Nakamura S. Superior glycaemic control with once-daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: A randomized, controlled phase 3 trial. Diabetes Obes Metab. 2013;15(9):826–32. PMID: 23557077 DOI: 10.1111/dom.12097.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.12097</ArticleId><ArticleId IdType="pubmed">23557077</ArticleId></ArticleIdList></Reference><Reference><Citation>Shigiyama F, Liu L, Nordahl H, Suzuki R, Yamamoto Y, Hirose T. A real-world, prospective, non-interventional study of adults with T2D switching to IDegAsp from glargine U100 or U300 in Japan. Diabetes Ther. 2021;12(9):2405–21. PMID: 34304385 PMCID: DOI: 10.1007/s13300-021-01117-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s13300-021-01117-8</ArticleId><ArticleId IdType="pmc">PMC8385001</ArticleId><ArticleId IdType="pubmed">34304385</ArticleId></ArticleIdList></Reference><Reference><Citation>Özçelik S, Çelik M, Vural A, Aydin B, Özçelik M, Gozu H. Outcomes of transition from premixed and intensive insulin therapies to insulin aspart/degludec co-formulation in type 2 diabetes mellitus: a real-world experience. Arch Med Sci. 2021;17(1):1–8. PMID: 33488849 PMCID: DOI: 10.5114/aoms.2020.93264.</Citation><ArticleIdList><ArticleId IdType="doi">10.5114/aoms.2020.93264</ArticleId><ArticleId IdType="pmc">PMC7811302</ArticleId><ArticleId IdType="pubmed">33488849</ArticleId></ArticleIdList></Reference><Reference><Citation>Fulcher GR, Akhtar S, Al-Jaser SJ, et al. . Initiating or switching to insulin degludec/insulin aspart in adults with type 2 diabetes: A realworld, prospective, non-interventional study across six countries. Adv Ther. 2022;39(8):3735–48. PMID: 3575273 PMCID: DOI: 10.1007/s12325-022-02212-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12325-022-02212-3</ArticleId><ArticleId IdType="pmc">PMC9244059</ArticleId><ArticleId IdType="pubmed">35752730</ArticleId></ArticleIdList></Reference><Reference><Citation>Fulcher GR, Jarlov H, Piltoft JS, et al. . ARISE—a prospective, non-interventional, single-arm study assessing clinical parameters associated with the use of insulin degludec/insulin aspart in patients with type 2 diabetes in real-world settings: Rationale and design. Endocrine. 2021;74(3):530–7. PMID: 34637072 PMCID: DOI: 10.1007/s12020-021-02887-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12020-021-02887-8</ArticleId><ArticleId IdType="pmc">PMC8506473</ArticleId><ArticleId IdType="pubmed">34637072</ArticleId></ArticleIdList></Reference><Reference><Citation>ClinicalTrials.gov . Identifier NCT04042441. A research study, looking at how Ryzodeg® (insulin degludec/insulin aspart) works in people with type 2 diabetes in local clinical practice (ARISE). https://clinicaltrials.gov/ct2/show/NCT04042441. Accessed 10 December 2022.</Citation></Reference><Reference><Citation>Alvarenga MA, Komatsu WR, de Sa JR, Chacra AR, Dib SA. Clinical inertia on insulin treatment intensification in type 2 diabetes mellitus patients of a tertiary public diabetes center with limited pharmacologic armamentarium from an upper-middle income country. Diabetol Metab Syndr. 2018;10:77. PMID: 30386438 PMCID: DOI: 10.1186/s13098-018-0382-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s13098-018-0382-x</ArticleId><ArticleId IdType="pmc">PMC6206856</ArticleId><ArticleId IdType="pubmed">30386438</ArticleId></ArticleIdList></Reference><Reference><Citation>Jabbar A, Mohamed WM, Ozaki R, et al. . Patterns and trends in insulin initiation and intensification among patients with type 2 diabetes mellitus in the Western Pacific region. Curr Med Res Opin. 2018;34(9):1653–62. PMID: 29863422 DOI: 10.1080/03007995.2018.1484712.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/03007995.2018.1484712</ArticleId><ArticleId IdType="pubmed">29863422</ArticleId></ArticleIdList></Reference><Reference><Citation>Reid T, Gao L, Gill J, et al. . How much is too much? Outcomes in patients using high-dose insulin glargine. Int J Clin Pract. 2016;70(1):56–65. PMID: 26566714 PMCID: DOI: 10.1111/ijcp.12747.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/ijcp.12747</ArticleId><ArticleId IdType="pmc">PMC4738456</ArticleId><ArticleId IdType="pubmed">26566714</ArticleId></ArticleIdList></Reference><Reference><Citation>Evans M, Schumm-Draeger PM, Vora J, King AB. A review of modern insulin analogue pharmacokinetic and pharmacodynamic profiles in type 2 diabetes: Improvements and limitations. Diabetes Obes Metab. 2011;13(8):677–84. PMID: 21410860 PMCID: DOI: 10.1111/j.1463-1326.2011.01395.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1463-1326.2011.01395.x</ArticleId><ArticleId IdType="pmc">PMC3380549</ArticleId><ArticleId IdType="pubmed">21410860</ArticleId></ArticleIdList></Reference><Reference><Citation>Rizvi AA. Treatment of type 2 diabetes with biphasic insulin analogues. Eur Med J Diabetes. 2016;4(1):74–83. PMID: 27918600 PMCID: .</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5134918</ArticleId><ArticleId IdType="pubmed">27918600</ArticleId></ArticleIdList></Reference><Reference><Citation>Peyrot M, Barnett AH, Meneghini LF, Schumm-Draeger PM. Insulin adherence behaviours and barriers in the multinational global attitudes of patients and physicians in insulin therapy study. Diabet Med. 2012;29(5):682–9. PMID: 22313123 PMCID: DOI: 10.1111/j.1464-5491.2012.03605.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1464-5491.2012.03605.x</ArticleId><ArticleId IdType="pmc">PMC3433794</ArticleId><ArticleId IdType="pubmed">22313123</ArticleId></ArticleIdList></Reference><Reference><Citation>Apovian CM, Okemah J, O’Neil PM. Body weight considerations in the management of type 2 diabetes. Adv Ther. 2019;36(1):44–58. PMID: 30465123 PMCID: DOI: 10.1007/s12325-018-0824-8.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12325-018-0824-8</ArticleId><ArticleId IdType="pmc">PMC6318231</ArticleId><ArticleId IdType="pubmed">30465123</ArticleId></ArticleIdList></Reference><Reference><Citation>Kalra S, Aamir AH, Raza A, et al. . Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement. Indian J Endocrinol Metab. 2015;19(5):577–96. PMID: 26425465 PMCID: DOI: 10.4103/2230-8210.16317.</Citation><ArticleIdList><ArticleId IdType="doi">10.4103/2230-8210.16317</ArticleId><ArticleId IdType="pmc">PMC4566336</ArticleId><ArticleId IdType="pubmed">26425465</ArticleId></ArticleIdList></Reference><Reference><Citation>Umpierrez GE, Skolnik N, Dex T, Traylor L, Chao J, Shaefer C. When basal insulin is not enough: A dose–response relationship between insulin glargine 100 units/mL and glycaemic control. Diabetes Obes Metab. 2019;21(6):1305–10. PMID: 30724009 PMCID: DOI: 10.1111/dom.13653.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/dom.13653</ArticleId><ArticleId IdType="pmc">PMC6594069</ArticleId><ArticleId IdType="pubmed">30724009</ArticleId></ArticleIdList></Reference><Reference><Citation>Higuchi M. Access to diabetes care and medicines in the Philippines. Asia Pac J Public Health. 2010;22(Suppl. 3):96S–102S. PMID: 20566540 DOI: 10.1177/1010539510373005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/1010539510373005</ArticleId><ArticleId IdType="pubmed">20566540</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . UHC Act in the Philippines: A new dawn for health care. https://www.who.int/philippines/news/feature-stories/detail/uhc-act-in-the-philippines-a-new-dawn-for-health-care. Accessed December 2, 2022.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39620180</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2308-118X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>2</Issue><PubDate><Year>2024</Year></PubDate></JournalIssue><Title>Journal of the ASEAN Federation of Endocrine Societies</Title><ISOAbbreviation>J ASEAN Fed Endocr Soc</ISOAbbreviation></Journal><ArticleTitle>Assessment of Various Insulin Resistance Surrogate Indices in Thai People with Type 2 Diabetes Mellitus.</ArticleTitle><Pagination><StartPage>33</StartPage><EndPage>40</EndPage><MedlinePgn>33-40</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.15605/jafes.039.02.21</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">To compare insulin surrogate indices with the homeostasis model assessment of insulin resistance (HOMA-IR) in Thai people with type 2 diabetes (T2D).</AbstractText><AbstractText Label="METHODOLOGY" NlmCategory="UNASSIGNED">A cross-sectional study of 97 individuals with T2D was done to determine the association between HOMAIR and seven surrogate indices for insulin resistance. IR was defined as HOMA-IR ≥2.0. The indices included Waist Circumference (WC), Waist-to-Hip Ratio (WHR), Waist-to-Height Ratio (WHtR), Triglyceride-Glucose (TyG) index, estimated Glucose Disposal Rate (eGDR) calculated by WC, BMI, and WHR.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">A total of 97 subjects with T2D (36.1% female, mean age 61.7 ± 12.0 years, BMI 26.4 ± 3.7 kg/m<sup>2</sup>, A1C 6.9 ± 1.2%) were studied. The TyG index showed a positive association with HOMA-IR, while eGDR exhibited a negative association. TyG index had the strongest correlation with IR (r = 0.49), while various eGDR formulas showed weaker negative correlations (r = 0.12-0.25). However, subgroup analysis in individuals with T2D and coronary artery disease (CAD) showed that only eGDR-WC and eGDR-BMI demonstrated a significant correlation with triple vessel disease.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">The TyG index was a useful and simple marker for identifying the presence of IR in Thai people with T2D. Future longitudinal studies are warranted to demonstrate the prediction value of cardiovascular outcomes.</AbstractText><CopyrightInformation>© 2024 Journal of the ASEAN Federation of Endocrine Societies.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Chatchomchuan</LastName><ForeName>Waralee</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thewjitcharoen</LastName><ForeName>Yotsapon</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakasatien</LastName><ForeName>Soontaree</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wanothayaroj</LastName><ForeName>Ekgaluck</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Krittiyawong</LastName><ForeName>Sirinate</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Himathongkam</LastName><ForeName>Thep</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>09</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>Philippines</Country><MedlineTA>J ASEAN Fed Endocr Soc</MedlineTA><NlmUniqueID>8608483</NlmUniqueID><ISSNLinking>0857-1074</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014280">Triglycerides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biomarkers</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013785" MajorTopicYN="N" Type="Geographic">Thailand</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D055105" MajorTopicYN="Y">Waist Circumference</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014280" MajorTopicYN="N">Triglycerides</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D049629" MajorTopicYN="N">Waist-Hip Ratio</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015992" MajorTopicYN="N">Body Mass Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015415" MajorTopicYN="N">Biomarkers</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065927" MajorTopicYN="N">Waist-Height Ratio</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000095224" MajorTopicYN="N">Southeast Asian People</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">HOMA-IR</Keyword><Keyword MajorTopicYN="N">Insulin resistance</Keyword><Keyword MajorTopicYN="N">Surrogate Markers</Keyword><Keyword MajorTopicYN="N">Triglyceride-Glucose (TyG) index</Keyword><Keyword MajorTopicYN="N">estimated Glucose Disposal Rate (eGDR)</Keyword></KeywordList><CoiStatement>The authors declared no conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>12</Hour><Minute>33</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>31</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>1</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39620180</ArticleId><ArticleId IdType="pmc">PMC11604358</ArticleId><ArticleId IdType="doi">10.15605/jafes.039.02.21</ArticleId><ArticleId IdType="pii">JAFES-39-2-33</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607. PMID: 3056758 DOI: 10.2337/diab.37.12.1595</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.37.12.1595</ArticleId><ArticleId IdType="pubmed">3056758</ArticleId></ArticleIdList></Reference><Reference><Citation>Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106(4):453–8. PMID: 10953019 PMCID: DOI: 10.1172/JCI10762</Citation><ArticleIdList><ArticleId IdType="doi">10.1172/JCI10762</ArticleId><ArticleId IdType="pmc">PMC380256</ArticleId><ArticleId IdType="pubmed">10953019</ArticleId></ArticleIdList></Reference><Reference><Citation>Reaven G. All obese individuals are not created equal: Insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diab Vasc Dis Res. 2005;2(3):105–12. PMID: 16334591 DOI: 10.3132/dvdr.2005.017</Citation><ArticleIdList><ArticleId IdType="doi">10.3132/dvdr.2005.017</ArticleId><ArticleId IdType="pubmed">16334591</ArticleId></ArticleIdList></Reference><Reference><Citation>Matthews DR, Hosker JP, Rudenski AS, et al. . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. PMID: 3899825 DOI: 10.1007/BF00280883</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF00280883</ArticleId><ArticleId IdType="pubmed">3899825</ArticleId></ArticleIdList></Reference><Reference><Citation>Pacini G, Finegood DT, Bergman RN. A minimal-model based glucose clamp yielding insulin sensitivity independent of glycemia. Diabetes. 1982;31(5 Pt 1):432–41. PMID: 6759258 DOI: 10.2337/diab.31.5.432</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diab.31.5.432</ArticleId><ArticleId IdType="pubmed">6759258</ArticleId></ArticleIdList></Reference><Reference><Citation>Park SY, Gautier JF, Chon S. Assessment of insulin secretion and insulin resistance in human. Diabetes Metab J. 2021;45(5):641–54. PMID: 34610719 PMCID: DOI: 10.4093/dmj.2021.0220</Citation><ArticleIdList><ArticleId IdType="doi">10.4093/dmj.2021.0220</ArticleId><ArticleId IdType="pmc">PMC8497920</ArticleId><ArticleId IdType="pubmed">34610719</ArticleId></ArticleIdList></Reference><Reference><Citation>McAuley KA, Williams SM, Mann JI, et al. . Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24(3):460–4. PMID: 11289468 DOI: 10.2337/diacare.24.3.460</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.24.3.460</ArticleId><ArticleId IdType="pubmed">11289468</ArticleId></ArticleIdList></Reference><Reference><Citation>Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist: hip ratio as predictors of cardiovascular risk -- A review of the literature. Eur J Clin Nutr. 2010;64(1):16–22. PMID: 19654593 DOI: 10.1038/ejcn.2009.68</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/ejcn.2009.68</ArticleId><ArticleId IdType="pubmed">19654593</ArticleId></ArticleIdList></Reference><Reference><Citation>Ross R, Neeland IJ, Yamashita S, et al. . Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR Working Group on visceral obesity. Nat Rev Endocrinol. 2020;16(3):177–89. PMID: 32020062 PMCID: DOI: 10.1038/s41574-019-0310-7</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41574-019-0310-7</ArticleId><ArticleId IdType="pmc">PMC7027970</ArticleId><ArticleId IdType="pubmed">32020062</ArticleId></ArticleIdList></Reference><Reference><Citation>Lechner K, Lechner B, Crispin A, Schwarz PEH, von Bibra H. Waist-to-height ratio and metabolic phenotype compared to the Matsuda index for the prediction of insulin resistance. Sci Rep. 2021;11(1):8224. PMID: 33859227 PMCID: DOI: 10.1038/s41598-021-87266-z</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-87266-z</ArticleId><ArticleId IdType="pmc">PMC8050044</ArticleId><ArticleId IdType="pubmed">33859227</ArticleId></ArticleIdList></Reference><Reference><Citation>Simental-Mendfa LE, Rodríguez-Moran M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. PMID: 19067533 DOI: 10.1089/met.2008.0034</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/met.2008.0034</ArticleId><ArticleId IdType="pubmed">19067533</ArticleId></ArticleIdList></Reference><Reference><Citation>Williams KV, Erbey JR, Becker D. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49(4):626–32. PMID: 10871201 DOI: 10.2337/diabetes.49.4.626</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diabetes.49.4.626</ArticleId><ArticleId IdType="pubmed">10871201</ArticleId></ArticleIdList></Reference><Reference><Citation>Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2019;14(3):e0212963. PMID: 30845237 PMCID: DOI: 10.1371/journal.pone.0212963</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0212963</ArticleId><ArticleId IdType="pmc">PMC6405083</ArticleId><ArticleId IdType="pubmed">30845237</ArticleId></ArticleIdList></Reference><Reference><Citation>Jin JL, Cao YX, Wu LG, et al. . Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. J Thorac Dis. 2018;10(11):6137–46. PMID: 30622785 PMCID: DOI: 10.21037/jtd.2018.10.79</Citation><ArticleIdList><ArticleId IdType="doi">10.21037/jtd.2018.10.79</ArticleId><ArticleId IdType="pmc">PMC6297409</ArticleId><ArticleId IdType="pubmed">30622785</ArticleId></ArticleIdList></Reference><Reference><Citation>Chamroonkiadtikun P, Ananchaisarp T, Wanichanon W. The triglyceride-glucose index, a predictor of type 2 diabetes development: A retrospective cohort study. Prim Care Diabetes. 2020;14(2):161–7. PMID: 31466834 DOI: 10.1016/j.pcd.2019.08.004</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.pcd.2019.08.004</ArticleId><ArticleId IdType="pubmed">31466834</ArticleId></ArticleIdList></Reference><Reference><Citation>Nystrom T, Holzmann MJ, Eliasson B, et al. . Estimated glucose disposal rate and long-term survival in type 2 diabetes after coronary artery bypass grafting. Heart Vessels. 2017;32(3):269–78. PMID: 27401741 DOI: 10.1007/s00380-016-0875-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00380-016-0875-1</ArticleId><ArticleId IdType="pubmed">27401741</ArticleId></ArticleIdList></Reference><Reference><Citation>Do HD, Lohsoonthorn V, Jiamjarasrangsi W, Lertmaharit S, Williams MA. Prevalence of insulin resistance and its relationship with cardiovascular disease risk factors among Thai adults over 35 years old. Diabetes Res Clin Pract. 2010;89(3):303–8. PMID: 20466446 PMCID: DOI: 10.1016/j.diabres.2010.04.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2010.04.013</ArticleId><ArticleId IdType="pmc">PMC2919620</ArticleId><ArticleId IdType="pubmed">20466446</ArticleId></ArticleIdList></Reference><Reference><Citation>Guerrero-Romero F, Simental-Mendfa LE, Gonzalez-Ortiz M, et al. . The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51. PMID: 20484475 DOI: 10.1210/jc.2010-0288</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2010-0288</ArticleId><ArticleId IdType="pubmed">20484475</ArticleId></ArticleIdList></Reference><Reference><Citation>Buderer NM. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med. 1996;3(9):895–900. PMID: 8870764 DOI: 10.1111/j.1553-2712.1996.tb03538.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1553-2712.1996.tb03538.x</ArticleId><ArticleId IdType="pubmed">8870764</ArticleId></ArticleIdList></Reference><Reference><Citation>Fukushima M, Usami M, Ikeda M, et al. . Insulin secretion and insulin sensitivity at different stages of glucose tolerance: A cross-sectional study of Japanese type 2 diabetes. Metabolism. 2004;53(7):831–5. PMID: 15254872 DOI: 10.1016/j.metabol.2004.02.012</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2004.02.012</ArticleId><ArticleId IdType="pubmed">15254872</ArticleId></ArticleIdList></Reference><Reference><Citation>Zabala A, Darsalia V, Lind M, et al. . Estimated glucose disposal rate and risk of stroke and mortality in type 2 diabetes: A nationwide cohort study. Cardiovasc Diabetol. 2021;20(1):202. PMID: 34615525 PMCID: DOI: 10.1186/s12933-021-01394-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-021-01394-4</ArticleId><ArticleId IdType="pmc">PMC8495918</ArticleId><ArticleId IdType="pubmed">34615525</ArticleId></ArticleIdList></Reference><Reference><Citation>Cui H, Liu Q, Wu Y, Cao L. Cumulative triglyceride-glucose index is a risk for CVD: a prospective cohort study. Cardiovasc Diabetol. 2022;21(1):22. PMID: 35144621 PMCID: DOI: 10.1186/s12933-022-01456-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-022-01456-1</ArticleId><ArticleId IdType="pmc">PMC8830002</ArticleId><ArticleId IdType="pubmed">35144621</ArticleId></ArticleIdList></Reference><Reference><Citation>Lopez-Jaramillo P, Gomez-Arbelaez D, Martinez-Bello D, et al. . Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): A prospective cohort study. Lancet Healthy Longev. 2023;4(1):e23–33. PMID: 36521498 DOI: 10.1016/S2666-7568(22)00247-1</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2666-7568(22)00247-1</ArticleId><ArticleId IdType="pubmed">36521498</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu L, Xia R, Song X, et al. . Association between the triglyceride-glucose index and diabetic nephropathy in patients with type 2 diabetes: A cross-sectional study. J Diabetes Investigation. 2021;12:557–65. PMID: 15132969 DOI: 10.1161/01.ATV.0000126485.80373.33</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/01.ATV.0000126485.80373.33</ArticleId><ArticleId IdType="pmc">PMC8015837</ArticleId><ArticleId IdType="pubmed">33319507</ArticleId></ArticleIdList></Reference><Reference><Citation>Lemieux I. Energy partitioning in gluteal-femoral fat: Does the metabolic fate of triglycerides affect coronary heart disease risk? Arterioscler Thromb Vasc Biol. 2004;24(5):795–7. DOI: 10.1161/01.atv.0000126485.80373.33</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/01.atv.0000126485.80373.33</ArticleId><ArticleId IdType="pubmed">15132969</ArticleId></ArticleIdList></Reference><Reference><Citation>Farhan S, Redfors B, Maehara A, et al. . Relationship between insulin resistance, coronary plaque, and clinical outcomes in patients with acute coronary syndromes: An analysis from the PROSPECT study. Cardiovasc Diabetol. 2021;20(1):10. PMID: 33413366 PMCID: DOI: 10.1186/s12933-020-01207-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-020-01207-0</ArticleId><ArticleId IdType="pmc">PMC7791845</ArticleId><ArticleId IdType="pubmed">33413366</ArticleId></ArticleIdList></Reference><Reference><Citation>Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: The Kelly West Award Lecture 2008. Diabetes Care. 2010;33(2):442–9. PMID: 20103560 PMCID: DOI: 10.2337/dc09-0749</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc09-0749</ArticleId><ArticleId IdType="pmc">PMC2809299</ArticleId><ArticleId IdType="pubmed">20103560</ArticleId></ArticleIdList></Reference><Reference><Citation>Xuan J, Juan D, Yuyu N, Anjing J. Impact of estimated glucose disposal rate for identifying prevalent ischemic heart disease: findings from a cross-sectional study. BMC Cardiovasc Disord. 2022;22(1):378. PMID: 35987992 PMCID: DOI: 10.1186/s12872-022-02817-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12872-022-02817-0</ArticleId><ArticleId IdType="pmc">PMC9392437</ArticleId><ArticleId IdType="pubmed">35987992</ArticleId></ArticleIdList></Reference><Reference><Citation>da Silva A, Caldas APS, Hermsdorff HHM, et al. . Triglyceride glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18(1):89. PMID: 31296225 PMCID: DOI: 10.1186/s12933-019-0893-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12933-019-0893-2</ArticleId><ArticleId IdType="pmc">PMC6625050</ArticleId><ArticleId IdType="pubmed">31296225</ArticleId></ArticleIdList></Reference><Reference><Citation>Strisciuglio T, Izzo R, Barbato E, et al. . Insulin resistance predicts severity of coronary atherosclerotic disease in non-diabetic patients. J Clin Med. 2020;9(7):2144. PMID: 32646007 PMCID: DOI: 10.3390/jcm9072144</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/jcm9072144</ArticleId><ArticleId IdType="pmc">PMC7408744</ArticleId><ArticleId IdType="pubmed">32646007</ArticleId></ArticleIdList></Reference><Reference><Citation>Wadström BN, Pedersen KM, Wulff AB, et al. . Elevated remnant cholesterol and atherosclerotic cardiovascular disease in diabetes: A population-based prospective cohort study. Diabetologia. 2023;66(12):2238–49. PMID: 37776347 PMCID: DOI: 10.1007/s00125-023-06016-0</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-023-06016-0</ArticleId><ArticleId IdType="pmc">PMC10627991</ArticleId><ArticleId IdType="pubmed">37776347</ArticleId></ArticleIdList></Reference><Reference><Citation>Gabani M, Shapiro MD, Toth PP. The role of triglyceride-rich lipoproteins and their remnants in atherosclerotic cardiovascular disease. Eur Cardiol. 2023;18:e56. PMID: 37860700 PMCID: DOI: 10.15420/ecr.2023.16</Citation><ArticleIdList><ArticleId IdType="doi">10.15420/ecr.2023.16</ArticleId><ArticleId IdType="pmc">PMC10583159</ArticleId><ArticleId IdType="pubmed">37860700</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan JC, Malik V, Jia W, et al. . Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40. PMID: 19470990 DOI: 10.1001/jama.2009.726</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2009.726</ArticleId><ArticleId IdType="pubmed">19470990</ArticleId></ArticleIdList></Reference><Reference><Citation>Suraamornkul S, Kwancharoen R, Ovartlarnporn M, Rawdaree P, Bajaj M. Insulin clamp-derived measurements of insulin sensitivity and insulin secretion in lean and obese asian type 2 diabetic patients. Metab Syndr Relat Disord. 2010;8(2):113–8. PMID: 20059360 DOI: 10.1089/met.2009.0030</Citation><ArticleIdList><ArticleId IdType="doi">10.1089/met.2009.0030</ArticleId><ArticleId IdType="pubmed">20059360</ArticleId></ArticleIdList></Reference><Reference><Citation>Yamada C, Mitsuhashi T, Hiratsuka N, Inabe F, Araida N, Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J Diabetes Investig. 2011;2(5):373–6. PMID: 24843516 PMCID: DOI: 10.1111/j.2040-1124.2011.00113.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.2040-1124.2011.00113.x</ArticleId><ArticleId IdType="pmc">PMC4019305</ArticleId><ArticleId IdType="pubmed">24843516</ArticleId></ArticleIdList></Reference><Reference><Citation>Goh LPW, Sani SA, Sabullah MK, Gansau JA. The prevalence of insulin resistance in Malaysia and Indonesia: An updated systematic review and meta-analysis. Medicina (Kaunas). 2022;58(6):826. PMID: 35744089 PMCID: DOI: 10.3390/medicina58060826</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/medicina58060826</ArticleId><ArticleId IdType="pmc">PMC9227905</ArticleId><ArticleId IdType="pubmed">35744089</ArticleId></ArticleIdList></Reference><Reference><Citation>Tahapary DL, Pratisthita LB, Fitri NA, et al. . Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. PMID: 35939943 DOI: 10.1016/j.dsx.2022.102581</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.dsx.2022.102581</ArticleId><ArticleId IdType="pubmed">35939943</ArticleId></ArticleIdList></Reference><Reference><Citation>Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95. PMID: 15161807 DOI: 10.2337/diacare.27.6.1487</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/diacare.27.6.1487</ArticleId><ArticleId IdType="pubmed">15161807</ArticleId></ArticleIdList></Reference><Reference><Citation>Buchanan TA, Watanabe RM, Xiang AH. Limitations in surrogate measures of insulin resistance. J Clin Endocrinol Metab. 2010;95(11):4874–6. PMID: 21051585 PMCID: DOI: 10.1210/jc.2010-2167</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2010-2167</ArticleId><ArticleId IdType="pmc">PMC2968734</ArticleId><ArticleId IdType="pubmed">21051585</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39618225</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1750-8460</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>11</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>30</Day></PubDate></JournalIssue><Title>British journal of hospital medicine (London, England : 2005)</Title><ISOAbbreviation>Br J Hosp Med (Lond)</ISOAbbreviation></Journal><ArticleTitle>SGLT2 Inhibitors in Cardiovascular Medicine: Panacea or Pandora's Box?</ArticleTitle><Pagination><StartPage>1</StartPage><EndPage>10</EndPage><MedlinePgn>1-10</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.12968/hmed.2024.0546</ELocationID><Abstract><AbstractText>Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antidiabetic agents that effectively lower blood glucose levels in patients with Type 2 Diabetes Mellitus (T2DM). Beyond their glycemic control properties, SGLT2 inhibitors have demonstrated significant cardiovascular benefits, including reductions in major adverse cardiovascular events. However, the limitations of the pivotal trials investigating these outcomes have not been fully explored. This letter aims to critically assess the major randomized clinical trials that evaluated the cardiovascular effects of SGLT2 inhibitors, highlighting both their strengths and limitations.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ferreira</LastName><ForeName>Stella de Aguiar Trigueirinho</ForeName><Initials>SAT</Initials><AffiliationInfo><Affiliation>Department of Emergency, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Oliveira</LastName><ForeName>Lucas Lentini Herling de</ForeName><Initials>LLH</Initials><AffiliationInfo><Affiliation>Department of Emergency, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Assis</LastName><ForeName>Arthur Cicupira Rodrigues de</ForeName><Initials>ACR</Initials><AffiliationInfo><Affiliation>Department of Emergency, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Soares</LastName><ForeName>Paulo Rogério</ForeName><Initials>PR</Initials><AffiliationInfo><Affiliation>Department of Emergency, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Scudeler</LastName><ForeName>Thiago Luis</ForeName><Initials>TL</Initials><AffiliationInfo><Affiliation>Department of Emergency, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016422">Letter</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Br J Hosp Med (Lond)</MedlineTA><NlmUniqueID>101257109</NlmUniqueID><ISSNLinking>1750-8460</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="Y">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016032" MajorTopicYN="N">Randomized Controlled Trials as Topic</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">SGLT2 inhibitors</Keyword><Keyword MajorTopicYN="N">cardiovascular events</Keyword><Keyword MajorTopicYN="N">diabetes mellitus</Keyword><Keyword MajorTopicYN="N">heart failure</Keyword><Keyword MajorTopicYN="N">myocardial infarction</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>3</Hour><Minute>23</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39618225</ArticleId><ArticleId IdType="doi">10.12968/hmed.2024.0546</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39618173</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>06</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>08</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1463-1326</ISSN><JournalIssue CitedMedium="Internet"><Volume>27</Volume><Issue>2</Issue><PubDate><Year>2025</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Diabetes, obesity & metabolism</Title><ISOAbbreviation>Diabetes Obes Metab</ISOAbbreviation></Journal><ArticleTitle>The role of the glucagon-FGF21 axis in improving beta cell function during glucose intolerance and SGLT2 inhibition.</ArticleTitle><Pagination><StartPage>885</StartPage><EndPage>898</EndPage><MedlinePgn>885-898</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/dom.16089</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">Although primarily secreted by the liver, Fibroblast Growth Factor 21 (FGF21) is also expressed in the pancreas, where its function remains unclear. This study aims to elucidate the role of the glucagon-FGF21 interaction in the metabolic benefits of SGLT2 inhibition (SGLT2i) and hypothesizes it is key to enhancing glucose and lipid metabolism in individuals with glucose intolerance or type 2 diabetes (T2D).</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">FGF21, FGF1R, and β-klotho expression in human pancreas was analysed by RNAscope, qPCR and immunofluorescent techniques. Glucose-stimulated insulin secretion (GSIS) assay was used to investigate the effects of recombinant FGF21 (rFGF21) on islets from donors with glucose intolerance or T2D. To explore the role of the glucagon-FGF21 axis in the benefits of SGLT2i, we used WT and Sglt2 knockout (KO) mice fed a chow diet (CD) or a high-fat diet (HFD) and chronically treated with vehicle or dapagliflozin.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Chronic rFGF21 treatment enhanced GSIS in islets from donors with glucose intolerance, with increased FGFR1 expression, suggesting FGF21's greater efficacy in the early stages of disease. In diet-induced insulin-resistant mice, dapagliflozin reduced postprandial glycaemia and elevated plasma glucagon and FGF21 levels. Sglt2 KO mice on a CD showed increased fasting plasma glucagon without changes in FGF21. In diet-induced insulin-resistant Sglt2 KO mice, elevated glucagon and FGF21 levels paralleled chronic dapagliflozin treatment, indicating similar metabolic adaptations in both models.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our findings indicate FGF21 as a crucial mediator in liver-pancreas crosstalk, improving lipid and glucose metabolism, enhancing pancreatic function, and potentiating the therapeutic efficacy of SGLT2i, thereby representing a target for prediabetes treatment.</AbstractText><CopyrightInformation>© 2024 The Author(s). Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Moreno-Lopez</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Louvet</LastName><ForeName>Isaline</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Delalleau</LastName><ForeName>Nathalie</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Acosta-Montalvo</LastName><ForeName>Ana</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thevenet</LastName><ForeName>Julien</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pasquetti</LastName><ForeName>Gianni</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gmyr</LastName><ForeName>Valery</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kerr-Conte</LastName><ForeName>Julie</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pattou</LastName><ForeName>Francois</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bonner</LastName><ForeName>Caroline</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0002-4430-8280</Identifier><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Saponaro</LastName><ForeName>Chiara</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0001-7336-7362</Identifier><AffiliationInfo><Affiliation>Univ. Lille, CHU Lille, Inserm U1190, EGID, Institut Pasteur de Lille, Lille, France.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>1-RSC-2014-101-I-X</GrantID><Agency>European Consortium for Islet Transplantation by the Juvenile Diabetes Research Foundation</Agency><Country/></Grant><Grant><GrantID>ANR-10-LABX-0046</GrantID><Agency>European Genomic Institute for Diabetes</Agency><Country/></Grant><Grant><Agency>Société Francophone du Diabète 2015 Award</Agency><Country/></Grant><Grant><Agency>EFSD/Lilly 2016</Agency><Country/></Grant><Grant><Agency>PRECIDIAB Ph.D. thesis stipend</Agency><Country/></Grant><Grant><Agency>EFSD/Lilly Young Investigator Research Award 2021</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Diabetes Obes Metab</MedlineTA><NlmUniqueID>100883645</NlmUniqueID><ISSNLinking>1462-8902</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>62031-54-3</RegistryNumber><NameOfSubstance UI="D005346">Fibroblast Growth Factors</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-92-5</RegistryNumber><NameOfSubstance UI="D005934">Glucagon</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000077203">Sodium-Glucose Transporter 2 Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C414620">fibroblast growth factor 21</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005960">Glucosides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001559">Benzhydryl Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>1ULL0QJ8UC</RegistryNumber><NameOfSubstance UI="C529054">dapagliflozin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.2.1.31</RegistryNumber><NameOfSubstance UI="D000090265">Klotho Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C000706947">FGF21 protein, human</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D005346" MajorTopicYN="Y">Fibroblast Growth Factors</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005934" MajorTopicYN="Y">Glucagon</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018149" MajorTopicYN="Y">Glucose Intolerance</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="Y">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000077203" MajorTopicYN="Y">Sodium-Glucose Transporter 2 Inhibitors</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018345" MajorTopicYN="Y">Mice, Knockout</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005960" MajorTopicYN="Y">Glucosides</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001559" MajorTopicYN="N">Benzhydryl Compounds</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000078790" MajorTopicYN="N">Insulin Secretion</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059305" MajorTopicYN="N">Diet, High-Fat</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000090265" MajorTopicYN="N">Klotho Proteins</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">FGF21</Keyword><Keyword MajorTopicYN="N">SGLT2 inhibition</Keyword><Keyword MajorTopicYN="N">glucagon</Keyword><Keyword MajorTopicYN="N">glucose intolerance</Keyword><Keyword MajorTopicYN="N">human islets</Keyword><Keyword MajorTopicYN="N">type 2 diabetes</Keyword></KeywordList><CoiStatement>All authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>7</Day><Hour>4</Hour><Minute>51</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>2</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2025</Year><Month>1</Month><Day>6</Day></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39618173</ArticleId><ArticleId IdType="pmc">PMC11701192</ArticleId><ArticleId IdType="doi">10.1111/dom.16089</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Stull AJ. Lifestyle approaches and glucose intolerance. Am J Lifestyle Med. 2016;10(6):406‐416.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6124975</ArticleId><ArticleId IdType="pubmed">30202302</ArticleId></ArticleIdList></Reference><Reference><Citation>Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF‐21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492(1):203‐206.</Citation><ArticleIdList><ArticleId IdType="pubmed">10858549</ArticleId></ArticleIdList></Reference><Reference><Citation>Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans. J Clin Invest. 2015;125(12):4601‐4611.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4665770</ArticleId><ArticleId IdType="pubmed">26529252</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF‐21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627‐1635.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1088017</ArticleId><ArticleId IdType="pubmed">15902306</ArticleId></ArticleIdList></Reference><Reference><Citation>Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA. 2007;104(18):7432‐7437.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1855074</ArticleId><ArticleId IdType="pubmed">17452648</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One. 2012;7(3):e33870.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3307775</ArticleId><ArticleId IdType="pubmed">22442730</ArticleId></ArticleIdList></Reference><Reference><Citation>Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654‐667.</Citation><ArticleIdList><ArticleId IdType="pubmed">32764725</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet‐induced obese mice. Diabetes. 2009;58(1):250‐259.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2606881</ArticleId><ArticleId IdType="pubmed">18840786</ArticleId></ArticleIdList></Reference><Reference><Citation>Berglund ED, Li CY, Bina HA, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150(9):4084‐4093.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2736088</ArticleId><ArticleId IdType="pubmed">19470704</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57(5):1246‐1253.</Citation><ArticleIdList><ArticleId IdType="pubmed">18252893</ArticleId></ArticleIdList></Reference><Reference><Citation>Chavez AO, Molina‐Carrion M, Abdul‐Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor‐21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32(8):1542‐1546.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2713625</ArticleId><ArticleId IdType="pubmed">19487637</ArticleId></ArticleIdList></Reference><Reference><Citation>Badman MK, Kennedy AR, Adams AC, Pissios P, Maratos‐Flier E. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am J Physiol Endocrinol Metab. 2009;297(5):E1197‐E1204.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2781352</ArticleId><ArticleId IdType="pubmed">19738035</ArticleId></ArticleIdList></Reference><Reference><Citation>Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018‐6027.</Citation><ArticleIdList><ArticleId IdType="pubmed">18687777</ArticleId></ArticleIdList></Reference><Reference><Citation>Laeger T, Baumeier C, Wilhelmi I, Wurfel J, Kamitz A, Schurmann A. FGF21 improves glucose homeostasis in an obese diabetes‐prone mouse model independent of body fat changes. Diabetologia. 2017;60(11):2274‐2284.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6448882</ArticleId><ArticleId IdType="pubmed">28770320</ArticleId></ArticleIdList></Reference><Reference><Citation>Luo Y, Yang Y, Liu M, et al. Oncogenic KRAS reduces expression of FGF21 in acinar cells to promote pancreatic tumorigenesis in mice on a high‐fat diet. Gastroenterology. 2019;157(5):1413‐1428 e1411.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6815712</ArticleId><ArticleId IdType="pubmed">31352001</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan Y, Wang B, Zheng J, et al. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling‐dependent manner. J Cell Mol Med. 2019;23(2):1059‐1071.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6349243</ArticleId><ArticleId IdType="pubmed">30461198</ArticleId></ArticleIdList></Reference><Reference><Citation>Omar BA, Andersen B, Hald J, Raun K, Nishimura E, Ahren B. Fibroblast growth factor 21 (FGF21) and glucagon‐like peptide 1 contribute to diabetes resistance in glucagon receptor‐deficient mice. Diabetes. 2014;63(1):101‐110.</Citation><ArticleIdList><ArticleId IdType="pubmed">24062250</ArticleId></ArticleIdList></Reference><Reference><Citation>Coate KC, Hernandez G, Thorne CA, et al. FGF21 is an exocrine pancreas Secretagogue. Cell Metab. 2017;25(2):472‐480.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5299054</ArticleId><ArticleId IdType="pubmed">28089565</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernandez G, Luo T, Javed TA, et al. Pancreatitis is an FGF21‐deficient state that is corrected by replacement therapy. Sci Transl Med. 2020;12(525).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7034981</ArticleId><ArticleId IdType="pubmed">31915301</ArticleId></ArticleIdList></Reference><Reference><Citation>Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor‐21 improves pancreatic beta‐cell function and survival by activation of extracellular signal‐regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55(9):2470‐2478.</Citation><ArticleIdList><ArticleId IdType="pubmed">16936195</ArticleId></ArticleIdList></Reference><Reference><Citation>Cui X, Feng J, Wei T, et al. Pancreatic alpha cell glucagon‐liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia. 2023;66(3):535‐550.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9892158</ArticleId><ArticleId IdType="pubmed">36331598</ArticleId></ArticleIdList></Reference><Reference><Citation>Osataphan S, Macchi C, Singhal G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21‐dependent and ‐independent mechanisms. JCI Insight. 2019;4(5).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6483601</ArticleId><ArticleId IdType="pubmed">30843877</ArticleId></ArticleIdList></Reference><Reference><Citation>Di Vincenzo A, Crescenzi M, Granzotto M, et al. Treatment with dapagliflozin increases FGF‐21 gene expression and reduces triglycerides content in myocardial tissue of genetically obese mice. J Endocrinol Investig. 2024;47(7):1777‐1786.</Citation><ArticleIdList><ArticleId IdType="pubmed">38194168</ArticleId></ArticleIdList></Reference><Reference><Citation>Le TDV, Fathi P, Watters AB, et al. Fibroblast growth factor‐21 is required for weight loss induced by the glucagon‐like peptide‐1 receptor agonist liraglutide in male mice fed high carbohydrate diets. Mol Metab. 2023;72:101718.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10131131</ArticleId><ArticleId IdType="pubmed">37030441</ArticleId></ArticleIdList></Reference><Reference><Citation>Deshmukh NJ, Kalshetti MS, Patil M, Autade P, Sangle GV. Exploring the modulatory effects of sotagliflozin on dyslipidemia in mice: the role of glucagon, fibroblast growth factor 21 and glucagon‐like peptide 1. Clin Exp Pharmacol Physiol. 2024;51(5):e13854.</Citation><ArticleIdList><ArticleId IdType="pubmed">38527859</ArticleId></ArticleIdList></Reference><Reference><Citation>Habegger KM, Stemmer K, Cheng C, et al. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes. 2013;62(5):1453‐1463.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3636653</ArticleId><ArticleId IdType="pubmed">23305646</ArticleId></ArticleIdList></Reference><Reference><Citation>Nason SR, Antipenko J, Presedo N, et al. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight. 2021;6(4):e141323.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7934938</ArticleId><ArticleId IdType="pubmed">33411693</ArticleId></ArticleIdList></Reference><Reference><Citation>Bolinder J, Ljunggren O, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020‐1031.</Citation><ArticleIdList><ArticleId IdType="pubmed">22238392</ArticleId></ArticleIdList></Reference><Reference><Citation>Cefalu WT, Stenlof K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia. 2015;58(6):1183‐1187.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4800739</ArticleId><ArticleId IdType="pubmed">25813214</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel DK, Strong J. The pleiotropic effects of sodium‐glucose cotransporter‐2 inhibitors: beyond the glycemic benefit. Diabetes Ther. 2019;10(5):1771‐1792.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6778563</ArticleId><ArticleId IdType="pubmed">31456166</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium‐glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499‐508.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3904627</ArticleId><ArticleId IdType="pubmed">24463454</ArticleId></ArticleIdList></Reference><Reference><Citation>Merovci A, Solis‐Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest. 2014;124(2):509‐514.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3904617</ArticleId><ArticleId IdType="pubmed">24463448</ArticleId></ArticleIdList></Reference><Reference><Citation>Bonner C, Kerr‐Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512‐517.</Citation><ArticleIdList><ArticleId IdType="pubmed">25894829</ArticleId></ArticleIdList></Reference><Reference><Citation>Dunning BE, Gerich JE. The role of alpha‐cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev. 2007;28(3):253‐283.</Citation><ArticleIdList><ArticleId IdType="pubmed">17409288</ArticleId></ArticleIdList></Reference><Reference><Citation>Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab. 2024;26:3501‐3512.</Citation><ArticleIdList><ArticleId IdType="pubmed">38853300</ArticleId></ArticleIdList></Reference><Reference><Citation>Quinones M, Al‐Massadi O, Gallego R, et al. Hypothalamic CaMKKbeta mediates glucagon anorectic effect and its diet‐induced resistance. Mol Metab. 2015;4(12):961‐970.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4731730</ArticleId><ArticleId IdType="pubmed">26909312</ArticleId></ArticleIdList></Reference><Reference><Citation>Kleinert M, Sachs S, Habegger KM, Hofmann SM, Muller TD. Glucagon regulation of energy expenditure. Int J Mol Sci. 2019;20(21):5407.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6862306</ArticleId><ArticleId IdType="pubmed">31671603</ArticleId></ArticleIdList></Reference><Reference><Citation>Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor signaling and lipid metabolism. Front Physiol. 2019;10:413.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6491692</ArticleId><ArticleId IdType="pubmed">31068828</ArticleId></ArticleIdList></Reference><Reference><Citation>Kerr‐Conte J, Vandewalle B, Moerman E, et al. Upgrading pretransplant human islet culture technology requires human serum combined with media renewal. Transplantation. 2010;89(9):1154‐1160.</Citation><ArticleIdList><ArticleId IdType="pubmed">20098354</ArticleId></ArticleIdList></Reference><Reference><Citation>Carter JD, Dula SB, Corbin KL, Wu R, Nunemaker CS. A practical guide to rodent islet isolation and assessment. Biol Proced Online. 2009;11:3‐31.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3056052</ArticleId><ArticleId IdType="pubmed">19957062</ArticleId></ArticleIdList></Reference><Reference><Citation>Dufrane D, Nenquin M, Henquin JC. Nutrient control of insulin secretion in perifused adult pig islets. Diabetes Metab. 2007;33(6):430‐438.</Citation><ArticleIdList><ArticleId IdType="pubmed">17584514</ArticleId></ArticleIdList></Reference><Reference><Citation>Henquin JC, Dufrane D, Kerr‐Conte J, Nenquin M. Dynamics of glucose‐induced insulin secretion in normal human islets. Am J Physiol Endocrinol Metab. 2015;309(7):E640‐E650.</Citation><ArticleIdList><ArticleId IdType="pubmed">26264556</ArticleId></ArticleIdList></Reference><Reference><Citation>So WY, Cheng Q, Chen L, et al. High glucose represses beta‐klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator‐activated receptor gamma signaling. Diabetes. 2013;62(11):3751‐3759.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3806592</ArticleId><ArticleId IdType="pubmed">23897951</ArticleId></ArticleIdList></Reference><Reference><Citation>Welles JE, Dennis MD, Jefferson LS, Kimball SR. Glucagon‐dependent suppression of mTORC1 is associated with upregulation of hepatic FGF21 mRNA translation. Am J Physiol Endocrinol Metab. 2020;319:E26‐E33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7468783</ArticleId><ArticleId IdType="pubmed">32421369</ArticleId></ArticleIdList></Reference><Reference><Citation>Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB. Glucagon stimulates hepatic FGF21 secretion through a PKA‐ and EPAC‐dependent posttranscriptional mechanism. PLoS One. 2014;9(4):e94996.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3986400</ArticleId><ArticleId IdType="pubmed">24733293</ArticleId></ArticleIdList></Reference><Reference><Citation>Saponaro C, Muhlemann M, Acosta‐Montalvo A, et al. Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes. 2020;69(5):902‐914.</Citation><ArticleIdList><ArticleId IdType="pubmed">31896553</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose‐lowering and insulin‐sensitizing action of FGF21 in insulin‐resistant mouse models–association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297(5):E1105‐E1114.</Citation><ArticleIdList><ArticleId IdType="pubmed">19706786</ArticleId></ArticleIdList></Reference><Reference><Citation>Li H, Wu G, Fang Q, et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun. 2018;9(1):272.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5773530</ArticleId><ArticleId IdType="pubmed">29348470</ArticleId></ArticleIdList></Reference><Reference><Citation>Cheng STW, Li SYT, Leung PS. Fibroblast growth factor 21 stimulates pancreatic islet autophagy via inhibition of AMPK‐mTOR signaling. Int J Mol Sci. 2019;20(10):2517.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6567208</ArticleId><ArticleId IdType="pubmed">31121855</ArticleId></ArticleIdList></Reference><Reference><Citation>Gargani S, Thevenet J, Yuan JE, et al. Adaptive changes of human islets to an obesogenic environment in the mouse. Diabetologia. 2013;56(2):350‐358.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3536990</ArticleId><ArticleId IdType="pubmed">23192693</ArticleId></ArticleIdList></Reference><Reference><Citation>Holman RR, Clark A, Rorsman P. Beta‐cell secretory dysfunction: a key cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2020;8(5):370.</Citation><ArticleIdList><ArticleId IdType="pubmed">32333873</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin‐fixed, paraffin‐embedded tissues. J Mol Diagn. 2012;14(1):22‐29.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3338343</ArticleId><ArticleId IdType="pubmed">22166544</ArticleId></ArticleIdList></Reference><Reference><Citation>Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta‐cells leads to diabetes. Nature. 2000;408(6814):864‐868.</Citation><ArticleIdList><ArticleId IdType="pubmed">11130726</ArticleId></ArticleIdList></Reference><Reference><Citation>Lehnen NC, von Massenhausen A, Kalthoff H, et al. Fibroblast growth factor receptor 1 gene amplification in pancreatic ductal adenocarcinoma. Histopathology. 2013;63(2):157‐166.</Citation><ArticleIdList><ArticleId IdType="pubmed">23808822</ArticleId></ArticleIdList></Reference><Reference><Citation>Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63(12):4057‐4063.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4238010</ArticleId><ArticleId IdType="pubmed">25008183</ArticleId></ArticleIdList></Reference><Reference><Citation>Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286(15):12983‐12990.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3075644</ArticleId><ArticleId IdType="pubmed">21317437</ArticleId></ArticleIdList></Reference><Reference><Citation>Geller S, Arribat Y, Netzahualcoyotzi C, et al. Tanycytes regulate lipid homeostasis by sensing free fatty acids and signaling to key hypothalamic neuronal populations via FGF21 secretion. Cell Metab. 2019;30(4):833‐844.e837.</Citation><ArticleIdList><ArticleId IdType="pubmed">31474567</ArticleId></ArticleIdList></Reference><Reference><Citation>Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, et al. The liver‐alpha‐cell Axis and type 2 diabetes. Endocr Rev. 2019;40(5):1353‐1366.</Citation><ArticleIdList><ArticleId IdType="pubmed">30920583</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet‐induced obese mice. EBioMedicine. 2017;20:137‐149.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5478253</ArticleId><ArticleId IdType="pubmed">28579299</ArticleId></ArticleIdList></Reference><Reference><Citation>Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347‐357.</Citation><ArticleIdList><ArticleId IdType="pubmed">30415602</ArticleId></ArticleIdList></Reference><Reference><Citation>Heerspink HJL, Stefansson BV, Correa‐Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436‐1446.</Citation><ArticleIdList><ArticleId IdType="pubmed">32970396</ArticleId></ArticleIdList></Reference><Reference><Citation>Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium‐glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190‐1195.</Citation><ArticleIdList><ArticleId IdType="pubmed">26861783</ArticleId></ArticleIdList></Reference><Reference><Citation>Brisnovali NF, Franco I, Abdelgawwad A, et al. Effects of SGLT2 ablation or inhibition on corticosterone secretion in high‐fat‐fed mice: exploring a nexus with cytokine levels. bioRxiv . 2024. 10.1101/2024.04.18.590099</Citation><ArticleIdList><ArticleId IdType="doi">10.1101/2024.04.18.590099</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen S, Wang Q, Christodoulou A, et al. Sodium glucose cotransporter‐2 inhibitor empagliflozin reduces infarct size independently of sodium glucose cotransporter‐2. Circulation. 2023;147(3):276‐279.</Citation><ArticleIdList><ArticleId IdType="pubmed">36649392</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu Q, Yao Q, Hu T, et al. Dapagliflozin protects against chronic heart failure in mice by inhibiting macrophage‐mediated inflammation, independent of SGLT2. Cell Rep Med. 2023;4(12):101334.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10772464</ArticleId><ArticleId IdType="pubmed">38118414</ArticleId></ArticleIdList></Reference><Reference><Citation>Rieg T, Masuda T, Gerasimova M, et al. Increase in SGLT1‐mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306(2):F188‐F193.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3920019</ArticleId><ArticleId IdType="pubmed">24226519</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39617894</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1479-5876</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>01</Day></PubDate></JournalIssue><Title>Journal of translational medicine</Title><ISOAbbreviation>J Transl Med</ISOAbbreviation></Journal><ArticleTitle>Interactions between the gut microbiome and DNA methylation patterns in blood and visceral adipose tissue in subjects with different metabolic characteristics.</ArticleTitle><Pagination><StartPage>1089</StartPage><MedlinePgn>1089</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">1089</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12967-024-05746-y</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The gut microbiome has been reported to induce epigenetic modifications in the host, which may be involved in the pathophysiology of metabolic diseases.</AbstractText><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To evaluate the potential interactions between the gut microbiome and DNA methylome in subjects with different metabolic characteristics.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Sixty-four participants with different metabolic characteristics (i.e., participants without obesity -healthy controls-, and participants with obesity and normal insulin sensitivity/insulin resistance/ type 2 diabetes-T2DM-) were included in this study. A machine learning approach was performed in order to identify distinctive patterns in three omics (gut microbiome, blood DNA methylome, and visceral adipose tissue-VAT- DNA methylome) according to the different study groups.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Robust distinctive distribution patterns of the three different omics were found between healthy controls and patients with obesity; participants with and without T2DM, and patients with obesity with and without insulin resistance. Importantly, strong correlations between the gut microbiome (including Odoribacteriaceae and Christensenllaceae families) and both blood and VAT DNA methylome were found. Moreover, in the entire study population, three main bacterial genera (Sutterella, Collinsella and Eubacterium) were related to the epigenetic regulation of different genes involved in distinct processes related to cellular metabolism and metabolic diseases, including small ubiquitin-related modifier (SUMO) transferase activity or lipid binding.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We show that distinctive interactions between the gut microbiome and DNA methylome may occur in subjects with different metabolic characteristics. Further research is needed to elucidate the potential role of these interactions in the pathophysiology of obesity and related comorbidities.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Martínez-Montoro</LastName><ForeName>José Ignacio</ForeName><Initials>JI</Initials><Identifier Source="ORCID">0000-0001-9761-6888</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of Medicine, University of Málaga, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Martín-Núñez</LastName><ForeName>Gracia M</ForeName><Initials>GM</Initials><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>González-Jiménez</LastName><ForeName>Andrés</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Garrido-Sánchez</LastName><ForeName>Lourdes</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain. lourgarrido@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain. lourgarrido@gmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. lourgarrido@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Moreno-Indias</LastName><ForeName>Isabel</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain. isabel.moreno@ibima.eu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain. isabel.moreno@ibima.eu.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. isabel.moreno@ibima.eu.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tinahones</LastName><ForeName>Francisco J</ForeName><Initials>FJ</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Instituto de Investigación Biomédica de Málaga (IBIMA)- Plataforma BIONAND, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of Medicine, University of Málaga, Málaga, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CM22/00217</GrantID><Agency>Instituto de Salud Carlos III</Agency><Country/></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Transl Med</MedlineTA><NlmUniqueID>101190741</NlmUniqueID><ISSNLinking>1479-5876</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000069196" MajorTopicYN="Y">Gastrointestinal Microbiome</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050152" MajorTopicYN="Y">Intra-Abdominal Fat</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="N">Insulin Resistance</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DNA methylation</Keyword><Keyword MajorTopicYN="N">Epigenetics</Keyword><Keyword MajorTopicYN="N">Gut microbiota</Keyword><Keyword MajorTopicYN="N">Insulin resistance</Keyword><Keyword MajorTopicYN="N">Obesity</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword><Keyword MajorTopicYN="N">Visceral adipose tissue</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: This study was conducted according to the principles of the Declaration of Helsinki, and was reviewed and approved by the Ethics Research Committee of Virgen de la Victoria University Hospital (Málaga, Spain). All participants gave their written informed consent to participate in this study. Consent for publication: Not applicable. Competing interests: The authors declare that they have no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>3</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>23</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617894</ArticleId><ArticleId IdType="pmc">PMC11610095</ArticleId><ArticleId IdType="doi">10.1186/s12967-024-05746-y</ArticleId><ArticleId IdType="pii">10.1186/s12967-024-05746-y</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The science of obesity management: an endocrine society scientific statement. Endocr Rev. 2018;39(2):79–132.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5888222</ArticleId><ArticleId IdType="pubmed">29518206</ArticleId></ArticleIdList></Reference><Reference><Citation>Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;15(133):155217.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9107388</ArticleId><ArticleId IdType="pubmed">35584732</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021;12:706978.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8450866</ArticleId><ArticleId IdType="pubmed">34552557</ArticleId></ArticleIdList></Reference><Reference><Citation>Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother. 2022;147:112678.</Citation><ArticleIdList><ArticleId IdType="pubmed">35134709</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling C, Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019;29(5):1028–44.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6509280</ArticleId><ArticleId IdType="pubmed">30982733</ArticleId></ArticleIdList></Reference><Reference><Citation>Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes. 2022;14(1):2022407.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8744890</ArticleId><ArticleId IdType="pubmed">35000562</ArticleId></ArticleIdList></Reference><Reference><Citation>Shock T, Badang L, Ferguson B, Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem. 2021;95:108631.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8355029</ArticleId><ArticleId IdType="pubmed">33789148</ArticleId></ArticleIdList></Reference><Reference><Citation>Ansari I, Raddatz G, Gutekunst J, Ridnik M, Cohen D, Abu-Remaileh M, et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol. 2020;5(4):610–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">32015497</ArticleId></ArticleIdList></Reference><Reference><Citation>Edwards JR, Yarychkivska O, Boulard M, Bestor TH. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5422929</ArticleId><ArticleId IdType="pubmed">28503201</ArticleId></ArticleIdList></Reference><Reference><Citation>Ryan FJ, Ahern AM, Fitzgerald RS, Laserna-Mendieta EJ, Power EM, Clooney AG, et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun. 2020;11(1):1512.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7089947</ArticleId><ArticleId IdType="pubmed">32251296</ArticleId></ArticleIdList></Reference><Reference><Citation>Tahara T, Hirata I, Nakano N, Tahara S, Horiguchi N, Kawamura T, et al. Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget. 2017;8(37):61917–26.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5617474</ArticleId><ArticleId IdType="pubmed">28977914</ArticleId></ArticleIdList></Reference><Reference><Citation>Ramos-Molina B, Sánchez-Alcoholado L, Cabrera-Mulero A, Lopez-Dominguez R, Carmona-Saez P, Garcia-Fuentes E, et al. Gut microbiota composition is associated with the global DNA methylation pattern in obesity. Front Genet. 2019;10:613.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6616130</ArticleId><ArticleId IdType="pubmed">31333715</ArticleId></ArticleIdList></Reference><Reference><Citation>Kumar H, Lund R, Laiho A, Lundelin K, Ley RE, Isolauri E, et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. mBio. 2014. 10.1128/mBio.02113-14.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4271550</ArticleId><ArticleId IdType="pubmed">25516615</ArticleId></ArticleIdList></Reference><Reference><Citation>Tinahones FJ, Garrido-Sanchez L, Miranda M, García-Almeida JM, Macias-Gonzalez M, Ceperuelo V, et al. Obesity and insulin resistance-related changes in the expression of lipogenic and lipolytic genes in morbidly obese subjects. Obes Surg. 2010;20(11):1559–67.</Citation><ArticleIdList><ArticleId IdType="pubmed">20512427</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.</Citation><ArticleIdList><ArticleId IdType="pubmed">4337382</ArticleId></ArticleIdList></Reference><Reference><Citation>Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">3899825</ArticleId></ArticleIdList></Reference><Reference><Citation>Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3546795</ArticleId><ArticleId IdType="pubmed">23175756</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–62.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6735831</ArticleId><ArticleId IdType="pubmed">30657866</ArticleId></ArticleIdList></Reference><Reference><Citation>Shock T, Badang L, Ferguson B, Martinez-Guryn K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J Nutr Biochem. 2021;95:108631.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8355029</ArticleId><ArticleId IdType="pubmed">33789148</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochimica et Biophysica Acta BBA Rev Cancer. 2021;1875(1):188490.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7856101</ArticleId><ArticleId IdType="pubmed">33321173</ArticleId></ArticleIdList></Reference><Reference><Citation>Salas-Perez F, Assmann TS, Ramos-Lopez O, Martínez JA, Riezu-Boj JI, Milagro FI. Crosstalk between gut microbiota and epigenetic markers in obesity development: relationship between ruminococcus, BMI, and MACROD2/SEL1L2 Methylation. Nutrients. 2023;15(7):1550.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10097304</ArticleId><ArticleId IdType="pubmed">37049393</ArticleId></ArticleIdList></Reference><Reference><Citation>Vähämiko S, Laiho A, Lund R, Isolauri E, Salminen S, Laitinen K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur J Nutr. 2019;58(1):367–77.</Citation><ArticleIdList><ArticleId IdType="pubmed">29299736</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Vossen EWJ, Bastos D, Stols-Gonçalves D, de Goffau MC, Davids M, Pereira JPB, et al. Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes. 2021. 10.1080/19490976.2021.1993513.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8583152</ArticleId><ArticleId IdType="pubmed">34747338</ArticleId></ArticleIdList></Reference><Reference><Citation>Stols-Gonçalves D, Mak AL, Madsen MS, van der Vossen EWJ, Bruinstroop E, Henneman P, et al. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach. Gut Microbes. 2023. 10.1080/19490976.2023.2223330.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10269428</ArticleId><ArticleId IdType="pubmed">37317027</ArticleId></ArticleIdList></Reference><Reference><Citation>Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, et al. A taxonomic signature of obesity in a large study of American adults. Sci Rep. 2018;8(1):1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6021409</ArticleId><ArticleId IdType="pubmed">29950689</ArticleId></ArticleIdList></Reference><Reference><Citation>Xu Z, Jiang W, Huang W, Lin Y, Chan FKL, Ng SC. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 2022. 10.1186/s12263-021-00703-6.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8903526</ArticleId><ArticleId IdType="pubmed">35093025</ArticleId></ArticleIdList></Reference><Reference><Citation>Tavella T, Rampelli S, Guidarelli G, Bazzocchi A, Gasperini C, Pujos-Guillot E, et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes. 2021. 10.1080/19490976.2021.1880221.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7889099</ArticleId><ArticleId IdType="pubmed">33557667</ArticleId></ArticleIdList></Reference><Reference><Citation>Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, et al. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep. 2021;11(1):5532.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7943584</ArticleId><ArticleId IdType="pubmed">33750881</ArticleId></ArticleIdList></Reference><Reference><Citation>Secolin R, Gonsales MC, Rocha CS, Naslavsky M, De Marco L, Bicalho MAC, et al. Exploring a region on chromosome 8p23.1 displaying positive selection signals in Brazilian admixed populations: additional insights into predisposition to obesity and related disorders. Front Genet. 2021;12:636542.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8027303</ArticleId><ArticleId IdType="pubmed">33841501</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang L, Peltier R, Zhang M, Song D, Huang H, Chen G, et al. Desuccinylation-triggered peptide self-assembly: live cell imaging of SIRT5 activity and mitochondrial activity modulation. J Am Chem Soc. 2020;142(42):18150–9.</Citation><ArticleIdList><ArticleId IdType="pubmed">32991157</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, et al. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci. 2019;76(21):4341–54.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC11105172</ArticleId><ArticleId IdType="pubmed">31119300</ArticleId></ArticleIdList></Reference><Reference><Citation>Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92.</Citation><ArticleIdList><ArticleId IdType="pubmed">24325907</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo W, Zhang Z, Li L, Liang X, Wu Y, Wang X, et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res. 2022;182:106355.</Citation><ArticleIdList><ArticleId IdType="pubmed">35842183</ArticleId></ArticleIdList></Reference><Reference><Citation>Vascellari S, Palmas V, Melis M, Pisanu S, Cusano R, Uva P, et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems. 2020;5(5):10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7498685</ArticleId><ArticleId IdType="pubmed">32934117</ArticleId></ArticleIdList></Reference><Reference><Citation>Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6819567</ArticleId><ArticleId IdType="pubmed">31660948</ArticleId></ArticleIdList></Reference><Reference><Citation>Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">27928878</ArticleId></ArticleIdList></Reference><Reference><Citation>Gurwara S, Ajami N, Jang A, Hessel F, Chen L, Plew S, et al. Dietary nutrients involved in one-carbon metabolism and colonic mucosa-associated gut microbiome in individuals with an endoscopically normal colon. Nutrients. 2019;11(3):613.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6470629</ArticleId><ArticleId IdType="pubmed">30871224</ArticleId></ArticleIdList></Reference><Reference><Citation>Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD, et al. Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front Microbiol. 2021;15:12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8320334</ArticleId><ArticleId IdType="pubmed">34335546</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang S, Guo F, Yu M, Yang X, Yao Z, Li Q, et al. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J Hepatol. 2020;73(6):1482–95.</Citation><ArticleIdList><ArticleId IdType="pubmed">32738448</ArticleId></ArticleIdList></Reference><Reference><Citation>Foley KP, Zlitni S, Denou E, Duggan BM, Chan RW, Stearns JC, et al. Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat Commun. 2018;9(1):4681.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6224578</ArticleId><ArticleId IdType="pubmed">30409977</ArticleId></ArticleIdList></Reference><Reference><Citation>Agrawal N, Lawler K, Davidson CM, Keogh JM, Legg R, Barroso I, et al. Predicting novel candidate human obesity genes and their site of action by systematic functional screening in Drosophila. PLoS Biol. 2021;19(11):e3001255.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8575313</ArticleId><ArticleId IdType="pubmed">34748544</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen Q, Yang H, Feng Y, Zhang P, Wu W, Li S, et al. SOS1 gene polymorphisms are associated with gestational diabetes mellitus in a Chinese population: results from a nested case-control study in Taiyuan. China Diab Vasc Dis Res. 2018;15(2):158–61.</Citation><ArticleIdList><ArticleId IdType="pubmed">29233017</ArticleId></ArticleIdList></Reference><Reference><Citation>Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H, et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metab. 2020;32(5):844-859.e5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7875546</ArticleId><ArticleId IdType="pubmed">32888406</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics. 2012;7(4):340–3.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3368817</ArticleId><ArticleId IdType="pubmed">22419068</ArticleId></ArticleIdList></Reference><Reference><Citation>Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenet. 2021;13(1):45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7912509</ArticleId><ArticleId IdType="pubmed">33637115</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang SJ, Wang Y, Yang YL, Zheng H. Aberrant DNA methylation involved in obese women with systemic insulin resistance. Open Life Sci. 2018;13:201–7.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7874722</ArticleId><ArticleId IdType="pubmed">33817084</ArticleId></ArticleIdList></Reference><Reference><Citation>Kamynina E, Stover PJ. The roles of SUMO in metabolic regulation. Adv Exp Med Biol. 2017;963:143–68.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5471835</ArticleId><ArticleId IdType="pubmed">28197911</ArticleId></ArticleIdList></Reference><Reference><Citation>D’Aquila P, Carelli LL, De Rango F, Passarino G, Bellizzi D. Gut microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients. 2020;12(3):597.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7146473</ArticleId><ArticleId IdType="pubmed">32106534</ArticleId></ArticleIdList></Reference><Reference><Citation>Ribet D, Cossart P. Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens. Trends Cell Biol. 2018;28(11):926–40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7028394</ArticleId><ArticleId IdType="pubmed">30107971</ArticleId></ArticleIdList></Reference><Reference><Citation>Stabell M, Sæther T, Røhr ÅK, Gabrielsen OS, Myklebost O. Methylation-dependent SUMOylation of the architectural transcription factor HMGA2. Biochem Biophys Res Commun. 2021;552:91–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">33744765</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39617888</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>04</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1472-6823</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>02</Day></PubDate></JournalIssue><Title>BMC endocrine disorders</Title><ISOAbbreviation>BMC Endocr Disord</ISOAbbreviation></Journal><ArticleTitle>Safety and efficacy of different basal insulin in type 2 diabetes mellitus with chronic kidney disease in Ramadan: prospective observational study.</ArticleTitle><Pagination><StartPage>260</StartPage><MedlinePgn>260</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">260</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s12902-024-01778-z</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Diabetic kidney disease populations are categorized as high risk for fasting in Ramadan due to various potential fasting-related complications. Insulin analogues are recommended to be used in place of human insulin during fasting, as they carry a lower risk of hypoglycaemia and stable glycaemic variability. A paucity of data exits on the safety and efficacy of different basal insulin types during fasting for this population. This study aims to evaluate the safety and efficacy of three basal insulin among patients with Type 2 Diabetes Mellitus and concomitant mild to moderate chronic kidney disease who are keen to fast during Ramadan.</AbstractText><AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">A single-centered, prospective observational study was conducted among 46 patients with type 2 diabetes mellitus and concomitant chronic kidney disease stage 2 and 3 who were on three different types of basal insulin (Glargine U-100, Levemir, and Insulatard), fasted in Ramadan 2022. All variables were listed as median (IQR). Hypoglycaemia events and glycemic variability obtained from Freestyle Libre continuous glucose monitoring were compared between insulin groups. Changes in glycated haemoglobin, fasting plasma glucose, renal profile, body weight, body mass index, and waist circumference pre and post-Ramadan were evaluated.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The glycaemic variability was found highest in Insulatard with a median (IQR) of 37.2(33)% versus Levemir 34.4(32.4)% versus Glargine U-100 36.8(30.6)%, p = NS. Levemir had reported the lowest median time of below range of 2.5(13)% followed by Glargine 4(25)% and Insulatard 5(8)%; p = NS. The findings of this study indicated that glycated haemoglobin, fasting plasma glucose, renal profile, body weight, body mass index, and waist circumference did not alter statistically between the three groups post-Ramadan. Individually, Insulatard showed a significant reduction in weight and waist circumference (0.9kg, p = 0.026; 0.44 cm, p = 0.008) while Levemir showed a reduction in waist circumference (0.75cm, p = 0.019).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This study revealed that Insulatard, Levemir, and Glargine demonstrated similar levels of safety and efficacy among those with diabetic kidney disease who observed fasting during Ramadan.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Baharum</LastName><ForeName>Nur Haziqah</ForeName><Initials>NH</Initials><AffiliationInfo><Affiliation>Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, University Technology Mara, Sungai Buloh, 47000, Selangor, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wan Muhammad Hatta</LastName><ForeName>Sharifah Faradila</ForeName><Initials>SF</Initials><AffiliationInfo><Affiliation>Endocrine Unit, KPJ Damansara Specialist Hospital 2, Kuala Lumpur, 60000, Wilayah Persekutuan Kuala Lumpur, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zainordin</LastName><ForeName>Nur Aisyah</ForeName><Initials>NA</Initials><AffiliationInfo><Affiliation>Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, University Technology Mara, Sungai Buloh, 47000, Selangor, Malaysia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abdul Ghani</LastName><ForeName>Rohana</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, University Technology Mara, Sungai Buloh, 47000, Selangor, Malaysia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D064888">Observational Study</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>02</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMC Endocr Disord</MedlineTA><NlmUniqueID>101088676</NlmUniqueID><ISSNLinking>1472-6823</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>2ZM8CX04RZ</RegistryNumber><NameOfSubstance UI="D000069036">Insulin Glargine</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007514" MajorTopicYN="Y">Islam</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005215" MajorTopicYN="Y">Fasting</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051436" MajorTopicYN="Y">Renal Insufficiency, Chronic</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007003" MajorTopicYN="N">Hypoglycemia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000069036" MajorTopicYN="N">Insulin Glargine</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Diabetic kidney disease</Keyword><Keyword MajorTopicYN="N">Glycaemic variability</Keyword><Keyword MajorTopicYN="N">Time below range</Keyword></KeywordList><CoiStatement>Declarations. Ethics approval and consent to participate: The study was conducted according to the ethical guidelines of the Helsinki Declaration. The study protocol was approved by the Research Ethics Committee of University Technology MARA (REC no: REC/01/2022 (PG/FB/7). Written informed consent was obtained from each participant before data collection. Consent of application: Not applicable. Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>10</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>28</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>23</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>2</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617888</ArticleId><ArticleId IdType="pmc">PMC11610116</ArticleId><ArticleId IdType="doi">10.1186/s12902-024-01778-z</ArticleId><ArticleId IdType="pii">10.1186/s12902-024-01778-z</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Hitchcock J. The 5 pillars of Islam. Verbum. 2005;2(2):43–50.</Citation></Reference><Reference><Citation>Salti I, Bénard E, Detournay B, Bianchi-Biscay M, Le Brigand C, Voinet C, et al. A population-based study of diabetes and its characteristics during the fasting month of Ramadan in 13 countries: results of the epidemiology of diabetes and Ramadan 1422/2001 (EPIDIAR) study. Diabetes Care. 2004;27(10):2306–11.</Citation><ArticleIdList><ArticleId IdType="pubmed">15451892</ArticleId></ArticleIdList></Reference><Reference><Citation>Jabbar A, Hassanein M, Beshyah SA, Boye KS, Yu M, Babineaux SM. CREED study: hypoglycaemia during Ramadan in individuals with type 2 diabetes mellitus from three continents. Diabetes Res Clin Pract. 2017;132:19–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">28783529</ArticleId></ArticleIdList></Reference><Reference><Citation>Hassanein M, Al-Arouj M, Hamdy O, Bebakar WMW, Jabbar A, Al-Madani A et al. Diabetes and Ramadan: practical guidelines. Diabetes research and clinical practice. 2017;126:303 – 16.</Citation><ArticleIdList><ArticleId IdType="pubmed">28347497</ArticleId></ArticleIdList></Reference><Reference><Citation>Malik S, Bhanji A, Abuleiss H, Hamer R, Shah SH, Rashad R, et al. Effects of fasting on patients with chronic kidney disease during Ramadan and practical guidance for healthcare professionals. Clin Kidney J. 2021;14(6):1524–34.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7929006</ArticleId><ArticleId IdType="pubmed">34079617</ArticleId></ArticleIdList></Reference><Reference><Citation>Rolla A. Pharmacokinetic and pharmacodynamic advantages of insulin analogues and premixed insulin analogues over human insulins: impact on efficacy and safety. Am J Med. 2008;121(6):S9–19.</Citation><ArticleIdList><ArticleId IdType="pubmed">18514090</ArticleId></ArticleIdList></Reference><Reference><Citation>Donner T, Sarkar S. Insulin–pharmacology, therapeutic regimens, and principles of intensive insulin therapy. 2015.</Citation><ArticleIdList><ArticleId IdType="pubmed">25905175</ArticleId></ArticleIdList></Reference><Reference><Citation>Elmalti A, Mukhtar M, Kenz S, Skaria S, Elgzyri T. Transient increase in glucose variability during Ramadan fasting in patients with insulin-treated type 2 diabetes: a preliminary study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews; 2023. p. 102745.</Citation><ArticleIdList><ArticleId IdType="pubmed">37001416</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling J, Ng JKC, Lau ES, Ma RC, Kong AP, Luk AO, et al. Continuous glucose monitoring metrics in the assessment of glycemia in moderate-to-advanced CKD in diabetes. Kidney Int Rep. 2022;7(6):1354–63.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9171696</ArticleId><ArticleId IdType="pubmed">35685309</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim SK, Suh S, Kim MY, Chung HS, Hur KY, Kim SW, et al. Three-day continuous glucose monitoring for rapid assessment of hypoglycemic events and glycemic variability in type 1 diabetic patients. Endocr J. 2011;58(7):535–41.</Citation><ArticleIdList><ArticleId IdType="pubmed">21532214</ArticleId></ArticleIdList></Reference><Reference><Citation>Handa T, Nakamura A, Miya A, Nomoto H, Kameda H, Cho KY, et al. The association between hypoglycemia and glycemic variability in elderly patients with type 2 diabetes: a prospective observational study. Diabetol Metab Syndr. 2021;13:1–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8017873</ArticleId><ArticleId IdType="pubmed">33794984</ArticleId></ArticleIdList></Reference><Reference><Citation>Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol. 2021;20:1–13.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7792304</ArticleId><ArticleId IdType="pubmed">33413392</ArticleId></ArticleIdList></Reference><Reference><Citation>Bakiner O, Ertorer ME, Bozkirli E, Tutuncu NB, Demirag NG. Repaglinide plus single-dose insulin glargine: a safe regimen for low-risk type 2 diabetic patients who insist on fasting in Ramadan. Acta Diabetol. 2009;46(1):63–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">18825302</ArticleId></ArticleIdList></Reference><Reference><Citation>Cesur M, Corapcioglu D, Gursoy A, Gonen S, Ozduman M, Emral R, et al. A comparison of glycemic effects of glimepiride, repaglinide, and insulin glargine in type 2 diabetes mellitus during Ramadan fasting. Diabetes Res Clin Pract. 2007;75(2):141–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">16815586</ArticleId></ArticleIdList></Reference><Reference><Citation>Hassanein M, Akif Buyukbese M, Malek R, Pilorget V, Naqvi M, Berthou B, et al. Real-world safety and effectiveness of insulin glargine 300 U/mL in participants with type 2 diabetes who fast during Ramadan: the observational ORION study. Diabetes Res Clin Pract. 2020;166:108189.</Citation><ArticleIdList><ArticleId IdType="pubmed">32360709</ArticleId></ArticleIdList></Reference><Reference><Citation>Shehadeh N, Maor Y, Group RS. Effect of a new insulin treatment regimen on glycaemic control and quality of life of muslim patients with type 2 diabetes mellitus during Ramadan fast–an open label, controlled, multicentre, cluster randomised study. Int J Clin Pract. 2015;69(11):1281–8.</Citation><ArticleIdList><ArticleId IdType="pubmed">26234442</ArticleId></ArticleIdList></Reference><Reference><Citation>Hassanein M, Echtay AS, Malek R, Omar M, Shaikh SS, Ekelund M, et al. Original paper: efficacy and safety analysis of insulin degludec/insulin aspart compared with biphasic insulin aspart 30: a phase 3, multicentre, international, open-label, randomised, treat-to-target trial in patients with type 2 diabetes fasting during Ramadan. Diabetes Res Clin Pract. 2018;135:218–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">29183844</ArticleId></ArticleIdList></Reference><Reference><Citation>Yahaya AS, Ibrahim A, Othman MS, Ismail MP. Suggested insulin regimen for pregnant women with diabetes who wish to fast in Ramadan. IIUM Med J Malaysia. 2018;17(2).</Citation></Reference><Reference><Citation>Ji L, Zhang P, Zhu D, Lu J, Guo X, Wu Y, et al. Comparative effectiveness and safety of different basal insulins in a real-world setting. Diabetes Obes Metabolism. 2017;19(8):1116–26.</Citation><ArticleIdList><ArticleId IdType="pubmed">28230322</ArticleId></ArticleIdList></Reference><Reference><Citation>Mbarki H, Tazi N, Najdi A, Tachfouti N, Arrayhani M, Sqalli T. Effects of fasting during Ramadan on renal function of patients with chronic kidney disease. Saudi J Kidney Dis Transplantation. 2015;26(2):320.</Citation><ArticleIdList><ArticleId IdType="pubmed">25758882</ArticleId></ArticleIdList></Reference><Reference><Citation>Bakhit AA, Kurdi AM, Wadera JJ, Alsuwaida AO. Effects of Ramadan fasting on moderate to severe chronic kidney disease: a prospective observational study. Saudi Med J. 2017;38(1):48.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5278065</ArticleId><ArticleId IdType="pubmed">28042630</ArticleId></ArticleIdList></Reference><Reference><Citation>Hassan S, Hassan F, Abbas N, Hassan K, Khatib N, Edgim R, et al. Does Ramadan fasting affect hydration status and kidney function in CKD patients? Annals Nutr Metabolism. 2018;72(3):241–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">29518785</ArticleId></ArticleIdList></Reference><Reference><Citation>Kara E, Sahin OZ, Kizilkaya B, Ozturk B, Pusuroglu G, Yildirim S, et al. Fasting in Ramadan is not associated with deterioration of chronic kidney disease: a prospective observational study. Saudi J Kidney Dis Transplantation. 2017;28(1):68.</Citation><ArticleIdList><ArticleId IdType="pubmed">28098105</ArticleId></ArticleIdList></Reference><Reference><Citation>Bernieh B, Al Hakim MR, Boobes Y, Zidan FMA. Fasting Ramadan in chronic kidney disease patients: clinical and biochemical effects. Saudi J Kidney Dis Transplantation. 2010;21(5):898.</Citation><ArticleIdList><ArticleId IdType="pubmed">20814128</ArticleId></ArticleIdList></Reference><Reference><Citation>Norouzy A, Salehi M, Philippou E, Arabi H, Shiva F, Mehrnoosh S, et al. Effect of fasting in R amadan on body composition and nutritional intake: a prospective study. J Hum Nutr Dietetics. 2013;26:97–104.</Citation><ArticleIdList><ArticleId IdType="pubmed">23679071</ArticleId></ArticleIdList></Reference><Reference><Citation>Akkoca M, Metin ZE, Topaloglu O, Tokgoz S, Cihan G, San I. An evaluation of the effects of Ramadan fasting on anthropometric, metabolic and endocrine parameters. Progress Nutr. 2018;20(3):503–9.</Citation></Reference><Reference><Citation>Hassanein M, Afandi B, Ahmedani MY, Alamoudi RM, Alawadi F, Bajaj HS, et al. Diabetes and Ramadan: practical guidelines 2021. Diabetes Res Clin Pract. 2022;185:109185.</Citation><ArticleIdList><ArticleId IdType="pubmed">35016991</ArticleId></ArticleIdList></Reference><Reference><Citation>Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40(12):1631–40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6467165</ArticleId><ArticleId IdType="pubmed">29162583</ArticleId></ArticleIdList></Reference><Reference><Citation>Kaplan W, Afandi B, Al Hassani N. Comparison between insulin glargine and insulin detemir in adolescents with type 1 diabetes during Ramadan fasting. J Diabetes Endocr Pract. 2022;5(02):061–4.</Citation></Reference><Reference><Citation>Porcellati F, Rossetti P, Busciantella NR, Marzotti S, Lucidi P, Luzio S, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care. 2007;30(10):2447–52.</Citation><ArticleIdList><ArticleId IdType="pubmed">17623819</ArticleId></ArticleIdList></Reference><Reference><Citation>Lessan N, Hannoun Z, Hasan H, Barakat M. Glucose excursions and glycaemic control during Ramadan fasting in diabetic patients: insights from continuous glucose monitoring (CGM). Diabetes Metab. 2015;41(1):28–36.</Citation><ArticleIdList><ArticleId IdType="pubmed">25497966</ArticleId></ArticleIdList></Reference><Reference><Citation>Fernando HA, Zibellini J, Harris RA, Seimon RV, Sainsbury A. Effect of Ramadan fasting on weight and body composition in healthy non-athlete adults: a systematic review and meta-analysis. Nutrients. 2019;11(2):478.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6412279</ArticleId><ArticleId IdType="pubmed">30813495</ArticleId></ArticleIdList></Reference><Reference><Citation>Russell-Jones D, Danne T, Hermansen K, Niswender K, Robertson K, Thalange N, et al. Weight‐sparing effect of insulin detemir: a consequence of central nervous system‐mediated reduced energy intake? Diabetes. Obes Metabolism. 2015;17(10):919–27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4744774</ArticleId><ArticleId IdType="pubmed">25974283</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39617593</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>02</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>01</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-3592</ISSN><JournalIssue CitedMedium="Internet"><Volume>900</Volume><PubDate><Year>2024</Year><Season>Nov-Dec</Season></PubDate></JournalIssue><Title>Mutation research. Genetic toxicology and environmental mutagenesis</Title><ISOAbbreviation>Mutat Res Genet Toxicol Environ Mutagen</ISOAbbreviation></Journal><ArticleTitle>Investigation of genetic instability in patients with Diabetes Mellitus type I, II and LADA using buccal micronucleus cytome assay.</ArticleTitle><Pagination><StartPage>503828</StartPage><MedlinePgn>503828</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mrgentox.2024.503828</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1383-5718(24)00104-9</ELocationID><Abstract><AbstractText>The aim of our pilot study was to investigate the frequency of micronuclei (MN) and other nuclear anomalies in exfoliated cells of the oral mucosa in patients with type I, II, and LADA (Latent Autoimmune Diabetes in Adults, classified as type 1.5 intermediate, slowly progressing diabetes) types of diabetes mellitus (DM) and compare them with healthy individuals of the Armenian population using the MN test. For each participant essential clinical and biochemical parameters were studied, including blood pressure, duration of illness, glycosylated hemoglobin (HbA1c), blood glucose, plasma glucose, urea, total protein, creatinine, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, HOMA-IR (insulin resistance), insulin, and triglycerides, as well as necessary anthropometric, genealogical, and genetic data. All participants were surveyed regarding habits that might affect MN levels, such as smoking, alcohol consumption, drug use, hereditary diseases, and viral infections. Cytogenetic analyses of exfoliated cells showed that the level of MN in exfoliated cells of DM patients was elevated approximately two to three times compared to healthy individuals. However, statistical significance was only reached in type I DM and LADA patients. The levels of other nuclear anomalies in the squamous epithelial cells of DM patients were also analyzed, and a significant increase in their levels was observed in all three DM types, indicating cytotoxic and genotoxic effects. The results of this study also revealed a high correlation between the total number of MN, cells with MN, blood glucose concentration, and glycosylated hemoglobin.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Parsadanyan</LastName><ForeName>G</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Yerevan State Medical University, Yerevan, Armenia. Electronic address: Gohar@Parsadanyan.AM.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zalinyan</LastName><ForeName>G</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Yerevan State University, Yerevan, Armenia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Markosyan</LastName><ForeName>R</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Yerevan State Medical University, Yerevan, Armenia; Center of Endocrinology "Muratsan" MC, Yerevan, Armenia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sarkisyan</LastName><ForeName>M</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Yerevan State Medical University, Yerevan, Armenia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aghajanova</LastName><ForeName>E</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Yerevan State Medical University, Yerevan, Armenia; Center of Endocrinology "Muratsan" MC, Yerevan, Armenia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sahakyan</LastName><ForeName>A</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Medline Clinic MC, Yerevan, Armenia.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>10</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Mutat Res Genet Toxicol Environ Mutagen</MedlineTA><NlmUniqueID>101632149</NlmUniqueID><ISSNLinking>1383-5718</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015162" MajorTopicYN="Y">Micronucleus Tests</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003922" MajorTopicYN="Y">Diabetes Mellitus, Type 1</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009061" MajorTopicYN="Y">Mouth Mucosa</DescriptorName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D010865" MajorTopicYN="N">Pilot Projects</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D042822" MajorTopicYN="N">Genomic Instability</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D048629" MajorTopicYN="N">Micronuclei, Chromosome-Defective</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Buccal mucosa</Keyword><Keyword MajorTopicYN="N">Diabetes mellitus</Keyword><Keyword MajorTopicYN="N">Micronucleus</Keyword><Keyword MajorTopicYN="N">Nuclear anomalies</Keyword></KeywordList><CoiStatement>Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Conflicts of Interest The authors declare that they have no conflicts of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>6</Hour><Minute>27</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>21</Hour><Minute>16</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617593</ArticleId><ArticleId IdType="doi">10.1016/j.mrgentox.2024.503828</ArticleId><ArticleId IdType="pii">S1383-5718(24)00104-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39617334</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8227</ISSN><JournalIssue CitedMedium="Internet"><Volume>219</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes research and clinical practice</Title><ISOAbbreviation>Diabetes Res Clin Pract</ISOAbbreviation></Journal><ArticleTitle>High one-hour plasma glucose is an intermediate risk state and an early predictor of type 2 diabetes in a longitudinal Korean cohort.</ArticleTitle><Pagination><StartPage>111938</StartPage><MedlinePgn>111938</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.diabres.2024.111938</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8227(24)00848-9</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Because one-hour post-load plasma glucose (1h-PG) ≥ 155 mg/dL (8.6 mmol/L) has been proposed as an early marker for future diabetes but lacks sufficient longitudinal confirmation of its risk, we aimed to evaluate the risk of T2D based on 1h-PG and track changes of insulin sensitivity and β-cell function over time by 1h-PG in a longitudinal cohort.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">OGTTs were conducted every 2 years in the 10-year longitudinal Korean Genome Epidemiology study (n = 6144) with three groups characterized at baseline: Low 1h-PG (< 155 mg/dL) with Normal Glucose Tolerance (NGT), High 1h-PG (≥155 mg/dL) with NGT, and prediabetes (PreDM).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">T2D risk was higher in people with High 1h-PG with NGT and PreDM than those with Low 1h-PG with NGT. Baseline insulin sensitivity in Low 1h-PG as measured by the insulin sensitivity and secretion (ISS) model and Matsuda insulin sensitivity index (ISI) was higher than in High 1h-PG, which was comparable to PreDM. β-cell function as assessed by ISS and the insulinogenic index decreased from Low 1h-PG to High 1h-PG to PreDM. Over time, insulin sensitivity decreased in the three groups. Time from High 1h-PG to T2D was 0.9 years shorter than from Low 1h-PG. All participants passed the 1h-PG threshold for T2D (209 mg/dL, 11.6 mmol/L) first, and 74 % passed the 1h-PG threshold for impaired glucose tolerance (IGT; 155 mg/dL) first.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">High 1h-PG NGT is an intermediate risk category between Low 1h-PG NGT and PreDM and may provide an opportunity for early intervention to prese rve ß-cell function.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Im</LastName><ForeName>Myungsoo</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Jinmi</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Biostatistics, Clinical Trial Center, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ryang</LastName><ForeName>Soree</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Doohwa</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yi</LastName><ForeName>Wook</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mi Kim</LastName><ForeName>Jeong</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kim</LastName><ForeName>Minsoo</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jin Kim</LastName><ForeName>Yeong</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jin Kim</LastName><ForeName>Young</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Center for Global R&D Data Analysis, Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI), Seoul, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kang</LastName><ForeName>Hyuk</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Division of Fundamental Research On Public Agenda, National Institute for Mathematical Sciences, Daejeon, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Joo Kim</LastName><ForeName>In</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jagannathan</LastName><ForeName>Ram</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Hubert Department of Global Health, Emory University School of Public Health Atlanta, GA, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chung</LastName><ForeName>Stephanie T</ForeName><Initials>ST</Initials><AffiliationInfo><Affiliation>Section on Pediatric Diabetes, Obesity, and Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bergman</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>NYU Grossman School of Medicine, Holman Division of Endocrinology, Diabetes and Metabolism, VA New York Harbor Healthcare System, New York, NY, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sherman</LastName><ForeName>Arthur S</ForeName><Initials>AS</Initials><AffiliationInfo><Affiliation>Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Soo Kim</LastName><ForeName>Sang</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea. Electronic address: drsskim7@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ha</LastName><ForeName>Joon</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Mathematics, Howard University, Washington DC, USA. Electronic address: joon.ha@howard.edu.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Diabetes Res Clin Pract</MedlineTA><NlmUniqueID>8508335</NlmUniqueID><ISSNLinking>0168-8227</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008137" MajorTopicYN="N">Longitudinal Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D056910" MajorTopicYN="N" Type="Geographic">Republic of Korea</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="Y">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007333" MajorTopicYN="Y">Insulin Resistance</DescriptorName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050417" MajorTopicYN="N">Insulin-Secreting Cells</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Beta-cell function</Keyword><Keyword MajorTopicYN="N">Insulin sensitivity</Keyword><Keyword MajorTopicYN="N">One-hour plasma glucose</Keyword><Keyword MajorTopicYN="N">Prediabetes</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>19</Hour><Minute>30</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617334</ArticleId><ArticleId IdType="doi">10.1016/j.diabres.2024.111938</ArticleId><ArticleId IdType="pii">S0168-8227(24)00848-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39617333</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>11</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1872-8227</ISSN><JournalIssue CitedMedium="Internet"><Volume>219</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Diabetes research and clinical practice</Title><ISOAbbreviation>Diabetes Res Clin Pract</ISOAbbreviation></Journal><ArticleTitle>Differences in target organ damage in individuals with intermediate hyperglycemia and type 2 diabetes identified by 1-hour plasma glucose during an oral glucose tolerance test.</ArticleTitle><Pagination><StartPage>111941</StartPage><MedlinePgn>111941</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.diabres.2024.111941</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8227(24)00851-9</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">The International Diabetes Federation (IDF) has recently recommended determination of 1-hour glucose during an oral glucose tolerance test (OGTT) to diagnose intermediate hyperglycemia (IH) and type 2 diabetes (T2D). Herein, we investigated the implications of IDF recommendation for characterizing the risk of cardiovascular target organ damage including left ventricular mass normalized by body surface area (LVM index [LVMI]), and myocardial mechano-energetic efficiency normalized by LVM (MEEi) in individuals with IH and T2D.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">LVMI, and MEEi were assessed in 1847 adults classified on the basis of fasting, 1-hour and 2- hour glucose during an OGTT according to the IDF recommendation as having normal glucose tolerance (NGT, n = 736), isolated impaired fasting glucose (iIFG, n = 105), IH (n = 676), and newly diagnosed T2D (n = 330).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">As compared with NGT group, individuals with either IH or T2D exhibited significantly higher LVMI (97 ± 26, 109 ± 30, and 116 ± g/m2, P < 0.001, respectively), and a decrease in MEEi (0.42 ± 0.11, 0.37 ± 0.10, and 0.35 ± 0.11 ml/sec*g-1, P < 0.001, respectively). LVMI, and MEEi did not differ between NGT and iIFG groups.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The thresholds of 1-hour post-load glucose proposed by IDF as diagnostic criteria for IH and T2D are capable of detecting individuals at risk of cardiovascular target organ damage.</AbstractText><CopyrightInformation>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Assunta Cefalo</LastName><ForeName>Chiara Maria</ForeName><Initials>CM</Initials><AffiliationInfo><Affiliation>Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Riccio</LastName><ForeName>Alessia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fiorentino</LastName><ForeName>Teresa Vanessa</ForeName><Initials>TV</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy. Electronic address: vanessa.fiorentino@unicz.it.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Succurro</LastName><ForeName>Elena</ForeName><Initials>E</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mannino</LastName><ForeName>Gaia Chiara</ForeName><Initials>GC</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Perticone</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sciacqua</LastName><ForeName>Angela</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Andreozzi</LastName><ForeName>Francesco</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sesti</LastName><ForeName>Giorgio</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>Ireland</Country><MedlineTA>Diabetes Res Clin Pract</MedlineTA><NlmUniqueID>8508335</NlmUniqueID><ISSNLinking>0168-8227</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="Y">Glucose Tolerance Test</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006943" MajorTopicYN="Y">Hyperglycemia</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">1-hour post-load glucose</Keyword><Keyword MajorTopicYN="N">Cardiovascular damage</Keyword><Keyword MajorTopicYN="N">Intermediate hyperglycemia</Keyword><Keyword MajorTopicYN="N">Left ventricular mass</Keyword><Keyword MajorTopicYN="N">Myocardial mechano-energetic efficiency</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>9</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>12</Day><Hour>15</Hour><Minute>21</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>29</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>19</Hour><Minute>30</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617333</ArticleId><ArticleId IdType="doi">10.1016/j.diabres.2024.111941</ArticleId><ArticleId IdType="pii">S0168-8227(24)00851-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39617207</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>14</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>14</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1878-5875</ISSN><JournalIssue CitedMedium="Internet"><Volume>178</Volume><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>The international journal of biochemistry & cell biology</Title><ISOAbbreviation>Int J Biochem Cell Biol</ISOAbbreviation></Journal><ArticleTitle>Adipose tissue macrophages-derived exosomal MiR-500a-5p under high glucose promotes adipocytes inflammation by suppressing Nrf2 expression.</ArticleTitle><Pagination><StartPage>106713</StartPage><MedlinePgn>106713</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biocel.2024.106713</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1357-2725(24)00206-1</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Type 2 diabetes (T2DM) is a chronic metabolic disorder characterized by insulin resistance and chronic inflammation. Adipose tissue macrophages (ATMs), central players in mediating pro-inflammatory responses within adipose tissue, have been shown to influence insulin sensitivity through exosome secretion. While the role of macrophages-derived exosomal miRNA has been studied in various diseases, their pathogenic roles in T2DM, particularly ATMs-derived exosomal miRNA in adipose tissue inflammation, remain underexplored.</AbstractText><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">This study focuses specifically on T2DM, investigating the role of ATM-derived exosomal miRNAs in adipose tissue inflammation, a critical factor in the pathogenesis of T2DM.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">ATM were isolated from visceral adipose tissues in patients with or without diabetes. Differentially expressed miRNAs in ATM-derived exosomes were predicted by high-throughput RNA sequencing. The RAW264.7 macrophages and 3T3-L1 preadipocytes was selected as a model system. Quantitative RT-PCR was used to assess miR-500a-5p expression. The direct binding of miR-500a-5p to Nrf2 mRNA 3' UTR was verified by dual luciferase assay.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">MiR-500a-5p was also enriched in the exosomes of high-glucose-treated macrophages. Furthermore, these exosomes induced high expression of miR-500a-5p and activation of the NLRP3 inflammasome in adipocytes when co-cultured with them. Additionally, the reduction of miR-500a-5p expression in macrophages by using a miR-500a-5p inhibitor ameliorated the pro-inflammatory properties of the exosomes, and co-culturing these exosomes with adipocytes resulted in decreased expression of NLRP3 inflammasome-associated proteins in adipocytes. In contrast, induction of miR-500a-5p expression led to the opposite results. Moreover, the dual-luciferase assay confirmed that miR-500a-5p directly targeted the 3' UTR of Nrf2 mRNA. Unlike miR-500a-5p, Nrf2 exhibited an anti-inflammatory response.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The results indicate that ATM-derived exosomal miR-500a-5p promotes NLRP3 inflammasome activation and adipose tissue inflammation through down-regulation of Nrf2 in adipocytes.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Ltd. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Yong-Zhen</ForeName><Initials>YZ</Initials><AffiliationInfo><Affiliation>Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The First People's Hospital of Zigong, Zigong 643099, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tian</LastName><ForeName>Yuan</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Chen</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yi-Fan</ForeName><Initials>YF</Initials><AffiliationInfo><Affiliation>Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Qu</LastName><ForeName>Shun-Lin</ForeName><Initials>SL</Initials><AffiliationInfo><Affiliation>Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Liang</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China. Electronic address: huangliang0530@hotmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Chi</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China. Electronic address: zhangchi9966@hotmail.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>Int J Biochem Cell Biol</MedlineTA><NlmUniqueID>9508482</NlmUniqueID><ISSNLinking>1357-2725</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance></Chemical><Chemical><RegistryNumber>IY9XDZ35W2</RegistryNumber><NameOfSubstance UI="D005947">Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C495635">NFE2L2 protein, human</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000071199">NLR Family, Pyrin Domain-Containing 3 Protein</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D035683" MajorTopicYN="Y">MicroRNAs</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051267" MajorTopicYN="Y">NF-E2-Related Factor 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D055354" MajorTopicYN="Y">Exosomes</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008264" MajorTopicYN="Y">Macrophages</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017667" MajorTopicYN="Y">Adipocytes</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="Y">Inflammation</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005947" MajorTopicYN="Y">Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000273" MajorTopicYN="Y">Adipose Tissue</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D041721" MajorTopicYN="Y">3T3-L1 Cells</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000067996" MajorTopicYN="N">RAW 264.7 Cells</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000071199" MajorTopicYN="N">NLR Family, Pyrin Domain-Containing 3 Protein</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Adipocyte</Keyword><Keyword MajorTopicYN="N">Exosome</Keyword><Keyword MajorTopicYN="N">Macrophage</Keyword><Keyword MajorTopicYN="N">MiR-500a-5p</Keyword><Keyword MajorTopicYN="N">NLRP3 inflammasome</Keyword><Keyword MajorTopicYN="N">Nrf2</Keyword></KeywordList><CoiStatement>Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>10</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>15</Day><Hour>0</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>2</Day><Hour>5</Hour><Minute>30</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>19</Hour><Minute>27</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39617207</ArticleId><ArticleId IdType="doi">10.1016/j.biocel.2024.106713</ArticleId><ArticleId IdType="pii">S1357-2725(24)00206-1</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39616659</PMID><DateCompleted><Year>2024</Year><Month>12</Month><Day>13</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>13</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1873-460X</ISSN><JournalIssue CitedMedium="Internet"><Volume>39</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of diabetes and its complications</Title><ISOAbbreviation>J Diabetes Complications</ISOAbbreviation></Journal><ArticleTitle>Prognostic importance of baseline and changes in serum uric acid for macro/microvascular and mortality outcomes in individuals with type 2 diabetes: The Rio de Janeiro type 2 diabetes cohort.</ArticleTitle><Pagination><StartPage>108921</StartPage><MedlinePgn>108921</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jdiacomp.2024.108921</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1056-8727(24)00247-2</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">To investigate the associations between baseline/changes in serum uric acid (sUA) and the risks for cardiovascular/microvascular outcomes and mortality in a type 2 diabetes cohort.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Baseline sUA was measured in 685 individuals, and 463 had a second sUA measurement during follow-up; sUA was analyzed as a continuous variable and categorized into sex-specific tertile subgroups and low/high levels (>4.5 mg/dl women; >5.5 mg/dl men). The risks associated with baseline sUA and its changes were examined by Cox analyses for all outcomes.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Median follow up was 10.7 years, there were 173 major cardiovascular events (MACEs), 268 all-cause deaths, 127 microalbuminuria, 104 renal failure, 160 retinopathy and 178 peripheral neuropathy outcomes. Baseline sUA was predictor of all outcomes, except all-cause mortality and retinopathy. In tertile and high/low sUA analyses, the hazard ratios (HRs) varied from 1.6 (microalbuminuria development) to 2.4 (MACEs; cardiovascular mortality). There was interaction with sex for MACEs, an increased risk was observed in women (HR: 2.6), but not in men (HR: 1.2). Changes in sUA were associated with the renal failure (HR: 2.4).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In a prospective cohort, high baseline sUA was a predictor of cardiovascular, renal and peripheral neuropathy. However, sUA changes were only predictor of renal failure.</AbstractText><CopyrightInformation>Copyright © 2024 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Cardoso</LastName><ForeName>Claudia R L</ForeName><Initials>CRL</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine; Universidade Federal do Rio de Janeiro, Brazil. Electronic address: claudiacardoso@hucff.ufrj.br.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>da Silva Pereira</LastName><ForeName>Lucas</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine; Universidade Federal do Rio de Janeiro, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Leite</LastName><ForeName>Nathalie C</ForeName><Initials>NC</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine; Universidade Federal do Rio de Janeiro, Brazil.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Salles</LastName><ForeName>Gil F</ForeName><Initials>GF</Initials><AffiliationInfo><Affiliation>Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine; Universidade Federal do Rio de Janeiro, Brazil.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Diabetes Complications</MedlineTA><NlmUniqueID>9204583</NlmUniqueID><ISSNLinking>1056-8727</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>268B43MJ25</RegistryNumber><NameOfSubstance UI="D014527">Uric Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014527" MajorTopicYN="Y">Uric Acid</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011379" MajorTopicYN="N">Prognosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001938" MajorTopicYN="N" Type="Geographic">Brazil</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003925" MajorTopicYN="Y">Diabetic Angiopathies</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003928" MajorTopicYN="N">Diabetic Nephropathies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003929" MajorTopicYN="N">Diabetic Neuropathies</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003930" MajorTopicYN="N">Diabetic Retinopathy</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000419" MajorTopicYN="N">Albuminuria</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiovascular events</Keyword><Keyword MajorTopicYN="N">Cohort study</Keyword><Keyword MajorTopicYN="N">Microvascular complications</Keyword><Keyword MajorTopicYN="N">Mortality</Keyword><Keyword MajorTopicYN="N">Serum uric acid</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>8</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>14</Day><Hour>0</Hour><Minute>24</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>18</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>18</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39616659</ArticleId><ArticleId IdType="doi">10.1016/j.jdiacomp.2024.108921</ArticleId><ArticleId IdType="pii">S1056-8727(24)00247-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39616150</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>30</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2049-3169</ISSN><JournalIssue CitedMedium="Internet"><Volume>16</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Dec</Month><Day>01</Day></PubDate></JournalIssue><Title>International journal of oral science</Title><ISOAbbreviation>Int J Oral Sci</ISOAbbreviation></Journal><ArticleTitle>A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes.</ArticleTitle><Pagination><StartPage>65</StartPage><MedlinePgn>65</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">65</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41368-024-00328-6</ELocationID><Abstract><AbstractText>Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Lingxiao</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Haoqing</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Chen</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yue</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Periodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>He</LastName><ForeName>Yilin</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ma</LastName><ForeName>Pan</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Jun</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fan</LastName><ForeName>Zhipeng</ForeName><Initials>Z</Initials><Identifier Source="ORCID">0000-0003-0629-3476</Identifier><AffiliationInfo><Affiliation>Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China. zpfan@ccmu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China. zpfan@ccmu.edu.cn.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China. zpfan@ccmu.edu.cn.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>12</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>India</Country><MedlineTA>Int J Oral Sci</MedlineTA><NlmUniqueID>101504351</NlmUniqueID><ISSNLinking>1674-2818</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D020100">Hydrogels</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D055354" MajorTopicYN="Y">Exosomes</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001861" MajorTopicYN="Y">Bone Regeneration</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D059630" MajorTopicYN="Y">Mesenchymal Stem Cells</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010012" MajorTopicYN="N">Osteogenesis</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="N">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020100" MajorTopicYN="N">Hydrogels</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: The authors declare no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2023</Year><Month>12</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>10</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>30</Day><Hour>23</Hour><Minute>15</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>12</Month><Day>1</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39616150</ArticleId><ArticleId IdType="pmc">PMC11608271</ArticleId><ArticleId IdType="doi">10.1038/s41368-024-00328-6</ArticleId><ArticleId IdType="pii">10.1038/s41368-024-00328-6</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Sculean, A., Stavropoulos, A. & Bosshardt, D. D. Self-regenerative capacity of intra-oral bone defects. J. Clin. Periodontol.46, 70–81 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">30697789</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian, P. et al. Dual stimulus responsive borosilicate glass (BSG) scaffolds promote diabetic alveolar bone defectsrepair by modulating macrophage phenotype. Bioact. Mater.26, 231–248 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10020664</ArticleId><ArticleId IdType="pubmed">36936808</ArticleId></ArticleIdList></Reference><Reference><Citation>Eldisoky, R. H. et al. Hyperbaric oxygen therapy efficacy on mandibular defect regeneration in rats with diabetes mellitus: an animal study. BMC Oral. Health23, 101 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9930221</ArticleId><ArticleId IdType="pubmed">36793042</ArticleId></ArticleIdList></Reference><Reference><Citation>Park, S. M. & Lee, J. H. Effects of type 2 diabetes mellitus on osteoclast differentiation, activity, and cortical bone formation in POSTmenopausal MRONJ patients. J. Clin. Med. 11, 2377 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9102751</ArticleId><ArticleId IdType="pubmed">35566506</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang, P. et al. Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-beta1 pathway. Aging12, 2084–2100 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7041775</ArticleId><ArticleId IdType="pubmed">32017705</ArticleId></ArticleIdList></Reference><Reference><Citation>Song, F. et al. Osteoblast-intrinsic defect in glucose metabolism impairs bone formation in type II diabetic male mice. Elife12, e85714 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10198725</ArticleId><ArticleId IdType="pubmed">37144869</ArticleId></ArticleIdList></Reference><Reference><Citation>Khosla, S., Samakkarnthai, P., Monroe, D. G. & Farr, J. N. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat. Rev. Endocrinol.17, 685–697 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8605611</ArticleId><ArticleId IdType="pubmed">34518671</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, Q. et al. Locally controlled delivery of TNFα antibody from a novel glucose-sensitive scaffold enhances alveolar bone healing in diabetic conditions. J. Control. Release206, 232–242 (2015).</Citation><ArticleIdList><ArticleId IdType="pubmed">25796348</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, H. et al. Preparation and evaluations of mangiferin-loaded PLGA scaffolds for alveolar bone repair treatment under the diabetic condition. AAPS PharmSciTech18, 529–538 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">27126006</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang, Y., Li, W. & Bao, C. A novel glucose-sensitive scaffold accelerates osteogenesis in diabetic conditions. Biomed. Res. Int.2022, 4133562 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8956406</ArticleId><ArticleId IdType="pubmed">35342759</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, H. et al. Glycemic fluctuation exacerbates inflammation and bone loss and alters microbiota profile around implants in diabetic mice with experimental peri-implantitis. Int. J. Implant Dent.7, 79 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8368769</ArticleId><ArticleId IdType="pubmed">34401982</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, H. et al. Macrophages, chronic inflammation, and insulin resistance. Cells11, 3001 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9562180</ArticleId><ArticleId IdType="pubmed">36230963</ArticleId></ArticleIdList></Reference><Reference><Citation>Shen, Y. et al. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif.56, e13474 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10542986</ArticleId><ArticleId IdType="pubmed">37051760</ArticleId></ArticleIdList></Reference><Reference><Citation>Ni, Z. et al. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res.8, 25 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7305215</ArticleId><ArticleId IdType="pubmed">32596023</ArticleId></ArticleIdList></Reference><Reference><Citation>Fan, B., Wei, Z. & Feng, S. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res.10, 35 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8993811</ArticleId><ArticleId IdType="pubmed">35396505</ArticleId></ArticleIdList></Reference><Reference><Citation>Gao, M. et al. Exosomes-the enigmatic regulators of bone homeostasis. Bone Res.6, 36 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6286319</ArticleId><ArticleId IdType="pubmed">30534458</ArticleId></ArticleIdList></Reference><Reference><Citation>Brennan, M. A., Layrolle, P. & Mooney, D. J. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv. Funct. Mater.30, 1909125 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7494127</ArticleId><ArticleId IdType="pubmed">32952493</ArticleId></ArticleIdList></Reference><Reference><Citation>Richter, M., Vader, P. & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv. Drug Deliv. Rev.173, 416–426 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33831479</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou, W. et al. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact. Mater.17, 1–17 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8958327</ArticleId><ArticleId IdType="pubmed">35386439</ArticleId></ArticleIdList></Reference><Reference><Citation>Manickam, G., Moffatt, P. & Murshed, M. Role of SMPD3 during bone fracture healing and regulation of its expression. Mol. Cell Biol.39, e00370–18 (2019).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6362318</ArticleId><ArticleId IdType="pubmed">30530524</ArticleId></ArticleIdList></Reference><Reference><Citation>Miyauchi, S. et al. Sphingomyelin phosphodiesterase 3 enhances cytodifferentiation of periodontal ligament cells. J. Dent. Res.96, 339–346 (2017).</Citation><ArticleIdList><ArticleId IdType="pubmed">28221099</ArticleId></ArticleIdList></Reference><Reference><Citation>Tang, D. et al. Is hyperglycemia the only risk factor for implant in type 2 diabetics during the healing period? Oral. Dis.27, 1551–1563 (2021).</Citation><ArticleIdList><ArticleId IdType="pubmed">33078488</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, L., Gao, Z., Liu, C. & Li, J. Potential biomarkers of abnormal osseointegration of implants in type II diabetes mellitus. BMC Oral. Health21, 583 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8603511</ArticleId><ArticleId IdType="pubmed">34794414</ArticleId></ArticleIdList></Reference><Reference><Citation>Li, D. et al. A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater.34, e2108430 (2022).</Citation><ArticleIdList><ArticleId IdType="pubmed">34921569</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhou, Q. et al. Effect of Gegen Qinlian decoction on hepatic gluconeogenesis in ZDF rats with type 2 diabetes mellitus based on the Farnesol X receptor/ceramide signaling pathway regulating mitochondrial metabolism and endoplasmic reticulum stress. Evid. Based Complement. Alternat. Med. 2021, 9922292 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8371656</ArticleId><ArticleId IdType="pubmed">34422083</ArticleId></ArticleIdList></Reference><Reference><Citation>Aubin, I. et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat. Genet.37, 803–805 (2005).</Citation><ArticleIdList><ArticleId IdType="pubmed">16025116</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, J. et al. The role of autophagy in bone metabolism and clinical significance. Autophagy19, 2409–2427 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10392742</ArticleId><ArticleId IdType="pubmed">36858962</ArticleId></ArticleIdList></Reference><Reference><Citation>Back, M. J. et al. Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis.9, 670 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5986760</ArticleId><ArticleId IdType="pubmed">29867196</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen, M. et al. PPARbeta/delta accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res. Ther.12, 566 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8567548</ArticleId><ArticleId IdType="pubmed">34736532</ArticleId></ArticleIdList></Reference><Reference><Citation>Ceccariglia, S., Cargnoni, A., Silini, A. R. & Parolini, O. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy16, 28–37 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6984485</ArticleId><ArticleId IdType="pubmed">31185790</ArticleId></ArticleIdList></Reference><Reference><Citation>Yen, W. L. et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol.188, 101–114 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2812853</ArticleId><ArticleId IdType="pubmed">20065092</ArticleId></ArticleIdList></Reference><Reference><Citation>Stoffel, W. et al. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition. Cell Death Dis.7, e2488 (2016).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5260872</ArticleId><ArticleId IdType="pubmed">27882938</ArticleId></ArticleIdList></Reference><Reference><Citation>Geng, J. & Klionsky, D. J. The Golgi as a potential membrane source for autophagy. Autophagy6, 950–951 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3359472</ArticleId><ArticleId IdType="pubmed">20729630</ArticleId></ArticleIdList></Reference><Reference><Citation>Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol.22, 187–199 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7007875</ArticleId><ArticleId IdType="pubmed">31932738</ArticleId></ArticleIdList></Reference><Reference><Citation>Kang, Y. et al. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact. Mater.18, 26–41 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8961306</ArticleId><ArticleId IdType="pubmed">35387167</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang, Z. G., Buller, B. & Chopp, M. Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat. Rev. Neurol.15, 193–203 (2019).</Citation><ArticleIdList><ArticleId IdType="pubmed">30700824</ArticleId></ArticleIdList></Reference><Reference><Citation>Caccavo, J. A., Fremont, P., Jaillon, O. & Gehlen, M. Climate genomics—geoscientists, ecologists, and geneticists must reinforce their collaborations to confront climate change. Glob. Chang. Biol.29, 5999–6001 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37665245</ArticleId></ArticleIdList></Reference><Reference><Citation>Ho-Shui-Ling, A. et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials180, 143–162 (2018).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6710094</ArticleId><ArticleId IdType="pubmed">30036727</ArticleId></ArticleIdList></Reference><Reference><Citation>Noonin, C. & Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics11, 4436–4451 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7977448</ArticleId><ArticleId IdType="pubmed">33754070</ArticleId></ArticleIdList></Reference><Reference><Citation>Camare, C. et al. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. Free Radic. Biol. Med.93, 204–216 (2016).</Citation><ArticleIdList><ArticleId IdType="pubmed">26855418</ArticleId></ArticleIdList></Reference><Reference><Citation>Busila, M. et al. Antibacterial and photocatalytic activity of ZnO/Au and ZnO/Ag nanocomposites. Int. J. Mol. Sci.24, 16939 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10706707</ArticleId><ArticleId IdType="pubmed">38069261</ArticleId></ArticleIdList></Reference><Reference><Citation>Yin, I. X. et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed.15, 2555–2562 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7174845</ArticleId><ArticleId IdType="pubmed">32368040</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang, J. et al. Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality. Bioact. Mater.32, 260–276 (2024).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10589730</ArticleId><ArticleId IdType="pubmed">37869725</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma, R. P. & Hansch, C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg. Med Chem.15, 2223–2268 (2007).</Citation><ArticleIdList><ArticleId IdType="pubmed">17275314</ArticleId></ArticleIdList></Reference><Reference><Citation>Rahmati, M. et al. Coating doxycycline on titanium-based implants: two in vivo studies. Bioact. Mater.5, 787–797 (2020).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7317637</ArticleId><ArticleId IdType="pubmed">32637743</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu, H. et al. Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact. Mater.8, 381–395 (2022).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8429474</ArticleId><ArticleId IdType="pubmed">34541408</ArticleId></ArticleIdList></Reference><Reference><Citation>Bao, H. et al. Exosome-loaded degradable polymeric microcapsules for the treatment of vitreoretinal diseases. Nat. Biomed. Eng. 10.1038/s41551-023-01112-3 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">37872369</ArticleId></ArticleIdList></Reference><Reference><Citation>Yan, W. et al. Specific RNA m6A modification sites in bone marrow mesenchymal stem cells from the jawbone marrow of type 2 diabetes patients with dental implant failure. Int. J. Oral. Sci.15, 6 (2023).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC9834262</ArticleId><ArticleId IdType="pubmed">36631441</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, L. et al. microRNA-491-5p regulates osteogenic differentiation of bone marrow stem cells in type 2 diabetes. Oral. Dis.29, 308–321 (2023).</Citation><ArticleIdList><ArticleId IdType="pubmed">34618998</ArticleId></ArticleIdList></Reference><Reference><Citation>Ionut, V. et al. Novel canine models of obese prediabetes and mild type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.298, E38–E48 (2010).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2806110</ArticleId><ArticleId IdType="pubmed">19843874</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang, L. et al. Osseointegration of a novel dental implant in canine. Sci. Rep.11, 4317 (2021).</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7900171</ArticleId><ArticleId IdType="pubmed">33619303</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">39616149</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>30</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>05</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">2044-4052</ISSN><JournalIssue CitedMedium="Internet"><Volume>14</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>30</Day></PubDate></JournalIssue><Title>Nutrition & diabetes</Title><ISOAbbreviation>Nutr Diabetes</ISOAbbreviation></Journal><ArticleTitle>Black Tea drinks with inulin and dextrin reduced postprandial plasma glucose fluctuations in patients with type 2 diabetes: an acute, randomized, placebo-controlled, single-blind crossover study.</ArticleTitle><Pagination><StartPage>95</StartPage><MedlinePgn>95</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">95</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41387-024-00351-w</ELocationID><Abstract><AbstractText Label="BACKGROUND">This study evaluated the effects of black tea drinks with inulin and dextrin (BTID) on postprandial plasma glucose (PG) in patients with type 2 diabetes mellitus (T2DM).</AbstractText><AbstractText Label="METHODS">An acute, randomized, double-blind, placebo-controlled, crossover clinical trial was carried out on T2DM patients. The subjects were randomly assigned to groups consuming placebo black tea powder or BTID (identically packaged) followed by a mixed meal tolerance test (MMTT). Afterwards, individuals who initially consumed BTID were given the placebo and those who initially consumed the placebo were given BTID.</AbstractText><AbstractText Label="RESULTS">A total of 35 patients were included in the study, and 32 completed the study. Compared to placebo, BTID significantly reduced the change in glycaemia at 30 min, 1, 2, and 3 h during the MMTT. In the analysis of PG fluctuations at 2 h during the MMTT, the proportion of patients with minor PG fluctuations (< 2.8 mmol/L) in the BTID group was 53.1%, significantly higher than the 28.1% in the placebo group. Binary logistic regression analysis revealed that the risk of significant PG fluctuations decreased by 65.5% after consuming BTID, with a corresponding odds ratio of 0.345 (P = 0.044, 95% CI 0.122-0.974). In addition, the areas under the curve for PG and insulin secretion after BTID administration were significantly smaller than that for placebo.</AbstractText><AbstractText Label="CONCLUSIONS">Compared to placebo, BTID significantly reduced the change in PG levels during the MMTT and decreased the risk of large PG fluctuations by 65.5%. These effects were associated to a significant reduction in postprandial insulin secretion and may help to improved insulin sensitivity and a lower β-cell burden.</AbstractText><CopyrightInformation>© 2024. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Chen</LastName><ForeName>Si</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Peng</LastName><ForeName>Danfeng</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shan</LastName><ForeName>Yingyi</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0009-0004-4165-6169</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Fengjing</ForeName><Initials>F</Initials><Identifier Source="ORCID">0000-0002-8956-7489</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Haikou orthopedic and diabetes hospital, Haikou, 570300, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Du</LastName><ForeName>Ronghui</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bao</LastName><ForeName>Yuqian</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Haoyong</ForeName><Initials>H</Initials><Identifier Source="ORCID">0000-0002-8621-4960</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China. yuhaoyong@shsmu.edu.cn.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tu</LastName><ForeName>Yinfang</ForeName><Initials>Y</Initials><Identifier Source="ORCID">0000-0001-8280-5213</Identifier><AffiliationInfo><Affiliation>Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China. yinfangtian@hotmail.com.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Haikou orthopedic and diabetes hospital, Haikou, 570300, China. yinfangtian@hotmail.com.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016449">Randomized Controlled Trial</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Nutr Diabetes</MedlineTA><NlmUniqueID>101566341</NlmUniqueID><ISSNLinking>2044-4052</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013662">Tea</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003912">Dextrins</NameOfSubstance></Chemical><Chemical><RegistryNumber>9005-80-5</RegistryNumber><NameOfSubstance UI="D007444">Inulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D018592" MajorTopicYN="Y">Cross-Over Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D019518" MajorTopicYN="Y">Postprandial Period</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D013662" MajorTopicYN="Y">Tea</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003912" MajorTopicYN="Y">Dextrins</DescriptorName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007444" MajorTopicYN="Y">Inulin</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004311" MajorTopicYN="N">Double-Blind Method</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016037" MajorTopicYN="N">Single-Blind Method</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName><QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading></MeshHeadingList><CoiStatement>Competing interests: The authors declare no competing interests. Ethical approval: The study protocols were approved by the Ethics Review Committee of Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, in compliance with the Declaration of Helsinki. The patients/participants provided their written informed consent to participate in this study.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>7</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>11</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>30</Day><Hour>23</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>30</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39616149</ArticleId><ArticleId IdType="pmc">PMC11608310</ArticleId><ArticleId IdType="doi">10.1038/s41387-024-00351-w</ArticleId><ArticleId IdType="pii">10.1038/s41387-024-00351-w</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC27454</ArticleId><ArticleId IdType="pubmed">10938048</ArticleId></ArticleIdList></Reference><Reference><Citation>Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4123233</ArticleId><ArticleId IdType="pubmed">20594588</ArticleId></ArticleIdList></Reference><Reference><Citation>Ketema EB, Kibret KT. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycaemic control; systematic review and meta-analysis. Arch Public Health. 2015;73:43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4582842</ArticleId><ArticleId IdType="pubmed">26413295</ArticleId></ArticleIdList></Reference><Reference><Citation>Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">16609090</ArticleId></ArticleIdList></Reference><Reference><Citation>Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Chiasson J-L, Garg A, et al. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care. 2002;25:148–98.</Citation><ArticleIdList><ArticleId IdType="pubmed">11772915</ArticleId></ArticleIdList></Reference><Reference><Citation>Gibb RD, McRorie JW, Russell DA, Hasselblad V, D’Alessio DA. Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am J Clin Nutr. 2015;102:1604–14.</Citation><ArticleIdList><ArticleId IdType="pubmed">26561625</ArticleId></ArticleIdList></Reference><Reference><Citation>Niness KR. Inulin and oligofructose: what are they? J Nutr. 1999;129:1402S–6S.</Citation><ArticleIdList><ArticleId IdType="pubmed">10395607</ArticleId></ArticleIdList></Reference><Reference><Citation>Hobden MR, Guérin-Deremaux L, Rowland I, Gibson GR, Kennedy OB. Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proc Nutr Soc. 2015;74:258–67.</Citation><ArticleIdList><ArticleId IdType="pubmed">25721052</ArticleId></ArticleIdList></Reference><Reference><Citation>Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G. On the presence of Inulin and Oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr. 1995;35:525–52.</Citation><ArticleIdList><ArticleId IdType="pubmed">8777017</ArticleId></ArticleIdList></Reference><Reference><Citation>Valcheva R, Hotte N, Gillevet P, Sikaroodi M, Thiessen A, Madsen KL. Soluble Dextrin Fibers Alter the Intestinal Microbiota and Reduce Proinflammatory Cytokine Secretion in Male IL-10–Deficient Mice. J Nutr. 2015;145:2060–6.</Citation><ArticleIdList><ArticleId IdType="pubmed">26180249</ArticleId></ArticleIdList></Reference><Reference><Citation>Aliasgharzadeh A, Dehghan P, Gargari BP, Asghari-Jafarabadi M. Resistant dextrin, as a prebiotic, improves insulin resistance and inflammation in women with type 2 diabetes: a randomised controlled clinical trial. Br J Nutr. 2015;113:321–30.</Citation><ArticleIdList><ArticleId IdType="pubmed">27028002</ArticleId></ArticleIdList></Reference><Reference><Citation>Guess ND, Dornhorst A, Oliver N, Frost GS. A Randomised Crossover Trial: The Effect of Inulin on Glucose Homeostasis in Subtypes of Prediabetes. Ann Nutr Metab. 2016;68:26–34.</Citation><ArticleIdList><ArticleId IdType="pubmed">26571012</ArticleId></ArticleIdList></Reference><Reference><Citation>Jenkins AL, Jenkins DJA, Wolever TMS, Rogovik AL, Jovanovski E, Božikov V, et al. Comparable Postprandial Glucose Reductions with Viscous Fiber Blend Enriched Biscuits in Healthy Subjects and Patients with Diabetes Mellitus: Acute Randomized Controlled Clinical Trial. Croatian Med J. 2008;49:772–82.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2621039</ArticleId><ArticleId IdType="pubmed">19090602</ArticleId></ArticleIdList></Reference><Reference><Citation>Wolever TMS, Campbell JE, Geleva D, Anderson GH. High-fiber cereal reduces postprandial insulin responses in hyperinsulinemic but not normoinsulinemic subjects. Diabetes Care. 2004;27:1281–5.</Citation><ArticleIdList><ArticleId IdType="pubmed">15161776</ArticleId></ArticleIdList></Reference><Reference><Citation>Monnier L, Colette C, Owens DR. Glycemic variability: the third component of the dysglycemia in diabetes. Is it important? How to measure it? J Diabetes Sci Technol. 2008;2:1094–100.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2769808</ArticleId><ArticleId IdType="pubmed">19885298</ArticleId></ArticleIdList></Reference><Reference><Citation>Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. 2005;54:1–7.</Citation><ArticleIdList><ArticleId IdType="pubmed">15616004</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang W, Weng J. Early therapy for type 2 diabetes in China. Lancet Diabetes Endocrinol. 2014;2:992–1002.</Citation><ArticleIdList><ArticleId IdType="pubmed">25218729</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma RC, Lin X, Jia W. Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol. 2014;2:980–91.</Citation><ArticleIdList><ArticleId IdType="pubmed">25218727</ArticleId></ArticleIdList></Reference><Reference><Citation>Ghavami A, Roshanravan N, Alipour S, Barati M, Mansoori B, Ghalichi F, et al. Assessing the Effect of High Performance Inulin Supplementation via KLF5 mRNA Expression in Adults with Type 2 Diabetes: A Randomized Placebo Controlled Clinical Trail. Adv Pharm Bull. 2018;8:39–47.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5896394</ArticleId><ArticleId IdType="pubmed">29670837</ArticleId></ArticleIdList></Reference><Reference><Citation>Dehghan P, Farhangi MA, Tavakoli F, Aliasgarzadeh A, Akbari AM. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: A randomized placebo-controlled Trial. Complementary Therapies Med. 2016;24:96–102.</Citation><ArticleIdList><ArticleId IdType="pubmed">26860809</ArticleId></ArticleIdList></Reference><Reference><Citation>Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–21.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3711491</ArticleId><ArticleId IdType="pubmed">23135760</ArticleId></ArticleIdList></Reference><Reference><Citation>Lightowler H, Thondre S, Holz A, Theis S. Replacement of glycaemic carbohydrates by inulin-type fructans from chicory (oligofructose, inulin) reduces the postprandial blood glucose and insulin response to foods: report of two double-blind, randomized, controlled trials. Eur J Nutr. 2017;57:1259–68.</Citation><ArticleIdList><ArticleId IdType="pubmed">28255654</ArticleId></ArticleIdList></Reference><Reference><Citation>Byrne CS, Chambers ES, Preston T, Tedford C, Brignardello J, Garcia-Perez I, et al. Effects of Inulin Propionate Ester Incorporated into Palatable Food Products on Appetite and Resting Energy Expenditure: A Randomised Crossover Study. Nutrients. 2019;11:861.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6520886</ArticleId><ArticleId IdType="pubmed">30995824</ArticleId></ArticleIdList></Reference><Reference><Citation>Tripkovic L, Muirhead NC, Hart KH, Frost GS, Lodge JK. The effects of a diet rich in inulin or wheat fibre on markers of cardiovascular disease in overweight male subjects. J Hum Nutr Diet. 2015;28:476–85.</Citation><ArticleIdList><ArticleId IdType="pubmed">24919604</ArticleId></ArticleIdList></Reference><Reference><Citation>Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut. 2019;68:1430–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6691855</ArticleId><ArticleId IdType="pubmed">30971437</ArticleId></ArticleIdList></Reference><Reference><Citation>Hobden MR, Commane DM, Guérin-Deremaux L, Wils D, Thabuis C, Martin-Morales A, et al. Impact of dietary supplementation with resistant dextrin (NUTRIOSE®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr. 2021;60:4635–43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8572182</ArticleId><ArticleId IdType="pubmed">34170392</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamiquiz-Moneo I, Pérez-Calahorra S, Gracia-Rubio I, Cebollada A, Bea AM, Fumanal A, et al. Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response. Nutrients. 2022;14:1046.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8912682</ArticleId><ArticleId IdType="pubmed">35268021</ArticleId></ArticleIdList></Reference><Reference><Citation>Mateo-Gallego R, Pérez-Calahorra S, Lamiquiz-Moneo I, Marco-Benedí V, Bea AM, Fumanal AJ, et al. Effect of an alcohol-free beer enriched with isomaltulose and a resistant dextrin on insulin resistance in diabetic patients with overweight or obesity. Clin Nutr. 2020;39:475–83.</Citation><ArticleIdList><ArticleId IdType="pubmed">30879735</ArticleId></ArticleIdList></Reference><Reference><Citation>Saleh‐Ghadimi S, Dehghan P, Sarmadi B, Maleki P. Improvement of sleep by resistant dextrin prebiotic in type 2 diabetic women coincides with attenuation of metabolic endotoxemia: involvement of gut–brain axis. J Sci Food Agriculture. 2022;102:5229–37.</Citation><ArticleIdList><ArticleId IdType="pubmed">35306660</ArticleId></ArticleIdList></Reference><Reference><Citation>Cai X, Yu H, Liu L, Lu T, Li J, Ji Y, et al. Milk Powder Co‐Supplemented with Inulin and Resistant Dextrin Improves Glycemic Control and Insulin Resistance in Elderly Type 2 Diabetes Mellitus: A 12‐Week Randomized, Double‐Blind, Placebo‐Controlled Trial. Mol Nutr Food Res. 2018;62:e1800865.</Citation><ArticleIdList><ArticleId IdType="pubmed">30346655</ArticleId></ArticleIdList></Reference><Reference><Citation>Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2020;18:101–16.</Citation><ArticleIdList><ArticleId IdType="pubmed">33208922</ArticleId></ArticleIdList></Reference><Reference><Citation>Qin Y, Wang L, Yang X, Xu Y, Fan G, Fan Y, et al. Inulin: properties and health benefits. Food Funct. 2023;14:2948–68.</Citation><ArticleIdList><ArticleId IdType="pubmed">36876591</ArticleId></ArticleIdList></Reference><Reference><Citation>Tarini J, Wolever TMS. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol, Nutr, Metab. 2010;35:9–16.</Citation><ArticleIdList><ArticleId IdType="pubmed">20130660</ArticleId></ArticleIdList></Reference><Reference><Citation>Lipoeto NI, Geok Lin K, Angeles-Agdeppa I. Food consumption patterns and nutrition transition in South-East Asia. Public Health Nutr. 2012;16:1637–43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC10271281</ArticleId><ArticleId IdType="pubmed">23157893</ArticleId></ArticleIdList></Reference><Reference><Citation>Shu L, Zheng P, Zhang X, Si C, Yu X, Gao W, et al. Association between Dietary Patterns and the Indicators of Obesity among Chinese: A Cross-Sectional Study. Nutrients. 2015;7:7995–8009.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4586571</ArticleId><ArticleId IdType="pubmed">26393646</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39616020</PMID><DateCompleted><Year>2025</Year><Month>01</Month><Day>10</Day></DateCompleted><DateRevised><Year>2025</Year><Month>01</Month><Day>10</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-114X</ISSN><JournalIssue CitedMedium="Internet"><Volume>47</Volume><Issue>1</Issue><PubDate><Year>2025</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Clinical therapeutics</Title><ISOAbbreviation>Clin Ther</ISOAbbreviation></Journal><ArticleTitle>Real-world Evidence on Oral Semaglutide for the Management of Type 2 Diabetes. A Narrative Review for Clinical Practice.</ArticleTitle><Pagination><StartPage>102</StartPage><EndPage>110</EndPage><MedlinePgn>102-110</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.clinthera.2024.11.005</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0149-2918(24)00330-8</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Oral semaglutide is the first oral glucagon-like peptide-1 receptor agonist (GLP-1RA) available for type 2 diabetes mellitus (T2DM) management, whose effectiveness and tolerability have extensively been demonstrated in the PIONEER clinical trial program. Nevertheless, data from real-world are crucial to evaluate treatment performance under routine care. The aim of this narrative review is to summarize available evidence regarding real-world utilization patterns of oral semaglutide, and discuss efficacy, safety, and dosing regimen data in routine scenarios.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We searched PubMed for real-world studies evaluating oral semaglutide up to August 2024, and specific search terms were: "oral semaglutide," and "real-world studies" or "observational studies" or "retrospective studies".</AbstractText><AbstractText Label="FINDINGS" NlmCategory="RESULTS">19 real-world studies were included in the narrative review. In real-world settings, oral semaglutide provided significant glycemic (median HbA1c reduction at 6 months of 1%) and weight (median body weight reduction of 2 to 3 kg) benefits across the spectrum of T2DM, aligning with pre-clinical evidence from the PIONEER program. No new tolerability and safety issue has emerged from oral semaglutide administration in routine clinical practice.</AbstractText><AbstractText Label="IMPLICATIONS" NlmCategory="CONCLUSIONS">Oral semaglutide constitutes an effective and safe option for T2DM management, and its increased acceptance has the potential to favor the early introduction of GLP-1RAs along the disease course. Nevertheless, continuous evaluation of real-world data is critical to better define the optimal positioning of oral semaglutide along T2DM trajectory and fully exploit its potential in everyday clinical practice.</AbstractText><CopyrightInformation>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Marassi</LastName><ForeName>M</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medicine, University of Padova, Padua, Italy. Electronic address: mare.marassi@gmail.com.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fadini</LastName><ForeName>G P</ForeName><Initials>GP</Initials><AffiliationInfo><Affiliation>Department of Medicine, University of Padova, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Clin Ther</MedlineTA><NlmUniqueID>7706726</NlmUniqueID><ISSNLinking>0149-2918</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>53AXN4NNHX</RegistryNumber><NameOfSubstance UI="C000591245">semaglutide</NameOfSubstance></Chemical><Chemical><RegistryNumber>62340-29-8</RegistryNumber><NameOfSubstance UI="D004763">Glucagon-Like Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000067757">Glucagon-Like Peptide-1 Receptor</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006442">Glycated Hemoglobin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004763" MajorTopicYN="Y">Glucagon-Like Peptides</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000284" MajorTopicYN="N">Administration, Oral</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007004" MajorTopicYN="Y">Hypoglycemic Agents</DescriptorName><QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000067757" MajorTopicYN="N">Glucagon-Like Peptide-1 Receptor</DescriptorName><QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName><QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006442" MajorTopicYN="N">Glycated Hemoglobin</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Effectiveness</Keyword><Keyword MajorTopicYN="N">Narrative review</Keyword><Keyword MajorTopicYN="N">Oral semaglutide</Keyword><Keyword MajorTopicYN="N">Real-world</Keyword><Keyword MajorTopicYN="N">Type 2 diabetes</Keyword></KeywordList><CoiStatement>Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Gian Paolo Fadini reports a relationship with Abbott, AstraZeneca, Boehringer, Lilly, MSD, Novo Nordisk, Novaartis, Sanofi, Servier, Takeda that includes: funding grants and speaking and lecture fees. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>6</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2024</Year><Month>9</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>11</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2025</Year><Month>1</Month><Day>11</Day><Hour>13</Hour><Minute>59</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>30</Day><Hour>21</Hour><Minute>57</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39616020</ArticleId><ArticleId IdType="doi">10.1016/j.clinthera.2024.11.005</ArticleId><ArticleId IdType="pii">S0149-2918(24)00330-8</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Automated"><PMID Version="1">39615896</PMID><DateCompleted><Year>2024</Year><Month>11</Month><Day>30</Day></DateCompleted><DateRevised><Year>2024</Year><Month>12</Month><Day>09</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Print">2054-4774</ISSN><JournalIssue CitedMedium="Print"><Volume>11</Volume><Issue>1</Issue><PubDate><Year>2024</Year><Month>Nov</Month><Day>29</Day></PubDate></JournalIssue><Title>BMJ open gastroenterology</Title><ISOAbbreviation>BMJ Open Gastroenterol</ISOAbbreviation></Journal><ArticleTitle>Forns index and fatty liver index, but not FIB-4, are associated with indices of glycaemia, pre-diabetes and type 2 diabetes: analysis of The Maastricht Study.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">e001466</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1136/bmjgast-2024-001466</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">Glucose metabolism status (GMS) is linked to non-alcoholic fatty liver disease (NAFLD). Higher levels of advanced glycation end products (AGEs) are observed in people with type 2 diabetes mellitus (T2DM) and NAFLD. We examined the association between GMS, non-invasive tests and AGEs, with liver steatosis and fibrosis.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Data from The Maastricht Study, a population-based cohort, were analysed. Participants with alcohol overconsumption or missing data were excluded. GMS was determined via an oral glucose tolerance test. AGEs, measured by skin autofluorescence (SAF), were assessed using an AGE Reader. Associations of GMS and SAF with the fibrosis-4 score (FIB-4), Forns index (FI) and fatty liver index (FLI) were investigated using multivariable linear regression, adjusted for sociodemographic, lifestyle and clinical variables.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">1955 participants (56.6%) were analysed: 598 (30.6%) had T2DM, 264 (13.5%) had pre-diabetes and 1069 (54.7%) had normal glucose metabolism. Pre-diabetes was significantly associated with FLI (standardised regression coefficient (Stβ) 0.396, 95% CI 0.323 to 0.471) and FI (Stβ 0.145, 95% CI 0.059 to 0.232) but not FIB-4. T2DM was significantly associated with FLI (Stβ 0.623, 95% CI 0.552 to 0.694) and FI (Stβ 0.307, 95% CI 0.226 to 0.388) but not FIB-4. SAF was significantly associated with FLI (Stβ 0.083, 95% CI 0.036 to 0.129), FI (Stβ 0.106, 95% CI 0.069 to 0.143) and FIB-4 (Stβ 0.087, 95% CI 0.037 to 0.137).</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The study showed that adverse GMS and higher glycaemia are positively associated with steatosis. FI, but not FIB-4, was related to adverse GMS concerning fibrosis. This study is the first to demonstrate that SAF is positively associated with steatosis and fibrosis.</AbstractText><CopyrightInformation>© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y" EqualContrib="Y"><LastName>Heyens</LastName><ForeName>Leen</ForeName><Initials>L</Initials><Identifier Source="ORCID">0000-0003-4850-6011</Identifier><AffiliationInfo><Affiliation>Hasselt University Faculty of Medicine and Life Sciences, Diepenbeek, Belgium.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Faculty of Health Medicine and Life Sciences, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y" EqualContrib="Y"><LastName>Kenjic</LastName><ForeName>Hanna</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Dagnelie</LastName><ForeName>Pieter</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Medical Centre+ Internal Medicine, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schalkwijk</LastName><ForeName>Casper</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Medical Centre+ Internal Medicine, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stehouwer</LastName><ForeName>Coen</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Meex</LastName><ForeName>Steven</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kooman</LastName><ForeName>Jeroen</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Medical Centre+ Internal Medicine, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bekers</LastName><ForeName>Otto</ForeName><Initials>O</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Greevenbroek</LastName><ForeName>Marleen</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Medical Centre+ Internal Medicine, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Savelberg</LastName><ForeName>Hans</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Robaeys</LastName><ForeName>Geert</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Hasselt University Faculty of Medicine and Life Sciences, Diepenbeek, Belgium.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Galan</LastName><ForeName>Bastiaan</ForeName><Initials>B</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Social Medicine, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koster</LastName><ForeName>Annemarie</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Epidemiology, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Dongen</LastName><ForeName>Martien</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Eussen</LastName><ForeName>Simone</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>CARIM Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Epidemiology, Maastricht University, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koek</LastName><ForeName>Ger</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands gh.koek@mumc.nl.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Maastricht University Medical Centre+ Internal Medicine, Maastricht, The Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2024</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>BMJ Open Gastroenterol</MedlineTA><NlmUniqueID>101660690</NlmUniqueID><ISSNLinking>2054-4774</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017127">Glycation End Products, Advanced</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D003924" MajorTopicYN="Y">Diabetes Mellitus, Type 2</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011236" MajorTopicYN="Y">Prediabetic State</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D065626" MajorTopicYN="Y">Non-alcoholic Fatty Liver Disease</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001786" MajorTopicYN="Y">Blood Glucose</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName><QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005951" MajorTopicYN="Y">Glucose Tolerance Test</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017127" MajorTopicYN="N">Glycation End Products, Advanced</DescriptorName><QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D008103" MajorTopicYN="N">Liver Cirrhosis</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D003430" MajorTopicYN="N">Cross-Sectional Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009426" MajorTopicYN="N" Type="Geographic">Netherlands</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012720" MajorTopicYN="N">Severity of Illness Index</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DIABETES MELLITUS</Keyword><Keyword MajorTopicYN="N">HEPATIC FIBROSIS</Keyword><Keyword MajorTopicYN="N">Non-alcoholic Fatty Liver Disease</Keyword></KeywordList><CoiStatement>Competing interests: None declared.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2024</Year><Month>5</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2024</Year><Month>10</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>23</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2024</Year><Month>12</Month><Day>1</Day><Hour>15</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2024</Year><Month>11</Month><Day>30</Day><Hour>20</Hour><Minute>53</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2024</Year><Month>11</Month><Day>29</Day></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">39615896</ArticleId><ArticleId IdType="pmc">PMC11624825</ArticleId><ArticleId IdType="doi">10.1136/bmjgast-2024-001466</ArticleId><ArticleId IdType="pii">bmjgast-2024-001466</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Pappachan JM, Babu S, Krishnan B, et al. Non-alcoholic Fatty Liver Disease: A Clinical Update. J Clin Transl Hepatol. 2017;5:384–93. doi: 10.14218/JCTH.2017.00013.</Citation><ArticleIdList><ArticleId IdType="doi">10.14218/JCTH.2017.00013</ArticleId><ArticleId IdType="pmc">PMC5719196</ArticleId><ArticleId IdType="pubmed">29226105</ArticleId></ArticleIdList></Reference><Reference><Citation>Perumpail BJ, Khan MA, Yoo ER, et al. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23:8263–76. doi: 10.3748/wjg.v23.i47.8263.</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v23.i47.8263</ArticleId><ArticleId IdType="pmc">PMC5743497</ArticleId><ArticleId IdType="pubmed">29307986</ArticleId></ArticleIdList></Reference><Reference><Citation>Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7:851–61. doi: 10.1016/S2468-1253(22)00165-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2468-1253(22)00165-0</ArticleId><ArticleId IdType="pubmed">35798021</ArticleId></ArticleIdList></Reference><Reference><Citation>Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62:S47–64. doi: 10.1016/j.jhep.2014.12.012.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2014.12.012</ArticleId><ArticleId IdType="pubmed">25920090</ArticleId></ArticleIdList></Reference><Reference><Citation>Francque SM, van der Graaff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J Hepatol. 2016;65:425–43. doi: 10.1016/j.jhep.2016.04.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2016.04.005</ArticleId><ArticleId IdType="pubmed">27091791</ArticleId></ArticleIdList></Reference><Reference><Citation>Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71:793–801. doi: 10.1016/j.jhep.2019.06.021.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2019.06.021</ArticleId><ArticleId IdType="pubmed">31279902</ArticleId></ArticleIdList></Reference><Reference><Citation>Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 2016;31:936–44. doi: 10.1111/jgh.13264.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jgh.13264</ArticleId><ArticleId IdType="pubmed">26667191</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosmidou M, Milionis H. Diabetes mellitus and non-alcoholic fatty liver disease: the thread of Ariadne. Minerva Endocrinol. 2017;42:109–21. doi: 10.23736/S0391-1977.16.02562-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.23736/S0391-1977.16.02562-1</ArticleId><ArticleId IdType="pubmed">27990792</ArticleId></ArticleIdList></Reference><Reference><Citation>Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75. doi: 10.1111/joim.12540.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/joim.12540</ArticleId><ArticleId IdType="pmc">PMC5218584</ArticleId><ArticleId IdType="pubmed">27699898</ArticleId></ArticleIdList></Reference><Reference><Citation>Arner P, Andersson DP, Bäckdahl J, et al. Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metab. 2018;28:45–54. doi: 10.1016/j.cmet.2018.05.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cmet.2018.05.004</ArticleId><ArticleId IdType="pubmed">29861390</ArticleId></ArticleIdList></Reference><Reference><Citation>Mantovani A, Petracca G, Beatrice G, et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals. Gut. 2021;70:962–9. doi: 10.1136/gutjnl-2020-322572.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/gutjnl-2020-322572</ArticleId><ArticleId IdType="pubmed">32938692</ArticleId></ArticleIdList></Reference><Reference><Citation>Targher G, Tilg H, Byrne CD. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol. 2021;6:578–88. doi: 10.1016/S2468-1253(21)00020-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2468-1253(21)00020-0</ArticleId><ArticleId IdType="pubmed">33961787</ArticleId></ArticleIdList></Reference><Reference><Citation>Heyens LJM, Busschots D, Koek GH, et al. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne) . 2021;8:615978. doi: 10.3389/fmed.2021.615978.</Citation><ArticleIdList><ArticleId IdType="doi">10.3389/fmed.2021.615978</ArticleId><ArticleId IdType="pmc">PMC8079659</ArticleId><ArticleId IdType="pubmed">33937277</ArticleId></ArticleIdList></Reference><Reference><Citation>Berzigotti A, Tsochatzis E, Boursier J, et al. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J Hepatol. 2021;75:659–89. doi: 10.1016/j.jhep.2021.05.025.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2021.05.025</ArticleId><ArticleId IdType="pubmed">34166721</ArticleId></ArticleIdList></Reference><Reference><Citation>Francque S, Lanthier N, Verbeke L, et al. The Belgian Association for Study of the Liver Guidance Document on the Management of Adult and Paediatric Non-Alcoholic Fatty Liver Disease. Acta Gastroenterol Belg. 2018;81:55–81.</Citation><ArticleIdList><ArticleId IdType="pubmed">29562379</ArticleId></ArticleIdList></Reference><Reference><Citation>Byrne CD, Patel J, Scorletti E, et al. Tests for diagnosing and monitoring non-alcoholic fatty liver disease in adults. BMJ. 2018;362:k2734. doi: 10.1136/bmj.k2734.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.k2734</ArticleId><ArticleId IdType="pubmed">30002017</ArticleId></ArticleIdList></Reference><Reference><Citation>Graupera I, Thiele M, Serra-Burriel M, et al. Low Accuracy of FIB-4 and NAFLD Fibrosis Scores for Screening for Liver Fibrosis in the Population. Clin Gastroenterol Hepatol. 2022;20:2567–76. doi: 10.1016/j.cgh.2021.12.034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cgh.2021.12.034</ArticleId><ArticleId IdType="pubmed">34971806</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh A, Gosai F, Siddiqui MT, et al. Accuracy of Noninvasive Fibrosis Scores to Detect Advanced Fibrosis in Patients With Type-2 Diabetes With Biopsy-proven Nonalcoholic Fatty Liver Disease. J Clin Gastroenterol. 2020;54:891–7. doi: 10.1097/MCG.0000000000001339.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/MCG.0000000000001339</ArticleId><ArticleId IdType="pubmed">32168133</ArticleId></ArticleIdList></Reference><Reference><Citation>Boursier J, Hagström H, Ekstedt M, et al. Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J Hepatol. 2022;76:1013–20. doi: 10.1016/j.jhep.2021.12.031.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhep.2021.12.031</ArticleId><ArticleId IdType="pubmed">35063601</ArticleId></ArticleIdList></Reference><Reference><Citation>Nabi O, Lacombe K, Boursier J, et al. Prevalence and Risk Factors of Nonalcoholic Fatty Liver Disease and Advanced Fibrosis in General Population: the French Nationwide NASH-CO Study. Gastroenterology. 2020;159:791–3. doi: 10.1053/j.gastro.2020.04.048.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/j.gastro.2020.04.048</ArticleId><ArticleId IdType="pubmed">32376412</ArticleId></ArticleIdList></Reference><Reference><Citation>Todo Y, Miyake T, Furukawa S, et al. Combined evaluation of Fibrosis-4 index and fatty liver for stratifying the risk for diabetes mellitus. J Diabetes Investig. 2022;13:1577–84. doi: 10.1111/jdi.13812.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.13812</ArticleId><ArticleId IdType="pmc">PMC9434594</ArticleId><ArticleId IdType="pubmed">35437902</ArticleId></ArticleIdList></Reference><Reference><Citation>Vlassara H, Uribarri J. Advanced Glycation End Products (AGE) and Diabetes: Cause, Effect, or Both? Curr Diab Rep. 2014;14:453. doi: 10.1007/s11892-013-0453-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11892-013-0453-1</ArticleId><ArticleId IdType="pmc">PMC3903318</ArticleId><ArticleId IdType="pubmed">24292971</ArticleId></ArticleIdList></Reference><Reference><Citation>Meerwaldt R, Links T, Graaff R, et al. Simple Noninvasive Measurement of Skin Autofluorescence. Ann N Y Acad Sci. 2005;1043:290–8. doi: 10.1196/annals.1333.036.</Citation><ArticleIdList><ArticleId IdType="doi">10.1196/annals.1333.036</ArticleId><ArticleId IdType="pubmed">16037251</ArticleId></ArticleIdList></Reference><Reference><Citation>Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47:1324–30. doi: 10.1007/s00125-004-1451-2.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-004-1451-2</ArticleId><ArticleId IdType="pubmed">15243705</ArticleId></ArticleIdList></Reference><Reference><Citation>Schram MT, Sep SJS, van der Kallen CJ, et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol. 2014;29:439–51. doi: 10.1007/s10654-014-9889-0.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10654-014-9889-0</ArticleId><ArticleId IdType="pubmed">24756374</ArticleId></ArticleIdList></Reference><Reference><Citation>World Health Organization . Geneva, Switzerland: World Health Organization; 2006. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation.</Citation></Reference><Reference><Citation>van Eupen MGA, Schram MT, van Sloten TT, et al. Skin Autofluorescence and Pentosidine Are Associated With Aortic Stiffening. Hypertension. 2016;68:956–63. doi: 10.1161/HYPERTENSIONAHA.116.07446.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/HYPERTENSIONAHA.116.07446</ArticleId><ArticleId IdType="pubmed">27550921</ArticleId></ArticleIdList></Reference><Reference><Citation>Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33. doi: 10.1186/1471-230X-6-33.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/1471-230X-6-33</ArticleId><ArticleId IdType="pmc">PMC1636651</ArticleId><ArticleId IdType="pubmed">17081293</ArticleId></ArticleIdList></Reference><Reference><Citation>Forns X, Ampurdanès S, Llovet JM, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36:986–92. doi: 10.1053/jhep.2002.36128.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/jhep.2002.36128</ArticleId><ArticleId IdType="pubmed">12297848</ArticleId></ArticleIdList></Reference><Reference><Citation>Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–25. doi: 10.1002/hep.21178.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/hep.21178</ArticleId><ArticleId IdType="pubmed">16729309</ArticleId></ArticleIdList></Reference><Reference><Citation>van Dongen MC, Wijckmans-Duysens NEG, den Biggelaar LJ, et al. The Maastricht FFQ: Development and validation of a comprehensive food frequency questionnaire for the Maastricht study. Nutrition. 2019;62:39–46. doi: 10.1016/j.nut.2018.10.015.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.nut.2018.10.015</ArticleId><ArticleId IdType="pubmed">30826598</ArticleId></ArticleIdList></Reference><Reference><Citation>Looman M, Feskens EJ, de Rijk M, et al. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017;20:2289–99. doi: 10.1017/S136898001700091X.</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S136898001700091X</ArticleId><ArticleId IdType="pmc">PMC10261559</ArticleId><ArticleId IdType="pubmed">28625202</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Berg JD, Willems PJB, van der Velde JHPM, et al. Identifying waking time in 24-h accelerometry data in adults using an automated algorithm. J Sports Sci. 2016;34:1867–73. doi: 10.1080/02640414.2016.1140908.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/02640414.2016.1140908</ArticleId><ArticleId IdType="pubmed">26837855</ArticleId></ArticleIdList></Reference><Reference><Citation>Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep . 2019;1:312–28. doi: 10.1016/j.jhepr.2019.07.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhepr.2019.07.002</ArticleId><ArticleId IdType="pmc">PMC7001557</ArticleId><ArticleId IdType="pubmed">32039382</ArticleId></ArticleIdList></Reference><Reference><Citation>Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep . 2019;1:30–43. doi: 10.1016/j.jhepr.2019.02.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jhepr.2019.02.004</ArticleId><ArticleId IdType="pmc">PMC7052781</ArticleId><ArticleId IdType="pubmed">32149275</ArticleId></ArticleIdList></Reference><Reference><Citation>Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metab Clin Exp. 2016;65:1038–48. doi: 10.1016/j.metabol.2015.12.012.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2015.12.012</ArticleId><ArticleId IdType="pubmed">26823198</ArticleId></ArticleIdList></Reference><Reference><Citation>Brunt EM, Wong VW-S, Nobili V, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080. doi: 10.1038/nrdp.2015.80.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrdp.2015.80</ArticleId><ArticleId IdType="pubmed">27188459</ArticleId></ArticleIdList></Reference><Reference><Citation>Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells. 2020;9:875. doi: 10.3390/cells9040875.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/cells9040875</ArticleId><ArticleId IdType="pmc">PMC7226751</ArticleId><ArticleId IdType="pubmed">32260126</ArticleId></ArticleIdList></Reference><Reference><Citation>Tanwar S, Rhodes F, Srivastava A, et al. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol. 2020;26:109–33. doi: 10.3748/wjg.v26.i2.109.</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v26.i2.109</ArticleId><ArticleId IdType="pmc">PMC6962431</ArticleId><ArticleId IdType="pubmed">31969775</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen J, Hu P, Wang Y, et al. Association between type 2 diabetes status and prevalence of liver steatosis and fibrosis among adults aged ≥ 40 years. BMC Endocr Disord. 2022;22:128. doi: 10.1186/s12902-022-01046-y.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-022-01046-y</ArticleId><ArticleId IdType="pmc">PMC9107256</ArticleId><ArticleId IdType="pubmed">35562689</ArticleId></ArticleIdList></Reference><Reference><Citation>Bae JC, Rhee EJ, Lee WY, et al. Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: a 4-year retrospective longitudinal study. Diabetes Care. 2011;34:727–9. doi: 10.2337/dc10-1991.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc10-1991</ArticleId><ArticleId IdType="pmc">PMC3041216</ArticleId><ArticleId IdType="pubmed">21278140</ArticleId></ArticleIdList></Reference><Reference><Citation>Franch-Nadal J, Caballeria L, Mata-Cases M, et al. Fatty liver index is a predictor of incident diabetes in patients with prediabetes: The PREDAPS study. PLoS One. 2018;13:e0198327. doi: 10.1371/journal.pone.0198327.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0198327</ArticleId><ArticleId IdType="pmc">PMC5983533</ArticleId><ArticleId IdType="pubmed">29856820</ArticleId></ArticleIdList></Reference><Reference><Citation>García-Escobar E, Valdés S, Soriguer F, et al. Fatty liver index as a predictor for type 2 diabetes in subjects with normoglycemia in a nationwide cohort study. Sci Rep. 2021;11:16453. doi: 10.1038/s41598-021-95546-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/s41598-021-95546-x</ArticleId><ArticleId IdType="pmc">PMC8361016</ArticleId><ArticleId IdType="pubmed">34385479</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhao Q, Zhou F, Zhang Y, et al. Fasting plasma glucose variability levels and risk of adverse outcomes among patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2019;148:23–31. doi: 10.1016/j.diabres.2018.12.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diabres.2018.12.010</ArticleId><ArticleId IdType="pubmed">30583033</ArticleId></ArticleIdList></Reference><Reference><Citation>Albracht-Schulte K, Rosairo S, Ramalingam L, et al. Obesity, adipocyte hypertrophy, fasting glucose, and resistin are potential contributors to nonalcoholic fatty liver disease in South Asian women. Diabetes Metab Syndr Obes. 2019;12:863–72. doi: 10.2147/DMSO.S203937.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/DMSO.S203937</ArticleId><ArticleId IdType="pmc">PMC6573778</ArticleId><ArticleId IdType="pubmed">31354322</ArticleId></ArticleIdList></Reference><Reference><Citation>Hsu C-L, Wu F-Z, Lin K-H, et al. Role of Fatty Liver Index and Metabolic Factors in the Prediction of Nonalcoholic Fatty Liver Disease in a Lean Population Receiving Health Checkup. Clin Transl Gastroenterol. 2019;10:1–8. doi: 10.14309/ctg.0000000000000042.</Citation><ArticleIdList><ArticleId IdType="doi">10.14309/ctg.0000000000000042</ArticleId><ArticleId IdType="pmc">PMC6602768</ArticleId><ArticleId IdType="pubmed">31082856</ArticleId></ArticleIdList></Reference><Reference><Citation>Zou Y, Yu M, Sheng G. Association between fasting plasma glucose and nonalcoholic fatty liver disease in a nonobese Chinese population with normal blood lipid levels: a prospective cohort study. Lipids Health Dis. 2020;19:145. doi: 10.1186/s12944-020-01326-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12944-020-01326-3</ArticleId><ArticleId IdType="pmc">PMC7306139</ArticleId><ArticleId IdType="pubmed">32563249</ArticleId></ArticleIdList></Reference><Reference><Citation>Li C-H, Chou Y-T, Shen W-C, et al. Increased risks of different grades of non-alcoholic fatty liver disease in prediabetic subjects with impaired fasting glucose and glucose tolerance, including the isolated glycosylated hemoglobin levels of 5.7-6.4% in a Chinese population. J Diabetes Investig. 2020;11:1336–43. doi: 10.1111/jdi.13268.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/jdi.13268</ArticleId><ArticleId IdType="pmc">PMC7477498</ArticleId><ArticleId IdType="pubmed">32270583</ArticleId></ArticleIdList></Reference><Reference><Citation>Dai CY, Fang TJ, Hung WW, et al. The Determinants of Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Biomedicines. 2022;10:1487. doi: 10.3390/biomedicines10071487.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/biomedicines10071487</ArticleId><ArticleId IdType="pmc">PMC9312509</ArticleId><ArticleId IdType="pubmed">35884792</ArticleId></ArticleIdList></Reference><Reference><Citation>Xie Y, Kong W, Wang X, et al. Association of glycated hemoglobin with non-alcoholic fatty liver disease patients and the severity of liver steatosis and fibrosis measured by transient elastography in adults without diabetes. BMC Endocr Disord. 2022;22:220. doi: 10.1186/s12902-022-01134-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12902-022-01134-z</ArticleId><ArticleId IdType="pmc">PMC9434963</ArticleId><ArticleId IdType="pubmed">36045348</ArticleId></ArticleIdList></Reference><Reference><Citation>Park J, Kwon H-J, Sohn W, et al. Risk of liver fibrosis in patients with prediabetes and diabetes mellitus. PLoS ONE. 2022;17:e0269070. doi: 10.1371/journal.pone.0269070.</Citation><ArticleIdList><ArticleId IdType="doi">10.1371/journal.pone.0269070</ArticleId><ArticleId IdType="pmc">PMC9162349</ArticleId><ArticleId IdType="pubmed">35653399</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim D, Cholankeril G, Loomba R, et al. Prevalence of Nonalcoholic Fatty Liver Disease and Hepatic Fibrosis Among US Adults with Prediabetes and Diabetes, NHANES 2017-2018. J Gen Intern Med. 2022;37:261–3. doi: 10.1007/s11606-021-06677-w.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s11606-021-06677-w</ArticleId><ArticleId IdType="pmc">PMC8738798</ArticleId><ArticleId IdType="pubmed">33674915</ArticleId></ArticleIdList></Reference><Reference><Citation>Yilmaz Y, Senates E, Yesil A, et al. Not only type 2 diabetes but also prediabetes is associated with portal inflammation and fibrosis in patients with non-alcoholic fatty liver disease. J Diabetes Complications. 2014;28:328–31. doi: 10.1016/j.jdiacomp.2014.01.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jdiacomp.2014.01.013</ArticleId><ArticleId IdType="pubmed">24602757</ArticleId></ArticleIdList></Reference><Reference><Citation>Lomonaco R, Godinez Leiva E, Bril F, et al. Advanced Liver Fibrosis Is Common in Patients With Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care. 2021;44:399–406. doi: 10.2337/dc20-1997.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-1997</ArticleId><ArticleId IdType="pmc">PMC7818321</ArticleId><ArticleId IdType="pubmed">33355256</ArticleId></ArticleIdList></Reference><Reference><Citation>Trivedi HD, Suri J, Oh D, et al. The presence of diabetes impacts liver fibrosis and steatosis by transient elastography in a primary care population. Ann Hepatol. 2021;24:100336. doi: 10.1016/j.aohep.2021.100336.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.aohep.2021.100336</ArticleId><ArticleId IdType="pubmed">33647502</ArticleId></ArticleIdList></Reference><Reference><Citation>Ciardullo S, Monti T, Perseghin G. High Prevalence of Advanced Liver Fibrosis Assessed by Transient Elastography Among U.S. Adults With Type 2 Diabetes. Diabetes Care. 2021;44:519–25. doi: 10.2337/dc20-1778.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc20-1778</ArticleId><ArticleId IdType="pubmed">33303638</ArticleId></ArticleIdList></Reference><Reference><Citation>Barb D, Repetto EM, Stokes ME, et al. Type 2 diabetes mellitus increases the risk of hepatic fibrosis in individuals with obesity and nonalcoholic fatty liver disease. Obesity (Silver Spring) . 2021;29:1950–60. doi: 10.1002/oby.23263.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/oby.23263</ArticleId><ArticleId IdType="pmc">PMC9290591</ArticleId><ArticleId IdType="pubmed">34553836</ArticleId></ArticleIdList></Reference><Reference><Citation>Botros M, Sikaris KA. The de ritis ratio: the test of time. Clin Biochem Rev. 2013;34:117–30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3866949</ArticleId><ArticleId IdType="pubmed">24353357</ArticleId></ArticleIdList></Reference><Reference><Citation>Ma X, Liu S, Zhang J, et al. Proportion of NAFLD patients with normal ALT value in overall NAFLD patients: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20:10. doi: 10.1186/s12876-020-1165-z.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12876-020-1165-z</ArticleId><ArticleId IdType="pmc">PMC6961232</ArticleId><ArticleId IdType="pubmed">31937252</ArticleId></ArticleIdList></Reference><Reference><Citation>Bril F, McPhaul MJ, Caulfield MP, et al. Performance of Plasma Biomarkers and Diagnostic Panels for Nonalcoholic Steatohepatitis and Advanced Fibrosis in Patients With Type 2 Diabetes. Diabetes Care. 2020;43:290–7. doi: 10.2337/dc19-1071.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/dc19-1071</ArticleId><ArticleId IdType="pubmed">31604692</ArticleId></ArticleIdList></Reference><Reference><Citation>Fiorentino TV, Andreozzi F, Mannino GC, et al. One-Hour Postload Hyperglycemia Confers Higher Risk of Hepatic Steatosis to HbA1c-Defined Prediabetic Subjects. J Clin Endocrinol Metab. 2016;101:4030–8. doi: 10.1210/jc.2016-1856.</Citation><ArticleIdList><ArticleId IdType="doi">10.1210/jc.2016-1856</ArticleId><ArticleId IdType="pubmed">27459528</ArticleId></ArticleIdList></Reference><Reference><Citation>Tanaka K, Takahashi H, Hyogo H, et al. Epidemiological survey of hemoglobin A1c and liver fibrosis in a general population with non-alcoholic fatty liver disease. Hepatol Res. 2019;49:296–303. doi: 10.1111/hepr.13282.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/hepr.13282</ArticleId><ArticleId IdType="pubmed">30367534</ArticleId></ArticleIdList></Reference><Reference><Citation>Ballestri S, Nascimbeni F, Baldelli E, et al. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv Ther. 2017;34:1291–326. doi: 10.1007/s12325-017-0556-1.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12325-017-0556-1</ArticleId><ArticleId IdType="pmc">PMC5487879</ArticleId><ArticleId IdType="pubmed">28526997</ArticleId></ArticleIdList></Reference><Reference><Citation>Appiah D, Nwabuo CC, Ebong IA, et al. Trends in Age at Natural Menopause and Reproductive Life Span Among US Women, 1959-2018. JAMA. 2021;325:1328–30. doi: 10.1001/jama.2021.0278.</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/jama.2021.0278</ArticleId><ArticleId IdType="pmc">PMC8025101</ArticleId><ArticleId IdType="pubmed">33821908</ArticleId></ArticleIdList></Reference><Reference><Citation>Nagral A, Bangar M, Menezes S, et al. Gender Differences in Nonalcoholic Fatty Liver Disease. Euroasian J Hepatogastroenterol . 2022;12:S19–25. doi: 10.5005/jp-journals-10018-1370.</Citation><ArticleIdList><ArticleId IdType="doi">10.5005/jp-journals-10018-1370</ArticleId><ArticleId IdType="pmc">PMC9681575</ArticleId><ArticleId IdType="pubmed">36466099</ArticleId></ArticleIdList></Reference><Reference><Citation>Palma-Duran SA, Kontogianni MD, Vlassopoulos A, et al. Serum levels of advanced glycation end-products (AGEs) and the decoy soluble receptor for AGEs (sRAGE) can identify non-alcoholic fatty liver disease in age-, sex- and BMI-matched normo-glycemic adults. Metab Clin Exp. 2018;83:120–7. doi: 10.1016/j.metabol.2018.01.023.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.metabol.2018.01.023</ArticleId><ArticleId IdType="pubmed">29409822</ArticleId></ArticleIdList></Reference><Reference><Citation>Bijnen M, van Greevenbroek MMJ, van der Kallen CJH, et al. Hepatic Fat Content and Liver Enzymes Are Associated with Circulating Free and Protein-Bound Advanced Glycation End Products, Which Are Associated with Low-Grade Inflammation: The CODAM Study. J Diabetes Res. 2019;2019:6289831. doi: 10.1155/2019/6289831.</Citation><ArticleIdList><ArticleId IdType="doi">10.1155/2019/6289831</ArticleId><ArticleId IdType="pmc">PMC6536997</ArticleId><ArticleId IdType="pubmed">31218233</ArticleId></ArticleIdList></Reference><Reference><Citation>Priken K, Tapia G, Cadagan C, et al. Higher hepatic advanced glycation end products and liver damage markers are associated with nonalcoholic steatohepatitis. Nutr Res. 2022;104:71–81. doi: 10.1016/j.nutres.2022.04.005.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.nutres.2022.04.005</ArticleId><ArticleId IdType="pubmed">35635899</ArticleId></ArticleIdList></Reference><Reference><Citation>Takeuchi M, Takino J, Sakasai-Sakai A, et al. Toxic AGE (TAGE) Theory for the Pathophysiology of the Onset/Progression of NAFLD and ALD. Nutrients. 2017;9:634. doi: 10.3390/nu9060634.</Citation><ArticleIdList><ArticleId IdType="doi">10.3390/nu9060634</ArticleId><ArticleId IdType="pmc">PMC5490613</ArticleId><ArticleId IdType="pubmed">28632197</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang S, Gu Y, Bian S, et al. Soft drink consumption and risk of nonalcoholic fatty liver disease: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) cohort study. Am J Clin Nutr. 2021;113:1265–74. doi: 10.1093/ajcn/nqaa380.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/ajcn/nqaa380</ArticleId><ArticleId IdType="pubmed">33564868</ArticleId></ArticleIdList></Reference><Reference><Citation>Wijarnpreecha K, Thongprayoon C, Edmonds PJ, et al. Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM. 2016;109:461–6. doi: 10.1093/qjmed/hcv172.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/qjmed/hcv172</ArticleId><ArticleId IdType="pubmed">26385233</ArticleId></ArticleIdList></Reference><Reference><Citation>Hyogo H, Yamagishi S. Advanced glycation end products (AGEs) and their involvement in liver disease. Curr Pharm Des. 2008;14:969–72. doi: 10.2174/138161208784139701.</Citation><ArticleIdList><ArticleId IdType="doi">10.2174/138161208784139701</ArticleId><ArticleId IdType="pubmed">18473847</ArticleId></ArticleIdList></Reference><Reference><Citation>Takino J, Yamagishi S, Takeuchi M. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression. World J Gastroenterol. 2012;18:1781–8. doi: 10.3748/wjg.v18.i15.1781.</Citation><ArticleIdList><ArticleId IdType="doi">10.3748/wjg.v18.i15.1781</ArticleId><ArticleId IdType="pmc">PMC3332291</ArticleId><ArticleId IdType="pubmed">22553402</ArticleId></ArticleIdList></Reference><Reference><Citation>Fehrenbach H, Weiskirchen R, Kasper M, et al. Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology. 2001;34:943–52. doi: 10.1053/jhep.2001.28788.</Citation><ArticleIdList><ArticleId IdType="doi">10.1053/jhep.2001.28788</ArticleId><ArticleId IdType="pubmed">11679965</ArticleId></ArticleIdList></Reference><Reference><Citation>Noordzij MJ, Lefrandt JD, Loeffen EAH, et al. Skin autofluorescence is increased in patients with carotid artery stenosis and peripheral artery disease. Int J Cardiovasc Imaging. 2012;28:431–8. doi: 10.1007/s10554-011-9805-6.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s10554-011-9805-6</ArticleId><ArticleId IdType="pmc">PMC3288376</ArticleId><ArticleId IdType="pubmed">21336554</ArticleId></ArticleIdList></Reference><Reference><Citation>de Vos LC, Noordzij MJ, Mulder DJ, et al. Skin autofluorescence as a measure of advanced glycation end products deposition is elevated in peripheral artery disease. Arterioscler Thromb Vasc Biol. 2013;33:131–8. doi: 10.1161/ATVBAHA.112.300016.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/ATVBAHA.112.300016</ArticleId><ArticleId IdType="pubmed">23139292</ArticleId></ArticleIdList></Reference><Reference><Citation>Colhoun HM, Betteridge DJ, Durrington P, et al. Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes. 2011;60:2379–85. doi: 10.2337/db11-0291.</Citation><ArticleIdList><ArticleId IdType="doi">10.2337/db11-0291</ArticleId><ArticleId IdType="pmc">PMC3161327</ArticleId><ArticleId IdType="pubmed">21771973</ArticleId></ArticleIdList></Reference><Reference><Citation>Henning C, Smuda M, Girndt M, et al. Molecular basis of maillard amide-advanced glycation end product (AGE) formation in vivo. J Biol Chem. 2011;286:44350–6. doi: 10.1074/jbc.M111.282442.</Citation><ArticleIdList><ArticleId IdType="doi">10.1074/jbc.M111.282442</ArticleId><ArticleId IdType="pmc">PMC3248017</ArticleId><ArticleId IdType="pubmed">22069309</ArticleId></ArticleIdList></Reference><Reference><Citation>McVicar CM, Ward M, Colhoun LM, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia. 2015;58:1129–37. doi: 10.1007/s00125-015-3523-x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s00125-015-3523-x</ArticleId><ArticleId IdType="pmc">PMC4392170</ArticleId><ArticleId IdType="pubmed">25687235</ArticleId></ArticleIdList></Reference><Reference><Citation>Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95 Suppl 1:S144–50. doi: 10.2105/AJPH.2004.059204.</Citation><ArticleIdList><ArticleId IdType="doi">10.2105/AJPH.2004.059204</ArticleId><ArticleId IdType="pubmed">16030331</ArticleId></ArticleIdList></Reference><Reference><Citation>Bland JM, Altman DG. Correlation in restricted ranges of data. BMJ. 2011;342:d556. doi: 10.1136/bmj.d556.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.d556</ArticleId><ArticleId IdType="pubmed">21398359</ArticleId></ArticleIdList></Reference><Reference><Citation>Mooy JM, Grootenhuis PA, de Vries H, et al. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia. 1996;39:298–305. doi: 10.1007/BF00418345.</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/BF00418345</ArticleId><ArticleId IdType="pubmed">8721775</ArticleId></ArticleIdList></Reference><Reference><Citation>Matthiessen C, Glaubitz L, Lucht S, et al. Long-term exposure to air pollution and prevalent nonalcoholic fatty liver disease. Environ Epidemiol . 2023;7:e268. doi: 10.1097/EE9.0000000000000268.</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/EE9.0000000000000268</ArticleId><ArticleId IdType="pmc">PMC10569764</ArticleId><ArticleId IdType="pubmed">37840860</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajagopalan S, Brook RD, Salerno PRVO, et al. Air pollution exposure and cardiometabolic risk. Lancet Diabetes Endocrinol. 2024;12:196–208. doi: 10.1016/S2213-8587(23)00361-3.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S2213-8587(23)00361-3</ArticleId><ArticleId IdType="pmc">PMC11264310</ArticleId><ArticleId IdType="pubmed">38310921</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas L. Haemolysis as Influence & Interference Factor. EJIFCC. 2002;13:95–8.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6208064</ArticleId><ArticleId IdType="pubmed">30386190</ArticleId></ArticleIdList></Reference><Reference><Citation>Simundic A-M, Baird G, Cadamuro J, et al. Managing hemolyzed samples in clinical laboratories. Crit Rev Clin Lab Sci. 2020;57:1–21. doi: 10.1080/10408363.2019.1664391.</Citation><ArticleIdList><ArticleId IdType="doi">10.1080/10408363.2019.1664391</ArticleId><ArticleId IdType="pubmed">31603708</ArticleId></ArticleIdList></Reference><Reference><Citation>de Vos LC, Boersema J, Mulder DJ, et al. Skin autofluorescence as a measure of advanced glycation end products deposition predicts 5-year amputation in patients with peripheral artery disease. Arterioscler Thromb Vasc Biol. 2015;35:1532–7. doi: 10.1161/ATVBAHA.115.305407.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/ATVBAHA.115.305407</ArticleId><ArticleId IdType="pubmed">25882066</ArticleId></ArticleIdList></Reference><Reference><Citation>Han S, Choi M, Lee B, et al. Accuracy of Noninvasive Scoring Systems in Assessing Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gut Liver. 2022;16:952–63. doi: 10.5009/gnl210391.</Citation><ArticleIdList><ArticleId IdType="doi">10.5009/gnl210391</ArticleId><ArticleId IdType="pmc">PMC9668505</ArticleId><ArticleId IdType="pubmed">35193993</ArticleId></ArticleIdList></Reference><Reference><Citation>Nabi O, Lapidus N, Boursier J, et al. The NAFLD burden on mortality and morbidities in general population: A community-based longitudinal study (NASH-CO study) Liver Int. 2023;43:2096–106. doi: 10.1111/liv.15674.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/liv.15674</ArticleId><ArticleId IdType="pubmed">37452492</ArticleId></ArticleIdList></Reference><Reference><Citation>Resino S, Asensio C, Bellón JM, et al. Diagnostic accuracy of the APRI, FIB-4, and the Forns index for predicting liver fibrosis in HIV/HCV-coinfected patients: a validation study. J Infect. 2011;63:402–5. doi: 10.1016/j.jinf.2011.07.017.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jinf.2011.07.017</ArticleId><ArticleId IdType="pubmed">21839774</ArticleId></ArticleIdList></Reference><Reference><Citation>Han JW, Kim HY, Yu JH, et al. Diagnostic accuracy of the Fibrosis-4 index for advanced liver fibrosis in nonalcoholic fatty liver disease with type 2 diabetes: A systematic review and meta-analysis. Clin Mol Hepatol. 2024;30:S147–58. doi: 10.3350/cmh.2024.0330.</Citation><ArticleIdList><ArticleId IdType="doi">10.3350/cmh.2024.0330</ArticleId><ArticleId IdType="pmc">PMC11493353</ArticleId><ArticleId IdType="pubmed">39048521</ArticleId></ArticleIdList></Reference><Reference><Citation>Kayadibi H, Yasar B, Ozkara S, et al. The diagnostic accuracy of the Forns index, platelet count and AST to Platelet Ratio Index derived fibrosis index for the prediction of Hepatitis C virus-related significant liver fibrosis and cirrhosis. Scand J Clin Lab Invest. 2014;74:240–7. doi: 10.3109/00365513.2013.879392.</Citation><ArticleIdList><ArticleId IdType="doi">10.3109/00365513.2013.879392</ArticleId><ArticleId IdType="pubmed">24460024</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle></PubmedArticleSet> \ No newline at end of file diff --git a/api/model/__pycache__/facebook.cpython-312.pyc b/api/model/__pycache__/facebook.cpython-312.pyc deleted file mode 100644 index b655abb2c1b37eb61bb764a85a65ba597f83f11b..0000000000000000000000000000000000000000 Binary files a/api/model/__pycache__/facebook.cpython-312.pyc and /dev/null differ diff --git a/api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc b/api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc deleted file mode 100644 index 146c874795b91af20feb44496607b1046a14a0ad..0000000000000000000000000000000000000000 Binary files a/api/model/__pycache__/facebookBartLargeMnli.cpython-312.pyc and /dev/null differ diff --git a/api/model/__pycache__/facebookBartLargeMnli.cpython-313.pyc b/api/model/__pycache__/facebookBartLargeMnli.cpython-313.pyc deleted file mode 100644 index 12f7151d89725353ed2bbc37569d95bff1eea4b1..0000000000000000000000000000000000000000 Binary files a/api/model/__pycache__/facebookBartLargeMnli.cpython-313.pyc and /dev/null differ diff --git a/api/model/test.json b/api/model/test.json deleted file mode 100644 index 0d6ee9b0a488c3c9fa803cb8f534ed96f72c1b4a..0000000000000000000000000000000000000000 --- a/api/model/test.json +++ /dev/null @@ -1,339 +0,0 @@ -[ -{ -"PMID": 39612437, -"Title": "Medicine", -"ArticleTitle": "Association between serum uric acid and prediabetes in a normal Chinese population: A cross-sectional study.", -"Abstract": "Cardiovascular events are frequent among individuals with prediabetes. And the relationship between cardiovascular diseases and elevated serum uric acid (SUA) levels has been supported by extensive scientific evidence. However, there remains controversy regarding the correlation between elevated SUA and prediabetes. The aim of this study was to investigate the association between elevated SUA levels and the prevalence of prediabetes and gender differences in the association. A total of 190,891 individuals who participated in health checkups at the Health Promotion Center of Sir Run Run Shaw Hospital of Zhejiang University from January 2017 to December 2021 were included in this cross-sectional study. The health checkups were carried out by trained general practitioners and nurses. The diagnostic criteria for diabetes and prediabetes are defined in the Standards of Medical Care in Diabetes-2022. The association between SUA levels and diabetes and prediabetes was examined based on logistic regression analysis. The dose-response effect between SUA levels and diabetes and prediabetes in both sexes was assessed using a restricted cubic spline (RCS) regression model. Among 190,891 participants, this study included 106,482 males (55.8%) and 84,409 females (44.2%). There were 46,240 (24.2%) patients with prediabetes and 20,792 (10.9%) patients with diabetes. SUA was divided into quartiles (Q). Compared to the SUA Q1 group, the prevalence of prediabetes was elevated in the SUA Q4 group (OR = 1.378, 95% CI = 1.321-1.437), but diabetes risk was decreased in the SUA Q4 group (OR = 0.690, 95% CI = 0.651-0.730). We found that SUA levels were correlated with prediabetes more significantly in male subjects (OR = 1.328, 95% CI = 1.272-1.386) than in female subjects (OR = 1.184, 95% CI = 1.122-1.249) (P for interaction < .001). Higher SUA levels were strongly related to an elevated prevalence of prediabetes but a decreased prevalence of diabetes. The association of SUA in prediabetes was more significant in men.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Prediabetic State", "Male", "Female", "Uric Acid", "Cross-Sectional Studies", "Middle Aged", "China", "Adult", "Prevalence", "Sex Factors", "Risk Factors", "Aged", "East Asian People"] -}, -{ -"PMID": 39612426, -"Title": "Medicine", -"ArticleTitle": "Exploring the link between SIRT1 gene variants and depression comorbidity in type 2 diabetes.", -"Abstract": "This study aims to (1) analyze the clinical characteristics and risk factors of patients with type 2 diabetes and comorbid depression and (2) explore the association between SIRT1 gene single-nucleotide polymorphism sites and this comorbidity. A total of 450 type 2 diabetes patients hospitalized in the General Medicine Department at The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology from July 2022 to September 2023, and 300 healthy individuals from the physical examination department were selected as study subjects. Both groups were assessed using general information surveys and questionnaires. Statistical analyses were performed to compare clinical indicators across 3 groups: individuals with only type 2 diabetes, those with comorbid depression, and healthy controls. The age, gender, disease duration, marital status, income and drug expenditure, employment status, fasting blood glucose level, fasting insulin level difference, insulin resistance index difference, glycated hemoglobin, high-density lipoprotein level, and HCY difference among the 3 groups of patients were risk factors for type 2 diabetes comorbid depression patients. The SIRT1 mRNA level was significantly reduced in type 2 diabetes comorbid depression patients. The SIRT1 gene had 3 sites: rs12415800, rs3758391, and rs932658, which were related to the patient's type 2 diabetes comorbid depression. They were the additive model and dominant model of rs12415800 and rs3758391, respectively. In addition, the GTGGT haplotype composed of rs12415800-rs932658-rs7895833-rs2273773-rs1467568 and the AGACT haplotype composed of rs3758391-rs932658-rs33957861-rs3818292-rs1467568 were significantly associated with type 2 diabetes comorbid depression. Numerous factors influence the presence of depression in patients with type 2 diabetes, with the SIRT1 gene playing a significant role, serving as a potential biomarker for this comorbidity.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Adult", "Aged", "Female", "Humans", "Male", "Middle Aged", "Case-Control Studies", "China", "Comorbidity", "Depression", "Diabetes Mellitus, Type 2", "Genetic Predisposition to Disease", "Polymorphism, Single Nucleotide", "Risk Factors", "Sirtuin 1"] -}, -{ -"PMID": 39612420, -"Title": "Medicine", -"ArticleTitle": "Effects of genetic variants of organic cation transporters on metformin response in newly diagnosed patients with type 2 diabetes.", -"Abstract": "Type 2 diabetes mellitus (T2DM) is a chronic disease that affects millions of people worldwide. Metformin is the optimal initial therapy for patients with T2DM. Genetic factors play a vital role in metformin response, including variations in drug efficacy and potential side effects. To determine the effects of genetic variants of multidrug and toxin extrusion protein 2 (MATE2), ataxia telangiectasia mutated (ATM), and serine/threonine kinase 11 (STK11) genes on metformin response in a cohort of Saudi patients. This prospective observational study included 76 T2DM newly diagnosed Saudi patients treated with metformin monotherapy and 80 control individuals. Demographic data, lipid profiles, creatinine levels, and hemoglobin A1c (HbA1c) levels were collected before and after treatment. All participants were genotyped for 5 single-nucleotide polymorphisms (SNPs), including rs4621031, rs34399035, rs2301759, rs1800058, and rs11212617, using TaqMan R genotyping assays. This study included 156 subjects. The subjects' mean ± SD age was 50.4 ± 10.14 years. The difference in HbA1c levels in T2DM after treatment ranged from -1.20% to 8.8%, with a mean value of 0.927 ± 1.73%. In general, 73.7% of the patients with T2DM showed an adequate response to metformin (HbA1c < 7%). STK11 (rs2301759) significantly affects the response to metformin in T2DM patients. In the rs2301759 single-nucleotide polymorphisms, the prevalence of an adequate response to metformin was significantly higher among patients with C/C and T/C genotypes than among non-responders (P = .021). However, no statistically significant associations were observed for the other tested SNPs. Our study provides evidence of an association between STK11 (rs2301759) and response to metformin in Saudi patients with T2DM. The need for targeted studies on specific gene-drug associations is emphasized, and further studies with a larger population should be conducted.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Metformin", "Diabetes Mellitus, Type 2", "Female", "Middle Aged", "Male", "Polymorphism, Single Nucleotide", "Hypoglycemic Agents", "Prospective Studies", "Protein Serine-Threonine Kinases", "Organic Cation Transport Proteins", "Glycated Hemoglobin", "Saudi Arabia", "Adult", "AMP-Activated Protein Kinase Kinases", "Ataxia Telangiectasia Mutated Proteins", "Genotype"] -}, -{ -"PMID": 39612398, -"Title": "Medicine", -"ArticleTitle": "A comprehensive review of biomarker research in diabetic nephropathy from a global bibliometric and visualization perspective.", -"Abstract": "Our study comprehensively and visually summarized the important findings of global biomarker research in DN and revealed the structure, hotspots, and evolutionary trends in this field. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Diabetic Nephropathies", "Humans", "Bibliometrics", "Biomarkers", "Biomedical Research"] -}, -{ -"PMID": 39612259, -"Title": "Journal of managed care & specialty pharmacy", -"ArticleTitle": "Area deprivation index impact on type 2 diabetes outcomes in a regional health plan.", -"Abstract": "Significant differences were identified between ADI quintiles 1 and 5 for noninsulin diabetes medication adherence, frequency of A1c test claims, all-cause health care service utilization, and total cost of care. There were no statistically significant differences between ADI quintiles for achievement of A1c goal or receipt of comorbidity-focused therapies.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Female", "Middle Aged", "Male", "Retrospective Studies", "Aged", "Adult", "Glycated Hemoglobin", "Medication Adherence", "Pennsylvania", "Hypoglycemic Agents", "Regional Medical Programs", "Health Care Costs"] -}, -{ -"PMID": 39612042, -"Title": "Sleep & breathing = Schlaf & Atmung", -"ArticleTitle": "The association between chemosensitivity and the 10-year risk of type 2 diabetes in male patients with obstructive sleep apnea.", -"Abstract": "Higher peripheral chemosensitivity was associated with an increased 10-year T2D risk, as calculated using a risk calculator based on clinical variables. For outcomes that reflect a moderate-to-high 10-year risk of T2D, the severity of OSA did not significantly affect the risk, irrespective of whether patients exhibited relatively low or high chemosensitivity.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Sleep Apnea, Obstructive", "Male", "Diabetes Mellitus, Type 2", "Middle Aged", "Adult", "Risk Factors", "Polysomnography"] -}, -{ -"PMID": 39612019, -"Title": "Sleep & breathing = Schlaf & Atmung", -"ArticleTitle": "The effect of physical activity on sleep quality in people with diabetes: systematic review and meta-analysis.", -"Abstract": "Preliminary evidence suggests that exercise can be prescribed to manage self-reported sleep quality in this population, although its effects may not surpass those of usual care.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Sleep Quality", "Exercise", "Exercise Therapy"] -}, -{ -"PMID": 39611987, -"Title": "Histochemistry and cell biology", -"ArticleTitle": "Cratylia mollis lectin reduces inflammatory burden induced by multidrug-resistant Staphylococcus aureus in diabetic wounds.", -"Abstract": "In diabetes, tissue repair is impaired, increasing susceptibility to Staphylococcus aureus infections, a pathogen commonly found in wounds. The emergence of S. aureus strains that are highly resistant to antimicrobial agents highlights the urgent need for alternative therapeutic options. One promising candidate is Cramoll (Cratylia mollis seed lectin), known for its immunomodulatory, mitogenic, and healing properties. However, its efficacy in infected diabetic wounds remains unexplored. This study evaluated the effects of topical Cramoll treatment on diabetic wounds infected by S. aureus. Diabetic Swiss mice (induced by streptozotocin) were subjected to an 8-mm wound on the back and subsequently infected with a suspension of multidrug-resistant S. aureus. During the treatment period, the wounds were clinically evaluated for inflammation and the area of injury. After seven days, samples were collected from the wounds to quantify the bacterial load and histopathological and immunological analyses. Wounds infected by S. aureus exhibited more pronounced areas and severity indices, which were significantly reduced by Cramoll treatment (p < 0.05). Histopathological analysis revealed a reduction in inflammatory cells and an increase in revascularization with Cramoll treatment (p < 0.05). Cramoll also promoted greater collagen production compared to controls (p < 0.05). Furthermore, Cramoll treatment significantly reduced the S. aureus load in wounds (p < 0.0001), decreased TNF-α and IL-6 levels in infected wounds, and increased ERK pathway activation (p < 0.05). In conclusion, Cramoll lectin improves the healing of diabetic wounds, and these results contribute to the understanding of Cramoll healing mechanisms, reinforcing its potential as a healing agent in various clinical conditions.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Animals", "Mice", "Diabetes Mellitus, Experimental", "Male", "Inflammation", "Wound Healing", "Staphylococcal Infections", "Staphylococcus aureus", "Methicillin-Resistant Staphylococcus aureus", "Plant Lectins"] -}, -{ -"PMID": 39611704, -"Title": "Nursing open", -"ArticleTitle": "Diabetes Education Program for Nursing Students: A Systematic Review and Meta-Analysis.", -"Abstract": "The literature search identified 464 articles, from which 13 studies were evaluated in the systematic review. Most studies (n = 12, 92.3%) used technology-based teaching methods, such as high-fidelity simulations, mobile applications, and virtual reality simulations. Regarding the evaluation of diabetes education program effectiveness, the majority of studies showed significant improvements in knowledge (n = 8, 61.5%), followed by satisfaction with learning (n = 4, 30.8%), nursing skill performance (n = 3, 23.1%), and self-confidence (n = 3, 23.1%) in nursing students. In meta-analyses, technology-based teaching interventions, compared to traditional education, showed no statistically significant improvement in diabetes knowledge (standard mean difference 9.52, 95% CI [-0.18, 19.21], p = 0.05) and self-efficacy (standard mean difference 24.09, 95% CI [-10.75, 58.92], p = 0.18). Despite this, technology-based methods demonstrated favourable effects on knowledge and self-efficacy against traditional education. Findings highlight the importance of emerging technology-based diabetes education programs tailored for nursing students, crucial for enhancing positive educational outcomes. No Patient or Public Contribution.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Students, Nursing", "Diabetes Mellitus", "Education, Nursing"] -}, -{ -"PMID": 39611006, -"Title": "International journal of nanomedicine", -"ArticleTitle": "Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro.", -"Abstract": "The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30 min. In these conditions, the nanoparticles had a particle size of 320.37 ± 2.93 nm, an EE of 85.09 ± 1.43%, and a DL of 15.88 ± 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (<24 μg/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-β1 expression, suggesting their potential role in preventing EMT for DKD treatment.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Diabetic Nephropathies", "Humans", "Nanoparticles", "Epithelial-Mesenchymal Transition", "Particle Size", "Cell Line", "Cell Movement", "Chitosan", "Drug Liberation", "Drug Carriers", "Transforming Growth Factor beta1", "Cell Survival", "Polyphosphates"] -}, -{ -"PMID": 39610841, -"Title": "Frontiers in endocrinology", -"ArticleTitle": "Predicting hypoglycemia in elderly inpatients with type 2 diabetes: the ADOCHBIU model.", -"Abstract": "ChiCTR2200062277. Registered on 31 July 2022.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Hypoglycemia", "Male", "Female", "Aged", "Nomograms", "China", "Inpatients", "Blood Glucose", "Risk Factors", "Aged, 80 and over", "Middle Aged", "Hypoglycemic Agents", "Incidence", "Risk Assessment", "Prognosis"] -}, -{ -"PMID": 39610135, -"Title": "Diabetes & metabolism journal", -"ArticleTitle": "Cardiovascular Disease & Diabetes Statistics in Korea: Nationwide Data 2010 to 2019.", -"Abstract": "The incidence of most CVD (IHD, ischemic stroke, and PAD) decreased between 2010 and 2019, whereas the incidence of HF increased. The overall use of high-intensity statins, SGLT2i, and GLP-1RA remained low among individuals with T2DM and CVD.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Republic of Korea", "Male", "Female", "Middle Aged", "Diabetes Mellitus, Type 2", "Aged", "Cardiovascular Diseases", "Incidence", "Adult", "Nutrition Surveys", "Risk Factors", "Young Adult", "Sodium-Glucose Transporter 2 Inhibitors", "Aged, 80 and over"] -}, -{ -"PMID": 39610132, -"Title": "Diabetes & metabolism journal", -"ArticleTitle": "Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.", -"Abstract": "Measurement of the rate-dependent depression (RDD) of the Hoffmann (H) reflex, a technique developed over half a century ago, is founded on repeated stimulation of the H-reflex with tracking of sequentially evoked H-wave amplitudes in the resulting electromyogram. RDD offers insight into the integrity of spinal reflex pathways and spinal inhibitory regulation. Initially, RDD was predominantly utilized in the mechanistic exploration and evaluation of movement disorders characterized by spasticity symptoms, as may occur following spinal cord injury. However, there is increasing recognition that sensory input from the periphery is modified at the spinal level before ascending to the higher central nervous system and that some pain states can arise from, or be exaggerated by, disruption of spinal processing via a mechanism termed spinal disinhibition. This, along with the urgent clinical need to identify biological markers of pain generator and/or amplifier sites to facilitate targeted pain therapies, has prompted interest in RDD as a biomarker for the contribution of spinal disinhibition to neuropathic pain states. Current research in animals and humans with diabetes has revealed specific disorders of spinal GABAergic function associated with impaired RDD. Future investigations on RDD aim to further elucidate its underlying pathways and enhance its clinical applications.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Diabetic Neuropathies", "H-Reflex", "Animals", "Neuralgia", "Electromyography", "Spinal Cord"] -}, -{ -"PMID": 39610131, -"Title": "Diabetes & metabolism journal", -"ArticleTitle": "Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association.", -"Abstract": "Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Non-alcoholic Fatty Liver Disease", "Fatty Liver", "Republic of Korea"] -}, -{ -"PMID": 39610015, -"Title": "Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society", -"ArticleTitle": "Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing.", -"Abstract": "Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Wound Healing", "Humans", "Low-Level Light Therapy", "Inflammation", "Diabetic Foot", "Oxidative Stress", "Cytokines"] -}, -{ -"PMID": 39609996, -"Title": "Journal of Ayub Medical College, Abbottabad : JAMC", -"ArticleTitle": "A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.", -"Abstract": "Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.", -"Predictions": [], -"MeshTerms": ["Humans", "Membrane Proteins", "Wolfram Syndrome", "Male", "Child", "Pakistan"] -}, -{ -"PMID": 39609972, -"Title": "Journal of Ayub Medical College, Abbottabad : JAMC", -"ArticleTitle": "SELF-REPORTED MULTI-MORBIDITY WITH TUBERCULOSIS: DATA FROM THE KHYBER PAKHTUNKHWA INTEGRATED POPULATION HEALTH SURVEY (KPIPHS) IN PAKISTAN.", -"Abstract": "There is a higher burden of self-reported cardiometabolic diseases among people with TB, suggesting that this high-risk group should be screened for cardiometabolic diseases, especially Diabetes.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Pakistan", "Male", "Female", "Adult", "Middle Aged", "Tuberculosis", "Self Report", "Health Surveys", "Prevalence", "Multimorbidity", "Diabetes Mellitus"] -}, -{ -"PMID": 39609829, -"Title": "BMC endocrine disorders", -"ArticleTitle": "Cognitive changes in people with diabetes with lower extremity complications compared to people with diabetes without lower extremity complications: a systematic review and meta-analysis.", -"Abstract": "DRLECs may be related to cognition in people with diabetes, however, existing evidence is unclear due to variability in used methodologies that may challenge concluding the findings. Future high-quality studies investigating cognition among people with and without DRLECs are needed.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Lower Extremity", "Diabetes Complications", "Cognition", "Cognitive Dysfunction", "Diabetic Neuropathies", "Diabetes Mellitus"] -}, -{ -"PMID": 39609030, -"Title": "BMJ open", -"ArticleTitle": "Incidence, prevalence and risk factors for comorbid mental illness among people with hypertension and type 2 diabetes in West Africa: protocol for a systematic review and meta-analysis.", -"Abstract": "CRD42023450732.", -"Predictions": ["Diabetes", "Diabetes type 2"], -"MeshTerms": ["Humans", "Diabetes Mellitus, Type 2", "Systematic Reviews as Topic", "Hypertension", "Mental Disorders", "Prevalence", "Risk Factors", "Incidence", "Africa, Western", "Comorbidity", "Research Design", "Meta-Analysis as Topic"] -}, -{ -"PMID": 39609024, -"Title": "BMJ open", -"ArticleTitle": "Association of overweight and obesity with gestational diabetes mellitus among pregnant women attending antenatal care clinics in Addis Ababa, Ethiopia: a case-control study.", -"Abstract": "Obesity, but not overweight, was significantly associated with the development of GDM. Screening for GDM is recommended for pregnant women with obesity (MUAC≥31) for targeted intervention. Antenatal care providers should provide information for women of childbearing age on maintaining a healthy body weight before and in-between pregnancies and the need for healthy, diversified food and high-level physical activity.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Female", "Diabetes, Gestational", "Pregnancy", "Ethiopia", "Case-Control Studies", "Adult", "Prenatal Care", "Overweight", "Young Adult", "Obesity", "Risk Factors", "Logistic Models"] -}, -{ -"PMID": 39609009, -"Title": "BMJ open", -"ArticleTitle": "Implementation strategies for providing optimised tuberculosis and diabetes integrated care in LMICs (POTENTIAL): protocol for a multiphase sequential and concurrent mixed-methods study.", -"Abstract": "Ethics approval was granted by the National Bioethics Committee of Pakistan (NBCR-1010). Findings will be shared through academic publications, conferences and public outreach.", -"Predictions": ["Diabetes"], -"MeshTerms": ["Humans", "Pakistan", "Diabetes Mellitus", "Tuberculosis", "Delivery of Health Care, Integrated", "Developing Countries", "Quality of Life", "Research Design"] -}, - -{ -"PMID": 39612534, -"Title": "Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy", -"ArticleTitle": "Multivariate analysis of Raman spectra for discriminating human collagens: In vitro identification of extracellular matrix collagens produced by an osteosarcoma cell line.", -"Abstract": "This study establishes Raman spectroscopy as a tool for identifying and characterizing human collagens, aiding in the diagnosis of connective tissue disorders. The creation of a spectral reference library for pure human collagen types I - VI holds potential for medical diagnostics, analytical chemistry, and materials science applications.", -"Predictions": [], -"MeshTerms": ["Humans", "Spectrum Analysis, Raman", "Osteosarcoma", "Collagen", "Cell Line, Tumor", "Extracellular Matrix", "Multivariate Analysis", "Bone Neoplasms"] -}, -{ -"PMID": 39612521, -"Title": "Colloids and surfaces. B, Biointerfaces", -"ArticleTitle": "Transferrin-targeting pH-responsive and biodegradable mesoporous silica nanohybrid for nitric oxide-sensitized chemotherapy of cancer.", -"Abstract": "Weakly acidic pH, low oxygen and high glutathione levels are the main characteristics of tumor cells. Taking advantage of the unique acidic microenvironment of tumor cells, acid-responsive mesoporous organosilica nanoparticles (AMON) were designed for nitric oxide (NO)-sensitized chemotherapy of tumors. AMON served as a nanocarrier co-loaded with a nitric oxide donor (NOD) and chemotherapeutic drug doxorubicin (DOX). Transferrin (Tf) was modified on the surface as a targeting ligand to form NOD&DOX@AMON. In vitro experiments showed that AMON could be completely degraded under acidic conditions (pH 5.0) after 48 h. NOD&DOX@AMON entered cells via transferrin receptor-mediated internalization and degraded in the acidic microenvironment to release its payloads. NOD released NO in presence of one-electron reducing substances like Glutathione (GSH) and ascorbic acid, inhibiting P-glycoprotein(P-gp) function and thereby increasing the intracellular concentration of DOX. In vivo distribution studies revealed that the nanohybrids accumulated maximally in tumor tissue 12 h after intravenous injection and exhibited significant inhibitory effects on HepG2 xenograft tumors. Western blot experiments demonstrated that NOD&DOX@AMON could inhibit the expression of drug resistance-associated proteins and was expected to be employed as a therapeutic approach for drug-resistant ttumors.", -"Predictions": [], -"MeshTerms": ["Doxorubicin", "Humans", "Nitric Oxide", "Transferrin", "Hydrogen-Ion Concentration", "Animals", "Silicon Dioxide", "Nanoparticles", "Porosity", "Mice", "Hep G2 Cells", "Antibiotics, Antineoplastic", "Mice, Inbred BALB C", "Particle Size", "Surface Properties", "Mice, Nude", "Antineoplastic Agents", "Drug Carriers"] -}, -{ -"PMID": 39612480, -"Title": "JMIR research protocols", -"ArticleTitle": "Ultrasound-Guided High-Intensity Focused Ultrasound Combined With PD-1 Blockade in Patients With Liver Metastases From Lung Cancer: Protocol for a Single-Arm Phase 2 Trial.", -"Abstract": "DERR1-10.2196/59152.", -"Predictions": [], -"MeshTerms": ["Humans", "Liver Neoplasms", "Lung Neoplasms", "High-Intensity Focused Ultrasound Ablation", "Immune Checkpoint Inhibitors", "Male", "Female", "Programmed Cell Death 1 Receptor", "Middle Aged", "Combined Modality Therapy", "Aged", "Adult", "Clinical Trials, Phase II as Topic"] -}, -{ -"PMID": 39612472, -"Title": "Cancer control : journal of the Moffitt Cancer Center", -"ArticleTitle": "Pan-Cancer Analysis of PTBP1 to Identify it as a Prognostic and Immunological Biomarker.", -"Abstract": "Our study is the first to demonstrate the oncogenic role of PTBP1 in a pan-cancer context. PTBP1 might serve as a new biomarker for prognostic prediction and immune cell infiltration across cancers in the future.", -"Predictions": [], -"MeshTerms": ["Polypyrimidine Tract-Binding Protein", "Humans", "Heterogeneous-Nuclear Ribonucleoproteins", "Prognosis", "Biomarkers, Tumor", "Mice", "Animals", "Cell Line, Tumor", "Gene Expression Regulation, Neoplastic", "Neoplasms", "Computational Biology", "Melanoma", "Colonic Neoplasms", "Adenocarcinoma of Lung", "RNA, Messenger"] -}, -{ -"PMID": 39612465, -"Title": "Medicine", -"ArticleTitle": "Association between immune cell attributes, serum metabolites, inflammatory protein factors, and colorectal cancer: A Mendelian randomization study.", -"Abstract": "Understanding the role of the tumor microenvironment in colorectal cancer (CRC) progression remains a challenge due to its complexity. Investigating the interplay between immune cell characteristics, serum metabolites, inflammatory protein factors, and CRC could unveil novel therapeutic avenues. We used 2-sample Mendelian randomization (MR) on Genome-Wide Association Studies (GWAS) data to explore causal links between 731 immune cell characteristics, 1400 serum metabolites, 91 inflammatory proteins, and CRC. Various MR methods, including inverse variance weighted (IVW) and MR-Egger, were applied to ensure robust analysis. Sensitivity analyses, such as the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis, were performed to check for pleiotropy, heterogeneity, and influential outliers. Following rigorous genetic variation screening, we identified 43 immune cell characteristics associated with CRC. Notably, 7 immunophenotypes, including CD39+ CD4+ T cell Absolute Count, exhibited significant associations as protective factors. Additionally, 36 other immunophenotypes showed significant causal relationships with CRC. Among serum metabolites, 37 were correlated with CRC, with 1-arachidonoyl-gpc (20: 4n6) being the most closely linked as a risk factor. Similarly, 36 serum metabolites displayed significant causal relationships with CRC. Seven inflammatory protein factors exhibited causal relationships with CRC, with 4 posing as risk factors and 3 as protective factors. Our study scrutinized 731 immune cell characteristics, 1400 serum metabolites, and 91 inflammatory protein factors within the tumor microenvironment. We confirmed causal relationships between 43 immune cell characteristics, 37 serum metabolites, and 7 inflammatory protein factors with CRC. These findings offer novel insights into the potential etiology, prevention, and treatment strategies for CRC.", -"Predictions": [], -"MeshTerms": ["Humans", "Colorectal Neoplasms", "Mendelian Randomization Analysis", "Genome-Wide Association Study", "Risk Factors", "Tumor Microenvironment", "Polymorphism, Single Nucleotide"] -}, -{ -"PMID": 39612459, -"Title": "Medicine", -"ArticleTitle": "Cost-effectiveness analysis of immune checkpoint inhibitors combined with targeted therapy and chemotherapy for HPV/HIV-related cervical cancer.", -"Abstract": "Immune checkpoint inhibitors significantly improve survival benefits for patients. However, their addition is costly and unlikely to be cost-effective for HPV/HIV-related metastatic cervical cancer.", -"Predictions": [], -"MeshTerms": ["Humans", "Uterine Cervical Neoplasms", "Cost-Benefit Analysis", "Female", "Immune Checkpoint Inhibitors", "Papillomavirus Infections", "Quality-Adjusted Life Years", "HIV Infections", "Antineoplastic Combined Chemotherapy Protocols", "Antibodies, Monoclonal, Humanized", "Bevacizumab", "Adult", "Middle Aged", "Cost-Effectiveness Analysis"] -}, -{ -"PMID": 39612458, -"Title": "Medicine", -"ArticleTitle": "Network pharmacology and molecular docking analysis on the mechanism of Wensan tincture in the treatment of pulmonary nodules: A review.", -"Abstract": "Network pharmacology and molecular docking methods were applied to elucidate the molecular mechanism of action of Wensan tincture (WST) in the treatment of pulmonary nodules. The Traditional Chinese Medicine Systems Pharmacology and the Traditional Chinese Medicine and Chemical Composition database were used to screen the active ingredients. Potential targets of WST were retrieved using Traditional Chinese Medicine Systems Pharmacology, SwissADME, and SwissTargetPrediction, while pulmonary nodule-associated targets were obtained from GeneCards and Online Mendelian Inheritance in Man databases. An active ingredient-target network was constructed using Cytoscape 3.9.1, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted via the Database for Annotation, Visualization, and Integrated Discovery platform to identify core targets and signaling pathways. Molecular docking studies were performed using AutoDockTools. The results revealed 62 active ingredients and 344 corresponding targets within the tincture, alongside 1005 targets associated with pulmonary nodules. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the potential therapeutic targets of WST include signal transducer and activator of transcription 3, mitogen-activated protein kinase-3, mitogen-activated protein kinase-1, Jun proto-oncogene, tumor protein 53, phosphoinositide-3-kinase regulatory subunit 1, heat shock protein 90 alpha family class A member 1, and AKT serine/threonine kinase 1. The primary pathways were the cancer pathway, mitogen-activated protein kinase signaling, advanced glycation end-products and their receptor signaling, epidermal growth factor receptor signaling, hypoxia-inducible factor-1 signaling, and the programmed cell death-ligand 1/programmed cell death protein 1 checkpoint pathways. Molecular docking demonstrated that quercetin exhibited the strongest binding affinity with mitogen-activated protein kinase-3, with a binding energy of -9.1 kcal/mol. Notably, key components of WST, such as quercetin, demonstrate considerable potential as drug candidates for the treatment of pulmonary nodules.", -"Predictions": [], -"MeshTerms": ["Molecular Docking Simulation", "Humans", "Drugs, Chinese Herbal", "Network Pharmacology", "Medicine, Chinese Traditional", "Lung Neoplasms", "Signal Transduction"] -}, -{ -"PMID": 39612452, -"Title": "Medicine", -"ArticleTitle": "Iwilfin (eflornithine) approved by the FDA as the first and only oral maintenance therapy for high-risk neuroblastoma in adult and pediatric patients: Narrative review.", -"Abstract": "Neural crest progenitor cells give rise to neuroblasts, the growing nerve cells of the sympathetic nervous system. These cells can undergo changes leading to neuroblastoma, a malignancy responsible for 15% of all pediatric cancer-related deaths. The molecular pathogenesis of this pediatric cancer involves complex genetic alterations, such as MYCN amplification, chromosomal abnormalities, and gene expression changes. Despite aggressive therapies, survival rates for children with high-risk neuroblastoma (HRNB) have not improved significantly compared to those with less severe forms of the disease. This highlights the challenge of managing HRNB and underscores the need for new, effective treatments. A comprehensive treatment regimen, including immunotherapy, radiation therapy, myeloablative chemotherapy, and surgical removal, has been employed to achieve remission in HRNB patients. While dinutuximab beta immunotherapy is an effective and widely used treatment, it has several potential side effects that must be carefully monitored. New drugs are being developed to reduce these side effects without compromising efficacy. One such drug is DL-alpha-difluoromethylornithine (DFMO), approved by the FDA under the brand name Iwilfin. Numerous clinical trials have shown that DFMO, when used as maintenance therapy, significantly improves event-free survival and overall survival in neuroblastoma patients. However, DFMO has adverse effects that require continuous monitoring. Further research is needed to minimize these side effects and improve its efficacy, particularly in addressing resistance caused by long-term use.", -"Predictions": [], -"MeshTerms": ["Humans", "Neuroblastoma", "Child", "Eflornithine", "United States", "Adult", "Drug Approval", "Antineoplastic Agents", "United States Food and Drug Administration", "Maintenance Chemotherapy", "Administration, Oral"] -}, -{ -"PMID": 39612448, -"Title": "Medicine", -"ArticleTitle": "Multimodal imaging of mixed epithelial and stromal tumor of the kidney: Case series.", -"Abstract": "MESTK is a rare, mostly benign tumor that appears as a multilocular cystic or cystic solid, with progressive marked enhancement of the septal and solid components on enhanced scans. This imaging feature is helpful for the diagnosis of MESTK.", -"Predictions": [], -"MeshTerms": ["Humans", "Female", "Kidney Neoplasms", "Middle Aged", "Multimodal Imaging", "Retrospective Studies", "Adult", "Tomography, X-Ray Computed", "Neoplasms, Complex and Mixed", "Neoplasms, Glandular and Epithelial", "Magnetic Resonance Imaging", "Kidney"] -}, -{ -"PMID": 39612446, -"Title": "Medicine", -"ArticleTitle": "Talus osteoid osteoma misdiagnosed as ankle synovitis: A case report in rehabilitation therapy.", -"Abstract": "This case highlights the diagnostic complexity of ankle osteoid osteoma and underscores the importance of a multidisciplinary approach. Rehabilitation therapists play a crucial role in managing such conditions, ensuring optimal patient outcomes through functional assessment and progress monitoring. Timely and accurate diagnosis is essential for effective treatment and improved patient quality of life.", -"Predictions": [], -"MeshTerms": ["Humans", "Male", "Osteoma, Osteoid", "Adult", "Diagnostic Errors", "Talus", "Bone Neoplasms", "Synovitis", "Ankle Joint", "Magnetic Resonance Imaging"] -}, -{ -"PMID": 39612443, -"Title": "Medicine", -"ArticleTitle": "A new nonsense mutation of PTCH1 gene in mother and daughter with late-onset nevus basal cell carcinoma syndrome: Case report.", -"Abstract": "We detected a new mutation in PTCH1 gene in 2 patients with NBCCS, and both of them had ovarian mature teratomas, which are related to NM000264: exon14: c.2080C>T: p.Q694X.", -"Predictions": [], -"MeshTerms": ["Humans", "Patched-1 Receptor", "Female", "Basal Cell Nevus Syndrome", "Codon, Nonsense", "Ovarian Neoplasms", "Adult", "Teratoma", "Middle Aged", "Skin Neoplasms", "Mothers"] -}, -{ -"PMID": 39612442, -"Title": "Medicine", -"ArticleTitle": "Partial nephrectomy versus radiofrequency ablation in patients with cT1a renal cell carcinoma: A surveillance, epidemiology, end results (SEER) analysis.", -"Abstract": "Radiofrequency ablation (RFA) has been proposed for T1a renal cell carcinoma (RCC). The present study compared partial nephrectomy (PN) with RFA for T1a RCC stratified by tumor sizes. We selected patients with RCC and underwent PN or RFA through the surveillance, epidemiology, end results (SEER) database. The Kaplan-Meier method and Cox proportional hazards regression model were conducted. Inverse probability of treatment weights was conducted for sensitivity analysis. We enrolled 15,692 patients in the unmatched cohort, 15,392 (98.1%) underwent PN, and 300 (1.9%) underwent RFA. For tumor ≦ 2 cm, PN was equal to RFA in terms of overall survival (OS) (P > .05) and cancer-specific survival (CSS) (P > .05). For tumor size 2 to 3 cm, PN is likely to have a better OS (P < .05)and comparable CSS (P > .05). For > 3 cm tumor, PN might be associated with higher OS (P < .05) and CSS (P < .05) compared with RFA. In conclusion, PN had a similar OS and CSS compared with RFA in tumor size ≦ 2 cm, RFA could be offered for elderly or patients with comorbidity. For > 2 cm tumors, RFA is not recommended. However, further randomized controlled trials are further required to validate our results.", -"Predictions": [], -"MeshTerms": ["Humans", "Carcinoma, Renal Cell", "Kidney Neoplasms", "Nephrectomy", "Female", "Male", "SEER Program", "Middle Aged", "Radiofrequency Ablation", "Aged", "Neoplasm Staging", "Kaplan-Meier Estimate", "Proportional Hazards Models"] -}, -{ -"PMID": 39612440, -"Title": "Medicine", -"ArticleTitle": "Sensitivity of major chronic diseases and patients of different ages to the collapse of the healthcare system during the COVID-19 pandemic in China.", -"Abstract": "This study evaluates the sensitivity of major chronic diseases to the collapse of the healthcare system for developing prevention and control strategies under normal and emergency conditions. Data for the years 2018, 2019, and 2020 (coronavirus disease 2019 [COVID-19] pandemic) were curated from the National Disease Mortality Surveillance System, Chinese Center for Disease Control and Prevention for diseases such as cancer, heart disease (HD), cerebrovascular disease (CVD), and chronic obstructive pulmonary disease (COPD). The yearly death rate change for 2018, 2019, and 2020 were calculated. Similarly, expected and observed death cases, 95% confidence intervals, and Z-score were calculated for the year 2020 (COVID-19 pandemic). Furthermore, linear regression analysis was performed to analyze a correlation between the median age of various groups and the mortality rate. The observed death cases for cerebrovascular, heart, and other chronic diseases, were more than the expected death cases (430,007 vs 421,317, 369,684 vs 368,957, and 302,974 vs 300,366) as well as an upper limit of 95% confidence interval. The observed death cases for COPD and cancer are less than the expected death cases (127,786 vs 140,524, 450,346 vs 463,961) and lower limit of the 95% confidence interval. The highest Z-score was noted for cerebrovascular disease (105.14). The disease impact of severity was CVD, other chronic diseases, and HD in descending order. The unexpected decline in deaths was found for COPD and cancers with Z-scores (-166.45 and -116.32). The severity of impact was CVD, other chronic diseases, HD, cancer, and COPD in descending order. The COVID-19 pandemic has also resulted in an increase in deaths of the relatively young population as shown by the difference in rate of slop. The healthcare system collapsed due to prevention, control measures and increased burden of COVID-19 patients, affected chronic disease treatment/management and as a consequence variation in death rates occurs in different chronic diseases. A marked increase in mortality was observed in cerebrovascular disease. The unexpected decline in deaths from COPD and cancers, and increase in deaths of the relatively young population suggests that there may be opportunities for improvement in chronic disease management.", -"Predictions": [], -"MeshTerms": ["Humans", "COVID-19", "China", "Chronic Disease", "Aged", "Middle Aged", "Male", "Adult", "Female", "Delivery of Health Care", "SARS-CoV-2", "Neoplasms", "Pulmonary Disease, Chronic Obstructive", "Cerebrovascular Disorders", "Age Factors", "Pandemics", "Aged, 80 and over"] -}, -{ -"PMID": 39612436, -"Title": "Medicine", -"ArticleTitle": "Comprehensive analysis of rheumatic diseases, comorbidities, and mortality in geriatric population: Real-world data of 515 patients in a single rheumatology clinic.", -"Abstract": "Rheumatic diseases present unique challenges in the elderly, with changes in the immune system contributing to varied clinical presentations. More individuals are now living with chronic diseases due to greater life expectancy, but there is a lack of real-world data about rheumatic diseases and comorbidities in older people. This study aimed to investigate disease types, comorbidities, treatments, and mortality in geriatric patients in comparison to non-geriatric patients at a rheumatology clinic. This retrospective observational cohort study reviewed the medical records of 2610 patients from January 2021 to January 2024 at 2 branches of a private hospital's rheumatology clinics. Demographic information and data on rheumatic diseases, noninflammatory conditions, treatments, comorbidities, and mortality were collected, and geriatric patients were compared to non-geriatric patients. Geriatric patients (n = 515) had a significantly higher prevalence of rheumatoid arthritis (50.6% vs 28.8%, P < .001), polymyalgia rheumatica (11.1% vs 0.2%, P < .001), and crystal arthritis (19.6% vs 8.8%, P < .001), with more frequent geriatric-onset cases. Osteoarthritis was also more prevalent in geriatric patients (51.2% vs 11.3%, P < .001), while fibromyalgia was more common in the non-geriatric group (15.9% vs 4.1%, P < .001). Geriatric patients experienced higher rates of comorbidities, including hypertension (72.4% vs 17.8%, P < .001), diabetes (33.6% vs 12.1%, P < .001), and osteoporosis (64.9% vs 35.4%, P < .001). These patients used more corticosteroids (74.5% vs 44%, P < .001), and conventional synthetic disease-modifying antirheumatic drugs (62.4% vs 49.4%, P < .001) but fewer biological disease-modifying antirheumatic drugs (9.2% vs 23.1%, P < .001). Mortality rates were significantly higher in geriatric patients (6% vs 0.3%), with cancer (P = .001), ischemic heart disease (P = .04), heart failure (P = .01), chronic kidney disease (P = .02), and interstitial lung disease (P = .01) being associated with increased mortality. Geriatric rheumatology should receive greater focus in future research to help address the anticipated increases in demand and to develop tailored management strategies for elderly patients with rheumatic diseases and comorbidities.", -"Predictions": [], -"MeshTerms": ["Humans", "Aged", "Female", "Male", "Rheumatic Diseases", "Retrospective Studies", "Comorbidity", "Aged, 80 and over", "Middle Aged", "Prevalence"] -}, -{ -"PMID": 39612434, -"Title": "Medicine", -"ArticleTitle": "Spermatic cord myxoma: A rare case report.", -"Abstract": "Although rare, spermatic cord myxomas should be considered in the differential diagnosis of scrotal masses. Surgical excision is both diagnostic and therapeutic, providing a favorable prognosis with minimal risk of recurrence.", -"Predictions": [], -"MeshTerms": ["Humans", "Male", "Myxoma", "Middle Aged", "Spermatic Cord", "Genital Neoplasms, Male", "Diagnosis, Differential"] -}, -{ -"PMID": 39612433, -"Title": "Medicine", -"ArticleTitle": "Two case reports of breast cancer combined with synchronous primary intrahepatic cholangiocarcinoma/mixed liver cancer.", -"Abstract": "The treatment approach adopted in this case report may serve as a favorable reference for the management of similar cases. However, further extensive biological studies are still needed to investigate the biological mechanisms of multiple primary malignant tumors and to discover specific therapeutic approaches to achieve more clinical benefits for patients.", -"Predictions": [], -"MeshTerms": ["Humans", "Female", "Cholangiocarcinoma", "Neoplasms, Multiple Primary", "Breast Neoplasms", "Bile Duct Neoplasms", "Liver Neoplasms", "Middle Aged", "Carcinoma, Hepatocellular", "Aged", "Carcinoma, Ductal, Breast"] -}, -{ -"PMID": 39612432, -"Title": "Medicine", -"ArticleTitle": "The role of 1400 plasma metabolites in gastric cancer: A bidirectional Mendelian randomization study and metabolic pathway analysis.", -"Abstract": "While observational studies have illustrated correlations between plasma metabolites and gastric cancer (GC), the causal association between the 2 is still unclear. Our study aims to delineate the bidirectional relationship between plasma metabolites and GC and find potential metabolic pathways. We undertook a bidirectional 2-sample Mendelian randomization (MR) analysis to investigate the causal relationship, specificity, and direction of association between 1400 plasma metabolites and GC. The GWAS data for metabolites was obtained from a cohort of 8299 European individuals. And the GC's GWAS data was from FinnGen Consortium with 2384 European individuals, and the GWAS catalog with 1029 European ancestry cases for validation. Causal estimates were primarily calculated by the inverse-variance weighted (IVW) method. To ensure robustness, we performed comprehensive sensitivity analyses to assess heterogeneity and address concerns regarding horizontal pleiotropy. We validated the forward relationship between metabolites and GC from another database and implemented meta-analysis. Furthermore, we conducted metabolic enrichment and pathway analysis of these causal metabolites using MetaboAnalyst5.0/6.0 with the database of Kyoto Encyclopedia of Genes and Genomes. All statistical analysis was carried out using R software. Metabolites like 2s, 3R-dihydroxybutyrate, 4-acetamidobutanoate, ferulic acid 4-sulfate and methyl indole-3-acetate was proven positively linked with the development of GC. Asparagine, glucose to maltose ratio, glycohyocholate, Gulonate levels, linoleoyl ethanolamide and Spermidine to (N(1) + N(8))-acetylspermidine ratio was proven to be negatively associated with GC. Moreover, linoleic acid, histidine, glutamine, bilirubin, Succinate to proline ratio were found to be potentially linked to the development of GC. Furthermore, our analysis identified 18 significant metabolic pathways, including Arginine and proline metabolism (P < .009) and Valine, leucine, and isoleucine biosynthesis (P < .031). Our findings offer evidence supporting potential casual relations between multiple plasma metabolites and GC. These findings may offer great potential for future application of these biomarkers in GC screening and clinical prevention strategies.", -"Predictions": [], -"MeshTerms": ["Humans", "Mendelian Randomization Analysis", "Stomach Neoplasms", "Genome-Wide Association Study", "Metabolic Networks and Pathways", "Male", "Female"] -}, -{ -"PMID": 39612428, -"Title": "Medicine", -"ArticleTitle": "Correlation between CT spectral quantitative parameters and expression levels of HIF-1α and ALX1 in non-small cell lung cancer.", -"Abstract": "To detect the expression levels of hypoxia inducible factor-1alpha (HIF-1α) and aristaless-like homeobox 1 (ALX1) in non-small cell lung cancer and analyze the relationship between CT spectral quantitative parameters and immunohistochemical markers, in order to evaluate the biological characteristics of lung cancer by spectral CT. Spectral CT data and paraffin masses of 50 adult patients with lung cancer were collected. CT quantitative parameters including the slope of spectral curve, effective atomic number and iodine concentration in enhanced phases were acquired. Expression levels of HIF-1α and ALX1 were detected by immunohistochemical tests, and compared between different pathological types and differentiation grades of tumor cells. CT quantitative parameters at different expression levels of HIF-1α and ALX1 were compared, respectively. The relationship between CT quantitative parameters and expression levels of HIF-1α and ALX1 were analyzed. There was no significant difference of expression levels of HIF-1α and ALX1 between adenocarcinoma and squamous cell carcinoma. Expression levels of HIF-1α among different differentiation grades of tumor cells had significant difference (χ2 = 27.100, P < .001), while without significant difference in ALX1 expression. CT spectral parameters had significant difference among expression levels of HIF-1α and ALX1 (P < .01). There was a positive correlation between each CT spectral parameter and the expression level of immunohistochemical markers. CT spectral quantitative parameters are significantly different among expression levels of immunohistochemical markers. The positive correlation between CT quantitative parameter and expression level of immunohistochemical markers suggests CT spectral imaging could predict biological characteristics of tumors.", -"Predictions": [], -"MeshTerms": ["Humans", "Carcinoma, Non-Small-Cell Lung", "Lung Neoplasms", "Hypoxia-Inducible Factor 1, alpha Subunit", "Male", "Middle Aged", "Female", "Tomography, X-Ray Computed", "Aged", "Homeodomain Proteins", "Adult", "Biomarkers, Tumor", "Immunohistochemistry"] -}, -{ -"PMID": 39612421, -"Title": "Medicine", -"ArticleTitle": "Chemotherapy combined with immunotherapy in a patient with multiple primary gastric and rectal cancers with good prognosis: A case report.", -"Abstract": "According to the results of NGS testing, the multiple primary cancers' patient received personalized treatment and ultimately achieved clinical complete remission. This case highlights the critical role of genetic testing in accurately identifying multiple primary cancer and the value of personalized guidance for patient treatment using NGS in clinical practice.", -"Predictions": [], -"MeshTerms": ["Humans", "Male", "Rectal Neoplasms", "Stomach Neoplasms", "Aged", "Neoplasms, Multiple Primary", "Adenocarcinoma", "Antineoplastic Combined Chemotherapy Protocols", "Immunotherapy", "Chemotherapy, Adjuvant", "Capecitabine", "Neoadjuvant Therapy", "Prognosis", "Oxaloacetates"] -}, -{ -"PMID": 39612416, -"Title": "Medicine", -"ArticleTitle": "High C-reactive protein is associated with the efficacy of neoadjuvant chemotherapy for hormone receptor-positive breast cancer.", -"Abstract": "C-reactive protein (CRP) is a nonspecific biomarker for systemic inflammatory response and is linked to the prognosis of breast cancer (BC); however, few studies have investigated the correlation between CRP and the effectiveness of neoadjuvant chemotherapy treatment for BC. We recruited 177 patients with BC who underwent neoadjuvant chemotherapy in our clinical trial. the median CRP level (0.24 mg/L), patients were categorized into high and low groups. We examined the relationship between CRP levels and various clinicopathological factors, including pathological complete response (pCR), using the chi-square test or Fisher exact test. Furthermore, we evaluated the predictive capacity of CRP for different molecular subtypes by constructing receiver operating characteristic curves. To identify the independent variables associated with pCR, we conducted logistic regression multivariate analysis. No association was found between C-reactive levels at baseline and pCR rates. CRP level was significantly associated with higher body mass index, and the high CRP group had more overweight patients (47.06% vs. 16.30%, P < .001). In hormone receptor-positive patients, the high CRP group demonstrated a significantly higher pCR rate (OR = 4.115, 95% CI: 1.481-11.36, P = .009). The areas under the curve was 0.670 (95% CI: 0.550-0.792, P < .001). Multivariate logistic analysis showed that the CRP level was a significant independent predictor of pCR (OR = 5.882, 95% CI: 1.470-28.57, P = .017). High CRP levels were found to be associated with a higher pCR rate, indicating their independent predictive value in determining the efficacy of neoadjuvant chemotherapy in hormone receptor-positive BC patients.", -"Predictions": [], -"MeshTerms": ["Humans", "Female", "C-Reactive Protein", "Breast Neoplasms", "Neoadjuvant Therapy", "Middle Aged", "Adult", "Aged", "Biomarkers, Tumor", "Receptors, Estrogen", "ROC Curve", "Receptors, Progesterone", "Treatment Outcome", "Chemotherapy, Adjuvant", "Prognosis", "Antineoplastic Combined Chemotherapy Protocols"] -}, -{ -"PMID": 39612415, -"Title": "Medicine", -"ArticleTitle": "Development of a nomogram for predicting cancer pain in lung cancer patients: An observational study.", -"Abstract": "During the progression of lung cancer, cancer pain is a common complication. Currently, there are no accurate tools or methods to predict the occurrence of cancer pain in lung cancer. Our study aims to construct a predictive model for lung cancer pain to assist in the early diagnosis of cancer pain and improve prognosis. We retrospectively collected clinical data from 300 lung cancer patients between March 2013 and March 2023. First, we compared the clinical data of the groups with and without cancer pain. Significant factors were further screened using random forest analysis (IncMSE% > 2) to identify those with significant differences. Finally, these factors were incorporated into a multifactorial logistic regression model to develop a predictive model for lung cancer pain. The predictive accuracy and performance of the model were assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) analysis. Our study collected data from 300 lung cancer patients, including 100 in the pain-free group and 200 in the pain group. Subsequently, we conducted univariate analysis on 22 factors and selected statistically significant factors using random forest methods. Ultimately, lymphocytes(LYM) percentage, bone metastasis, tumor necrosis factor alpha (TNFα), and interleukin-6 (IL6) were identified as key factors. These 4 factors were included in a multivariate logistic regression analysis to construct a predictive model for lung cancer pain. The model demonstrated good predictive ability, with an area under the curve (AUC) of 0.852 (95% CI: 0.806-0.899). The calibration curve indicated that the model has good accuracy in predicting the risk of lung cancer pain. DCA further emphasized the model's high accuracy. The model was finally validated using 5-fold cross-validation. We developed a reliable predictive model for cancer pain in lung cancer. This can provide a theoretical basis for future large-sample, multi-center studies and may also assist in the early prevention and intervention of cancer pain in lung cancer.", -"Predictions": [], -"MeshTerms": ["Humans", "Lung Neoplasms", "Female", "Male", "Nomograms", "Cancer Pain", "Middle Aged", "Retrospective Studies", "Aged", "ROC Curve", "Logistic Models", "Prognosis", "Tumor Necrosis Factor-alpha"] -} -] \ No newline at end of file diff --git a/api/parser/__pycache__/__init__.cpython-312.pyc b/api/parser/__pycache__/__init__.cpython-312.pyc deleted file mode 100644 index 79f3985c28bb420515db6b5fd810199a0cac1c41..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/__init__.cpython-312.pyc and /dev/null differ diff --git a/api/parser/__pycache__/json.cpython-312.pyc b/api/parser/__pycache__/json.cpython-312.pyc deleted file mode 100644 index c665e9375f431e7a02188da678945a4f681ff9c2..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/json.cpython-312.pyc and /dev/null differ diff --git a/api/parser/__pycache__/jsonParser.cpython-312.pyc b/api/parser/__pycache__/jsonParser.cpython-312.pyc deleted file mode 100644 index 28703b314d38ac9aafe712090831fb26f99f65ea..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/jsonParser.cpython-312.pyc and /dev/null differ diff --git a/api/parser/__pycache__/jsonParser.cpython-313.pyc b/api/parser/__pycache__/jsonParser.cpython-313.pyc deleted file mode 100644 index dfd289920b27fe3346625a25b11c7b5e983d588c..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/jsonParser.cpython-313.pyc and /dev/null differ diff --git a/api/parser/__pycache__/xlsxParser.cpython-312.pyc b/api/parser/__pycache__/xlsxParser.cpython-312.pyc deleted file mode 100644 index f86b635812b48746651294ed6c362deefb6a84ae..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/xlsxParser.cpython-312.pyc and /dev/null differ diff --git a/api/parser/__pycache__/xmlParser.cpython-312.pyc b/api/parser/__pycache__/xmlParser.cpython-312.pyc deleted file mode 100644 index d68995ebbec8c4e2c95d3c9ec8505fe70feb0403..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/xmlParser.cpython-312.pyc and /dev/null differ diff --git a/api/parser/__pycache__/xmlParser.cpython-313.pyc b/api/parser/__pycache__/xmlParser.cpython-313.pyc deleted file mode 100644 index 5a7e8a68f1af10cf8faf19d3c072a19a75b6b4f1..0000000000000000000000000000000000000000 Binary files a/api/parser/__pycache__/xmlParser.cpython-313.pyc and /dev/null differ diff --git a/api/data_num.py b/dataSources/PubMed/data_num.py similarity index 100% rename from api/data_num.py rename to dataSources/PubMed/data_num.py diff --git a/PubmedInfo.md b/dataSources/PubMed/doc/PubmedInfo.md similarity index 98% rename from PubmedInfo.md rename to dataSources/PubMed/doc/PubmedInfo.md index 72b192ade33d5a83fcbe11f74f314995f6567273..c57de11807fb351f3cbc8143236c01d853848e8e 100644 --- a/PubmedInfo.md +++ b/dataSources/PubMed/doc/PubmedInfo.md @@ -136,7 +136,7 @@ Example: human[organism] AND topoisomerase[protein name] When searching for terms, it is important to pay attention to how the search is structured. For example, if you search for **breast cancer** without quotes, the search engine will look for any occurrence of the terms **"breast"**, **"cancer"**, or the exact phrase **"breast cancer"**. To specifically search for the phrase **breast cancer** as a whole, you need to enclose it in quotation marks (" "). - + ### API syntax @@ -205,7 +205,7 @@ Each field has a field tag (enclosed in square brackets, e.g., [TI] for Title) t When no field tags are specified, PubMed searches across all fields. However, it also applies Automatic Term Mapping (ATM) to map your terms to MeSH terms, journal names, author names, and other indexed fields, which helps broaden the search intelligently. - + ### ATM diff --git a/api/doc/data_num.json b/dataSources/PubMed/doc/data_num.json similarity index 100% rename from api/doc/data_num.json rename to dataSources/PubMed/doc/data_num.json diff --git a/docImg/SearchATMExample.png b/dataSources/PubMed/doc/img/SearchATMExample.png similarity index 100% rename from docImg/SearchATMExample.png rename to dataSources/PubMed/doc/img/SearchATMExample.png diff --git a/docImg/SearchQuotationExample.png b/dataSources/PubMed/doc/img/SearchQuotationExample.png similarity index 100% rename from docImg/SearchQuotationExample.png rename to dataSources/PubMed/doc/img/SearchQuotationExample.png diff --git a/api/pubmedApi.py b/dataSources/PubMed/pubmedApi.py similarity index 95% rename from api/pubmedApi.py rename to dataSources/PubMed/pubmedApi.py index 3bc641acbbef0dbc84152dce77f34fc783f798ab..1cb76b3ab65e2335d7687ca6f46898e98fec966c 100644 --- a/api/pubmedApi.py +++ b/dataSources/PubMed/pubmedApi.py @@ -1,5 +1,5 @@ from requests import get -from api.parser.xmlParser import parseXmlFile +from parsers.xmlParser import parseXmlFile import json FILENAME = "pubmedData.xml" @@ -36,10 +36,10 @@ def getPubmedData(term, date_min, date_max, nb_items = -1, debug = False, store response = get(url) - with open(f"data/{FILENAME}", "w", encoding="utf-8") as file: + with open(f"tmp/{FILENAME}", "w", encoding="utf-8") as file: file.write(response.text) - obj = parseXmlFile(f"data/{FILENAME}") + obj = parseXmlFile(f"tmp/{FILENAME}") data_list = [] diff --git a/api/whoApi.py b/dataSources/WHO/whoApi.py similarity index 100% rename from api/whoApi.py rename to dataSources/WHO/whoApi.py diff --git a/model/HuggingFace/__pycache__/BartLargeMnli.cpython-313.pyc b/model/HuggingFace/__pycache__/BartLargeMnli.cpython-313.pyc deleted file mode 100644 index dec3091c9c4c1da803d19112c3c19d01679624a3..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/BartLargeMnli.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/BioMedBERT.cpython-313.pyc b/model/HuggingFace/__pycache__/BioMedBERT.cpython-313.pyc deleted file mode 100644 index a231c8c0ca03ae691fbfc46b540c1c7880e3e842..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/BioMedBERT.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/DeBERTa_v3_base_mnli_fever_anli.cpython-313.pyc b/model/HuggingFace/__pycache__/DeBERTa_v3_base_mnli_fever_anli.cpython-313.pyc deleted file mode 100644 index 5f76425acbf38d67f313fedb0c78362f8f2351a6..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/DeBERTa_v3_base_mnli_fever_anli.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/Multilingual_MiniLMv2_L6_mnli_xnli.cpython-313.pyc b/model/HuggingFace/__pycache__/Multilingual_MiniLMv2_L6_mnli_xnli.cpython-313.pyc deleted file mode 100644 index d6ae666d888e6c2686865993f5a8f80c9a4de05b..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/Multilingual_MiniLMv2_L6_mnli_xnli.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/bge_m3_zeroshot_v2.cpython-313.pyc b/model/HuggingFace/__pycache__/bge_m3_zeroshot_v2.cpython-313.pyc deleted file mode 100644 index 540104fa34d0bf6d5a24c6f7a29abf8448ab19ee..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/bge_m3_zeroshot_v2.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/deberta_v3_base_zeroshot_v1_1_all.cpython-313.pyc b/model/HuggingFace/__pycache__/deberta_v3_base_zeroshot_v1_1_all.cpython-313.pyc deleted file mode 100644 index 41aa55e82224c9c8090640e9013be0d77b16aa58..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/deberta_v3_base_zeroshot_v1_1_all.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/nli_deberta_v3_base.cpython-313.pyc b/model/HuggingFace/__pycache__/nli_deberta_v3_base.cpython-313.pyc deleted file mode 100644 index e788e3a6d12f8d625d721fb87a069e5dc46062fb..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/nli_deberta_v3_base.cpython-313.pyc and /dev/null differ diff --git a/model/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc b/model/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc deleted file mode 100644 index 7a3365936ba9237909f316db3113ebcd666bcb1e..0000000000000000000000000000000000000000 Binary files a/model/HuggingFace/__pycache__/zero_shot_classification.cpython-313.pyc and /dev/null differ diff --git a/model/__pycache__/BioMedBERT.cpython-313.pyc b/model/__pycache__/BioMedBERT.cpython-313.pyc deleted file mode 100644 index 5a8ea587e9a99bc0fbf61f14581dd78d3f727a79..0000000000000000000000000000000000000000 Binary files a/model/__pycache__/BioMedBERT.cpython-313.pyc and /dev/null differ diff --git a/model/__pycache__/cohere.cpython-313.pyc b/model/__pycache__/cohere.cpython-313.pyc deleted file mode 100644 index e73cb0c842c6240592cea7acde6def812eee0e68..0000000000000000000000000000000000000000 Binary files a/model/__pycache__/cohere.cpython-313.pyc and /dev/null differ diff --git a/model/__pycache__/cohereCommand.cpython-313.pyc b/model/__pycache__/cohereCommand.cpython-313.pyc deleted file mode 100644 index ceea054cf92c05a407dc84cd8cadd9b6a8b2ae8c..0000000000000000000000000000000000000000 Binary files a/model/__pycache__/cohereCommand.cpython-313.pyc and /dev/null differ diff --git a/model/__pycache__/create_test_data.cpython-313.pyc b/model/__pycache__/create_test_data.cpython-313.pyc deleted file mode 100644 index 2fd8429e6a2034bcc01ed2269127fe7fdd513e83..0000000000000000000000000000000000000000 Binary files a/model/__pycache__/create_test_data.cpython-313.pyc and /dev/null differ diff --git a/model/__pycache__/gemini.cpython-313.pyc b/model/__pycache__/gemini.cpython-313.pyc deleted file mode 100644 index b4289322215c8b4d81dafd22daf9aa9837aadb06..0000000000000000000000000000000000000000 Binary files a/model/__pycache__/gemini.cpython-313.pyc and /dev/null differ diff --git a/model/data/arthritis_infectious.json b/model/data/arthritis_infectious.json deleted file mode 100644 index fcf85dad7aee20988e097c06945fc203090ee196..0000000000000000000000000000000000000000 --- a/model/data/arthritis_infectious.json +++ /dev/null @@ -1,509 +0,0 @@ -[ - { - "PMID": "39462905", - "Title": "Journal of paediatrics and child health", - "ArticleTitle": "Hospitalisation cost for paediatric osteomyelitis and septic arthritis in New Zealand.", - "Abstract": "Direct BJI hospitalisation costs in 2018-2019 were NZ$10\u2009819\u2009474 with 11% of costs due to re-admission. Direct hospitalisation costs for paediatric BJI in NZ vary by deprivation and ethnic group. Illness complexity of paediatric BJI varies by ethnic group. Interventions are needed to reduce incidence and severity of these debilitating infections.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "New Zealand", - "Osteomyelitis", - "Child", - "Arthritis, Infectious", - "Hospitalization", - "Male", - "Child, Preschool", - "Female", - "Adolescent", - "Infant", - "Length of Stay", - "Patient Readmission" - ] - }, - { - "PMID": "39459423", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Arthroscopic Debridement Enhanced by Intra-Articular Antibiotic-Loaded Calcium Sulphate Beads for Septic Arthritis of a Native Knee Following Iatrogenic Joint Injection: A Case Report.", - "Abstract": "Septic arthritis (SA) represents an orthopedics urgency and mainly affects the knee joint. Due to its devastating effects on cartilage, immediate management is crucial. SA is characterized by an annual incidence of 2 to 10 cases per 100,000 individuals, with mortality rates fluctuating between 0.5% and 15%, with a substantially higher mortality rate observed in older people (15%) in contrast to younger cohorts (4%). The etiology of septic arthritis is multifactorial: a spectrum of Gram-positive and Gram-negative bacteria can contribute to the development of this condition, especially ", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Female", - "Aged", - "Arthritis, Infectious", - "Debridement", - "Anti-Bacterial Agents", - "Knee Joint", - "Arthroscopy", - "Injections, Intra-Articular", - "Calcium Sulfate", - "Staphylococcal Infections", - "Staphylococcus aureus", - "Iatrogenic Disease" - ] - }, - { - "PMID": "39446985", - "Title": "JBJS reviews", - "ArticleTitle": "The Seasonality of Childhood Bone and Joint Infection with Focus on Kingella kingae: A Systematic Review.", - "Abstract": "Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Kingella kingae", - "Seasons", - "Child", - "Neisseriaceae Infections", - "Arthritis, Infectious", - "Hospitalization", - "Bone Diseases, Infectious", - "Infant", - "Child, Preschool" - ] - }, - { - "PMID": "39440804", - "Title": "Foot & ankle international", - "ArticleTitle": "One-Stage Tibiotalocalcaneal Arthrodesis for Severe Septic Destruction of the Ankle Joint Using a Retrograde Intramedullary Nail: A Retrospective Cross-sectional Study.", - "Abstract": "One-stage TTCA with retrograde IM nail appears to be an acceptable alternative in severe septic destruction of the ankle joint, with a high eradication rate of infection and ankle fusion.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Arthrodesis", - "Retrospective Studies", - "Ankle Joint", - "Bone Nails", - "Middle Aged", - "Male", - "Female", - "Cross-Sectional Studies", - "Aged", - "Adult", - "Calcaneus", - "Arthritis, Infectious", - "Tibia" - ] - }, - { - "PMID": "39428673", - "Title": "ANZ journal of surgery", - "ArticleTitle": "Non-tuberculous mycobacterial bone and joint infections - a case series from a tertiary referral centre in Australia.", - "Abstract": "Antimicrobial complications were common; however, all patients were infection free at their latest follow up. Despite the inherent limitations, these results suggest that routinely ordering mycobacterial culture is of low yield. There is potential for shorter-term oral antimicrobial treatments. Prospective research is required to optimize treatment regimens and durations.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Mycobacterium Infections, Nontuberculous", - "Tertiary Care Centers", - "Male", - "Female", - "Middle Aged", - "Aged", - "Osteomyelitis", - "Queensland", - "Nontuberculous Mycobacteria", - "Adult", - "Prosthesis-Related Infections", - "Anti-Bacterial Agents", - "Arthritis, Infectious", - "Retrospective Studies", - "Australia" - ] - }, - { - "PMID": "39424291", - "Title": "Journal of tropical pediatrics", - "ArticleTitle": "A systematic review of pelvic infective osteomyelitis in children: current state of evidence.", - "Abstract": "Musculoskeletal infection of pelvis can be confused with septic arthritis of the hip, irritable hip, sacroiliitis, and spondylodiscitis in the initial period. This study aimed to present the complete clinical picture of pelvic infective osteomyelitis (PIO) in children along with its natural course. Two researchers independently used PubMed and Scopus electronic databases for the literature review. This review includes all studies reporting PIO in the pediatric age group. The final inclusion of 11 eligible studies was done. A total of 277 patients were analyzed from the included studies with the majority of males (158/242, 65.2%). Hip and groin pain (147/195, 75.3%) and limp (155/249, 62.2%) were the common presenting symptoms. Increased systemic temperature (83/103, 80.5%) and localized tenderness at the hip joint area (90/121, 74.3%) were among the commonest signs. Magnetic resonance imaging was an investigation of choice for diagnosis (89/93, 95.6%). Blood culture showed growth in 47.6% (119/250) patients with Staphylococcus aureus (83/102, 81.3%) being the most common isolated organism. Treatment with sensitive antibiotics was the mainstay of management with surgery for debridement or biopsy being required in only 16.1% (23/142) of the patients. PIO in children is a rare condition mimicking several other disease processes affecting the neighboring tissues the diagnosis of which gets limited in low-resource settings. Further prospective clinical studies are the need of the hour to validate the guideline proposed. Explorative studies to define a clinical scoring system to differentiate septic arthritis of the hip from PIO may be considered.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Osteomyelitis", - "Child", - "Male", - "Female", - "Anti-Bacterial Agents", - "Magnetic Resonance Imaging", - "Child, Preschool", - "Adolescent", - "Arthritis, Infectious", - "Pelvis", - "Staphylococcal Infections", - "Staphylococcus aureus", - "Debridement" - ] - }, - { - "PMID": "39382308", - "Title": "Journal of clinical microbiology", - "ArticleTitle": "Clinical performance evaluation of the BioFire Joint Infection Panel.", - "Abstract": "The BioFire Joint Infection (JI) Panel offers a significant advancement in the rapid diagnosis of joint infections by facilitating the simultaneous detection of multiple bacterial and fungal pathogens, as well as resistance markers, directly from synovial fluid samples. An article published in the ", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Synovial Fluid", - "Bacteria", - "Fungi", - "Retrospective Studies", - "Prospective Studies", - "Bacterial Infections", - "Arthritis, Infectious", - "Mycoses", - "Molecular Diagnostic Techniques", - "Sensitivity and Specificity" - ] - }, - { - "PMID": "39380073", - "Title": "Journal of medical case reports", - "ArticleTitle": "Disseminated melioidosis-challenge to routine antibiotic therapy: a case report.", - "Abstract": "Misidentification leads to inadequate treatment, as melioidosis medication is different from other bacterial infections. Here initiation of meropenem- and cotrimoxazole-intensive therapy for 4\u00a0weeks, and 6-month eradication phase with cotrimoxazole, resulted in gradual recovery of the patient. It took around 21\u00a0days of intensive antibiotic therapy to get bacteriological clearance from blood, which signifies the tenacious nature of this infection.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Melioidosis", - "Male", - "Burkholderia pseudomallei", - "Anti-Bacterial Agents", - "Middle Aged", - "Meropenem", - "Arthritis, Infectious", - "Trimethoprim, Sulfamethoxazole Drug Combination", - "Diagnostic Errors", - "Thienamycins", - "Diagnosis, Differential", - "Treatment Outcome" - ] - }, - { - "PMID": "39370286", - "Title": "Kyobu geka. The Japanese journal of thoracic surgery", - "ArticleTitle": "[Minimally Invasive Aortic Valve Replacement for Aortic Valve Infective Endocarditis Complicated by Septic Arthritis of the Sternoclavicular Joint:Report of a Case].", - "Abstract": "A 54-year-old man with a history of atopic dermatitis was admitted to our hospital for persistent fever and multiple arthralgias unresponsive to antibiotics. On the second day of hospitalization, Staphylococcus aureus was detected in the blood culture, and debridement for presumed pyogenic arthritis was performed on the patient's bilateral wrists and right ankle joints. Echocardiography showed evidence of infective endocarditis of the aortic valve. The patient's fever persisted after drainage of multiple joint abscesses, and blood cultures remained positive. A right sternoclavicular joint abscess that had been noted on computed tomography (CT) at the time of admission had not decreased in size on repeat CT performed 10 days post-admission. After additional drainage of the sternoclavicular joint abscess on the 15th day, the patient's fever subsided, and blood culture was negative. On the 29th day, an aortic valve replacement was performed via a right anterior thoracotomy to prevent sternal osteomyelitis. The postoperative course was uneventful, and the patient was discharged on the 35th day after valve surgery. One year after the surgery, he continues to take antibiotics, and recurrence of infection has not been observed.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Male", - "Middle Aged", - "Arthritis, Infectious", - "Sternoclavicular Joint", - "Aortic Valve", - "Minimally Invasive Surgical Procedures", - "Heart Valve Prosthesis Implantation", - "Endocarditis", - "Staphylococcal Infections" - ] - }, - { - "PMID": "39358640", - "Title": "European journal of orthopaedic surgery & traumatology : orthopedie traumatologie", - "ArticleTitle": "Clinical evaluation of a multiplex PCR-based test for joint infection: a prospective diagnostic accuracy study of forty-nine patients.", - "Abstract": "The BJI Panel has a high accuracy for detecting the pathogens in its panel, but the absence of important common pathogens from the panel reduces its sensitivity and NPV. With a short turnaround time and precise pathogen detection, the BJI Panel has the potential to add value as a complementary diagnostic method.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Prospective Studies", - "Prosthesis-Related Infections", - "Female", - "Sensitivity and Specificity", - "Synovial Fluid", - "Male", - "Middle Aged", - "Aged", - "Multiplex Polymerase Chain Reaction", - "Predictive Value of Tests", - "Adult", - "Arthritis, Infectious", - "Aged, 80 and over", - "Biopsy" - ] - }, - { - "PMID": "39340660", - "Title": "Inflammation research : official journal of the European Histamine Research Society ... [et al.]", - "ArticleTitle": "Trained immunity of synovial macrophages is associated with exacerbated joint inflammation and damage after Staphylococcus aureus infection.", - "Abstract": "There is a trained immunity phenotype in CX3CR1", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Animals", - "Male", - "Staphylococcal Infections", - "Mice, Inbred C57BL", - "Lipopolysaccharides", - "Macrophages", - "TOR Serine-Threonine Kinases", - "Staphylococcus aureus", - "CX3C Chemokine Receptor 1", - "Synovial Membrane", - "Arthritis, Infectious", - "Mice", - "Cytokines", - "Sirolimus", - "Inflammation", - "Synoviocytes", - "Nociception", - "Trained Immunity" - ] - }, - { - "PMID": "39334397", - "Title": "Italian journal of pediatrics", - "ArticleTitle": "The feasibility and safety of ultrasound-guided puncture for treatment of septic arthritis in children.", - "Abstract": "IRB-MTP_2021_05_202100781.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Arthritis, Infectious", - "Male", - "Female", - "Child", - "Retrospective Studies", - "Child, Preschool", - "Feasibility Studies", - "Ultrasonography, Interventional", - "Infant", - "Arthrocentesis", - "Punctures", - "Treatment Outcome", - "Fluoroscopy" - ] - }, - { - "PMID": "39332086", - "Title": "Diagnostic microbiology and infectious disease", - "ArticleTitle": "Innovative approach of nanopore-based metagenomic sequencing for rapid identification of bacterial pathogens in joint fluid: A pilot study.", - "Abstract": "Analysis of 11 clinical samples of joint fluid in this pilot study demonstrated proof-of-concept for nanopore-based metagenomic sequencing to serve as a complementary real-time diagnostic technique for septic arthritis, with a sensitivity of 75.0 % and specificity of 57.1 %, compared to the gold standard method of bacterial culture.", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Pilot Projects", - "Humans", - "Metagenomics", - "Arthritis, Infectious", - "Bacteria", - "Nanopore Sequencing", - "Sensitivity and Specificity", - "Synovial Fluid", - "Nanopores", - "High-Throughput Nucleotide Sequencing" - ] - }, - { - "PMID": "39327035", - "Title": "BMJ case reports", - "ArticleTitle": { - "i": "Aspergillus niger" - }, - "Abstract": "This case report outlines the diagnostic and therapeutic challenges encountered in a man in his 70s suffering from knee septic arthritis caused by ", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Arthritis, Infectious", - "Male", - "Aspergillus niger", - "Arthroscopy", - "Knee Joint", - "Antifungal Agents", - "Debridement", - "Aged", - "Aspergillosis", - "Voriconazole", - "Postoperative Complications" - ] - }, - { - "PMID": "39327034", - "Title": "BMJ case reports", - "ArticleTitle": "Irreversible neurological manifestations in undiagnosed disseminated gonococcal infection.", - "Abstract": "Neisseria gonorrhoeae causes a common sexually transmitted infection with manifestations ranging from asymptomatic to urethritis and pelvic inflammatory disease to disseminated infections including septic arthritis. Serious complications may arise in unrecognised or inappropriately treated infections.We report a young, healthy woman who developed fever and joint pain and was diagnosed with an inflammatory arthritis. After starting immune suppressing treatments, she experienced right wrist drop and progressive muscle atrophy, joint contractures and sensory loss. Electrodiagnostic studies showed patchy, mixed neurogenic and myopathic features. Areas of muscle oedema on extremity MRI led to a right brachioradialis biopsy, which showed only nonspecific changes. Other testing, including lumbar puncture and MRI of the brain/spine was noncontributory. Additional history revealed unprotected intercourse with a new partner prior to symptom onset. Urine gonorrhoeae PCR was positive, and right shoulder arthrocentesis confirmed septic arthritis. After intravenous antibiotic treatment with ceftriaxone, she demonstrated slow, incomplete symptomatic improvement.", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Female", - "Gonorrhea", - "Arthritis, Infectious", - "Anti-Bacterial Agents", - "Ceftriaxone", - "Neisseria gonorrhoeae", - "Magnetic Resonance Imaging", - "Adult" - ] - }, - { - "PMID": "39323270", - "Title": "Revue medicale suisse", - "ArticleTitle": "[Acute non-traumatic single-articular pain].", - "Abstract": "The main non-traumatic causes of acute single-joint pain are microcrystalline, degenerative, reactive and septic arthritis. Septic arthritis must be excluded quickly with puncture of the joint effusion. In the absence of sepsis, surgical drainage can be performed within 24 hours after admission to the emergency unit. Concerning gout, recommendations advise the use of imaging for diagnosis in case of joint puncture not feasible and the introduction of urate-lowering treatment during the acute attack. Regarding reactive arthritis, the presence of microbial elements in the affected joints improves the understanding of its pathophysiology. Finally, osteoarthritis guidelines emphasize the importance of self-management programs for painful crises.", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Acute Pain", - "Arthralgia", - "Arthritis, Infectious", - "Gout" - ] - }, - { - "PMID": "39312873", - "Title": "Cellular immunology", - "ArticleTitle": "Neutralization of TLR2 in combination with either TNF-\u03b1 or IL-1\u03b2 antibody reduces the severity of septic arthritis through STAT3/mTOR signalling in lymphocytes.", - "Abstract": "Staphylococcus aureus induced Septic arthritis is considered a medical concern. S.aureus binds TLR2 to induce an array of inflammatory responses. Generation of pro-inflammatory cytokines induces T cell responses and control Th17/Treg cell balance. Regulation of T cell-mediated immunity in response to inflammation is significantly influenced by mTOR. Presence of elevated TNF-\u03b1, IL-1\u03b2 decreases Treg cell activity through STAT3/mTOR, promoting proliferation of T cells towards Th17 cells. Therefore, we postulated, neutralizing TLR2 with either TNF-\u03b1 or IL-1\u03b2 in combination could be useful in modifying Th17/Treg cell ratio in order to treat septic arthritis by suppressing expression of mTOR/STAT3. To date, no studies have reported effects of neutralization of TLR2 along with either TNF-\u03b1 or IL-1\u03b2 on amelioration of arthritis correlating with mTOR/STAT3 expression. Contribution of T lymphocytes collected from blood, spleen, synovial tissues, their derived cytokines IFN-\u03b3, IL-6, IL-17, TGF-\u03b2, IL-10 were noted. Expression of TLR2, TNFR1, TNFR2, NF-\u03baB along with mTOR/STAT3 also recorded. Neutralization of TLR2 along with TNF-\u03b1 and IL-1\u03b2 were able to shift Th17 cells into immunosuppressive Treg cells. Furthermore,elevated expression of IL-10, TNFR2 and demoted expression of mTOR/ STAT3 along with NF-\u03baB in lymphocytes confirms its role in resolution of arthritis. It was also effective in reducing oxidative stress via increasing expression of the antioxidant enzymes. As a result, it can be inferred that Treg-derived IL-10, which may mitigate inflammatory effects of septic arthritis by influencing the mTOR/STAT3 interaction in lymphocytes, may be selected as a different therapeutic strategy for reducing the impact of septic arthritis.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "TOR Serine-Threonine Kinases", - "STAT3 Transcription Factor", - "Toll-Like Receptor 2", - "Tumor Necrosis Factor-alpha", - "Signal Transduction", - "Animals", - "Arthritis, Infectious", - "Th17 Cells", - "T-Lymphocytes, Regulatory", - "Interleukin-1beta", - "Mice", - "Male", - "Staphylococcus aureus", - "Antibodies, Neutralizing", - "Staphylococcal Infections", - "Cytokines" - ] - }, - { - "PMID": "39311733", - "Title": "South Dakota medicine : the journal of the South Dakota State Medical Association", - "ArticleTitle": "Acute Arthritis Presentations of Gonorrhea and Syphilis - A Concise Update.", - "Abstract": "According to the 2021 CDC sexually transmitted disease surveillance report, national cases of syphilis and gonorrhea continue to rise. Currently, South Dakota ranks #1 in syphilis and #2 in gonorrhea cases per 100,000 population. The higher incidence increases the likelihood South Dakota clinicians will encounter different presentations of syphilis and gonorrhea. Recently, we have seen patients presenting with acute STI related inflammatory arthritis. This review discusses the acute arthritic presentations associated with gonorrhea and syphilis and its treatment.", - "Predictions": [ - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Gonorrhea", - "Syphilis", - "Acute Disease", - "Anti-Bacterial Agents", - "Arthritis, Infectious", - "Arthritis", - "South Dakota" - ] - }, - { - "PMID": "39307981", - "Title": "Journal of pediatric orthopedics", - "ArticleTitle": "Optimal Timing for Advanced Imaging in Childhood Bone and Joint Infection.", - "Abstract": "Overall, children with BJI who underwent MRI scans before surgery had lower reoperation rates. Children receiving MRIs within 48 hours of admission had shorter LOS.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Retrospective Studies", - "Magnetic Resonance Imaging", - "Child", - "Male", - "Female", - "Arthritis, Infectious", - "Length of Stay", - "Osteomyelitis", - "Child, Preschool", - "Adolescent", - "Time Factors", - "Recurrence", - "Infant", - "Reoperation" - ] - }, - { - "PMID": "39289033", - "Title": "BMJ case reports", - "ArticleTitle": "Coccidiomycosis septic arthritis presenting as ankle monoarthritis in a patient with presumed psoriatic arthritis.", - "Abstract": "A man in his 50s with a history of psoriasis was evaluated for acute on chronic left ankle pain. His symptoms were attributed to psoriatic arthritis, and he tried several immunosuppressive regimens without improvement. Further diagnostic workup confirmed ", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Male", - "Coccidioidomycosis", - "Arthritis, Infectious", - "Arthritis, Psoriatic", - "Middle Aged", - "Diagnosis, Differential", - "Ankle Joint", - "Antifungal Agents", - "Debridement", - "Coccidioides" - ] - }, - { - "PMID": "39288015", - "Title": "The Journal of antimicrobial chemotherapy", - "ArticleTitle": "Efficacy and safety of co-trimoxazole in device-related bone and joint infections: a CRIOGO multicentre case-control study.", - "Abstract": "Co-trimoxazole appears to be an effective alternative for the treatment of BJI, even when it occurs on a device, but the safety profile requires close monitoring of adverse effects.", - "Predictions": [ - "Male", - "Arthritis, Infectious" - ], - "MeshTerms": [ - "Humans", - "Trimethoprim, Sulfamethoxazole Drug Combination", - "Male", - "Case-Control Studies", - "Female", - "Aged", - "Middle Aged", - "Anti-Bacterial Agents", - "Treatment Outcome", - "Adult", - "Prosthesis-Related Infections", - "Aged, 80 and over", - "Arthritis, Infectious" - ] - } -] \ No newline at end of file diff --git a/model/data/blood_cells.json b/model/data/blood_cells.json deleted file mode 100644 index 4a300e43a02985af3afd8beba5814af8c2c5edfc..0000000000000000000000000000000000000000 --- a/model/data/blood_cells.json +++ /dev/null @@ -1,447 +0,0 @@ -[ - { - "PMID": "39434567", - "Title": "Food & function", - "ArticleTitle": "Along the gut-bone marrow signaling pathway: use of longan polysaccharides to regenerate blood cells after chemotherapy-induced myelosuppression.", - "Abstract": "Although it has been established that polysaccharides have an effect on bone marrow haematopoiesis, it remains unclear how polysaccharides regulate bone marrow haematopoiesis during absorption and metabolism ", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Mice", - "Gastrointestinal Microbiome", - "Polysaccharides", - "Bone Marrow", - "Hematopoiesis", - "Male", - "Signal Transduction", - "Antineoplastic Agents", - "Blood Cells", - "Bone Marrow Cells" - ] - }, - { - "PMID": "39434350", - "Title": "JPMA. The Journal of the Pakistan Medical Association", - "ArticleTitle": "Fabrication of a cell irradiation technique by alpha-particles using allyl diglycol carbonate (ADC) detector and micro-capillary tubes.", - "Abstract": "Low irradiation time had significant impact of alpha particles on the average percentage of lymphocyte and neutrophil cells.", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Rats", - "Alpha Particles", - "Male", - "Blood Cells" - ] - }, - { - "PMID": "39409208", - "Title": "Sensors (Basel, Switzerland)", - "ArticleTitle": "TW-YOLO: An Innovative Blood Cell Detection Model Based on Multi-Scale Feature Fusion.", - "Abstract": "As deep learning technology has progressed, automated medical image analysis is becoming ever more crucial in clinical diagnosis. However, due to the diversity and complexity of blood cell images, traditional models still exhibit deficiencies in blood cell detection. To address blood cell detection, we developed the TW-YOLO approach, leveraging multi-scale feature fusion techniques. Firstly, traditional CNN (Convolutional Neural Network) convolution has poor recognition capabilities for certain blood cell features, so the RFAConv (Receptive Field Attention Convolution) module was incorporated into the backbone of the model to enhance its capacity to extract geometric characteristics from blood cells. At the same time, utilizing the feature pyramid architecture of YOLO (You Only Look Once), we enhanced the fusion of features at different scales by incorporating the CBAM (Convolutional Block Attention Module) in the detection head and the EMA (Efficient Multi-Scale Attention) module in the neck, thereby improving the recognition ability of blood cells. Additionally, to meet the specific needs of blood cell detection, we designed the PGI-Ghost (Programmable Gradient Information-Ghost) strategy to finely describe the gradient flow throughout the process of extracting features, further improving the model's effectiveness. Experiments on blood cell detection datasets such as BloodCell-Detection-Dataset (BCD) reveal that TW-YOLO outperforms other models by 2%, demonstrating excellent performance in the task of blood cell detection. In addition to advancing blood cell image analysis research, this work offers strong technical support for future automated medical diagnostics.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Blood Cells", - "Neural Networks, Computer", - "Deep Learning", - "Image Processing, Computer-Assisted", - "Algorithms" - ] - }, - { - "PMID": "39363037", - "Title": "Scientific reports", - "ArticleTitle": "A fine-grained image classification algorithm based on self-supervised learning and multi-feature fusion of blood cells.", - "Abstract": "Leukemia is a prevalent and widespread blood disease, and its early diagnosis is crucial for effective patient treatment. Diagnosing leukemia types heavily relies on pathologists' morphological examination of blood cell images. However, this process is tedious and time-consuming, and the diagnostic results are subjective, leading to potential misdiagnosis and underdiagnosis. This paper proposes a blood cell image classification method that combines MAE with an enhanced Vision Transformer to tackle these challenges. Initially, pre-training occurs on two datasets, TMAMD and Red4, using the MAE self-supervised learning algorithm. Subsequently, the pre-training weights are transferred to our improved model.This paper introduces feature fusion of the outputs from each layer of the Transformer encoder to maximize the utilization of features extracted from lower layers, such as color, contour, and texture of blood cells, along with deeper semantic features. Furthermore, the dynamic margins for the subcenter Arcface Loss function are employed to enhance the model's fine-grained feature representation by achieving inter-class dispersion and intra-class aggregation. Models trained using our method achieved state-of-the-art results on both the TMAMD dataset and Red4 dataset, with classification accuracies of 93.51% and 81.41%, respectively. This achievement is expected to be a valuable reference for physicians in their clinical diagnoses.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Supervised Machine Learning", - "Algorithms", - "Blood Cells", - "Leukemia", - "Image Processing, Computer-Assisted", - "Image Interpretation, Computer-Assisted" - ] - }, - { - "PMID": "39338775", - "Title": "Sensors (Basel, Switzerland)", - "ArticleTitle": "A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles.", - "Abstract": "This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Neoplastic Cells, Circulating", - "Cell Separation", - "Centrifugation", - "Magnetite Nanoparticles", - "Microfluidic Analytical Techniques", - "Lab-On-A-Chip Devices", - "Cell Line, Tumor", - "Blood Cells" - ] - }, - { - "PMID": "39322696", - "Title": "Nature", - "ArticleTitle": "Childhood leukaemia in Down's syndrome primed by blood-cell bias.", - "Abstract": "", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Child", - "Humans", - "Blood Cells", - "Down Syndrome", - "Leukemia" - ] - }, - { - "PMID": "39294566", - "Title": "BMC genomics", - "ArticleTitle": "Mouse blood cells types and aging prediction using penalized Latent Dirichlet Allocation.", - "Abstract": "pLDA learns a dimension reduced representation of the expression profile. This representation allows identification of cell types and has predictability of the age of cells.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Mice", - "Aging", - "Single-Cell Analysis", - "Blood Cells", - "Transcriptome", - "Gene Expression Profiling", - "Computational Biology", - "Algorithms" - ] - }, - { - "PMID": "39275304", - "Title": "Nutrients", - "ArticleTitle": "The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder.", - "Abstract": "In order to ensure effective care for patients with T2DM, it is necessary to improve the standard diet, including the content of micronutrients and their modification in patients with concomitant CKD.", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Trace Elements", - "Male", - "Female", - "Middle Aged", - "Renal Insufficiency, Chronic", - "Aged", - "Nickel", - "Chromium", - "Adult", - "Glomerular Filtration Rate", - "Zinc", - "Magnesium", - "Blood Cells", - "Case-Control Studies" - ] - }, - { - "PMID": "39273028", - "Title": "Cells", - "ArticleTitle": "Immunophenotyping of Peripheral Blood Cells in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib.", - "Abstract": "Chronic lymphocytic leukemia (CLL) is a B-cell-derived hematologic malignancy whose progression depends on active B-cell receptor (BCR) signaling. Despite the spectacular efficacy of Ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), resistance can develop in CLL patients, and alternative therapeutic strategies are therefore required. Cancer immunotherapy has revolutionized cancer care and may be an attractive approach in this context. We speculated that characterizing the immune responses of CLL patients may highlight putative immunotherapeutic targets. Here, we used high-dimensional spectral flow cytometry to compare the distribution and phenotype of non-B-cell immune populations in the circulating blood of CLL patients treated with Ibrutinib displaying a complete response or secondary progression. Although no drastic changes were observed in the composition of their immune subsets, the Ibrutinib-resistant group showed increased cycling of CD8+ T cells, leading to their overabundance at the expense of dendritic cells. In addition, the expression of 11 different surface checkpoints was similar regardless of response status. Together, this suggests that CLL relapse upon Ibrutinib treatment may not lead to major alterations in the peripheral immune response.", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Leukemia, Lymphocytic, Chronic, B-Cell", - "Adenine", - "Piperidines", - "Immunophenotyping", - "Male", - "Female", - "Aged", - "Middle Aged", - "Aged, 80 and over", - "CD8-Positive T-Lymphocytes", - "Blood Cells", - "Pyrimidines", - "Drug Resistance, Neoplasm" - ] - }, - { - "PMID": "39259469", - "Title": "Bulletin of experimental biology and medicine", - "ArticleTitle": "Spontaneous and Stimulated Production of Cytokines by Blood Cells Ex Vivo as a Biomarker of Initially High or Low Hypoxia Resistance in Rats.", - "Abstract": "Spontaneous and stimulated production of cytokines by peripheral blood cells obtained from the caudal vein of male Wistar rats was assessed before testing their resistance to oxygen deficiency in a decompression chamber. To study the spontaneous production of cytokines, heparinized blood cells were incubated in a culture medium (24 h, 5% CO", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Male", - "Rats, Wistar", - "Rats", - "Hypoxia", - "Biomarkers", - "Interleukin-10", - "Interleukin-6", - "Tumor Necrosis Factor-alpha", - "Concanavalin A", - "Cytokines", - "Lipopolysaccharides", - "Phytohemagglutinins", - "Blood Cells", - "Interleukin-1beta" - ] - }, - { - "PMID": "39168838", - "Title": "Zhonghua yi xue za zhi", - "ArticleTitle": "[Opportunities and expectations brought by artificial intelligence assisted peripheral blood cell morphology examination].", - "Abstract": "The morphological examination of blood cells under manual microscopes is a classic method, but the obvious shortcomings limit the extensive development of peripheral blood cell morphological examination. By using the manual microscope method, it is difficult to ensure the effective implementation of reviewing rules on blood cell analysis, fails to meet the needs of clinical diagnosis and treatment activities, and exposes the risk of missing diagnosis and early detection of some blood system diseases. Artificial Intelligence-assisted peripheral blood cell morphological examination is an important development direction in blood cell morphological examination and diagnosis. This article primarily introduces the characteristics and current application status of artificial intelligence-assisted blood cell morphological examination, as well as the functional requirements and expectations for future technological advancements. Furthermore, it provides an outlook on potential clinical and laboratory application scenarios.With the rapid development of artificial intelligence in blood cell morphology testing, the performance of automated blood cell morphology analysis systems will be greatly improved, which can fully meet the needs of clinical diagnosis, treatment, and health management.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Artificial Intelligence", - "Humans", - "Blood Cells", - "Microscopy" - ] - }, - { - "PMID": "39143590", - "Title": "BMC medical genomics", - "ArticleTitle": "Revealing differential expression patterns of piRNA in FACS blood cells of SARS-CoV-2 infected patients.", - "Abstract": "Non-coding RNA expression has shown to have cell type-specificity. The regulatory characteristics of these molecules are impacted by changes in their expression levels. We performed next-generation sequencing and examined small RNA-seq data obtained from 6 different types of blood cells separated by fluorescence-activated cell sorting of severe COVID-19 patients and healthy control donors. In addition to examining the behavior of piRNA in the blood cells of severe SARS-CoV-2 infected patients, our aim was to present a distinct piRNA differential expression portrait for each separate cell type. We observed that depending on the type of cell, different sorted control cells (erythrocytes, monocytes, lymphocytes, eosinophils, basophils, and neutrophils) have altering piRNA expression patterns. After analyzing the expression of piRNAs in each set of sorted cells from patients with severe COVID-19, we observed 3 significantly elevated piRNAs - piR-33,123, piR-34,765, piR-43,768 and 9 downregulated piRNAs in erythrocytes. In lymphocytes, all 19 piRNAs were upregulated. Monocytes were presented with a larger amount of statistically significant piRNA, 5 upregulated (piR-49039 piR-31623, piR-37213, piR-44721, piR-44720) and 35 downregulated. It has been previously shown that piR-31,623 has been associated with respiratory syncytial virus infection, and taking in account the major role of piRNA in transposon silencing, we presume that the differential expression patterns which we observed could be a signal of indirect antiviral activity or a specific antiviral cell state. Additionally, in lymphocytes, all 19 piRNAs were upregulated.", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "RNA, Small Interfering", - "SARS-CoV-2", - "Flow Cytometry", - "Male", - "Female", - "Middle Aged", - "Monocytes", - "Adult", - "Blood Cells", - "Piwi-Interacting RNA" - ] - }, - { - "PMID": "39113822", - "Title": "Frontiers in cellular and infection microbiology", - "ArticleTitle": "The predictive value of peripheral blood cell mitochondrial gene expression in identifying the prognosis in pediatric sepsis at preschool age.", - "Abstract": "MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.", - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Sepsis", - "Child, Preschool", - "Female", - "Male", - "DNA, Mitochondrial", - "Prospective Studies", - "Prognosis", - "ROC Curve", - "Child", - "Mitochondria", - "NADH Dehydrogenase", - "Mitochondrial Proton-Translocating ATPases", - "Blood Cells", - "Genes, Mitochondrial", - "Gene Expression", - "Pneumonia", - "Predictive Value of Tests" - ] - }, - { - "PMID": "39105953", - "Title": "Clinical and experimental medicine", - "ArticleTitle": "Application of image recognition technology in pathological diagnosis of blood smears.", - "Abstract": "Traditional manual blood smear diagnosis methods are time-consuming and prone to errors, often relying heavily on the experience of clinical laboratory analysts for accuracy. As breakthroughs in key technologies such as neural networks and deep learning continue to drive digital transformation in the medical field, image recognition technology is increasingly being leveraged to enhance existing medical processes. In recent years, advancements in computer technology have led to improved efficiency in the identification of blood cells in blood smears through the use of image recognition technology. This paper provides a comprehensive summary of the methods and steps involved in utilizing image recognition algorithms for diagnosing diseases in blood smears, with a focus on malaria and leukemia. Furthermore, it offers a forward-looking research direction for the development of a comprehensive blood cell pathological detection system.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Pathology, Clinical", - "Image Processing, Computer-Assisted", - "Blood Cells", - "Malaria", - "Leukemia", - "Algorithms", - "Machine Learning", - "Blood Cell Count", - "Humans" - ] - }, - { - "PMID": "39084628", - "Title": "Physics in medicine and biology", - "ArticleTitle": "Inter-subject cerebrovascular variability: a source of uncertainty for dose calculation to circulating blood cells for glioblastoma patients treated with modern radiotherapy techniques.", - "Abstract": { - "i": "Conclusions", - "sub": "95%" - }, - "Predictions": [ - "Male", - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Glioblastoma", - "Radiotherapy Dosage", - "Uncertainty", - "Radiotherapy, Intensity-Modulated", - "Brain Neoplasms", - "Radiotherapy Planning, Computer-Assisted", - "Radiation Dosage", - "Blood Cells", - "Male" - ] - }, - { - "PMID": "39020094", - "Title": "Nature aging", - "ArticleTitle": "A metabolic atlas of blood cells in young and aged mice identifies uridine as a metabolite to rejuvenate aged hematopoietic stem cells.", - "Abstract": "Aging of hematopoietic stem cells (HSCs) is accompanied by impaired self-renewal ability, myeloid skewing, immunodeficiencies and increased susceptibility to malignancies. Although previous studies highlighted the pivotal roles of individual metabolites in hematopoiesis, comprehensive and high-resolution metabolomic profiles of different hematopoietic cells across ages are still lacking. In this study, we created a metabolome atlas of different blood cells across ages in mice. We reveal here that purine, pyrimidine and retinol metabolism are enriched in young hematopoietic stem and progenitor cells (HSPCs), whereas glutamate and sphingolipid metabolism are concentrated in aged HSPCs. Through metabolic screening, we identified uridine as a potential regulator to rejuvenate aged HSPCs. Mechanistically, uridine treatment upregulates the FoxO signaling pathway and enhances self-renewal while suppressing inflammation in aged HSCs. Finally, we constructed an open-source platform for public easy access and metabolomic analysis in blood cells. Collectively, we provide a resource for metabolic studies in hematopoiesis that can contribute to future anti-aging metabolite screening.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Hematopoietic Stem Cells", - "Mice", - "Uridine", - "Aging", - "Metabolome", - "Hematopoiesis", - "Metabolomics", - "Cellular Senescence", - "Mice, Inbred C57BL", - "Blood Cells", - "Rejuvenation", - "Signal Transduction" - ] - }, - { - "PMID": "38951059", - "Title": "Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi", - "ArticleTitle": "[Chinese expert consensus on the technical and clinical practice specifications of artificial intelligence assisted morphology examination of blood cells (2024)].", - "Abstract": "Blood cell morphological examination is a crucial method for the diagnosis of blood diseases, but traditional manual microscopy is characterized by low efficiency and susceptibility to subjective biases. The application of artificial intelligence (AI) technology has improved the efficiency and quality of blood cell examinations and facilitated the standardization of test results. Currently, a variety of AI devices are either in clinical use or under research, with diverse technical requirements and configurations. The Experimental Diagnostic Study Group of the Hematology Branch of the Chinese Medical Association has organized a panel of experts to formulate this consensus. The consensus covers term definitions, scope of application, technical requirements, clinical application, data management, and information security. It emphasizes the importance of specimen preparation, image acquisition, image segmentation algorithms, and cell feature extraction and classification, and sets forth basic requirements for the cell recognition spectrum. Moreover, it provides detailed explanations regarding the fine classification of pathological cells, requirements for cell training and testing, quality control standards, and assistance in issuing diagnostic reports by humans. Additionally, the consensus underscores the significance of data management and information security to ensure the safety of patient information and the accuracy of data.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Artificial Intelligence", - "Consensus", - "Blood Cells", - "China", - "Algorithms" - ] - }, - { - "PMID": "38951027", - "Title": "Genome research", - "ArticleTitle": "Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes.", - "Abstract": "Knowledge of locations and activities of ", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Mice", - "Humans", - "Epigenesis, Genetic", - "Epigenome", - "Species Specificity", - "Blood Cells", - "Regulatory Sequences, Nucleic Acid", - "Gene Expression Regulation", - "Epigenomics" - ] - }, - { - "PMID": "38926555", - "Title": "Nature", - "ArticleTitle": "Flies use blood cells to take a deep breath.", - "Abstract": "", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Blood Cells", - "Drosophila melanogaster", - "Humans" - ] - }, - { - "PMID": "38910248", - "Title": "Journal of nanobiotechnology", - "ArticleTitle": "Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology.", - "Abstract": "Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Animals", - "Humans", - "Blood Cells", - "Blood Platelets", - "Erythrocytes", - "Hematology", - "Leukocytes", - "Microscopy, Fluorescence", - "Nanotechnology" - ] - }, - { - "PMID": "38898733", - "Title": "International journal of laboratory hematology", - "ArticleTitle": "Hematological cytomorphology: Where we are.", - "Abstract": "The manuscript discusses the historical evolution of observing blood cell morphology under an optical microscope, from the earliest microscopes in the 17th century to the modern digital era, highlighting key advancements and contributions in the field. Blood has historically held symbolic importance in various cultures, with early medical observations dating back to Hippocrates and Galeno. The discovery of cells and subsequent advancements in microscopy by scientists like Hooke and van Leeuwenhoek paved the way for understanding blood cell morphology. Influential figures such as Hewson, Donn\u00e9, and Ehrlich followed. Diagnostic cytology evolved from manual cell counting to the development of automated hematological systems. Automated complete blood counting came to support microscopic examination in diagnosing hematological disorders. Morphology is crucial in predicting disease outcomes and guiding treatment decisions, particularly hematological neoplasms. The introduction of flow cytometry and its integration with traditional morphological analysis and the new cytogenetic and molecular techniques revolutionized the classification and prognostication of hematologic disorders. Digital microscopy has emerged as a powerful tool in recent years, offering rapid acquisition and sharing of blood cell images. Integrating Artificial Intelligence with digital microscopy has further enhanced morphological analysis, improving diagnostic efficiency. We also discuss the prospects of AI in pre-classifying blood cells in bone marrow aspirate samples, potentially revolutionizing diagnostic pathways for hematologic diseases. Overall, the manuscript provides a comprehensive overview of the historical development, clinical significance and technological advancements in observing blood cell morphology, underscoring its continued relevance in modern hematology practice.", - "Predictions": [ - "Blood Cells" - ], - "MeshTerms": [ - "Humans", - "Microscopy", - "Blood Cells", - "Hematology", - "Hematologic Diseases", - "History, 20th Century", - "History, 21st Century", - "History, 17th Century", - "History, 19th Century", - "Flow Cytometry", - "Artificial Intelligence" - ] - } -] \ No newline at end of file diff --git a/model/data/cancer.json b/model/data/cancer.json deleted file mode 100644 index 922dbc7093a616569d496e6daf2ba38dbc827b9c..0000000000000000000000000000000000000000 --- a/model/data/cancer.json +++ /dev/null @@ -1,445 +0,0 @@ -[ - { - "PMID": "39738287", - "Title": "Scientific reports", - "ArticleTitle": "DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.", - "Abstract": "The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets. Additionally, we performed experiments with clinical melanoma samples to verify DCLRE1B expression patterns. We also performed pancancer analyses to investigate the diverse roles of DCLRE1B in the biological functions of various cancers. DCLRE1B exhibited distinct expression patterns and played crucial prognostic roles in most tumours. In particular, high expression of DCLRE1B in melanoma was significantly correlated with a poor prognosis and increased malignancy. DCLRE1B was also found to be associated with the immune landscape and various immune biomarkers and regulators. Furthermore, our analysis identified potential small molecules that could target DCLRE1B in different cancer types. The DCLRE1B gene may be involved in the development and occurrence of a variety of cancers. Additionally, DCLRE1B affects various tumour types not only by mediating DNA repair but also by shaping the differential immune microenvironment. In conclusion, our research offers fresh perspectives on the diagnosis and treatment of different types of cancers.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Biomarkers, Tumor", - "Prognosis", - "Tumor Microenvironment", - "Melanoma", - "Gene Expression Regulation, Neoplastic", - "Neoplasms" - ] - }, - { - "PMID": "39738156", - "Title": "Nature communications", - "ArticleTitle": "The Theranostic Genome.", - "Abstract": "Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications. Using a deep learning-based hybrid human-AI pipeline that cross-references PubMed, the Gene Expression Omnibus, DisGeNET, The Cancer Genome Atlas and the NIH Molecular Imaging and Contrast Agent Database, we bridge individual genes in human cancers with respective theranostic compounds. Cross-referencing the Theranostic Genome with RNAseq data from over 17'000 human tissues identifies theranostic targets and lead compounds for various human cancers, and allows tailoring targeted theranostics to relevant cancer subpopulations. We expect the Theranostic Genome to facilitate the development of new targeted theranostics to better diagnose, understand, treat, and monitor a variety of human cancers.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Neoplasms", - "Precision Medicine", - "Genome, Human", - "Theranostic Nanomedicine", - "Deep Learning" - ] - }, - { - "PMID": "39738052", - "Title": "Nature communications", - "ArticleTitle": "Characterizing mutation-treatment effects using clinico-genomics data of 78,287 patients with 20 types of cancers.", - "Abstract": "Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S. cancer patients with detailed somatic mutation profiling integrated with treatment and outcomes data extracted from electronic health records. We systematically identified 776 genomic alterations associated with survival outcomes across 20 distinct cancer types treated with specific immunotherapies, chemotherapies, or targeted therapies. Additionally, we demonstrate how mutations in particular pathways correlate with treatment response. Leveraging the large number of identified predictive mutations, we developed a machine learning model to generate a risk score for response to immunotherapy in patients with advanced non-small cell lung cancer (aNSCLC). Through rigorous computational analysis of large-scale\u00a0clinico-genomic real-world data, this research provides insights and lays the groundwork for further advancements in precision oncology.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Mutation", - "Neoplasms", - "Precision Medicine", - "Genomics", - "Immunotherapy", - "Carcinoma, Non-Small-Cell Lung", - "Machine Learning", - "Female", - "Male", - "Treatment Outcome", - "Electronic Health Records", - "Lung Neoplasms" - ] - }, - { - "PMID": "39738026", - "Title": "Nature communications", - "ArticleTitle": "DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.", - "Abstract": "The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas. Using ductal pancreatic adenocarcinoma as a cancer model, we demonstrate that the initiation of DNA synthesis is error-prone at G-quadruplex-forming sequences in tumours displaying markers of replication stress, resulting in a previously recognised but uncharacterised mutational signature. Finally, we demonstrate that replication origins serve as hotspots for genomic rearrangements, including structural and copy number variations. These findings reveal replication origins as functional determinants of tumour biology and demonstrate that replication initiation both passively and actively drives focal mutagenesis in cancer genomes.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "DNA Replication", - "Mutagenesis", - "Pancreatic Neoplasms", - "Neoplasms", - "Cell Line, Tumor", - "DNA Copy Number Variations", - "G-Quadruplexes", - "Gene Rearrangement", - "Carcinoma, Pancreatic Ductal", - "DNA Repair", - "Mutation" - ] - }, - { - "PMID": "39738003", - "Title": "Nature communications", - "ArticleTitle": "An antibody cocktail targeting two different CD73 epitopes enhances enzyme inhibition and tumor control.", - "Abstract": "CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045. HB0045 is a 1:1 mixture of two humanized monoclonal IgG1 antibodies (mAbs), HB0038 and HB0039. The cocktail not only harnesses the advantages of its parental mAbs in enzyme inhibition but also shows a significantly greater capability of promoting T cell proliferation in vitro. Structural analyses show that HB0045 effectively locks the CD73 dimer in a \"partially open\" non-active conformation through a double lock mechanism. In various animal models of syngeneic and xenograft tumors, HB0045 inhibits tumor growth more potently than the single mAbs. Collectively, our findings provide functional and structural insights into the mechanism of a CD73-targeting antibody cocktail.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "5'-Nucleotidase", - "Animals", - "Humans", - "Mice", - "GPI-Linked Proteins", - "Epitopes", - "Cell Line, Tumor", - "Xenograft Model Antitumor Assays", - "Cell Proliferation", - "Antibodies, Monoclonal, Humanized", - "Neoplasms", - "Female", - "T-Lymphocytes", - "Antibodies, Monoclonal", - "Mice, Inbred BALB C", - "Combined Antibody Therapeutics" - ] - }, - { - "PMID": "39737979", - "Title": "Nature communications", - "ArticleTitle": "Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors.", - "Abstract": "Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers. We demonstrate that the electrogenic transfer of ICD effector-encoding plasmids into mouse melanoma tumors when combined with intratumoral expression of cytokines IL-1\u03b2, IL-12, or IL-18, enhanced anti-tumor immune responses. Careful selection of immunostimulatory molecules is, however, imperative as a combination of IL-1\u03b2 and IL-18 antagonized the protective effect of pyroptosis by IFN\u03b3-mediated upregulation of several immunosuppressive pathways. Additionally, we show that the intratumoral introduction of armed pyroptosis provides protection against distant tumors and proves effective across various tumor types without inducing systemic inflammation. Deconstructed inflammasomes thus serve as a powerful, tunable, and tumor-agnostic strategy to enhance antitumor response, even against the most resilient types of tumors.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Pyroptosis", - "Animals", - "Mice", - "Inflammasomes", - "Mice, Inbred C57BL", - "Humans", - "Cell Line, Tumor", - "Cytokines", - "Melanoma, Experimental", - "Interleukin-18", - "Interleukin-1beta", - "Phosphate-Binding Proteins", - "Intracellular Signaling Peptides and Proteins", - "Neoplasms", - "Female", - "Interferon-gamma", - "Interleukin-12", - "Gasdermins" - ] - }, - { - "PMID": "39737928", - "Title": "Nature communications", - "ArticleTitle": "Towards designing improved cancer immunotherapy targets with a peptide-MHC-I presentation model, HLApollo.", - "Abstract": "Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins. HLApollo provides end-to-end treatment of MHC-I sequences and deconvolution of multi-allelic data, using a negative-set switching strategy to mitigate misassigned negatives in unlabelled ligandome data. HLApollo shows a 12.65% increase in average precision (AP) on ligandome data and a 4.1% AP increase on immunogenicity test data compared to next-best models. Incorporating protein features from protein language models yields further gains and reduces the need for gene expression measurements. Guided by clinical use, we demonstrate pan-allelic generalization which effectively captures rare alleles in underrepresented ancestries.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Immunotherapy", - "Neoplasms", - "Histocompatibility Antigens Class I", - "Peptides", - "Antigen Presentation", - "Cancer Vaccines", - "Alleles", - "Computational Biology" - ] - }, - { - "PMID": "39737671", - "Title": "Archiv der Pharmazie", - "ArticleTitle": "The current landscape of 1,2,3-triazole-(fused) six-membered nitrogen-containing heteroaromatic ring hybrids with anticancer therapeutic potential.", - "Abstract": "Cancer, characterized by uncontrolled growth and spread of abnormal cells potentially influencing almost all tissues in the body, is one of the most devastating and lethal diseases throughout the world. Chemotherapy is one of the principal approaches for cancer treatment, but multidrug resistance and severe side effects represent the main barriers to the success of therapy, creating a vital need to develop novel chemotherapeutic agents. The 1,2,3-triazole moiety can be conveniently constructed by \"click chemistry\" and could exert diverse noncovalent interactions with various enzymes in cancer cells. Hence, 1,2,3-triazole is one of the most fascinating anticancer pharmacophores. Moreover, 1,2,3-triazole could also serve as a powerful ligation tool for the complex molecular architectures to increase the anticancer efficacy of lead molecules. Notably, 1,2,3-triazole-containing hybrids with intriguing structural variations could target different biological components in cancer cells simultaneously, highlighting their potential in the treatment and eradication of cancer. This review outlines the current landscape of 1,2,3-triazole-(fused) six-membered nitrogen-containing heteroaromatic ring hybrids, inclusive of 1,2,3-triazole-quinazolines, 1,2,3-triazole-quinazolinones, 1,2,3-triazole-quinolines, 1,2,3-triazole-quinolones, 1,2,3-triazole-pyridines, and 1,2,3-triazole-pyrimidines, with anticancer therapeutic potential, and explores their mechanisms of action, critical aspects of design as well as structure-activity relationships (SARs), covering articles published from 2021 to the present, to pave the way for the development of innovative and efficient therapeutic interventions for cancer therapy.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Animals", - "Humans", - "Antineoplastic Agents", - "Molecular Structure", - "Neoplasms", - "Nitrogen", - "Structure-Activity Relationship", - "Triazoles" - ] - }, - { - "PMID": "39737633", - "Title": "Journal of pediatric hematology/oncology", - "ArticleTitle": "Assessment of Antibody Levels and Vaccine-induced Serologic Responses After Completion of Cancer Treatment in Pediatric Patients: A 6-Year Experience in Turkey on HAV, HBV, VZV, and MMR Vaccinations.", - "Abstract": "Post-treatment serological vaccine responses in children were lower than anticipated despite multiple doses. Given the potential need for periodic serological assessments and booster vaccinations, long-term follow-ups are planned.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Child", - "Male", - "Female", - "Child, Preschool", - "Retrospective Studies", - "Turkey", - "Adolescent", - "Measles-Mumps-Rubella Vaccine", - "Neoplasms", - "Antibodies, Viral", - "Infant", - "Vaccination", - "Hepatitis B Vaccines", - "Chickenpox Vaccine", - "Hepatitis A Vaccines", - "Follow-Up Studies" - ] - }, - { - "PMID": "39737568", - "Title": "Briefings in bioinformatics", - "ArticleTitle": "A comprehensive benchmark study of methods for identifying significantly perturbed subnetworks in cancer.", - "Abstract": "Network-based methods utilize protein-protein interaction information to identify significantly perturbed subnetworks in cancer and to propose key molecular pathways. Numerous methods have been developed, but to date, a rigorous benchmark analysis to compare the performance of existing approaches is lacking. In this paper, we proposed a novel benchmarking framework using synthetic data and conducted a comprehensive analysis to investigate the ability of existing methods to detect target genes and subnetworks and to control false positives, and how they perform in the presence of topological biases at both gene and subnetwork levels. Our analysis revealed insights into algorithmic performance that were previously unattainable. Based on the results of the benchmark study, we presented a practical guide for users on how to select appropriate detection methods and protein-protein interaction networks for cancer pathway identification, and provided suggestions for future algorithm development.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Neoplasms", - "Humans", - "Benchmarking", - "Algorithms", - "Computational Biology", - "Protein Interaction Maps", - "Protein Interaction Mapping", - "Gene Regulatory Networks" - ] - }, - { - "PMID": "39737564", - "Title": "Briefings in bioinformatics", - "ArticleTitle": "Precise identification of somatic and germline variants in the absence of matched normal samples.", - "Abstract": "Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P\u2009=\u2009.02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Germ-Line Mutation", - "Neoplasms", - "Reproducibility of Results", - "Mutation", - "Computational Biology", - "Genomics", - "Lung Neoplasms", - "Biomarkers, Tumor" - ] - }, - { - "PMID": "39737563", - "Title": "Briefings in bioinformatics", - "ArticleTitle": "Dual-stage optimizer for systematic overestimation adjustment applied to multi-objective genetic algorithms for biomarker selection.", - "Abstract": "The selection of biomarker panels in omics data, challenged by numerous molecular features and limited samples, often requires the use of machine learning methods paired with wrapper feature selection techniques, like genetic algorithms. They test various feature sets-potential biomarker solutions-to fine-tune a machine learning model's performance for supervised tasks, such as classifying cancer subtypes. This optimization process is undertaken using validation sets to evaluate and identify the most effective feature combinations. Evaluations have performance estimation error, measurable as discrepancy between validation and test set performance, and when the selection involves many models the best ones are almost certainly overestimated. This issue is also relevant in a multi-objective feature selection process where various characteristics of the biomarker panels are optimized, such as predictive performances and feature set size. Methods have been proposed to reduce the overestimation after a model has already been selected in single-objective problems, but no algorithm existed capable of reducing the overestimation during the optimization, improving model selection, or applied in the more general multi-objective domain. We propose Dual-stage Optimizer for Systematic overestimation Adjustment in Multi-Objective problems (DOSA-MO), a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation. DOSA-MO adjusts the expectation of the performance during the optimization, improving the composition of the solution set. We verify that DOSA-MO improves the performance of a state-of-the-art genetic algorithm on left-out or external sample sets, when predicting cancer subtypes and/or patient overall survival, using three transcriptomics datasets for kidney and breast cancer.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Algorithms", - "Biomarkers, Tumor", - "Machine Learning", - "Neoplasms", - "Computational Biology" - ] - }, - { - "PMID": "39737507", - "Title": "The Indian journal of medical research", - "ArticleTitle": "Global burden of cancer pattern in 2020 & prediction to 2040 among older adults.", - "Abstract": "Background & objectives Cancer is one of the leading causes of death among older adults worldwide. The global burden of cancer among older individuals is increasing due to the ageing population. The increasing burden of cancer among older adults will pose significant social and economic challenges for the delivery of healthcare services. Materials Estimated cancer new cases, deaths, age-standardized truncated incidence and mortality rate per 100,000 for older adults (60 yr or above) were reported using GLOBOCAN 2020 estimates (gco.iarc.fr). Mortality to Incidence ratio (M/I ratio) expressed in percentage by gender and continent was provided. Results Globally, of all cancer cases, 11.3 million cases (representing 62.3%) and 7.5 million deaths (representing 71.2%) were seen among older adults. The top five leading sites of cancer account for 62.2 per cent of older men and 55.9 per cent of older women; however, a widespread geographical variation across world regions is observed. The number of new cancer cases among older adults is expected to rise from 11.3 to 19.8 million (a 75.2% increase) and deaths from 3.99 to 7.3 million (82.8% increase) by 2040. Interpretation & conclusions The expected rise will bring exceptional challenges to healthcare systems, especially in lower- or lower-medium-income countries where resources are limited. Data on cancer among older adults will help health planners and policymakers develop global geriatric cancer control policies.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Neoplasms", - "Male", - "Female", - "Aged", - "Global Health", - "Middle Aged", - "Incidence", - "Aged, 80 and over", - "Global Burden of Disease" - ] - }, - { - "PMID": "39737190", - "Title": "Frontiers in immunology", - "ArticleTitle": "Progress of cGAS-STING signaling pathway-based modulation of immune response by traditional Chinese medicine in clinical diseases.", - "Abstract": "The cGAS-STING signaling pathway is a critical component of the innate immune response, playing a significant role in various diseases. As a central element of this pathway, STING responds to both endogenous and exogenous DNA stimuli, triggering the production of interferons and pro-inflammatory cytokines to enhance immune defenses against tumors and pathogens. However, dysregulated activation of the STING pathway is implicated in the pathogenesis of multiple diseases, including autoinflammation, viral infections, and cancer. Traditional Chinese Medicines (TCMs), which have a long history of use, have been associated with positive effects in disease prevention and treatment. TCM formulations (e.g., Lingguizhugan Decoction, Yi-Shen-Xie-Zhuo formula) and active compounds (e.g., Glabridin, Ginsenoside Rd) can modulate the cGAS-STING signaling pathway, thereby influencing the progression of inflammatory, infectious, or oncological diseases. This review explores the mechanisms by which TCMs interact with the cGAS-STING pathway to regulate immunity, focusing on their roles in infectious diseases, malignancies, and autoimmune disorders.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Nucleotidyltransferases", - "Signal Transduction", - "Membrane Proteins", - "Medicine, Chinese Traditional", - "Animals", - "Neoplasms", - "Drugs, Chinese Herbal", - "Immunity, Innate", - "Autoimmune Diseases" - ] - }, - { - "PMID": "39737177", - "Title": "Frontiers in immunology", - "ArticleTitle": "Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.", - "Abstract": "BCAP31 has the potential to serve as a biomarker for cancer immunology, particularly in relation to immune cell infiltration, and as an indicator of poor prognosis. These findings provide a new perspective that could inform the development of more targeted cancer therapy strategies.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Neoplasms", - "Biomarkers, Tumor", - "Prognosis", - "Gene Expression Regulation, Neoplastic", - "Cell Line, Tumor", - "Membrane Proteins", - "Immunotherapy", - "Female", - "Male", - "Tumor Microenvironment", - "Lymphocytes, Tumor-Infiltrating", - "DNA Copy Number Variations" - ] - }, - { - "PMID": "39736787", - "Title": "Journal of hematology & oncology", - "ArticleTitle": "Dual inhibition of LAG-3 and PD-1 with IBI110 and sintilimab in advanced solid tumors: the first-in-human phase Ia/Ib study.", - "Abstract": "ClinicalTrials.gov Identifier: NCT04085185.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Male", - "Middle Aged", - "Female", - "Antibodies, Monoclonal, Humanized", - "Aged", - "Adult", - "Lymphocyte Activation Gene 3 Protein", - "Programmed Cell Death 1 Receptor", - "Antineoplastic Combined Chemotherapy Protocols", - "Neoplasms", - "Immune Checkpoint Inhibitors", - "Antigens, CD" - ] - }, - { - "PMID": "39736754", - "Title": "Health research policy and systems", - "ArticleTitle": "A novel social-network-analysis-based approach for analyzing complex network of actors involved in accessibility of anti-cancer medications\u00a0in Iran.", - "Abstract": "This study highlights the importance of complex relationships among various actors and proposes a novel SNA-based approach to analyse them. Regarding the main steps of the proposed approach and the findings, it is imperative for pharmaceutical policy plans to involve a diverse group of experts from the beginning, prioritizing the preferences of stakeholders, and providing a patient-centred approach to prevent the worsening of resource shortages.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Iran", - "Health Services Accessibility", - "Antineoplastic Agents", - "Neoplasms", - "Health Policy", - "Social Network Analysis", - "Policy Making", - "Stakeholder Participation", - "Surveys and Questionnaires", - "Social Networking", - "Drug Industry" - ] - }, - { - "PMID": "39736712", - "Title": "BMC medical education", - "ArticleTitle": "Patient-centered interprofessional education in cancer care: a systematic scoping review.", - "Abstract": "The findings indicate that patient-centered IPE programs effectively promote interprofessional collaboration and enhance clinical competencies in cancer care. Future research should focus on long-term evaluations, address systemic barriers, expand geographical scope, and utilize standardized evaluation frameworks to further improve the design and implementation of patient-centered IPE programs in cancer care.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Patient-Centered Care", - "Neoplasms", - "Interprofessional Relations", - "Interprofessional Education", - "Patient Care Team", - "Health Personnel", - "Cooperative Behavior" - ] - }, - { - "PMID": "39736689", - "Title": "Lipids in health and disease", - "ArticleTitle": "Cardiometabolic index and mortality risks: elevated cancer and reduced cardiovascular mortality risk in a large cohort.", - "Abstract": "This study represents the first comprehensive assessment on the contribution of CMI to mortality across an all-age adult population, providing some insights for the comprehensive assessment of health and disease states.", - "Predictions": [ - "Diabetes", - "Cancer", - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Neoplasms", - "Male", - "Female", - "Middle Aged", - "Adult", - "Longitudinal Studies", - "Aged", - "Proportional Hazards Models", - "Diabetes Mellitus", - "Risk Factors", - "Cardiometabolic Risk Factors", - "Cohort Studies" - ] - }, - { - "PMID": "39736601", - "Title": "BMC public health", - "ArticleTitle": "Research on health information avoidance behavior and influencing factors of cancer patients-an empirical analysis based on structural equation modeling.", - "Abstract": "Sociodemographic factors influencing cancer patients' health information avoidance behaviors include per capita monthly household income, occupation, treatment modality, number of years of smart device use, and number of hours per week reading health information. Self-efficacy and negative emotions mediated the analytic model of health information avoidance behavior in cancer patients, respectively.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Neoplasms", - "Female", - "Male", - "Middle Aged", - "Adult", - "Self Efficacy", - "Surveys and Questionnaires", - "Latent Class Analysis", - "Aged", - "Socioeconomic Factors", - "Avoidance Learning" - ] - } -] \ No newline at end of file diff --git a/model/data/cardiovascular_diseases.json b/model/data/cardiovascular_diseases.json deleted file mode 100644 index ebda211a1a6fb4e0e6fe7b1c284c6371b9dc8051..0000000000000000000000000000000000000000 --- a/model/data/cardiovascular_diseases.json +++ /dev/null @@ -1,496 +0,0 @@ -[ - { - "PMID": "39738226", - "Title": "Scientific reports", - "ArticleTitle": "Excessive daytime sleepiness and its predictors among type 2 diabetes mellitus patients at central ethiopia.", - "Abstract": "Excessive daytime sleepiness is a common finding among type 2 diabetes mellitus patients. However there is scarce data that shows the magnitude of excessive daytime sleepiness, & its association with type 2 diabetes mellitus. Hence, the study aimed to assess the prevalence of excessive daytime sleepiness and its associated factors among type 2 diabetes mellitus patients at Wolkite University Specialized Hospital. A Hospital-based cross-sectional study was employed from January 15 to March 15, 2022, among 229 Type 2 diabetes mellitus patients. Data was collected by semi-structured questionnaires, then entered into the Epi data version 4.6 and exported to SPSS version 25.0 for analysis. Binary and multiple logistic regression analysis was used to assess factors associated with excessive daytime sleepiness and statistical significance was set at P-value\u2009<\u20090.05. The prevalence of Excessive daytime sleepiness among type 2 diabetes mellitus was 27.1%. Age (AOR: 1.08; 95%CI: 1.03, 1.12), frequent snoring (AOR: 2.9; 95%CI: 1.24, 6.80), comorbid hypertension (AOR: 2.64; 95%CI: 1.17, 5.96), obesity (AOR: 2.7; 95%CI: 1.03, 7.13), and poor glycemic control (AOR: 6.68; 95%CI: 1.83, 24.41) were independently associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Excessive daytime sleepiness was reported in more than a quarter of type 2 diabetes mellitus patients. Age, frequent snoring, hypertension, obesity, and poor glycemic control were significantly associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Therefore health care providers should assess not only for how well their patients' diabetes is controlled but also for excessive daytime sleepiness.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Ethiopia", - "Male", - "Female", - "Middle Aged", - "Disorders of Excessive Somnolence", - "Cross-Sectional Studies", - "Adult", - "Prevalence", - "Risk Factors", - "Aged", - "Hypertension", - "Surveys and Questionnaires", - "Comorbidity", - "Obesity", - "Snoring" - ] - }, - { - "PMID": "39738181", - "Title": "Scientific reports", - "ArticleTitle": "Web application using machine learning to predict cardiovascular disease and hypertension in mine workers.", - "Abstract": "This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines. These high accuracies are crucial for occupational health management, where early detection of health risks can significantly reduce morbidity and mortality among workers exposed to environmental and occupational hazards. The web application provides personalized risk assessments based on key factors, such as age, employment history, family health background, and exposure to environmental risks like dust and noise. By offering actionable insights, the model enables targeted interventions, including workplace modifications and lifestyle recommendations, to mitigate the risk of CVD and HTN. This tool demonstrates the potential of ML to enhance preventive health strategies in high-risk occupational settings.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Hypertension", - "Machine Learning", - "Male", - "Adult", - "Middle Aged", - "Female", - "Iran", - "Risk Assessment", - "Internet", - "Occupational Health", - "Miners", - "Mining", - "Risk Factors", - "Occupational Diseases" - ] - }, - { - "PMID": "39738021", - "Title": "Nature communications", - "ArticleTitle": "Oxidative potential and persistent free radicals in dust storm particles and their associations with hospitalization.", - "Abstract": "Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China. An integrated exposure-response model was used to estimate the association between OP and EPFRs and hospitalization during SDS. EPFRs were strongly associated with circulatory (3.05%; 95% confidence interval [CI]: 1.01%, 4.08%) and respiratory (2.02%; 95% CI: 1.01%, 4.08%) diseases with each increase of 10", - "Predictions": [ - "Chronic respiratory disease", - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Dust", - "Humans", - "Hospitalization", - "Free Radicals", - "Air Pollutants", - "Oxidative Stress", - "Particulate Matter", - "China", - "Environmental Exposure", - "Beijing", - "Sand", - "Respiratory Tract Diseases", - "Oxidation-Reduction", - "Cardiovascular Diseases" - ] - }, - { - "PMID": "39738016", - "Title": "Nature communications", - "ArticleTitle": "Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease.", - "Abstract": "The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into na\u00efve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Animals", - "Gastrointestinal Microbiome", - "Male", - "Glutamine", - "Cardiovascular Diseases", - "Mice", - "Humans", - "Mice, Inbred C57BL", - "Myocytes, Cardiac", - "Ethanol", - "Oxidative Stress", - "Fecal Microbiota Transplantation", - "Alcoholism", - "Disease Models, Animal", - "Female", - "Glutamates", - "Endothelial Cells", - "Middle Aged" - ] - }, - { - "PMID": "39736942", - "Title": "Archives of Razi Institute", - "ArticleTitle": "Morbidity profile of the patients attending Mobile Medical Unit camps in Telangana: A record-based study.", - "Abstract": "Mobile Medical Units (MMUs) are one of the major initiatives under the National Rural Health Mission. These MMUs help people in remote, underserved areas access healthcare at affordable prices on their doorstep. The present record-based study aimed to assess the morbidity profile of the patients attending Mobile Medical Unit camps in the Yadadri-Bhuvanagiri district between April 2022 and December 2022. The MMU is run by the Department of Community and Family Medicine, AIIMS, Bibinagar, in six selected villages of the Yadadri-Bhuvanagiri district. A register is maintained to record the details of patients visiting the MMU camp. Patient's name, age, gender, place, mobile number, height, weight, blood pressure (BP), glucometer Random Blood Sugar, diagnosis, and details of medication dispensed were entered in the register. Diabetes, hypertension, and obesity were diagnosed using the World Health Organization\u00a0(WHO) criteria, the Eighth Joint National Committee guidelines, and WHO Asia Pacific guidelines, respectively. Mobile Medical Unit Camp data are entered into the Excel database at the end of every month. Since it is a record-based analysis, we used data for analysis between April 7, 2022, and December 31, 2022. A total of 1494 patients were treated in the MMU camps during this period. Among them, 89.4% were adults, and 10.6% were children (less than 18 years). Among 1,336 adult patients, the majority of participants suffered from osteoarthritis, followed by non-communicable diseases (NCDs). The mean scores of systolic and diastolic BP of the adult population were obtained at 131\u00b121 and 77\u00b113 mm Hg, respectively. The mean random blood glucose level of the adult population was 150\u00b174 mg/dl. A total of 158 children were younger than 18 years old, out of whom 78 and 80 participants were males and females, respectively. Moreover, 23.1% and 25% of males and females suffered from upper respiratory tract infections, respectively. The study further suggests that the NCD epidemic is spreading to rural areas where necessary health infrastructure is insufficient. MMUs can bring a significant change to the public health system, which needs to re-orient its priorities.", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Adult", - "Mobile Health Units", - "Middle Aged", - "Adolescent", - "Aged", - "Child", - "Young Adult", - "India", - "Morbidity", - "Hypertension", - "Child, Preschool", - "Obesity", - "Infant", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39736858", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Association of oxidative balance score with cardiovascular disease and all-cause and cardiovascular mortality in American adults with type 2 diabetes: data from the National Health and Nutrition examination survey 1999-2018.", - "Abstract": "Adherence to higher OBS was associated with reduced CVD prevalence and mortality risk in T2D. Antioxidant diet and lifestyle had more significant associations with mortality and CVD prevalence, respectively. However, as these findings are merely associations and do not allow causal inferences to be drawn, future validation in high-quality randomized controlled trials is needed.", - "Predictions": [ - "Cardiovascular diseases", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Cardiovascular Diseases", - "Male", - "Female", - "Middle Aged", - "Nutrition Surveys", - "Adult", - "Oxidative Stress", - "United States", - "Aged", - "Life Style", - "Diet", - "Risk Factors", - "Follow-Up Studies", - "Prevalence" - ] - }, - { - "PMID": "39736721", - "Title": "BMC medicine", - "ArticleTitle": "Changes in sarcopenia and incident cardiovascular disease in prospective cohorts.", - "Abstract": "Changes in sarcopenia status are associated with varying risks of new-onset CVD. Progression in sarcopenia status increases the risk, while recovery from sarcopenia reduces the risk of developing cardiovascular disease.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Sarcopenia", - "Female", - "Male", - "Middle Aged", - "Prospective Studies", - "Cardiovascular Diseases", - "Incidence", - "Aged", - "China", - "Longitudinal Studies", - "Risk Factors", - "Proportional Hazards Models" - ] - }, - { - "PMID": "39736689", - "Title": "Lipids in health and disease", - "ArticleTitle": "Cardiometabolic index and mortality risks: elevated cancer and reduced cardiovascular mortality risk in a large cohort.", - "Abstract": "This study represents the first comprehensive assessment on the contribution of CMI to mortality across an all-age adult population, providing some insights for the comprehensive assessment of health and disease states.", - "Predictions": [ - "Diabetes", - "Cancer", - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Neoplasms", - "Male", - "Female", - "Middle Aged", - "Adult", - "Longitudinal Studies", - "Aged", - "Proportional Hazards Models", - "Diabetes Mellitus", - "Risk Factors", - "Cardiometabolic Risk Factors", - "Cohort Studies" - ] - }, - { - "PMID": "39736563", - "Title": "BMC cardiovascular disorders", - "ArticleTitle": "The predictive role of the hs-CRP/HDL-C ratio for long-term mortality in the general population: evidence from a cohort study.", - "Abstract": "The hs-CRP/HDL-C ratio is a crucial predictor of long-term mortality in the general population, independent of potential confounding factors.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Cholesterol, HDL", - "Retrospective Studies", - "C-Reactive Protein", - "Biomarkers", - "Cardiovascular Diseases", - "Risk Assessment", - "Adult", - "Predictive Value of Tests", - "Time Factors", - "Nutrition Surveys", - "Cause of Death", - "Prognosis", - "United States", - "Risk Factors", - "Aged" - ] - }, - { - "PMID": "39736518", - "Title": "BMC cardiovascular disorders", - "ArticleTitle": "Effect of sodium glucose cotransporter-2 inhibitors (SGLT-2is) on the clinical outcomes of patients with diabetic atrial fibrillation.", - "Abstract": "In our study, SGLT-2i treatment was associated with a significant reduction in all-cause mortality and major bleeding in diabetic AF patients. Our study provides evidence of the clinical benefit of SGLT-2i in AF patients.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Male", - "Atrial Fibrillation", - "Retrospective Studies", - "Female", - "Aged", - "Treatment Outcome", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Time Factors", - "Risk Factors", - "Risk Assessment", - "Hemorrhage", - "Aged, 80 and over", - "Cause of Death", - "Myocardial Infarction" - ] - }, - { - "PMID": "39736180", - "Title": "Food chemistry", - "ArticleTitle": "Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases.", - "Abstract": "Dietary omega-3 polyunsaturated fatty acids (D\u03c9-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with D\u03c9-3 PUFAs is a potential strategy for enhancing D\u03c9-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with D\u03c9-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of D\u03c9-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with D\u03c9-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of D\u03c9-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible D\u03c9-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Food, Fortified", - "Fatty Acids, Omega-3", - "Animals" - ] - }, - { - "PMID": "39736025", - "Title": "Polish journal of veterinary sciences", - "ArticleTitle": "Cardiovascular problems in rabbits in reference to hypothyroidism - a four-year retrospective study.", - "Abstract": "The effects of T4 are mainly manifested by positive ino- and chronotropism. The syndrome accompanying hypothyroidism in rabbits (impaired myocardial contractility and reduced ejection capacity) is caused by a deficiency of thyroid hormones - especially T4. The study group consisted of a total of 41 animals: 15 males and 26 females, ranging in age from 2 months to 8 years, with echocardiogram showing reduced fractional shortening (<30%), with normal results of heamatological and biochemical tests. Blood was collected in order to measure T4 level. Echocardiographic examinations were performed with two-dimensional (2D) imaging, M-mode measurements and the pulsed/colour-labelled Doppler technique. Statistical analysis was performed using Statistica 13.0. Correlations were determined: between serum thyroxine concentration and the value of the fraction of shortening in the groups: young animals (up to 5 years of age) and older animals, females and males, and sterilised and non-sterilised animals. Statistical analysis showed a positive correlation between T4 levels in the blood of the test animals and myocardial fractional shortening and heart rate and left-atrial to aortic ratio (LA/Ao) in the pre-treatment period. A positive correlation was also shown after dividing the patients into 2 groups based on their age (below 5 years vs. 5 years and over), sex (male and female rabbits) and fact of sterilization (yes/no). Our study unequivocally confirmed a positive correlation between the decreased serum T4 concentration and reduced fractional shortening, indicating decreased cardiac systolic function in hypothyroid rabbits.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Animals", - "Rabbits", - "Male", - "Hypothyroidism", - "Female", - "Retrospective Studies", - "Thyroxine", - "Cardiovascular Diseases", - "Echocardiography" - ] - }, - { - "PMID": "39735642", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Leukocyte telomere length decreased the risk of mortality in patients with alcohol-associated liver disease.", - "Abstract": "Our research found that longer LTL improved survival in patients with ALD and decreased CVD and cancer-related mortality. LTL decreased all-cause mortality especially for patients older than 65 years or men. LTL might be a useful biomarker for prognosis among patients with ALD. More prospective studies are needed to assess the relevance between LTL and mortality and explore the underlying mechanisms between them.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Leukocytes", - "Liver Diseases, Alcoholic", - "Telomere", - "Adult", - "Nutrition Surveys", - "Prognosis", - "Telomere Homeostasis", - "Aged", - "Risk Factors", - "Cardiovascular Diseases" - ] - }, - { - "PMID": "39735551", - "Title": "Frontiers in immunology", - "ArticleTitle": "CD73: agent development potential and its application in diabetes and atherosclerosis.", - "Abstract": "CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Atherosclerosis", - "5'-Nucleotidase", - "Animals", - "Diabetes Mellitus", - "GPI-Linked Proteins", - "Drug Development" - ] - }, - { - "PMID": "39735545", - "Title": "Frontiers in immunology", - "ArticleTitle": "Single chain fragment variable, a new theranostic approach for cardiovascular diseases.", - "Abstract": "Cardiovascular diseases (CVDs) remain a significant global health challenge, leading to substantial morbidity and mortality. Despite recent advancements in CVD management, pharmaceutical treatments often suffer from poor pharmacokinetics and high toxicity. With the rapid progress of modern molecular biology and immunology, however, single-chain fragment variable (scFv) molecule engineering has emerged as a promising theranostic tool to offer specificity and versatility in targeting CVD-related antigens. To represent the latest development on the potential of scFv in the context of CVDs, this review summarized the new mechanism of action and applications as therapeutic, as well as diagnostic agents. Furthermore, the advantages of scFv, including its small size, ease of modification, and ability to be engineered for enhanced affinity and specificity, are also described. Finally, such challenges as immunogenicity, stability, and scalability, alongside strategies to overcome these hurdles, are deeply scrutinized to provide safer and more effective strategies for the diagnosis and treatment of the incurable CVDs.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Single-Chain Antibodies", - "Animals", - "Theranostic Nanomedicine", - "Precision Medicine" - ] - }, - { - "PMID": "39735488", - "Title": "Turkish journal of medical sciences", - "ArticleTitle": "Thyroid and cardiovascular diseases.", - "Abstract": "The thyroid gland is one of the major regulator organs of hemostasis in the human body, controlling the functioning of numerous systems. Thyroid hormones exert a modulating effect on the cardiovascular system in particular, ensuring optimal functioning within the normal range. Triiodothyronine (T3), as an active form of thyroid hormone, is mainly responsible for this effect via both genomic and nongenomic mechanisms. It has been reported that overt thyroid disorders are associated with a number of cardiovascular diseases and cardiac mortality. While hyperthyroidism appears to be related to atrial fibrillation and heart failure, the most pronounced cardiovascular complication of hypothyroidism seems to be atherosclerosis. Achieving euthyroidism is of great importance for restoring cardiovascular function. However, depending on the underlying health conditions, this may not be possible for all patients. Furthermore, there has been a growing focus on the role of subclinical thyroid dysfunctions and their impacts on the cardiovascular system in recent years. The pattern of cardiovascular abnormalities in subclinical thyroid disorders appears to parallel that of overt hypothyroidism, suggesting that even mild alterations in thyroid hormone levels may also have effects on the cardiovascular system. The management of subclinical thyroid disease remains controversial. Current evidence suggests that patient age and underlying cardiovascular diseases are major factors in clinical decision-making.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Hypothyroidism", - "Hyperthyroidism", - "Thyroid Diseases", - "Thyroid Gland", - "Thyroid Hormones" - ] - }, - { - "PMID": "39735485", - "Title": "Turkish journal of medical sciences", - "ArticleTitle": "Cardiac effects and comorbidities of neurological diseases.", - "Abstract": "Neurological disorders encompass a complex and heterogeneous spectrum of diseases affecting the brain, spinal cord, and peripheral nervous system, each presenting unique challenges that extend well beyond primary neurological symptoms. These disorders profoundly impact cardiovascular health, prompting an intensified exploration into the intricate interconnections between the neurological and cardiovascular systems. This review synthesizes current insights and research on cardiovascular comorbidities associated with major neurological conditions, including stroke, epilepsy, Parkinson's disease, multiple sclerosis, and Alzheimer's disease. The cardiovascular sequelae of these neurological disorders are multifactorial. For instance, strokes not only predispose individuals to arrhythmia and heart failure but also exacerbate preexisting cardiovascular risk factors. Similarly, epilepsy is associated with autonomic dysregulation and an elevated risk of sudden cardiac death, underscoring the necessity for vigilant cardiac monitoring in affected individuals. Parkinson's disease manifests with orthostatic hypotension and cardiac sympathetic denervation, significantly contributing to morbidity. Additionally, multiple sclerosis and Alzheimer's disease exhibit cardiovascular autonomic dysfunction and heightened cardiovascular risk, underscoring the need for proactive management strategies. Mechanistically, these conditions disrupt autonomic nervous system regulation, induce chronic inflammation, and may share genetic susceptibilities, each contributing to cardiovascular pathology. Effective management of these complexities requires an integrative approach that includes risk factor modification, pharmacotherapy, lifestyle interventions, and comprehensive patient education. Future research directions include identifying novel therapeutic targets, conducting large-scale clinical trials, and investigating genetic biomarkers to individualize treatment strategies. By addressing the multifaceted interactions between neurological disorders and cardiovascular health, healthcare providers can optimize patient care, reducing cardiovascular morbidity and mortality in this vulnerable population.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Comorbidity", - "Nervous System Diseases", - "Cardiovascular Diseases", - "Parkinson Disease", - "Risk Factors", - "Multiple Sclerosis" - ] - }, - { - "PMID": "39735480", - "Title": "Turkish journal of medical sciences", - "ArticleTitle": "Burden of comorbidities in heart failure patients in T\u00fcrkiye.", - "Abstract": "The most common comorbidities in cases of HF in T\u00fcrkiye are HT, ASCVD, dyslipidemia, DM, COPD, anemia, and AF, respectively, and more than 90% of patients have \u22652 comorbidities. While ASCVD and dyslipidemia were more common in male patients, anemia, DM, and anxiety disorders were more common in female patients. The number of comorbid conditions increased with advanced age.", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Heart Failure", - "Comorbidity", - "Middle Aged", - "Aged", - "Adult", - "Turkey", - "Prevalence", - "Young Adult", - "Adolescent", - "Aged, 80 and over", - "Hypertension", - "Diabetes Mellitus", - "Pulmonary Disease, Chronic Obstructive", - "Anemia", - "Dyslipidemias" - ] - }, - { - "PMID": "39735416", - "Title": "Journal of diabetes research", - "ArticleTitle": "Age Characteristics of Patients With Type 2 Diabetic Foot Ulcers and Predictive Risk Factors for Lower Limb Amputation: A Population-Based Retrospective Study.", - "Abstract": { - "b": "Conclusion:" - }, - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetic Foot", - "Amputation, Surgical", - "Male", - "Middle Aged", - "Female", - "Risk Factors", - "Aged", - "Diabetes Mellitus, Type 2", - "Retrospective Studies", - "Lower Extremity", - "Age Factors", - "China", - "Adult", - "Prevalence", - "Aged, 80 and over" - ] - }, - { - "PMID": "39735415", - "Title": "Journal of diabetes research", - "ArticleTitle": "Metabolomic Profiling Reveals Biomarkers in Coronary Heart Disease Comorbidity.", - "Abstract": { - "b": "Conclusion:" - }, - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Metabolomics", - "Middle Aged", - "Coronary Disease", - "Biomarkers", - "Diabetes Mellitus, Type 2", - "Comorbidity", - "Depression", - "Hypertension", - "Aged", - "Gas Chromatography-Mass Spectrometry", - "Metabolome", - "Adult", - "Case-Control Studies" - ] - } -] \ No newline at end of file diff --git a/model/data/chronic_respiratory_disease.json b/model/data/chronic_respiratory_disease.json deleted file mode 100644 index e37b036ffe8de271bb6954e61c15127706d7289a..0000000000000000000000000000000000000000 --- a/model/data/chronic_respiratory_disease.json +++ /dev/null @@ -1,485 +0,0 @@ -[ - { - "PMID": "39738052", - "Title": "Nature communications", - "ArticleTitle": "Characterizing mutation-treatment effects using clinico-genomics data of 78,287 patients with 20 types of cancers.", - "Abstract": "Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S. cancer patients with detailed somatic mutation profiling integrated with treatment and outcomes data extracted from electronic health records. We systematically identified 776 genomic alterations associated with survival outcomes across 20 distinct cancer types treated with specific immunotherapies, chemotherapies, or targeted therapies. Additionally, we demonstrate how mutations in particular pathways correlate with treatment response. Leveraging the large number of identified predictive mutations, we developed a machine learning model to generate a risk score for response to immunotherapy in patients with advanced non-small cell lung cancer (aNSCLC). Through rigorous computational analysis of large-scale\u00a0clinico-genomic real-world data, this research provides insights and lays the groundwork for further advancements in precision oncology.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Mutation", - "Neoplasms", - "Precision Medicine", - "Genomics", - "Immunotherapy", - "Carcinoma, Non-Small-Cell Lung", - "Machine Learning", - "Female", - "Male", - "Treatment Outcome", - "Electronic Health Records", - "Lung Neoplasms" - ] - }, - { - "PMID": "39738021", - "Title": "Nature communications", - "ArticleTitle": "Oxidative potential and persistent free radicals in dust storm particles and their associations with hospitalization.", - "Abstract": "Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China. An integrated exposure-response model was used to estimate the association between OP and EPFRs and hospitalization during SDS. EPFRs were strongly associated with circulatory (3.05%; 95% confidence interval [CI]: 1.01%, 4.08%) and respiratory (2.02%; 95% CI: 1.01%, 4.08%) diseases with each increase of 10", - "Predictions": [ - "Chronic respiratory disease", - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Dust", - "Humans", - "Hospitalization", - "Free Radicals", - "Air Pollutants", - "Oxidative Stress", - "Particulate Matter", - "China", - "Environmental Exposure", - "Beijing", - "Sand", - "Respiratory Tract Diseases", - "Oxidation-Reduction", - "Cardiovascular Diseases" - ] - }, - { - "PMID": "39737564", - "Title": "Briefings in bioinformatics", - "ArticleTitle": "Precise identification of somatic and germline variants in the absence of matched normal samples.", - "Abstract": "Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P\u2009=\u2009.02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Germ-Line Mutation", - "Neoplasms", - "Reproducibility of Results", - "Mutation", - "Computational Biology", - "Genomics", - "Lung Neoplasms", - "Biomarkers, Tumor" - ] - }, - { - "PMID": "39737457", - "Title": "Frontiers in public health", - "ArticleTitle": "Impact of COVID-19 vaccination on adolescent and youth students' mental health and bullying behaviors after the lifting of COVID-19 restrictions in China.", - "Abstract": "This study suggests that COVID-19 vaccination will not only protect students' physical health, but also improve mental health. It is crucial to explore the mechanism between vaccination and mental health problems and bullying behaviors in further studies.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "China", - "COVID-19", - "Male", - "Female", - "Students", - "Bullying", - "COVID-19 Vaccines", - "Surveys and Questionnaires", - "Mental Health", - "Vaccination", - "Depression", - "Anxiety", - "SARS-CoV-2", - "Stress Disorders, Post-Traumatic" - ] - }, - { - "PMID": "39735753", - "Title": "Frontiers in public health", - "ArticleTitle": "Chronic impacts of natural infrastructure on the physical and psychological health of university students during and after COVID-19: a case study of Chengdu, China.", - "Abstract": "The study emphasizes the importance of incorporating natural elements into urban planning to enhance outdoor activity and well-being, especially in post-pandemic settings. Recommendations are provided for future urban design to address the therapeutic needs of specific populations.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "China", - "Students", - "Universities", - "Male", - "Female", - "Mental Health", - "Young Adult", - "Adult", - "SARS-CoV-2", - "City Planning" - ] - }, - { - "PMID": "39735752", - "Title": "Frontiers in public health", - "ArticleTitle": "Effects of a flexibly delivered group-based acceptance and commitment therapy on reducing stress and enhancing psychological wellbeing in parents of school-age children during the COVID-19 pandemic: a quasi-experimental study.", - "Abstract": "The findings highlight the potential of group-based Acceptance and Commitment Therapy to alleviate stress and improve psychological well-being in parents of school-age children, regardless of the delivery method, especially during crises such as the COVID-19 pandemic. However, due to limitations in the study design, caution is warranted when interpreting the overall effects of group-based ACT on parent outcomes and the moderating role of delivery methods. Further research is needed to validate these findings and explore the nuances of delivery methods in similar real-world situations.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Acceptance and Commitment Therapy", - "Female", - "Male", - "Parents", - "Stress, Psychological", - "Adult", - "Child", - "Hong Kong", - "Middle Aged", - "SARS-CoV-2", - "Psychotherapy, Group", - "Pandemics", - "Mental Health" - ] - }, - { - "PMID": "39735533", - "Title": "Frontiers in immunology", - "ArticleTitle": "Development of a urine-based metabolomics approach for multi-cancer screening and tumor origin prediction.", - "Abstract": "Our study demonstrates the potential of urine-based metabolomics for multi-cancer early detection. The approach offers non-invasive cancer screening, promising widespread implementation in population-based programs for early detection and improved outcomes. Further validation and expansion are needed for broader clinical applicability.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Early Detection of Cancer", - "Metabolomics", - "Male", - "Female", - "Biomarkers, Tumor", - "Middle Aged", - "Aged", - "Stomach Neoplasms", - "Colorectal Neoplasms", - "Metabolome", - "Adult", - "Lung Neoplasms", - "Neoplasms" - ] - }, - { - "PMID": "39735480", - "Title": "Turkish journal of medical sciences", - "ArticleTitle": "Burden of comorbidities in heart failure patients in T\u00fcrkiye.", - "Abstract": "The most common comorbidities in cases of HF in T\u00fcrkiye are HT, ASCVD, dyslipidemia, DM, COPD, anemia, and AF, respectively, and more than 90% of patients have \u22652 comorbidities. While ASCVD and dyslipidemia were more common in male patients, anemia, DM, and anxiety disorders were more common in female patients. The number of comorbid conditions increased with advanced age.", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Heart Failure", - "Comorbidity", - "Middle Aged", - "Aged", - "Adult", - "Turkey", - "Prevalence", - "Young Adult", - "Adolescent", - "Aged, 80 and over", - "Hypertension", - "Diabetes Mellitus", - "Pulmonary Disease, Chronic Obstructive", - "Anemia", - "Dyslipidemias" - ] - }, - { - "PMID": "39734100", - "Title": "Journal of research on adolescence : the official journal of the Society for Research on Adolescence", - "ArticleTitle": "Adolescents in various contexts during the COVID-19 pandemic: A commentary.", - "Abstract": "This commentary provides a reflection on the impact of the COVID-19 pandemic on adolescents in the context of family dynamics, school environments, peer relationships, and civic engagement. Drawing from four systematic literature reviews, the commentary highlights key findings, such as the long-term effects of COVID-19 on adolescent development, mental health, and academic well-being. The need for future research is emphasized to assess how these cohort effects will evolve over time. Cultural context and socioeconomic disparities emerge as crucial considerations, with the pandemic exacerbating existing inequalities, especially in access to education and digital resources. This commentary also underscores the importance of adopting a socio-ecological perspective to understand the multifaceted impact of COVID-19 on adolescents globally. In conclusion, it calls for targeted policies to support adolescents' mental health and academic recovery post-pandemic, particularly in underserved communities. Governments, educators, and civic organizations are encouraged to create inclusive policies that address these disparities while fostering resilience and well-being among young people. These reviews may also inform translational research that could aid in the development of evidence-based interventions and policies aimed at helping adolescents thrive in a post-pandemic world.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Adolescent", - "Mental Health", - "SARS-CoV-2", - "Adolescent Development", - "Pandemics", - "Peer Group", - "Socioeconomic Factors" - ] - }, - { - "PMID": "39733164", - "Title": "Scientific reports", - "ArticleTitle": "New-onset cardiovascular diseases post SARS-CoV-2 infection in an urban population in the Bronx.", - "Abstract": "This study investigated the incidence of new-onset cardiovascular disorders up to 3.5 years post SARS-CoV-2 infection for 56,400 individuals with COVID-19 and 1,093,904 contemporary controls without COVID-19 in the Montefiore Health System (03/11/2020 to 07/01/2023). Outcomes were new incidence of major adverse cardiovascular event (MACE), arrhythmias, inflammatory heart disease, thrombosis, cerebrovascular disorders, ischemic heart disease and other cardiac disorders between 30 days and (up to) 3.5 years post index date. Results were also compared with a pre-pandemic cohort over similar observation duration (N\u2009=\u200964,541). Cumulative incidence and hazard ratios adjusted for competitive risks were analyzed. Compared to contemporary controls, hospitalized COVID-19 patients had significantly higher risk of developing MACE (aHR\u2009=\u20092.29, 95% confidence interval [2.27, 2.31], p\u2009<\u20090.001), arrhythmias (aHR\u2009=\u20092.54[2.50, 2.58], p\u2009<\u20090.001), inflammatory heart disease (aHR\u2009=\u20095.34[4.79, 5.96], p\u2009<\u20090.001), cerebrovascular (aHR\u2009=\u20092.05[2.00, 2.11], p\u2009<\u20090.001), other cardiac disorders (aHR\u2009=\u20092.31[2.26, 2.35], p\u2009<\u20090.001), thrombosis (aHR\u2009=\u20094.25[4.15, 4.36], p\u2009<\u20090.001), and ischemic heart disease (aHR\u2009=\u20091.89[1.86, 1.92], p\u2009<\u20090.001). Non-hospitalized COVID-19 patients had slightly higher risk of developing MACE (aHR\u2009=\u20091.04[1.03, 1.06], p\u2009<\u20090.001), arrhythmias (aHR\u2009=\u20091.10[1.08, 1.12], p\u2009<\u20090.001), inflammatory heart disease (aHR\u2009=\u20092.29 [2.03, 2.59], p\u2009<\u20090.001), cerebrovascular (aHR\u2009=\u20091.11[1.07, 1.15], p\u2009<\u20090.001), and ischemic heart disease (aHR\u2009=\u20091.10[1.08, 1.13], p\u2009<\u20090.001). Race and ethnicity were mostly not associated with increased risks (p\u2009>\u20090.05). aHRs with contemporary controls as a reference were similar to those with pre-pandemic cohort as a reference. We concluded that new incident cardiovascular disorders in COVID-19 patients, especially those hospitalized for COVID-19, were higher than those in controls. Identifying risk factors for developing new-onset cardiovascular disorders may draw clinical attention for the need for careful follow-up in at-risk individuals.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Cardiovascular Diseases", - "Male", - "Female", - "Middle Aged", - "Aged", - "Incidence", - "SARS-CoV-2", - "Urban Population", - "Adult", - "New York City", - "Risk Factors", - "Hospitalization", - "Aged, 80 and over" - ] - }, - { - "PMID": "39731316", - "Title": "Nordic journal of psychiatry", - "ArticleTitle": "Gender-stratified national mental health norms of BSI-53, BSI-18, SCL-10, ADHD-9, and ADHD-6 for Denmark.", - "Abstract": "This study provides gender-stratified Danish mental health norms for multiple symptom scales. The considerable gender differences in the SCL-10 underscore the importance of gender-specific norms. The 2020 SCL-10 norms are biased by COVID-19 distress. Until new normative data is available, the gender-specific norms provided here are recommended.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Denmark", - "Female", - "Male", - "Attention Deficit Disorder with Hyperactivity", - "Adult", - "Middle Aged", - "Adolescent", - "Young Adult", - "Aged", - "COVID-19", - "Sex Factors", - "Aged, 80 and over", - "Reference Values", - "Brief Psychiatric Rating Scale", - "Mental Health" - ] - }, - { - "PMID": "39730990", - "Title": "BMC primary care", - "ArticleTitle": "The impact of the covid-19 pandemic on perceived diabetes care and regulation, with a focus on ethnic minorities: a mixed-methods study.", - "Abstract": "In the context of proactive care, remote healthcare and self-regulation have a crucial role for people with T2DM. It is important to identify barriers and facilitators for maintaining good glycaemic control among vulnerable groups, such as ethnic minority groups.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Adult", - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "COVID-19", - "Diabetes Mellitus, Type 2", - "Ethnic and Racial Minorities", - "Primary Health Care", - "Prospective Studies", - "Telemedicine" - ] - }, - { - "PMID": "39730493", - "Title": "Scientific reports", - "ArticleTitle": "Heart rate variability parameters indicate altered autonomic tone in subjects with COVID-19.", - "Abstract": "COVID-19 is associated with long-term cardiovascular complications. Heart Rate Variability (HRV), a measure of sympathetic (SNS) and parasympathetic (PNS) control, has been shown to predict COVID-19 outcomes and correlate with disease progression but a comprehensive analysis that includes demographic influences has been lacking. The objective of this study was to determine the balance between SNS, PNS and heart rhythm regulation in hospitalized COVID-19 patients and compare it with similar measurements in healthy volunteers and individuals with cardiovascular diseases (CVD), while also investigating the effects of age, Body Mass Index (BMI), gender and race. Lead I ECG recordings were acquired from 50 COVID-19 patients, 31 healthy volunteers, and 51 individuals with cardiovascular diseases (CVD) without COVID-19. Fourteen HRV parameters were calculated, including time-domain, frequency-domain, nonlinear, and regularity metrics. The study population included a balanced demographic profile, with 55% of participants being under 65 years of age, 54% identifying as male, and 68% identifying as White. Among the COVID-19 patients, 52% had a BMI\u2009\u2265\u200930 compared to 29% of healthy volunteers and 33% of CVD patients. COVID-19 and CVD patients exhibited significantly reduced time-domain HRV parameters, including SDNN and RMSSD, compared to healthy volunteers (SDNN: 0.02\u2009\u00b1\u20090.02\u00a0s vs. 0.06\u2009\u00b1\u20090.03\u00a0s, p\u2009<\u20090.001; RMSSD: 0.02\u2009\u00b1\u20090.02\u00a0s vs. 0.05\u2009\u00b1\u20090.03\u00a0s, p\u2009=\u20090.08). In the frequency domain, both COVID-19 and CVD patients showed increased low-frequency (LF) power and lower high-frequency (HF) power compared to healthy volunteers (COVID-19 LF: 18.47\u2009\u00b1\u200918.18%, HF: 13.69\u2009\u00b1\u200925.80%; Healthy LF: 23.30\u2009\u00b1\u200911.79%, HF: 22.91\u2009\u00b1\u200921.86%, p\u2009<\u20090.01). The LF/HF ratio was similar in COVID-19 patients (1.038\u2009\u00b1\u20091.54) and healthy volunteers (1.03\u2009\u00b1\u20090.78). Nonlinear parameters such as SD1 were significantly lower in COVID-19 patients (0.04\u2009\u00b1\u20090.04\u00a0s vs. 0.08\u2009\u00b1\u20090.05\u00a0s, p\u2009<\u20090.01), indicating altered autonomic regulation. Variations in HRV were observed based on demographic factors, with younger patients, females, and non-white individuals showing more pronounced autonomic dysfunction. COVID-19 patients exhibit significant alterations in HRV, indicating autonomic dysfunction, characterized by decreased vagal tone and sympathetic dominance, similar to patients with severe cardiovascular comorbidities. Despite higher heart rates, the HRV analysis suggests COVID-19 is associated with substantial disruption in autonomic regulation, particularly in patients with specific demographic risk factors.", - "Predictions": [ - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Male", - "Heart Rate", - "Female", - "Middle Aged", - "Autonomic Nervous System", - "Aged", - "Adult", - "Cardiovascular Diseases", - "Electrocardiography", - "SARS-CoV-2", - "Body Mass Index" - ] - }, - { - "PMID": "39730153", - "Title": "BMJ open", - "ArticleTitle": "Exploring the status of online social support for older adults with cancer: a scoping review protocol.", - "Abstract": "No ethical approval is needed. The findings will be published in a peer-reviewed journal and presented at conferences.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Neoplasms", - "Social Support", - "Aged", - "COVID-19", - "SARS-CoV-2", - "Online Social Networking", - "Research Design", - "Scoping Reviews As Topic" - ] - }, - { - "PMID": "39729927", - "Title": "Cancer genetics", - "ArticleTitle": "Machine learning analysis of CD4+ T cell gene expression in diverse diseases: insights from cancer, metabolic, respiratory, and digestive disorders.", - "Abstract": "CD4", - "Predictions": [ - "Cancer", - "Chronic respiratory disease" - ], - "MeshTerms": [ - "Humans", - "CD4-Positive T-Lymphocytes", - "Neoplasms", - "Machine Learning", - "Digestive System Diseases", - "Metabolic Diseases", - "Respiratory Tract Diseases", - "Gene Expression Profiling", - "Respiration Disorders" - ] - }, - { - "PMID": "39729438", - "Title": "PloS one", - "ArticleTitle": "Implementing digital respiratory technologies for people with respiratory conditions: A protocol for a scoping review.", - "Abstract": "The value of 'data-enabled', digital healthcare is evolving rapidly, as demonstrated in the COVID-19 pandemic, and its successful implementation remains complex and challenging. Harmonisation (within/between healthcare systems) of infrastructure and implementation strategies has the potential to promote safe, equitable and accessible digital healthcare, but guidance for implementation is lacking. Using respiratory technologies as an example, our scoping review process will capture and review the published research between 12th December 2013 to 12th December 2023. Following standard methodology (Arksey and O'Malley), we will search for studies published in ten databases: MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Library, Web of Science, Scopus, IEEE Xplore, CABI Global Health, and WHO Medicus. Our search strategy will use the terms: digital health, respiratory conditions, and implementation. Using Covidence, screening of abstracts and full texts will be undertaken by two independent reviewers, with conflicts resolved by a third reviewer. Data will be extracted into a pilot-tested data extraction table for charting, summarising and reporting the results. We will conduct stakeholder meetings throughout to discuss the themes emerging from implementation studies and support interpretation of findings in the light of their experience within their own networks and organisations. The findings will inform the future work within the ERS CONNECT clinical research collaboration and contribute to policy statements to promote a harmonised framework for digital transformation of respiratory healthcare.", - "Predictions": [ - "Chronic respiratory disease" - ], - "MeshTerms": [ - "Humans", - "Digital Technology", - "Respiratory Tract Diseases", - "Telemedicine", - "Scoping Reviews As Topic" - ] - }, - { - "PMID": "39727705", - "Title": "Current oncology (Toronto, Ont.)", - "ArticleTitle": "Longitudinal Follow-Up of the Psychological Well-Being of Patients with Colorectal Cancer: Final Analysis of PICO-SM.", - "Abstract": "PICO-SM was a prospective longitudinal study investigating the psychological impact of the COVID-19 pandemic on patients with colorectal cancer treated in a large UK tertiary cancer centre. Here, we present the impact of the third wave of the pandemic (December 2021 to February 2022), when the Omicron variant became prevalent in the UK, and the complete longitudinal comparison across the entire duration of this study. Patients were invited to complete a questionnaire, including screening psychometric tools. In total, n = 312 patients were included in the final analysis. Specifically, in this Omicron-predominant wave, n = 96 patients were studied in detail: the mean age was 64 years, 64% were male, 33% reported poor well-being, 27% anxiety, 11% depressive symptoms, and 3% trauma-related symptoms. The participants who had investigations cancelled (OR 9.22, 95% CI 1.09-77.85; ", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Male", - "Colorectal Neoplasms", - "Middle Aged", - "COVID-19", - "Female", - "Longitudinal Studies", - "Aged", - "Anxiety", - "Prospective Studies", - "SARS-CoV-2", - "Depression", - "Follow-Up Studies", - "Surveys and Questionnaires", - "Mental Health", - "United Kingdom", - "Psychological Well-Being" - ] - }, - { - "PMID": "39727168", - "Title": "European journal of pain (London, England)", - "ArticleTitle": "Monitoring Chronic Non-Cancer Pain in Denmark Over Two Decades: Prevalence, Mental Health and Loneliness.", - "Abstract": "This study demonstrated alarming trend on chronic non-cancer pain prevalence over time in Denmark. The high estimates of prevalence and related issues, such as mental health and severe loneliness deserve further investigation and prioritisation in the public health agenda.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Denmark", - "Loneliness", - "Female", - "Middle Aged", - "Male", - "Chronic Pain", - "Prevalence", - "Adult", - "Aged", - "Mental Health", - "COVID-19", - "Young Adult", - "Adolescent", - "Aged, 80 and over", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39726235", - "Title": "Clinical and translational science", - "ArticleTitle": "Population pharmacokinetics of iruplinalkib in healthy volunteers and patients with solid tumors.", - "Abstract": "Iruplinalkib (WX-0593), a selective oral ALK/ROS1 tyrosine kinase inhibitor, was approved in China as first-line therapy for ALK-positive non-small-cell lung cancer (NSCLC) and for the treatment of locally advanced or metastatic ALK-positive NSCLC that has progressed following crizotinib therapy. Pharmacokinetics (PK) data of iruplinalkib have been collected in healthy subjects and patient populations in several studies. We developed a population PK (PopPK) model for describing iruplinalkib plasma concentrations and for evaluating whether dose adjustments are necessary based on demographic factors or disease characteristics. Plasma concentration-time data were collected from 392 participants (16 healthy volunteers and 372 patients with solid tumors) who received single or multiple doses of iruplinalkib in four trials. Data were analyzed using non-linear mixed-effects modeling. Iruplinalkib plasma concentrations were best described by a two-compartment model with first-order absorption and first-order elimination. Baseline body weight, time-varying albumin, time-varying creatinine clearance, and time-varying lactate dehydrogenase were significant covariates of apparent clearance from the central compartment (CL/F) while baseline body weight was a significant covariate of apparent volume of the central compartment (V1/F). Given the small or modest effect of all statistically significant covariates on iruplinalkib exposure at steady-state, no covariate was expected to have clinically meaningful effects on iruplinalkib exposure. Furthermore, iruplinalkib absorption was delayed 0.472\u2009h after meal, and K", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Adult", - "Neoplasms", - "Aged", - "Healthy Volunteers", - "Protein Kinase Inhibitors", - "Young Adult", - "Models, Biological", - "Aged, 80 and over", - "Carcinoma, Non-Small-Cell Lung" - ] - }, - { - "PMID": "39725931", - "Title": "BMC palliative care", - "ArticleTitle": "\"I have never felt so alone and vulnerable\" - A qualitative study of bereaved people's experiences of end-of-life cancer care during the Covid-19 pandemic.", - "Abstract": "People bereaved by cancer were uniquely affected by pandemic-restrictions and disruptions to services. As services re-build post-pandemic, improvements in palliative care in hospitals, investment into community care, and ensuring compassionate communication with patients and families must be prioritised, alongside preparedness for future pandemics or similar events.", - "Predictions": [ - "Cancer" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Neoplasms", - "Qualitative Research", - "Terminal Care", - "Male", - "Bereavement", - "Female", - "Middle Aged", - "Aged", - "Family", - "Adult", - "Pandemics", - "United Kingdom", - "SARS-CoV-2", - "Aged, 80 and over" - ] - } -] \ No newline at end of file diff --git a/model/data/diabetes.json b/model/data/diabetes.json deleted file mode 100644 index 4f38ac1f4bbbe36f9bd73f4fa18d32b2b693db85..0000000000000000000000000000000000000000 --- a/model/data/diabetes.json +++ /dev/null @@ -1,505 +0,0 @@ -[ - { - "PMID": "39738300", - "Title": "Scientific reports", - "ArticleTitle": "Robust self management classification via sparse representation based discriminative model for mild cognitive impairment associated with diabetes mellitus.", - "Abstract": "Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e. self-management) have a significant impact on the development of their condition. Thus, the inclusion and discrimination of subsequent interventions according to their self-management is an urgent issue. A Sparse-representation-based Discriminative Classification model (SDC) is proposed in this paper to correctly classify MCI-DM patients based on their self-management ability. Specifically, an L", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Cognitive Dysfunction", - "Self-Management", - "Machine Learning", - "Aged", - "Male", - "Female", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39738226", - "Title": "Scientific reports", - "ArticleTitle": "Excessive daytime sleepiness and its predictors among type 2 diabetes mellitus patients at central ethiopia.", - "Abstract": "Excessive daytime sleepiness is a common finding among type 2 diabetes mellitus patients. However there is scarce data that shows the magnitude of excessive daytime sleepiness, & its association with type 2 diabetes mellitus. Hence, the study aimed to assess the prevalence of excessive daytime sleepiness and its associated factors among type 2 diabetes mellitus patients at Wolkite University Specialized Hospital. A Hospital-based cross-sectional study was employed from January 15 to March 15, 2022, among 229 Type 2 diabetes mellitus patients. Data was collected by semi-structured questionnaires, then entered into the Epi data version 4.6 and exported to SPSS version 25.0 for analysis. Binary and multiple logistic regression analysis was used to assess factors associated with excessive daytime sleepiness and statistical significance was set at P-value\u2009<\u20090.05. The prevalence of Excessive daytime sleepiness among type 2 diabetes mellitus was 27.1%. Age (AOR: 1.08; 95%CI: 1.03, 1.12), frequent snoring (AOR: 2.9; 95%CI: 1.24, 6.80), comorbid hypertension (AOR: 2.64; 95%CI: 1.17, 5.96), obesity (AOR: 2.7; 95%CI: 1.03, 7.13), and poor glycemic control (AOR: 6.68; 95%CI: 1.83, 24.41) were independently associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Excessive daytime sleepiness was reported in more than a quarter of type 2 diabetes mellitus patients. Age, frequent snoring, hypertension, obesity, and poor glycemic control were significantly associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Therefore health care providers should assess not only for how well their patients' diabetes is controlled but also for excessive daytime sleepiness.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Ethiopia", - "Male", - "Female", - "Middle Aged", - "Disorders of Excessive Somnolence", - "Cross-Sectional Studies", - "Adult", - "Prevalence", - "Risk Factors", - "Aged", - "Hypertension", - "Surveys and Questionnaires", - "Comorbidity", - "Obesity", - "Snoring" - ] - }, - { - "PMID": "39737893", - "Title": "Nutrition & diabetes", - "ArticleTitle": "The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis.", - "Abstract": "There is an association between diabetes and arthritis, with potential genetic links between Type 1 Diabetes and RA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Mendelian Randomization Analysis", - "Male", - "Female", - "Nutrition Surveys", - "Middle Aged", - "Genome-Wide Association Study", - "Arthritis, Rheumatoid", - "Adult", - "Arthritis", - "Prevalence", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Aged", - "Genetic Predisposition to Disease", - "Logistic Models", - "Polymorphism, Single Nucleotide" - ] - }, - { - "PMID": "39737643", - "Title": "Journal of biomedical materials research. Part B, Applied biomaterials", - "ArticleTitle": "Beneficial Effects of Tilapia Fish Skin on Excisional Skin Wound Healing in a Type I Diabetic Rat Model.", - "Abstract": "IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200\u2009g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT]. The healing process was monitored through clinical observation, gross examination, and histopathological analysis. ResultsThe results demonstrated that the Tilapia skin treatment accelerated wound healing, as evidenced by complete reepithelialization, full epidermal cell differentiation, an intact dermo-epidermal junction, and a reorganized dermis with fewer blood vessels. ConclusionFresh Tilapia skin proved to be a safe and effective dressing for promoting wound healing and managing infection in diabetic wounds.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Animals", - "Tilapia", - "Rats", - "Skin", - "Wound Healing", - "Diabetes Mellitus, Experimental", - "Diabetes Mellitus, Type 1", - "Male" - ] - }, - { - "PMID": "39737509", - "Title": "The Indian journal of medical research", - "ArticleTitle": "ICMR-MDRF Diabetes Biosamples: Cohort profile.", - "Abstract": "Background & objectives Biobanks are crucial for biomedical research, enabling new treatments and medical advancements. The biobank at the Madras Diabetes Research Foundation (MDRF) aims to gather, process, store, and distribute biospecimens to assist scientific studies. Methods This article details the profile of two cohorts: the Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study and the Registry of people with diabetes in India with young age at onset (ICMR-YDR). The ICMR-INDIAB study is the largest epidemiological study on diabetes in India, encompassing a nationally representative sample of individuals aged 20 yr and older from urban and rural areas in every State across the country. The ICMR-YDR is the first national-level, multicentric clinic-based registry focusing on youth-onset diabetes in India, aiming to understand the disease patterns and variations in youth-onset diabetes across different country regions. Results Key operations at the MDRF biobank include collecting and processing samples, where serum and whole blood samples are aliquoted and transferred through a cold chain to the central laboratory, and then stored in Siruseri (29 km from the capital city of Chennai, Tamil Nadu). Samples are barcoded, linked to subject information, and stored in freezers or liquid nitrogen (LN2) vessels, with inventory tracked via software for easy retrieval. A register records access to the biobank, ensuring sample integrity and compliance with regulatory requirements. The biobank adheres to the ICMR's National Ethical Guidelines for Biomedical and Health Research involving human participants. Interpretation & conclusions The biobank enables the analysis of biomarkers in stored samples, aiding in scientifically sound decisions, treating patients, and potentially curing diabetes.", - "Predictions": [ - "Diabetes", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "India", - "Biological Specimen Banks", - "Adult", - "Female", - "Male", - "Diabetes Mellitus", - "Registries", - "Biomedical Research", - "Young Adult", - "Cohort Studies", - "Age of Onset", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39736942", - "Title": "Archives of Razi Institute", - "ArticleTitle": "Morbidity profile of the patients attending Mobile Medical Unit camps in Telangana: A record-based study.", - "Abstract": "Mobile Medical Units (MMUs) are one of the major initiatives under the National Rural Health Mission. These MMUs help people in remote, underserved areas access healthcare at affordable prices on their doorstep. The present record-based study aimed to assess the morbidity profile of the patients attending Mobile Medical Unit camps in the Yadadri-Bhuvanagiri district between April 2022 and December 2022. The MMU is run by the Department of Community and Family Medicine, AIIMS, Bibinagar, in six selected villages of the Yadadri-Bhuvanagiri district. A register is maintained to record the details of patients visiting the MMU camp. Patient's name, age, gender, place, mobile number, height, weight, blood pressure (BP), glucometer Random Blood Sugar, diagnosis, and details of medication dispensed were entered in the register. Diabetes, hypertension, and obesity were diagnosed using the World Health Organization\u00a0(WHO) criteria, the Eighth Joint National Committee guidelines, and WHO Asia Pacific guidelines, respectively. Mobile Medical Unit Camp data are entered into the Excel database at the end of every month. Since it is a record-based analysis, we used data for analysis between April 7, 2022, and December 31, 2022. A total of 1494 patients were treated in the MMU camps during this period. Among them, 89.4% were adults, and 10.6% were children (less than 18 years). Among 1,336 adult patients, the majority of participants suffered from osteoarthritis, followed by non-communicable diseases (NCDs). The mean scores of systolic and diastolic BP of the adult population were obtained at 131\u00b121 and 77\u00b113 mm Hg, respectively. The mean random blood glucose level of the adult population was 150\u00b174 mg/dl. A total of 158 children were younger than 18 years old, out of whom 78 and 80 participants were males and females, respectively. Moreover, 23.1% and 25% of males and females suffered from upper respiratory tract infections, respectively. The study further suggests that the NCD epidemic is spreading to rural areas where necessary health infrastructure is insufficient. MMUs can bring a significant change to the public health system, which needs to re-orient its priorities.", - "Predictions": [ - "Diabetes" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Adult", - "Mobile Health Units", - "Middle Aged", - "Adolescent", - "Aged", - "Child", - "Young Adult", - "India", - "Morbidity", - "Hypertension", - "Child, Preschool", - "Obesity", - "Infant", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39736941", - "Title": "Archives of Razi Institute", - "ArticleTitle": "Involvement of \u03b3-Aminobutyric Acid and N-methyl-D-aspartate Receptors in Diabetic Gastropathy in Rats: Possible Beneficial Effect of Prolonged Treatment with Insulin and Magnesium Supplement.", - "Abstract": "Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats. Twenty-four male Wistar rats were randomized to four groups (six rats each): 1) control, 2) type 2 diabetes: rats fed with a high-fat diet for three months + a low dose of streptozotocin (35 mg/kg), 3) type 2 diabetes + magnesium, and 4) type 2 diabetes + insulin. The expression of NOS-1, GABA-A, GABA-B, and NMDA receptors was detected using western blotting. The NOS-1 expression was substantially diminished (P<0.01), while the expression of GABA-A (P<0.001), GABA-B (P<0.001), and NMDA (P<0.001) receptors was enhanced in the stomach of diabetic rats relative to control. Treatment with magnesium and insulin improved NOS-1 expression in diabetic rats, although this effect was greater in magnesium treatment alone. Magnesium also restored the expression of GABA-A and GABA-B receptors in diabetic rats to control values. Moreover, insulin treatment improved GABA-A receptor expression in diabetic rats (P<0.05). No considerable alterations were detected in NMDA receptor levels in the treatment groups. The results suggest a significant role of magnesium and insulin in improving gastric motility and secretory disorders associated with diabetes through modifying the expression of GABAergic receptors.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Animals", - "Male", - "Rats, Wistar", - "Receptors, N-Methyl-D-Aspartate", - "Diabetes Mellitus, Experimental", - "Insulin", - "Rats", - "Magnesium", - "Diabetes Mellitus, Type 2", - "Nitric Oxide Synthase Type I", - "Dietary Supplements", - "Random Allocation", - "Streptozocin" - ] - }, - { - "PMID": "39736870", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Construction and validation of a nomogram model for predicting diabetic peripheral neuropathy.", - "Abstract": "The DPN nomogram prediction model, containing 7 significant variables, has exhibited excellent performance. Its generalization to clinical practice could potentially help in the early detection and prompt intervention for high-risk DPN patients.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Nomograms", - "Diabetic Neuropathies", - "Female", - "Male", - "Middle Aged", - "Aged", - "Risk Factors", - "ROC Curve", - "Diabetes Mellitus, Type 2", - "Prognosis", - "Adult" - ] - }, - { - "PMID": "39736868", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Fear of hypoglycemia and sleep in children with type 1 diabetes and their parents.", - "Abstract": "www.ClinicalTrials.gov, identifier NCT03103867.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Hypoglycemia", - "Child", - "Female", - "Parents", - "Adolescent", - "Fear", - "Cross-Over Studies", - "Adult", - "Sleep", - "Middle Aged", - "Insulin Infusion Systems", - "Blood Glucose Self-Monitoring", - "Insulin", - "Blood Glucose", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39736865", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Quantitative ultrasound imaging reveals distinct fracture-associated differences in tibial intracortical pore morphology and viscoelastic properties in aged individuals with and without diabetes mellitus - an exploratory study.", - "Abstract": "Both T1DM and T2DM showed altered bone metabolism, with T2DM linked to impaired tissue formation. CortBS provides insights into pathophysiological changes in diabetic bone and provided superior fracture risk assessment in DM patients compared to DXA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Ultrasonography", - "Aged", - "Middle Aged", - "Bone Density", - "Diabetes Mellitus, Type 2", - "Tibia", - "Absorptiometry, Photon", - "Case-Control Studies", - "Diabetes Mellitus, Type 1", - "Cortical Bone", - "Elasticity" - ] - }, - { - "PMID": "39736861", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Case report: A 51-year-old diabetic patient with primary bilateral macronodular adrenal hyperplasia and primary hyperparathyroidism.", - "Abstract": "A 51-year-old female patient with diabetes mellitus and hypertension, exhibiting poor control of blood sugar and blood pressure, was unexpectedly found to have multiple large adrenal nodules, excessive cortisol secretion, and adrenocorticotropic hormone inhibition. Cortisol levels remained unresponsive to both low-dose and high-dose dexamethasone tests, leading to a diagnosis of primary bilateral macronodular adrenal hyperplasia. Concurrently, elevated blood calcium and parathyroid hormone levels, along with 99mTc-methoxyisobutyl isonitrile (99mTc-MIBI) imaging revealing increased 99mTc-MIBI uptake in the right inferior parathyroid gland, suggest the consideration of primary hyperparathyroidism. This case is presented in light of the uncommon clinical coexistence of primary bilateral macronodular adrenal hyperplasia and primary hyperparathyroidism.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Female", - "Middle Aged", - "Hyperparathyroidism, Primary", - "Adrenal Glands", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39736858", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Association of oxidative balance score with cardiovascular disease and all-cause and cardiovascular mortality in American adults with type 2 diabetes: data from the National Health and Nutrition examination survey 1999-2018.", - "Abstract": "Adherence to higher OBS was associated with reduced CVD prevalence and mortality risk in T2D. Antioxidant diet and lifestyle had more significant associations with mortality and CVD prevalence, respectively. However, as these findings are merely associations and do not allow causal inferences to be drawn, future validation in high-quality randomized controlled trials is needed.", - "Predictions": [ - "Cardiovascular diseases", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Cardiovascular Diseases", - "Male", - "Female", - "Middle Aged", - "Nutrition Surveys", - "Adult", - "Oxidative Stress", - "United States", - "Aged", - "Life Style", - "Diet", - "Risk Factors", - "Follow-Up Studies", - "Prevalence" - ] - }, - { - "PMID": "39736689", - "Title": "Lipids in health and disease", - "ArticleTitle": "Cardiometabolic index and mortality risks: elevated cancer and reduced cardiovascular mortality risk in a large cohort.", - "Abstract": "This study represents the first comprehensive assessment on the contribution of CMI to mortality across an all-age adult population, providing some insights for the comprehensive assessment of health and disease states.", - "Predictions": [ - "Diabetes", - "Cancer", - "Cardiovascular diseases" - ], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Neoplasms", - "Male", - "Female", - "Middle Aged", - "Adult", - "Longitudinal Studies", - "Aged", - "Proportional Hazards Models", - "Diabetes Mellitus", - "Risk Factors", - "Cardiometabolic Risk Factors", - "Cohort Studies" - ] - }, - { - "PMID": "39736551", - "Title": "BMC primary care", - "ArticleTitle": "The moderating role of e-health literacy and patient-physician communication in the relationship between online diabetes information-seeking behavior and self-care practices among individuals with type 2 diabetes.", - "Abstract": "Findings support the role of patient eHL and patient-physician communication in amplifying the positive impact of online DISB on patients' behavioral outcomes in diabetes.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Health Literacy", - "Physician-Patient Relations", - "Middle Aged", - "Cross-Sectional Studies", - "Self Care", - "Information Seeking Behavior", - "Medication Adherence", - "Communication", - "Aged", - "Adult", - "Internet", - "Assessment of Medication Adherence" - ] - }, - { - "PMID": "39736518", - "Title": "BMC cardiovascular disorders", - "ArticleTitle": "Effect of sodium glucose cotransporter-2 inhibitors (SGLT-2is) on the clinical outcomes of patients with diabetic atrial fibrillation.", - "Abstract": "In our study, SGLT-2i treatment was associated with a significant reduction in all-cause mortality and major bleeding in diabetic AF patients. Our study provides evidence of the clinical benefit of SGLT-2i in AF patients.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Male", - "Atrial Fibrillation", - "Retrospective Studies", - "Female", - "Aged", - "Treatment Outcome", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Time Factors", - "Risk Factors", - "Risk Assessment", - "Hemorrhage", - "Aged, 80 and over", - "Cause of Death", - "Myocardial Infarction" - ] - }, - { - "PMID": "39736351", - "Title": "Life sciences", - "ArticleTitle": "AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.", - "Abstract": "In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Animals", - "Fibroblast Growth Factors", - "Diabetes Mellitus, Type 2", - "Mice", - "Dependovirus", - "Humans", - "Gene Transfer Techniques", - "Genetic Therapy", - "Male", - "Diabetes Mellitus, Experimental", - "HEK293 Cells", - "Mice, Inbred C57BL", - "Blood Glucose", - "Genetic Vectors", - "Liver", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39736334", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Balanced diets are associated with a lower risk of type 2 diabetes than plant-based diets.", - "Abstract": "Adhered to a balanced diet is associated with a lower risk of diabetes compared to plant-based diet, which might be attributed to signature proteins such as AGR2, DBI, IL17RA and SERPINH1.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Cross-Sectional Studies", - "Diet, Vegetarian", - "Male", - "Female", - "Middle Aged", - "Adult", - "Prospective Studies", - "Aged", - "Risk Factors", - "United Kingdom", - "Proteomics", - "Diet, Healthy", - "Diet, Plant-Based" - ] - }, - { - "PMID": "39736162", - "Title": "West African journal of medicine", - "ArticleTitle": "The Impact of Diabetes Self-Management Education (DSME) on the Quality of Life of patients living with type-2 Diabetes Mellitus in Nigeria.", - "Abstract": "The findings highlight that DSME significantly enhances the QoL, self-management competence, and glycemic control among T2DM patients in Nigeria. These results underscore the importance of structured educational interventions in diabetes care, particularly in resource-limited settings.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Quality of Life", - "Nigeria", - "Male", - "Female", - "Middle Aged", - "Self-Management", - "Patient Education as Topic", - "Adult", - "Surveys and Questionnaires", - "Health Knowledge, Attitudes, Practice", - "Aged", - "Self Care" - ] - }, - { - "PMID": "39735994", - "Title": "Frontiers in bioscience (Landmark edition)", - "ArticleTitle": "The Putative Antilipogenic Role of NRG4 and ERBB4: First Expression Study on Human Liver Samples.", - "Abstract": "The study demonstrates a decrease in ", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Receptor, ErbB-4", - "Neuregulins", - "Liver", - "Middle Aged", - "Female", - "Non-alcoholic Fatty Liver Disease", - "Male", - "Adult", - "Lipogenesis", - "Obesity", - "Diabetes Mellitus, Type 2", - "RNA, Messenger", - "Aged" - ] - }, - { - "PMID": "39735781", - "Title": "Experimental biology and medicine (Maywood, N.J.)", - "ArticleTitle": "Increased hip fracture risk in the patients with type 2 diabetes mellitus is correlated with urine albumin-to-creatinine ratio (ACR) and diabetes duration in men.", - "Abstract": "Patients with type 2 diabetes mellitus (T2DM) have increased hip fracture risk. And the association between urine albumin to creatinine ratio (ACR) and an increased risk of hip fracture in patients with T2DM remains controversial. This study aimed to investigate the association between urinary ACR and hip fracture risk in postmenopausal women and aged men with T2DM. The study included 219 postmenopausal women and 216 older men (mean age >60\u00a0years) with T2DM. Women and men were divided into control group (ACR<30\u00a0mg/g), microalbuminuria group (30\u00a0mg/g \u2264 ACR<300\u00a0mg/g), and macroalbuminuria group (ACR\u2265300\u00a0mg/g) respectively. Demographic characteristics and clinical history were collected in patients. Biochemical indexes and bone turnover-related markers were measured in patients. In the study, we found that several factors, including age, T2DM duration, cerebral infarction history, serum corrected calcium levels and urine ACR were positively associated with hip fracture risk. However, 25-Hydroxyvitamin D and areal BMD were negatively associated with hip fracture risk. Furthermore, multiple regression analysis showed that urinary ACR level (\u03b2 = 0.003, p = 0.044) and duration of T2DM (\u03b2 = 0.015, p = 0.018) were positively and independently correlated with hip fracture risk in older men. In contrast, femoral neck BMD (\u03b2 = -6.765, p < 0.001) was independently and negatively correlated with hip fracture risk in older men. This study indicated that the elevated ACR levels and longer T2DM duration were related to higher hip fracture risk in older men with T2DM, which could be beneficial for developing a predictive model for osteoporotic fractures in patients with type 2 diabetes in the future. However, results were inconsistent in women, hip fracture risk didn't alter by changes in urinary microalbuminuria level in postmenopausal women with T2DM.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Hip Fractures", - "Male", - "Female", - "Albuminuria", - "Aged", - "Middle Aged", - "Creatinine", - "Risk Factors", - "Bone Density", - "Postmenopause" - ] - } -] \ No newline at end of file diff --git a/model/data/diabetes_mellitus.json b/model/data/diabetes_mellitus.json deleted file mode 100644 index 1e58967ffe1e608492fa8377b524cecc4c8c8d6f..0000000000000000000000000000000000000000 --- a/model/data/diabetes_mellitus.json +++ /dev/null @@ -1,516 +0,0 @@ -[ - { - "PMID": "39476387", - "Title": "Current opinion in anaesthesiology", - "ArticleTitle": "Caring for patients with diabetes in the outpatient surgical setting: current recommendations and controversies.", - "Abstract": "Future research needs to specifically examine chronic blood glucose control, day of surgery targets, effective home medication management and the risk of perioperative hyperglycemia in ambulatory surgery. Education, protocols and resources to support the care of perioperative patients in the outpatient setting will aid providers on the day of surgery and provide optimal diabetes care leading up to surgery.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Ambulatory Surgical Procedures", - "Hypoglycemic Agents", - "Diabetes Mellitus", - "Perioperative Care", - "Blood Glucose", - "Insulin", - "Ambulatory Care", - "Postoperative Care", - "Practice Guidelines as Topic", - "Hyperglycemia", - "Preoperative Care" - ] - }, - { - "PMID": "39476122", - "Title": "PloS one", - "ArticleTitle": "Burden of diabetes mellitus in Weifang: Changing trends in prevalence and deaths from 2010 to 2021.", - "Abstract": "The city is faced with a significant challenge of diabetes, which is influenced by factors such as gender, age, cultural background, and marital status. Unspecified diabetes mellitus (DM) with ketoacidosis (10.03%) and T2DM with renal complications (0.23%) are identified as the primary direct and underlying causes of death among diabetic patients, respectively. This study serves as a valuable reference for other regions in terms of diabetes prevention, control, and the management of chronic diseases.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Aged", - "Middle Aged", - "Prevalence", - "Diabetes Mellitus", - "Adult", - "China", - "Cost of Illness", - "Adolescent", - "Aged, 80 and over", - "Young Adult", - "Disability-Adjusted Life Years", - "Cause of Death", - "Child" - ] - }, - { - "PMID": "39474868", - "Title": "Open biology", - "ArticleTitle": "The post-translational modification O-GlcNAc is a sensor and regulator of metabolism.", - "Abstract": "Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.", - "Predictions": [ - "Neoplasms", - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Protein Processing, Post-Translational", - "Humans", - "Acetylglucosamine", - "Animals", - "Neoplasms", - "Signal Transduction", - "Glycosylation", - "Diabetes Mellitus", - "Neurodegenerative Diseases" - ] - }, - { - "PMID": "39474832", - "Title": "Medical decision making : an international journal of the Society for Medical Decision Making", - "ArticleTitle": "Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models.", - "Abstract": "Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Quality-Adjusted Life Years", - "Computer Simulation", - "Hypoglycemic Agents", - "Diabetes Mellitus, Type 2", - "Cost-Benefit Analysis", - "United Kingdom", - "Technology Assessment, Biomedical", - "Diabetes Mellitus", - "Female", - "Male" - ] - }, - { - "PMID": "39472978", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Association between night blindness history and risk of diabetes in the Chinese population: a multi-center, cross sectional study.", - "Abstract": "The results suggest that NB history might be associated with increased odds of diabetes in Chinese community-dwelling adults.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Cross-Sectional Studies", - "Middle Aged", - "Male", - "Female", - "Adult", - "Aged", - "China", - "Diabetes Mellitus", - "Adolescent", - "Young Adult", - "Night Blindness", - "Risk Factors", - "Aged, 80 and over", - "East Asian People" - ] - }, - { - "PMID": "39472915", - "Title": "BMC health services research", - "ArticleTitle": "Geographical Access to Point-of-care diagnostic tests for diabetes, anaemia, Hepatitis B, and human immunodeficiency virus in the Bono Region, Ghana.", - "Abstract": "The findings revealed moderate access to all the tests in districts across the region. However, geographical access to glucose, Hb, Hep B, and HIV POC testing was poor (distance\u2009\u2265\u200910\u00a0km and travel time of \u2265\u200993\u00a0min), in the Banda district. This study showed the need to prioritise the Banda district for targeted improvement for all the tests. A further study is recommended to identify potential solutions to addressing the POC testing implementation in the BR, as demonstrated by this study.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Ghana", - "HIV Infections", - "Health Services Accessibility", - "Anemia", - "Hepatitis B", - "Diabetes Mellitus", - "Point-of-Care Testing", - "Point-of-Care Systems" - ] - }, - { - "PMID": "39471268", - "Title": "Journal of managed care & specialty pharmacy", - "ArticleTitle": "Potential benefits of incorporating social determinants of health screening on comprehensive medication management effectiveness.", - "Abstract": "Although not statistically significant, the results of this pilot evaluation suggest the potential for meaningful clinical improvements from screening and referral of SDoH needs as a part of CMM encounters. These results should be corroborated using a larger, more robust study design.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Retrospective Studies", - "Social Determinants of Health", - "Female", - "Male", - "Middle Aged", - "Medication Therapy Management", - "Aged", - "Pharmacists", - "Referral and Consultation", - "Mass Screening", - "Adult", - "Cohort Studies", - "Hypertension", - "Diabetes Mellitus", - "Chronic Disease" - ] - }, - { - "PMID": "39470899", - "Title": "Current diabetes reports", - "ArticleTitle": "Implementation Science and Pediatric Diabetes: A Scoping Review of the State of the Literature and Recommendations for Future Research.", - "Abstract": "Of 23 papers identified, 19 were published since 2017 and 21 focused on type 1 diabetes. Most involved medical evidence-based practices (EBPs; n\u2009=\u200915), whereas fewer focused on psychosocial (n\u2009=\u20097) and diabetes education (n\u2009=\u20092). The majority either identified barriers and facilitators of implementing an EBP (n\u2009=\u200911) or were implementation trials (n\u2009=\u200911). Fewer studies documented gaps in EBP implementation in standard care (n\u2009=\u20097) or development of implementation strategies (n\u2009=\u20091). Five papers employed IS theories and two aimed to improve equity. There is a paucity of IS research in pediatric diabetes care literature. Few papers employed IS theory, used consistent IS terminology, or described IS strategies or outcomes. Guidance for future research to improve IS research in pediatric diabetes is offered.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Implementation Science", - "Child", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus", - "Pediatrics", - "Evidence-Based Practice" - ] - }, - { - "PMID": "39470889", - "Title": "Biogerontology", - "ArticleTitle": "A novel (-)-(2S)-7,4'-dihydroxyflavanone compound for treating age-related diabetes mellitus through immunoinformatics-guided activation of CISD3.", - "Abstract": "The iron-sulfur domain (CISD) proteins of CDGSH are classified into three classes: CISD1, CISD2, and CISD3. During premature ageing, mutations that affect these proteins, namely their binding sites, could result in reduced protein production and an inability to preserve cellular integrity. Consequently, this leads to the development of conditions such as diabetes. Notably, CISD3 plays a crucial role in the management of age-related disorders such as Wolfram syndrome, which is often referred to as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). Computational analyses have predicted that CISD3 regulates the redox state, safeguards the endoplasmic reticulum and mitochondria, and maintains intracellular calcium levels. CISD3, a member of a recently discovered gene family associated with the CDGSH iron protein apoptotic compensatory response, fulfils a crucial function in mitigating the effects of accelerated ageing. The compound \"(-)-(2S)-7,4'-Dihydroxyflavanone\" has been discovered by computational drug design as a possible activator of CISD3. It shows potential therapeutic benefits in ameliorating metabolic dysfunction and enhancing glucose regulation. The ligand binds to the binding pocket of the CISD3 protein, increasing the stability of the protein and enhancing its functionality. The current research investigates the binding processes of the molecule in various structures and its anticipated effects on these tissues, therefore providing valuable insights into the mitigation of age-related diabetes and metabolic dysfunction. The projected tripling of the worldwide population of individuals aged 50 and above by 2050 necessitates the urgent development of immunoinformatics-based approaches, including pharmaceutical therapies that target CISD3, to prevent age-related pathologies. The stimulation of CISD3, namely by compounds such as \"(-)-(2S)-7,4'-Dihydroxyflavanone\", has the potential to counteract telomere shortening and improve metabolic pathways.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Aging", - "Flavanones", - "Hypoglycemic Agents", - "Molecular Docking Simulation", - "Computational Biology", - "Drug Design", - "Immunoinformatics" - ] - }, - { - "PMID": "39470403", - "Title": "The journals of gerontology. Series B, Psychological sciences and social sciences", - "ArticleTitle": "Economic Disadvantage During Childhood, Obesity, and Diabetes Across Three Birth Cohorts of Older Mexicans.", - "Abstract": "High body weight across Mexican birth cohorts seemed to offset the potential benefits from improvements in childhood conditions on adult diabetes risk.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Middle Aged", - "Aged", - "Mexico", - "Diabetes Mellitus", - "Prevalence", - "Obesity", - "Birth Cohort", - "Body Mass Index", - "Adverse Childhood Experiences", - "Overweight", - "Poverty", - "North American People" - ] - }, - { - "PMID": "39468609", - "Title": "Stem cell research & therapy", - "ArticleTitle": "Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives.", - "Abstract": "Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Mesenchymal Stem Cell Transplantation", - "Mesenchymal Stem Cells", - "Animals", - "Insulin-Secreting Cells", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39468602", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Lipids as the link between central obesity and diabetes: perspectives from mediation analysis.", - "Abstract": "In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Obesity, Abdominal", - "Male", - "Female", - "Middle Aged", - "Lipids", - "Mediation Analysis", - "Adult", - "Risk Factors", - "Waist Circumference", - "Longitudinal Studies", - "Diabetes Mellitus", - "Biomarkers", - "Diabetes Mellitus, Type 2", - "Follow-Up Studies", - "Aged", - "Prognosis", - "Triglycerides" - ] - }, - { - "PMID": "39466432", - "Title": "Applied microbiology and biotechnology", - "ArticleTitle": "Gut microbiota predict retinopathy in patients with diabetes: A longitudinal cohort study.", - "Abstract": "The gut microbiota has emerged as an independent risk factor for diabetes and its complications. This research aimed to delve into the intricate relationship between the gut microbiome and diabetic retinopathy (DR) through a dual approach of cross-sectional and prospective cohort studies. In our cross-sectional study cross-sectional investigation involving ninety-nine individuals with diabetes, distinct microbial signatures associated with DR were identified. Specifically, gut microbiome profiling revealed decreased levels of Butyricicoccus and Ruminococcus torques group, alongside upregulated methanogenesis pathways among DR patients. These individuals concurrently exhibited lower concentrations of short-chain fatty acids in their plasma. Leveraging machine learning models, including random forest classifiers, we constructed a panel of microbial genera and genes that robustly differentiated DR cases. Importantly, these genera also demonstrated significant correlations with dietary patterns and the molecular profiles of peripheral blood mononuclear cells. Building upon these findings, our prospective cohort study followed 62 diabetes patients over a 2-year period to assess the predictive value of these microbial markers. The results underlined the panel's efficacy in predicting DR incidence. By stratifying patients based on the predictive genera and metabolites identified in the cross-sectional phase, we established significant associations between reduced levels of Butyricicoccus, plasma acetate, and increased susceptibility to DR. This investigation not only deepens our understanding of how gut microbiota influences DR but also underscores the potential of microbial markers as early indicators of disease risk. These insights hold promise for developing targeted interventions aimed at mitigating the impact of diabetic complications. KEY POINTS: \u2022 Microbial signatures are differed in diabetic patients with and without retinopathy \u2022 DR-related taxa are linked to dietary habits and transcriptomic profiles \u2022 Lower abundances of Butyricicoccus and acetate were prospectively associated with DR.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Cross-Sectional Studies", - "Male", - "Diabetic Retinopathy", - "Middle Aged", - "Longitudinal Studies", - "Prospective Studies", - "Female", - "Fatty Acids, Volatile", - "Aged", - "Ruminococcus", - "Clostridiales", - "Acetates", - "Adult", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39466337", - "Title": "Current medical research and opinion", - "ArticleTitle": "Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care.", - "Abstract": "The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Pancreas, Artificial", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Diabetes Mellitus", - "Insulin", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39465859", - "Title": "Medicine", - "ArticleTitle": "Association of triglyceride-glucose index with diabetes or prediabetes in Chinese hypertensive patients: A retrospective cohort study.", - "Abstract": "Insulin resistance is a key factor in diabetes development. This study aimed to investigate the association between baseline triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, and the onset of hyperglycemia in Chinese individuals with hypertension. Using the Rich Healthcare Group database, this retrospective cohort study included 28,687 hypertensive individuals without preexisting diabetes. A wide range of demographic information and baseline biochemical indicators was collected and rigorously analyzed. This study utilized the Cox proportional hazards model and smooth curve fitting to explore the link between TyG index and the risk of developing hyperglycemia. The robustness of the findings was validated by sensitivity and subgroup analyses. During longitudinal monitoring of hypertensive patients in our retrospective cohort study, we observed that 5.31% (1524/28,687) progressed to diabetes, while 21.66% (4620/21,326) developed prediabetes. After adjusting for confounding variables, a statistically significant positive association was observed between the TyG index and the risk of hyperglycemia. Subgroup and sensitivity analyses further supported these findings, demonstrating consistent outcomes and reinforcing the robustness of our conclusions. The TyG index, which is significantly linked to hyperglycemia in hypertensives, can aid early risk identification and intervention.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Retrospective Studies", - "Male", - "Female", - "Prediabetic State", - "Middle Aged", - "Hypertension", - "Triglycerides", - "Blood Glucose", - "China", - "Aged", - "Insulin Resistance", - "Biomarkers", - "Adult", - "Diabetes Mellitus", - "Proportional Hazards Models", - "Hyperglycemia", - "Risk Factors", - "East Asian People" - ] - }, - { - "PMID": "39465722", - "Title": "Medicine", - "ArticleTitle": "Association between serum globulins and diabetes mellitus in American latent tuberculosis infection patients: A cross-sectional study.", - "Abstract": "Diabetes mellitus (DM) is predisposing to the development of latent tuberculosis infection (LTBI). An understanding of the underlying factors of LTBI-DM is important for tuberculosis prevention and control. This study aims to evaluate the association between LTBI and DM among the noninstitutionalized civilian population in the United States, focusing on the impact of serum globulins. We performed a cross-sectional study design using public data from 2011 to 2012 National Health and Nutrition Examination Survey, focusing on participants diagnosed with LTBI who were aged 20 and above. Weighted Wilcoxon rank-sum and weighted chi-square tests were used to compare group differences. A multivariable logistic regression model was constructed to assess the association between serum globulin and DM, with subgroup analyses and evaluations of nonlinear relationships. Receiver operating characteristic curves were used to assess the predictive power of the models. A total of 694 participants (512 DM and 182 nonDM) were included in our study and the incidence of DM was 22%. Higher serum globulin levels were significantly associated with an increased risk of DM, with a 21% increase in risk for each unit increase in serum globulin (odds ratio\u2005=\u20051.21, 95% confidence interval [1.03, 1.43], P\u2005<\u2005.001). The relationship between serum globulin and DM was linear, and higher serum globulin levels were associated with a higher risk of DM, particularly in males (P\u2005=\u2005.043) and obese individuals (P\u2005=\u2005.019). The area under the curve for serum globulin predicting DM was 0.795, with an optimal cutoff value of 2.9. Elevated serum globulin levels are significantly associated with an increased risk of DM among individuals with LTBI, highlighting the potential role of serum globulin as a predictive biomarker for DM in this population. However, the specific mechanism between globulin and LTBI-DM needs to be further investigated.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Male", - "Cross-Sectional Studies", - "Female", - "Latent Tuberculosis", - "Middle Aged", - "Adult", - "United States", - "Diabetes Mellitus", - "Nutrition Surveys", - "Serum Globulins", - "Risk Factors", - "Aged", - "Young Adult", - "Incidence", - "ROC Curve", - "Biomarkers" - ] - }, - { - "PMID": "39465638", - "Title": "Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions", - "ArticleTitle": "Drug-coated balloons in high-risk patients and diabetes mellitus: A meta-analysis of 10 studies.", - "Abstract": "We confirmed a significant advantage of DCB versus DES in the treatment of de novo lesions in high-risk patients and mainly in DM, reducing overall mortality, MACE and target lesion revascularization.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Angioplasty, Balloon, Coronary", - "Cardiac Catheters", - "Cardiovascular Agents", - "Coated Materials, Biocompatible", - "Coronary Artery Disease", - "Diabetes Mellitus", - "Drug-Eluting Stents", - "Equipment Design", - "Odds Ratio", - "Percutaneous Coronary Intervention", - "Risk Assessment", - "Risk Factors", - "Time Factors", - "Treatment Outcome" - ] - }, - { - "PMID": "39465521", - "Title": "Archives of Iranian medicine", - "ArticleTitle": "Prevalence of Chronic Kidney Disease and Associated Factors among the Diabetic and Prediabetic Population in the Bandare-Kong Cohort Study; A Population-Based Study.", - "Abstract": "The study emphasizes the importance of early detection and management of CKD risk factors, particularly among high-risk individuals, to mitigate CKD progression and associated complications. By addressing modifiable risk factors, proactive screening, and enhanced awareness, significant strides can be made in reducing CKD burden and improving patient outcomes.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Female", - "Male", - "Prediabetic State", - "Renal Insufficiency, Chronic", - "Adult", - "Iran", - "Aged", - "Risk Factors", - "Prevalence", - "Glomerular Filtration Rate", - "Prospective Studies", - "Cohort Studies", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39464188", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "A mobile health application use among diabetes mellitus patients: a systematic review and meta-analysis.", - "Abstract": "https://www.crd.york.ac.uk/prospero/, identifier 42024537917.", - "Predictions": [ - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Mobile Applications", - "Self Care", - "Telemedicine" - ] - }, - { - "PMID": "39463812", - "Title": "Ethnicity & disease", - "ArticleTitle": "Racial Disparities in Foot Examination among People with Diabetes in Brazil: A Nationwide Survey, 2019.", - "Abstract": "Black Brazilians with diabetes had higher negligence of foot examination by health care professionals. Strengthening primary care would help mitigate systemic racism in Brazil.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Brazil", - "Female", - "Male", - "Adult", - "Middle Aged", - "Diabetic Foot", - "Adolescent", - "Young Adult", - "Healthcare Disparities", - "Aged", - "White People", - "Physical Examination", - "Surveys and Questionnaires", - "Diabetes Mellitus", - "Black People", - "Prevalence" - ] - }, - { - "PMID": "39463434", - "Title": "Scientific reports", - "ArticleTitle": "Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs.", - "Abstract": "Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet \u03b1 cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on \u03b2 cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed \u03b1- and/or \u03b2-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of \u03b1-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of \u03b1-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed \u03b1 and \u03b2 cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring \u03b2-cell GLP-1R protein expression may improve \u03b2-cell function in CFRD.", - "Predictions": [ - "Diabetes Mellitus", - "Male" - ], - "MeshTerms": [ - "Humans", - "Cystic Fibrosis", - "Glucagon-Like Peptide-1 Receptor", - "Male", - "Female", - "Adult", - "Diabetes Mellitus", - "Insulin-Secreting Cells", - "Islets of Langerhans", - "Glucagon-Secreting Cells", - "Glucagon-Like Peptide 1", - "Young Adult", - "Gene Expression Regulation", - "Adolescent", - "Insulin" - ] - } -] \ No newline at end of file diff --git a/model/data/diabetes_type_1.json b/model/data/diabetes_type_1.json deleted file mode 100644 index abc3610f9b907c803d5c9a42432f0924b9d43865..0000000000000000000000000000000000000000 --- a/model/data/diabetes_type_1.json +++ /dev/null @@ -1,472 +0,0 @@ -[ - { - "PMID": "39737893", - "Title": "Nutrition & diabetes", - "ArticleTitle": "The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis.", - "Abstract": "There is an association between diabetes and arthritis, with potential genetic links between Type 1 Diabetes and RA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Mendelian Randomization Analysis", - "Male", - "Female", - "Nutrition Surveys", - "Middle Aged", - "Genome-Wide Association Study", - "Arthritis, Rheumatoid", - "Adult", - "Arthritis", - "Prevalence", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Aged", - "Genetic Predisposition to Disease", - "Logistic Models", - "Polymorphism, Single Nucleotide" - ] - }, - { - "PMID": "39737643", - "Title": "Journal of biomedical materials research. Part B, Applied biomaterials", - "ArticleTitle": "Beneficial Effects of Tilapia Fish Skin on Excisional Skin Wound Healing in a Type I Diabetic Rat Model.", - "Abstract": "IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200\u2009g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT]. The healing process was monitored through clinical observation, gross examination, and histopathological analysis. ResultsThe results demonstrated that the Tilapia skin treatment accelerated wound healing, as evidenced by complete reepithelialization, full epidermal cell differentiation, an intact dermo-epidermal junction, and a reorganized dermis with fewer blood vessels. ConclusionFresh Tilapia skin proved to be a safe and effective dressing for promoting wound healing and managing infection in diabetic wounds.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Animals", - "Tilapia", - "Rats", - "Skin", - "Wound Healing", - "Diabetes Mellitus, Experimental", - "Diabetes Mellitus, Type 1", - "Male" - ] - }, - { - "PMID": "39736868", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Fear of hypoglycemia and sleep in children with type 1 diabetes and their parents.", - "Abstract": "www.ClinicalTrials.gov, identifier NCT03103867.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Hypoglycemia", - "Child", - "Female", - "Parents", - "Adolescent", - "Fear", - "Cross-Over Studies", - "Adult", - "Sleep", - "Middle Aged", - "Insulin Infusion Systems", - "Blood Glucose Self-Monitoring", - "Insulin", - "Blood Glucose", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39736865", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Quantitative ultrasound imaging reveals distinct fracture-associated differences in tibial intracortical pore morphology and viscoelastic properties in aged individuals with and without diabetes mellitus - an exploratory study.", - "Abstract": "Both T1DM and T2DM showed altered bone metabolism, with T2DM linked to impaired tissue formation. CortBS provides insights into pathophysiological changes in diabetic bone and provided superior fracture risk assessment in DM patients compared to DXA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Ultrasonography", - "Aged", - "Middle Aged", - "Bone Density", - "Diabetes Mellitus, Type 2", - "Tibia", - "Absorptiometry, Photon", - "Case-Control Studies", - "Diabetes Mellitus, Type 1", - "Cortical Bone", - "Elasticity" - ] - }, - { - "PMID": "39735417", - "Title": "Journal of diabetes research", - "ArticleTitle": "Identifying Promising Immunomodulators for Type 1 Diabetes (T1D) and Islet Transplantation.", - "Abstract": "Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can reverse T1D. Within the National Clinical Trial (NCT) database, a majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on noninsulin pharmacological therapies, specifically immunomodulators. Many investigational new drugs fall under this category, such as the recently FDA-approved CD3 monoclonal antibody teplizumab to delay the onset of T1D. In total, we identified 39 different immunomodulatory investigational drugs. FDA-approved teplizumab for Stage 2 T1D is discussed along with other immunomodulators that have been tested in Phase 3 clinical trials or higher, including otelixizumab (another anti-CD3 monoclonal antibody), daclizumab (an anti-CD25 monoclonal antibody), ladarixin (CXCR1/2 inhibitor), and antithymocyte globulin (ATG). Immunomodulators also play roles in islet transplantation and cellular therapies like FDA-approved Lantidra. Several immunomodulators involved in Phase 3 clinical studies of islet transplantation are also discussed, including alemtuzumab, basiliximab, etanercept, and reparixin, some already FDA-approved for other uses. These include alemtuzumab, basiliximab, etanercept, and reparixin, some of which have been FDA-approved for other uses. This review provides background, mechanism of action, results of completed trials, and adverse effects as well as details regarding ongoing clinical trials for each of these immunomodulators. ", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Islets of Langerhans Transplantation", - "Immunomodulating Agents", - "Immunologic Factors", - "Animals", - "Antibodies, Monoclonal, Humanized" - ] - }, - { - "PMID": "39733115", - "Title": "Scientific reports", - "ArticleTitle": "Dynamic modeling of the Insulin-Glucose-Glucocorticoid impulsive control system.", - "Abstract": "This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle. Additionally, the permanence of the system is confirmed in type 2 diabetes mellitus (T2DM) via the comparison theorem. Numerical analysis verifies the results of theoretical calculations and indicates that combining therapeutic strategies under hormonal interactions with the dose of exogenous insulin and glucocorticoid medicines within organisms provides more reasonable clinical strategies.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Insulin", - "Glucocorticoids", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Glucose", - "Blood Glucose", - "Models, Biological" - ] - }, - { - "PMID": "39732907", - "Title": "Scientific reports", - "ArticleTitle": "A reinforcement learning approach to effective forecasting of pediatric hypoglycemia in diabetes I patients using an extended de Bruijn graph.", - "Abstract": "Pediatric diabetes I is an endemic and an especially difficult disease; indeed, at this point, there does not exist a cure, but only careful management that relies on anticipating hypoglycemia. The changing physiology of children producing unique blood glucose signatures, coupled with inconsistent activities, e.g., playing, eating, napping, makes \"forecasting\" elusive. While work has been done for adult diabetes I, this does not successfully translate for children. In the work presented here, we adopt a reinforcement approach by leveraging the de Bruijn graph that has had success in detecting patterns in sequences of symbols-most notably, genomics and proteomics. We translate a continuous signal of blood glucose levels into an alphabet that then can be used to build a de Bruijn, with some extensions, to determine blood glucose states. The graph allows us to \"tune\" its efficacy by computationally ignoring edges that provide either no information or are not related to entering a hypoglycemic episode. We can then use paths in the graph to anticipate hypoglycemia in advance of about 30 minutes sufficient for a clinical setting and additionally find actionable rules that accurate and effective. All the code developed for this study can be found at: https://github.com/KurbanIntelligenceLab/dBG-Hypoglycemia-Forecast .", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Hypoglycemia", - "Diabetes Mellitus, Type 1", - "Child", - "Blood Glucose", - "Forecasting", - "Algorithms", - "Reinforcement, Psychology" - ] - }, - { - "PMID": "39732545", - "Title": "Endocrinologia, diabetes y nutricion", - "ArticleTitle": "Nurse-led therapeutic patient education program on glycemic control and emotional wellbeing in adolescents with type 1 diabetes mellitus during hospital transition.", - "Abstract": "The structured therapeutic education program for adolescents with T1DM transitioning from pediatric to adult care maintains glycemic control and emotional wellbeing.", - "Predictions": [ - "Mental Health", - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Male", - "Female", - "Patient Education as Topic", - "Glycemic Control", - "Transition to Adult Care", - "Self Care", - "Emotions", - "Mental Health", - "Feeding and Eating Disorders" - ] - }, - { - "PMID": "39731141", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Prevalence and associated factors of psychiatric problems in children aged 6-18 years with type-1 diabetes mellitus in Gondar, Ethiopia: a cross-sectional study.", - "Abstract": "The prevalence of psychiatric problems in diabetic children was significantly high and children living with single parent, paternal educational status, glycemic control, family history of diabetes, and family size were found to have significant association with the occurrence of psychiatric problems in diabetic children.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "Male", - "Child", - "Female", - "Cross-Sectional Studies", - "Ethiopia", - "Diabetes Mellitus, Type 1", - "Prevalence", - "Mental Disorders", - "Risk Factors", - "Follow-Up Studies" - ] - }, - { - "PMID": "39730838", - "Title": "Scientific reports", - "ArticleTitle": "Type 1 diabetes genetic risk score variation across ancestries using whole genome sequencing and array-based approaches.", - "Abstract": "A Type 1 Diabetes Genetic Risk Score (T1DGRS) aids diagnosis and prediction of Type 1 Diabetes (T1D). While traditionally derived from imputed array genotypes, Whole Genome Sequencing (WGS) provides a more direct approach and is now increasingly used in clinical and research studies. We investigated the concordance between WGS-based and array-based T1DGRS across genetic ancestries in 149,265 UK Biobank participants using WGS, TOPMed-imputed, and 1000 Genomes-imputed array genotypes. In the overall cohort, WGS-based T1DGRS demonstrated strong correlation with TOPMed-imputed array-based score (r\u2009=\u20090.996, average WGS-based score 0.0028 standard deviations (SD) lower, p\u2009<\u200910", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Adult", - "Female", - "Humans", - "Male", - "Middle Aged", - "Diabetes Mellitus, Type 1", - "Genetic Predisposition to Disease", - "Genetic Risk Score", - "Genome, Human", - "Genome-Wide Association Study", - "Genotype", - "Polymorphism, Single Nucleotide", - "Whole Genome Sequencing", - "Racial Groups" - ] - }, - { - "PMID": "39728423", - "Title": "Medical sciences (Basel, Switzerland)", - "ArticleTitle": "An Unusual Case of Nephrotic Range Proteinuria in a Short-Standing Type 1 Diabetic Patient with Newly Diagnosed Systemic Lupus Erythematosus: A Case Report and Literature Review.", - "Abstract": "Lupus podocytopathy is an infrequent anatomopathological entity, so this case is presented as the first reported in Peru, and a literature review is made.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Female", - "Adult", - "Lupus Erythematosus, Systemic", - "Diabetes Mellitus, Type 1", - "Proteinuria", - "Nephrotic Syndrome", - "Podocytes" - ] - }, - { - "PMID": "39727851", - "Title": "Biosensors", - "ArticleTitle": "Sensing Biomechanical Alterations in Red Blood Cells of Type 1 Diabetes Patients: Potential Markers for Microvascular Complications.", - "Abstract": "In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs). We conducted a case-control study involving 38 T1DM subjects recruited from the Diabetes Care Unit at Fondazione Policlinico Gemelli Hospital, comprising 22 without MCs (control group) and 16 with MCs (pathological group). Atomic Force Microscopy was employed to assess RBC biomechanical properties in a liquid environment. We observed significant RBC stiffening in individuals with MCs, particularly during large indentations that mimic microcirculatory deformations. Univariate analysis unveiled significant differences in RBC stiffness (median difference 0.0006 N/m, ", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Erythrocytes", - "Male", - "Female", - "Adult", - "Case-Control Studies", - "Biomechanical Phenomena", - "Biomarkers", - "Middle Aged", - "Microscopy, Atomic Force" - ] - }, - { - "PMID": "39727210", - "Title": "Journal of the American Heart Association", - "ArticleTitle": "Inflammatory Markers and Measures of Cardiovascular Autonomic Neuropathy in Type 1 Diabetes.", - "Abstract": "URL: https://www.clinicaltrials.gov; Unique identifiers: NCT02936843, NCT02017171.", - "Predictions": [ - "Cardiovascular diseases", - "Diabetes type 1" - ], - "MeshTerms": [ - "Adult", - "Female", - "Humans", - "Male", - "Middle Aged", - "Autonomic Nervous System", - "Autonomic Nervous System Diseases", - "Biomarkers", - "Cardiovascular Diseases", - "Cardiovascular System", - "Cross-Sectional Studies", - "Diabetes Mellitus, Type 1", - "Diabetic Neuropathies", - "Heart Rate", - "Inflammation", - "Inflammation Mediators", - "Receptors, Urokinase Plasminogen Activator" - ] - }, - { - "PMID": "39726058", - "Title": "Journal of medical case reports", - "ArticleTitle": "Immune checkpoint inhibitor-associated diabetic ketoacidosis and insulin-dependent diabetes: a case report.", - "Abstract": "This case report underscores the risk of diabetic ketoacidosis linked to nivolumab, even in patients without predisposing factors, emphasizing the need for increased vigilance among both oncologists and physicians. It highlights the importance of monitoring for new-onset diabetes and diabetic ketoacidosis, whether immunotherapy is active or discontinued, and ensuring comprehensive care including hospitalization, insulin management, and diabetes education if diabetic ketoacidosis is diagnosed.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetic Ketoacidosis", - "Male", - "Aged", - "Immune Checkpoint Inhibitors", - "Nivolumab", - "Diabetes Mellitus, Type 1", - "Insulin", - "Adenocarcinoma", - "Hypoglycemic Agents", - "Antineoplastic Agents, Immunological" - ] - }, - { - "PMID": "39725378", - "Title": "Experimental parasitology", - "ArticleTitle": "Impact of acute schistosomiasis mansoni and concurrent type 1 diabetes on pancreatic architecture in mice.", - "Abstract": "It is not well understood how type 1 diabetes (T1D) and concomitant acute schistosomiasis mansoni affect pancreatic architecture. Male Swiss mice were administered streptozotocin (single 100\u00a0mg/kg i.p.) and thirty days later infected with 80 Schistosoma mansoni cercariae. Mice were divided into groups (n\u00a0=\u00a05): A (healthy control), B (infected), C (uninfected diabetic), and D (diabetic\u00a0+\u00a0infected) and euthanized at week 9 post-infection. Blood glucose levels, biometry, stereology, and pancreatic histology were evaluated. Groups C and D showed hyperglycemia (>200\u00a0mg/dL). Group B had a higher (+79%) pancreatic mass than A. The endocrine pancreas showed fewer islets of Langerhans (-62%; -50%) and a smaller islet area (-36%; -30%) in C and D, respectively, compared to A. Group D had a smaller (-37%) islet area than B. The volume density of the islets was reduced (-33%) in group C compared to A. Within the exocrine pancreas, the volume density of the pancreatic parenchyma was reduced in groups B (-29%) and D (-26%), and increased in C (+15%) compared to A. Group D was reduced (-35%) compared to C. Group D showed generalized pancreatitis, including disrupted tissue with multiple nuclei of destroyed acinar cells and lost connective tissue and acinar cells with a paucity of zymogen granules. Pancreatic stellate cells were found around areas of distorted architecture. Paired adult worms were found within the pancreatic vessels. In conclusion, concomitant T1D and schistosomiasis mansoni promote extensive exocrine and endocrine changes in the pancreas, whereas pancreatic involvement begins in acute schistosomiasis.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Animals", - "Mice", - "Male", - "Schistosomiasis mansoni", - "Diabetes Mellitus, Type 1", - "Pancreas", - "Diabetes Mellitus, Experimental", - "Blood Glucose", - "Schistosoma mansoni", - "Islets of Langerhans", - "Acute Disease" - ] - }, - { - "PMID": "39724143", - "Title": "PLoS genetics", - "ArticleTitle": "Inhibitory KIRs decrease HLA class II-mediated protection in Type 1 Diabetes.", - "Abstract": "Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections. We hypothesized that in the context of autoimmunity, where an enhanced T cell response might be considered detrimental, iKIRs would have an opposite effect. We studied Type 1 diabetes (T1D) as a paradigmatic example of autoimmunity. In T1D, variation in the Human Leucocyte Antigen (HLA) genes explains up to 50% of the genetic risk, indicating that T cells have a major role in T1D etiopathogenesis. To investigate if iKIRs affect this T cell response, we asked whether HLA associations were modified by iKIR genes. We conducted an immunogenetic analysis of a case-control T1D dataset (N = 11,961) and found that iKIR genes, in the presence of genes encoding their ligands, have a consistent and significant effect on protective HLA class II genetic associations. Our results were validated in an independent data set. We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4+ T cell responses in T1D.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Receptors, KIR", - "Genetic Predisposition to Disease", - "Histocompatibility Antigens Class II", - "Killer Cells, Natural", - "Case-Control Studies", - "Autoimmunity", - "T-Lymphocytes", - "Male", - "Female" - ] - }, - { - "PMID": "39720308", - "Title": "Journal of diabetes research", - "ArticleTitle": "Young-Onset Diabetes in Sri Lanka: Experience From the Developing World.", - "Abstract": { - "b": "Conclusion:", - "i": "p" - }, - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Sri Lanka", - "Female", - "Male", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Young Adult", - "Diabetes Mellitus, Type 2", - "Age of Onset", - "Retrospective Studies", - "Prevalence", - "Developing Countries", - "Child", - "Adult", - "Glycated Hemoglobin", - "Diabetic Ketoacidosis" - ] - }, - { - "PMID": "39720253", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Sclerostin as a new target of diabetes-induced osteoporosis.", - "Abstract": "Sclerostin, a protein synthesized by bone cells, is a product of the ", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Osteoporosis", - "Adaptor Proteins, Signal Transducing", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus, Type 2", - "Animals", - "Genetic Markers", - "Wnt Signaling Pathway", - "Bone Morphogenetic Proteins" - ] - }, - { - "PMID": "39719890", - "Title": "Journal of biomedical materials research. Part A", - "ArticleTitle": "Supramolecular Peptide Depots for Glucose-Responsive Glucagon Delivery.", - "Abstract": "Precise blood glucose control continues to be a critical challenge in the treatment and management of type 1 diabetes in order to mitigate both acute and chronic complications. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in\u00a0vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in\u00a0vivo using a type 1 diabetic mouse model demonstrates the efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Glucagon", - "Animals", - "Glucose", - "Peptides", - "Hydrogels", - "Diabetes Mellitus, Experimental", - "Blood Glucose", - "Mice", - "Boronic Acids", - "Diabetes Mellitus, Type 1", - "Male", - "Drug Delivery Systems" - ] - }, - { - "PMID": "39718005", - "Title": "Endocrinology, diabetes & metabolism", - "ArticleTitle": "Predicting Time in Range Without Hypoglycaemia Using a Risk Calculator for Intermittently Scanned CGM in Type 1 Diabetes.", - "Abstract": "Clinical and socio-economic factors significantly influence OGC in type 1 diabetes. The application of statistical models offers a reliable means of predicting the likelihood of achieving OGC following isCGM system implementation.", - "Predictions": [ - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Female", - "Male", - "Retrospective Studies", - "Hypoglycemia", - "Adult", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Middle Aged", - "Risk Assessment", - "Glycemic Control", - "Glycated Hemoglobin", - "Adolescent", - "Young Adult", - "Time Factors" - ] - } -] \ No newline at end of file diff --git a/model/data/diabetes_type_2.json b/model/data/diabetes_type_2.json deleted file mode 100644 index 458c30bae06223cee821a33588793c491f3376b2..0000000000000000000000000000000000000000 --- a/model/data/diabetes_type_2.json +++ /dev/null @@ -1,499 +0,0 @@ -[ - { - "PMID": "39738226", - "Title": "Scientific reports", - "ArticleTitle": "Excessive daytime sleepiness and its predictors among type 2 diabetes mellitus patients at central ethiopia.", - "Abstract": "Excessive daytime sleepiness is a common finding among type 2 diabetes mellitus patients. However there is scarce data that shows the magnitude of excessive daytime sleepiness, & its association with type 2 diabetes mellitus. Hence, the study aimed to assess the prevalence of excessive daytime sleepiness and its associated factors among type 2 diabetes mellitus patients at Wolkite University Specialized Hospital. A Hospital-based cross-sectional study was employed from January 15 to March 15, 2022, among 229 Type 2 diabetes mellitus patients. Data was collected by semi-structured questionnaires, then entered into the Epi data version 4.6 and exported to SPSS version 25.0 for analysis. Binary and multiple logistic regression analysis was used to assess factors associated with excessive daytime sleepiness and statistical significance was set at P-value\u2009<\u20090.05. The prevalence of Excessive daytime sleepiness among type 2 diabetes mellitus was 27.1%. Age (AOR: 1.08; 95%CI: 1.03, 1.12), frequent snoring (AOR: 2.9; 95%CI: 1.24, 6.80), comorbid hypertension (AOR: 2.64; 95%CI: 1.17, 5.96), obesity (AOR: 2.7; 95%CI: 1.03, 7.13), and poor glycemic control (AOR: 6.68; 95%CI: 1.83, 24.41) were independently associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Excessive daytime sleepiness was reported in more than a quarter of type 2 diabetes mellitus patients. Age, frequent snoring, hypertension, obesity, and poor glycemic control were significantly associated with Excessive daytime sleepiness among type 2 diabetes mellitus patients. Therefore health care providers should assess not only for how well their patients' diabetes is controlled but also for excessive daytime sleepiness.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Ethiopia", - "Male", - "Female", - "Middle Aged", - "Disorders of Excessive Somnolence", - "Cross-Sectional Studies", - "Adult", - "Prevalence", - "Risk Factors", - "Aged", - "Hypertension", - "Surveys and Questionnaires", - "Comorbidity", - "Obesity", - "Snoring" - ] - }, - { - "PMID": "39737893", - "Title": "Nutrition & diabetes", - "ArticleTitle": "The genetic and observational nexus between diabetes and arthritis: a national health survey and mendelian randomization analysis.", - "Abstract": "There is an association between diabetes and arthritis, with potential genetic links between Type 1 Diabetes and RA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Mendelian Randomization Analysis", - "Male", - "Female", - "Nutrition Surveys", - "Middle Aged", - "Genome-Wide Association Study", - "Arthritis, Rheumatoid", - "Adult", - "Arthritis", - "Prevalence", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Aged", - "Genetic Predisposition to Disease", - "Logistic Models", - "Polymorphism, Single Nucleotide" - ] - }, - { - "PMID": "39737509", - "Title": "The Indian journal of medical research", - "ArticleTitle": "ICMR-MDRF Diabetes Biosamples: Cohort profile.", - "Abstract": "Background & objectives Biobanks are crucial for biomedical research, enabling new treatments and medical advancements. The biobank at the Madras Diabetes Research Foundation (MDRF) aims to gather, process, store, and distribute biospecimens to assist scientific studies. Methods This article details the profile of two cohorts: the Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study and the Registry of people with diabetes in India with young age at onset (ICMR-YDR). The ICMR-INDIAB study is the largest epidemiological study on diabetes in India, encompassing a nationally representative sample of individuals aged 20 yr and older from urban and rural areas in every State across the country. The ICMR-YDR is the first national-level, multicentric clinic-based registry focusing on youth-onset diabetes in India, aiming to understand the disease patterns and variations in youth-onset diabetes across different country regions. Results Key operations at the MDRF biobank include collecting and processing samples, where serum and whole blood samples are aliquoted and transferred through a cold chain to the central laboratory, and then stored in Siruseri (29 km from the capital city of Chennai, Tamil Nadu). Samples are barcoded, linked to subject information, and stored in freezers or liquid nitrogen (LN2) vessels, with inventory tracked via software for easy retrieval. A register records access to the biobank, ensuring sample integrity and compliance with regulatory requirements. The biobank adheres to the ICMR's National Ethical Guidelines for Biomedical and Health Research involving human participants. Interpretation & conclusions The biobank enables the analysis of biomarkers in stored samples, aiding in scientifically sound decisions, treating patients, and potentially curing diabetes.", - "Predictions": [ - "Diabetes", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "India", - "Biological Specimen Banks", - "Adult", - "Female", - "Male", - "Diabetes Mellitus", - "Registries", - "Biomedical Research", - "Young Adult", - "Cohort Studies", - "Age of Onset", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39736941", - "Title": "Archives of Razi Institute", - "ArticleTitle": "Involvement of \u03b3-Aminobutyric Acid and N-methyl-D-aspartate Receptors in Diabetic Gastropathy in Rats: Possible Beneficial Effect of Prolonged Treatment with Insulin and Magnesium Supplement.", - "Abstract": "Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats. Twenty-four male Wistar rats were randomized to four groups (six rats each): 1) control, 2) type 2 diabetes: rats fed with a high-fat diet for three months + a low dose of streptozotocin (35 mg/kg), 3) type 2 diabetes + magnesium, and 4) type 2 diabetes + insulin. The expression of NOS-1, GABA-A, GABA-B, and NMDA receptors was detected using western blotting. The NOS-1 expression was substantially diminished (P<0.01), while the expression of GABA-A (P<0.001), GABA-B (P<0.001), and NMDA (P<0.001) receptors was enhanced in the stomach of diabetic rats relative to control. Treatment with magnesium and insulin improved NOS-1 expression in diabetic rats, although this effect was greater in magnesium treatment alone. Magnesium also restored the expression of GABA-A and GABA-B receptors in diabetic rats to control values. Moreover, insulin treatment improved GABA-A receptor expression in diabetic rats (P<0.05). No considerable alterations were detected in NMDA receptor levels in the treatment groups. The results suggest a significant role of magnesium and insulin in improving gastric motility and secretory disorders associated with diabetes through modifying the expression of GABAergic receptors.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Animals", - "Male", - "Rats, Wistar", - "Receptors, N-Methyl-D-Aspartate", - "Diabetes Mellitus, Experimental", - "Insulin", - "Rats", - "Magnesium", - "Diabetes Mellitus, Type 2", - "Nitric Oxide Synthase Type I", - "Dietary Supplements", - "Random Allocation", - "Streptozocin" - ] - }, - { - "PMID": "39736870", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Construction and validation of a nomogram model for predicting diabetic peripheral neuropathy.", - "Abstract": "The DPN nomogram prediction model, containing 7 significant variables, has exhibited excellent performance. Its generalization to clinical practice could potentially help in the early detection and prompt intervention for high-risk DPN patients.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Nomograms", - "Diabetic Neuropathies", - "Female", - "Male", - "Middle Aged", - "Aged", - "Risk Factors", - "ROC Curve", - "Diabetes Mellitus, Type 2", - "Prognosis", - "Adult" - ] - }, - { - "PMID": "39736865", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Quantitative ultrasound imaging reveals distinct fracture-associated differences in tibial intracortical pore morphology and viscoelastic properties in aged individuals with and without diabetes mellitus - an exploratory study.", - "Abstract": "Both T1DM and T2DM showed altered bone metabolism, with T2DM linked to impaired tissue formation. CortBS provides insights into pathophysiological changes in diabetic bone and provided superior fracture risk assessment in DM patients compared to DXA.", - "Predictions": [ - "Diabetes type 1", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Ultrasonography", - "Aged", - "Middle Aged", - "Bone Density", - "Diabetes Mellitus, Type 2", - "Tibia", - "Absorptiometry, Photon", - "Case-Control Studies", - "Diabetes Mellitus, Type 1", - "Cortical Bone", - "Elasticity" - ] - }, - { - "PMID": "39736861", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Case report: A 51-year-old diabetic patient with primary bilateral macronodular adrenal hyperplasia and primary hyperparathyroidism.", - "Abstract": "A 51-year-old female patient with diabetes mellitus and hypertension, exhibiting poor control of blood sugar and blood pressure, was unexpectedly found to have multiple large adrenal nodules, excessive cortisol secretion, and adrenocorticotropic hormone inhibition. Cortisol levels remained unresponsive to both low-dose and high-dose dexamethasone tests, leading to a diagnosis of primary bilateral macronodular adrenal hyperplasia. Concurrently, elevated blood calcium and parathyroid hormone levels, along with 99mTc-methoxyisobutyl isonitrile (99mTc-MIBI) imaging revealing increased 99mTc-MIBI uptake in the right inferior parathyroid gland, suggest the consideration of primary hyperparathyroidism. This case is presented in light of the uncommon clinical coexistence of primary bilateral macronodular adrenal hyperplasia and primary hyperparathyroidism.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Female", - "Middle Aged", - "Hyperparathyroidism, Primary", - "Adrenal Glands", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39736858", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Association of oxidative balance score with cardiovascular disease and all-cause and cardiovascular mortality in American adults with type 2 diabetes: data from the National Health and Nutrition examination survey 1999-2018.", - "Abstract": "Adherence to higher OBS was associated with reduced CVD prevalence and mortality risk in T2D. Antioxidant diet and lifestyle had more significant associations with mortality and CVD prevalence, respectively. However, as these findings are merely associations and do not allow causal inferences to be drawn, future validation in high-quality randomized controlled trials is needed.", - "Predictions": [ - "Cardiovascular diseases", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Cardiovascular Diseases", - "Male", - "Female", - "Middle Aged", - "Nutrition Surveys", - "Adult", - "Oxidative Stress", - "United States", - "Aged", - "Life Style", - "Diet", - "Risk Factors", - "Follow-Up Studies", - "Prevalence" - ] - }, - { - "PMID": "39736551", - "Title": "BMC primary care", - "ArticleTitle": "The moderating role of e-health literacy and patient-physician communication in the relationship between online diabetes information-seeking behavior and self-care practices among individuals with type 2 diabetes.", - "Abstract": "Findings support the role of patient eHL and patient-physician communication in amplifying the positive impact of online DISB on patients' behavioral outcomes in diabetes.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Health Literacy", - "Physician-Patient Relations", - "Middle Aged", - "Cross-Sectional Studies", - "Self Care", - "Information Seeking Behavior", - "Medication Adherence", - "Communication", - "Aged", - "Adult", - "Internet", - "Assessment of Medication Adherence" - ] - }, - { - "PMID": "39736518", - "Title": "BMC cardiovascular disorders", - "ArticleTitle": "Effect of sodium glucose cotransporter-2 inhibitors (SGLT-2is) on the clinical outcomes of patients with diabetic atrial fibrillation.", - "Abstract": "In our study, SGLT-2i treatment was associated with a significant reduction in all-cause mortality and major bleeding in diabetic AF patients. Our study provides evidence of the clinical benefit of SGLT-2i in AF patients.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Male", - "Atrial Fibrillation", - "Retrospective Studies", - "Female", - "Aged", - "Treatment Outcome", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Time Factors", - "Risk Factors", - "Risk Assessment", - "Hemorrhage", - "Aged, 80 and over", - "Cause of Death", - "Myocardial Infarction" - ] - }, - { - "PMID": "39736351", - "Title": "Life sciences", - "ArticleTitle": "AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.", - "Abstract": "In conclusion, we have developed a novel strategy for producing long-acting FGF21 using the AAV vector, and AAV2-ABD-FGF21 shows promise as a therapeutic approach for type 2 diabetes mellitus and other glycolipid metabolic disorders.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Animals", - "Fibroblast Growth Factors", - "Diabetes Mellitus, Type 2", - "Mice", - "Dependovirus", - "Humans", - "Gene Transfer Techniques", - "Genetic Therapy", - "Male", - "Diabetes Mellitus, Experimental", - "HEK293 Cells", - "Mice, Inbred C57BL", - "Blood Glucose", - "Genetic Vectors", - "Liver", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39736334", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Balanced diets are associated with a lower risk of type 2 diabetes than plant-based diets.", - "Abstract": "Adhered to a balanced diet is associated with a lower risk of diabetes compared to plant-based diet, which might be attributed to signature proteins such as AGR2, DBI, IL17RA and SERPINH1.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Cross-Sectional Studies", - "Diet, Vegetarian", - "Male", - "Female", - "Middle Aged", - "Adult", - "Prospective Studies", - "Aged", - "Risk Factors", - "United Kingdom", - "Proteomics", - "Diet, Healthy", - "Diet, Plant-Based" - ] - }, - { - "PMID": "39736162", - "Title": "West African journal of medicine", - "ArticleTitle": "The Impact of Diabetes Self-Management Education (DSME) on the Quality of Life of patients living with type-2 Diabetes Mellitus in Nigeria.", - "Abstract": "The findings highlight that DSME significantly enhances the QoL, self-management competence, and glycemic control among T2DM patients in Nigeria. These results underscore the importance of structured educational interventions in diabetes care, particularly in resource-limited settings.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Quality of Life", - "Nigeria", - "Male", - "Female", - "Middle Aged", - "Self-Management", - "Patient Education as Topic", - "Adult", - "Surveys and Questionnaires", - "Health Knowledge, Attitudes, Practice", - "Aged", - "Self Care" - ] - }, - { - "PMID": "39735994", - "Title": "Frontiers in bioscience (Landmark edition)", - "ArticleTitle": "The Putative Antilipogenic Role of NRG4 and ERBB4: First Expression Study on Human Liver Samples.", - "Abstract": "The study demonstrates a decrease in ", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Receptor, ErbB-4", - "Neuregulins", - "Liver", - "Middle Aged", - "Female", - "Non-alcoholic Fatty Liver Disease", - "Male", - "Adult", - "Lipogenesis", - "Obesity", - "Diabetes Mellitus, Type 2", - "RNA, Messenger", - "Aged" - ] - }, - { - "PMID": "39735781", - "Title": "Experimental biology and medicine (Maywood, N.J.)", - "ArticleTitle": "Increased hip fracture risk in the patients with type 2 diabetes mellitus is correlated with urine albumin-to-creatinine ratio (ACR) and diabetes duration in men.", - "Abstract": "Patients with type 2 diabetes mellitus (T2DM) have increased hip fracture risk. And the association between urine albumin to creatinine ratio (ACR) and an increased risk of hip fracture in patients with T2DM remains controversial. This study aimed to investigate the association between urinary ACR and hip fracture risk in postmenopausal women and aged men with T2DM. The study included 219 postmenopausal women and 216 older men (mean age >60\u00a0years) with T2DM. Women and men were divided into control group (ACR<30\u00a0mg/g), microalbuminuria group (30\u00a0mg/g \u2264 ACR<300\u00a0mg/g), and macroalbuminuria group (ACR\u2265300\u00a0mg/g) respectively. Demographic characteristics and clinical history were collected in patients. Biochemical indexes and bone turnover-related markers were measured in patients. In the study, we found that several factors, including age, T2DM duration, cerebral infarction history, serum corrected calcium levels and urine ACR were positively associated with hip fracture risk. However, 25-Hydroxyvitamin D and areal BMD were negatively associated with hip fracture risk. Furthermore, multiple regression analysis showed that urinary ACR level (\u03b2 = 0.003, p = 0.044) and duration of T2DM (\u03b2 = 0.015, p = 0.018) were positively and independently correlated with hip fracture risk in older men. In contrast, femoral neck BMD (\u03b2 = -6.765, p < 0.001) was independently and negatively correlated with hip fracture risk in older men. This study indicated that the elevated ACR levels and longer T2DM duration were related to higher hip fracture risk in older men with T2DM, which could be beneficial for developing a predictive model for osteoporotic fractures in patients with type 2 diabetes in the future. However, results were inconsistent in women, hip fracture risk didn't alter by changes in urinary microalbuminuria level in postmenopausal women with T2DM.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Hip Fractures", - "Male", - "Female", - "Albuminuria", - "Aged", - "Middle Aged", - "Creatinine", - "Risk Factors", - "Bone Density", - "Postmenopause" - ] - }, - { - "PMID": "39735651", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Association between changes in thyroid hormones and incident type 2 diabetes using joint models of longitudinal and time-to-event data: more than a decade follow up in the Tehran thyroid study.", - "Abstract": "The findings of this study suggest that dynamic changes in serum thyroid hormones are associated with the development of T2DM. Rising TSH and decreasing FT4 over time are associated with a lower risk of diabetes. These findings suggest a complex interplay between thyroid function and the risk of T2DM, emphasizing the importance of monitoring thyroid hormone levels as a part of T2DM prevention strategies.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Iran", - "Middle Aged", - "Follow-Up Studies", - "Incidence", - "Adult", - "Thyrotropin", - "Thyroxine", - "Longitudinal Studies", - "Thyroid Hormones", - "Risk Factors", - "Thyroid Function Tests", - "Thyroid Gland", - "Thyroid Diseases" - ] - }, - { - "PMID": "39735647", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "The role of fecal microbiota transplantation in type 2 diabetes mellitus treatment.", - "Abstract": "In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system. Simultaneously, fecal microbiota transplantation (FMT) has emerged as a focal point, garnering substantial attention in both biomedical and clinical spheres. Research endeavors have uncovered the remarkable therapeutic efficacy of FMT across diverse diseases, with particular emphasis on its application in addressing type 2 diabetes mellitus (T2DM) and associated com-plications. Consequently, this manuscript accentuates the intimate connection between the gut microbiota and disorders within the endocrine system, with a specific focus on exploring the potential of FMT as an intervention in the therapeutic landscape of T2DM and its complications. Furthermore, the article scrutinizes concerns inherent in treatment modalities centered around the gut microbiota, proposing viable solutions to address these issues.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Fecal Microbiota Transplantation", - "Humans", - "Diabetes Mellitus, Type 2", - "Gastrointestinal Microbiome", - "Animals" - ] - }, - { - "PMID": "39735646", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Pasireotide-induced hyperglycemia in Cushing's disease and Acromegaly: A clinical perspective and algorithms proposal.", - "Abstract": "Pasireotide is an effective treatment for both Cushing's disease (CD) and acromegaly due to its ability to suppress adrenocorticotropic hormone and growth hormone, and to normalize insulin-like growth factor-1 levels, resulting in tumor shrinkage. However, it may also cause hyperglycemia as a side effect in some patients. The aim of this study was to review previous recommendations regarding the management of pasireotide-induced hyperglycemia in patients with CD and acromegaly and to propose efficient monitoring and treatment algorithms based on recent evidence and current guidelines for type 2 diabetes treatment. In about 25% of patients with CD and 50% of patients with acromegaly, pasireotide-induced hyperglycemia does not require drug therapy or can be managed with diet and oral antidiabetic agents. The risk of pasireotide-induced hyperglycemia is higher in patients with diabetes or prediabetes at baseline. Moreover, pasireotide used in the treatment of CD may lead to more frequent and difficult-to-treat glycemic disorders than those observed in acromegaly. Based on the pathomechanism of hyperglycemia, we suggest using metformin as the first-line therapy, followed by glucagon-like peptide-1 and/or sodium-glucose co-transporter-2 inhibitor, and finally insulin in patients with pasireotide-induced hyperglycemia. We propose algorithms for the management of glucose metabolic disorders caused by pasireotide treatment in patients with CD and acromegaly, including those with chronic kidney disease and at high cardiovascular risk.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Somatostatin", - "Acromegaly", - "Pituitary ACTH Hypersecretion", - "Hyperglycemia", - "Algorithms", - "Hypoglycemic Agents", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39735639", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Association of circulating adiponectin and leptin levels with the risk of diabetic peripheral neuropathy.", - "Abstract": "Circulating adiponectin and leptin levels correlate with DPN risk in diabetic patients, suggesting their potential as biomarkers for high-risk DPN identification and guiding targeted prevention and management.", - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Adiponectin", - "Leptin", - "Diabetic Neuropathies", - "Male", - "Female", - "Middle Aged", - "Case-Control Studies", - "Diabetes Mellitus, Type 2", - "Aged", - "Biomarkers", - "Risk Factors", - "Adult" - ] - }, - { - "PMID": "39735416", - "Title": "Journal of diabetes research", - "ArticleTitle": "Age Characteristics of Patients With Type 2 Diabetic Foot Ulcers and Predictive Risk Factors for Lower Limb Amputation: A Population-Based Retrospective Study.", - "Abstract": { - "b": "Conclusion:" - }, - "Predictions": [ - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Diabetic Foot", - "Amputation, Surgical", - "Male", - "Middle Aged", - "Female", - "Risk Factors", - "Aged", - "Diabetes Mellitus, Type 2", - "Retrospective Studies", - "Lower Extremity", - "Age Factors", - "China", - "Adult", - "Prevalence", - "Aged, 80 and over" - ] - } -] \ No newline at end of file diff --git a/model/data/male.json b/model/data/male.json deleted file mode 100644 index fc2b3ae5228a022f142a934fedd589af92c15213..0000000000000000000000000000000000000000 --- a/model/data/male.json +++ /dev/null @@ -1,494 +0,0 @@ -[ - { - "PMID": "39476418", - "Title": "Annual review of psychology", - "ArticleTitle": "Gender Identity and Aggression.", - "Abstract": "Gender identity, or people's deeply felt, internal sense of their gender, plays an important role in aggression perpetration and victimization. In this article, I review and organize the psychological research literatures on gender identity-based aggression. I first discuss the need to move beyond binary, cisgender understandings of gender by embracing expansive definitions that more fully capture people's experiences and identities. Next, I summarize relevant research indicating two paths from gender identity to aggression. In one path, individuals with a more masculine (i.e., dominant, agentic) gender identity use aggression proactively, motivated by pursuit of social dominance. In another path, individuals with a more uncertain (i.e., insecure, precarious) gender identity use aggression defensively-and often toward vulnerable, gender nonconforming targets-as a means of protecting their gender identity against threats. I end by identifying important areas for future research and considering how interventions might best mitigate gender identity-based aggression.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Aggression", - "Gender Identity", - "Female", - "Male" - ] - }, - { - "PMID": "39476405", - "Title": "Scandinavian journal of work, environment & health", - "ArticleTitle": "Multidimensional employment trajectories and dynamic links with mental health: Evidence from the UK Household Longitudinal Study.", - "Abstract": "This paper shows the importance of high-quality employment for individuals' mental health over time. Researchers need to consider dynamic associations between employment quality and mental health across the life-course.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Longitudinal Studies", - "Employment", - "United Kingdom", - "Adult", - "Mental Health", - "Unemployment", - "Surveys and Questionnaires", - "Psychological Distress" - ] - }, - { - "PMID": "39476404", - "Title": "Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme", - "ArticleTitle": "Characterization of the cardiac cycle in Royal Canadian Mounted Police cadets.", - "Abstract": "Royal Canadian Mounted Police (RCMP) cadets experience high volumes of potentially psychologically traumatic events, suggesting a need of normal cardiac cycle interval data on the cadets for comparison. We characterize the cardiac cycle of incoming RCMP cadets starting the 26-week training program. The cadets collected their cardiac data using the LLA Recordis\u2122 device. Male RCMP cadets had higher (", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Police", - "Male", - "Female", - "Canada", - "Young Adult", - "Adult", - "Heart", - "Heart Rate", - "Stress, Psychological", - "Aortic Valve" - ] - }, - { - "PMID": "39476402", - "Title": "Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases", - "ArticleTitle": "Periprosthetic Joint Infection in Patients With Inflammatory Arthritis: Optimal Tests to Differentiate From Flares.", - "Abstract": "Although synovial %PMNs, CRP, and alpha-defensin are sensitive tests for diagnosing PJI, they are less specific and may be positive in IA flares.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Prosthesis-Related Infections", - "Female", - "Male", - "Aged", - "C-Reactive Protein", - "Middle Aged", - "Synovial Fluid", - "Biomarkers", - "alpha-Defensins", - "Cross-Sectional Studies", - "Osteoarthritis", - "Arthritis, Rheumatoid", - "Arthritis, Psoriatic", - "Diagnosis, Differential", - "Sensitivity and Specificity", - "Leukocyte Count", - "Fibrin Fibrinogen Degradation Products", - "Blood Sedimentation", - "Reoperation" - ] - }, - { - "PMID": "39476390", - "Title": "JMIR public health and surveillance", - "ArticleTitle": "Determinants of Citizens' Intention to Participate in Self-Led Contact Tracing: Cross-Sectional Online Questionnaire Study.", - "Abstract": "Overall, Dutch citizens are positive toward participating in self-led CT. Our results provide directions for the development and implementation of self-led CT, which may be particularly useful in preparing for future, large-scale outbreaks.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Cross-Sectional Studies", - "Male", - "Female", - "Intention", - "Netherlands", - "Surveys and Questionnaires", - "Adult", - "Middle Aged", - "Contact Tracing", - "Aged", - "Adolescent", - "Young Adult" - ] - }, - { - "PMID": "39476381", - "Title": "Advanced science (Weinheim, Baden-Wurttemberg, Germany)", - "ArticleTitle": "Posterior Basolateral Amygdala is a Critical Amygdaloid Area for Temporal Lobe Epilepsy.", - "Abstract": "The amygdaloid complex consists of multiple nuclei and is a key node in controlling temporal lobe epilepsy (TLE) in both human and animal model studies. However, the specific nucleus in the amygdaloid complex and the neural circuitry governing seizures remain unknown. Here, it is discovered that activation of glutamatergic neurons in the posterior basolateral amygdala (pBLA) induces severe seizures and even mortality. The pBLA glutamatergic neurons project collateral connections to multiple brain regions, including the insular cortex (IC), bed nucleus of the stria terminalis (BNST), and central amygdala (CeA). Stimulation of pBLA-targeted IC neurons triggers seizures, whereas ablation of IC neurons suppresses seizures induced by activating pBLA glutamatergic neurons. GABAergic neurons in the BNST and CeA establish feedback inhibition on pBLA glutamatergic neurons. Deleting GABAergic neurons in the BNST or CeA leads to sporadic seizures, highlighting their role in balancing pBLA activity. Furthermore, pBLA neurons receive glutamatergic inputs from the ventral hippocampal CA1 (vCA1). Ablation of pBLA glutamatergic neurons mitigates both acute and chronic seizures in the intrahippocampal kainic acid-induced mouse model of TLE. Together, these findings identify the pBLA as a pivotal nucleus in the amygdaloid complex for regulating epileptic seizures in TLE.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Epilepsy, Temporal Lobe", - "Animals", - "Mice", - "Basolateral Nuclear Complex", - "Disease Models, Animal", - "Male", - "Amygdala", - "Neurons" - ] - }, - { - "PMID": "39476377", - "Title": "JMIR aging", - "ArticleTitle": "Decoding the Influence of eHealth on Autonomy, Competence, and Relatedness in Older Adults: Qualitative Analysis of Self-Determination Through the Motivational Technology Model.", - "Abstract": "Participants confirmed the features that increased internal motivation, such as interactivity correlating with feelings of relatedness, but they also found other ways to support autonomous health behavior change beyond narrow views of navigability, interactivity, and customization.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Aged", - "Personal Autonomy", - "Female", - "Male", - "Motivation", - "Telemedicine", - "Qualitative Research", - "Aged, 80 and over", - "Mobile Applications", - "Middle Aged" - ] - }, - { - "PMID": "39476374", - "Title": "Journal of medical Internet research", - "ArticleTitle": "The Impact of Different Types of Social Media Use on the Mental Health of UK Adults: Longitudinal Observational Study.", - "Abstract": "We found that a high frequency of posting on social media was associated with increased mental health problems a year later. However, we did not find evidence of a similar association based on the frequency of viewing social media content. This provides evidence that some types of active social media use (ie, posting) have a stronger link to mental health outcomes than some types of passive social media use (viewing). These results highlighted that the relationship between social media use and mental health is complex, and more research is needed to understand the mechanisms underlying these patterns to inform targeted interventions and policies.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Social Media", - "Longitudinal Studies", - "United Kingdom", - "Adult", - "Male", - "Female", - "Mental Health", - "Middle Aged", - "Adolescent", - "Young Adult", - "Aged", - "Mental Disorders", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39476373", - "Title": "Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine", - "ArticleTitle": "Prevalence of Asymptomatic Changes in the Groin Region Among Adult Professional Soccer Players and Their Association With Limb Dominance.", - "Abstract": "In adult professional soccer players with no prior groin pain complaints in recent history (12 months), asymptomatic changes are extremely common in the pubic joint and adjacent areas, including those that are very likely to be considered the main cause of pain when investigated in soccer players with groin pain. None of these changes were associated with limb dominance.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Soccer", - "Male", - "Adult", - "Cross-Sectional Studies", - "Groin", - "Magnetic Resonance Imaging", - "Prevalence", - "Young Adult", - "Pubic Symphysis", - "Pubic Bone", - "Functional Laterality", - "Asymptomatic Diseases" - ] - }, - { - "PMID": "39476372", - "Title": "Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine", - "ArticleTitle": "Prior Concussion History and Clinical Recovery Following Sport-Related Concussion in College Athletes.", - "Abstract": "In summary, concussion history was not associated with time to return to sports following a subsequent sport-related concussion in these college athletes. On average, athletes with prior concussions did not take longer to return to school, although a slightly greater proportion of college athletes with \u22652 prior concussions had not fully returned to school, without accommodations, by 28 days following injury.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Brain Concussion", - "Athletic Injuries", - "Return to Sport", - "Male", - "Female", - "Young Adult", - "Universities", - "Students", - "Athletes", - "Recovery of Function", - "Adolescent", - "Cohort Studies", - "Time Factors" - ] - }, - { - "PMID": "39476371", - "Title": "Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine", - "ArticleTitle": "Early Targeted Heart Rate Aerobic Exercise Reduces Proportion of Subacute Musculoskeletal Injuries After Recovery From Sport-Related Concussion.", - "Abstract": "Adolescent male athletes prescribed aerobic exercise within 10 days of SRC had a significantly lower proportion of individuals injured in the 3 months following clinical recovery when compared with stretching. This may be due to a habituation/rehabilitation effect of aerobic activities to improve autonomic, vestibular, and/or oculomotor function after SRC.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Male", - "Adolescent", - "Brain Concussion", - "Athletic Injuries", - "Female", - "Exercise", - "Return to Sport", - "Heart Rate", - "Muscle Stretching Exercises", - "Exercise Therapy" - ] - }, - { - "PMID": "39476370", - "Title": "Journal of medical Internet research", - "ArticleTitle": "Characterization of Telecare Conversations on Lifestyle Management and Their Relation to Health Care Utilization for Patients with Heart Failure: Mixed Methods Study.", - "Abstract": "Our approach and findings offer novel perspectives on the content, structure, and clinical associations of telehealth conversations on lifestyle management for patients with HF. Hence, our study could inform ways to enhance telehealth programs for self-care management in chronic conditions.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Telemedicine", - "Female", - "Male", - "Life Style", - "Aged", - "Middle Aged", - "Patient Acceptance of Health Care", - "Diabetes Mellitus, Type 2", - "Communication" - ] - }, - { - "PMID": "39476368", - "Title": "JMIR formative research", - "ArticleTitle": "Self-Reported Patient and Provider Satisfaction With Neurology Telemedicine Visits After Rapid Telemedicine Implementation in an Urban Academic Center: Cross-Sectional Survey.", - "Abstract": "Our study found adequate satisfaction among patients and providers regarding telemedicine implementation and its utility for patient care in a diverse urban population. Additionally, while access to technology and technology literacy are barriers to telemedical care, a substantial majority of patients who responded to the survey had access to devices (101/117, 86.3%) and were able to connect with few to no technological difficulties (84/117, 71.8%). One area identified by patients in need of improvement was comfortability in communicating via telemedicine with their providers. Furthermore, while providers agreed that telemedicine is a useful tool for patient care, it limits their ability to perform physical exams. More research and quality studies are needed to further appreciate and support the expansion of telemedical care into underserved and rural populations, especially in the area of subspecialty neurological care.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Telemedicine", - "Patient Satisfaction", - "Male", - "Cross-Sectional Studies", - "Female", - "Neurology", - "Academic Medical Centers", - "Adult", - "Middle Aged", - "COVID-19", - "Self Report", - "Aged", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39476366", - "Title": "Journal of medical Internet research", - "ArticleTitle": "Evaluating the Implementation and Clinical Effectiveness of an Innovative Digital First Care Model for Behavioral Health Using the RE-AIM Framework: Quantitative Evaluation.", - "Abstract": "PBH as a care model with evidence-based DMHIs, human support for patients, and integration within routine settings offers a credible service to support patients with mild to moderate mental health challenges. This type of model has the potential to address real-life access to care problems faced by health care settings.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Mental Health Services", - "Adult", - "Middle Aged", - "Primary Health Care", - "United States" - ] - }, - { - "PMID": "39476363", - "Title": "Advanced science (Weinheim, Baden-Wurttemberg, Germany)", - "ArticleTitle": "Adipose Tissue-Resident Sphingomonas Paucimobilis Suppresses Adaptive Thermogenesis by Reducing 15-HETE Production and Inhibiting AMPK Pathway.", - "Abstract": "Obesity represents a low-grade chronic inflammation status, which is associated with compromised adaptive thermogenesis. However, the mechanisms underlying the defective activation of thermogenesis in chronic inflammation remain unclear. Here, a chronic inflammatory model is first estabolished by injecting mice with low-dose lipopolysaccharide (LPS) before cold exposure, and then it is verified that LPS treatment can decrease the core body temperature of mice and alter the microbial distribution in epididymal white adipose tissue (eWAT). An adipose tissue-resident bacterium Sphingomonas paucimobilis is identified as a potential inhibitor on the activation of brown fat and browning of inguinal WAT, resulting in defective adaptive thermogenesis. Mechanically, LPS and S. paucimobilis inhibit the production and release of 15-HETE by suppressing its main metabolic enzyme 12 lipoxygenase (12-LOX) and 15- Hydroxyeicosatetraenoic acid (15-HETE) rescues the impaired thermogenesis. Interestingly, 15-HETE directly binds to AMP-activated protein kinase \u03b1 (AMPK\u03b1) and elevates the phosphorylation of AMPK, leading to the activation of uncoupling protein 1 (UCP1) and mitochondrial oxidative phosphorylation (OXPHOS) complexes. Further analysis with human obesity subjects reveals that individuals with high body mass index displayed lower 15-HETE levels. Taken together, this work improves the understanding of how chronic inflammation impairs adaptive thermogenesis and provides novel targets for alleviating obesity.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Animals", - "Sphingomonas", - "Mice", - "Thermogenesis", - "Male", - "Hydroxyeicosatetraenoic Acids", - "AMP-Activated Protein Kinases", - "Mice, Inbred C57BL", - "Disease Models, Animal", - "Humans", - "Obesity", - "Signal Transduction", - "Adipose Tissue" - ] - }, - { - "PMID": "39476341", - "Title": "The New England journal of medicine", - "ArticleTitle": "Total Hip Replacement or Resistance Training for Severe Hip Osteoarthritis.", - "Abstract": "In patients 50 years of age or older who had severe hip osteoarthritis and an indication for surgery, total hip replacement resulted in a clinically important, superior reduction in hip pain and improved hip function, as reported by patients, at 6 months as compared with resistance training. (Funded by the Danish Rheumatism Association and others; PROHIP ClinicalTrials.gov number, NCT04070027.).", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "Arthroplasty, Replacement, Hip", - "Intention to Treat Analysis", - "Osteoarthritis, Hip", - "Pain Measurement", - "Resistance Training", - "Arthralgia" - ] - }, - { - "PMID": "39476340", - "Title": "The New England journal of medicine", - "ArticleTitle": "Inavolisib-Based Therapy in ", - "Abstract": "In patients with ", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Adult", - "Aged", - "Female", - "Humans", - "Middle Aged", - "Antineoplastic Combined Chemotherapy Protocols", - "Breast Neoplasms", - "Class I Phosphatidylinositol 3-Kinases", - "Double-Blind Method", - "Kaplan-Meier Estimate", - "Mutation", - "Piperazines", - "Progression-Free Survival", - "Pyridines", - "Male", - "Breast Neoplasms, Male", - "Phosphoinositide-3 Kinase Inhibitors", - "Imidazoles", - "Oxazoles" - ] - }, - { - "PMID": "39476339", - "Title": "The New England journal of medicine", - "ArticleTitle": "Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis.", - "Abstract": "Among participants with obesity and knee osteoarthritis with moderate-to-severe pain, treatment with once-weekly injectable semaglutide resulted in significantly greater reductions in body weight and pain related to knee osteoarthritis than placebo. (Funded by Novo Nordisk; STEP 9 ClinicalTrials.gov number, NCT05064735.).", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "Body Mass Index", - "Combined Modality Therapy", - "Double-Blind Method", - "Drug Administration Schedule", - "Injections, Subcutaneous", - "Obesity", - "Osteoarthritis, Knee", - "Weight Loss", - "Glucagon-Like Peptide-1 Receptor Agonists", - "Counseling", - "Caloric Restriction", - "Arthralgia", - "Pain Measurement" - ] - }, - { - "PMID": "39476330", - "Title": "Clinical transplantation", - "ArticleTitle": "Survey of Post-Prophylaxis Delayed-Onset Cytomegalovirus Management Strategies Among Transplant Providers.", - "Abstract": "Management of PPDOC was highly variable among providers and strategies differed based on patient risk profile. These findings could help shape future studies and guidelines to harmonize CMV management.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Cytomegalovirus Infections", - "Organ Transplantation", - "Cytomegalovirus", - "Surveys and Questionnaires", - "Antiviral Agents", - "Prognosis", - "Disease Management", - "Practice Patterns, Physicians'", - "Follow-Up Studies", - "Postoperative Complications", - "Graft Rejection", - "Female", - "Male", - "Post-Exposure Prophylaxis" - ] - }, - { - "PMID": "39476327", - "Title": "United European gastroenterology journal", - "ArticleTitle": "Variation in the detection of lymphovascular invasion in T1 colorectal cancer and its impact on treatment: A nationwide Dutch study.", - "Abstract": "These findings suggest that a high detection rate of LVI does not improve oncological outcomes and may expose more patients to unnecessary oncological surgery, emphasizing the need for standardization of LVI diagnosis.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Humans", - "Colorectal Neoplasms", - "Netherlands", - "Female", - "Male", - "Lymphatic Metastasis", - "Aged", - "Middle Aged", - "Neoplasm Invasiveness", - "Neoplasm Staging", - "Neoplasm Recurrence, Local", - "Lymph Nodes" - ] - }, - { - "PMID": "39476322", - "Title": "Nursing open", - "ArticleTitle": "Setting national nursing research priorities in Qatar: A Delphi survey.", - "Abstract": "Not applicable.", - "Predictions": [ - "Male" - ], - "MeshTerms": [ - "Qatar", - "Humans", - "Delphi Technique", - "Nursing Research", - "Surveys and Questionnaires", - "Male", - "Female", - "Adult", - "Consensus" - ] - } -] \ No newline at end of file diff --git a/model/data/mental_health.json b/model/data/mental_health.json deleted file mode 100644 index 68d2da50836a2344c998e0bc99037153bb4b97b8..0000000000000000000000000000000000000000 --- a/model/data/mental_health.json +++ /dev/null @@ -1,489 +0,0 @@ -[ - { - "PMID": "39738254", - "Title": "Scientific reports", - "ArticleTitle": "Cross sectional associations of physical activity and sleep with mental health among Chinese university students.", - "Abstract": "The intensity of PA among university students is predominantly light, and the reported rate of insufficient sleep is relatively high. Moderate to high-intensity PA and sufficient high-quality sleep may alleviate MH issues among college students, with an interaction effect observed among PA, sleep, and depression symptoms. Future studies should further explore targeted interventions combining PA and sleep behaviors to enhance the MH of university students.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Male", - "Students", - "Female", - "Exercise", - "Universities", - "China", - "Mental Health", - "Young Adult", - "Depression", - "Cross-Sectional Studies", - "Anxiety", - "Sleep", - "Surveys and Questionnaires", - "Adult", - "Adolescent", - "Sleep Quality", - "Prevalence" - ] - }, - { - "PMID": "39737457", - "Title": "Frontiers in public health", - "ArticleTitle": "Impact of COVID-19 vaccination on adolescent and youth students' mental health and bullying behaviors after the lifting of COVID-19 restrictions in China.", - "Abstract": "This study suggests that COVID-19 vaccination will not only protect students' physical health, but also improve mental health. It is crucial to explore the mechanism between vaccination and mental health problems and bullying behaviors in further studies.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "China", - "COVID-19", - "Male", - "Female", - "Students", - "Bullying", - "COVID-19 Vaccines", - "Surveys and Questionnaires", - "Mental Health", - "Vaccination", - "Depression", - "Anxiety", - "SARS-CoV-2", - "Stress Disorders, Post-Traumatic" - ] - }, - { - "PMID": "39735766", - "Title": "Frontiers in public health", - "ArticleTitle": "Unemployment and mental health: a global study of unemployment's influence on diverse mental disorders.", - "Abstract": "These findings underscore the critical interplay between socio-economic factors and mental health, highlighting the need for proactive strategies to address the dual burden of unemployment and mental health disorders. Targeted interventions, such as employment support programs and accessible mental health services, are essential to improve global mental health outcomes. These initiatives can also alleviate the economic burden of unemployment by boosting workforce participation and productivity. Long-term economic gains may offset the increased healthcare expenditures associated with mental health support.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Unemployment", - "Mental Disorders", - "Female", - "Male", - "Adult", - "Middle Aged", - "Global Health", - "Mental Health", - "Young Adult", - "Socioeconomic Factors" - ] - }, - { - "PMID": "39735765", - "Title": "Frontiers in public health", - "ArticleTitle": "Public perceptions of digital mental health awareness campaign in the Arab Gulf states: a qualitative thematic analysis.", - "Abstract": "Mental illness is a significant public health concern and a leading cause of disability worldwide. Research shows a lack of mental health knowledge and inappropriate practices in the Gulf Cooperation Council (GCC) states. Our study aimed to evaluate individuals' perspectives on mental health by analyzing their responses to a digital campaign directed at GCC adolescents. We conducted a qualitative thematic analysis of comments in response to the Gulf Health Council's mental health campaign. The campaign content was shared on four social media platforms: TikTok, YouTube, Instagram, and X. A total of 2,146 comments were included in the analysis. There was a widespread denial of the existence of mental illness. The comments revealed a lack of understanding and insufficient support for individuals dealing with mental health issues. Stigma and discrimination against people with mental illness were evident in the comments. The general perception was that individuals have control over their mental health, often associating mental illness with weakness and lack of willpower. Mental illness was believed to be caused by religious and moral shortcomings, and religion was viewed as the solution. Some comments highlighted the need to acknowledge mental illness and urged the development of strategies to promote mental health. Our research shows a lack of awareness, stigma, and inadequate resources for individuals dealing with mental health issues. It highlights the importance of addressing barriers to mental healthcare and increasing access to support. Interventions focusing on stigma reduction and promoting acceptance of mental health disorders are crucial and require collaborative efforts from various stakeholders.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Mental Disorders", - "Qualitative Research", - "Adolescent", - "Female", - "Health Promotion", - "Male", - "Social Media", - "Social Stigma", - "Health Knowledge, Attitudes, Practice", - "Middle East", - "Mental Health", - "Public Opinion" - ] - }, - { - "PMID": "39735755", - "Title": "Frontiers in public health", - "ArticleTitle": "A study of the impact of internet use on the mental health of rural older adults-empirical analysis based on China General Social Survey 2021 data.", - "Abstract": "Internet use, social participation, and friend-gathering type participation all have an effect on the mental health of rural older adults. The research results reveal the impact of Internet use on the mental health of rural older adults and its mechanism, which is helpful to provide useful enlightenment for improving the mental health of rural older adults in the Internet era.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "China", - "Aged", - "Rural Population", - "Mental Health", - "Male", - "Female", - "Social Participation", - "Internet Use", - "Surveys and Questionnaires", - "Middle Aged", - "Aged, 80 and over", - "Internet" - ] - }, - { - "PMID": "39735753", - "Title": "Frontiers in public health", - "ArticleTitle": "Chronic impacts of natural infrastructure on the physical and psychological health of university students during and after COVID-19: a case study of Chengdu, China.", - "Abstract": "The study emphasizes the importance of incorporating natural elements into urban planning to enhance outdoor activity and well-being, especially in post-pandemic settings. Recommendations are provided for future urban design to address the therapeutic needs of specific populations.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "China", - "Students", - "Universities", - "Male", - "Female", - "Mental Health", - "Young Adult", - "Adult", - "SARS-CoV-2", - "City Planning" - ] - }, - { - "PMID": "39735752", - "Title": "Frontiers in public health", - "ArticleTitle": "Effects of a flexibly delivered group-based acceptance and commitment therapy on reducing stress and enhancing psychological wellbeing in parents of school-age children during the COVID-19 pandemic: a quasi-experimental study.", - "Abstract": "The findings highlight the potential of group-based Acceptance and Commitment Therapy to alleviate stress and improve psychological well-being in parents of school-age children, regardless of the delivery method, especially during crises such as the COVID-19 pandemic. However, due to limitations in the study design, caution is warranted when interpreting the overall effects of group-based ACT on parent outcomes and the moderating role of delivery methods. Further research is needed to validate these findings and explore the nuances of delivery methods in similar real-world situations.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Acceptance and Commitment Therapy", - "Female", - "Male", - "Parents", - "Stress, Psychological", - "Adult", - "Child", - "Hong Kong", - "Middle Aged", - "SARS-CoV-2", - "Psychotherapy, Group", - "Pandemics", - "Mental Health" - ] - }, - { - "PMID": "39735743", - "Title": "Frontiers in public health", - "ArticleTitle": "The impact of university freshmen's mental health on academic performance: an empirical study based on M University in Fujian Province, China.", - "Abstract": "University officials should strengthen mental health surveillance and intervention during the first few years of student enrollment to mitigate the harmful impact of mental health issues on academic performance. The moderate to strong effect sizes for variables like somatization, depression, and anxiety indicate that early interventions could be crucial in reducing their negative impact on both short-and long-term academic outcomes. Furthermore, the study discovered disparities in mental health and academic performance across students of different genders and enrollment years, emphasizing that educational personnel should design more tailored mental health support methods that consider these differences.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Universities", - "Male", - "Female", - "China", - "Students", - "Academic Performance", - "Mental Health", - "Young Adult", - "Depression", - "Anxiety", - "Adolescent", - "Adult" - ] - }, - { - "PMID": "39735742", - "Title": "Frontiers in public health", - "ArticleTitle": "Effects of volcanic eruptions on the mental health of exposed populations: a systematic review.", - "Abstract": "The negative influence of experiencing volcanic activity on mental health was confirmed. Clearly, there is a need for more research to improve the mental health of the populations highly exposed to volcanic eruptions. Recommendations for future research are also included.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Volcanic Eruptions", - "Humans", - "Mental Health", - "Mental Disorders", - "Environmental Exposure" - ] - }, - { - "PMID": "39734104", - "Title": "Journal of research on adolescence : the official journal of the Society for Research on Adolescence", - "ArticleTitle": "LGBTQ+ youth policy and mental health: Indirect effects through school experiences.", - "Abstract": "The link between state policies and LGBTQ+ youth mental health is well-established, yet less well-understood are the mechanisms that drive these associations. We used a sample from the LGBTQ+ National Teen Survey (n\u2009=\u20098368) collected in 2022 to examine whether and to what degree LGBTQ+ inclusive school strategies, student perceptions of school safety, and experiences with bias-based bullying and peer victimization explain the association between state LGBTQ+ youth-focused policies and LGBTQ+ youth mental health symptomology. We observed significant indirect effects between policy and LGBTQ+ youth mental health through all four constructs, suggesting that each of these more proximal school experiences was independently implicated in this association. Findings underscore how state policies shape LGBTQ+ youth mental health symptomology via more proximal contexts and emphasize the importance of policy implementation following enactment.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "Male", - "Sexual and Gender Minorities", - "Female", - "Schools", - "Bullying", - "Mental Health", - "Crime Victims", - "United States", - "Surveys and Questionnaires", - "Students", - "Peer Group" - ] - }, - { - "PMID": "39734100", - "Title": "Journal of research on adolescence : the official journal of the Society for Research on Adolescence", - "ArticleTitle": "Adolescents in various contexts during the COVID-19 pandemic: A commentary.", - "Abstract": "This commentary provides a reflection on the impact of the COVID-19 pandemic on adolescents in the context of family dynamics, school environments, peer relationships, and civic engagement. Drawing from four systematic literature reviews, the commentary highlights key findings, such as the long-term effects of COVID-19 on adolescent development, mental health, and academic well-being. The need for future research is emphasized to assess how these cohort effects will evolve over time. Cultural context and socioeconomic disparities emerge as crucial considerations, with the pandemic exacerbating existing inequalities, especially in access to education and digital resources. This commentary also underscores the importance of adopting a socio-ecological perspective to understand the multifaceted impact of COVID-19 on adolescents globally. In conclusion, it calls for targeted policies to support adolescents' mental health and academic recovery post-pandemic, particularly in underserved communities. Governments, educators, and civic organizations are encouraged to create inclusive policies that address these disparities while fostering resilience and well-being among young people. These reviews may also inform translational research that could aid in the development of evidence-based interventions and policies aimed at helping adolescents thrive in a post-pandemic world.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Adolescent", - "Mental Health", - "SARS-CoV-2", - "Adolescent Development", - "Pandemics", - "Peer Group", - "Socioeconomic Factors" - ] - }, - { - "PMID": "39732736", - "Title": "BMC psychology", - "ArticleTitle": "Factorial validation and invariance of the Academic Procrastination Scale in Colombian students.", - "Abstract": "The Modified Academic Procrastination Scale (EPA-C) demonstrates adequate psychometric properties and is gender-invariant for assessing academic procrastination among Colombian university students. Moreover, it has an impact on the mental health and life satisfaction of these students.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Colombia", - "Students", - "Young Adult", - "Adult", - "Adolescent", - "Psychometrics", - "Personal Satisfaction", - "Universities", - "Procrastination", - "Reproducibility of Results", - "Mental Health", - "Surveys and Questionnaires", - "Factor Analysis, Statistical" - ] - }, - { - "PMID": "39732545", - "Title": "Endocrinologia, diabetes y nutricion", - "ArticleTitle": "Nurse-led therapeutic patient education program on glycemic control and emotional wellbeing in adolescents with type 1 diabetes mellitus during hospital transition.", - "Abstract": "The structured therapeutic education program for adolescents with T1DM transitioning from pediatric to adult care maintains glycemic control and emotional wellbeing.", - "Predictions": [ - "Mental Health", - "Diabetes type 1" - ], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Male", - "Female", - "Patient Education as Topic", - "Glycemic Control", - "Transition to Adult Care", - "Self Care", - "Emotions", - "Mental Health", - "Feeding and Eating Disorders" - ] - }, - { - "PMID": "39731523", - "Title": "Sociology of health & illness", - "ArticleTitle": "Extending Fundamental Cause Theory to Holistic Health.", - "Abstract": "Fundamental Cause Theory (FCT) offers a unique middle range and longitudinal understanding of the lasting social causational relationships between certain social conditions and disease/death. In this research note, I argue that FCT should extend its outcome measures beyond physical disease and death into holistic health. I briefly review how FCT is evaluated, explore the proposed extension and discuss some operational and conceptual challenges using mental illness and positive mental health outcomes as exemplars. I conclude by discussing the benefits of extending FCT for 1) the theory's own validity, 2) social health inequalities research more broadly, and 3) public health policy.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Holistic Health", - "Mental Disorders", - "Health Policy", - "Social Theory", - "Mental Health", - "Health Status Disparities" - ] - }, - { - "PMID": "39731316", - "Title": "Nordic journal of psychiatry", - "ArticleTitle": "Gender-stratified national mental health norms of BSI-53, BSI-18, SCL-10, ADHD-9, and ADHD-6 for Denmark.", - "Abstract": "This study provides gender-stratified Danish mental health norms for multiple symptom scales. The considerable gender differences in the SCL-10 underscore the importance of gender-specific norms. The 2020 SCL-10 norms are biased by COVID-19 distress. Until new normative data is available, the gender-specific norms provided here are recommended.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Denmark", - "Female", - "Male", - "Attention Deficit Disorder with Hyperactivity", - "Adult", - "Middle Aged", - "Adolescent", - "Young Adult", - "Aged", - "COVID-19", - "Sex Factors", - "Aged, 80 and over", - "Reference Values", - "Brief Psychiatric Rating Scale", - "Mental Health" - ] - }, - { - "PMID": "39730730", - "Title": "Scientific reports", - "ArticleTitle": "Insights into adolescent sleep and mental health in rural area of Northwestern China.", - "Abstract": "Adolescents in affluent nations have experienced a decline in sleep duration, associated with adverse outcomes such as behavioral issues and health concerns. However, the connection between sleep and mental well-being during adolescence, particularly in developing regions like rural China, remains underexplored. A cross-sectional study of 18,516 adolescents in 124 junior high schools in Ningxia, China, utilized the strengths and difficulties questionnaire to assess mental health. The findings highlighted a complex, nonlinear link between sleep duration and mental health, with a U-shaped trend for overall difficulties and an inverse U-shape for prosocial behavior. The study also explored potential mechanisms behind these relationships, suggesting that time allocation to activities such as screen time and outdoor activities could mediate the effects of sleep duration on mental health. Longer sleep durations could lead to less screen time and more outdoor engagement, both of which positively affect mental well-being. Balanced sleep duration is crucial for adolescent mental health. The study calls for interventions to improve sleep hygiene and mental health services in rural areas, emphasizing the need for policy support to address sleep deprivation and its impact on mental well-being.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "China", - "Male", - "Mental Health", - "Female", - "Rural Population", - "Sleep", - "Cross-Sectional Studies", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39730531", - "Title": "Scientific reports", - "ArticleTitle": "A chain-mediated model of the effect of physical exercise on loneliness.", - "Abstract": "The physical and mental health development of college students has gradually become an important topic of social concern. The academic community focuses on different ways of physical exercise to improve the mental health of college students. On the basis of sports psychology, this paper discusses the interaction mechanism between physical activity and social support, interpersonal relationship quality and loneliness of college students, that is, physical and mental health effects of physical activities to promote the psychological level of college students. By random sampling, 784 college students were investigated and analyzed with physical exercise scale, loneliness scale, interpersonal relationship scale and social support scale, based on the general characteristics of the demographics variables, and through the analysis of multiple regression path model, this paper further explored the mechanism of the effects of physical activity, social support, loneliness and interpersonal relationship quality of college students. The results showed that physical exercise had a negative predictive effect on loneliness(\u03b2 = -\u00a00.246, p<0.01) and a positive predictive effect on interpersonal relationship quality and social support(\u03b2\u2009=\u20090.186, p<0.01; \u03b2\u2009=\u20090.156, p<0.01).In addition, social support and interpersonal relationship quality play a mediating role between physical exercise and loneliness, including three mediating paths, namely, social support and interpersonal relationship quality play an independent mediating role, the link mediating effect of social support and interpersonal relationship quality. According to the theory of psychological needs, the results show that physical exercise has an indirect effect on loneliness of college students through the chain mediating effect of interpersonal relationship quality and social support. College students can improve the level of social support and the quality of interpersonal relationships, and reduce the sense of loneliness.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Loneliness", - "Humans", - "Exercise", - "Male", - "Female", - "Social Support", - "Students", - "Young Adult", - "Interpersonal Relations", - "Adult", - "Adolescent", - "Universities", - "Mental Health", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39730236", - "Title": "Sleep medicine", - "ArticleTitle": "Mental health and sleep routines: Uttarkashi, India tunnel collapse workers' experience.", - "Abstract": "Among the mental health outcomes and disaster types (determined by damage to life, property, long-term consequences, displacement, and unpredictability), floods are associated with anxiety and sleep problems, mudslides with anxiety and mood disturbance, volcanic eruptions with acute stress reactions, and earthquakes with anxiety, depression, and physical complaints. Disasters such as tunnel collapse are unique as it involves the healthy, without loss of personal property or displacement; hence, they can have very different health-related outcomes. In this study, we explore mental health and sleep-related issues in workers rescued from an under-construction collapsed tunnel trapped for 17 days. After the initial triage and stabilization and a detailed evaluation of their physical and mental health status, the participants responded to self-administered scales for assessing anxiety [Generalized Anxiety Disorder-7], depression [Patient Health Questionnaire-9], and insomnia [Insomnia Severity Index] in the local language (Hindi). A separate research team conducted open-ended interviews to explore daily routines and concerns, circadian rhythm, orientation to time and day of tunnel collapse to day of rescue events, and sleep routine (and other nuances such as sleep quality and daytime napping) during the 17 days of entrapment. Thirty-three workers consented and hailed from the northern and eastern states of India. They report a mix of hope and worry in the initial days. On the assessment of anxiety, depression, and sleep, only 2-5 scored above the cut-off value, and scales correlated with each other, though clinically it had no bearing. One-third were disoriented to the passage of time, which was related to difficulty falling asleep and more napping. Daytime napping was associated with delayed waketime. Those depressed had more difficulty in the onset, maintinance, and termination of sleep, and reduced total sleep time. Victims of tunnel collapse experience a different set of mental health and sleep problems compared to those reported in other disasters. The findings can partly be attributed to the disruption of light-dark cycles. As only a fraction develops these problems, there is a need for triaging while providing mental health and sleep-related interventions in such circumstances. Lastly, there is a need to establish a light-dark cycle to prevent disorientation among victims.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "India", - "Male", - "Adult", - "Female", - "Anxiety", - "Mental Health", - "Middle Aged", - "Disasters", - "Depression", - "Sleep Initiation and Maintenance Disorders", - "Sleep", - "Surveys and Questionnaires", - "Circadian Rhythm" - ] - }, - { - "PMID": "39729870", - "Title": "Environment international", - "ArticleTitle": "Life in green: Associations between greenspace availability and mental health over the lifecourse - A 40-year prospective birth cohort study.", - "Abstract": "This study supports the protective effects of greenspace on adult depressive symptoms, highlighting the significance of employing a spatial lifecourse epidemiology framework to examine the long-term effects of environmental factors on health over the lifecourse.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "New Zealand", - "Prospective Studies", - "Adult", - "Mental Health", - "Male", - "Female", - "Child", - "Young Adult", - "Infant", - "Child, Preschool", - "Birth Cohort", - "Parks, Recreational", - "Infant, Newborn", - "Depression" - ] - }, - { - "PMID": "39729805", - "Title": "Drug and alcohol dependence", - "ArticleTitle": "Tobacco cessation, mental health, and substance use in a community pharmacist-linked cessation program for people experiencing homelessness.", - "Abstract": "A community pharmacist-linked cessation program in homeless shelters was associated with reduced consumption and increased weekly quit attempts, highlighting its potential for scalability among people experiencing homelessness with high rates of co-occurring behavioral health conditions.", - "Predictions": [ - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Adult", - "Community Pharmacy Services", - "Community-Based Participatory Research", - "Ill-Housed Persons", - "Tobacco Use Cessation", - "Mental Health", - "Substance-Related Disorders", - "Program Evaluation", - "San Francisco", - "Counseling", - "Nicotine Replacement Therapy", - "Mentoring", - "Tobacco Products", - "Tobacco Use", - "Odds Ratio", - "Poisson Distribution", - "Logistic Models", - "Time Factors", - "Diagnosis, Dual (Psychiatry)", - "Mental Disorders" - ] - } -] \ No newline at end of file diff --git a/model/data/neoplasms.json b/model/data/neoplasms.json deleted file mode 100644 index 94d29c40f2937cfa6eab27688154e34a5f7ef556..0000000000000000000000000000000000000000 --- a/model/data/neoplasms.json +++ /dev/null @@ -1,489 +0,0 @@ -[ - { - "PMID": "39476057", - "Title": "Cancer research", - "ArticleTitle": "H4K20me3-Mediated Repression of Inflammatory Genes Is a Characteristic and Targetable Vulnerability of Persister Cancer Cells.", - "Abstract": "Anticancer therapies can induce cellular senescence or drug-tolerant persistence, two types of proliferative arrest that differ in their stability. While senescence is highly stable, persister cells efficiently resume proliferation upon therapy termination, resulting in tumor relapse. Here, we used an ATP-competitive mTOR inhibitor to induce and characterize persistence in human cancer cells of various origins. Using this model and previously described models of senescence, we compared the same cancer cell lines under the two types of proliferative arrest. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated \u03b2-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (senescence-associated secretory phenotype or SASP). A genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacologic inhibition of serine hydroxymethyltransferase, a key enzyme that feeds methyl groups from serine into 1C metabolism. Investigation into the relationship between 1C metabolism and the epigenetic regulation of transcription uncovered the presence of the repressive heterochromatic mark H4K20me3 at the promoters of SASP and IFN response genes in persister cells, whereas it was absent in senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study identifies distinctive features and actionable vulnerabilities of persister cancer cells and provides mechanistic insight into their low inflammatory activity. Significance: Cell persistence and senescence are distinct states of proliferative arrest induced by cancer therapy, with persister cells being characterized by the silencing of inflammatory genes through the heterochromatic mark H4K20me3. See related commentary by Schmitt, p. 7.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "Cellular Senescence", - "Histones", - "Cell Line, Tumor", - "Inflammation", - "Gene Expression Regulation, Neoplastic", - "Cell Proliferation", - "Neoplasms", - "TOR Serine-Threonine Kinases", - "Epigenesis, Genetic", - "Histone-Lysine N-Methyltransferase", - "Senescence-Associated Secretory Phenotype", - "Drug Resistance, Neoplasm", - "Glycine Hydroxymethyltransferase" - ] - }, - { - "PMID": "39475993", - "Title": "Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer", - "ArticleTitle": "Exploring disparities in healthcare utilization, cancer care experience, and beliefs about cancer among asian and hispanic cancer survivors.", - "Abstract": "The findings suggest tailored approaches to improve healthcare utilization rates among racial/ethnic minoritized groups and highlight the need for increased research and clinical practice efforts to address racial/ethnic disparities in the cancer care continuum.", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Adult", - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "Young Adult", - "Asian", - "Cancer Survivors", - "Health Knowledge, Attitudes, Practice", - "Healthcare Disparities", - "Hispanic or Latino", - "Neoplasms", - "Patient Acceptance of Health Care", - "SEER Program", - "United States" - ] - }, - { - "PMID": "39475987", - "Title": "Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer", - "ArticleTitle": "The potential characteristics of the sense of coherence in cancer radiotherapy patients and its correlation with coping strategies.", - "Abstract": "The SOC among cancer radiotherapy patients can be divided into three potential profiles. Younger patients with side effect have lower levels of the SOC. Adopting a acceptance-resignation coping strategies is related to a lower SOC, suggesting that enhancing the level of the SOC plays a positive role in helping patients cope with stressful events.", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Adaptation, Psychological", - "Female", - "Male", - "Sense of Coherence", - "Middle Aged", - "Neoplasms", - "Surveys and Questionnaires", - "China", - "Adult", - "Aged", - "Radiotherapy", - "Coping Skills" - ] - }, - { - "PMID": "39475848", - "Title": "JMIR cancer", - "ArticleTitle": "Impact of Patient Personality on Adherence to Oral Anticancer Medications: An Opportunity?", - "Abstract": "Adherence to prescribed oral anticancer therapy is an important determinant of patient outcomes, including progression-free and overall survival. While many factors (eg, medication side effects and out-of-pocket costs, problems with insurance authorization, and timely medication refills) can affect adherence, one that is relatively unexplored is the impact of a patient's attitude and personality. Patient personality influences medication adherence and persistence in nonmalignant chronic conditions such as cardiovascular disease and diabetes. In breast cancer and chronic myeloid leukemia, studies suggest that personality also affects adherence to oral chemotherapy which can be targeted to improve adherence. In this viewpoint, we highlight the opportunity of incorporating patient personality as interventions to oral cancer therapy adherence and discuss current barriers to implementation.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "Administration, Oral", - "Antineoplastic Agents", - "Medication Adherence", - "Neoplasms", - "Personality" - ] - }, - { - "PMID": "39475661", - "Title": "JCO precision oncology", - "ArticleTitle": "Expert-Guided Large Language Models for Clinical Decision Support in Precision Oncology.", - "Abstract": "Expert feedback and domain-specific data augment LLM performance. Future research should investigate responsible LLM integration into real-world clinical workflows.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "Precision Medicine", - "Decision Support Systems, Clinical", - "Medical Oncology", - "Neoplasms" - ] - }, - { - "PMID": "39475656", - "Title": "JCO clinical cancer informatics", - "ArticleTitle": "Identifying Oncology Patients at High Risk for Potentially Preventable Emergency Department Visits Using a Novel Definition.", - "Abstract": "Our novel definition of PPEDs appears promising in identifying oncology patients who could avoid the ED with targeted interventions. This work demonstrated that patients with early-stage disease, those with breast cancer, and those on systemic therapy are at the highest risk for PPEDs and may benefit from proactive interventions to avoid the ED. Although our definition requires validation, using ML models for more robust predictive modeling appears promising.", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Emergency Service, Hospital", - "Female", - "Male", - "Neoplasms", - "Middle Aged", - "Retrospective Studies", - "Aged", - "Adult", - "Machine Learning", - "Risk Assessment", - "Emergency Room Visits" - ] - }, - { - "PMID": "39475618", - "Title": "Science advances", - "ArticleTitle": "Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments.", - "Abstract": "Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2R\u03b2 when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/Fc\u03b3RIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Killer Cells, Natural", - "Humans", - "Tumor Microenvironment", - "Interleukin-15", - "Neoplasms", - "Cytotoxicity, Immunologic", - "Cell Line, Tumor", - "Signal Transduction", - "Cell Hypoxia" - ] - }, - { - "PMID": "39475601", - "Title": "Science advances", - "ArticleTitle": "Hybridized and engineered microbe for catalytic generation of peroxynitrite and cancer immunotherapy under sonopiezo initiation.", - "Abstract": "Living therapeutics is an emerging antitumor modality by living microorganisms capable of selective tropism and effective therapeutics. Nevertheless, primitive microbes could only present limited therapeutic functionalities against tumors. Hybridization of the microbes with multifunctional nanocatalysts is of great significance to achieve enhanced tumor catalytic therapy. In the present work, nitric oxide synthase (NOS)-engineered ", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Peroxynitrous Acid", - "Animals", - "Escherichia coli", - "Immunotherapy", - "Mice", - "Neoplasms", - "Catalysis", - "Nanoparticles", - "Cell Line, Tumor", - "Humans", - "Nitric Oxide Synthase", - "Nitric Oxide" - ] - }, - { - "PMID": "39475568", - "Title": "Science translational medicine", - "ArticleTitle": "Bayesian modeling for analyzing heterogeneous response in preclinical mouse tumor models.", - "Abstract": "In anticancer research, tumor growth measured in mouse models is important for assessing treatment efficacy for a treatment to progress to human clinical trials. Statistical analysis of time-to-event tumor volume data is complex because of heterogeneity in response and welfare-related data loss. Traditional statistical methods of testing the mean difference between groups are not robust because they assume common responses across a population. Heterogeneity in response is also seen in the clinic, and consequently, the assessment of the treatment considers the diversity through classification of the individual's response using the RECIST (Response Evaluation Criteria in Solid Tumors). To provide a comparable and translatable assessment of in vivo tumor response, we developed a statistical method called INSPECT (IN vivo reSPonsE Classification of Tumors) for analyzing heterogeneous responses through Bayesian modeling. This method can classify individual tumor behaviors into the categories of nonresponder, modest responder, stable responder, and regressing responder. Using both published and simulated data, we show that INSPECT methodology is more accurate and sensitive than existing methods with respect to balancing false-negative and false-positive rates. A case study demonstrates the value of INSPECT in drug projects for supporting the translation of drug efficacy from the preclinical phase into clinical trials. We also provide a package, \"INSPECTumours,\" that launches a web interface to enable users to conduct the analysis and generate reports.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Bayes Theorem", - "Animals", - "Mice", - "Disease Models, Animal", - "Neoplasms", - "Humans", - "Treatment Outcome", - "Computer Simulation", - "Antineoplastic Agents" - ] - }, - { - "PMID": "39475554", - "Title": "ACS nano", - "ArticleTitle": "Dual-Mode Reactive Oxygen Species-Stimulated Carbon Monoxide Release for Synergistic Photodynamic and Gas Tumor Therapy.", - "Abstract": "Controllable carbon monoxide (CO) release simulated by light-generated reactive oxygen species (ROS) represents a promising approach for cancer therapy but is hampered by low CO release rate and low ROS generation of conventional photosensitizers in hypoxia tumor microenvironments. In this study, we developed a highly efficient nanoplatform (TPyNO", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Reactive Oxygen Species", - "Carbon Monoxide", - "Photochemotherapy", - "Humans", - "Photosensitizing Agents", - "Animals", - "Mice", - "Prodrugs", - "Antineoplastic Agents", - "Neoplasms", - "Gases", - "Nanoparticles" - ] - }, - { - "PMID": "39475524", - "Title": "Biochemistry", - "ArticleTitle": "Sugar Highs: Recent Notable Breakthroughs in Glycobiology.", - "Abstract": "Glycosylation is biochemically complex and functionally critical to a wide range of processes and disease states, making it a vibrant area of contemporary research. Here, we highlight a selection of notable recent advances in the glycobiology of SARS-CoV-2 infection and immunity, cancer biology and immunotherapy, and newly discovered glycosylated RNAs. Together, these studies illustrate the significance of glycosylation in normal biology and the great promise of manipulating glycosylation for therapeutic benefit in disease.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Glycomics", - "Glycosylation", - "Immunotherapy", - "Neoplasms", - "SARS-CoV-2" - ] - }, - { - "PMID": "39475511", - "Title": "Cell reports", - "ArticleTitle": "Muscle inflammation is regulated by NF-\u03baB from multiple cells to control distinct states of wasting in cancer cachexia.", - "Abstract": "Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor \u03baB (NF-\u03baB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-\u03baB-activated cells and macrophages undergo crosstalk; NF-\u03baB", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Cachexia", - "Animals", - "NF-kappa B", - "Macrophages", - "Inflammation", - "Neoplasms", - "Humans", - "Mice", - "Muscle, Skeletal", - "Mice, Inbred C57BL", - "Muscular Atrophy", - "Male" - ] - }, - { - "PMID": "39475510", - "Title": "Cell reports", - "ArticleTitle": "Deciphering the regulatory mechanisms and biological implications of ARID1A missense mutations in cancer.", - "Abstract": "ARID1A is a key component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex and functions as a critical tumor suppressor in various cancers. In this study, we find that tumor cells with hotspot missense mutations in ARID1A (AT-rich interactive domain-containing protein 1A) exhibit a malignant phenotype. Mechanistically, these mutations facilitate the translocation of ARID1A mutant proteins to the cytoplasm by the nucleocytoplasmic shuttler XPO1 (exportin 1). Subsequently, the E3 ubiquitin ligase STUB1 ubiquitinates the ARID1A mutant protein, marking it for degradation. Knocking down STUB1 or inhibiting XPO1 stabilizes the ARID1A mutant protein, retaining it in the nucleus, which restores the assembly of the cBAF complex, the chromatin remodeling function, and the normal expression of genes related to the MAPK and anti-apoptotic pathways, thereby decreasing the tumor burden. Our research shows that nuclear-localized mutated ARID1A proteins retain tumor-suppressive function. We identify promising strategies to treat cancers harboring missense mutations in the BAF complex.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "DNA-Binding Proteins", - "Mutation, Missense", - "Transcription Factors", - "Animals", - "Neoplasms", - "Cell Line, Tumor", - "Exportin 1 Protein", - "Karyopherins", - "Mice", - "Chromatin Assembly and Disassembly", - "Ubiquitin-Protein Ligases", - "Ubiquitination", - "Mice, Nude", - "Gene Expression Regulation, Neoplastic", - "Cell Nucleus" - ] - }, - { - "PMID": "39475356", - "Title": "Cancer immunology research", - "ArticleTitle": "BTN2A1: A Novel Target to Boost Tumor Killing Capacity of Human \u03b3\u03b4 T Cells.", - "Abstract": "\u03b3\u03b4 T cells have recently raised great interest as effector cells in cancer immunotherapy because of their HLA-independent mode of action and their broad tumor reactivity. To translate the application of \u03b3\u03b4 T cells into clinically effective immunotherapies, specific tumor targeting and/or boosting of \u03b3\u03b4 T-cell activation in vivo seem to be a critical step. In this issue, Le Floch and colleagues report a new strategy for enabling \u03b3\u03b4 T cells to be specifically activated to kill acute lymphoblastic leukemia cells and solid tumor cells using agonistic BTN2A1 antibodies. See related article by Le Floch et al., p. 1677.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "Receptors, Antigen, T-Cell, gamma-delta", - "Butyrophilins", - "Neoplasms", - "Immunotherapy", - "Lymphocyte Activation", - "Animals", - "Cytotoxicity, Immunologic", - "T-Lymphocytes" - ] - }, - { - "PMID": "39475167", - "Title": "Cancer medicine", - "ArticleTitle": "Treatment of obstructive sleep apnea with CPAP improves daytime sleepiness and fatigue in cancer patients.", - "Abstract": "PAP therapy for OSA in cancer patients improves EDS and fatigue. Larger studies are necessary to evaluate the efficacy of PAP in improving fatigue in this population.", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Sleep Apnea, Obstructive", - "Continuous Positive Airway Pressure", - "Male", - "Female", - "Neoplasms", - "Middle Aged", - "Fatigue", - "Retrospective Studies", - "Aged", - "Treatment Outcome", - "Disorders of Excessive Somnolence", - "Adult", - "Sleepiness", - "Patient Compliance" - ] - }, - { - "PMID": "39475101", - "Title": "Cancer medicine", - "ArticleTitle": "Perceptions of Multicancer Detection Tests Among Primary Care Physicians and Laypersons: A Qualitative Study.", - "Abstract": "There is a major need for more rigorous data regarding MCDs to inform the development of guidelines for use as cancer screening tools.", - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Physicians, Primary Care", - "Female", - "Male", - "Early Detection of Cancer", - "Middle Aged", - "Neoplasms", - "Qualitative Research", - "Adult", - "Focus Groups", - "Health Knowledge, Attitudes, Practice", - "Aged" - ] - }, - { - "PMID": "39475053", - "Title": "Advanced science (Weinheim, Baden-Wurttemberg, Germany)", - "ArticleTitle": "Targeting BRIX1 via Engineered Exosomes Induces Nucleolar Stress to Suppress Cancer Progression.", - "Abstract": "Elevated ribosome biogenesis correlates with the rapid growth and progression of cancer. Targeted blockade of ribosome biogenesis induces nucleolar stress, which preferentially leads to the elimination of malignant cells. In this study, it is reported that the nucleolar protein BRIX1 is a critical regulator for the homeostasis between ribosome biogenesis and p53 activation. BRIX1 facilitated the processing of pre-rRNA by supporting the formation of the PeBoW complex. In addition, BRIX1 prevented p53 activation in response to nucleolar stress by impairing the interactions between MDM2 and the ribosomal proteins, RPL5, and RPL11, thereby triggering the resistance of cancer cells to chemotherapy. Conversely, depletion of BRIX1 induced nucleolar stress, which in turn activated p53 through RPL5 and RPL11, consequently inhibiting the growth of tumors. Moreover, engineered exosomes are developed, which are surface-decorated with iRGD, a tumor-homing peptide, and loaded with siRNAs specific to BRIX1, for the treatment of cancer. iRGD-Exo-siBRIX1 significantly suppressed the growth of colorectal cancer and enhanced the efficacy of 5-FU chemotherapy in vivo. Overall, the study uncovers that BRIX1 functions as an oncoprotein to promote rRNA synthesis and dampen p53 activity, and also implies that targeted inhibition of BRIX1 via engineered exosomes can be a potent approach for cancer therapy.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Humans", - "Exosomes", - "Mice", - "Animals", - "Cell Line, Tumor", - "Disease Progression", - "Disease Models, Animal", - "Tumor Suppressor Protein p53", - "Neoplasms", - "Cell Nucleolus", - "Nuclear Proteins", - "Ribosomal Proteins" - ] - }, - { - "PMID": "39475021", - "Title": "British journal of hospital medicine (London, England : 2005)", - "ArticleTitle": "Analysis of Risk Factors for Multidrug-Resistant Organism (MDRO) Infections and Construction of a Risk Prediction Model in a Cancer Specialty Hospital.", - "Abstract": { - "b": "Conclusion", - "i": "p" - }, - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Risk Factors", - "Middle Aged", - "Drug Resistance, Multiple, Bacterial", - "Nomograms", - "Aged", - "Anti-Bacterial Agents", - "Risk Assessment", - "ROC Curve", - "Cross Infection", - "Cancer Care Facilities", - "Neoplasms", - "Retrospective Studies", - "Bacterial Infections", - "Adult" - ] - }, - { - "PMID": "39474936", - "Title": "International journal of cancer", - "ArticleTitle": "Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system.", - "Abstract": "Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.", - "Predictions": [ - "Neoplasms" - ], - "MeshTerms": [ - "Animals", - "Humans", - "CRISPR-Cas Systems", - "Exosomes", - "Gene Editing", - "Immunotherapy", - "Neoplasms" - ] - }, - { - "PMID": "39474868", - "Title": "Open biology", - "ArticleTitle": "The post-translational modification O-GlcNAc is a sensor and regulator of metabolism.", - "Abstract": "Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.", - "Predictions": [ - "Neoplasms", - "Diabetes Mellitus" - ], - "MeshTerms": [ - "Protein Processing, Post-Translational", - "Humans", - "Acetylglucosamine", - "Animals", - "Neoplasms", - "Signal Transduction", - "Glycosylation", - "Diabetes Mellitus", - "Neurodegenerative Diseases" - ] - }, - { - "PMID": "39474469", - "Title": "Pain research & management", - "ArticleTitle": "Dexmedetomidine Combined With Patient-Controlled Analgesia for Palliative Sedation in Terminal-Stage Cancer Patients With Refractory Pain: A Retrospective Analysis of Nine Cases.", - "Abstract": { - "b": "Conclusion:", - "i": "p" - }, - "Predictions": [ - "Neoplasms", - "Male" - ], - "MeshTerms": [ - "Humans", - "Dexmedetomidine", - "Male", - "Retrospective Studies", - "Female", - "Palliative Care", - "Aged", - "Middle Aged", - "Analgesia, Patient-Controlled", - "Cancer Pain", - "Pain, Intractable", - "Hypnotics and Sedatives", - "Neoplasms", - "Analgesics, Non-Narcotic", - "Pain Management", - "Aged, 80 and over", - "Adult" - ] - } -] \ No newline at end of file diff --git a/model/data/noncommunicable_diseases.json b/model/data/noncommunicable_diseases.json deleted file mode 100644 index 37ec530485eef820386d6656dd562011755b03e6..0000000000000000000000000000000000000000 --- a/model/data/noncommunicable_diseases.json +++ /dev/null @@ -1,463 +0,0 @@ -[ - { - "PMID": "39737510", - "Title": "The Indian journal of medical research", - "ArticleTitle": "Prevalence of risk factors of non-communicable diseases among adults in urban slums of Burdwan municipality, West Bengal: A cross sectional study.", - "Abstract": "Background & objectives Non communicable diseases (NCD) have emerged as one of the leading causes of mortality and morbidity in India in the past few decades. This study was undertaken to determine the prevalence of NCD risk factors among adults residing in urban slums of West Bengal, India. Methods A community based cross-sectional study was conducted among adult population aged 15-69 yr in urban slums of Purba Burdwan district, West Bengal over a period of two months. A total of with 180 study participants selected by simple random sampling. Data were collected using a semi-structured schedule, adopted from the WHO STEPS questionnaire. Analysis was done using Chi-square test and logistic analysis. P<0.05 was considered to be significant. Results The prevalence of alcohol intake, smoking, inadequate vegetable and fruit intake, reduced physical activity and overweight and/or obesity was 27.8, 15.6 , 93.3 , 32.8 and 15.5 per cent, respectively among the study population. A significant association of smoking was found among males [Adjusted odds ratio (AOR) 2.54 Confidence interval (CI):1.76-6.99], those living in joint families (AOR 1.24 CI:1.17-1.34) and without any formal education (AOR 3.22 CI:1.50-13.87). The odds of alcohol consumption alcohol, were higher among those aged >44 yr (AOR 1.98 CI:1.34-7.22), males (AOR 2.65 CI:1.89-8.76), those who had no formal education (AOR 1.43 CI:1.23-2.77) and those who were employed (AOR 1.34 CI:1.02-4.09). Again respondents aged 45-69 yr (AOR 4.45 CI:1.79-10.99) and married (AOR 3.77 CI:1.76-7.44) were associated with overweight and or/obesity. Furthermore, age AOR 5.04 CI:1.34-17.98) and employment status (AOR 1.78 CI:1.67-3.09) were significantly associated with raised blood pressure in multivariate analysis. Interpretation & conclusions The high prevalence of risk factors of NCD in the study population is suggestive of a need for health promotion by creating awareness about the dangers of smoking and alcohol consumption as well as educating the people about the benefits of physical activity and eating a healthy diet.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Adult", - "Middle Aged", - "India", - "Male", - "Female", - "Noncommunicable Diseases", - "Risk Factors", - "Aged", - "Poverty Areas", - "Adolescent", - "Prevalence", - "Smoking", - "Alcohol Drinking", - "Obesity", - "Cross-Sectional Studies", - "Young Adult", - "Urban Population" - ] - }, - { - "PMID": "39737504", - "Title": "The Indian journal of medical research", - "ArticleTitle": "Stem cell therapy approaches for non-malignant diseases & non-haematological diseases in India: A systematic review.", - "Abstract": "Background & objectives Our study aims to provide the diversity of stem cell use for non-malignant, non-haematological diseases in India through the lens of clinical trials. Methods A PRISMA approach was used to evaluate the safety and efficacy of stem cell use for the period 2001-2021 in India. The outcomes were measured using each disease category, types of stem cells, the origin of stem cells, safety, and efficacy. Results Of the 9206 studies screened, 61 studies that were relevant to stem cell use for non-malignant diseases were included for analysis. Autologous stem cells (75%) were used predominantly compared to allogenic stem cells (18.33%), followed by mixed type (6.67%). Use of bone marrow-derived stem cells (51%) was dominant, followed by melanocytes (19%), adipose (7%), haematopoietic (12%), and (11%) other types of stem cells. The study revealed 37 randomized clinical trial studies conducted in the government research hospital compared to the non-government. Interpretation & conclusions Maintaining the gold standard for stem cell therapy requires randomized clinical trials with large sample sizes, control groups, failures, adverse effects, etc. It is important to have a monitoring and regulation system in stem cell clinical research activities with enough preclinical data and repeated exchanges between the bench and the bedside.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "India", - "Stem Cell Transplantation", - "Cell- and Tissue-Based Therapy", - "Noncommunicable Diseases" - ] - }, - { - "PMID": "39736607", - "Title": "International journal for equity in health", - "ArticleTitle": "Social and economic impacts of non-communicable diseases by gender and its correlates: a literature review.", - "Abstract": "NCDs pose a significant social and economic burden due to their impact on the health of the population, healthcare systems, and the economies of households and nations, which will likely increase over time. This impact is closely related to gender, although it has been scarcely documented. Public policies aimed at enhancing access and achieving UHC are essential to guarantee effective financial protection in health, especially for the most vulnerable sectors of the population.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Noncommunicable Diseases", - "Female", - "Male", - "Sex Factors", - "Employment", - "Socioeconomic Factors", - "Poverty", - "Universal Health Insurance", - "Cost of Illness" - ] - }, - { - "PMID": "39732655", - "Title": "BMC public health", - "ArticleTitle": "Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.", - "Abstract": "This review examines current applications of ML in NCDs, highlighting potential biases and strategies for mitigation. Future research should focus on communicable diseases and the transferability of ML models in low and middle-income settings. Our findings can guide the development of guidelines for the equitable use of ML to improve population health outcomes.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Noncommunicable Diseases", - "Machine Learning", - "Bias", - "Population Health", - "Algorithms" - ] - }, - { - "PMID": "39731009", - "Title": "BMC public health", - "ArticleTitle": "Investigating the influence of working status changes on physical activity and non-communicable diseases in Korean middle-aged and older adults: insights from a longitudinal panel study.", - "Abstract": "This longitudinal study revealed that individuals engaged in or transitioning to employment displayed a reduced likelihood of regular PA. Moreover, those with work history, transitioning, or consistently working, exhibited increased vulnerability to all NCDs compared to those without work experience.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Republic of Korea", - "Male", - "Female", - "Middle Aged", - "Longitudinal Studies", - "Noncommunicable Diseases", - "Exercise", - "Employment", - "Aged", - "Risk Factors" - ] - }, - { - "PMID": "39725416", - "Title": "BMJ open", - "ArticleTitle": "How does the level of functional impairment vary in individuals with non-communicable disease and comorbidity? Cross-sectional analysis of linked census and administrative data in Aotearoa New Zealand.", - "Abstract": "Functional impairment was strongly patterned by NCD type. NCD prevention efforts and disability supports are needed to reduce the burden of disability experienced.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "New Zealand", - "Cross-Sectional Studies", - "Male", - "Female", - "Middle Aged", - "Aged", - "Noncommunicable Diseases", - "Adult", - "Comorbidity", - "Censuses", - "Adolescent", - "Young Adult", - "Aged, 80 and over", - "Prevalence", - "Child", - "Child, Preschool" - ] - }, - { - "PMID": "39722627", - "Title": "Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit", - "ArticleTitle": "The impact of health taxes on consumption of tobacco and sugar-sweetened beverages in the Eastern Mediterranean Region.", - "Abstract": "Consumption of tobacco, nicotine and sugar-sweetened beverages (SSBs) poses a significant risk to public health, contributing to increases in noncommunicable diseases (NCDs) such as cardiovascular disease, diabetes, cancer, and obesity. Globally, regular consumption of SSBs increases the risk of type 2 diabetes by 26%, and deaths related to tobacco and nicotine consumption exceed 8 million annually, including 1.3 million due to exposure to second-hand smoke. This loss of lives and the negative impact on health underscore the urgent need for effective public health interventions to curb the consumption of these harmful products.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Sugar-Sweetened Beverages", - "Taxes", - "Tobacco Products", - "Mediterranean Region", - "Noncommunicable Diseases" - ] - }, - { - "PMID": "39709790", - "Title": "Redox biology", - "ArticleTitle": "Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.", - "Abstract": "Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "NF-E2-Related Factor 2", - "Humans", - "Animals", - "Noncommunicable Diseases", - "Oxidative Stress", - "Reactive Oxygen Species", - "Oxidation-Reduction", - "Disease Models, Animal", - "Inflammation", - "Gene Expression Regulation" - ] - }, - { - "PMID": "39702198", - "Title": "BMC geriatrics", - "ArticleTitle": "Age- and sex-disaggregated disease burden among the older persons in India.", - "Abstract": "This comprehensive assessment of the differentials in disease burden among older persons across age, sex and states of India, and the gaps identified in the service utilisation data capture by age and sex for the older persons in the national health programs can provide crucial inputs for strengthening the on-going public health policy and programmatic efforts aimed at improving the health and well-being of the growing older population in India.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Aged", - "Female", - "Male", - "India", - "Middle Aged", - "Aged, 80 and over", - "Noncommunicable Diseases", - "Cost of Illness", - "Disability-Adjusted Life Years", - "Sex Factors", - "Age Factors", - "Global Burden of Disease", - "Wounds and Injuries" - ] - }, - { - "PMID": "39699459", - "Title": "Revista brasileira de epidemiologia = Brazilian journal of epidemiology", - "ArticleTitle": "Chronic noncommunicable diseases and absenteeism from work: National Survey of Health, 2019.", - "Abstract": "The burden of disease and multimorbidity are highly prevalent among employed individuals and are strongly related to absenteeism from work, especially among women. In this sense, workers must be the target of interventions to reduce the impact of chronic noncommunicable diseases.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Absenteeism", - "Male", - "Female", - "Brazil", - "Cross-Sectional Studies", - "Adult", - "Middle Aged", - "Chronic Disease", - "Noncommunicable Diseases", - "Prevalence", - "Health Surveys", - "Young Adult", - "Adolescent", - "Sex Distribution", - "Socioeconomic Factors", - "Cost of Illness", - "Multimorbidity", - "Sociodemographic Factors" - ] - }, - { - "PMID": "39697299", - "Title": "Frontiers in public health", - "ArticleTitle": "Non-communicable diseases related multimorbidity, catastrophic health expenditure, and associated factors in Ernakulam district.", - "Abstract": "The high prevalence of multimorbidity and associated CHE among individuals over 60\u202fyears highlights the urgent need for the National Programme for the Prevention and Control of Non-Communicable Diseases to prioritise multimorbidity and its management, especially above 60 years within this age group.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Male", - "Female", - "Cross-Sectional Studies", - "Multimorbidity", - "Noncommunicable Diseases", - "Health Expenditures", - "Prevalence", - "Aged", - "Adult", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39696316", - "Title": "Health research policy and systems", - "ArticleTitle": "Enhancing multi-sectoral collaborations for the prevention and control of NCDs in Thailand with a new approach.", - "Abstract": "This new approach (middle-management oriented), if implemented, may encourage more commitment from the Ministries' representatives, policy-relevant knowledge generation and effective communications between ministries involved in an MSC. Ideally, it would complement the conventional approach (top-management oriented) in enhancing the MSC for controlling NCDs, and thereby bring hope for achieving the NCD-related SDGs for Thailand and possibly other countries as well.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Thailand", - "Humans", - "Noncommunicable Diseases", - "Stakeholder Participation", - "Health Policy", - "Sustainable Development", - "Intersectoral Collaboration", - "Cooperative Behavior" - ] - }, - { - "PMID": "39696309", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Prevalence of diabetes and its associated factors in Cape Verde: an analysis of the 2020 WHO STEPS survey on non-communicable diseases risk factors.", - "Abstract": "Not applicable.", - "Predictions": [ - "Noncommunicable Diseases", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Adult", - "Male", - "Female", - "Diabetes Mellitus, Type 2", - "Prevalence", - "Aged", - "Risk Factors", - "Adolescent", - "Young Adult", - "Cabo Verde", - "Prediabetic State", - "Noncommunicable Diseases", - "World Health Organization", - "Cross-Sectional Studies", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39695503", - "Title": "BMC public health", - "ArticleTitle": "The relationship between non-communicable disease risk and mental wellbeing in adolescence: a cross-sectional study utilising objective measures in Indonesia.", - "Abstract": "Our analysis also shows that these NCD risks (both individual risks and co-occurring risk count) are related to poorer profiles of mental wellbeing in adolescents, after adjusting for likely confounders.", - "Predictions": [ - "Noncommunicable Diseases", - "Mental Health" - ], - "MeshTerms": [ - "Humans", - "Indonesia", - "Adolescent", - "Male", - "Female", - "Noncommunicable Diseases", - "Cross-Sectional Studies", - "Risk Factors", - "Mental Health", - "Quality of Life", - "Prevalence" - ] - }, - { - "PMID": "39693027", - "Title": "Sub-cellular biochemistry", - "ArticleTitle": "Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant.", - "Abstract": "A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7\u00a0days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery (\"chronobiotic effect\"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100\u00a0mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10\u00a0mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Melatonin", - "Humans", - "Animals", - "Antioxidants", - "Noncommunicable Diseases", - "Circadian Rhythm", - "Cytoprotection", - "Inflammation" - ] - }, - { - "PMID": "39683555", - "Title": "Nutrients", - "ArticleTitle": "Risky Behaviors for Non-Communicable Diseases: Italian Adolescents' Food Habits and Physical Activity.", - "Abstract": "Many adolescents lead unhealthy lifestyles, but younger adolescents and girls appear to be at higher risk of unhealthy behaviors. Targeted initiatives promoting regular physical activity and balanced diets in schools, involving parents and teachers in a collaborative plan, are essential to improving adolescents' health and well-being.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Adolescent", - "Male", - "Female", - "Italy", - "Exercise", - "Feeding Behavior", - "Cross-Sectional Studies", - "Noncommunicable Diseases", - "Health Knowledge, Attitudes, Practice", - "Young Adult", - "Child", - "Adolescent Behavior", - "Surveys and Questionnaires", - "Health Risk Behaviors", - "Risk-Taking", - "Diet" - ] - }, - { - "PMID": "39678524", - "Title": "Iranian journal of medical sciences", - "ArticleTitle": "Clustering the Economic Status via Partitioning around Medoid and Its Association with Common Non-communicable Diseases.", - "Abstract": "The findings of the present study showed that economic status was significantly associated with the majority of NCDs.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Noncommunicable Diseases", - "Female", - "Male", - "Middle Aged", - "Adult", - "Aged", - "Iran", - "Economic Status", - "Cluster Analysis", - "Cohort Studies" - ] - }, - { - "PMID": "39671524", - "Title": "American journal of physical medicine & rehabilitation", - "ArticleTitle": "Correlation Between Self-reported or Supervised Physical Activity in Noncommunicable Diseases and Comorbidities During COVID-19 Pandemic: A Systematic Review.", - "Abstract": "There is evidence that exercise can protect people with noncommunicable diseases during the COVID-19 pandemic.Registration: Registered with Prospero registry.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "COVID-19", - "Exercise", - "Comorbidity", - "Noncommunicable Diseases", - "SARS-CoV-2", - "Self Report", - "Pandemics" - ] - }, - { - "PMID": "39662975", - "Title": "Global health, science and practice", - "ArticleTitle": "Service Delivery Redesign for Noncommunicable Disease Management: Assessment of Needs and Solutions Through a Co-Creation Process in Argentina.", - "Abstract": "Our research highlights the potential for Argentina's primary care system to initiate transformative, system-level changes aimed at improving health outcomes. We propose an innovative methodological assessment and co-design for improving primary care.", - "Predictions": [ - "Noncommunicable Diseases", - "Diabetes type 2" - ], - "MeshTerms": [ - "Humans", - "Argentina", - "Noncommunicable Diseases", - "Primary Health Care", - "Male", - "Female", - "Cross-Sectional Studies", - "Middle Aged", - "Delivery of Health Care", - "Focus Groups", - "Adult", - "Aged", - "Disease Management", - "Health Services Accessibility", - "Needs Assessment", - "Diabetes Mellitus, Type 2", - "Delphi Technique" - ] - }, - { - "PMID": "39662129", - "Title": "Public health", - "ArticleTitle": "Non-communicable disease mortality and economic costs attributable to high body mass index in Argentina.", - "Abstract": "The burden of NCD mortality and associated economic costs attributable to high BMI in Argentina are substantial, highlighting the urgent need for multi-sectoral interventions to address the increasing prevalence of overweight and obesity.", - "Predictions": [ - "Noncommunicable Diseases" - ], - "MeshTerms": [ - "Humans", - "Argentina", - "Body Mass Index", - "Male", - "Female", - "Noncommunicable Diseases", - "Adult", - "Middle Aged", - "Obesity", - "Aged", - "Cost of Illness", - "Risk Assessment", - "Overweight" - ] - } -] \ No newline at end of file diff --git a/model/data/pubmedData.xml b/model/data/pubmedData.xml deleted file mode 100644 index 93831bc4500b35c2a911d516b37ee24a560f86b5..0000000000000000000000000000000000000000 Binary files a/model/data/pubmedData.xml and /dev/null differ diff --git a/model/data/training_data.json b/model/data/training_data.json deleted file mode 100644 index f58122136d72e51a38cc69b2ad71188d1878f206..0000000000000000000000000000000000000000 --- a/model/data/training_data.json +++ /dev/null @@ -1,6693 +0,0 @@ -[ - { - "PMID": "39476387", - "Title": "Current opinion in anaesthesiology", - "ArticleTitle": "Caring for patients with diabetes in the outpatient surgical setting: current recommendations and controversies.", - "Abstract": "Future research needs to specifically examine chronic blood glucose control, day of surgery targets, effective home medication management and the risk of perioperative hyperglycemia in ambulatory surgery. Education, protocols and resources to support the care of perioperative patients in the outpatient setting will aid providers on the day of surgery and provide optimal diabetes care leading up to surgery.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ambulatory Surgical Procedures", - "Hypoglycemic Agents", - "Diabetes Mellitus", - "Perioperative Care", - "Blood Glucose", - "Insulin", - "Ambulatory Care", - "Postoperative Care", - "Practice Guidelines as Topic", - "Hyperglycemia", - "Preoperative Care" - ] - }, - { - "PMID": "39476122", - "Title": "PloS one", - "ArticleTitle": "Burden of diabetes mellitus in Weifang: Changing trends in prevalence and deaths from 2010 to 2021.", - "Abstract": "The city is faced with a significant challenge of diabetes, which is influenced by factors such as gender, age, cultural background, and marital status. Unspecified diabetes mellitus (DM) with ketoacidosis (10.03%) and T2DM with renal complications (0.23%) are identified as the primary direct and underlying causes of death among diabetic patients, respectively. This study serves as a valuable reference for other regions in terms of diabetes prevention, control, and the management of chronic diseases.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Aged", - "Middle Aged", - "Prevalence", - "Diabetes Mellitus", - "Adult", - "China", - "Cost of Illness", - "Adolescent", - "Aged, 80 and over", - "Young Adult", - "Disability-Adjusted Life Years", - "Cause of Death", - "Child" - ] - }, - { - "PMID": "39474868", - "Title": "Open biology", - "ArticleTitle": "The post-translational modification O-GlcNAc is a sensor and regulator of metabolism.", - "Abstract": "Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.", - "Predictions": [], - "MeshTerms": [ - "Protein Processing, Post-Translational", - "Humans", - "Acetylglucosamine", - "Animals", - "Neoplasms", - "Signal Transduction", - "Glycosylation", - "Diabetes Mellitus", - "Neurodegenerative Diseases" - ] - }, - { - "PMID": "39474832", - "Title": "Medical decision making : an international journal of the Society for Medical Decision Making", - "ArticleTitle": "Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models.", - "Abstract": "Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Quality-Adjusted Life Years", - "Computer Simulation", - "Hypoglycemic Agents", - "Diabetes Mellitus, Type 2", - "Cost-Benefit Analysis", - "United Kingdom", - "Technology Assessment, Biomedical", - "Diabetes Mellitus", - "Female", - "Male" - ] - }, - { - "PMID": "39472978", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Association between night blindness history and risk of diabetes in the Chinese population: a multi-center, cross sectional study.", - "Abstract": "The results suggest that NB history might be associated with increased odds of diabetes in Chinese community-dwelling adults.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Cross-Sectional Studies", - "Middle Aged", - "Male", - "Female", - "Adult", - "Aged", - "China", - "Diabetes Mellitus", - "Adolescent", - "Young Adult", - "Night Blindness", - "Risk Factors", - "Aged, 80 and over", - "East Asian People" - ] - }, - { - "PMID": "39472915", - "Title": "BMC health services research", - "ArticleTitle": "Geographical Access to Point-of-care diagnostic tests for diabetes, anaemia, Hepatitis B, and human immunodeficiency virus in the Bono Region, Ghana.", - "Abstract": "The findings revealed moderate access to all the tests in districts across the region. However, geographical access to glucose, Hb, Hep B, and HIV POC testing was poor (distance\u2009\u2265\u200910\u00a0km and travel time of \u2265\u200993\u00a0min), in the Banda district. This study showed the need to prioritise the Banda district for targeted improvement for all the tests. A further study is recommended to identify potential solutions to addressing the POC testing implementation in the BR, as demonstrated by this study.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ghana", - "HIV Infections", - "Health Services Accessibility", - "Anemia", - "Hepatitis B", - "Diabetes Mellitus", - "Point-of-Care Testing", - "Point-of-Care Systems" - ] - }, - { - "PMID": "39471268", - "Title": "Journal of managed care & specialty pharmacy", - "ArticleTitle": "Potential benefits of incorporating social determinants of health screening on comprehensive medication management effectiveness.", - "Abstract": "Although not statistically significant, the results of this pilot evaluation suggest the potential for meaningful clinical improvements from screening and referral of SDoH needs as a part of CMM encounters. These results should be corroborated using a larger, more robust study design.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Retrospective Studies", - "Social Determinants of Health", - "Female", - "Male", - "Middle Aged", - "Medication Therapy Management", - "Aged", - "Pharmacists", - "Referral and Consultation", - "Mass Screening", - "Adult", - "Cohort Studies", - "Hypertension", - "Diabetes Mellitus", - "Chronic Disease" - ] - }, - { - "PMID": "39470899", - "Title": "Current diabetes reports", - "ArticleTitle": "Implementation Science and Pediatric Diabetes: A Scoping Review of the State of the Literature and Recommendations for Future Research.", - "Abstract": "Of 23 papers identified, 19 were published since 2017 and 21 focused on type 1 diabetes. Most involved medical evidence-based practices (EBPs; n\u2009=\u200915), whereas fewer focused on psychosocial (n\u2009=\u20097) and diabetes education (n\u2009=\u20092). The majority either identified barriers and facilitators of implementing an EBP (n\u2009=\u200911) or were implementation trials (n\u2009=\u200911). Fewer studies documented gaps in EBP implementation in standard care (n\u2009=\u20097) or development of implementation strategies (n\u2009=\u20091). Five papers employed IS theories and two aimed to improve equity. There is a paucity of IS research in pediatric diabetes care literature. Few papers employed IS theory, used consistent IS terminology, or described IS strategies or outcomes. Guidance for future research to improve IS research in pediatric diabetes is offered.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Implementation Science", - "Child", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus", - "Pediatrics", - "Evidence-Based Practice" - ] - }, - { - "PMID": "39470889", - "Title": "Biogerontology", - "ArticleTitle": "A novel (-)-(2S)-7,4'-dihydroxyflavanone compound for treating age-related diabetes mellitus through immunoinformatics-guided activation of CISD3.", - "Abstract": "The iron-sulfur domain (CISD) proteins of CDGSH are classified into three classes: CISD1, CISD2, and CISD3. During premature ageing, mutations that affect these proteins, namely their binding sites, could result in reduced protein production and an inability to preserve cellular integrity. Consequently, this leads to the development of conditions such as diabetes. Notably, CISD3 plays a crucial role in the management of age-related disorders such as Wolfram syndrome, which is often referred to as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). Computational analyses have predicted that CISD3 regulates the redox state, safeguards the endoplasmic reticulum and mitochondria, and maintains intracellular calcium levels. CISD3, a member of a recently discovered gene family associated with the CDGSH iron protein apoptotic compensatory response, fulfils a crucial function in mitigating the effects of accelerated ageing. The compound \"(-)-(2S)-7,4'-Dihydroxyflavanone\" has been discovered by computational drug design as a possible activator of CISD3. It shows potential therapeutic benefits in ameliorating metabolic dysfunction and enhancing glucose regulation. The ligand binds to the binding pocket of the CISD3 protein, increasing the stability of the protein and enhancing its functionality. The current research investigates the binding processes of the molecule in various structures and its anticipated effects on these tissues, therefore providing valuable insights into the mitigation of age-related diabetes and metabolic dysfunction. The projected tripling of the worldwide population of individuals aged 50 and above by 2050 necessitates the urgent development of immunoinformatics-based approaches, including pharmaceutical therapies that target CISD3, to prevent age-related pathologies. The stimulation of CISD3, namely by compounds such as \"(-)-(2S)-7,4'-Dihydroxyflavanone\", has the potential to counteract telomere shortening and improve metabolic pathways.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Aging", - "Flavanones", - "Hypoglycemic Agents", - "Molecular Docking Simulation", - "Computational Biology", - "Drug Design", - "Immunoinformatics" - ] - }, - { - "PMID": "39470403", - "Title": "The journals of gerontology. Series B, Psychological sciences and social sciences", - "ArticleTitle": "Economic Disadvantage During Childhood, Obesity, and Diabetes Across Three Birth Cohorts of Older Mexicans.", - "Abstract": "High body weight across Mexican birth cohorts seemed to offset the potential benefits from improvements in childhood conditions on adult diabetes risk.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Middle Aged", - "Aged", - "Mexico", - "Diabetes Mellitus", - "Prevalence", - "Obesity", - "Birth Cohort", - "Body Mass Index", - "Adverse Childhood Experiences", - "Overweight", - "Poverty", - "North American People" - ] - }, - { - "PMID": "39468609", - "Title": "Stem cell research & therapy", - "ArticleTitle": "Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives.", - "Abstract": "Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Mesenchymal Stem Cell Transplantation", - "Mesenchymal Stem Cells", - "Animals", - "Insulin-Secreting Cells", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39468602", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Lipids as the link between central obesity and diabetes: perspectives from mediation analysis.", - "Abstract": "In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Obesity, Abdominal", - "Male", - "Female", - "Middle Aged", - "Lipids", - "Mediation Analysis", - "Adult", - "Risk Factors", - "Waist Circumference", - "Longitudinal Studies", - "Diabetes Mellitus", - "Biomarkers", - "Diabetes Mellitus, Type 2", - "Follow-Up Studies", - "Aged", - "Prognosis", - "Triglycerides" - ] - }, - { - "PMID": "39466432", - "Title": "Applied microbiology and biotechnology", - "ArticleTitle": "Gut microbiota predict retinopathy in patients with diabetes: A longitudinal cohort study.", - "Abstract": "The gut microbiota has emerged as an independent risk factor for diabetes and its complications. This research aimed to delve into the intricate relationship between the gut microbiome and diabetic retinopathy (DR) through a dual approach of cross-sectional and prospective cohort studies. In our cross-sectional study cross-sectional investigation involving ninety-nine individuals with diabetes, distinct microbial signatures associated with DR were identified. Specifically, gut microbiome profiling revealed decreased levels of Butyricicoccus and Ruminococcus torques group, alongside upregulated methanogenesis pathways among DR patients. These individuals concurrently exhibited lower concentrations of short-chain fatty acids in their plasma. Leveraging machine learning models, including random forest classifiers, we constructed a panel of microbial genera and genes that robustly differentiated DR cases. Importantly, these genera also demonstrated significant correlations with dietary patterns and the molecular profiles of peripheral blood mononuclear cells. Building upon these findings, our prospective cohort study followed 62 diabetes patients over a 2-year period to assess the predictive value of these microbial markers. The results underlined the panel's efficacy in predicting DR incidence. By stratifying patients based on the predictive genera and metabolites identified in the cross-sectional phase, we established significant associations between reduced levels of Butyricicoccus, plasma acetate, and increased susceptibility to DR. This investigation not only deepens our understanding of how gut microbiota influences DR but also underscores the potential of microbial markers as early indicators of disease risk. These insights hold promise for developing targeted interventions aimed at mitigating the impact of diabetic complications. KEY POINTS: \u2022 Microbial signatures are differed in diabetic patients with and without retinopathy \u2022 DR-related taxa are linked to dietary habits and transcriptomic profiles \u2022 Lower abundances of Butyricicoccus and acetate were prospectively associated with DR.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Cross-Sectional Studies", - "Male", - "Diabetic Retinopathy", - "Middle Aged", - "Longitudinal Studies", - "Prospective Studies", - "Female", - "Fatty Acids, Volatile", - "Aged", - "Ruminococcus", - "Clostridiales", - "Acetates", - "Adult", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39466337", - "Title": "Current medical research and opinion", - "ArticleTitle": "Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care.", - "Abstract": "The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Pancreas, Artificial", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Diabetes Mellitus", - "Insulin", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39465859", - "Title": "Medicine", - "ArticleTitle": "Association of triglyceride-glucose index with diabetes or prediabetes in Chinese hypertensive patients: A retrospective cohort study.", - "Abstract": "Insulin resistance is a key factor in diabetes development. This study aimed to investigate the association between baseline triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, and the onset of hyperglycemia in Chinese individuals with hypertension. Using the Rich Healthcare Group database, this retrospective cohort study included 28,687 hypertensive individuals without preexisting diabetes. A wide range of demographic information and baseline biochemical indicators was collected and rigorously analyzed. This study utilized the Cox proportional hazards model and smooth curve fitting to explore the link between TyG index and the risk of developing hyperglycemia. The robustness of the findings was validated by sensitivity and subgroup analyses. During longitudinal monitoring of hypertensive patients in our retrospective cohort study, we observed that 5.31% (1524/28,687) progressed to diabetes, while 21.66% (4620/21,326) developed prediabetes. After adjusting for confounding variables, a statistically significant positive association was observed between the TyG index and the risk of hyperglycemia. Subgroup and sensitivity analyses further supported these findings, demonstrating consistent outcomes and reinforcing the robustness of our conclusions. The TyG index, which is significantly linked to hyperglycemia in hypertensives, can aid early risk identification and intervention.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Retrospective Studies", - "Male", - "Female", - "Prediabetic State", - "Middle Aged", - "Hypertension", - "Triglycerides", - "Blood Glucose", - "China", - "Aged", - "Insulin Resistance", - "Biomarkers", - "Adult", - "Diabetes Mellitus", - "Proportional Hazards Models", - "Hyperglycemia", - "Risk Factors", - "East Asian People" - ] - }, - { - "PMID": "39465722", - "Title": "Medicine", - "ArticleTitle": "Association between serum globulins and diabetes mellitus in American latent tuberculosis infection patients: A cross-sectional study.", - "Abstract": "Diabetes mellitus (DM) is predisposing to the development of latent tuberculosis infection (LTBI). An understanding of the underlying factors of LTBI-DM is important for tuberculosis prevention and control. This study aims to evaluate the association between LTBI and DM among the noninstitutionalized civilian population in the United States, focusing on the impact of serum globulins. We performed a cross-sectional study design using public data from 2011 to 2012 National Health and Nutrition Examination Survey, focusing on participants diagnosed with LTBI who were aged 20 and above. Weighted Wilcoxon rank-sum and weighted chi-square tests were used to compare group differences. A multivariable logistic regression model was constructed to assess the association between serum globulin and DM, with subgroup analyses and evaluations of nonlinear relationships. Receiver operating characteristic curves were used to assess the predictive power of the models. A total of 694 participants (512 DM and 182 nonDM) were included in our study and the incidence of DM was 22%. Higher serum globulin levels were significantly associated with an increased risk of DM, with a 21% increase in risk for each unit increase in serum globulin (odds ratio\u2005=\u20051.21, 95% confidence interval [1.03, 1.43], P\u2005<\u2005.001). The relationship between serum globulin and DM was linear, and higher serum globulin levels were associated with a higher risk of DM, particularly in males (P\u2005=\u2005.043) and obese individuals (P\u2005=\u2005.019). The area under the curve for serum globulin predicting DM was 0.795, with an optimal cutoff value of 2.9. Elevated serum globulin levels are significantly associated with an increased risk of DM among individuals with LTBI, highlighting the potential role of serum globulin as a predictive biomarker for DM in this population. However, the specific mechanism between globulin and LTBI-DM needs to be further investigated.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Cross-Sectional Studies", - "Female", - "Latent Tuberculosis", - "Middle Aged", - "Adult", - "United States", - "Diabetes Mellitus", - "Nutrition Surveys", - "Serum Globulins", - "Risk Factors", - "Aged", - "Young Adult", - "Incidence", - "ROC Curve", - "Biomarkers" - ] - }, - { - "PMID": "39465638", - "Title": "Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions", - "ArticleTitle": "Drug-coated balloons in high-risk patients and diabetes mellitus: A meta-analysis of 10 studies.", - "Abstract": "We confirmed a significant advantage of DCB versus DES in the treatment of de novo lesions in high-risk patients and mainly in DM, reducing overall mortality, MACE and target lesion revascularization.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Angioplasty, Balloon, Coronary", - "Cardiac Catheters", - "Cardiovascular Agents", - "Coated Materials, Biocompatible", - "Coronary Artery Disease", - "Diabetes Mellitus", - "Drug-Eluting Stents", - "Equipment Design", - "Odds Ratio", - "Percutaneous Coronary Intervention", - "Risk Assessment", - "Risk Factors", - "Time Factors", - "Treatment Outcome" - ] - }, - { - "PMID": "39465521", - "Title": "Archives of Iranian medicine", - "ArticleTitle": "Prevalence of Chronic Kidney Disease and Associated Factors among the Diabetic and Prediabetic Population in the Bandare-Kong Cohort Study; A Population-Based Study.", - "Abstract": "The study emphasizes the importance of early detection and management of CKD risk factors, particularly among high-risk individuals, to mitigate CKD progression and associated complications. By addressing modifiable risk factors, proactive screening, and enhanced awareness, significant strides can be made in reducing CKD burden and improving patient outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Female", - "Male", - "Prediabetic State", - "Renal Insufficiency, Chronic", - "Adult", - "Iran", - "Aged", - "Risk Factors", - "Prevalence", - "Glomerular Filtration Rate", - "Prospective Studies", - "Cohort Studies", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39464188", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "A mobile health application use among diabetes mellitus patients: a systematic review and meta-analysis.", - "Abstract": "https://www.crd.york.ac.uk/prospero/, identifier 42024537917.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Mobile Applications", - "Self Care", - "Telemedicine" - ] - }, - { - "PMID": "39463812", - "Title": "Ethnicity & disease", - "ArticleTitle": "Racial Disparities in Foot Examination among People with Diabetes in Brazil: A Nationwide Survey, 2019.", - "Abstract": "Black Brazilians with diabetes had higher negligence of foot examination by health care professionals. Strengthening primary care would help mitigate systemic racism in Brazil.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Brazil", - "Female", - "Male", - "Adult", - "Middle Aged", - "Diabetic Foot", - "Adolescent", - "Young Adult", - "Healthcare Disparities", - "Aged", - "White People", - "Physical Examination", - "Surveys and Questionnaires", - "Diabetes Mellitus", - "Black People", - "Prevalence" - ] - }, - { - "PMID": "39463434", - "Title": "Scientific reports", - "ArticleTitle": "Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs.", - "Abstract": "Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet \u03b1 cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on \u03b2 cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed \u03b1- and/or \u03b2-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of \u03b1-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of \u03b1-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed \u03b1 and \u03b2 cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring \u03b2-cell GLP-1R protein expression may improve \u03b2-cell function in CFRD.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Cystic Fibrosis", - "Glucagon-Like Peptide-1 Receptor", - "Male", - "Female", - "Adult", - "Diabetes Mellitus", - "Insulin-Secreting Cells", - "Islets of Langerhans", - "Glucagon-Secreting Cells", - "Glucagon-Like Peptide 1", - "Young Adult", - "Gene Expression Regulation", - "Adolescent", - "Insulin" - ] - }, - { - "PMID": "39462457", - "Title": "International journal of circumpolar health", - "ArticleTitle": "Substance use and lifestyle risk factors for somatic disorders among psychiatric patients in Greenland.", - "Abstract": "Patients with psychotic disorders exhibit elevated mortality and morbidity rates compared to the general population primarily due to comorbid somatic diseases. This study aims to describe the prevalence of selected risk factors and somatic disorders among psychiatric patients with a diagnosis of psychotic disorder. Material and methods: Data were retrieved from Greenland's nationwide electronic medical record. The study population consists of 104 patients diagnosed with a psychotic disorder, encompassing schizophrenia or schizotypal and delusional disorders, residing in Nuuk. The study population comprised 104 patients (68 males and 36 females) with a mean age of 40\u2009years. More than 80% were daily smokers, and 68% had harmful use of cannabis. More than half had dyslipidemia (any imbalance in lipids), while over a quarter were classified as obese with body mass index of 30\u2009kg/m2 or higher. Eighteen percent had hypertension, and six percent suffered from diabetes. This study revealed a notable prevalence of risk factors for somatic diseases, particularly smoking and cannabis use among patients with schizophrenia in Nuuk, indicating that a high prevalence of somatic diseases might be expected as the population gets older and the risk of developing somatic diseases becomes greater. Increased focus on monitoring and preventing those as part of the health care is recommended.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Greenland", - "Male", - "Female", - "Adult", - "Risk Factors", - "Middle Aged", - "Substance-Related Disorders", - "Prevalence", - "Psychotic Disorders", - "Schizophrenia", - "Life Style", - "Smoking", - "Young Adult", - "Comorbidity", - "Obesity", - "Dyslipidemias", - "Diabetes Mellitus", - "Hypertension", - "Arctic Regions", - "Aged" - ] - }, - { - "PMID": "39461240", - "Title": "International immunopharmacology", - "ArticleTitle": "Natural polysaccharides: The potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis.", - "Abstract": "Diabetes mellitus, a chronic metabolic disorder, poses a significantly public health challenge. Extensive research highlights that contemporary dietary patterns, characterized by excessive intake of sugar, fat, and protein, are major contributors to the onset and progression of diabetes. The central element to this process is the aberrant activation of the advanced glycation end products (AGEs) - receptor for AGEs (RAGE) - oxidative stress axis, which plays a pivotal role in disrupting normal carbohydrate metabolism. This pathway presents a critical target for developing interventions aimed at mitigating diabetes and its complications. In recent years, natural polysaccharides have emerged as promising agents in the prevention and treatment of diabetes, due to their ability to inhibit AGE formation, regulate RAGE expression, and modulate the AGEs-RAGE-oxidative stress axis. In this paper, we explore the pathogenic mechanism of this axis and review the therapeutic potential of natural polysaccharides in managing diabetes and its complications. Our goal is to provide new insights for the effective management of diabetes and its associated health challenges.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Oxidative Stress", - "Polysaccharides", - "Animals", - "Receptor for Advanced Glycation End Products", - "Glycation End Products, Advanced", - "Diabetes Mellitus", - "Diabetes Complications", - "Hypoglycemic Agents", - "Biological Products", - "Signal Transduction" - ] - }, - { - "PMID": "39461229", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Prevalence and clinical implications of diabetes mellitus in autoimmune nodopathies: A systematic review.", - "Abstract": "DM patients fall under the typical clinical phenotype of autoimmune nodopathy, displaying predominantly paranodal antibodies. Early suspicion is crucial, as unlike DPN, diagnosis of autoimmune nodopathy unfolds therapeutic perspectives.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Prevalence", - "Autoantibodies", - "Diabetic Neuropathies", - "Diabetes Mellitus", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39460855", - "Title": "Investigational new drugs", - "ArticleTitle": "A phase II study of ME2136 (Asenapine Maleate) plus standard antiemetic therapy for patients, including diabetic patients, receiving cisplatin-based chemotherapy.", - "Abstract": "Olanzapine combined with the neurokinin-1 receptor antagonist, palonosetron and dexamethasone is the standard treatment for chemotherapy-induced nausea and vomiting (CINV) due to highly emetogenic chemotherapy (HEC). However, the use of olanzapine poses challenges in patients with diabetes mellitus (DM) due to the potential risk of hyperglycemia. ME2136, antipsychotic similar to olanzapine, is associated with a lower risk of hyperglycemia. This study investigated the antiemetic efficacy and safety of ME2136 for HEC. This single-arm phase 2 study examined the safety and efficacy of ME2136 5\u00a0mg for 4\u00a0days in combination with triplet-combination antiemetic therapy. Two cohorts were established for the safety assessment: DM and non-DM. Eligible patients had malignant tumors and were receiving cisplatin-based chemotherapy for the first time. The primary endpoint was the complete response (CR) rate, defined as the percentage of patients without vomiting and not requiring rescue medications in the delayed phase (24-120\u00a0h). Between December 2020 and January 2022, 40 patients were enrolled, with 20 in each cohort. All patients were included in the safety analysis and 35 in the efficacy analysis. The CR rate in the delayed phase was 71.4% [60% CI 63.1-78.6%] for all patients, 66.7% in the DM cohort, and 76.5% in the non-DM cohort. No treatment-related adverse events\u2009\u2265\u2009grade 3, including hyperglycemia, were reported. ME2136, when combined with standard triplet-combination antiemetic therapy, is expected to exert similar antiemetic effects to the standard treatment for CINV due to HEC. Currently, ME2136-02 trial is underway to examine the safety and efficacy of triplet-combination antiemetic therapy and a 5-day treatment with ME2136. This study was registered with the Japan Registry of Clinical Trials (jRCT2041200071) on 10 December 2020. Clinical trial registration: This study was registered with the Japan Registry of Clinical Trials (jRCT2041200071) on 10 December 2020.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Antiemetics", - "Male", - "Middle Aged", - "Female", - "Cisplatin", - "Aged", - "Vomiting", - "Nausea", - "Dibenzocycloheptenes", - "Adult", - "Dexamethasone", - "Diabetes Mellitus", - "Neoplasms", - "Drug Therapy, Combination", - "Antineoplastic Combined Chemotherapy Protocols", - "Palonosetron" - ] - }, - { - "PMID": "39460797", - "Title": "Molecular biology reports", - "ArticleTitle": "Molecular remodeling in comorbidities associated with heart failure: a current update.", - "Abstract": "Recent advances in genomics and proteomics have helped in understanding the molecular mechanisms and pathways of comorbidities and heart failure. In this narrative review, we reviewed molecular alterations in common comorbidities associated with heart failure such as obesity, diabetes mellitus, systemic hypertension, pulmonary hypertension, coronary artery disease, hypercholesteremia and lipoprotein abnormalities, chronic kidney disease, and atrial fibrillation. We searched the electronic databases, PubMed, Ovid, EMBASE, Google Scholar, CINAHL, and PhysioNet for articles without time restriction. Although the association between comorbidities and heart failure is already well established, recent studies have explored the molecular pathways in much detail. These molecular pathways demonstrate how novels drugs for heart failure works with respect to the pathways associated with comorbidities. Understanding the altered molecular milieu in heart failure and associated comorbidities could help to develop newer medications and targeted therapies that incorporate these molecular alterations as well as key molecular variations across individuals to improve therapeutic outcomes. The molecular alterations described in this study could be targeted for novel and personalized therapeutic approaches in the future. This knowledge is also critical for developing precision medicine strategies to improve the outcomes for patients living with these conditions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Comorbidity", - "Obesity", - "Hypertension", - "Diabetes Mellitus", - "Renal Insufficiency, Chronic", - "Atrial Fibrillation" - ] - }, - { - "PMID": "39460639", - "Title": "Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery", - "ArticleTitle": "The Effects of Metformin on Cisplatin-Induced Ototoxicity in Diabetic Patients.", - "Abstract": "Contrary to expectations from preclinical data, metformin did not reduce the incidence of hearing loss in patients receiving cisplatin and may, in fact, be associated with an increased risk.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Cisplatin", - "Metformin", - "Male", - "Retrospective Studies", - "Female", - "Middle Aged", - "Ototoxicity", - "Antineoplastic Agents", - "Case-Control Studies", - "Aged", - "Hypoglycemic Agents", - "Hearing Loss", - "Diabetes Mellitus", - "Adult" - ] - }, - { - "PMID": "39459480", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Associations between Systemic and Dental Diseases in Elderly Korean Population.", - "Abstract": { - "i": "Conclusions" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Aged", - "Republic of Korea", - "Male", - "Female", - "Aged, 80 and over", - "Prevalence", - "Arthritis, Rheumatoid", - "Osteoporosis", - "Hypertension", - "Periodontal Diseases", - "Diabetes Mellitus", - "Stomatognathic Diseases", - "Tooth Loss" - ] - }, - { - "PMID": "39458437", - "Title": "Nutrients", - "ArticleTitle": "Diet Quality and Eating Frequency Were Associated with Insulin-Taking Status among Adults.", - "Abstract": "Evidence of the low diet quality and eating frequency of insulin takers may help inform and justify nutrition education to control and manage diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Adult", - "Middle Aged", - "Male", - "Female", - "Cross-Sectional Studies", - "Insulin", - "Feeding Behavior", - "Young Adult", - "Adolescent", - "Diet, Healthy", - "Diet", - "Aged", - "Pilot Projects", - "Indiana", - "Diabetes Mellitus", - "Surveys and Questionnaires" - ] - }, - { - "PMID": "39455937", - "Title": "BMC nephrology", - "ArticleTitle": "Efficacy of continuous glucose monitoring in people living with diabetes and end stage kidney disease on dialysis: a systematic review.", - "Abstract": "PROSPERO registration number: CRD42023371635, https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=371635 .", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Kidney Failure, Chronic", - "Renal Dialysis", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Treatment Outcome", - "Diabetic Nephropathies", - "Hypoglycemia", - "Glycated Hemoglobin", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39455403", - "Title": "Revista de gastroenterologia de Mexico (English)", - "ArticleTitle": "Gastrointestinal adverse effects of old and new antidiabetics: How do we deal with them in real life?", - "Abstract": "Diabetes is a public health problem with an estimated worldwide prevalence of 10% and a prevalence of 12% in Mexico. The costs resulting from this chronic-degenerative disease are significant. Treatment for diabetes involves different medication groups, some of which can cause significant gastrointestinal adverse effects, such as dyspepsia, nausea, vomiting, bloating, diarrhea, and constipation. The medications most frequently associated with said adverse effects are metformin, acarbose, and GLP-1 agonists. Gastrointestinal adverse effects negatively impact the quality of life and management of patients with diabetes. The factors of visceral neuropathy, acute dysglycemia, dysbiosis, and intestinal bacterial overgrowth contribute to the gastrointestinal symptoms in patients with diabetes, making it necessary to consider multiple etiologic factors in the presence of gastrointestinal symptoms, and not exclusively attribute them to the use of antidiabetics. Personalized treatment, considering gastrointestinal comorbidity and the type of drug utilized, is essential for mitigating the adverse effects and improving the quality of life in patients with diabetes. The aim of the present narrative review was to describe the gastrointestinal adverse effects of the antidiabetic drugs, their pathophysiologic mechanisms, and the corresponding therapeutic measures.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Gastrointestinal Diseases", - "Hypoglycemic Agents", - "Quality of Life" - ] - }, - { - "PMID": "39455264", - "Title": "Journal of the American Board of Family Medicine : JABFM", - "ArticleTitle": "Impact of Point of Care Hemoglobin A1c Testing on Time to Therapeutic Intervention.", - "Abstract": "Without compromising accuracy, point of care testing (POCT) provides immediate results at the time of in person patient consultation. The purpose of this study was to evaluate time until therapeutic intervention with POCT HbA1c versus venipuncture, where venipuncture was considered standard of care.The primary outcome was time (hours) to implementation of a therapeutic intervention based on POCT HbA1c result, as compared with most recent venipuncture HbA1c before the study and its associated therapeutic intervention. A total of 94 POCT HbA1c tests were included in the primary analysis.For the POCT HbA1c, the mean time to therapeutic intervention was 1.6\u2009\u00b1\u20093.14\u2009hours. For the previous venipuncture HbA1c, the mean time to therapeutic intervention was 1376.66\u2009\u00b1\u20093356.6\u2009hours (", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Glycated Hemoglobin", - "Female", - "Point-of-Care Testing", - "Male", - "Middle Aged", - "Phlebotomy", - "Time Factors", - "Point-of-Care Systems", - "Primary Health Care", - "Aged", - "Adult", - "Time-to-Treatment", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39454827", - "Title": "Molecular metabolism", - "ArticleTitle": "PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology.", - "Abstract": "SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Humans", - "Diabetes Mellitus", - "Fluorodeoxyglucose F18", - "Glucose", - "Neoplasms", - "Positron-Emission Tomography", - "Radiopharmaceuticals", - "Sodium-Glucose Transport Proteins" - ] - }, - { - "PMID": "39454697", - "Title": "The American journal of cardiology", - "ArticleTitle": "Impact of Diabetes Mellitus on Bifurcation Percutaneous Coronary Intervention: Insights from the Prospective Global Registry for the Study of Bifurcation Lesion Interventions Registry.", - "Abstract": "The impact of diabetes mellitus (DM) on the outcomes of bifurcation percutaneous coronary intervention (PCI) has received limited study. We compared the procedural characteristics and outcomes of patients with and without DM in 1,302 bifurcation PCIs (1,147 patients) performed at 5 centers between 2013 and 2024. The prevalence of DM was 33.8% (n = 388). Patients with diabetes were younger and had more cardiovascular risk factors and greater angiographic complexity, including more main vessel calcification and more frequent stenoses in the left main, proximal left anterior descending, and right coronary artery. There was no difference in technical (95.5% vs 94.9%, p = 0.613) or procedural success (90.2% vs 91.3%, p = 0.540); provisional stenting was used less frequently in patients with diabetes (64.5% vs 71.1%, p = 0.015). Patients with diabetes had higher rates of repeat in-hospital PCI and acute kidney injury. Other in-hospital outcomes were similar after adjusting for confounders. During a median follow-up of 1,095 days, diabetes was independently associated with greater incidence of major adverse cardiovascular events (hazard ratio [HR] 2.04, 95% confidence intervals [CI] 1.52 to 2.72, p <0.001), myocardial infarction (HR 1.94, 95% CI 1.05 to 3.25, p = 0.033), death (HR 2.26, 95% CI 1.46 to 3.51, p <0.001), and target (HR 1.6, 95% CI 1.01 to 2.66, p = 0.045) and nontarget (HR 2.00, CI 1.06 to 3.78, p = 0.032) vessel revascularization. Patients with DM who underwent bifurcation PCI had greater risk of in-hospital repeat-PCI and major adverse cardiac events during follow-up than did those without diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Percutaneous Coronary Intervention", - "Male", - "Female", - "Registries", - "Middle Aged", - "Prospective Studies", - "Aged", - "Diabetes Mellitus", - "Coronary Angiography", - "Coronary Artery Disease", - "Risk Factors", - "Treatment Outcome", - "Follow-Up Studies", - "Incidence", - "Drug-Eluting Stents" - ] - }, - { - "PMID": "39453822", - "Title": "Diabetes care", - "ArticleTitle": "Relationship of Plasma Apolipoprotein C-I Truncation With Risk of Diabetes in the Multi-Ethnic Study of Atherosclerosis and the Actos Now for the Prevention of Diabetes Study.", - "Abstract": "Our results indicate that apoC-I truncation may contribute to changes in glucose levels, IR, and risk of diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Aged", - "Atherosclerosis", - "Apolipoprotein C-I", - "Insulin Resistance", - "Diabetes Mellitus", - "Blood Glucose", - "Glucose Tolerance Test", - "Prediabetic State", - "Risk Factors" - ] - }, - { - "PMID": "39453429", - "Title": "American journal of physiology. Heart and circulatory physiology", - "ArticleTitle": "Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure.", - "Abstract": "Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Animals", - "Energy Metabolism", - "Diabetic Cardiomyopathies", - "Mitochondria, Heart", - "Oxidative Stress", - "Autophagy", - "Epigenesis, Genetic", - "Myocardium", - "Diabetes Mellitus", - "Fatty Acids" - ] - }, - { - "PMID": "39452893", - "Title": "Diabetes care", - "ArticleTitle": "Consensus Considerations and Good Practice Points for Use of Continuous Glucose Monitoring Systems in Hospital Settings.", - "Abstract": "Continuous glucose monitoring (CGM) systems provide frequent glucose measurements in interstitial fluid and have been used widely in ambulatory settings for diabetes management. During the coronavirus disease 2019 (COVID-19) pandemic, regulators in the U.S. and Canada temporarily allowed for CGM systems to be used in hospitals with the aim of reducing health care professional COVID-19 exposure and limiting use of personal protective equipment. As such, studies on hospital CGM system use have been possible. With improved sensor accuracy, there is increased interest in CGM usage for diabetes management in hospitals. Laboratorians and health care professionals must determine how to integrate CGM usage into practice. The aim of this consensus guidance document is to provide an update on the application of CGM systems in hospital, with insights and opinions from laboratory medicine, endocrinology, and nursing.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "COVID-19", - "Consensus", - "Blood Glucose", - "Pandemics", - "SARS-CoV-2", - "Blood Glucose Self-Monitoring", - "Hospitals", - "Diabetes Mellitus", - "Coronavirus Infections", - "Pneumonia, Viral", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39451699", - "Title": "Biosensors", - "ArticleTitle": "Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors.", - "Abstract": "We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing. The glucose variations in sweat display allometric (non-linear) dependence on those in blood, allowing more precise blood glucose estimation. Selective (avoiding false-positive responses) and sensitive (sweat glucose is on average 30-50 times lower) detection is possible with biosensors based on the glucose oxidase enzyme coupled with a Prussian Blue transducer. Reliable glucose detection in just secreted sweat would allow noninvasive monitoring of the glycemia level in diabetic patients.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Biosensing Techniques", - "Wearable Electronic Devices", - "Blood Glucose", - "Diabetes Mellitus", - "Glucose Oxidase", - "Sweat", - "Blood Glucose Self-Monitoring", - "Monitoring, Physiologic" - ] - }, - { - "PMID": "39450816", - "Title": "Revista medica de Chile", - "ArticleTitle": "[Characteristics of Depressed Individuals with Hypertension and/ or Diabetes Mellitus in Primary Health Care in Santiago de Chile].", - "Abstract": "These are people with depressive episode, hypertension and/or diabetes who, having a personal and family history of depression, are not receiving pharmacological treatment for depression, which probably affects their quality of life. Better adherence to clinical guidelines for the treatment of depression is required.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Primary Health Care", - "Hypertension", - "Chile", - "Middle Aged", - "Adult", - "Diabetes Mellitus", - "Depression", - "Aged", - "Comorbidity", - "Antidepressive Agents", - "Socioeconomic Factors" - ] - }, - { - "PMID": "39450814", - "Title": "Revista medica de Chile", - "ArticleTitle": "[Decline in Renal Function with Age in Chile: Gender Differences and the Impact of Comorbidities].", - "Abstract": "eGFR progressively decreased with age in the Chilean population, showing an early decline starting from 18 years, more pronounced in women, and in the presence of chronic diseases. Our findings provide relevant population-based information for interpreting eGFR across different age groups and risk categories.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Chile", - "Female", - "Male", - "Cross-Sectional Studies", - "Middle Aged", - "Glomerular Filtration Rate", - "Adult", - "Sex Factors", - "Age Factors", - "Aged", - "Young Adult", - "Adolescent", - "Comorbidity", - "Renal Insufficiency, Chronic", - "Creatinine", - "Hypertension", - "Risk Factors", - "Sex Distribution", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39448967", - "Title": "BMC public health", - "ArticleTitle": "Longitudinal assessment of the impact of prevalent diabetes on hospital admissions and mortality in the general population: a prospective population-based study with 19 years of follow-up.", - "Abstract": "Source: Pixabay.com. No permission or acknowledgement is required.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Male", - "Female", - "Adult", - "Hospitalization", - "Prospective Studies", - "Sweden", - "Aged", - "Diabetes Mellitus", - "Follow-Up Studies", - "Prevalence", - "Longitudinal Studies", - "Registries" - ] - }, - { - "PMID": "39448732", - "Title": "Scientific reports", - "ArticleTitle": "International dietary quality index and its association with diabetes in RaNCD cohort study.", - "Abstract": "Diabetes and its complications pose a significant threat to global health. Various factors contribute to the development of diabetes, with diet being an important trigger. The Dietary Quality Index-International (DQI-I) serves as an indicator of changes in diet and its association with chronic diseases, including diabetes. The aim of this study is to examine the association between DQI-I and diabetes in adults. Data from the first phase of the Ravansar Non-Communicable Disease Cohort Study (RaNCD) were used for this cross-sectional study. The study included individuals from western Iran aged between 35 and 65 years. The DQI-I was used to assess diet quality and the essential aspects of a healthy diet. Multiple logistic regression analyses were performed to compare DQI-I total score and diabetes. A total of 7,079 individuals were included, including 608 diabetic and 6,471 healthy individuals. The mean DQI-I score was 60.51\u2009\u00b1\u20098.47 in healthy individuals and 63.12\u2009\u00b1\u20098.64 in diabetics. The odds of developing diabetes were higher in individuals with a higher DQI-I (adjusted odds ratio: 1.49, 95% CI: 1.30-1.73). The variety was 13.43\u2009\u00b1\u20094.47 in diabetics and 12.59\u2009\u00b1\u20094.79 in healthy individuals. Adequacy was 33.23\u2009\u00b1\u20093.71 in diabetics and 33.79\u2009\u00b1\u20093.37 in healthy individuals. Moderation was 13.27\u2009\u00b1\u20096.05 in diabetics and 11.79\u2009\u00b1\u20095.47 in healthy individuals. The overall balance was 2.88\u2009\u00b1\u20092.21 in the healthy group and 2.61\u2009\u00b1\u20092.13 in the diabetics. The macronutrient ratio was 2.15\u2009\u00b1\u20091.88 in the healthy group and 2.04\u2009\u00b1\u20091.84 in the diabetics. The fatty acid ratio was 0.72\u2009\u00b1\u20091.29 in the healthy group and 0.56\u2009\u00b1\u20091.17 in the diabetic group. The overall balance score was higher in the healthy subjects. The DQI-I total score was higher in diabetics, indicating a positive association between diabetes and the DQI-I. Therefore, the importance of continuous dietary management and education of diabetic patients should be emphasized.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Male", - "Female", - "Adult", - "Cross-Sectional Studies", - "Iran", - "Aged", - "Diabetes Mellitus", - "Cohort Studies", - "Diet", - "Diet, Healthy" - ] - }, - { - "PMID": "39448700", - "Title": "Scientific reports", - "ArticleTitle": "Impaired glomerular filtration rate and associated factors among diabetic mellitus patients with hypertension in referral hospitals, Amhara Regional State, Ethiopia.", - "Abstract": "Impaired glomerular filtration rate is common health problem in diabetic mellitus patients (DM) with hypertension (HTN). It is a major cause of morbidity, mortality, and poor quality of life. There is limited data on the prevalence and associated factors of impaired glomerular filtration among diabetic mellitus patients with hypertension in Ethiopia. Therefore, this study aimed to determine the prevalence of impaired glomerular filtration rate and associated factors among diabetic patients with hypertension in referral hospitals in Amhara Regional State, Ethiopia, 2020. An institution-based cross-sectional study was conducted in Amhara Regional referral hospitals from February 20 to April 30, 2020. Systemic sampling techniques were used to select diabetic mellitus patients with hypertension. Epi data version 3.0 was used to enter the coded data and then exported to STATA 14 for analysis. Glomerular filtration rate was estimated using the equations of collaboration with chronic kidney disease (CKD-EPI), diet modification in renal disease (MDRD-4), and creatinine clearance (CrCl). In bi-variable logistic regression, variables with a p-value of <\u20090.25 were included in multi-variable logistic regression. Using a 95% confidence interval, variables having a p-value\u2009\u2264\u20090.05 in multi-variable logistic regression were declared as statistically significant variables. In this study, a total of 326 study participants were involved, with a 100% response rate. The prevalence of an impaired glomerular filtration rate among diabetic patients with hypertension was 30.1% (95% CI 25.1%-35.1%), 36.6% (95% CI 30.1%-40.8%) and 45.4% (95% CI 39.9%-50.8%), using the equations CKD-EPI, MDRD-4, and CrCl, respectively. Being \u2265\u200955 years old (CKD-EPI AOR\u2009=\u20092.9, 95%: 1.5-5.5, MDRD-4 AOR\u2009=\u20092.1, 95% CI: 1.2-3.7, CrCl AOR\u2009=\u20095.9, 95% CI: 3.5-10.1), proteinuria (CKD-EPI AOR\u2009=\u20092.7, 95% CI: 1.4-5.3, MDRD-4 AOR\u2009=\u20091.9, 95% CI: 1.1-3.4, CrCl AOR\u2009=\u20091.7, 95% CI: 1.0-2.9), duration of the disease (\u2265\u20095 years) (CKD-EPI AOR\u2009=\u20097.9, 95% CI: 4.2-13.0, MDRD-4 AOR\u2009=\u20097.4, 95% CI: 4.2-13.0, CrCl AOR\u2009=\u20091.9, 95% CI: 1.2-3.3), a glucose level of \u2265\u2009150\u00a0mg/dl (CKD-EPI AOR\u2009=\u20092.3, 95% CI: 1.3-4.4, MDRD-4 AOR\u2009=\u20092.1, 95% CI: 1.2-3.8) were variables significantly associated with impaired glomerular filtration rate. The prevalence of impaired glomerular filtration rate among diabetic mellitus patients with hypertension was high. Independent predictors of impaired glomerular filtration rate were older age, duration of the disease, proteinuria, and higher blood glucose levels.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ethiopia", - "Male", - "Glomerular Filtration Rate", - "Female", - "Middle Aged", - "Hypertension", - "Cross-Sectional Studies", - "Adult", - "Prevalence", - "Risk Factors", - "Aged", - "Referral and Consultation", - "Diabetes Mellitus", - "Renal Insufficiency, Chronic", - "Creatinine" - ] - }, - { - "PMID": "39447788", - "Title": "International journal of biological macromolecules", - "ArticleTitle": "Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review.", - "Abstract": "Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.", - "Predictions": [], - "MeshTerms": [ - "Nanofibers", - "Humans", - "Wound Healing", - "Bandages", - "Polymers", - "Animals", - "Diabetes Mellitus", - "Chronic Disease" - ] - }, - { - "PMID": "39447680", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Salivary glycated albumin could be as reliable a marker of glycemic control as blood glycated albumin in people with diabetes.", - "Abstract": "This exploratory research revealed that the salivary GA levels by this method were accurate and might be able to replace blood GA measurement. The home salivary GA measurement is expected to be developed that may reduce the burden and complications in people with diabetes mellitus and improve the quality of life.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Glycation End Products, Advanced", - "Saliva", - "Male", - "Glycated Serum Albumin", - "Female", - "Middle Aged", - "Biomarkers", - "Serum Albumin", - "Aged", - "Glycated Hemoglobin", - "Blood Glucose", - "Glycemic Control", - "Diabetes Mellitus", - "Chromatography, High Pressure Liquid", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39446913", - "Title": "PloS one", - "ArticleTitle": "Accuracy of ankle-brachial index in screening for peripheral arterial disease in people with diabetes.", - "Abstract": "Although the ankle-brachial index (ABI) presents overall satisfactory accuracy, its sensitivity in the context of screening strategies does not ensure the detection of all individuals with peripheral arterial disease (PAD), especially in clinical situations where there is calcification of the arterial media layer. This study evaluated the accuracy of ABI in screening PAD among individuals with diabetes mellitus (DM) in a community setting. An observational study included only individuals with DM. ABI measurement was performed, and the lower limb duplex ultrasound (DU) was used as the reference standard for PAD diagnosis. Sensitivity, specificity, positive and negative predictive values (PPV and NPV), and positive and negative likelihood ratios (LR+ and LR-) of ABI were assessed. The analysis included 194 limbs from 99 participants, with a PAD prevalence identified by DU of 15.98%. ABI demonstrated an accuracy of 87.63%, with a sensitivity of 35.48%, specificity of 97.55%, PPV of 73.33%, NPV of 89.83%, LR+ of 14.46, and LR- of 0.66. ABI showed high specificity but limited sensitivity in detecting PAD among individuals with DM in a community setting. An LR- of 0.66 suggests that a normal ABI result reduces but does not eliminate the possibility of PAD, highlighting the importance of complementary diagnostic approaches to enhance accuracy in identifying PAD in high-risk patients, such as those with DM. Incorporating additional diagnostic methods may be necessary to improve the effectiveness of PAD screening in this group.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ankle Brachial Index", - "Peripheral Arterial Disease", - "Male", - "Female", - "Aged", - "Middle Aged", - "Mass Screening", - "Sensitivity and Specificity", - "Diabetes Mellitus", - "Aged, 80 and over" - ] - }, - { - "PMID": "39446189", - "Title": "International journal of implant dentistry", - "ArticleTitle": "Correlation between marginal bone loss around dental implants and various systemic diseases: a cross-sectional study.", - "Abstract": "Within the limitations of the present investigation, patients diagnosed with hyperlipidemia and hypertension were more likely to exhibit MBL surrounding dental implants.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Dental Implants", - "Middle Aged", - "Cross-Sectional Studies", - "Male", - "Female", - "Alveolar Bone Loss", - "Hyperlipidemias", - "Hypertension", - "Aged", - "Adult", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39445809", - "Title": "Cancer medicine", - "ArticleTitle": "The association of diabetes mellitus and routinely collected patient-reported outcomes in patients with cancer. A real-world cohort study.", - "Abstract": "The results of this study suggest that patients with cancer and diabetes may be at greater risk for anxiety, depression, fatigue, higher pain interference, and reduced physical function. Strengthening diabetes management is imperative to address the negative impact of diabetes on PROs. In particular, this may be true for patients with skin, breast, prostate, and kidney cancer.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Middle Aged", - "Patient Reported Outcome Measures", - "Neoplasms", - "Diabetes Mellitus", - "Aged", - "Anxiety", - "Depression", - "Fatigue", - "Cohort Studies", - "Registries", - "Surveys and Questionnaires", - "Adult", - "Quality of Life" - ] - }, - { - "PMID": "39445800", - "Title": "Journal of diabetes investigation", - "ArticleTitle": "Association of impaired fasting glucose with cardiometabolic multimorbidity: The\u00a0Kailuan study.", - "Abstract": "IFG was a risk factor for CMM. The effect of IFG on diabetes mellitus was stronger than that on other cardiometabolic diseases. The effects of IFG for CMM differed by sex.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Multimorbidity", - "Blood Glucose", - "Middle Aged", - "Fasting", - "China", - "Adult", - "Cardiovascular Diseases", - "Diabetes Mellitus", - "Follow-Up Studies", - "Aged", - "Risk Factors", - "Proportional Hazards Models", - "Glucose Intolerance" - ] - }, - { - "PMID": "39444992", - "Title": "Middle East African journal of ophthalmology", - "ArticleTitle": "Status of Health-care Systems for Diabetes Mellitus and Diabetic Retinopathy in Jordan: Stakeholders and Health-care Providers Survey.", - "Abstract": "Advanced DM and DR care is not accessible to most people. Programmatic efforts from the government and NGOs must formulate a national action plan to reduce the human and financial impact of the disease in Jordan.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Jordan", - "Diabetic Retinopathy", - "Male", - "Surveys and Questionnaires", - "Diabetes Mellitus", - "Female", - "Delivery of Health Care", - "Health Personnel", - "Qualitative Research", - "Health Services Accessibility" - ] - }, - { - "PMID": "39444141", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Graded association of muscle strength with all-cause and cause-specific mortality in older adults with diabetes: Prospective cohort study across 28 countries.", - "Abstract": "Muscle strength is gradually and inversely associated with all-cause and cause-specific mortality risk in older adults with diabetes. As muscle strength is highly adaptable to resistance training at all ages, the present findings highlight the importance of improving muscle strength in older adults with diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Aged", - "Male", - "Female", - "Prospective Studies", - "Middle Aged", - "Europe", - "Muscle Strength", - "Hand Strength", - "Diabetes Mellitus", - "Cause of Death", - "Cardiovascular Diseases", - "Aged, 80 and over", - "Proportional Hazards Models" - ] - }, - { - "PMID": "39443983", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "Impact of diabetes mellitus on right ventricular dysfunction and ventricular interdependence in hypertensive patients with heart failure with reduced ejection fraction assessed via 3.0 T cardiac MRI.", - "Abstract": "In hypertensive HFrEF patients, comorbid DM may have aggravated RV dysfunction and was an independent determinant of impaired RV strain. RV dysfunction might be directly affected by DM and partially mediated by LV strain through unfavorable ventricular independence.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Stroke Volume", - "Heart Failure", - "Ventricular Dysfunction, Right", - "Hypertension", - "Aged", - "Ventricular Function, Right", - "Ventricular Function, Left", - "Predictive Value of Tests", - "Magnetic Resonance Imaging, Cine", - "Risk Factors", - "Comorbidity", - "Diabetes Mellitus", - "Retrospective Studies", - "Magnetic Resonance Imaging" - ] - }, - { - "PMID": "39443972", - "Title": "BMC medicine", - "ArticleTitle": "Unhealthy plant-based diet is associated with a higher cardiovascular disease risk in patients with prediabetes and diabetes: a large-scale population-based study.", - "Abstract": "Adherence to an unhealthy plant-based diet is associated with a higher CVD risk in people with prediabetes or diabetes, which may be partially attributed to low consumption of whole grains, high intake of SSB, and high blood cystatin C levels.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Prediabetic State", - "Cardiovascular Diseases", - "Male", - "Female", - "Middle Aged", - "Diet, Vegetarian", - "Aged", - "Adult", - "Diabetes Mellitus", - "United Kingdom", - "Risk Factors", - "Diet, Plant-Based" - ] - }, - { - "PMID": "39443848", - "Title": "BMC primary care", - "ArticleTitle": "Redesigning telemedicine: preliminary findings from an innovative assisted telemedicine healthcare model.", - "Abstract": "The 'Digisahayam' model demonstrated feasibility in enhancing healthcare accessibility and quality by bridging healthcare gaps, diagnosing chronic conditions, and improving patient outcomes. The model presents a scalable and sustainable approach to revolutionising patient care and achieving digital health equity, with the potential for adaptation in similar settings worldwide.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Telemedicine", - "Female", - "Male", - "Middle Aged", - "India", - "Hypertension", - "Adult", - "Diabetes Mellitus", - "Electronic Health Records", - "Decision Support Systems, Clinical", - "Chronic Disease", - "Delivery of Health Care" - ] - }, - { - "PMID": "39442772", - "Title": "Annals of epidemiology", - "ArticleTitle": "\u200eThe association between cumulative exposure to neighborhood walkability (NW) and diabetes risk, a prospective cohort study.", - "Abstract": "Long-term residence in more walkable neighborhoods may be protective against diabetes in women, especially postmenopausal women.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Walking", - "Prospective Studies", - "Middle Aged", - "Adult", - "Residence Characteristics", - "Neighborhood Characteristics", - "Environment Design", - "Diabetes Mellitus", - "Risk Factors", - "Proportional Hazards Models", - "Diabetes Mellitus, Type 2", - "Incidence" - ] - }, - { - "PMID": "39442756", - "Title": "The Journal of nutrition", - "ArticleTitle": "Betaine and B", - "Abstract": "Our findings suggest that higher GSH level and higher intake of betaine, B", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Betaine", - "Adult", - "Poland", - "Female", - "Male", - "Methylenetetrahydrofolate Reductase (NADPH2)", - "Vitamin B 12", - "Methylenetetrahydrofolate Dehydrogenase (NADP)", - "Glutathione", - "Genotype", - "Phosphatidylethanolamine N-Methyltransferase", - "Folic Acid", - "Young Adult", - "Choline", - "Minor Histocompatibility Antigens", - "Diabetes Mellitus", - "Insulin", - "Blood Glucose", - "Methylamines", - "Polymorphism, Single Nucleotide" - ] - }, - { - "PMID": "39442645", - "Title": "Brain research", - "ArticleTitle": "In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis.", - "Abstract": "This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gene Regulatory Networks", - "Ischemic Stroke", - "Protein Interaction Maps", - "Diabetes Mellitus", - "Gene Expression Profiling", - "Gene Expression" - ] - }, - { - "PMID": "39439869", - "Title": "Farmaceuticos comunitarios", - "ArticleTitle": "[Validation of the JH-SEFAC Questionnaire on Knowledge on Insulin Management by Patients with Diabetes in Community Pharmacies].", - "Abstract": "The JH-SEFAC questionnaire was validated to evaluate the management of insulin injectables, providing community pharmacists with a valuable tool for therapeutic education.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Insulin", - "Cross-Sectional Studies", - "Male", - "Female", - "Middle Aged", - "Reproducibility of Results", - "Surveys and Questionnaires", - "Health Knowledge, Attitudes, Practice", - "Adult", - "Diabetes Mellitus", - "Hypoglycemic Agents", - "Pharmacies", - "Community Pharmacy Services", - "Pharmacists", - "Aged", - "Spain" - ] - }, - { - "PMID": "39439564", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "The emerging modulators of non-coding RNAs in diabetic wound healing.", - "Abstract": "Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Wound Healing", - "RNA, Untranslated", - "Animals", - "Diabetes Mellitus", - "MicroRNAs", - "RNA, Long Noncoding", - "RNA, Circular", - "Diabetes Complications" - ] - }, - { - "PMID": "39439382", - "Title": "Journal of primary care & community health", - "ArticleTitle": "Longer Multimorbidity Intervals Are Associated With Lower Mortality in Diabetes: A Whole-Population Nested Case-Control Study.", - "Abstract": "Delayed multimorbidity among patients living with diabetes may be related to a lower risk of mortality. This study suggests that we should focus on mitigating and lowering the risk of multimorbidity in clinical management of diabetes to reduce further complication and mortality.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Multimorbidity", - "Female", - "Case-Control Studies", - "Middle Aged", - "Aged", - "Hong Kong", - "Diabetes Mellitus", - "Time Factors", - "Adult", - "Aged, 80 and over", - "Logistic Models", - "Risk Factors" - ] - }, - { - "PMID": "39439171", - "Title": "Yonsei medical journal", - "ArticleTitle": "Association of the COVID-19 Pandemic with HbA1c Testing and Complication Screening in Patients with Diabetes Mellitus.", - "Abstract": "A high level of COVID-19 transmission was associated with a decrease in undergoing fundus examination and kidney disease screening. To fully realize the potential benefit of diabetes complication screenings, further effort is required to identify and address challenges to obtaining these screenings, especially in outbreak regions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "COVID-19", - "Glycated Hemoglobin", - "Male", - "Female", - "Middle Aged", - "Republic of Korea", - "Aged", - "Diabetes Complications", - "Adult", - "Diabetes Mellitus", - "Mass Screening", - "SARS-CoV-2", - "Pandemics", - "Logistic Models" - ] - }, - { - "PMID": "39438414", - "Title": "Digestive diseases and sciences", - "ArticleTitle": "Association Between Body Composition Measured by Artificial Intelligence and Long-Term Sequelae After Acute Pancreatitis.", - "Abstract": "Body composition was not associated with having a recurrent AP. At follow-up, 30% and 25% of evaluated patients developed CP and DM, respectively. A higher SAT and IMAT were associated with a lower incidence of CP and higher incidence of DM, respectively.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Retrospective Studies", - "Body Composition", - "Pancreatitis", - "Adult", - "Recurrence", - "Artificial Intelligence", - "Tomography, X-Ray Computed", - "Aged", - "Pancreatitis, Chronic", - "Acute Disease", - "Diabetes Mellitus", - "Risk Factors" - ] - }, - { - "PMID": "39437808", - "Title": "Biomedical physics & engineering express", - "ArticleTitle": "Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis.", - "Abstract": "The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Machine Learning", - "Algorithms", - "Diabetes Mellitus", - "Mass Screening", - "Reproducibility of Results", - "Prediabetic State", - "Signal Processing, Computer-Assisted", - "Male", - "Wavelet Analysis", - "Female", - "Blood Glucose", - "Adult", - "Middle Aged" - ] - }, - { - "PMID": "39437577", - "Title": "The journal of nutrition, health & aging", - "ArticleTitle": "Impact of diabetes on the association between serum urate levels and incident dementia: a cohort study in the UK biobank.", - "Abstract": "Appropriately higher urate levels within the threshold of hyperuricemia can reduce the adverse health effects of excessively high urate levels and better protect the cognitive health of people with varying diabetes status.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Uric Acid", - "Female", - "Dementia", - "United Kingdom", - "Middle Aged", - "Incidence", - "Biological Specimen Banks", - "Diabetes Mellitus", - "Cohort Studies", - "Aged", - "Risk Factors", - "Dementia, Vascular", - "UK Biobank" - ] - }, - { - "PMID": "39437357", - "Title": "North Carolina medical journal", - "ArticleTitle": "\"It Takes a Village\"- A Conversation with the Interprofessional Diabetes Clinic at the ECU Health Family Medicine Center.", - "Abstract": "Interprofessional collaboration and shared understanding positively impact both patients and providers. Current recommendations from the CDC and experts agree that collaboration between diverse professions is necessary to improve patient outcomes and empower patients to selfmanage their chronic conditions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Interprofessional Relations", - "North Carolina", - "Patient Care Team", - "Cooperative Behavior", - "Family Practice" - ] - }, - { - "PMID": "39436167", - "Title": "Medical gas research", - "ArticleTitle": "Nitric oxide-based treatments improve wound healing associated with diabetes mellitus.", - "Abstract": "Non-healing wounds are long-term complications of diabetes mellitus (DM) that increase mortality risk and amputation-related disability and decrease the quality of life. Nitric oxide (NO\u00b7)-based treatments (i.e., use of both systemic and topical NO\u00b7 donors, NO\u00b7 precursors, and NO\u00b7 inducers) have received more attention as complementary approaches in treatments of DM wounds. Here, we aimed to highlight the potential benefits of NO\u00b7-based treatments on DM wounds through a literature review of experimental and clinical evidence. Various topical NO\u00b7-based treatments have been used. In rodents, topical NO\u00b7-based therapy facilitates wound healing, manifested as an increased healing rate and a decreased half-closure time. The wound healing effect of NO\u00b7-based treatments is attributed to increasing local blood flow, angiogenesis induction, collagen synthesis and deposition, re-epithelization, anti-inflammatory and anti-oxidative properties, and potent broad-spectrum antibacterial effects. The existing literature lacks human clinical evidence on the safety and efficacy of NO\u00b7-based treatments for DM wounds. Translating experimental favors of NO\u00b7-based treatments of DM wounds into human clinical practice needs conducting clinical trials with well-predefined effect sizes, i.e., wound reduction area, rate of wound healing, and hospital length of stay.", - "Predictions": [], - "MeshTerms": [ - "Wound Healing", - "Humans", - "Nitric Oxide", - "Animals", - "Diabetes Mellitus", - "Diabetes Complications", - "Nitric Oxide Donors" - ] - }, - { - "PMID": "39436016", - "Title": "Journal of diabetes", - "ArticleTitle": "Chronic glycemic control influences the relationship between acute perioperative dysglycemia and perioperative outcome.", - "Abstract": "In surgical patients with diabetes, prior exposure to hyperglycemia attenuates the impact of perioperative hyperglycemia and glycemic variability on inpatient mortality and ICU admission. In patients without diabetes mellitus, all absolute thresholds of dysglycemia are associated with ICU admission, unlike those with diabetes, suggesting the need to use more relative measures such as the SHR.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Glycemic Control", - "Middle Aged", - "Blood Glucose", - "Aged", - "Hyperglycemia", - "Hospital Mortality", - "Hypoglycemia", - "Perioperative Period", - "Diabetes Mellitus", - "South Australia", - "Postoperative Complications", - "Retrospective Studies", - "Risk Factors" - ] - }, - { - "PMID": "39435468", - "Title": "Global health action", - "ArticleTitle": "Hypertension, diabetes, and cardiovascular disease nexus: investigating the role of urbanization and lifestyle in Cabo Verde.", - "Abstract": "These findings add to the toolset of public health practitioners and policymakers in formulating policies and interventions aimed at managing cardiovascular diseases, particularly in developing nations.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Cardiovascular Diseases", - "Male", - "Hypertension", - "Female", - "Urbanization", - "Middle Aged", - "Diabetes Mellitus", - "Life Style", - "Adult", - "Aged", - "Risk Factors", - "Waist Circumference" - ] - }, - { - "PMID": "39434602", - "Title": "The Korean journal of internal medicine", - "ArticleTitle": "Current status of modifiable risk factors for cardiovascular disease in Korean women.", - "Abstract": "Hypertension, diabetes mellitus, dyslipidemia, obesity, and smoking are the primary modifiable risk factors contributing to the increasing morbidity and mortality rates from cardiovascular disease (CVD) among Korean women. Significant sex-related differences exist in the prevalence, awareness, treatment, and control of these risk factors, highlighting the importance of age- and sex-specific approaches to the management and prevention of CVD. Notably, the prevalence of hypertension and diabetes mellitus increases with age, with a higher prevalence in elderly women compared to men. Dyslipidemia and obesity are also trending upward, particularly in postmenopausal women, highlighting the impact of menopause on cardiovascular risk. The present review advocates for improved diagnostic, therapeutic, and educational efforts to mitigate the risk of CVD among Korean women, with the goals of reducing the overall burden of the disease and promoting better cardiovascular health outcomes.", - "Predictions": [], - "MeshTerms": [ - "Adult", - "Aged", - "Female", - "Humans", - "Middle Aged", - "Age Factors", - "Cardiovascular Diseases", - "Diabetes Mellitus", - "Dyslipidemias", - "Heart Disease Risk Factors", - "Hypertension", - "Obesity", - "Prevalence", - "Republic of Korea", - "Risk Assessment", - "Risk Factors", - "Sex Factors", - "Smoking", - "Women's Health" - ] - }, - { - "PMID": "39434446", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Synergies between diabetes and hyperhomocysteinaemia: New insights to predict and prevent adverse cardiovascular effects.", - "Abstract": "The findings highlight the synergistic impact of diabetes and HHcy on CVD. Joint assessments of diabetes and Hcy levels should be emphasized for risk stratification and primary prevention of CVD.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Hyperhomocysteinemia", - "Cardiovascular Diseases", - "China", - "Diabetes Mellitus", - "Aged", - "Adult", - "Homocysteine", - "Risk Factors", - "Stroke" - ] - }, - { - "PMID": "39434107", - "Title": "Trials", - "ArticleTitle": "Effects of an Exercise and Lifestyle Education Program in Brazilians living with prediabetes or diabetes: study protocol for a multicenter randomized controlled trial.", - "Abstract": "ClinicalTrials.gov, NCT03914924 . Registered on April 16, 2019.", - "Predictions": [], - "MeshTerms": [ - "Male", - "Patient Education as Topic", - "Time Factors", - "Health Knowledge, Attitudes, Practice", - "Diabetes Mellitus", - "South American People", - "Humans", - "Brazil", - "Quality of Life", - "Health Behavior", - "Prediabetic State", - "Middle Aged", - "Treatment Outcome", - "Healthy Lifestyle", - "Risk Reduction Behavior", - "Adult", - "Multicenter Studies as Topic", - "Exercise Therapy", - "Female", - "Randomized Controlled Trials as Topic", - "Double-Blind Method" - ] - }, - { - "PMID": "39433999", - "Title": "BMC primary care", - "ArticleTitle": "Perceptions of the 2D short animated videos for literacy against chronic diseases among adults with diabetes and/or hypertension: a qualitative study in primary care clinics.", - "Abstract": "Animated videos are acceptable for delivering health information. Pilot testing animated videos for promoting literacy against chronic diseases in adults with diabetes and hypertension is needed for optimal utility.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Middle Aged", - "Male", - "Adult", - "Female", - "Hypertension", - "Diabetes Mellitus", - "Health Literacy", - "Qualitative Research", - "Aged", - "Primary Health Care", - "Chronic Disease", - "Focus Groups", - "Video Recording", - "Thailand", - "Smartphone" - ] - }, - { - "PMID": "39433782", - "Title": "Scientific data", - "ArticleTitle": "The Journey to a FAIR CORE DATA SET for Diabetes Research in Germany.", - "Abstract": "The German Center for Diabetes Research (DZD) established a core data set (CDS) of clinical parameters relevant for diabetes research in 2021. The CDS is central to the design of current and future DZD studies. Here, we describe the process and outcomes of FAIRifying the initial version of the CDS. We first did a baseline evaluation of the FAIRness using the FAIR Data Maturity Model. The FAIRification process and the results of this assessment led us to convert the CDS into the recommended format for spreadsheets, annotating the parameters with standardized medical codes, licensing the data set, enriching the data set with metadata, and indexing the metadata. The FAIRified version of the CDS is more suitable for data sharing in diabetes research across DZD sites and beyond. It contributes to the reusability of health research studies.", - "Predictions": [], - "MeshTerms": [ - "Germany", - "Diabetes Mellitus", - "Humans", - "Metadata", - "Information Dissemination", - "Biomedical Research", - "Datasets as Topic" - ] - }, - { - "PMID": "39433450", - "Title": "Primary care diabetes", - "ArticleTitle": "Understanding primary care provider's knowledge and perceptions of diabetes self-management education and support.", - "Abstract": "Providers have limited knowledge of the appropriate time to refer to DSMES but expressed a willingness to refer. They emphasized the importance of providing their patients with appropriate self-management education and support.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Health Knowledge, Attitudes, Practice", - "Attitude of Health Personnel", - "Primary Health Care", - "Female", - "Male", - "Patient Education as Topic", - "Diabetes Mellitus", - "Perception", - "Referral and Consultation", - "Middle Aged", - "Self Care", - "Self-Management", - "Health Care Surveys", - "Physicians, Primary Care", - "Interviews as Topic", - "Adult" - ] - }, - { - "PMID": "39432771", - "Title": "Diabetes care", - "ArticleTitle": "Diabetes and Driving: A Statement of the American Diabetes Association.", - "Abstract": "Many people with diabetes in the U.S. will seek or currently hold a license to drive. For many, a driver's license is essential for everyday life. Considerable discussion has focused on whether, and the extent to which, diabetes may be a relevant factor in determining driver ability and eligibility for a license. This statement addresses such issues in relation to current scientific and medical evidence. A diagnosis of diabetes on its own is not sufficient to make judgments about an individual driver's ability or safety. This statement provides an overview of existing licensing rules for people with diabetes in the U.S., addresses the factors that affect driving ability, identifies general guidelines for assessing driver fitness and determining appropriately tailored licensing restrictions, and provides practical guidance for health care professionals regarding clinical interventions and education for people with diabetes.", - "Predictions": [], - "MeshTerms": [ - "Automobile Driving", - "Humans", - "Diabetes Mellitus", - "United States", - "Licensure" - ] - }, - { - "PMID": "39432645", - "Title": "Medicine", - "ArticleTitle": "Mitochondrial diabetes presenting with spontaneous abortion and ketoacidosis onset: A case report and literature review.", - "Abstract": "MDM presents with atypical clinical manifestations, and thorough physical examinations are crucial for its diagnosis. This case underscores the significance of genetic testing and family history in diagnosing MDM and the need for increased awareness among clinicians to prevent misdiagnosis.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Pregnancy", - "Abortion, Spontaneous", - "Adult", - "Mitochondrial Diseases", - "Diabetes Mellitus", - "Hearing Loss, Sensorineural", - "DNA, Mitochondrial", - "Ketosis" - ] - }, - { - "PMID": "39432605", - "Title": "Medicine", - "ArticleTitle": "Female and diabetes are risk factors for alpha-fetoprotein and protein induced by vitamin K absence or antagonist-II negative in hepatocellular carcinoma.", - "Abstract": "Hepatocellular carcinoma (HCC) is a common type of tumor with a high incidence. Alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II or des-gamma-carboxy prothrombin) are proven effective biomarkers for HCC. Combining them can enhance detection rates. However, when both AFP and PIVKA-II are negative, clinical diagnosis may be missed. This study aims to explore the risk factors for AFP and PIVKA-II negativity in HCC, thereby reducing missed diagnoses. A retrospective study enrolled 609 HCC patients at Shandong Public Health Clinical Center Affiliated with Shandong University from January 2010 to March 2022. Patients with negative AFP and PIVKA-II were the observed group, and others with at least 1 positive were controls. Epidemiological, clinical, laboratory, and radiological data were collected and analyzed to identify the frequency and factors influencing AFP and PIVKA-II negativity. Receiver operating characteristic (ROC) curves were used to assess the prediction model's ability to detect negative AFP and PIVKA-II in HCC. Gender (P\u2005=\u2005.045, 95% confidence interval [95%CI]\u2005=\u20051.013-3.277), diabetes mellitus (P\u2005=\u2005.018, 95%CI\u2005=\u20051.151-4.422), tumor size (P\u2005=\u2005.000, 95%CI\u2005=\u20050.677-0.841), glutamate transpeptidase (P\u2005=\u2005.003, 95%CI\u2005=\u20050.239-0.737), total bilirubin (P\u2005=\u2005.001, 95%CI\u2005=\u20050.235-0.705), and hepatitis B virus-associated infections (P\u2005=\u2005.007, 95%CI\u2005=\u20050.077-0.661) were significantly associated with AFP and PIVKA-II negativity in HCC. The prediction model had an area under curve of 0.832 (P\u2005<\u2005.001, 95%CI\u2005=\u20050.786-0.877), with a sensitivity of 81.2% and specificity of 75.5% in all HCC patients. Female diabetic patients with levels closer to normal for glutamate transpeptidase and total bilirubin are more likely to develop AFP and PIVKA-II-negative HCC. Imaging is crucial for screening liver cancer in these patients.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Prothrombin", - "Carcinoma, Hepatocellular", - "Liver Neoplasms", - "Female", - "alpha-Fetoproteins", - "Middle Aged", - "Retrospective Studies", - "Protein Precursors", - "Male", - "Risk Factors", - "Biomarkers", - "Sex Factors", - "Adult", - "ROC Curve", - "Aged", - "Diabetes Mellitus", - "Biomarkers, Tumor" - ] - }, - { - "PMID": "39431381", - "Title": "Epidemiologia e prevenzione", - "ArticleTitle": "[The study of migrant and immigrant population from the syndemic point of view].", - "Abstract": "The study of health of migrant and immigrant populations is of particular interest and actual in recent years, and there is a lack of research assessing aspects of aging of permanently resident immigrants, chronic non-communicable diseases, multimorbidity, and study of second generations. This contribution proposes to describe the relationship between health and immigration and their association with frailty through the anthropological concept of syndemics. Syndemics represents a set of closely interconnected and mutually enhancing health problems, significantly influencing the overall health status of a population. This occurs within the context of a perpetual pattern of harmful social conditions. Among the syndemics described in the literature, the most interesting in this area is the one concerning the increased frailty due to the interaction among diabetes, depression, immigration, and social distress, called VIDDA (Violence, Immigration, Depression, Diabetes, and Abuse), first identified in Mexican immigrant women in the United States. The main limitation of using the syndemic approach to study the health of immigrant populations is the difficulty in moving from the anthropological, primarily qualitative approach to the epidemiological-quantitative approach. Despite this, the epidemiological study of immigrant populations could benefit from the syndemic approach, because it can better describe complex causal relationships and provide evidence for modification of the clinical approach.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Emigrants and Immigrants", - "Syndemic", - "Diabetes Mellitus", - "Female", - "Depression", - "Transients and Migrants", - "Mexico", - "Italy", - "Health Status", - "Male", - "United States" - ] - }, - { - "PMID": "39431295", - "Title": "Journal of diabetes science and technology", - "ArticleTitle": "Psychosocial Aspects of Diabetes Technologies: Commentary on the Current Status of the Evidence and Suggestions for Future Directions.", - "Abstract": "Diabetes technologies, including continuous glucose monitors, insulin pumps, and automated insulin delivery systems offer the possibility of improving glycemic outcomes, including reduced hemoglobin A1c, increased time in range, and reduced hypoglycemia. Given the rapid expansion in the use of diabetes technology over the past few years, and touted promise of these devices for improving both clinical and psychosocial outcomes, it is critically important to understand issues in technology adoption, equity in access, maintaining long-term usage, opportunities for expanded device benefit, and limitations of the existing evidence base. We provide a brief overview of the status of the literature-with a focus on psychosocial outcomes-and provide recommendations for future work and considerations in clinical applications. Despite the wealth of the existing literature exploring psychosocial outcomes, there is substantial room to expand our current knowledge base to more comprehensively address reasons for differential effects, with increased attention to issues of health equity and data harmonization around patient-reported outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Blood Glucose", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus", - "Diabetes Mellitus, Type 1", - "Glycemic Control", - "Hypoglycemic Agents", - "Insulin", - "Insulin Infusion Systems" - ] - }, - { - "PMID": "39430987", - "Title": "Journal of preventive medicine and hygiene", - "ArticleTitle": "Longitudinal trends in physical activity levels and lifetime cardiovascular disease risk: insights from the ATTICA cohort study (2002-2022).", - "Abstract": "Promoting and maintaining regular physical activity throughout lifespan is crucial for reducing lifetime CVD risk and related risk factors. Tailored interventions addressing demographic and socioeconomic factors may help enhance cardiovascular health outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Cardiovascular Diseases", - "Exercise", - "Longitudinal Studies", - "Adult", - "Hypercholesterolemia", - "Incidence", - "Hypertension", - "Cohort Studies", - "Risk Factors", - "Israel", - "Diabetes Mellitus", - "Heart Disease Risk Factors" - ] - }, - { - "PMID": "39429548", - "Title": "The Pan African medical journal", - "ArticleTitle": "Knowledge, attitudes, and practices regarding diabetic retinopathy among patients with diabetes in Dongola, Northern State, Sudan, 2022: a cross-sectional study.", - "Abstract": "despite the good knowledge, favorable attitude and good practices, the regular eye check-up practice was significantly low. Urban residence was significantly associated with knowledge. Similarly, knowledge was found to be significantly associated with practice level. The most common barrier to regular eye check-up was the misconception that it is not important.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Cross-Sectional Studies", - "Sudan", - "Female", - "Health Knowledge, Attitudes, Practice", - "Male", - "Diabetic Retinopathy", - "Middle Aged", - "Adult", - "Surveys and Questionnaires", - "Young Adult", - "Aged", - "Diabetes Mellitus", - "Urban Population" - ] - }, - { - "PMID": "39427318", - "Title": "Cell reports", - "ArticleTitle": "A ONECUT1 regulatory, non-coding region in pancreatic development and diabetes.", - "Abstract": "In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Pancreas", - "Diabetes Mellitus", - "Animals", - "Diabetes Mellitus, Type 2", - "Enhancer Elements, Genetic", - "Mice", - "Male", - "Mutation", - "Regulatory Sequences, Nucleic Acid", - "Female" - ] - }, - { - "PMID": "39427132", - "Title": "BMC oral health", - "ArticleTitle": "Association between total functional tooth unit score and hemoglobin A1c levels in Japanese community-dwelling individuals: the Nagasaki Islands study.", - "Abstract": "In this community-based cross-sectional study, total FTU was significantly associated with HbA1c levels, independent of other risk factors. This suggests that reconstructed occlusal support areas, including dentures, are associated with glycemic control in the older population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Glycated Hemoglobin", - "Female", - "Cross-Sectional Studies", - "Male", - "Aged", - "Japan", - "Middle Aged", - "Adult", - "Aged, 80 and over", - "Independent Living", - "Periodontal Index", - "Periodontal Diseases", - "Diabetes Mellitus", - "East Asian People" - ] - }, - { - "PMID": "39425574", - "Title": "The science of diabetes self-management and care", - "ArticleTitle": "Participants' Perspectives on Diabetes Self-Management Programming at Church: Faith-Placed Versus Faith-Based Approach.", - "Abstract": "Church holds promise as a setting for DSMES program delivery in Hispanic communities. Church-based DSMES programs using a FB approach may further facilitate program adoption and sustainability.", - "Predictions": [], - "MeshTerms": [ - "Adult", - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "Diabetes Mellitus", - "Focus Groups", - "Health Knowledge, Attitudes, Practice", - "Hispanic or Latino", - "Patient Education as Topic", - "Self-Management", - "Texas" - ] - }, - { - "PMID": "39425096", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "Altered RBC deformability in diabetes: clinical characteristics and RBC pathophysiology.", - "Abstract": "NCT00071526.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Erythrocyte Deformability", - "Cross-Sectional Studies", - "Erythrocytes", - "Aged", - "Case-Control Studies", - "Adult", - "Diabetes Mellitus", - "Risk Factors", - "Osmotic Fragility", - "Diabetic Angiopathies" - ] - }, - { - "PMID": "39424428", - "Title": "Journal of the American Heart Association", - "ArticleTitle": "Association of Prepregnancy Cardiometabolic Health With Hypertensive Disorders of Pregnancy Among Historically Underrepresented Groups in the United States.", - "Abstract": "Prepregnancy diabetes and obesity are associated with HDP across all racial and ethnic groups. Diabetes and obesity have highest population attributable fractions among Native Hawaiian and Other Pacific Islander individuals and should be aggressively targeted during childhood, adolescence, and young adulthood to reduce risk of HDPs.", - "Predictions": [], - "MeshTerms": [ - "Adult", - "Female", - "Humans", - "Pregnancy", - "Young Adult", - "Cross-Sectional Studies", - "Diabetes Mellitus", - "Hypertension, Pregnancy-Induced", - "Native Hawaiian or Pacific Islander", - "Obesity", - "Prevalence", - "Risk Factors", - "United States", - "American Indian or Alaska Native" - ] - }, - { - "PMID": "39424393", - "Title": "BMJ open", - "ArticleTitle": "Diabetic health literacy and associated factors among patients with diabetes attending follow-up in public hospitals of Northeastern Ethiopia: a multicentre cross-sectional study.", - "Abstract": "The study showed that less than a quarter of the patients have high DHL, with almost half having low levels of DHL. Tailoring health education programmes to diverse educational levels, incorporating multiple information sources and fostering social support networks could enhance DHL.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ethiopia", - "Health Literacy", - "Cross-Sectional Studies", - "Female", - "Male", - "Adult", - "Hospitals, Public", - "Middle Aged", - "Diabetes Mellitus", - "Young Adult", - "Health Knowledge, Attitudes, Practice" - ] - }, - { - "PMID": "39424392", - "Title": "BMJ open", - "ArticleTitle": "Treatments, medical expenses and complications of hospital outpatient healthcare associated with stroke in patients with diabetes in China: a retrospective analysis of the Beijing Municipal Medical Insurance Database.", - "Abstract": "Stroke is associated with a significant increase in complications and medications for patients with diabetes and greatly adds to the economic burden of these patients. Early identification of stroke risk factors in patients with diabetes, as well as targeted poststroke diabetes management, is crucial from a socioeconomic perspective for a comprehensive management and treatment of stroke in patients with diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Retrospective Studies", - "Female", - "Stroke", - "Aged", - "Middle Aged", - "Diabetes Mellitus", - "China", - "Ambulatory Care", - "Health Care Costs", - "Databases, Factual", - "Diabetes Complications", - "Beijing", - "Adult", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39424381", - "Title": "BMJ open", - "ArticleTitle": "Exploring the decision-making experience of elderly diabetes patients regarding their health-seeking behaviour: a descriptive qualitative study.", - "Abstract": "The health-seeking behavioural decision-making level of elderly diabetic patients is relatively low. Medical and healthcare professionals should formulate targeted intervention measures aimed at improving their disease cognition level, changing their coping styles and enhancing their health-seeking behavioural decision-making level to improve their health outcomes. Meanwhile, policymakers should plan and allocate medical resources in a targeted manner based on the needs and expectations of patients.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Aged", - "Male", - "Female", - "Qualitative Research", - "Patient Acceptance of Health Care", - "Decision Making", - "China", - "Middle Aged", - "Diabetes Mellitus", - "Aged, 80 and over", - "Adaptation, Psychological", - "Interviews as Topic" - ] - }, - { - "PMID": "39423367", - "Title": "JMIR formative research", - "ArticleTitle": "Oral Diabetes Medication Videos on Douyin: Analysis of Information Quality and User Comment Attitudes.", - "Abstract": "Despite most videos on Douyin being posted by doctors, with generally acceptable information quality and positive user comment attitudes, some content inaccuracies and poor actionability remain. Users show more positive attitudes toward videos with high-quality information about treatment choices. This study suggests that health care providers should ensure the accuracy and actionability of video content, enhance the information quality of treatment choices of oral diabetes medications to foster positive user attitudes, help users access accurate health information, and promote medication adherence.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus", - "Video Recording", - "Administration, Oral", - "Hypoglycemic Agents", - "Patient Education as Topic", - "China", - "Male" - ] - }, - { - "PMID": "39423235", - "Title": "PloS one", - "ArticleTitle": "Primary care physicians' perspectives on adults with diabetes and the recommended hepatitis B vaccine: A qualitative study.", - "Abstract": "Our findings indicate that physicians are generally aware of the existence of the CDC guidelines, but not all physicians recommend the HepB vaccine to adults with diabetes. This is because of a wide variation in treatment concerning glucose monitoring or insulin injection due to varying opinions about actual risk. We also identified barriers adults with diabetes have in receiving the HepB vaccine and strategies to increase HepB vaccination.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Physicians, Primary Care", - "Hepatitis B Vaccines", - "Female", - "Male", - "Adult", - "Hepatitis B", - "Middle Aged", - "Vaccination", - "Qualitative Research", - "Attitude of Health Personnel", - "Diabetes Mellitus", - "Health Knowledge, Attitudes, Practice" - ] - }, - { - "PMID": "39422035", - "Title": "Molecular medicine reports", - "ArticleTitle": "Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review).", - "Abstract": "Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non\u2011coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.", - "Predictions": [], - "MeshTerms": [ - "Epigenesis, Genetic", - "Humans", - "Wound Healing", - "Macrophages", - "Animals", - "DNA Methylation", - "Diabetes Mellitus", - "Diabetes Complications", - "Cell Differentiation", - "Macrophage Activation" - ] - }, - { - "PMID": "39420889", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Phenotypic and molecular reanalysis of a cohort of patients with monogenic diabetes reveals a case of partial lipodystrophy due to the A8344G mutation in the mitochondrial DNA.", - "Abstract": "Familial partial lipodystrophy (FPLD) is a very rare genetic disease characterized by insulin resistance due to a loss of subcutaneous fat from the extremities together with a progressive storage of fat around the face and neck and inside the abdomen. In over 50% of cases, molecular genetic testing reveals pathogenic variants in two nuclear genes, LMNA and PPARG. The case reported here refers to a woman phenotypically diagnosed with FPLD, who presented with diabetes and multiple cervical lipomatosis and in whom no variant had been found in the nuclear genes classically associated with this syndrome that could explain her phenotype. Genetic sequencing using a target panel containing 48 nuclear genes related to monogenic diabetes plus the whole mitochondrial genome revealed the mitochondrial variant m.A8344G in 84.1% heteroplasmy. Following molecular diagnosis, her phenotype was expanded with the recognition of additional clinical characteristics: mild sensorineural hearing loss, proximal myopathy, fatigue, cognitive impairment, sensory ataxia, cardiac abnormalities and, finally, muscle biopsy findings compatible with mitochondrial disease. Therefore, careful and detailed phenotypic and genotypic reanalysis proved crucial in improving molecular diagnosis in FPLD.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "DNA, Mitochondrial", - "Female", - "Lipodystrophy, Familial Partial", - "Phenotype", - "Mutation", - "Adult", - "Middle Aged", - "Diabetes Mellitus", - "Mitochondrial Diseases", - "Cohort Studies", - "Lamin Type A" - ] - }, - { - "PMID": "39419119", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Nasopharyngeal carriage and antibiotic susceptibility of Streptococcus pneumoniae among diabetes patients in western Kenya.", - "Abstract": "Nasopharyngeal carriage of S. pneumoniae is higher in patients with diabetes, with significant resistance to common antibiotics, though macrolides remain effective.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Streptococcus pneumoniae", - "Male", - "Female", - "Kenya", - "Nasopharynx", - "Cross-Sectional Studies", - "Adult", - "Anti-Bacterial Agents", - "Middle Aged", - "Pneumococcal Infections", - "Carrier State", - "Diabetes Mellitus", - "Microbial Sensitivity Tests", - "Adolescent", - "Young Adult", - "Drug Resistance, Bacterial", - "Risk Factors" - ] - }, - { - "PMID": "39418939", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Individual and joint effects of diabetes and depression on incident cardiovascular diseases and all-cause mortality: Results from a population-based cohort study.", - "Abstract": "Individuals with both diabetes and depression had greater risk of CVD and all-cause mortality when compared to those with diabetes or depression alone, or those without either condition.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Middle Aged", - "Female", - "Cardiovascular Diseases", - "Aged", - "China", - "Longitudinal Studies", - "Cohort Studies", - "Depression", - "Diabetes Mellitus", - "Incidence", - "Cause of Death", - "Risk Factors", - "Diabetic Angiopathies" - ] - }, - { - "PMID": "39418781", - "Title": "Journal of occupational and environmental medicine", - "ArticleTitle": "Developing a Job-Exposure Matrix for Sedentary Behavior: A Study Based on the Inpatient Clinico-Occupational Database of Rosai Hospital Group.", - "Abstract": "The job-exposure matrix provides valuable insights into the health impacts of sedentary behavior in the workplace, underscoring significant disease risks associated with prolonged inactivity.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Sedentary Behavior", - "Female", - "Male", - "Case-Control Studies", - "Middle Aged", - "Adult", - "Occupations", - "Databases, Factual", - "Occupational Exposure", - "Risk Factors", - "Noncommunicable Diseases", - "Myocardial Infarction", - "Sitting Position", - "Diabetes Mellitus", - "Aged", - "Workplace" - ] - }, - { - "PMID": "39418333", - "Title": "Diabetes", - "ArticleTitle": "Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes.", - "Abstract": "The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Humans", - "Blood Glucose", - "Diabetes Mellitus", - "Energy Metabolism", - "Neurons", - "Obesity", - "Ventromedial Hypothalamic Nucleus" - ] - }, - { - "PMID": "39418173", - "Title": "Preventing chronic disease", - "ArticleTitle": "Prevalence of Self-Reported Diagnosed Diabetes Among Adults, by County Metropolitan Status and Region, United States, 2019-2022.", - "Abstract": "The association of metropolitan residence with diabetes prevalence differs across US regions. These findings can help to guide efforts in areas where diabetes prevention and care resources may be better directed.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "United States", - "Prevalence", - "Male", - "Adult", - "Female", - "Middle Aged", - "Diabetes Mellitus", - "Self Report", - "Urban Population", - "Aged", - "Health Surveys", - "Young Adult", - "Rural Population", - "Adolescent", - "Socioeconomic Factors", - "Health Status Disparities" - ] - }, - { - "PMID": "39417708", - "Title": "International journal of epidemiology", - "ArticleTitle": "Long-term exposure to PM2.5 and mortality: a national health insurance cohort study.", - "Abstract": "This study identified the hypothesis that long-term exposure to PM2.5 is associated with mortality, and the association might be different by causes of death. Our result highlights a novel vulnerable population: the middle-aged population with risk factors related to heart failure.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Particulate Matter", - "Male", - "Female", - "Aged", - "Middle Aged", - "Republic of Korea", - "Environmental Exposure", - "Longitudinal Studies", - "Air Pollution", - "Air Pollutants", - "Cardiovascular Diseases", - "National Health Programs", - "Proportional Hazards Models", - "Cause of Death", - "Mortality", - "Cohort Studies", - "Neoplasms", - "Diabetes Mellitus" - ] - }, - { - "PMID": "39415790", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes.", - "Abstract": "Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu", - "Predictions": [], - "MeshTerms": [ - "Ferroptosis", - "Humans", - "Cadmium", - "Cardiovascular Diseases", - "Copper", - "Animals", - "Diabetes Mellitus", - "Myocytes, Cardiac", - "Oxidative Stress", - "Diabetes Complications" - ] - }, - { - "PMID": "39415660", - "Title": "Primary health care research & development", - "ArticleTitle": "Evaluating physical activities in clinical diabetes: lifestyle scores hypothesis.", - "Abstract": "This report contributes to diabetes cardiovascular complications management. Sedentary ADL factors need integration in healthy lifestyle education especially among the elderly.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Adult", - "Aged", - "Cross-Sectional Studies", - "Adolescent", - "Aged, 80 and over", - "Life Style", - "Young Adult", - "Exercise", - "Diabetes Mellitus", - "Activities of Daily Living" - ] - }, - { - "PMID": "39476053", - "Title": "Brazilian dental journal", - "ArticleTitle": "Atorvastatin Accelerates Alveolar Bone Loss in Type 1 Diabetic Rats Submitted to Periodontitis.", - "Abstract": "Periodontal bone loss is potentiated by diabetes. Despite the beneficial anti-inflammatory and antiresorptive effects of Atorvastatin (ATV) on periodontitis, it has been reported to increase the risk of diabetes, which may modify the course of periodontal disease. Therefore, this study aimed to evaluate the effect of ATV on alveolar bone in rats with periodontitis and diabetes. For this, 72 Wistar rats were divided into groups: Na\u00efve (N) not submitted to any procedure; Experimental periodontitis (EP) group submitted to ligature-induced periodontitis; diabetes mellitus (DM), submitted to EP and receiving single dose of streptozotocin (60 mg/kg, i.p.) after 12 hours of fasting; and ATV DM, submitted to EP and DM and receiving orally 27 mg/kg of ATV, 30 minutes before ligature placement, and continued daily until the 11th day. Animals from EP and DM received saline solution 0.9% as placebo. Glycemic levels measured in all animals and then were euthanized. Maxillae were collected for macroscopic, micro-tomographic, and microscopic analyses. DM caused intense bone loss (60%), characterized by a reduction in trabecular thickness and bone volume. DM reduced osteoblasts, increasing osteoclast counts, and induced an inflammatory infiltrate in the periodontium. ATV was found ineffective in protecting bone in diabetic rats, exacerbating bone loss by 21%. Additionally, ATV significantly increased blood glucose levels. In summary, ATV did not prevent alveolar bone loss or modulate inflammation in DM animals undergoing EP. ATV also increased blood glucose levels in these animals. Therefore, the systemic use of ATV in uncontrolled diabetic conditions should be carefully evaluated.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Alveolar Bone Loss", - "Rats, Wistar", - "Periodontitis", - "Atorvastatin", - "Rats", - "Diabetes Mellitus, Experimental", - "Male", - "Diabetes Mellitus, Type 1", - "X-Ray Microtomography" - ] - }, - { - "PMID": "39475830", - "Title": "Current opinion in allergy and clinical immunology", - "ArticleTitle": "Expanding the spectrum of IPEX: from new clinical findings to novel treatments.", - "Abstract": "Further research is needed to fully understand the variable clinical presentations of IPEX and optimize tailored therapies, ensuring better management and outcomes for affected individuals.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Forkhead Transcription Factors", - "Genetic Diseases, X-Linked", - "T-Lymphocytes, Regulatory", - "Immune System Diseases", - "Genetic Therapy", - "Animals", - "Diarrhea", - "Epigenesis, Genetic", - "Biomarkers", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39475134", - "Title": "Endokrynologia Polska", - "ArticleTitle": "Falls in RAC-OST-POL Study: the results from 10-year prospective longitudinal observation.", - "Abstract": "In long-term follow-up in postmenopausal women, falls were frequently observed, and their occurrence increased the fracture rate. Diabetes type 1 and depression increase the fall rate, which suggests the necessity of implementation of some preventive procedures.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Accidental Falls", - "Female", - "Aged", - "Middle Aged", - "Prospective Studies", - "Longitudinal Studies", - "Incidence", - "Poland", - "Osteoporotic Fractures", - "Risk Factors", - "Postmenopause", - "Comorbidity", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39474860", - "Title": "Journal of diabetes investigation", - "ArticleTitle": "The benefits and accuracy of real-time continuous glucose monitoring in children and adolescents with type 1 diabetes attending a summer camp.", - "Abstract": "Rt-CGM exhibited higher usability and recommendation scores in HCPs than those in campers. This may be related to relatively lower accuracy in rt-CGM. Overall usability and recommendation are clinically satisfactory, but due to relatively low accuracy, no decision should be made based on a single, non-verified SG value alone.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Blood Glucose Self-Monitoring", - "Adolescent", - "Child", - "Female", - "Male", - "Blood Glucose", - "Japan", - "Patient Satisfaction", - "Surveys and Questionnaires", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39473047", - "Title": "Diabetic medicine : a journal of the British Diabetic Association", - "ArticleTitle": "An audit and feedback-based intervention to improve diabetes management in the year after transfer to adult type 1 diabetes care: A multi-center quasi-experimental study.", - "Abstract": "We found an effect of the intervention on glycaemic management one year following transfer to adult care. Future work will focus on refining and testing the effectiveness of the intervention in an expanded number of study sites and in collaboration with adult diabetes care providers.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Female", - "Male", - "Glycated Hemoglobin", - "Adult", - "Transition to Adult Care", - "Ontario", - "Adolescent", - "Young Adult", - "Feedback", - "Glycemic Control", - "Medical Audit", - "Quality Improvement" - ] - }, - { - "PMID": "39472884", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Association between the soluble receptor for advanced glycation end products and diabetes mellitus: systematic review and meta-analysis.", - "Abstract": "CRD42024521252.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Biomarkers", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus, Type 2", - "Receptor for Advanced Glycation End Products" - ] - }, - { - "PMID": "39472875", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "Excessive occupational sitting increases risk of cardiovascular events among working individuals with type 1 diabetes in the prospective Finnish Diabetic Nephropathy Study.", - "Abstract": "Excessive occupational sitting is associated with a higher risk of cardiovascular events and all-cause mortality in individuals with type 1 diabetes. This association persists regardless of leisure-time physical activity, after adjusting for independently associated variables identified in our cross-sectional analyses. These findings underscore the need to update physical activity guidelines to better address sedentary behavior and improve outcomes for individuals with type 1 diabetes. Targeting occupational sitting should be considered a key focus for interventions aimed at reducing overall sedentary time.", - "Predictions": [], - "MeshTerms": [ - "Adult", - "Female", - "Humans", - "Male", - "Middle Aged", - "Cardiovascular Diseases", - "Cause of Death", - "Diabetes Mellitus, Type 1", - "Diabetic Nephropathies", - "Finland", - "Heart Disease Risk Factors", - "Occupational Health", - "Occupations", - "Prognosis", - "Prospective Studies", - "Registries", - "Risk Assessment", - "Risk Factors", - "Sedentary Behavior", - "Sitting Position", - "Time Factors", - "Follow-Up Studies" - ] - }, - { - "PMID": "39472557", - "Title": "Nature communications", - "ArticleTitle": "Physiological and pathogenic T cell autoreactivity converge in type 1 diabetes.", - "Abstract": "Autoimmune diseases result from autoantigen-mediated activation of adaptive immunity; intriguingly, autoantigen-specific T cells are also present in healthy donors. An assessment of dynamic changes of this autoreactive repertoire in both health and disease is thus warranted. Here we investigate the physiological versus pathogenic autoreactive processes in the context of Type 1 diabetes (T1D) and one of its landmark autoantigens, glutamic acid decarboxylase 65 (GAD65). Using single cell gene expression profiling and tandem T cell receptor (TCR) sequencing, we find that GAD65-specific true na\u00efve cells are present in both health and disease, with GAD65-specific effector and memory responses showing similar ratios in healthy donors and patients. Deeper assessment of phenotype and TCR repertoire uncover differential features in GAD65-specific TCRs, including lower clonal sizes of healthy donor-derived clonotypes in patients. We thus propose a model whereby physiological autoimmunity against GAD65 is needed during early life, and that alterations of these physiological autoimmune processes in predisposed individuals trigger overt Type 1 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 1", - "Humans", - "Glutamate Decarboxylase", - "Receptors, Antigen, T-Cell", - "Autoantigens", - "Autoimmunity", - "T-Lymphocytes", - "Male", - "Female", - "Adult", - "Single-Cell Analysis", - "Adolescent", - "Young Adult", - "Child", - "Gene Expression Profiling" - ] - }, - { - "PMID": "39471704", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Effects of probiotics and fibers on markers of nephropathy, inflammation, intestinal barrier dysfunction and endothelial dysfunction in individuals with type 1 diabetes and albuminuria. The ProFOS Study.", - "Abstract": "Twelve weeks treatment with synbiotic mix had no effect on UACR or on any of the secondary endpoints in subjects with type 1 diabetes and albuminuria.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Albuminuria", - "Male", - "Female", - "Diabetic Nephropathies", - "Probiotics", - "Middle Aged", - "Cross-Over Studies", - "Aged", - "Biomarkers", - "Dietary Fiber", - "Glomerular Filtration Rate", - "Inflammation", - "Endothelium, Vascular", - "Synbiotics", - "Intestinal Mucosa", - "Adult" - ] - }, - { - "PMID": "39471271", - "Title": "Journal of managed care & specialty pharmacy", - "ArticleTitle": "Comorbid depression and anxiety and their association with health care resource utilization among individuals with type 1 diabetes in the United States.", - "Abstract": "Comorbid depression/anxiety among individuals with T1DM results in significantly higher HCRU than T1DM alone. The findings underscore the importance of effective management of comorbid depression/anxiety in the T1DM population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Adult", - "United States", - "Middle Aged", - "Young Adult", - "Adolescent", - "Patient Acceptance of Health Care", - "Comorbidity", - "Anxiety", - "Depression", - "Retrospective Studies", - "Health Resources" - ] - }, - { - "PMID": "39470899", - "Title": "Current diabetes reports", - "ArticleTitle": "Implementation Science and Pediatric Diabetes: A Scoping Review of the State of the Literature and Recommendations for Future Research.", - "Abstract": "Of 23 papers identified, 19 were published since 2017 and 21 focused on type 1 diabetes. Most involved medical evidence-based practices (EBPs; n\u2009=\u200915), whereas fewer focused on psychosocial (n\u2009=\u20097) and diabetes education (n\u2009=\u20092). The majority either identified barriers and facilitators of implementing an EBP (n\u2009=\u200911) or were implementation trials (n\u2009=\u200911). Fewer studies documented gaps in EBP implementation in standard care (n\u2009=\u20097) or development of implementation strategies (n\u2009=\u20091). Five papers employed IS theories and two aimed to improve equity. There is a paucity of IS research in pediatric diabetes care literature. Few papers employed IS theory, used consistent IS terminology, or described IS strategies or outcomes. Guidance for future research to improve IS research in pediatric diabetes is offered.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Implementation Science", - "Child", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus", - "Pediatrics", - "Evidence-Based Practice" - ] - }, - { - "PMID": "39470851", - "Title": "Current diabetes reports", - "ArticleTitle": "Impact of Digitally Enabled Peer Support Interventions on Diabetes Distress and Depressive Symptoms in People Living with Type 1 Diabetes: A Systematic Review.", - "Abstract": "We synthesized the results of nine key studies from a review of 3,623 English-language articles published between January 2012 and January 2024. Three studies demonstrated significant reductions in diabetes distress, and two studies reported reductions in depression. Data were analyzed using a narrative approach, including thematic synthesis. This process was structured around the Behavior Change Wheel framework Effective interventions shared several common features such as (1) involved participatory development approaches, (2) included diabetes education, (3) lasted over a longer time, (4) designed with a psychological framework, and (5) utilized peer mentors. Studies showed that digitally-enabled peer support has the potential to improve diabetes distress and depression among people living with T1D despite heterogeneity in intervention approaches. Moreover, designing interventions with certain features may enhance key psychosocial outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Depression", - "Diabetes Mellitus, Type 1", - "Peer Group", - "Psychological Distress", - "Social Support", - "Stress, Psychological", - "Digital Health" - ] - }, - { - "PMID": "39468682", - "Title": "Trials", - "ArticleTitle": "Hypoglycaemia Prevention, Awareness of Symptoms, and Treatment (HypoPAST): protocol for a 24-week hybrid type 1 randomised controlled trial of a fully online psycho-educational programme for adults with type 1 diabetes.", - "Abstract": "Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12623000894695 (21 August 2023).", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Hypoglycemia", - "Patient Education as Topic", - "Randomized Controlled Trials as Topic", - "Health Knowledge, Attitudes, Practice", - "Time Factors", - "Adult", - "Fear", - "Hypoglycemic Agents", - "Treatment Outcome", - "Awareness", - "Blood Glucose", - "Quality of Life", - "Glycemic Control", - "Insulin", - "Internet-Based Intervention" - ] - }, - { - "PMID": "39468384", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Body weight variability as a predictor of cardiovascular outcomes in type 1 diabetes: A nationwide cohort study.", - "Abstract": "High BWV is associated with an increased risk of CVD and all-cause mortality in individuals with T1D, independently of canonical risk factors. Weight trends, sex and glycaemic control do not modify such association while older age attenuates it.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Female", - "Male", - "Sweden", - "Adult", - "Cardiovascular Diseases", - "Middle Aged", - "Body Weight", - "Cohort Studies", - "Registries", - "Incidence", - "Risk Factors", - "Diabetic Angiopathies", - "Young Adult" - ] - }, - { - "PMID": "39467874", - "Title": "Diabetologia", - "ArticleTitle": "The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium.", - "Abstract": "Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 1", - "Humans", - "Receptors, Antigen, T-Cell", - "Receptors, Antigen, B-Cell", - "Autoimmunity" - ] - }, - { - "PMID": "39467873", - "Title": "Diabetologia", - "ArticleTitle": "Autoimmune diseases and the risk and prognosis of latent autoimmune diabetes in adults.", - "Abstract": "We confirm that several common ADs confer an excess risk of LADA, especially LADA with higher GADA levels, but having such a comorbidity does not appear to affect the risk of diabetic retinopathy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Autoimmune Diseases", - "Middle Aged", - "Latent Autoimmune Diabetes in Adults", - "Adult", - "Prognosis", - "Diabetes Mellitus, Type 2", - "Sweden", - "Diabetic Retinopathy", - "Aged", - "Autoantibodies", - "Risk Factors", - "Comorbidity", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39467872", - "Title": "Diabetologia", - "ArticleTitle": "Exposure to antibiotics and risk of latent autoimmune diabetes in adults and type 2 diabetes: results from a Swedish case-control study (ESTRID) and the Norwegian HUNT study.", - "Abstract": "We found no evidence that exposure to broad-spectrum antibiotics up to 10 years prior to diagnosis increases the risk of LADA. There was some indication of increased LADA risk with exposure to narrow-spectrum antibiotics, which warrants further investigation.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Case-Control Studies", - "Diabetes Mellitus, Type 2", - "Sweden", - "Norway", - "Anti-Bacterial Agents", - "Female", - "Male", - "Adult", - "Middle Aged", - "Aged", - "Risk Factors", - "Latent Autoimmune Diabetes in Adults", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39466337", - "Title": "Current medical research and opinion", - "ArticleTitle": "Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care.", - "Abstract": "The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Pancreas, Artificial", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Diabetes Mellitus", - "Insulin", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39465858", - "Title": "Medicine", - "ArticleTitle": "Study on serum vitamin A level in patients with type 1 diabetes: A systematic review and meta-analysis.", - "Abstract": "Serum VA levels seem to have decreased in T1DM patients. Further research is needed to strengthen this finding and clarify possible impact mechanisms.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Vitamin A", - "Case-Control Studies", - "Vitamin A Deficiency" - ] - }, - { - "PMID": "39465325", - "Title": "Swiss medical weekly", - "ArticleTitle": "Recommendations for early identification of heart failure in patients with diabetes: Consensus statement of the Swiss Society of Endocrinology and Diabetology and the Heart Failure Working Group of the Swiss Society of Cardiology.", - "Abstract": "Diabetes is a well-recognised risk factor for the development of heart failure, with a prevalence higher than 30% in patients with diabetes aged over 60 years. Heart failure often emerges as the primary cardiovascular manifestation in patients with type 2 diabetes and appears to be even more prevalent in type 1 diabetes. In Switzerland, there are approximately 500,000 individuals with diabetes, and the number of affected people has been steadily rising in recent years. Therefore, the consequences of heart failure will affect an increasing number of patients, further straining the Swiss healthcare system. Early lifestyle modification and initiation of appropriate treatment can prevent or at least significantly delay the onset of symptomatic heart failure by several years. These facts underscore the urgent need for early detection of individuals with subclinical heart failure, which often remains undiagnosed until the first episode of acute heart failure requiring hospital admission occurs. To address this issue, the European Society of Cardiology, the American Diabetes Association (ADA) and other international professional societies have published recommendations on heart failure screening, diagnosis and management. To address this issue in Switzerland, experts from the Swiss Society of Endocrinology and Diabetology, the Swiss Society of Cardiology and the General Internal Medicine specialty met and prepared a consensus report including a simple diagnostic algorithm for use in everyday practice.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Switzerland", - "Early Diagnosis", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Consensus", - "Risk Factors", - "Societies, Medical", - "Cardiology", - "Endocrinology", - "Mass Screening" - ] - }, - { - "PMID": "39464889", - "Title": "Frontiers in immunology", - "ArticleTitle": "Circulating hsa-miR-320a and its regulatory network in type 1 diabetes mellitus.", - "Abstract": "Our study presents a novel link between hsa-miR-320a-3p and T1D, and highlights its key regulatory role in the network of mRNA markers and transcription factors involved in T1D pathogenesis.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "MicroRNAs", - "Male", - "Gene Regulatory Networks", - "Female", - "Child", - "Adolescent", - "Biomarkers", - "Gene Expression Profiling", - "Adult", - "Signal Transduction", - "Circulating MicroRNA", - "Gene Expression Regulation", - "Leukocytes, Mononuclear", - "Child, Preschool" - ] - }, - { - "PMID": "39463013", - "Title": "Journal of diabetes", - "ArticleTitle": "Gut microbiota, serum metabolites, and lipids related to blood glucose control and type 1 diabetes.", - "Abstract": "We identified distinct characteristics of gut microbiota, metabolites, and lipids in T1D patients exhibiting different levels of glycemic control. Through comprehensive analysis, microbiota (Bacteroides_nordii, Bacteroides_coprocola), metabolites (D-fructose), and lipids (Monoglycerides) may serve as potential mediators that communicated the interaction between the gut, circulatory systems, and glucose fluctuations in T1D patients.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Lipids", - "Blood Glucose", - "Adult", - "Glycemic Control", - "Feces", - "Metabolomics", - "Glycated Hemoglobin", - "Young Adult", - "Adolescent", - "RNA, Ribosomal, 16S", - "Middle Aged", - "Machine Learning" - ] - }, - { - "PMID": "39462556", - "Title": "The journal of medical investigation : JMI", - "ArticleTitle": "Difference in the accuracy of the third-generation algorithm and the first-generation algorithm of FreeStyle Libre continuous glucose monitoring device.", - "Abstract": "No proportional bias in the measurements by Gen. 3 algorithm was observed, but in those by Gen. 1 algorithm. J. Med. Invest. 71 : 225-231, August, 2024.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Algorithms", - "Blood Glucose Self-Monitoring", - "Female", - "Male", - "Diabetes Mellitus, Type 1", - "Adult", - "Blood Glucose", - "Middle Aged", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39462390", - "Title": "BMC psychology", - "ArticleTitle": "Changes in health, lifestyle, and wellbeing of children with type 1 diabetes and their parents during the pandemic.", - "Abstract": "Our findings indicate that the COVID-19 lockdown has had a significant psychological and possibly physiological impact on children with Type 1 diabetes and their parents. We conclude that there is a need for mental health support services focusing on these groups. Although full lockdown restrictions will have stopped in the past year, post-pandemic stressors may be expected to continue to adversely affect this cohort.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "COVID-19", - "Child", - "Male", - "Female", - "Parents", - "Life Style", - "Prospective Studies", - "Kuwait", - "Mental Health", - "Anxiety", - "Surveys and Questionnaires", - "Adult", - "Exercise", - "Stress, Psychological", - "Depression", - "Pandemics" - ] - }, - { - "PMID": "39461229", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Prevalence and clinical implications of diabetes mellitus in autoimmune nodopathies: A systematic review.", - "Abstract": "DM patients fall under the typical clinical phenotype of autoimmune nodopathy, displaying predominantly paranodal antibodies. Early suspicion is crucial, as unlike DPN, diagnosis of autoimmune nodopathy unfolds therapeutic perspectives.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Prevalence", - "Autoantibodies", - "Diabetic Neuropathies", - "Diabetes Mellitus", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39456927", - "Title": "International journal of molecular sciences", - "ArticleTitle": "Relationship Between C-Peptide Levels, Clinical Features, and Serum Data in a Brazilian Type 1 Diabetes Population with Large Variations in Genomic Ancestry.", - "Abstract": "Type 1 diabetes (T1D) is a chronic disease characterized by the immune-mediated destruction of the pancreatic beta cells responsible for insulin production. The secreted insulin and C-peptide are equimolar. Due to its longer half-life, C-peptide has become a safer means of assessing the pancreatic reserve. C-peptide levels were evaluated in a population of patients with T1D, focusing on the relationship between this variable and other factors. In addition, the influence of C-peptide on metabolic control and microvascular complications was investigated. This cross-sectional study included 95 patients who had been diagnosed with T1D at least five years earlier. These patients were evaluated using a clinical demographic survey, anthropometric data, laboratory tests, and fundoscopy. This study showed that 29.5% of patients had residual insulin secretion, which correlated directly with their age at diagnosis. No statistically significant differences in metabolic control or microvascular complications were observed between the C-peptide level groups. In addition, our results indicate that ancestry does not influence the persistence of residual C-peptide function in our highly mixed population. It is recommended that future research consider incorporating new variables, such as HLA and pancreatic autoimmunity, as factors that may influence residual \u03b2-cell function.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "C-Peptide", - "Female", - "Male", - "Brazil", - "Adult", - "Cross-Sectional Studies", - "Adolescent", - "Insulin", - "Young Adult", - "Child", - "Middle Aged", - "Insulin-Secreting Cells" - ] - }, - { - "PMID": "39456025", - "Title": "Journal of nanobiotechnology", - "ArticleTitle": "Islet cell spheroids produced by a thermally sensitive scaffold: a new diabetes treatment.", - "Abstract": "The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet \u03b2-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic \u03b2 cells (\u03b2-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6\u00a0N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Mice", - "Spheroids, Cellular", - "Mice, Inbred C57BL", - "Insulin", - "Tissue Scaffolds", - "Diabetes Mellitus, Experimental", - "Graphite", - "Acrylic Resins", - "Insulin-Secreting Cells", - "Diabetes Mellitus, Type 1", - "Porosity", - "Islets of Langerhans", - "Islets of Langerhans Transplantation", - "Temperature", - "Male", - "Glucose" - ] - }, - { - "PMID": "39455747", - "Title": "Scientific reports", - "ArticleTitle": "Causal relationships between allergic and autoimmune diseases with chronic rhinosinusitis.", - "Abstract": "Chronic rhinosinusitis (CRS) is a prevalent inflammatory airway disease affecting over 10% of the global population, leading to considerable socio-economic impacts, especially in developing countries. The pathogenesis of CRS is multifactorial, involving potential contributions from both genetic and environmental factors. While the influence of allergic and autoimmune diseases on CRS has been observed, the causal relationships between these diseases and CRS remain unclear. We extracted data from large-scale genome-wide association studies (GWAS) and utilized a bidirectional two-sample Mendelian randomization (MR) analysis to explore the causal relationships between CRS and ten autoimmune and allergic diseases, including asthma, allergic rhinitis (AR), atopic dermatitis (AD), psoriasis, type 1 diabetes (T1D), hypothyroidism, celiac disease (CeD), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Additionally, we conducted colocalization analysis to determine whether the allergic/autoimmune diseases showing statistical causal relationships with CRS are driven by the same genetic variants. The MR analysis identified that AR (OR\u2009=\u20091.30; 95% CI\u2009=\u20091.21-1.40; P\u2009=\u20093.26E-13), asthma (OR\u2009=\u20091.35; 95% CI\u2009=\u20091.25-1.45; P\u2009=\u20091.35E-14), and AD (OR\u2009=\u20091.17; 95% CI\u2009=\u20091.06-1.30; P\u2009=\u20090.003) were significantly associated with an increased risk of developing CRS. Interestingly, psoriasis (OR\u2009=\u20090.05; 95% CI\u2009=\u20090.01-0.37; P\u2009=\u20090.004) appeared to have a protective effect against CRS. Associations for T1D and hypothyroidism were also suggestive as potential risk factors for CRS. No significant associations in the reverse MR analysis, suggesting a one-directional relationship. Colocalization analysis indicated that asthma (PP.H4\u2009=\u20090.99) shared the same genetic variant (IL-33 rs3939286) with CRS. In conclusion, our study confirmed the causal relationships between allergic and autoimmune diseases (AR, asthma, AD, and psoriasis) and CRS. Notably, we identified a shared genetic variant, rs3939286 in the IL-33 gene, between asthma and CRS, suggesting that targeting the IL-33 pathway may provide a therapeutic strategy for both diseases.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Autoimmune Diseases", - "Sinusitis", - "Genome-Wide Association Study", - "Chronic Disease", - "Asthma", - "Psoriasis", - "Hypersensitivity", - "Mendelian Randomization Analysis", - "Rhinitis", - "Diabetes Mellitus, Type 1", - "Dermatitis, Atopic", - "Polymorphism, Single Nucleotide", - "Rhinitis, Allergic", - "Genetic Predisposition to Disease", - "Lupus Erythematosus, Systemic", - "Arthritis, Rheumatoid", - "Multiple Sclerosis", - "Celiac Disease", - "Hypothyroidism", - "Rhinosinusitis" - ] - }, - { - "PMID": "39455273", - "Title": "Journal of the American Board of Family Medicine : JABFM", - "ArticleTitle": "Clinician-Reported Barriers and Needs for Implementation of Continuous Glucose Monitoring.", - "Abstract": "Primary care clinicians face several challenges to prescribing CGM, but they are interested in learning more to help them offer it to their patients. This study reinforces the ongoing need for improved clinician education on CGM technology and continued expansion of insurance coverage for people with both type 1 and type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Qualitative Research", - "Male", - "Female", - "Primary Health Care", - "Middle Aged", - "Adult", - "United States", - "Practice Patterns, Physicians'", - "Interviews as Topic", - "Attitude of Health Personnel", - "Blood Glucose", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39451194", - "Title": "Cells", - "ArticleTitle": "Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes.", - "Abstract": "Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing \u03b2-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 1", - "Humans", - "Animals", - "TNF-Related Apoptosis-Inducing Ligand", - "Immunomodulation", - "Signal Transduction", - "Islets of Langerhans" - ] - }, - { - "PMID": "39451186", - "Title": "Pediatric endocrinology, diabetes, and metabolism", - "ArticleTitle": "Guidelines of the Polish Society of Pediatric Endocrinology and Diabetology and Pediatric Section of Diabetes Poland on insulin therapy using hybrid closed-loop systems in children and adolescents with diabetes in Poland.", - "Abstract": "Currently, hybrid closed loop (HCL) systems represent the most advantageous therapeutic option for people with diabetes requiring intensive insulin therapy. They make it possible to achieve optimal metabolic control of the disease in any age group while improving the quality of life of children and adolescents with diabetes and their families. Therefore, we present recommendations for the use of HCL systems in children and adolescents focusing on systems currently available in Poland. These systems should be the first choice in terms of method of insulin therapy in the paediatric population. They can be implemented at any stage of diabetes management. These recommendations are based on scientific evidence and experts' experience. They include principles for the initiation, optimisation, and ongoing management of HCL therapy, as well as the required HCL-related education.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Child", - "Adolescent", - "Poland", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 1", - "Insulin", - "Hypoglycemic Agents", - "Endocrinology", - "Societies, Medical", - "Practice Guidelines as Topic" - ] - }, - { - "PMID": "39449679", - "Title": "Journal of pediatric psychology", - "ArticleTitle": "Barriers to healthy behaviors: perspectives from teens with comorbid Type 1 diabetes and overweight/obesity, caregivers, and pediatric endocrinologists.", - "Abstract": "Results identify perceived limitations to engaging in recommended healthy lifestyle behaviors and diabetes management concurrently. Results may assist research and clinical care in identifying supports and guidance needed to support adolescents in meeting behavioral recommendations for their health.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Male", - "Female", - "Caregivers", - "Health Behavior", - "Pediatric Obesity", - "Endocrinologists", - "Comorbidity", - "Qualitative Research", - "Overweight", - "Healthy Lifestyle", - "Adult", - "Child", - "Adolescent Behavior" - ] - }, - { - "PMID": "39448829", - "Title": "Nature reviews. Endocrinology", - "ArticleTitle": "The epidemiology of type 1 diabetes mellitus in older adults.", - "Abstract": "Although type 1 diabetes mellitus (T1DM) is traditionally viewed as a youth-onset disorder, the number of older adults being diagnosed with this disease is growing. Improvements in the average life expectancy of people with T1DM have also contributed to the growing number of older people living with this disease. We summarize the evidence regarding the epidemiology (incidence, prevalence and excess mortality) of T1DM in older adults (ages \u226560 years) as well as the genetics, immunology and diagnostic challenges. Several studies report an incidence peak of T1DM in older adults of a similar size to or exceeding that in children, and population prevalence generally increases with increasing age. Glutamic acid decarboxylase antibody positivity is frequently observed in adult-onset T1DM. Guidelines for differentiating T1DM from type 2 diabetes mellitus in older adults recommend measuring levels of C-peptide and autoantibodies, including glutamic acid decarboxylase antibodies. However, there is no gold standard for differentiating T1DM from type 2 diabetes mellitus in people aged 60 years and over. As such, the global variation observed in T1DM epidemiology might be in part explained by misclassification, which increases with increasing age of diabetes mellitus onset. With a growing global population of older adults with T1DM, improved genetic and immunological evidence is needed to differentiate diabetes mellitus type at older ages so that a clear epidemiological picture can emerge.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Aged", - "Middle Aged", - "Incidence", - "Prevalence", - "Autoantibodies", - "Aged, 80 and over" - ] - }, - { - "PMID": "39447596", - "Title": "Psychotherapie, Psychosomatik, medizinische Psychologie", - "ArticleTitle": "[Patients with Diabetes Mellitus and Comorbid Mental Disorders - Is there a Psychotherapeutic Undertreatment? - Results of the DiMPS Study].", - "Abstract": "Equating the frequency of mental disorders with the need for psychotherapeutic and/or psychopharmacological treatment without considering the specific treatment needs and preferences of patients may lead to an overestimation of the need for care.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Mental Disorders", - "Psychotherapy", - "Germany", - "Adult", - "Aged", - "Cross-Sectional Studies", - "Comorbidity", - "Diabetes Mellitus, Type 2", - "Longitudinal Studies", - "Diabetes Mellitus, Type 1", - "Undertreatment" - ] - }, - { - "PMID": "39446990", - "Title": "Diabetes technology & therapeutics", - "ArticleTitle": "Possible Glycemic Effects of Vagus Nerve Stimulation Evaluated by Continuous Glucose Monitoring in People with Diabetes and Autonomic Neuropathy: A Randomized, Sham-Controlled Trial.", - "Abstract": { - "b": [ - { - "i": "Objective:" - }, - { - "i": "Methods:" - }, - { - "i": "Results:" - }, - { - "i": "Conclusions:" - } - ], - "i": "P" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Diabetic Neuropathies", - "Vagus Nerve Stimulation", - "Middle Aged", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus, Type 2", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Adult", - "Glycated Hemoglobin", - "Aged", - "Glycemic Control", - "Treatment Outcome", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39446857", - "Title": "PloS one", - "ArticleTitle": "Association of variants in AGTR1, ACE, MTHFR genes with microalbuminuria and risk factors for the onset of diabetic nephropathy in adolescents with type 1 diabetes in the population of Serbia.", - "Abstract": "Our data suggest that common variants in the AGTR1, ACE, and MTHFR genes are not strongly associated with diabetic nephropathy in our patients with type 1 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Methylenetetrahydrofolate Reductase (NADPH2)", - "Diabetes Mellitus, Type 1", - "Albuminuria", - "Female", - "Male", - "Adolescent", - "Diabetic Nephropathies", - "Receptor, Angiotensin, Type 1", - "Risk Factors", - "Serbia", - "Peptidyl-Dipeptidase A", - "Genetic Predisposition to Disease", - "Child", - "Polymorphism, Single Nucleotide", - "Genotype", - "Blood Pressure" - ] - }, - { - "PMID": "39446565", - "Title": "Diabetes", - "ArticleTitle": "Emerging Concepts and Success Stories in Type 1 Diabetes Research: A Road Map for a Bright Future.", - "Abstract": "Type 1 diabetes treatment stands at a crucial and exciting crossroad since the 2022 U.S. Food and Drug Administration approval of teplizumab to delay disease development. In this article, we discuss four major conceptual and practical issues that emerged as key to further advancement in type 1 diabetes research and therapies. First, collaborative networks leveraging the synergy between the type 1 diabetes research and care community members are key to fostering innovation, know-how, and translation into the clinical arena worldwide. Second, recent clinical trials in presymptomatic stage 2 and recent-onset stage 3 disease have shown the promise, and potential pitfalls, of using immunomodulatory and/or \u03b2-cell protective agents to achieve sustained remission or prevention. Third, the increasingly appreciated heterogeneity of clinical, immunological, and metabolic phenotypes and disease trajectories is of critical importance to advance the decision-making process for tailored type 1 diabetes care and therapy. Fourth, the clinical benefits of early diagnosis of \u03b2-cell autoimmunity warrant consideration of general population screening for islet autoantibodies, which requires further efforts to address the technical, organizational, and ethical challenges inherent to a sustainable program. Efforts are underway to integrate these four concepts into the future directions of type 1 diabetes research and therapy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Biomedical Research", - "Diabetes Mellitus, Type 1", - "Insulin-Secreting Cells" - ] - }, - { - "PMID": "39444012", - "Title": "BMC health services research", - "ArticleTitle": "Bridging the gap: a qualitative process evaluation from the perspectives of healthcare professionals of an audit-and-feedback-based intervention to improve transition to adult care for young people living with type 1 diabetes.", - "Abstract": "BTG resulted in a CoP among practitioners delivering transition care to youth with T1D, which could be scaled up to promote a learning health system in pediatric diabetes care. Qualitative process evaluation is a useful tool for understanding how contextual factors affect the implementation and outcomes of complex QI interventions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Transition to Adult Care", - "Qualitative Research", - "Quality Improvement", - "Adolescent", - "Young Adult", - "Health Personnel", - "Male", - "Female", - "Adult", - "COVID-19", - "Interviews as Topic", - "SARS-CoV-2" - ] - }, - { - "PMID": "39443628", - "Title": "Scientific reports", - "ArticleTitle": "The effect of war and siege on children with diabetes admitted to ayder comprehensive specialized hospital in mekelle, tigray, ethiopia: a cross-sectional study.", - "Abstract": "The armed conflict in Tigray, which spanned from November 2020 to November 2022, along with the accompanying siege, led to the near-total collapse of Tigray's healthcare system. Type 1 Diabetes Mellitus, the most common chronic condition in children, requires significant lifestyle adjustments, including daily insulin injections, regular glucose monitoring, and dietary modifications; all of which are severely impacted by war and siege. This study compared Type 1 diabetes care for children at the Ayder Comprehensive Specialized Hospital, Tigray, during the conflict and siege period with that of the pre-war period. We conducted a retrospective cross-sectional survey, analyzing data from September 2019 to August 2020 (pre-war period) and comparing it with data from September 2021 to August 2022 (war and siege period). Descriptive statistics, including frequencies and percentages, were employed, and Pearson's or Spearman's correlation analyses were used to evaluate correlations where appropriate. We identified 143 pediatric patients admitted (56 during the pre-war period and 87 during the war and siege period), with a mean age of 109 months in both periods. During the war and siege, a higher proportion of diabetes admissions were due to diabetic ketoacidosis (DKA) (90%) compared to the pre-war period (75%). In the pre-war period, the most common trigger for DKA was infections (35%), while in the war and siege period, it shifted to malnutrition (47%), infections (46%), lack of access to healthcare facilities (31%), and running out of medicines (24%). Complications such as death, renal failure, cerebral edema, and shock were more prevalent during the war and siege periods. The case fatality rate was significantly higher during the war and siege (9%) compared to the pre-war period (0%), correlating strongly with the severity of DKA, the degree of hypokalemia, the presence of complications, and admission during the war and siege. Our study showed the negative impact of war and siege on diabetes care in children demonstrating a high rate of DKA admissions with increased severity, complications, malnutrition, and case fatality rates. People with diabetes especially type 1 deserve great attention during such a crisis as the lack of insulin could lead to severe complications including death.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Ethiopia", - "Child", - "Cross-Sectional Studies", - "Male", - "Female", - "Diabetes Mellitus, Type 1", - "Retrospective Studies", - "Child, Preschool", - "Armed Conflicts", - "Adolescent", - "Hospitals, Special", - "Hospitalization", - "Infant" - ] - }, - { - "PMID": "39442806", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Time in range and mean glucose cut-off points for reduction of fetal outcomes in pregnant women with type 1 diabetes using automated insulin delivery systems.", - "Abstract": "TIRp\u00a0>\u00a059.1\u00a0% and mean glucose\u00a0<\u00a0133\u00a0mg/dl in the second trimester, is associated with lower fetal outcomes of large for gestational age. One of the strategies that would improve TIRp is the early use of AHCL systems. Further studies are needed before a strong recommendation can be made.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Pregnancy", - "Female", - "Diabetes Mellitus, Type 1", - "Adult", - "Blood Glucose", - "Insulin Infusion Systems", - "Prospective Studies", - "Insulin", - "Pregnancy in Diabetics", - "Pregnancy Outcome", - "Hypoglycemic Agents", - "Fetal Macrosomia", - "Blood Glucose Self-Monitoring" - ] - }, - { - "PMID": "39441297", - "Title": "Georgian medical news", - "ArticleTitle": "EVALUATION OF DENTAL AND PERIODONTAL STATUS IN CHILDREN WITH TYPE 1 DIABETES MELLITUS.", - "Abstract": "Children with T1DM exhibit poor oral health conditions related to the level of metabolic control. Maintenance of toothbrushing habits and regular dental check-ups recommended to manage and prevent these complications. Additionally, proper management of metabolic control can also help mitigate the adverse effects on oral health.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Child", - "Adolescent", - "Male", - "Female", - "Dental Caries", - "Oral Health", - "Periodontal Index", - "Glycated Hemoglobin", - "Dental Plaque Index", - "DMF Index", - "Periodontal Diseases" - ] - }, - { - "PMID": "39438880", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "Evaluation of the Steno Type 1 Risk Engine in predicting cardiovascular events in an ethnic mixed population of type 1 diabetes mellitus and its association with chronic microangiopathy complications.", - "Abstract": "ST1RE performed well in predicting CV events at 5 and 10 years of follow-up. Moreover, higher ST1RE scores were associated with the progression of microangiopathy complications in this genetically heterogeneous T1D population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Risk Assessment", - "Retrospective Studies", - "Adult", - "Predictive Value of Tests", - "Time Factors", - "Heart Disease Risk Factors", - "Cardiovascular Diseases", - "Young Adult", - "Prognosis", - "Diabetic Angiopathies", - "Decision Support Techniques", - "Disease Progression", - "Ethnic and Racial Minorities", - "Risk Factors", - "Middle Aged" - ] - }, - { - "PMID": "39438440", - "Title": "Nature communications", - "ArticleTitle": "Uncovering genetic loci and biological pathways associated with age-related cataracts through GWAS meta-analysis.", - "Abstract": "Age-related cataracts is a highly prevalent eye disorder that results in the clouding of the crystalline lens and is one of the leading causes of visual impairment and blindness. The disease is influenced by multiple factors including genetics, prolonged exposure to ultraviolet radiation, and a history of diabetes. However, the extent to which each of these factors contributes to the development of cataracts remains unclear. Our study identified 101 independent genome-wide significant loci, 57 of which are novel. We identified multiple genes and biological pathways associated with the cataracts, including four drug-gene interactions. Our results suggest a causal association between type 1 diabetes and cataracts. Also, we highlighted a surrogate measure of UV light exposure as a marker of cataract risk in adults.", - "Predictions": [], - "MeshTerms": [ - "Cataract", - "Humans", - "Genome-Wide Association Study", - "Genetic Loci", - "Genetic Predisposition to Disease", - "Ultraviolet Rays", - "Polymorphism, Single Nucleotide", - "Diabetes Mellitus, Type 1", - "Aging" - ] - }, - { - "PMID": "39437874", - "Title": "Brain research", - "ArticleTitle": "Quantification of white matter hyperintensities in type 1 diabetes and its relation to neuropathy and clinical characteristics.", - "Abstract": "Our findings indicate increased burden of periventricular WMHs in diabetes which were associated to DPN severity and measurements reflecting neurodegeneration. Deep WMHs, often considered as chronic ischemic, were not significantly different. Mechanisms reflecting neurodegeneration and accelerated brain aging could be an overlooked aspect of peripheral and central neuropathy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Diabetic Neuropathies", - "Diabetes Mellitus, Type 1", - "White Matter", - "Magnetic Resonance Imaging", - "Adult", - "Middle Aged", - "Brain" - ] - }, - { - "PMID": "39437698", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Subcutaneous rapid-acting insulin analogues in mild to moderate diabetic ketoacidosis: A meta-analysis of randomized controlled trials.", - "Abstract": "In this meta-analysis of eight RCTs we found that SC RAIAs and regular IV insulin are comparable in resolving mild to moderate DKA in children and adults. PROSPERO registration: CRD42023485032.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetic Ketoacidosis", - "Randomized Controlled Trials as Topic", - "Injections, Subcutaneous", - "Hypoglycemic Agents", - "Insulin, Short-Acting", - "Diabetes Mellitus, Type 1", - "Treatment Outcome", - "Insulin", - "Severity of Illness Index" - ] - }, - { - "PMID": "39436890", - "Title": "PloS one", - "ArticleTitle": "Type 1 diabetes and parasite infection: An exploratory study in NOD mice.", - "Abstract": "Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Diabetes Mellitus, Type 1", - "Mice, Inbred NOD", - "Mice", - "Osteopontin", - "Female", - "Leishmaniasis", - "Th1 Cells", - "Mice, Knockout", - "Leishmania", - "Leishmaniasis, Cutaneous" - ] - }, - { - "PMID": "39436695", - "Title": "The Journal of clinical investigation", - "ArticleTitle": "Attenuated kidney oxidative metabolism in young adults with type 1 diabetes.", - "Abstract": "BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HCs, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, and GBM, and lower insulin sensitivity and cortical oxidative metabolism.CONCLUSIONThese early structural and metabolic changes in T1D kidneys may precede clinical DKD.TRIAL REGISTRATIONClinicalTrials.gov NCT04074668.FUNDINGUniversity of Michigan O'Brien Kidney Translational Core Center grant (P30 DK081943); CROCODILE studies by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (P30 DK116073), Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2019-845-S-B), Boettcher Foundation, Intramural Research Program at NIDDK and Centers for Disease Control and Prevention (CKD Initiative) under Inter-Agency Agreement #21FED2100157DPG.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Adult", - "Diabetic Nephropathies", - "Kidney", - "Insulin Resistance", - "Young Adult", - "Citric Acid Cycle", - "Oxidation-Reduction" - ] - }, - { - "PMID": "39434552", - "Title": "Annals of medicine", - "ArticleTitle": "Increased purchases of prescription medicines in offspring of women with type 1 diabetes: a Finnish register-based cohort study between 1995 and 2018.", - "Abstract": "Our findings suggest that exposed offspring purchase more reimbursable prescription medicines than reference offspring from age seven to thirty years. More research is needed to examine the effects of intrauterine exposure to hyperglycemia on long-term health in offspring.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Finland", - "Female", - "Diabetes Mellitus, Type 1", - "Child", - "Adult", - "Pregnancy", - "Adolescent", - "Registries", - "Male", - "Prescription Drugs", - "Prenatal Exposure Delayed Effects", - "Longitudinal Studies", - "Young Adult", - "Hyperglycemia", - "Cohort Studies" - ] - }, - { - "PMID": "39434445", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "The associations between functional vitamin K status and all-cause mortality, cardiovascular disease and end-stage kidney disease in persons with type 1 diabetes.", - "Abstract": "In persons with type 1 diabetes, lower vitamin K status was associated with higher mortality, CVD and progression to ESKD, however, not after adjustment for other risk factors. Interventional studies are needed to elucidate the role of vitamin K in persons with type 1 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Kidney Failure, Chronic", - "Vitamin K Deficiency", - "Middle Aged", - "Cardiovascular Diseases", - "Adult", - "Diabetic Nephropathies", - "Vitamin K", - "Matrix Gla Protein", - "Extracellular Matrix Proteins", - "Calcium-Binding Proteins", - "Proportional Hazards Models", - "Disease Progression", - "Cause of Death", - "Cohort Studies", - "Risk Factors" - ] - }, - { - "PMID": "39434271", - "Title": "JPMA. The Journal of the Pakistan Medical Association", - "ArticleTitle": "Assessment of growth status in children and adolescents with type 1 diabetes mellitus in Baghdad: a case-control study.", - "Abstract": "Children with type 1 diabetes mellitus had significantly lower mean height, weight and body mass index Z scores compared to their counterparts in the control group. Pubertal age group, poor glycaemic control, longer disease duration, and using conventional insulin regimen were the factors affecting growth parameters.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Child", - "Male", - "Female", - "Case-Control Studies", - "Adolescent", - "Body Mass Index", - "Child, Preschool", - "Body Height", - "Iraq", - "Body Weight", - "Glycated Hemoglobin" - ] - }, - { - "PMID": "39433215", - "Title": "Diabetes research and clinical practice", - "ArticleTitle": "Beyond the insulin pump: Unraveling diabetes tech dependency.", - "Abstract": "The use of technology for Type 1 diabetes (T1D) has significantly developed in the last 20\u00a0years leading to several benefits in life-style management but also to potentially overreliance and addiction to such life changing devices. Insulin pumps (CSII) being small, discreet and sophisticated, offer features such as customizable basal rates, bolus calculators and integration with Continuous Glucose Monitoring (CGM) systems becoming a must have for diabetic patients. Indeed CGM, firstly introduced in the late 1990s and now being highly sophisticated provide trends and patterns hence allowing a better management of T1D. In this review we inquire the multifactorial aspects of dependency on diabetes technology, focusing not only on the benefits and the advancements these automations offer, but also the challenges, limits and possible risks associated with overreliance on them. Specifically, the impact that early introduction to technology had on patients, the dependency on CSII and CGM, the importance of learning and self-management skills and strategies for addressing unexpected events.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 1", - "Blood Glucose Self-Monitoring", - "Insulin", - "Hypoglycemic Agents", - "Blood Glucose", - "Self-Management" - ] - }, - { - "PMID": "39432892", - "Title": "JMIR formative research", - "ArticleTitle": "Feasibility and Acceptability of a Self-Guided Digital Family Skills Management Intervention for Children Newly Diagnosed With Type 1 Diabetes: Pilot Randomized Controlled Trial.", - "Abstract": "ClinicalTrials.gov NCT03720912; https://clinicaltrials.gov/study/NCT03720912.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Female", - "Male", - "Pilot Projects", - "Child", - "Feasibility Studies", - "Adolescent", - "Prospective Studies", - "Social Support", - "Child, Preschool" - ] - }, - { - "PMID": "39432714", - "Title": "Diabetic medicine : a journal of the British Diabetic Association", - "ArticleTitle": "The diabetes annual review in a postal box: A qualitative study exploring the views of people living with diabetes (DiaBox-Qual).", - "Abstract": "Postal boxes for annual reviews were well-received by those living with diabetes. Designed well, they have the potential to overcome more than just the physical barriers to annual review attendance.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Qualitative Research", - "Diabetes Mellitus, Type 2", - "Adult", - "Aged", - "Diabetes Mellitus, Type 1", - "Postal Service", - "Self Care", - "Focus Groups" - ] - }, - { - "PMID": "39432633", - "Title": "Medicine", - "ArticleTitle": "Exploring the mechanism of comorbidity in patients with T1DM and COVID-19: Integrating bioinformatics and Mendelian randomization methods.", - "Abstract": "During the coronavirus disease 2019 (COVID-19) pandemic, the incidence of type 1 diabetes mellitus (T1DM) has increased. Additionally, evidence suggests that individuals with diabetes mellitus may have increased susceptibility to severe acute respiratory syndrome coronavirus 2 infection. However, the specific causal relationships and interaction mechanisms between T1DM and COVID-19 remain unclear. This study aims to investigate the causal relationship between T1DM and COVID-19, utilizing differential gene expression and Mendelian randomization analyses. Differentially expressed gene sets from datasets GSE156035 and GSE171110 were intersected to identify shared genes, analyzed for functional enrichment. Mendelian randomization models were employed to assess causal effects, revealing no direct causal link between T1DM and COVID-19 in the European population (P\u2005>\u2005.05). Notably, DNA replication and sister chromatid cohesion 1 (DSCC1) showed negative causal associations with both diseases (T1DM: OR\u2005=\u20050.943, 95% CI: 0.898-0.991, P\u2005=\u2005.020; COVID-19: OR\u2005=\u20050.919, 95% CI: 0.882-0.958, P\u2005<\u2005.001), suggesting a protective effect against their comorbidity. This genetic evidence highlights DSCC1 as a potential target for monitoring and managing the co-occurrence of T1DM and COVID-19.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Mendelian Randomization Analysis", - "COVID-19", - "Computational Biology", - "Comorbidity", - "Diabetes Mellitus, Type 1", - "SARS-CoV-2" - ] - }, - { - "PMID": "39431295", - "Title": "Journal of diabetes science and technology", - "ArticleTitle": "Psychosocial Aspects of Diabetes Technologies: Commentary on the Current Status of the Evidence and Suggestions for Future Directions.", - "Abstract": "Diabetes technologies, including continuous glucose monitors, insulin pumps, and automated insulin delivery systems offer the possibility of improving glycemic outcomes, including reduced hemoglobin A1c, increased time in range, and reduced hypoglycemia. Given the rapid expansion in the use of diabetes technology over the past few years, and touted promise of these devices for improving both clinical and psychosocial outcomes, it is critically important to understand issues in technology adoption, equity in access, maintaining long-term usage, opportunities for expanded device benefit, and limitations of the existing evidence base. We provide a brief overview of the status of the literature-with a focus on psychosocial outcomes-and provide recommendations for future work and considerations in clinical applications. Despite the wealth of the existing literature exploring psychosocial outcomes, there is substantial room to expand our current knowledge base to more comprehensively address reasons for differential effects, with increased attention to issues of health equity and data harmonization around patient-reported outcomes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Blood Glucose", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus", - "Diabetes Mellitus, Type 1", - "Glycemic Control", - "Hypoglycemic Agents", - "Insulin", - "Insulin Infusion Systems" - ] - }, - { - "PMID": "39429740", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "A novel class of oral, non-immunosuppressive, beta cell-targeting, TXNIP-inhibiting T1D drugs is emerging.", - "Abstract": "Diabetes treatment options have improved dramatically over the last 100 years, however, close to 2 million individuals in the U.S. alone live with type 1 diabetes (T1D) and are still dependent on multiple daily insulin injections and/or continuous insulin infusion with a pump to stay alive and no oral medications are available. After decades of focusing on immunosuppressive/immunomodulatory approaches for T1D, it has now become apparent that at least after disease onset, this by itself may not be sufficient, and in order to be effective, therapies need to also address beta cell health. This Perspective article discusses the emergence of such a beta cell-targeting, novel class of oral T1D drugs targeting thioredoxin-interacting protein (TXNIP) and some very recent advances in this field that start to address this unmet medical need. It thereby focuses on repurposing of the antihypertensive drug, verapamil found to non-specifically inhibit TXNIP and on TIX100, a new chemical entity specifically developed as an oral anti-diabetic drug to inhibit TXNIP. Both have shown striking anti-diabetic effects in preclinical studies. Verapamil has also proven to be beneficial in adults and children with recent onset T1D, while TIX100 has just been cleared by the U.S. Food and Drug Administration (FDA) to proceed to clinical trials. Taken together, we propose that such non-immunosuppressive, adjunctive therapies to insulin, alone or in combination with immune modulatory approaches, are critical in order to achieve effective and durable disease-modifying treatments for T1D.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Carrier Proteins", - "Diabetes Mellitus, Type 1", - "Insulin-Secreting Cells", - "Hypoglycemic Agents", - "Administration, Oral", - "Animals", - "Thioredoxins" - ] - }, - { - "PMID": "39428561", - "Title": "Nursing & health sciences", - "ArticleTitle": "A Qualitative Evidence Synthesis of Continuous Subcutaneous Insulin Infusion: Acceptability, Implementation, Equity.", - "Abstract": "This work provides a synthesis of the perceptions of people with type 1 diabetes mellitus (T1DM) and healthcare professionals about the acceptability, implementation, and equity of continuous subcutaneous insulin infusion (CSII). A qualitative evidence synthesis was carried out. Three online databases (Medline, Embase, and Web of Science) were searched. Qualitative articles which were available in Spanish or English were included. A descriptive thematic synthesis was conducted according to PRISMA and ENTREQ guidelines. Thirty-two references met the inclusion criteria of the study and were included out of an initial 345 identified references. Seven main themes were identified: (a) acceptability, (b) adaptation to the insulin pump, (c) facilitators for the adequate use of insulin pump, (d) variability of acceptability, (e) barriers for the use of insulin pump, (f) feasibility and implementation considerations, and (g) equity. CSII is well accepted by most people with T1DM, with some exceptions. CSII can relieve management burden, increase autonomy and flexibility and improve family relationships. There were multiple perceived barriers to its continued use. Future studies should continue to analyze inequalities in access and use of the CSII.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Qualitative Research", - "Diabetes Mellitus, Type 1", - "Insulin Infusion Systems", - "Insulin", - "Infusions, Subcutaneous", - "Patient Acceptance of Health Care", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39428134", - "Title": "Medical engineering & physics", - "ArticleTitle": "Platform for precise, personalised glucose forecasting through continuous glucose and physical activity monitoring and deep learning.", - "Abstract": "Emerging research has demonstrated the advantage of continuous glucose monitoring for use in artificial pancreas and diabetes management in general. Recent studies demonstrate that glucose level forecasting using deep learning can help avoid postprandial hyperglycemia (\u2265 180 mg/dL) or hypoglycemia (\u226470 mg/dL) from delayed or increased insulin dosing in artificial pancreas. In this paper, a novel hybrid deep learning framework with integration of content-based attention learning is presented, to effectively predict the glucose measurements with prediction horizons (PH) = 15, 30 and, 60 minutes for T1D and T2D patients based on past data. We also present a complete cloud-based system and mobile app used for collecting CGM sensor, physical activity data, CHO values and insulin measurements to perform glucose forecasts using the proposed model running on Cloud. This model was validated using clinical data of individual with Type 1 diabetes (OhioT1DM) and individual with Type 2 diabetes. The mean absolute relative difference (MARD) was 12.33\u00b13.15, 7.14\u00b11.76% for PH=60 and, 30 min respectively on OhioT1DM clinical Dataset. The root mean squared error (RMSE) was 29.41\u00b15.92 mg/dL and 17.19\u00b13.22 mg/dL and the mean absolute error (MAE) was 21.96\u00b14.67 mg/dL and 12.58\u00b12.34 mg/dL for PH=60 and, 30 min respectively on the same clinical dataset. It was observed that inclusion of physical activity leads to improved glucose forecasting accuracy. Furthermore, all these results were obtained by training the model on only 8 days of clinical data of a single patient, followed by testing on clinical data on the following days. The results indicate that training on a single patient data may lead to better personalisation and better glucose forecasting results compared to existing works.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Deep Learning", - "Blood Glucose", - "Exercise", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Precision Medicine", - "Forecasting", - "Cloud Computing", - "Monitoring, Physiologic" - ] - }, - { - "PMID": "39427575", - "Title": "Psychiatry research", - "ArticleTitle": "Impact of mental disorders on the all-cause mortality and cardiovascular disease outcomes in adults with new-onset type 1 diabetes: A nationwide cohort study.", - "Abstract": "Mental disorders are associated with an elevated risk of all-cause mortality and CVD in adults with newly diagnosed type 1 diabetes. Early detection and greater attention to premature death and CVD development are required in patients with new-onset type 1 diabetes and mental disorders.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Cardiovascular Diseases", - "Diabetes Mellitus, Type 1", - "Adult", - "Mental Disorders", - "Middle Aged", - "Republic of Korea", - "Cohort Studies", - "Young Adult", - "Proportional Hazards Models", - "Cause of Death", - "Comorbidity" - ] - }, - { - "PMID": "39427562", - "Title": "Placenta", - "ArticleTitle": "Gene expression profiles in placenta and their association with anesthesia, delivery mode and maternal diabetes.", - "Abstract": "The findings reveal suppression of immune pathways and upregulation of ribosome activity in the placenta by maternal diabetes highlighting the importance of confounding factors when examining cell and tissue expression profiles. Further studies should determine whether the observed gene expression differences are related to underlying causes for cesarean section deliveries.", - "Predictions": [], - "MeshTerms": [ - "Pregnancy", - "Female", - "Humans", - "Placenta", - "Adult", - "Diabetes, Gestational", - "Transcriptome", - "Cesarean Section", - "Delivery, Obstetric", - "Diabetes Mellitus, Type 1", - "Gene Expression Profiling", - "Pregnancy in Diabetics", - "Anesthesia, Obstetrical" - ] - }, - { - "PMID": "39426005", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "All-cause mortality and factors associated with it in Finnish patients with type 1 diabetes.", - "Abstract": "There's substantial excess mortality due to DM1 in Finland. Interventions should focus on addressing both renal and cardiovascular risk factors but also pay more attention to mental health.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Finland", - "Male", - "Female", - "Middle Aged", - "Adult", - "Risk Factors", - "Registries", - "Young Adult", - "Cause of Death", - "Diabetic Nephropathies", - "Aged", - "Comorbidity", - "Adolescent", - "Renal Insufficiency, Chronic", - "Glomerular Filtration Rate", - "Glycated Hemoglobin", - "Mortality", - "Cohort Studies", - "Albuminuria" - ] - }, - { - "PMID": "39425874", - "Title": "Molecular biology reports", - "ArticleTitle": "Association of polymorphism of NLRP3, ICAM-1, PTPN22, INS genes in childhood onset type 1 diabetes in a Pakistani population.", - "Abstract": "The present study provides evidence that SNPs in the PTPN22, INS, NLRP3, and ICAM-1 genes are associated with the development of T1D. Further research is needed to explore their potential use in genetic screening and personalized medication.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Protein Tyrosine Phosphatase, Non-Receptor Type 22", - "Intercellular Adhesion Molecule-1", - "NLR Family, Pyrin Domain-Containing 3 Protein", - "Diabetes Mellitus, Type 1", - "Child", - "Polymorphism, Single Nucleotide", - "Male", - "Female", - "Genetic Predisposition to Disease", - "Adolescent", - "Pakistan", - "Case-Control Studies", - "Child, Preschool", - "Gene Frequency", - "Insulin", - "Linkage Disequilibrium", - "Genotype", - "Haplotypes", - "Genetic Association Studies" - ] - }, - { - "PMID": "39423463", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Characterizing the relationship between social determinants of health and risk of albuminuria among children with type 1 diabetes.", - "Abstract": "In a cohort of 2303 children with type 1 diabetes (T1D), we found that non-English speaking status (HR 2.82, 95% CI 1.54-5.18) and public insurance (HR 1.48, 95% CI 1.07-2.05) were associated with an increased risk of incident albuminuria, after adjusting for T1D-related variables (age, hemoglobin A1c, diabetic ketoacidosis episodes with acute kidney injury).", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Albuminuria", - "Female", - "Male", - "Child", - "Social Determinants of Health", - "Diabetic Nephropathies", - "Adolescent", - "Risk Factors", - "Cohort Studies", - "Child, Preschool", - "Incidence" - ] - }, - { - "PMID": "39423118", - "Title": "Diabetes care", - "ArticleTitle": "Efficacy and Safety of a Tubeless AID System Compared With Pump Therapy With CGM in the Treatment of Type 1 Diabetes in Adults With Suboptimal Glycemia: A Randomized, Parallel-Group Clinical Trial.", - "Abstract": "Use of the tubeless AID system led to improved glycemic outcomes compared with pump therapy with CGM among adults with type 1 diabetes, underscoring the clinical benefit of AID and bolstering recommendations to establish AID systems as preferred therapy for this population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Adult", - "Insulin Infusion Systems", - "Middle Aged", - "Male", - "Female", - "Blood Glucose", - "Insulin", - "Adolescent", - "Aged", - "Young Adult", - "Hypoglycemic Agents", - "Glycated Hemoglobin", - "Blood Glucose Self-Monitoring" - ] - }, - { - "PMID": "39422057", - "Title": "The Journal of international medical research", - "ArticleTitle": "Factors associated with severe diabetic ketoacidosis in patients diagnosed with type 1 diabetes: a decade-long cross-sectional analysis.", - "Abstract": "The present findings highlight the need for improving awareness about diabetes symptoms among physicians and the public to reduce the occurrence and severity of DKA at the onset of T1DM.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetic Ketoacidosis", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Adult", - "Cross-Sectional Studies", - "Retrospective Studies", - "Severity of Illness Index", - "Middle Aged", - "Risk Factors", - "Young Adult", - "Body Mass Index", - "Hospitalization", - "Adolescent" - ] - }, - { - "PMID": "39420935", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Decoding the relationship between cow's milk proteins and development of type 1 diabetes mellitus.", - "Abstract": "The findings of this study provide further evidence for a potential role of cow's milk proteins in triggering T1DM. The in silico analysis suggests that molecular mimicry mechanisms between cow's milk proteins and human beta-cell antigens may contribute to the autoimmune response leading to T1DM.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 1", - "Humans", - "Animals", - "Cattle", - "Milk Proteins", - "Insulin-Secreting Cells", - "Lactoglobulins", - "Molecular Mimicry", - "Insulin", - "Autoantigens", - "Zinc Transporter 8", - "Glutamate Decarboxylase", - "Computer Simulation", - "Amino Acid Sequence", - "Serum Albumin, Bovine", - "Computational Biology" - ] - }, - { - "PMID": "39420902", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Clinical screening for GCK-MODY in 2,989 patients from the Brazilian Monogenic Diabetes Study Group (BRASMOD) and the Brazilian Type 1 Diabetes Study Group (BrazDiab1SG).", - "Abstract": "This study identified a highly accurate (98%) composite model for differentiating GCK-MODY and T1D. This model may help clinicians select patients for genetic evaluation of monogenic diabetes, enabling them to implement correct treatment without overusing limited resources.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Diabetes Mellitus, Type 2", - "Brazil", - "Diabetes Mellitus, Type 1", - "Adult", - "Glycated Hemoglobin", - "Adolescent", - "ROC Curve", - "Young Adult", - "Mass Screening", - "Child", - "Blood Glucose", - "Middle Aged", - "Glucokinase", - "Cohort Studies" - ] - }, - { - "PMID": "39420900", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Whom should we target? A brief report on a prospective study to identify predictors of mental health and self-care worsening in patients with diabetes mellitus during the COVID-19 pandemic.", - "Abstract": "Some clinical and socioeconomic characteristics may be suitable for identifying patients at higher risk of mental health and self-care worsening, signaling who needs to be monitored more closely during crisis situations.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "COVID-19", - "Female", - "Male", - "Middle Aged", - "Prospective Studies", - "Self Care", - "Brazil", - "Adult", - "Aged", - "Mental Health", - "Diabetes Mellitus, Type 2", - "Mental Disorders", - "SARS-CoV-2", - "Diabetes Mellitus, Type 1", - "Pandemics" - ] - }, - { - "PMID": "39420899", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Clinical features most frequently present in patients with concomitant diabetic kidney disease and diabetic retinopathy.", - "Abstract": "Among patients with DKD and type 2 diabetes, insulin use, longer diabetes duration, and higher systolic blood pressure level were associated with the presence of DR.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Diabetic Retinopathy", - "Middle Aged", - "Male", - "Cross-Sectional Studies", - "Diabetic Nephropathies", - "Aged", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Brazil", - "Adult", - "Risk Factors", - "Glomerular Filtration Rate" - ] - }, - { - "PMID": "39420895", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Euglycemic diabetic ketoacidosis in a patient with new-onset type 1 diabetes following a ketogenic diet: a potential risk of a dangerous dietary trend.", - "Abstract": "Euglycemic diabetic ketoacidosis (DKA) is a rare complication of diabetes mellitus (DM) characterized by metabolic acidosis, ketosis, and blood glucose levels < 250 mg/dL. The prevalence of euglycemic DKA is increasing with the popularity of ketogenic (low-carbohydrate) diets. We present herein the case of a patient with newly diagnosed type 1 DM who developed euglycemic DKA following a ketogenic diet. A 22-year-old woman presented to the emergency department with malaise, fatigue, nausea, and vomiting. She had no family history of DM. She had consulted her primary care physician 2 weeks before due to hair loss, numbness, and tingling sensation in her fingertips. Her fasting blood glucose was 205 mg/dL at that time. Reluctant to use medication to control her blood glucose levels, she started a ketogenic diet. On admission, she was conscious, oriented, cooperative, and tachycardic. Her body mass index was 17.6 kg/m", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diet, Ketogenic", - "Female", - "Diabetes Mellitus, Type 1", - "Diabetic Ketoacidosis", - "Young Adult", - "Blood Glucose" - ] - }, - { - "PMID": "39420876", - "Title": "Archives of endocrinology and metabolism", - "ArticleTitle": "Underreporting of diabetes mellitus as the cause of death in Bauru, State of S\u00e3o Paulo, Brazil over 40 years: a documental study.", - "Abstract": "The underreporting of DM as the cause of death was very frequently found, and was associated with male gender, decade of death, shorter DM duration and DM2. If our data could be applied to the whole country, DM would possibly emerge as a more prominent cause of death in Brazil. Future studies in other cities and geographic regions are warranted to confirm our findings.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Brazil", - "Male", - "Female", - "Cause of Death", - "Middle Aged", - "Adult", - "Diabetes Mellitus, Type 2", - "Aged", - "Diabetes Mellitus, Type 1", - "Young Adult", - "Sex Factors", - "Aged, 80 and over", - "Adolescent" - ] - }, - { - "PMID": "39420751", - "Title": "Gut microbes", - "ArticleTitle": "Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications.", - "Abstract": "Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Diabetes Mellitus, Type 2", - "Pregnancy", - "Diabetes, Gestational", - "Female", - "Diabetes Mellitus, Type 1", - "Animals", - "Diet", - "Bacteria" - ] - }, - { - "PMID": "39420387", - "Title": "Journal of medical case reports", - "ArticleTitle": "Treatment switch from multiple daily insulin injections to sulphonylureas in an African young adult diagnosed with HNF1A MODY: a case report.", - "Abstract": "This case reveals that HNF1A maturity onset diabetes of the young (and probably other causes of monogenic diabetes) can present in sub-Saharan Africa. A diagnosis of maturity onset diabetes of the young can have significant life-changing therapeutic implications.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Diabetes Mellitus, Type 2", - "Young Adult", - "Hepatocyte Nuclear Factor 1-alpha", - "Hypoglycemic Agents", - "Insulin", - "Sulfonylurea Compounds", - "Diabetes Mellitus, Type 1", - "Treatment Outcome" - ] - }, - { - "PMID": "39420367", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "Unseen threat: how subclinical atherosclerosis increases mortality risk in patients with type 1 diabetes.", - "Abstract": "Subclinical atherosclerosis is independently associated with increased overall mortality and MACE in patients with type 1 diabetes. Identifying clinical predictors can improve risk stratification and personalised therapeutic strategies to prevent MACEs in this high-risk population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Male", - "Female", - "Asymptomatic Diseases", - "Middle Aged", - "Risk Assessment", - "Adult", - "Time Factors", - "Prevalence", - "Prognosis", - "Aged", - "Risk Factors", - "Spain", - "Cause of Death", - "Heart Disease Risk Factors", - "Atherosclerosis", - "Carotid Artery Diseases", - "Biomarkers" - ] - }, - { - "PMID": "39420138", - "Title": "Journal of molecular medicine (Berlin, Germany)", - "ArticleTitle": "Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches.", - "Abstract": "For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Animals", - "Insulin-Secreting Cells", - "Immunotherapy" - ] - }, - { - "PMID": "39419943", - "Title": "Journal of molecular histology", - "ArticleTitle": "Type I Diabetes Mellitus impairs cytotoxic immunity through CEACAM5 upregulation in colorectal cancer : Exploring the intersection of autoimmune dysfunction and cancer progression: the role of NF-\u03baB p65 in colorectal cancer.", - "Abstract": "Type 1 diabetes (T1D) is characterized by an autoimmune-mediated destruction of pancreatic beta cells and a chronic inflammatory state, which may influence the progression of colorectal cancer (CRC) through immune system dysregulation and enhanced tumor immune evasion. This study aims to elucidate the role of p65 in modulating the tumor microenvironment in CRC within the context of T1D and to determine how this modulation affects tumor growth, immune cell infiltration, and the expression of immune evasion molecules such as CEACAM5. NOD mice, which model T1D, were inoculated with MC38 colon carcinoma cells engineered to knock down p65. Tumor growth was monitored, and the tumor microenvironment was analyzed using flow cytometry to assess the infiltration of immune cells. The expression of Ki-67 and CEACAM5 in tumor cells was also evaluated. Additionally, in vitro assays were conducted to study the proliferation and activation of T cells co-cultured with tumor cells. Knockdown of p65 in tumor cells significantly inhibited tumor growth in NOD mice. This was accompanied by an increased infiltration of cytotoxic CD8+ T cells and no significant change in CD4+\u2009or Foxp3\u2009+ T regulatory cells within the tumor microenvironment. There was a notable reduction in the expression of Ki-67 and CEACAM5, indicating decreased proliferation and potential immune evasion capabilities of the tumor cells. Our findings demonstrate that the NF-\u03baB p65 subunit plays a crucial role in promoting tumor growth and modulating the immune microenvironment in CRC, particularly in the context of T1D. Knocking down p65 not only reduces tumor progression but also enhances the anti-tumor immune response by decreasing immune evasion mechanisms. These results suggest that targeting the NF-\u03baB pathway may be a viable strategy to improve the efficacy of cancer immunotherapy, especially in patients with autoimmune diseases like T1D. Physical activity enhances the effect of immune checkpoint blockade by inhibiting the intratumoral HIF1-\u03b1/CEACAM5 axis.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Colorectal Neoplasms", - "Diabetes Mellitus, Type 1", - "Transcription Factor RelA", - "Mice", - "Tumor Microenvironment", - "Disease Progression", - "Mice, Inbred NOD", - "Cell Line, Tumor", - "Up-Regulation", - "Humans", - "Carcinoembryonic Antigen", - "Female", - "Cell Proliferation", - "Gene Expression Regulation, Neoplastic", - "GPI-Linked Proteins" - ] - }, - { - "PMID": "39419452", - "Title": "Antiviral research", - "ArticleTitle": "Vemurafenib inhibits the replication of diabetogenic enteroviruses in intestinal epithelial and pancreatic beta cells.", - "Abstract": "Enteroviruses, which infect via the gut, have been implicated in type 1 diabetes (T1D) development. Prolonged faecal shedding of enterovirus has been associated with islet autoimmunity. Additionally, enteroviral proteins and viral RNA have been detected in the pancreatic islets of individuals with recent-onset T1D, implicating their possible role in beta cell destruction. Despite this, no approved antiviral drugs currently exist that specifically target enterovirus infections for utilisation in disease interventions. Drug repurposing allows for the discovery of new clinical uses for existing drugs and can expedite drug discovery. Previously, the cancer drug Vemurafenib demonstrated unprecedented antiviral activity against several enteroviruses. In the present study, we assessed the efficacy of Vemurafenib and an analogue thereof in preventing infection or reducing the replication of enteroviruses associated with T1D. We tested Vemurafenib in intestinal epithelial cells (IECs) and insulin-producing beta cells. Additionally, we established a protocol for infecting human stem cell-derived islets (SC-islets) and used Vemurafenib and its analogue in this model. Our studies revealed that Vemurafenib exhibited strong antiviral properties in IECs and a beta cell line. The antiviral effect was also seen with the Vemurafenib analogue. SC-islets expressed the viral receptors CAR and DAF, with their highest expression in insulin- and glucagon-positive cells, respectively. SC-islets were successfully infected by CVBs and the antiviral activity of Vemurafenib and its analogue was confirmed in most SC-islet batches. In summary, our observations suggest that Vemurafenib and its analogue warrant further exploration as potential antiviral agents for the treatment of enterovirus-induced diseases, including T1D.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Virus Replication", - "Insulin-Secreting Cells", - "Vemurafenib", - "Enterovirus", - "Antiviral Agents", - "Diabetes Mellitus, Type 1", - "Cell Line", - "Enterovirus Infections", - "Epithelial Cells", - "Intestinal Mucosa" - ] - }, - { - "PMID": "39419044", - "Title": "The lancet. Diabetes & endocrinology", - "ArticleTitle": "Continuous glucose sensor accuracy: beyond the headline metric.", - "Abstract": "The promotion of continuous glucose monitoring (CGM) to standard of care for type 1 diabetes and insulin-treated type 2 diabetes reflects a robust and wide evidence base for the technology's effectiveness supported by real-world efficacy data. Multiple CGM devices are available worldwide and are marketed, in part, based on accuracy data. In this Viewpoint, we argue that accuracy metrics are no longer a point of difference between CGM devices as almost all exceed an acceptable threshold. We also argue that domains of standardisation, clinical outcomes, and sustainability should now be given primacy as CGM devices seek to be implemented for new indications. These domains are key for the success of the next generation of CGM devices. Additionally, we discuss the need to address inequalities in accessing clinically impactful technologies.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Blood Glucose", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39418532", - "Title": "Diabetes care", - "ArticleTitle": "Eighteen-Month Hybrid Closed-Loop Use in Very Young Children With Type 1 Diabetes: A Single-Arm Multicenter Trial.", - "Abstract": "Use of the Cambridge hybrid CL system led to sustained improvements in glycemic control lasting more than 18 months in very young children with T1D.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Child, Preschool", - "Male", - "Female", - "Insulin Infusion Systems", - "Infant", - "Child", - "Cross-Over Studies", - "Blood Glucose", - "Hypoglycemic Agents", - "Insulin" - ] - }, - { - "PMID": "39414864", - "Title": "Scientific reports", - "ArticleTitle": "Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes.", - "Abstract": "Type-1 diabetes (T1D) is an autoimmune disorder characterized by impaired insulin release by islet \u03b2 cells. It has been shown that proinflammatory cytokines released during the disease can exacerbate the condition, while anti-inflammatory cytokines offer protection. This study analyzed the clinical role of interleukin (IL)-6, -8, -10, and vitamin D levels in T1D patients compared to healthy controls. The levels of IL-6, IL-8, IL-10, and vitamin D in the participants' serum samples were analyzed using ELISA. The findings showed that T1D patients had significantly increased levels (p\u2009<\u20090.0001) of fasting blood glucose, HbA1c, systolic blood pressure, low-density lipoprotein, triglycerides, cholesterol, and very low-density lipoprotein and decreased levels of high-density lipoprotein and vitamin D (p\u2009<\u20090.0001) compared to healthy controls. Moreover, the levels of IL-6, IL-8, and IL-10 were also significantly greater (p\u2009<\u20090.0001) in T1D patients. The study also determined the significance of these cytokines among T1D patients and healthy controls using ROC curves. Furthermore, we found that smokers had significantly higher levels of IL-6 (p\u2009=\u20090.01) and IL-8 (p\u2009=\u20090.003) than non-smokers. These results showed that elevated levels of IL-6, IL-8, and IL-10, decreased vitamin D levels, and smoking among T1D participants could contribute to the worsening of T1D disease and could serve as predictive indicators.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Vitamin D", - "Male", - "Female", - "Adult", - "Interleukin-6", - "Interleukin-10", - "Interleukin-8", - "Middle Aged", - "Case-Control Studies", - "Cytokines", - "Blood Glucose", - "Young Adult", - "Clinical Relevance" - ] - }, - { - "PMID": "39412084", - "Title": "Acta paediatrica (Oslo, Norway : 1992)", - "ArticleTitle": "Low-carbohydrate diet proved effective and safe for youths with type 1 diabetes: A randomised trial.", - "Abstract": "Both diets improved glycaemic outcomes in adolescents and youths with type 1 diabetes, without increasing hypoglycaemia or cardiovascular risk factors, indicating comparable safety and efficacy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Diabetes Mellitus, Type 1", - "Male", - "Adolescent", - "Diet, Carbohydrate-Restricted", - "Blood Glucose", - "Child", - "Young Adult", - "Diet, Mediterranean", - "Glycated Hemoglobin" - ] - }, - { - "PMID": "39411880", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Use of continuous glucose monitoring and hybrid closed-loop therapy in pregnancy.", - "Abstract": "Continuous glucose monitoring (CGM) has led to a paradigm shift in the management of pregnant women with type 1 diabetes (T1D), with improved glycaemic control, less hypoglycaemia and fewer pregnancy complications. Data on CGM use in pregnant women with type 2 diabetes (T2D) are limited. A large randomized controlled trial (RCT) on CGM use in people with T2D in pregnancy is ongoing. Small studies on CGM use in women with gestational diabetes (GDM) have suggested improved glycaemic control and better qualification when insulin is needed. However, none of these studies was powered to evaluate pregnancy outcomes. Several large RCTs are ongoing in women with GDM. In addition to CGM, other technologies, such as advanced hybrid closed-loop (AHCL) systems have further improved glycaemic management in people with T1D. AHCL therapy adapts insulin delivery via a predictive algorithm integrated with CGM and an insulin pump. A large RCT with the AHCL CamAPS\u00ae FX demonstrated a 10% increase in time in range compared to standard insulin therapy in a pregnant population with T1D. Recently, an RCT of an AHCL system not approved for use in pregnancy (780G MiniMed) has also demonstrated additional benefits of AHCL therapy compared to standard insulin therapy, with improved time in range overnight, less hypoglycaemia and improved treatment satisfaction. More evidence is needed on the impact of AHCL therapy on maternal and neonatal outcomes and on which glycaemic targets with CGM should be used in pregnant women with T2D and GDM. We review the current evidence on the use of CGM and AHCL therapy in pregnancy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Pregnancy", - "Female", - "Diabetes Mellitus, Type 1", - "Blood Glucose Self-Monitoring", - "Pregnancy in Diabetics", - "Diabetes, Gestational", - "Insulin Infusion Systems", - "Diabetes Mellitus, Type 2", - "Insulin", - "Hypoglycemic Agents", - "Blood Glucose", - "Glycemic Control", - "Randomized Controlled Trials as Topic", - "Hypoglycemia", - "Pregnancy Outcome", - "Algorithms", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39411715", - "Title": "Frontiers in immunology", - "ArticleTitle": "TNF-\u03b1 inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial.", - "Abstract": "Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing \u03b2-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate \u03b2-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived \u03b2-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving \u03b2-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-\u03b1) inhibitors have demonstrated efficacy at preserving \u03b2-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-\u03b1 inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-\u03b1 inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-\u03b1 inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-\u03b1 inhibitors in T1D and considerations for strategies collectively identified to advance TNF-\u03b1 inhibitors beyond phase 2 clinical studies for stage 3 T1D.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Tumor Necrosis Factor-alpha", - "Clinical Trials as Topic", - "Insulin-Secreting Cells", - "Hypoglycemic Agents", - "Animals" - ] - }, - { - "PMID": "39411309", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Clinical perspective on innovative insulin delivery technologies in diabetes management.", - "Abstract": "The present study highlights that physicians are generally supportive of utilizing new technology. The questionnaires and the open discussion revealed the expectation that the Smart MDI technology provides better control, primarily by identifying missed boluses, while expressing concerns on the use of the technology by teenagers and children, who might forget the device and be reluctant to use in public, and by the older population, who might be challenged by the technology.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Insulin", - "Insulin Infusion Systems", - "Surveys and Questionnaires", - "Hypoglycemic Agents", - "Diabetes Mellitus", - "Blood Glucose Self-Monitoring", - "Diabetes Mellitus, Type 1", - "Disease Management", - "Blood Glucose" - ] - }, - { - "PMID": "39410774", - "Title": "Journal of pediatric gastroenterology and nutrition", - "ArticleTitle": "Is HLA-DQ typing useful in screening for celiac disease among Arabs with type 1 diabetes? A case-control study.", - "Abstract": "Only 4% of Saudi patients with T1D carry DQ-genotypes at no risk to develop CD, which supports the European guidelines that recommend celiac serology test as the most cost-effective screening method. We identified the risk gradient associated with DQ-genotypes to develop CD in our population which could help in counseling patients for the risk to develop CD and planning follow-up serology tests.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Celiac Disease", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Case-Control Studies", - "Female", - "Male", - "HLA-DQ Antigens", - "Child", - "Young Adult", - "Arabs", - "Genotype", - "Genetic Predisposition to Disease", - "Adult", - "Mass Screening" - ] - }, - { - "PMID": "39408940", - "Title": "International journal of molecular sciences", - "ArticleTitle": "Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus.", - "Abstract": "Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic \u03b2 cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Gastrointestinal Microbiome", - "Dysbiosis", - "Child", - "Mouth", - "Probiotics", - "Fecal Microbiota Transplantation", - "Prebiotics", - "Microbiota" - ] - }, - { - "PMID": "39408305", - "Title": "Nutrients", - "ArticleTitle": "Nutrition and Glycemic Control in Children and Adolescents with Type 1 Diabetes Mellitus Attending Diabetes Camps.", - "Abstract": { - "b": "Conclusions:" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Adolescent", - "Child", - "Glycemic Control", - "Patient Education as Topic", - "Camping", - "Blood Glucose", - "Female", - "Nutritional Status", - "Male", - "Insulin", - "Blood Glucose Self-Monitoring" - ] - }, - { - "PMID": "39407190", - "Title": "BMC oral health", - "ArticleTitle": "Genetic and therapeutic for oral lichen planus and diabetes mellitus: a comprehensive study.", - "Abstract": "The study highlighted a complex interplay between diabetes and OLP, underscoring the efficacy of integrated therapeutic strategies that target both conditions. The findings suggest that both pharmaceutical and herbal treatments can effectively manage the clinical manifestations of OLP and associated metabolic challenges. This holistic approach to treatment could significantly enhance patient outcomes by addressing the interconnected aspects of these chronic conditions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Lichen Planus, Oral", - "Glycated Hemoglobin", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Mendelian Randomization Analysis", - "Blood Glucose", - "Drugs, Chinese Herbal", - "Hypoglycemic Agents" - ] - }, - { - "PMID": "39406740", - "Title": "Nature communications", - "ArticleTitle": "TGF-\u03b2-mediated crosstalk between TIGIT", - "Abstract": "Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing \u03b2-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 1", - "Animals", - "T-Lymphocytes, Regulatory", - "CD8-Positive T-Lymphocytes", - "Antigens, Differentiation, T-Lymphocyte", - "Mice", - "Humans", - "Transforming Growth Factor beta", - "Receptors, Immunologic", - "Male", - "Disease Progression", - "Female", - "Diabetes Mellitus, Experimental", - "Adult", - "Mice, Inbred NOD", - "Receptors, CCR7", - "Insulin-Secreting Cells", - "Adolescent", - "Young Adult", - "Cell Communication", - "T Lineage-Specific Activation Antigen 1" - ] - }, - { - "PMID": "39405732", - "Title": "Computers in biology and medicine", - "ArticleTitle": "Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management.", - "Abstract": "This study demonstrates the utility of UMAP in enhancing the analysis of CGM data for diabetes management. We revealed distinct clustering of glycemic profiles between healthy individuals and diabetics on daily insulin indicating that in most instances insulin does not restore a normal glycemic phenotype. In addition, the SS quantifies day by day the degree of this continued dysglycemia and therefore potentially offers a novel approach for personalized diabetes care.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Blood Glucose Self-Monitoring", - "Blood Glucose", - "Precision Medicine", - "Male", - "Female", - "Cluster Analysis", - "Insulin", - "Adult", - "Glycated Hemoglobin", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39404844", - "Title": "Diabetologia", - "ArticleTitle": "Quantitative analysis of islet prohormone convertase 1/3 expression in human pancreas donors with diabetes.", - "Abstract": "Our high-resolution histomorphological analysis of human pancreatic islets from donors with and without diabetes has uncovered details of the cellular origin of islet prohormone peptide processing defects. Reduced beta cell PC1/3 and increased alpha cell PC1/3 in islets from donors with type 1 diabetes pinpointed the functional deterioration of beta cells and the concomitant potential increase in PC1/3 usage for prohormone processing in alpha cells during the pathogenesis of type 1 diabetes. Our finding of PC1/3 loss in beta cells may inform the discovery of new prohormone biomarkers as indicators of beta cell dysfunction, and the finding of elevated PC1/3 expression in alpha cells may encourage the design of therapeutic targets via leveraging alpha cell adaptation in diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Proprotein Convertase 1", - "Diabetes Mellitus, Type 1", - "Islets of Langerhans", - "Male", - "Female", - "Adult", - "Glucagon-Secreting Cells", - "Tissue Donors", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Insulin-Secreting Cells", - "Cross-Sectional Studies", - "Young Adult", - "Pancreas" - ] - }, - { - "PMID": "39402605", - "Title": "Italian journal of pediatrics", - "ArticleTitle": "Promising predictors of diabetic peripheral neuropathy in children and adolescents with type 1 diabetes mellitus.", - "Abstract": "Despite limited research in pediatrics, MNSI and serum NSE are promising predictive tools for DPN in children and adolescents with T1DM, even when they are asymptomatic. Poor glycemic control and lipid profile changes may play a critical role in the development of DPN in these patients, despite conflicting results in various studies.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 1", - "Diabetic Neuropathies", - "Male", - "Female", - "Adolescent", - "Child", - "Case-Control Studies", - "Biomarkers", - "Neural Conduction", - "Phosphopyruvate Hydratase", - "Predictive Value of Tests", - "HSP27 Heat-Shock Proteins", - "Neurologic Examination", - "Prevalence", - "Heat-Shock Proteins", - "Molecular Chaperones" - ] - }, - { - "PMID": "39401129", - "Title": "Cell transplantation", - "ArticleTitle": "Xenogenic Engraftment of Human-Induced Pluripotent Stem Cell-Derived Pancreatic Islet Cells in an Immunosuppressive Diabetic G\u00f6ttingen Mini-Pig Model.", - "Abstract": "In the development of cell therapy products, immunocompromised animal models closer in size to humans are valuable for enhancing the translatability of ", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Swine", - "Humans", - "Swine, Miniature", - "Induced Pluripotent Stem Cells", - "Islets of Langerhans", - "Islets of Langerhans Transplantation", - "Diabetes Mellitus, Experimental", - "Transplantation, Heterologous", - "Diabetes Mellitus, Type 1", - "Disease Models, Animal", - "Immunosuppressive Agents" - ] - }, - { - "PMID": "39399499", - "Title": "Frontiers in immunology", - "ArticleTitle": "Enhancing human islet xenotransplant survival and function in diabetic immunocompetent mice through LRH-1/NR5A2 pharmacological activation.", - "Abstract": "The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Humans", - "Islets of Langerhans Transplantation", - "Diabetes Mellitus, Experimental", - "Mice", - "Graft Survival", - "Transplantation, Heterologous", - "Receptors, Cytoplasmic and Nuclear", - "Diabetes Mellitus, Type 1", - "Male", - "Blood Glucose", - "Islets of Langerhans", - "Insulin-Secreting Cells" - ] - }, - { - "PMID": "39398332", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Exploring the influencing factors of non-insulin drug prescriptions in discharged patients with type 1 diabetes.", - "Abstract": "We identified notable factors that influence discharge prescriptions in patients with T1D. In order to enhance the treatment outcome for the patient, clinicians ought to have a special focus on these indicators or factors.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Diabetes Mellitus, Type 1", - "Adult", - "Hypoglycemic Agents", - "Middle Aged", - "Patient Discharge", - "Insulin", - "Drug Prescriptions", - "Blood Glucose", - "Young Adult", - "Body Mass Index", - "Adolescent" - ] - }, - { - "PMID": "39397502", - "Title": "The Israel Medical Association journal : IMAJ", - "ArticleTitle": "Hospitalization Outcomes of Patients with Type 2 Diabetes Mellitus Complicated with Diabetic Ketoacidosis.", - "Abstract": "Our findings underscore the importance of recognizing DKA as a substantial complication in diabetic patients, particularly those with T2DM. Vigilance in management, adherence to DKA guidelines, and awareness of triggers such as SGLT2 inhibitors are crucial for improving outcomes in this population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetic Ketoacidosis", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Retrospective Studies", - "Middle Aged", - "Hospitalization", - "Sodium-Glucose Transporter 2 Inhibitors", - "Hospital Mortality", - "Aged", - "Israel", - "Diabetes Mellitus, Type 1", - "Adult", - "Length of Stay", - "Patient Readmission" - ] - }, - { - "PMID": "39397476", - "Title": "Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences", - "ArticleTitle": "[Fulminant type 1 diabetes mellitus with acute pancreatitis: A case report and literature review].", - "Abstract": "The objective was to report a relatively rare case of fulminant type 1 diabetes (FT1DM) complicated with acute pancreatitis (AP), to summarize the characteristics as well as experience of diagnosis and treatment, and to explore its pathogenesis. Clinical data of a case of FT1DM complicated with AP in the Department of Endocrinology of our hospital were analyzed retrospectively. A 66-year-old male presented with acute fever and abdominal pain, accompanying with the significantly elevated pancreatic enzymes, and his abdominal CT scan showed exudation around the pancreas. The clinical manifestations mentioned above were consistent with the diagnosis of AP. Five days after onset, the patient developed clinical symptoms, such as obvious thirst, polyuria, polyasthenia and fatigue. Meanwhile, his plasma glucose increased significantly and the diabetic ketoacidosis (DKA) occurred. The patient's fasting and postprandial 2 hours C peptide decreased significantly (all 0.02 \u03bcg/L), glycated hemoglobin level was not high (6%), and his islet-related autoantibodies were undetectable. Thus, the patient could be diagnosed with FT1DM. After the treatment of fasting, fluid replacement, anti-infection, somatostatin, anticoagulation and intravenous insulin sequential subcutaneous insulin pump, the patient gained the alleviation of pancreatitis, restoration of oral intake, and relatively stable blood glucose levels. Summarizing the characte-ristics of this case and reviewing the literature, FT1DM complicated with AP was relatively rare in FT1DM. Its common characteristics were described below: (1) Most cases started with AP and the blood glucose elevated within 1 week, or some cases had the simultaneously onset of AP and FT1DM. (2) The clinical course of AP was short and relieved no more than 1 week; Pancreatic imaging could completely return to normal within 1 to 4 weeks after onset. (3) The etiology of AP most was idiopathic; The elevation of pancreatic enzyme level was slight and the recovery was rapidly compared with AP of other etiologies. FT1DM could be complicated with AP, which was different from the physiological manifestations of pancreatic disease in general FT1DM patients. Virus infection mignt be the common cause of AP and FT1DM, and AP might be the early clinical manifestation of some FT1DM. The FT1DM patients developed with abdominal pain was easy to be missed, misdiagnosed and delayed, which should receive more attention in clinic.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Diabetes Mellitus, Type 1", - "Aged", - "Pancreatitis", - "Acute Disease", - "Diabetic Ketoacidosis" - ] - }, - { - "PMID": "39396694", - "Title": "Experimental eye research", - "ArticleTitle": "Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction.", - "Abstract": "Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Endothelium, Corneal", - "Glutamine", - "Mice", - "Diabetes Mellitus, Experimental", - "Hyperglycemia", - "Humans", - "Male", - "Oxidative Stress", - "Mice, Inbred C57BL", - "Aqueous Humor", - "Diabetes Mellitus, Type 2", - "Apoptosis", - "Female", - "Middle Aged", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39396521", - "Title": "Immunity", - "ArticleTitle": "Autoimmune CD4", - "Abstract": "Self-reactive T\u00a0cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4", - "Predictions": [], - "MeshTerms": [ - "Animals", - "CD4-Positive T-Lymphocytes", - "Hepatocyte Nuclear Factor 1-alpha", - "Mice", - "Diabetes Mellitus, Type 1", - "Lymphocyte Activation", - "Mice, Inbred NOD", - "Cell Differentiation", - "Epigenesis, Genetic", - "Autoimmunity", - "T Cell Transcription Factor 1", - "DNA Methylation" - ] - }, - { - "PMID": "39395647", - "Title": "Brain research", - "ArticleTitle": "Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing.", - "Abstract": "Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Ferroptosis", - "Male", - "Mice", - "Diabetes Mellitus, Experimental", - "Ischemic Stroke", - "Sequence Analysis, RNA", - "Mice, Inbred C57BL", - "Infarction, Middle Cerebral Artery", - "Brain Ischemia", - "Diabetes Mellitus, Type 1", - "Stroke", - "Disease Models, Animal" - ] - }, - { - "PMID": "39395533", - "Title": "Contemporary clinical trials", - "ArticleTitle": "DiaBetter Together: Clinical trial protocol for a strengths-based Peer Mentor intervention for young adults with type 1 diabetes transitioning to adult care.", - "Abstract": "The goal of this research is to evaluate a developmentally appropriate, supportive intervention that can improve T1D self-management and successful transfer of care during the difficult young adult years and promote optimal T1D health outcomes.", - "Predictions": [], - "MeshTerms": [ - "Adolescent", - "Adult", - "Female", - "Humans", - "Male", - "Young Adult", - "Diabetes Mellitus, Type 1", - "Mentors", - "Peer Group", - "Quality of Life", - "Self Care", - "Transition to Adult Care" - ] - }, - { - "PMID": "39476370", - "Title": "Journal of medical Internet research", - "ArticleTitle": "Characterization of Telecare Conversations on Lifestyle Management and Their Relation to Health Care Utilization for Patients with Heart Failure: Mixed Methods Study.", - "Abstract": "Our approach and findings offer novel perspectives on the content, structure, and clinical associations of telehealth conversations on lifestyle management for patients with HF. Hence, our study could inform ways to enhance telehealth programs for self-care management in chronic conditions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Telemedicine", - "Female", - "Male", - "Life Style", - "Aged", - "Middle Aged", - "Patient Acceptance of Health Care", - "Diabetes Mellitus, Type 2", - "Communication" - ] - }, - { - "PMID": "39476235", - "Title": "JAMA network open", - "ArticleTitle": "Cardiovascular Risks With SGLT2 Inhibitors in Clinical Practice Among Patients With Type 2 Diabetes.", - "Abstract": "In this cohort study of patients with T2D, the use of SGLT2is vs DPP4is was associated with reduced total cardiovascular burden, suggesting that long-term use of this therapy may optimize treatment benefit among patients with chronic CVD. The SGLT2i-associated benefit among patients with high risk of CVD encourages the prioritization of SGLT2i use for these vulnerable individuals.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Sodium-Glucose Transporter 2 Inhibitors", - "Male", - "Female", - "Middle Aged", - "Retrospective Studies", - "Cardiovascular Diseases", - "Dipeptidyl-Peptidase IV Inhibitors", - "Aged", - "Taiwan", - "Heart Disease Risk Factors", - "Risk Factors" - ] - }, - { - "PMID": "39476038", - "Title": "Arquivos brasileiros de cardiologia", - "ArticleTitle": "Causal Relationship between Television Viewing Time, Cardiovascular Diseases, and Potential Mechanisms.", - "Abstract": "An overview of the effect of television viewing time on cardiovascular diseases and biomarkers of cardiometabolic risk.", - "Predictions": [], - "MeshTerms": [ - "Television", - "Screen Time", - "Cardiovascular Diseases", - "Polymorphism, Single Nucleotide", - "Sedentary Behavior", - "Diabetes Mellitus, Type 2", - "Biomarkers", - "UK Biobank", - "Leisure Activities" - ] - }, - { - "PMID": "39475846", - "Title": "Journal of molecular endocrinology", - "ArticleTitle": "The role of mu-opioid receptors in pancreatic islet \u03b1-cells.", - "Abstract": "Diabetes is a complex disease that impacts more than 500 million people across the world. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is historically treated with exogenous opioids, such as morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in patients. One common feature of these exogenous opioid ligands is their preference for the mu-opioid receptor (MOPR), so we aimed to determine whether endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high-glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is robust in nondiabetic human islets but downregulated in islets from T2D donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine \u03b1-cells increases glucagon secretion under high-glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high-fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.", - "Predictions": [], - "MeshTerms": [ - "Receptors, Opioid, mu", - "Animals", - "Humans", - "Glucagon-Secreting Cells", - "Mice, Knockout", - "Glucagon", - "Mice", - "Male", - "Glucose", - "Insulin", - "Islets of Langerhans", - "Cyclic AMP", - "Diabetes Mellitus, Type 2", - "Diet, High-Fat", - "Female" - ] - }, - { - "PMID": "39475132", - "Title": "Endokrynologia Polska", - "ArticleTitle": "Identification of fibrosis-associated lncRNAs in diabetic cardiomyopathy patients.", - "Abstract": "Our study disclosed a subset of lncRNAs and mRNAs that are implicated in diabetic cardiomyopathy and myocardial fibrosis, thereby presenting themselves as promising biomarkers and therapeutic targets for the management of both diabetic cardiomyopathy and myocardial fibrosis.", - "Predictions": [], - "MeshTerms": [ - "Diabetic Cardiomyopathies", - "RNA, Long Noncoding", - "Rats", - "Animals", - "Humans", - "Fibrosis", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Middle Aged", - "RNA, Messenger" - ] - }, - { - "PMID": "39475130", - "Title": "Endokrynologia Polska", - "ArticleTitle": "The correlation between S-nitrosylation and type 2 diabetes mellitus: a review.", - "Abstract": "Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder, constituting over 90% of all diabetes cases. Its primary characteristics include insulin deficiency and insulin resistance. The aetiology of T2DM is complex, which is attributed to a convergence of genetic and environmental factors. Moreover, it can engender various complications such as diabetes retinopathy, diabetes nephropathy, and diabetes neuropathy. T2DM cannot be cured fundamentally, it can only delay the development of the disease by controlling the blood sugar level. If the blood sugar is at a high level for a long time, it will aggravate the disease progress, and even lead to death in serious cases. Therefore, understanding the pathogenesis of diabetes, early detection, and intervention are the main means of treatment. S-nitrosylation (SNO), a post-translational modification of proteins based on redox, possesses the capacity to regulate a variety of physiological and pathological processes, and it is also involved in the occurrence and development of T2DM. However, the relationship between the dysregulation of SNO homeostasis and the occurrence of diabetes is not fully understood. This article reviews the correlation between SNO and T2DM, elucidating the mechanism by which SNO contributes to T2DM, encompassing diminishing insulin secretion, inducing insulin resistance, and affecting glucokinase activity. Understanding the correlation between SNO and T2DM provides a new research direction for the pathogenesis and treatment targets of diabetes.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 2", - "Humans", - "Insulin Resistance", - "Protein Processing, Post-Translational", - "Insulin" - ] - }, - { - "PMID": "39475035", - "Title": "British journal of hospital medicine (London, England : 2005)", - "ArticleTitle": "Advances in Research on the Anticancer Properties and Mechanisms of Metformin in Lung Cancer.", - "Abstract": "Lung cancer is a leading cause of death globally with high mortality and morbidity. Patients are often diagnosed at an advanced stage. Metformin has become a primary medication used in the clinical management of type 2 diabetes mellitus (T2DM) due to its relative safety, low cost, and effectiveness, mainly exerting its hypoglycemic effect by inhibiting hepatic gluconeogenesis and insulin resistance. Research data indicate that metformin extends the distant metastasis-free survival (DMFS) and progression-free survival (PFS) of diabetic patients with lung cancer, improving overall survival rates. Metformin lowers the risk of tumour development through various mechanisms, including the adenosine 5'-monophosphate-activated protein kinase/liver kinase B1/mechanistic target of rapamycin (AMPK/LKB1/mTOR) pathway, insulin-like growth factor-1 receptor pathway, apoptosis, and autophagy. However, research findings are not entirely consistent. This article reviews the research progress of metformin in terms of lung cancer treatment within the past few years, aiming to provide a more comprehensive understanding of how metformin exerts its anti-cancer impact and how it can be clinically applied, as well as provide new insights for lung cancer treatment.", - "Predictions": [], - "MeshTerms": [ - "Metformin", - "Humans", - "Lung Neoplasms", - "Hypoglycemic Agents", - "Antineoplastic Agents", - "Diabetes Mellitus, Type 2", - "Autophagy", - "Signal Transduction", - "TOR Serine-Threonine Kinases" - ] - }, - { - "PMID": "39475024", - "Title": "British journal of hospital medicine (London, England : 2005)", - "ArticleTitle": "Impact of Co-Management Mode on Diagnosis and Treatment Compliance in Community-Level Diabetic Patients with Retinopathy.", - "Abstract": { - "b": "Conclusion", - "i": "p" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetic Retinopathy", - "Male", - "Female", - "Middle Aged", - "Retrospective Studies", - "Aged", - "Self-Management", - "Glycated Hemoglobin", - "Blood Glucose", - "Patient Compliance", - "Blood Pressure", - "Diabetes Mellitus, Type 2", - "China", - "Self Care" - ] - }, - { - "PMID": "39475012", - "Title": "The British journal of nutrition", - "ArticleTitle": "Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat.", - "Abstract": "Epidemiological and clinical trial evidence indicates that ", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Plant Oils", - "Fatty Acids, Unsaturated", - "Cardiovascular Diseases", - "Diabetes Mellitus, Type 2", - "Dietary Fats, Unsaturated", - "Fatty Acids, Omega-6", - "Diet" - ] - }, - { - "PMID": "39474832", - "Title": "Medical decision making : an international journal of the Society for Medical Decision Making", - "ArticleTitle": "Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models.", - "Abstract": "Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Quality-Adjusted Life Years", - "Computer Simulation", - "Hypoglycemic Agents", - "Diabetes Mellitus, Type 2", - "Cost-Benefit Analysis", - "United Kingdom", - "Technology Assessment, Biomedical", - "Diabetes Mellitus", - "Female", - "Male" - ] - }, - { - "PMID": "39474830", - "Title": "Nederlands tijdschrift voor geneeskunde", - "ArticleTitle": "[Acute blindness in a patient with metformin-associated lactic acidosis].", - "Abstract": "Lactic acidosis is a rare metabolic complication that can occur in patients with diabetes mellitus type 2 who use metformin. We discuss a 79-year old woman with metformin-associated lactic acidosis (MALA) and acute kidney injury based on gastroenteritis. Patient reported acute blindness which in literature is described as a rare presentation of a metabolic acidosis (regardless of its underlying cause). Immediate treatment with hemodialysis led to improvement of the acidosis and complete recovery of the vision. It is important that patients who use metformin are instructed to consult their health care provider and/or discontinue metformin in case of intercurrent diseases.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Metformin", - "Acidosis, Lactic", - "Aged", - "Female", - "Diabetes Mellitus, Type 2", - "Blindness", - "Hypoglycemic Agents", - "Renal Dialysis", - "Acute Kidney Injury", - "Acute Disease", - "Gastroenteritis", - "Treatment Outcome" - ] - }, - { - "PMID": "39474653", - "Title": "AIDS (London, England)", - "ArticleTitle": "Hepatic steatosis-insulin resistance and type 2 diabetes in people with HIV at diagnosis: effect of initial antiretroviral therapy.", - "Abstract": "We evaluated the impact of hepatic steatosis-insulin resistance (HS-IR) and liver fibrosis (LF) on type 2 diabetes mellitus (DM2) using triglyceride-glucose (TyG) and Fibrosis-4 (FIB-4). The incidence of DM2 was 12.9 [95% confidence interval (CI), 16.9-9.7] and 9.8 (95% CI, 6.9-13.6) per 1000 person-years in HS-IR and LF. The prevalence of HS-IR was significantly lower at 12 and 24\u200amonths with TDF + (3TC or FTC) + RPV [hazard ratio (HR) 0.5 [95% CI, 0.3-0.8], P\u200a<\u200a0.01 at 12\u200amonths; 0.6 [0.4-0.9], P\u200a=\u200a0.01 at 24\u200amonths].", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Insulin Resistance", - "Male", - "HIV Infections", - "Female", - "Middle Aged", - "Adult", - "Fatty Liver", - "Incidence", - "Anti-Retroviral Agents", - "Prevalence", - "Liver Cirrhosis" - ] - }, - { - "PMID": "39474644", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Cost-utility analysis of once-weekly insulin icodec and once-daily insulin glargine in patients with type 2 diabetes receiving basal-bolus insulin therapy in China.", - "Abstract": "The conclusion drawn from this study is that, with insulin glargine as the cost reference, the economic cost of insulin icodec for Chinese type 2 diabetes patients is expected to range from $784.90 to $1145.96, providing a reference basis for clinical decision-making and healthcare policy formulation.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Insulin Glargine", - "Cost-Benefit Analysis", - "China", - "Hypoglycemic Agents", - "Quality-Adjusted Life Years", - "Drug Administration Schedule", - "Male", - "Female", - "Middle Aged", - "Insulin" - ] - }, - { - "PMID": "39474248", - "Title": "Journal of diabetes research", - "ArticleTitle": "Impact of Vitamin E Supplementation on High-Density Lipoprotein in Patients With Haptoglobin Genotype-Stratified Diabetes: A Systematic Review of Randomized Controlled Trials.", - "Abstract": { - "b": "Conclusions:" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Antioxidants", - "Diabetes Mellitus, Type 2", - "Dietary Supplements", - "Genotype", - "Haptoglobins", - "Lipoproteins, HDL", - "Randomized Controlled Trials as Topic", - "Vitamin E" - ] - }, - { - "PMID": "39474247", - "Title": "Journal of diabetes research", - "ArticleTitle": "Adipocytokines and Inflammation in Patients and a Gerbil Model: Implications for Obesity-Related and Nonobese Diabetes.", - "Abstract": { - "b": "Conclusions:", - "i": "age", - "sup": "2" - }, - "Predictions": [], - "MeshTerms": [ - "Animals", - "Obesity", - "Gerbillinae", - "Adipokines", - "Middle Aged", - "Male", - "Humans", - "Inflammation", - "Diabetes Mellitus, Type 2", - "Female", - "Adipose Tissue", - "Adult", - "Disease Models, Animal", - "Blood Glucose", - "Insulin Resistance", - "Leptin", - "Adiponectin" - ] - }, - { - "PMID": "39473074", - "Title": "Diabetic medicine : a journal of the British Diabetic Association", - "ArticleTitle": "The effect of high-fibre diets on glycaemic control in women with diabetes in pregnancy: A systematic review and meta-analysis.", - "Abstract": "High-quality dietary intervention studies in pregnancy are lacking. Our results suggest that high-fibre diets improve fasting and postprandial glycaemia and reduce the likelihood of requiring insulin in women with diabetes in pregnancy.", - "Predictions": [], - "MeshTerms": [ - "Female", - "Humans", - "Pregnancy", - "Blood Glucose", - "Diabetes Mellitus, Type 2", - "Dietary Fiber", - "Glycemic Control", - "Insulin", - "Pregnancy in Diabetics" - ] - }, - { - "PMID": "39473051", - "Title": "Gut microbes", - "ArticleTitle": "Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study.", - "Abstract": "Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Male", - "Exercise", - "Middle Aged", - "Mycobiome", - "Fungi", - "Feces", - "Proteomics", - "Prediabetic State", - "Metabolomics", - "Bacteria", - "Adult", - "Diabetes Mellitus, Type 2", - "Metagenomics", - "Multiomics" - ] - }, - { - "PMID": "39472884", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Association between the soluble receptor for advanced glycation end products and diabetes mellitus: systematic review and meta-analysis.", - "Abstract": "CRD42024521252.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Biomarkers", - "Diabetes Mellitus, Type 1", - "Diabetes Mellitus, Type 2", - "Receptor for Advanced Glycation End Products" - ] - }, - { - "PMID": "39472855", - "Title": "BMC psychiatry", - "ArticleTitle": "Association of antipsychotic drugs on type 2 diabetes mellitus risk in patients with schizophrenia: a population-based cohort and in vitro glucose homeostasis-related gene expression study.", - "Abstract": "This study demonstrates the impact of schizophrenia and APs and the risk of developing T2DM in Asian populations. Unmeasured confounding risk factors for T2DM may not have been included in the study. These findings may help psychiatric practitioners identify patients at risk of developing T2DM.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Schizophrenia", - "Antipsychotic Agents", - "Male", - "Female", - "Taiwan", - "Adult", - "Middle Aged", - "Retrospective Studies", - "Homeostasis", - "Gene Expression", - "Glucose", - "Incidence", - "Risk Factors" - ] - }, - { - "PMID": "39472574", - "Title": "Nature communications", - "ArticleTitle": "Identification of gut microbiome features associated with host metabolic health in a large population-based cohort.", - "Abstract": "The complex relationship between the gut microbiome and host metabolic health has been an emerging research area. Several recent studies have highlighted the potential effects of the microbiome's diversity, composition and metabolic production capabilities on Body Mass Index (BMI), liver health, glucose homeostasis and Type-2 Diabetes (T2D). The majority of these studies were constrained by relatively small cohorts, mostly focusing on individuals with metabolic disorders, limiting a comprehensive understanding of the microbiome's role in metabolic health. Leveraging a large-scale, comprehensive cohort of nearly 9000 individuals, measured using Continuous Glucose Monitoring (CGM), Dual-energy X-ray absorptiometry (DXA) scan and liver Ultrasound (US) we examined the functional profile of the gut microbiome, and its relation to 38 metabolic health measures. We identified 145 unique bacterial pathways significantly correlated with metabolic health measures, with 86.9% of these showing significant associations with more than one metabolic health measure. Furthermore, 87,678 unique bacterial gene families were found to be significantly associated with at least one metabolic health measure. Notably, \"key\" bacterial pathways such as purine ribonucleosides degradation and anaerobic energy metabolism demonstrated multiple robust associations across various metabolic health measures, highlighting their potential roles in regulating metabolic processes. Our results remained largely unchanged after adjustments for nutritional habits and for BMI they were replicated in a geographically independent cohort. These insights pave the way for future research and potentially the development of microbiome-targeted interventions to enhance metabolic health.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Gastrointestinal Microbiome", - "Male", - "Female", - "Cohort Studies", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Body Mass Index", - "Adult", - "Liver", - "Bacteria", - "Absorptiometry, Photon", - "Aged", - "Blood Glucose" - ] - }, - { - "PMID": "39472434", - "Title": "Nature communications", - "ArticleTitle": "Heterogeneous enhancer states orchestrate \u03b2 cell responses to metabolic stress.", - "Abstract": "Obesity-induced \u03b2 cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with \u03b2 cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Insulin-Secreting Cells", - "Mice", - "Enhancer Elements, Genetic", - "Stress, Physiological", - "Hepatocyte Nuclear Factor 3-beta", - "Obesity", - "Histones", - "Endoplasmic Reticulum Stress", - "Mice, Inbred C57BL", - "Nerve Growth Factor", - "Male", - "Single-Cell Analysis", - "Diabetes Mellitus, Type 2", - "Paracrine Communication", - "Cell Communication", - "Mice, Obese", - "Epigenesis, Genetic" - ] - }, - { - "PMID": "39471893", - "Title": "Clinica chimica acta; international journal of clinical chemistry", - "ArticleTitle": "HPLC-MS/MS method for simultaneous analysis of plasma 2-hydroxybutyrate and 2-hydroxyisobutyrate: Development and clinical significance.", - "Abstract": "Recent studies have identified relationships between diabetes mellitus and short-chain fatty acids, including 2-hydroxybutyrate (2-HB) and 2-hydroxyisobutyrate (2-HiB); 2-HB has been associated to the early stages of insulin resistance, while 2-HiB with the risk and progression of complications of Type 1 diabetes. Their metabolism and pathophysiological role in humans are not fully clarified. The possible association between 2-HB and 2-HiB and diabetes mellitus was investigated with a novel mass spectrometry-based assay, capable of discriminating plasma 2-HiB and 2-HB from their HB isomers. Accuracy and precision (RSD%) were always in the range 99-102% and 0.7-3.5%, respectively. The study involved samples from subjects with normal glucose tolerance (NGT) and Type 2 diabetes (T2D), originally included in a multicenter study investigating mechanisms involved in atherothrombosis. NGT subjects exhibited concentrations of 2-HB and 2-HiB of 61 (36) and 3.1 (1.9) \u00b5mol/L, median (interquartile range), respectively, that were significantly lower than those of the T2D patients, whose values were 74 (4.0) and 3.8 (2.9) \u00b5mol/L, respectively. The pattern of association of these molecules with clinical and metabolic variables is partially different: both compounds were directly related to male sex, BMI, HbA", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Tandem Mass Spectrometry", - "Diabetes Mellitus, Type 2", - "Chromatography, High Pressure Liquid", - "Hydroxybutyrates", - "Middle Aged", - "Adult", - "Clinical Relevance", - "Liquid Chromatography-Mass Spectrometry" - ] - }, - { - "PMID": "39471776", - "Title": "The journal of nutrition, health & aging", - "ArticleTitle": "Spatiotemporal trends of Type 2 diabetes due to low physical activity from 1990 to 2019 and forecasted prevalence in 2050: A Global Burden of Disease Study 2019.", - "Abstract": "LPA significantly impacts T2DM, particularly in low SDI regions. Promotion of physical activity is crucial to reduce this burden, particularly in regions where the disease's impact is most severe.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Global Burden of Disease", - "Male", - "Female", - "Exercise", - "Prevalence", - "Global Health", - "Middle Aged", - "Disability-Adjusted Life Years", - "Forecasting", - "Aged", - "Sedentary Behavior", - "Spatio-Temporal Analysis", - "Adult" - ] - }, - { - "PMID": "39471766", - "Title": "Geriatric nursing (New York, N.Y.)", - "ArticleTitle": "Impact of a motor-cognitive intervention on cognitive function in middle-aged and older patients with type 2 diabetes.", - "Abstract": "This study evaluated the impact of a motor-cognitive intervention on cognitive function in patients with type 2 diabetes mellitus (T2DM). A single-group design with repeated measures was used, with twenty-six middle-aged and older patients with T2DM (aged 68.58 \u00b1 6.15 years) tested on two occasions four weeks apart to establish a baseline before participating in the exercise programme (55-60 min per session; 3 x week) for eight weeks. Participants were then tested again immediately after the training programme. Except for phonemic fluency error scores, the baseline data remained unchanged. After the training programme, statistical tests showed a significant improvement in some variables of executive function and attention demand, (p < 0.017, Bonferroni adjustment to compensate for multiple comparisons), as well as a positive effect on information processing speed, and dual-task performance. Combining physical and cognitive stimulation can have a positive impact on the cognitive functioning of participants with T2DM.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Aged", - "Cognition", - "Executive Function", - "Middle Aged", - "Exercise Therapy", - "Attention" - ] - }, - { - "PMID": "39471690", - "Title": "International immunopharmacology", - "ArticleTitle": "Tirzepatide's role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance.", - "Abstract": "Tirzepatide's potential as a therapeutic strategy for addressing metabolic diseases associated with obesity and T2DM by targeting ATM activity and mitigating obesity-associated inflammation.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Insulin Resistance", - "Obesity", - "Macrophages", - "Adipose Tissue", - "Male", - "Mice", - "Mice, Inbred C57BL", - "Inflammation", - "Diet, High-Fat", - "Diabetes Mellitus, Type 2", - "Glucagon-Like Peptide-1 Receptor", - "Receptors, Gastrointestinal Hormone", - "Cytokines", - "Humans", - "Disease Models, Animal", - "Anti-Inflammatory Agents", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39471265", - "Title": "Journal of managed care & specialty pharmacy", - "ArticleTitle": "Social determinants of health and newer glucose-lowering drugs adoption among US Medicare beneficiaries with type 2 diabetes.", - "Abstract": "We identified key contextual-level SDOH associated with real-world adoption of newer GLDs and explored their geographic variation through spatially explicit, data-driven analytical approaches. Identifying areas of strong association between SDOH and newer GLD initiation is crucial for policymakers to allocate resources and develop interventions that address structural inequities.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "United States", - "Diabetes Mellitus, Type 2", - "Female", - "Male", - "Social Determinants of Health", - "Aged", - "Medicare", - "Hypoglycemic Agents", - "Sodium-Glucose Transporter 2 Inhibitors", - "Middle Aged", - "Aged, 80 and over", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39471057", - "Title": "ACS nano", - "ArticleTitle": "Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic.", - "Abstract": "Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Glucagon-Like Peptide 1", - "Nanofibers", - "Rats", - "Glucagon-Like Peptide-1 Receptor", - "Diabetes Mellitus, Type 2", - "Humans", - "Male", - "Hypoglycemic Agents", - "Rats, Sprague-Dawley", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39470862", - "Title": "Neuromolecular medicine", - "ArticleTitle": "Distinct Hippocampal Expression Profiles of lncRNAs in Obese Type 2 Diabetes Mice Exhibiting Cognitive Impairment.", - "Abstract": "Cognitive dysfunction has been accepted as a possible complication of type 2 diabetes (T2D), but few studies revealed the potential roles of Long non\u2011coding RNAs (lncRNAs) in cognitive dysfunction in T2D. The current research aims to demonstrate the specific expression patterns of lncRNA-mRNA in the hippocampi of T2D db/db mice exhibiting cognitive impairment. In this study, the results from behavioral tests showed that T2D db/db mice displayed short-term and spatial working memory deficits compared to db/m mice. Furthermore, western blot analysis demonstrated that compared with db/m mice, p-GSK3\u03b2 (ser9) protein levels were markedly elevated in T2D db/db mice (P\u2009<\u20090.01). In addition, though not statistically significant, the ratio of p-Tau (Ser396) to Tau 46, \u03b1-Synuclein expression, and p-GSK3\u03b1 (ser21) expression were also relatively higher in T2D db/db mice than in db/m mice. The microarray profiling revealed that 75 lncRNAs and 26 mRNAs were dysregulated in T2D db/db mice (>\u20092.0 fold change, P\u2009<\u20090.05). GO analysis demonstrated that the differentially expressed mRNAs participated in immune response, extracellular membrane-bounded organelle, and extracellular region. KEGG analysis revealed that the differentially expressed mRNAs were mainly involved in one carbon pool by folate, glyoxylate and dicarboxylate metabolism, autophagy, glycine, serine and threonine metabolism, and B cell receptor signaling pathway. A lncRNA\u2011mRNA coexpression network containing 71 lncRNAs and 26 mRNAs was built to investigate the interaction between lncRNA and mRNA. Collectively, these results revealed the differential hippocampal expression profiles of lncRNAs in T2D mice with cognitive dysfunction, and the findings from this study provide new clues for exploring the potential roles of lncRNAs in the pathogenesis of cognitive dysfunction in T2D.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "RNA, Long Noncoding", - "Mice", - "Diabetes Mellitus, Type 2", - "Hippocampus", - "Male", - "Cognitive Dysfunction", - "RNA, Messenger", - "Glycogen Synthase Kinase 3 beta", - "Mice, Inbred C57BL", - "tau Proteins", - "Gene Expression Profiling", - "Transcriptome", - "Gene Expression Regulation", - "Obesity", - "Memory, Short-Term" - ] - }, - { - "PMID": "39470509", - "Title": "Medicine", - "ArticleTitle": "Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review.", - "Abstract": "Metformin, the first line treatment for patients with type 2 diabetes mellitus, has alternative novel roles, including cancer and diabetes prevention. This narrative review aims to explore its diverse mechanisms, effects and intolerance, using sources obtained by searching Scopus, PubMed and Web of Science databases, and following Scale for the Assessment of Narrative Review Articles reporting guidelines. Metformin exerts it actions through duration influenced, and organ specific, diverse mechanisms. Its use is associated with inhibition of hepatic gluconeogenesis targeted by mitochondria and lysosomes, reduction of cholesterol levels involving brown adipose tissue, weight reduction influenced by growth differentiation factor 15 and novel commensal bacteria, in addition to counteraction of meta-inflammation alongside immuno-modulation. Interactions with the gastrointestinal tract include alteration of gut microbiota, enhancement of glucose uptake and glucagon like peptide 1 and reduction of bile acid absorption. Though beneficial, they may be linked to intolerance. Metformin related gastrointestinal adverse effects are associated with dose escalation, immediate release formulations, gut microbiota alteration, epigenetic predisposition, inhibition of organic cation transporters in addition to interactions with serotonin, histamine and the enterohepatic circulation. Potentially effective measures to overcome intolerance encompasses carefully objective targeted dose escalation, prescription of fixed dose combination, microbiome modulators and prebiotics, in addition to use of extended release formulations.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Metformin", - "Hypoglycemic Agents", - "Gastrointestinal Microbiome", - "Gastrointestinal Tract" - ] - }, - { - "PMID": "39470335", - "Title": "Hepatology communications", - "ArticleTitle": "Clinical care guidance in patients with diabetes and metabolic dysfunction-associated steatotic liver disease: A joint consensus.", - "Abstract": "Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, affecting >30% of the global population. Metabolic dysregulation, particularly insulin resistance and its subsequent manifestation as type 2 diabetes mellitus, serves as the fundamental pathogenesis of metabolic liver disease. Clinical evidence of the recent nomenclature evolution is accumulating. The interaction and impacts are bidirectional between MASLD and diabetes in terms of disease course, risk, and prognosis. Therefore, there is an urgent need to highlight the multifaceted links between MASLD and diabetes for both hepatologists and diabetologists. The surveillance strategy, risk stratification of management, and current therapeutic achievements of metabolic liver disease remain the major pillars in a clinical care setting. Therefore, the Taiwan Association for the Study of the Liver (TASL), Taiwanese Association of Diabetes Educators, and Diabetes Association of the Republic of China (Taiwan) collaboratively completed the first guidance in patients with diabetes and MASLD, which provides practical recommendations for patient care.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Consensus", - "Diabetes Mellitus, Type 2", - "Insulin Resistance", - "Non-alcoholic Fatty Liver Disease", - "Taiwan", - "Review Literature as Topic" - ] - }, - { - "PMID": "39470149", - "Title": "Journal of diabetes", - "ArticleTitle": "Association of systolic blood pressure variability with cognitive decline in type 2 diabetes: A post hoc analysis of a randomized clinical trial.", - "Abstract": "A greater visit-to-visit systolic BPV was significantly associated with an increased risk of cognitive decline measured by DSST and an increase in white matter lesion volume in patients with type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Blood Pressure", - "Cognitive Dysfunction", - "Middle Aged", - "Aged", - "Cognition", - "Risk Factors", - "Neuropsychological Tests", - "Magnetic Resonance Imaging", - "Systole" - ] - }, - { - "PMID": "39470143", - "Title": "Journal of biochemical and molecular toxicology", - "ArticleTitle": "Sesamol Alleviated Lipotoxicity-Induced Dysfunction in MIN6 Cells via Facilitating Cellular Senescence Caused by Endoplasmic Reticulum Stress.", - "Abstract": "Obesity is found to be a significant risk factor for type 2 diabetes mellitus (T2DM), attributed to lipotoxicity-induced \u03b2-cell dysfunction. However, the specific mechanism involved in the process remains incompletely unclarified. The current study demonstrated lipotoxicity resulted in the activation of ER stress, which increased the protein level of TXNIP, thereby inducing senescence-assiciated dysfunction in MIN6 cells under high fat environment. And we also found sesamol, a natural functional component extracted from sesame, was able to alleviate senescence-associated \u03b2-cell dysfunction induced by lipotoxicity by inhibiting ER stress and TXNIP. Our findings provided novel insights into senescence-related T2DM and propose innovative therapeutic approaches for utilizing sesamol in the treatment of T2DM in the obese elderly population.", - "Predictions": [], - "MeshTerms": [ - "Endoplasmic Reticulum Stress", - "Benzodioxoles", - "Cellular Senescence", - "Phenols", - "Animals", - "Mice", - "Cell Line", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39469571", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Tracing links between micronutrients and type 2 diabetes risk: the singular role of selenium.", - "Abstract": "Our study presents novel evidence of a positive correlation between selenium intake and T2D risk, underscoring the importance of micronutrients in diabetes prevention and treatment strategies. Further research is necessary to confirm these findings and to clarify the specific biological mechanisms through which selenium influences diabetes risk.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Selenium", - "Micronutrients", - "Male", - "Mendelian Randomization Analysis", - "Genome-Wide Association Study", - "Female", - "Middle Aged", - "Risk Factors", - "Prospective Studies" - ] - }, - { - "PMID": "39468808", - "Title": "Sheng li xue bao : [Acta physiologica Sinica]", - "ArticleTitle": "[Resistance exercise regulates hippocampal microglia polarization through TREM2/NF-\u03baB/STAT3 signal pathway to improve cognitive dysfunction in T2DM mice].", - "Abstract": "The study aimed to explore the effect and mechanism of resistance exercise (RE) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) mice. Six 8-week-old male m/m mice were used as control (Con) group, and db/db mice of the matched age were randomly divided into model control (db/db) group and db+RE group, with 6 mice in each group. The db+RE group was given 8 weeks of resistance climbing ladder exercise intervention. The fasting blood glucose and body weight of the mice were measured weekly. After the intervention, the spatial learning and memory of the mice were detected by Morris water maze, and the neuronal damage in the hippocampus of the mice was detected by Nissl staining. The protein expression levels of PSD93, PSD95, BDNF, CREB, p-CREB, IL-6, IL-1\u03b2, TNF-\u03b1, Iba-1, iNOS, CD206, Arg1, triggering receptor expressed on myeloid cells 2 (TREM2), NF-\u03baB, p-STAT3, and STAT3 were detected by Western blot. The mRNA expression levels of inflammatory factors and TREM2 in hippocampus were evaluated by qRT-PCR, and the expression and localization of Iba-1, CD206, CD86, and TREM2 were determined by immunofluorescence staining. The results showed that the spatial learning and memory of the db/db group were significantly declined, the neurons in the hippocampus were damaged, the protein levels of PSD93, PSD95, BDNF, CD206, Arg1, TREM2 and the ratio of p-CREB/CREB were significantly down-regulated, the mRNA and protein expression levels of IL-6, IL-1\u03b2 and TNF-\u03b1 were significantly up-regulated, and the protein levels of iNOS, Iba-1, NF-\u03baB and the ratio of p-STAT3/STAT3 were significantly increased compared with the Con group. However, the 8-week RE improved the spatial learning and memory of db/db mice, alleviated the damage of hippocampal neurons, promoted the polarization of M2 microglia, and inhibited the neuroinflammation. The above results suggest that RE can improve cognitive dysfunction in T2DM mice, and its mechanism may be related to regulating microglia polarization via TREM2/NF-\u03baB/STAT3 signaling pathway.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Mice", - "Hippocampus", - "Male", - "Receptors, Immunologic", - "Cognitive Dysfunction", - "NF-kappa B", - "Microglia", - "Signal Transduction", - "STAT3 Transcription Factor", - "Membrane Glycoproteins", - "Diabetes Mellitus, Type 2", - "Physical Conditioning, Animal", - "Diabetes Mellitus, Experimental" - ] - }, - { - "PMID": "39468727", - "Title": "Age and ageing", - "ArticleTitle": "Assessing 1-year sodium-glucose co-transporter-2 inhibitor tolerance in older adults.", - "Abstract": "No clinically meaningful differences in SGLT2 inhibitor intolerance were observed in patients up to 84\u00a0years. Our findings support having closer follow-up when initiating in patients 85\u00a0years and older.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Aged", - "Female", - "Male", - "Retrospective Studies", - "Aged, 80 and over", - "Age Factors", - "Diabetes Mellitus, Type 2", - "Risk Factors", - "United States", - "Middle Aged" - ] - }, - { - "PMID": "39468602", - "Title": "BMC endocrine disorders", - "ArticleTitle": "Lipids as the link between central obesity and diabetes: perspectives from mediation analysis.", - "Abstract": "In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Obesity, Abdominal", - "Male", - "Female", - "Middle Aged", - "Lipids", - "Mediation Analysis", - "Adult", - "Risk Factors", - "Waist Circumference", - "Longitudinal Studies", - "Diabetes Mellitus", - "Biomarkers", - "Diabetes Mellitus, Type 2", - "Follow-Up Studies", - "Aged", - "Prognosis", - "Triglycerides" - ] - }, - { - "PMID": "39468546", - "Title": "Cardiovascular diabetology", - "ArticleTitle": "The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease.", - "Abstract": "Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Endothelial Progenitor Cells", - "Female", - "Glucosides", - "Coronary Artery Disease", - "Benzhydryl Compounds", - "Aged", - "Sodium-Glucose Transporter 2 Inhibitors", - "Prospective Studies", - "Treatment Outcome", - "Time Factors", - "Cells, Cultured", - "Diabetes Mellitus, Type 2", - "Cell Proliferation", - "Biomarkers", - "Middle Aged" - ] - }, - { - "PMID": "39468537", - "Title": "BMC endocrine disorders", - "ArticleTitle": "To analyse the correlation between UAER and eGFR and the risk factors for reducing eGFR in patients with type 2 diabetes.", - "Abstract": "Peripheral vascular disease, systolic blood pressure, fatty liver, and beta-2-microglobulin are risk factors for decreased eGFR levels in patients with T2DM, which should be applied for control DKD. HDL and fasting CP have important effects on maintaining eGFR, and blood pressure and fasting CP can be used as new targets for subsequent diabetic kidney disease treatment.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Glomerular Filtration Rate", - "Middle Aged", - "Risk Factors", - "Albuminuria", - "Aged", - "Follow-Up Studies", - "Diabetic Nephropathies", - "Prognosis", - "Biomarkers" - ] - }, - { - "PMID": "39468383", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Visit-to-visit HbA1c variability and risk of potentially avoidable hospitalisations in adults with type 2 diabetes receiving outpatient care at a tertiary hospital.", - "Abstract": "In individuals receiving care at specialist outpatient clinics of a tertiary hospital, HbA1c variability is associated with a higher risk of PAH. Comprehensive diabetes management strategies addressing both glycaemic control and variability may offer benefits.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Middle Aged", - "Female", - "Glycated Hemoglobin", - "Male", - "Aged", - "Tertiary Care Centers", - "Hospitalization", - "Singapore", - "Adult", - "Ambulatory Care", - "Aged, 80 and over", - "Cohort Studies", - "Young Adult", - "Risk Factors", - "Glycemic Control", - "Follow-Up Studies" - ] - }, - { - "PMID": "39468380", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Effect of spironolactone wash-out on albuminuria after long-term treatment in individuals with type 2 diabetes and high risk of kidney disease-An observational follow-up of the PRIORITY study.", - "Abstract": "UACR did not change after discontinuation of long-term treatment with spironolactone. However, an increase in eGFR was observed supporting a haemodynamic effect of spironolactone in the kidneys.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Spironolactone", - "Albuminuria", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Diabetic Nephropathies", - "Middle Aged", - "Follow-Up Studies", - "Glomerular Filtration Rate", - "Mineralocorticoid Receptor Antagonists", - "Aged", - "Blood Pressure", - "Creatinine", - "Potassium" - ] - }, - { - "PMID": "39468091", - "Title": "Scientific reports", - "ArticleTitle": "Cardiometabolic risk factor clusters in older adults using latent class analysis on the Bushehr elderly health program.", - "Abstract": "Metabolic syndrome (MetS), comprising obesity, insulin resistance, hypertension, and dyslipidemia, increases the risk of type II diabetes mellitus and cardiovascular disease. This study aimed to identify the prevalence and determinants of specific clusters of the MetS components and tobacco consumption among older adults in Iran. The current study was conducted in the second stage of the Bushehr Elderly Health (BEH) program in southern Iran-a population-based cohort including 2424 subjects aged\u2009\u2265\u200960 years. Latent class analysis (LCA) was used to identify MetS and tobacco consumption patterns. Multinomial logistic regression was conducted to investigate factors associated with each MetS class, including sociodemographic and behavioral variables. Out of 2424 individuals, the overall percentage of people with one or more components of MetS or current tobacco use was 57.8% and 20.8%, respectively. The mean (SD) age of all participants was 69.3(6.4) years. LCA ascertained the presence of four latent classes: class 1 (\"low risk\"; with a prevalence of 35.3%), class 2 (\"MetS with medication-controlled diabetes\"; 11.1%), class 3 (\"high risk of MetS and associated medication use\"; 27.1%), and class 4 (\"central obesity and treated hypertension\"; 26.4%). Compared to participants with a body mass index (BMI)\u2009<\u200930, participants with BMI\u2009\u2265\u200930 were more likely to belong to class 3 (OR 1.91, 95% CI 1.31-2.79) and class 4 (OR 1.49, 95% CI 1.06-2.08). Polypharmacy was associated with membership in class 2 (OR 2.07, 95% CI 1.12-3.81), class 3 (OR 9.77, 95% CI 6.12-15.59), and class 4 (OR 1.76, 95% CI 1.07-2.91). The elevated triglyceride-glucose index was associated with membership in class 2 (OR 12.33, 95% CI 7.75-19.61) and class 3 (OR 12.04, 95% CI 8.31-17.45). Individuals with poor self-related health were more likely to belong to class 3 (OR 1.43; 95% CI 1.08-1.93). Four classes were identified among older adults in Iran with distinct patterns of cardiometabolic risk factors. Segmenting elderly individuals into these cardiometabolic categories has the potential to enhance the monitoring and management of cardiometabolic risk factors. This strategy may help reduce the severe outcomes of metabolic syndrome in this susceptible population.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Aged", - "Male", - "Female", - "Latent Class Analysis", - "Metabolic Syndrome", - "Middle Aged", - "Iran", - "Cardiometabolic Risk Factors", - "Prevalence", - "Diabetes Mellitus, Type 2", - "Risk Factors", - "Hypertension", - "Cardiovascular Diseases" - ] - }, - { - "PMID": "39468075", - "Title": "Nature communications", - "ArticleTitle": "Transcriptome-wide Mendelian randomization during CD4", - "Abstract": "Immunity has shown potentials in informing drug development for cardiometabolic diseases, such as type 2 diabetes (T2D) and coronary artery disease (CAD). Here, we performed a transcriptome-wide Mendelian randomization (MR) study to estimate the putative causal effects of 11,021 gene expression profiles during CD4", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Mendelian Randomization Analysis", - "CD4-Positive T-Lymphocytes", - "Diabetes Mellitus, Type 2", - "Transcriptome", - "Lymphocyte Activation", - "Coronary Artery Disease", - "Gene Expression Profiling", - "Genetic Predisposition to Disease", - "Polymorphism, Single Nucleotide", - "Genome-Wide Association Study" - ] - }, - { - "PMID": "39467963", - "Title": "Heart failure reviews", - "ArticleTitle": "Sodium-glucose cotransporter-2 inhibitors in acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials.", - "Abstract": "We aimed to assess the efficacy and safety of sodium-glucose cotransporter-2 inhibitors (SGLT2i) versus placebo, initiated within the hospitalization period, in addition to habitual treatment, for treating adult patients with confirmed acute myocardial infarction (AMI). We also conducted subgroup analysis by diabetes mellitus (DM) status and type of AMI. We systematically searched PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs). The primary outcome was hospitalization for heart failure (HF). The secondary outcomes were all-cause death, cardiovascular death, and serious adverse events (AEs). We pooled risk ratios (RR) with a 95% confidence interval (CI) for binary outcomes. The between-study variance was assessed using tau", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Randomized Controlled Trials as Topic", - "Myocardial Infarction", - "Hospitalization", - "Treatment Outcome", - "Diabetes Mellitus, Type 2" - ] - }, - { - "PMID": "39467873", - "Title": "Diabetologia", - "ArticleTitle": "Autoimmune diseases and the risk and prognosis of latent autoimmune diabetes in adults.", - "Abstract": "We confirm that several common ADs confer an excess risk of LADA, especially LADA with higher GADA levels, but having such a comorbidity does not appear to affect the risk of diabetic retinopathy.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Male", - "Autoimmune Diseases", - "Middle Aged", - "Latent Autoimmune Diabetes in Adults", - "Adult", - "Prognosis", - "Diabetes Mellitus, Type 2", - "Sweden", - "Diabetic Retinopathy", - "Aged", - "Autoantibodies", - "Risk Factors", - "Comorbidity", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39467872", - "Title": "Diabetologia", - "ArticleTitle": "Exposure to antibiotics and risk of latent autoimmune diabetes in adults and type 2 diabetes: results from a Swedish case-control study (ESTRID) and the Norwegian HUNT study.", - "Abstract": "We found no evidence that exposure to broad-spectrum antibiotics up to 10 years prior to diagnosis increases the risk of LADA. There was some indication of increased LADA risk with exposure to narrow-spectrum antibiotics, which warrants further investigation.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Case-Control Studies", - "Diabetes Mellitus, Type 2", - "Sweden", - "Norway", - "Anti-Bacterial Agents", - "Female", - "Male", - "Adult", - "Middle Aged", - "Aged", - "Risk Factors", - "Latent Autoimmune Diabetes in Adults", - "Diabetes Mellitus, Type 1" - ] - }, - { - "PMID": "39466812", - "Title": "PloS one", - "ArticleTitle": "Associations of the TyG index with albuminuria and chronic kidney disease in patients with type 2 diabetes.", - "Abstract": "The TyG index is positively associated with albuminuria and CKD in patients with T2DM and may be a marker for predicting the occurrence of early kidney injury in patients with T2DM. Clinicians should test this indicator early to detect lesions and improve patient prognosis.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Albuminuria", - "Male", - "Female", - "Middle Aged", - "Renal Insufficiency, Chronic", - "Triglycerides", - "Blood Glucose", - "Adult", - "Diabetic Nephropathies", - "Aged", - "Glomerular Filtration Rate", - "Risk Factors" - ] - }, - { - "PMID": "39466719", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Subphenotypes of adult-onset diabetes: Data-driven clustering in the population-based KORA cohort.", - "Abstract": "T2D subphenotyping based on its sample's own clinical characteristics leads to stable categorization and adequately reflects T2D heterogeneity.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Middle Aged", - "Germany", - "Cluster Analysis", - "Phenotype", - "Cohort Studies", - "Aged", - "Adult", - "Age of Onset", - "Genetic Predisposition to Disease", - "Risk Factors" - ] - }, - { - "PMID": "39466701", - "Title": "Diabetes, obesity & metabolism", - "ArticleTitle": "Dietary potassium intake and its interaction with sodium intake on risk of developing cardiovascular disease in persons with type 2 diabetes: The Japan Diabetes Complication and its Prevention Prospective study (JDCP study 12).", - "Abstract": "Low potassium intake in conjunction with high sodium intake was significantly associated with increased incident CVD in persons with T2DM. However, CVD incidence was not related to high potassium intake, regardless of sodium intake.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Middle Aged", - "Male", - "Female", - "Japan", - "Prospective Studies", - "Cardiovascular Diseases", - "Aged", - "Sodium, Dietary", - "Potassium, Dietary", - "Adult", - "Incidence", - "Diabetic Angiopathies", - "Risk Factors", - "Follow-Up Studies" - ] - }, - { - "PMID": "39466156", - "Title": "The science of diabetes self-management and care", - "ArticleTitle": "Characteristics and Correlates of Health Information Literacy Among Patients With Type 2 Diabetes and Metabolic Syndrome: A Cross-Sectional Study.", - "Abstract": "Overall, the health information literacy among Chinese patients with type 2 diabetes coexisting with metabolic syndrome is suboptimal. Study findings demonstrated that personal and social contextual resources factors are significantly related to health information literacy. Health care professionals should consider strategies to enhance people's health information literacy level and promote individuals' health problem-solving, enhance chronic illness resources, and improve self-management knowledge when developing tailored interventions.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Metabolic Syndrome", - "Female", - "Male", - "Health Literacy", - "Middle Aged", - "Cross-Sectional Studies", - "Health Knowledge, Attitudes, Practice", - "China", - "Aged", - "Adult", - "Surveys and Questionnaires", - "Self Efficacy", - "Self-Management" - ] - }, - { - "PMID": "39466107", - "Title": "The science of diabetes self-management and care", - "ArticleTitle": "Exploring Type 2 Diabetes Self-Management Practices Among African Americans in Rural Counties: A Qualitative Study.", - "Abstract": "The decision-making involved in glycemic level management emerges as a complex developmental process influenced by disease trajectory and cultural and environmental factors. These findings may inform a conceptual framework to guide future inquiries and provide insights for primary care clinicians and diabetes care and education specialists to better understand the complexities of T2D management among African American individuals in rural settings.", - "Predictions": [], - "MeshTerms": [ - "Aged", - "Female", - "Humans", - "Male", - "Middle Aged", - "Black or African American", - "Diabetes Mellitus, Type 2", - "Qualitative Research", - "Rural Population", - "Self Care", - "Self-Management" - ] - }, - { - "PMID": "39465848", - "Title": "Medicine", - "ArticleTitle": "Effect of glucagon-like peptide-1 receptor agonists on prostate cancer: A review.", - "Abstract": "Glucagon-like peptide-1 receptor agonist (GLP-1RA) is widely used in the treatment of type 2 diabetes mellitus (T2DM) for its significant hypoglycemic effect, weight loss and small side effects. Some studies have shown that GLP-1RA has an inhibitory effect on prostate cancer, and its application will produce adverse effects associated with an increased or decreased risk of some tumors. GLP-1R is widely expressed by various types of cells and tissues in the human body, so GLP-1RA has attracted wide clinical attention to the occurrence, development and prognosis of tumors, which brings more new directions and hopes for the treatment of prostate cancer. This paper describes the expression of glucagon-like peptide-1 receptor (GLP-1R) in prostate cancer and the effects of glucagon-like peptide-1 receptor agonist (GLP-1RA) on prostate cancer.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Prostatic Neoplasms", - "Diabetes Mellitus, Type 2", - "Hypoglycemic Agents", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39465742", - "Title": "Medicine", - "ArticleTitle": "Association of metformin use with asthma development and adverse outcomes: A systematic review and meta-analysis.", - "Abstract": "In most outcome indicators, it cannot be assumed that the use of metformin can reduce asthma-related adverse events. However, the conclusion is not so certain, and longer observation and more evidence are still required. Metformin still shows some potential in the intervention of respiratory diseases.", - "Predictions": [], - "MeshTerms": [ - "Metformin", - "Humans", - "Asthma", - "Diabetes Mellitus, Type 2", - "Hypoglycemic Agents", - "Incidence" - ] - }, - { - "PMID": "39465621", - "Title": "Epidemiology and psychiatric sciences", - "ArticleTitle": "Mediating pathways between attention deficit hyperactivity disorder and type 2 diabetes mellitus: evidence from a two-step and multivariable Mendelian randomization study.", - "Abstract": "These findings suggest a potentially causal, positive relationship between ADHD liability and T2D, with mediation through higher BMI, more TV watching and lower EA. Intervention on these factors may thus have beneficial effects on T2D risk in individuals with ADHD.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Attention Deficit Disorder with Hyperactivity", - "Diabetes Mellitus, Type 2", - "Mendelian Randomization Analysis", - "Body Mass Index", - "Polymorphism, Single Nucleotide", - "Male", - "Female", - "Sedentary Behavior", - "Risk Factors", - "Pediatric Obesity", - "Blood Pressure", - "Child", - "Genetic Predisposition to Disease" - ] - }, - { - "PMID": "39465576", - "Title": "The British journal of nutrition", - "ArticleTitle": "Type 2 diabetes prevention: genetic association analysis of dried fruit intake and disease risk.", - "Abstract": "Prior research has suggested an inverse correlation between dried fruit intake and type 2 diabetes mellitus (T2DM), yet the causal link remains uncertain. This study seeks to investigate the potential causal impact of dried fruit intake on T2DM, covering cases both with and without various complications, as well as glycaemic traits, using a two-sample Mendelian randomisation (MR) approach. Using MR analysis with genome-wide association study summary statistics, the primary analysis investigated the causal relationship between dried fruit intake and T2DM, both with and without complications, as well as glycaemic traits, employing the inverse variance weighted method. Supplementary analyses were conducted using MR-Egger and the weighted median method. Heterogeneity and intercept tests were utilised to evaluate the robustness of the study outcomes. The results show a significant association between dried fruit intake and T2DM without complications, as well as fasting insulin. Sensitivity analyses confirmed the robustness of the results and the independence from multicollinearity. However, no association was found between dried fruit intake and T2DM with various complications or other glycaemic traits. The significant association between dried fruit intake and T2DM without complications and fasting insulin persisted even after adjusting for BMI. This study offers genetic evidence endorsing the protective effects of dried fruit intake against T2DM, specifically for cases without complications, and in regulating fasting insulin. These findings suggest that dried fruit intake might serve as a primary preventive strategy for T2DM.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 2", - "Humans", - "Fruit", - "Mendelian Randomization Analysis", - "Genome-Wide Association Study", - "Diet", - "Insulin", - "Blood Glucose", - "Risk Factors" - ] - }, - { - "PMID": "39465442", - "Title": "Trials", - "ArticleTitle": "Effectiveness of specialist involvement in case discussion conferences with primary healthcare providers on the management of type 2 diabetes patients: a study protocol for a cluster randomized controlled trial.", - "Abstract": "Chinese Clinical Trial Registry ChiCTR2300078829. Registered on December 19, 2023. https://www.chictr.org.cn/showproj.html?proj=210293.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Primary Health Care", - "Randomized Controlled Trials as Topic", - "China", - "Glycated Hemoglobin", - "Multicenter Studies as Topic", - "Specialization", - "Blood Glucose", - "Interdisciplinary Communication", - "Treatment Outcome", - "Patient Care Team", - "Time Factors", - "Male" - ] - }, - { - "PMID": "39465382", - "Title": "Alzheimer's research & therapy", - "ArticleTitle": "Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases.", - "Abstract": "Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards \"energy metabolism\" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Alzheimer Disease", - "Genome-Wide Association Study", - "Insulin", - "Diabetes Mellitus, Type 2", - "Obesity", - "Metabolic Syndrome" - ] - }, - { - "PMID": "39465354", - "Title": "BMC gastroenterology", - "ArticleTitle": "Effect of diabetes mellitus type 2 and sulfonylurea on colorectal cancer development: a case-control study.", - "Abstract": "This study found an insignificant association between type 2 diabetes and the chance of CRC development in an adjusted state. Sulfonylurea consumption was also associated with a higher chance of CRC development among patients with T2D. These findings have implications for clinical practice and public health strategies in CRC prevention for patients with T2D.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Colorectal Neoplasms", - "Diabetes Mellitus, Type 2", - "Case-Control Studies", - "Sulfonylurea Compounds", - "Male", - "Female", - "Middle Aged", - "Aged", - "Hypoglycemic Agents", - "Risk Factors", - "Odds Ratio", - "Adult" - ] - }, - { - "PMID": "39465325", - "Title": "Swiss medical weekly", - "ArticleTitle": "Recommendations for early identification of heart failure in patients with diabetes: Consensus statement of the Swiss Society of Endocrinology and Diabetology and the Heart Failure Working Group of the Swiss Society of Cardiology.", - "Abstract": "Diabetes is a well-recognised risk factor for the development of heart failure, with a prevalence higher than 30% in patients with diabetes aged over 60 years. Heart failure often emerges as the primary cardiovascular manifestation in patients with type 2 diabetes and appears to be even more prevalent in type 1 diabetes. In Switzerland, there are approximately 500,000 individuals with diabetes, and the number of affected people has been steadily rising in recent years. Therefore, the consequences of heart failure will affect an increasing number of patients, further straining the Swiss healthcare system. Early lifestyle modification and initiation of appropriate treatment can prevent or at least significantly delay the onset of symptomatic heart failure by several years. These facts underscore the urgent need for early detection of individuals with subclinical heart failure, which often remains undiagnosed until the first episode of acute heart failure requiring hospital admission occurs. To address this issue, the European Society of Cardiology, the American Diabetes Association (ADA) and other international professional societies have published recommendations on heart failure screening, diagnosis and management. To address this issue in Switzerland, experts from the Swiss Society of Endocrinology and Diabetology, the Swiss Society of Cardiology and the General Internal Medicine specialty met and prepared a consensus report including a simple diagnostic algorithm for use in everyday practice.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Heart Failure", - "Switzerland", - "Early Diagnosis", - "Diabetes Mellitus, Type 2", - "Diabetes Mellitus, Type 1", - "Consensus", - "Risk Factors", - "Societies, Medical", - "Cardiology", - "Endocrinology", - "Mass Screening" - ] - }, - { - "PMID": "39465244", - "Title": "Scientific reports", - "ArticleTitle": "Dietary acid load adopts the effect of ApoB ins/del genetic variant (rs11279109) on obesity trait, cardiovascular markers, lipid profile, and serum leptin level among patients with diabetes: a cross-sectional study.", - "Abstract": "ApoB insertion/deletion (ins/del) genetic variant (rs11279109) is thought to be related to cardio-metabolic markers and obesity. This association has the potential to be modified by dietary patterns. Since the majority of studies concerned the role of dietary acid load (DAL) or ApoB in type 2 diabetes mellitus\u00a0(T2DM) and its complications independently, and due to the insufficient data regarding the possible interactions between ApoB genetic variants and DAL on anthropometric and metabolic markers, we aimed to study the interaction between this genetic variant and dietary acid load (DAL) on cardio-metabolic markers, along with leptin among Iranian individuals with T2DM. 700 T2DM patients were randomly recruited. A validated semi-quantitative food frequency questionnaire was used for DAL calculation including potential renal acid load (PRAL) and net-endogenous acid production (NEAP). The polymerase chain reaction was used for genotyping the ApoB ins/del (rs11279109). The general linear model was applied to find the interactions in the crude and adjusted models. Patients with del/del genotype (rs11279109) with high PRAL intake have lower low-density lipoprotein cholesterol (LDL-C) (P", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Female", - "Middle Aged", - "Leptin", - "Obesity", - "Cross-Sectional Studies", - "Diabetes Mellitus, Type 2", - "Diet", - "Biomarkers", - "Apolipoprotein B-100", - "Iran", - "Lipids", - "Acids", - "Apolipoproteins B", - "Aged", - "Genotype", - "Adult", - "INDEL Mutation" - ] - }, - { - "PMID": "39465169", - "Title": "PeerJ", - "ArticleTitle": "Association analysis of MTHFR (rs1801133 and rs1801131) gene polymorphism towards the development of type 2 diabetes mellitus in Dali area population from Yunnan Province, China.", - "Abstract": "Our study suggests that the genetic variations of MTHFR C677T and A1298C are significantly associated with T2DM susceptibility in the population of the Dali area of Yunnan Province, China.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Methylenetetrahydrofolate Reductase (NADPH2)", - "Diabetes Mellitus, Type 2", - "China", - "Female", - "Male", - "Middle Aged", - "Case-Control Studies", - "Genetic Predisposition to Disease", - "Polymorphism, Single Nucleotide", - "Genotype", - "Aged", - "Adult" - ] - }, - { - "PMID": "39464752", - "Title": "Romanian journal of ophthalmology", - "ArticleTitle": "Correlations between dyslipidemia and retinal parameters measured with Angio-OCT in type II diabetics without diabetic retinopathy.", - "Abstract": "Type II diabetes patients tend to have elevated serum lipid levels compared to normal subjects, but the impact of dyslipidemia on the onset and progression of DR is incompletely elucidated.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Dyslipidemias", - "Middle Aged", - "Aged", - "Diabetic Retinopathy", - "Case-Control Studies", - "Tomography, Optical Coherence", - "Retinal Vessels", - "Fluorescein Angiography", - "Fundus Oculi", - "Cholesterol, LDL" - ] - }, - { - "PMID": "39464252", - "Title": "Journal of the Academy of Nutrition and Dietetics", - "ArticleTitle": "Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents With Type 2 Diabetes.", - "Abstract": "Recruitment and retention rates suggest a trial of lTRE in adolescents with T2D was feasible. lTRE was seen as acceptable by participants and adherence was high. A revised intervention, building on the successful elements of this pilot alongside adapting implementations strategies to augment adherence and engagement, should therefore be considered.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Feasibility Studies", - "Female", - "Adolescent", - "Diabetes Mellitus, Type 2", - "Male", - "Young Adult", - "Blood Glucose", - "Glycemic Control", - "Time Factors", - "Fasting", - "Pediatric Obesity", - "Body Composition", - "Glycated Hemoglobin", - "Meals", - "Blood Glucose Self-Monitoring", - "Treatment Outcome", - "Metformin" - ] - }, - { - "PMID": "39464183", - "Title": "Frontiers in endocrinology", - "ArticleTitle": "Risk of bone fracture by using dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a network meta-analysis of population-based cohort studies.", - "Abstract": "https://www.crd.york.ac.uk/prospero/, identifier CRD42023448720.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Sodium-Glucose Transporter 2 Inhibitors", - "Fractures, Bone", - "Dipeptidyl-Peptidase IV Inhibitors", - "Network Meta-Analysis", - "Hypoglycemic Agents", - "Cohort Studies", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39463112", - "Title": "Acta medica Indonesiana", - "ArticleTitle": "Effectiveness and Safety of DLBS3233 in Newly Diagnosed Type 2 Diabetes Mellitus: A 12-week Clinical Trial.", - "Abstract": "DLBS3233 showed potential for improving postprandial glucose control in newly diagnosed T2DM individuals. Although significant changes were limited, the study suggests that DLBS3233 could enhance glycemic regulation. The safety evaluation indicated no adverse effects on vital parameters. Further research with larger samples and more prolonged duration is warranted to comprehensively explore DLBS3233's potential in T2DM management.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Middle Aged", - "Double-Blind Method", - "Blood Glucose", - "Adult", - "Insulin Resistance", - "Hypoglycemic Agents", - "Insulin", - "Adiponectin", - "Treatment Outcome" - ] - }, - { - "PMID": "39463020", - "Title": "Journal of diabetes", - "ArticleTitle": "Stratum corneum hydration levels are negatively correlated with HbA1c levels in the elderly Chinese.", - "Abstract": "Highlights Stratum corneum hydration levels are negatively correlated with HbA1c levels and positively correlated with skin surface pH. Individuals with type 2 diabetes display lower levels of stratum corneum hydration. Because low stratum corneum hydration levels can increase circulating levels of proinflammatory cytokines, which are linked to the pathogenesis of type 2 diabetes, improvement in stratum corneum hydration can be an alternative approach in the management of type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Aged", - "Aged, 80 and over", - "Female", - "Humans", - "Male", - "Middle Aged", - "China", - "Diabetes Mellitus, Type 2", - "East Asian People", - "Epidermis", - "Glycated Hemoglobin", - "Hydrogen-Ion Concentration", - "Skin" - ] - }, - { - "PMID": "39462728", - "Title": "Clinical breast cancer", - "ArticleTitle": "Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care.", - "Abstract": "Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c \u22646.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Blood Glucose", - "Diabetes Mellitus, Type 2", - "Glycated Hemoglobin", - "Hyperglycemia", - "Hypoglycemic Agents", - "Neoplasms", - "Phosphoinositide-3 Kinase Inhibitors" - ] - }, - { - "PMID": "39462671", - "Title": "Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi", - "ArticleTitle": "[Functional study of amine oxidase copper-containing 1 (AOC1) in lipid metabolism].", - "Abstract": "Amine oxidase copper-containing 1 (AOC1) is a key member of copper amine oxidase family, which is responsible for deamination oxidation of histamine and putrescine. In recent years, AOC1 has been reported to be associated with various cancers, with its expression levels significantly elevated in certain cancer cells, suggesting its potential role in cancer progression. However, its function in lipid metabolism still remains unclear. Through genetic analysis, we have discovered a potential relationship between AOC1 and lipid metabolism. To further investigate, we generated ", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Lipid Metabolism", - "Mice", - "Amine Oxidase (Copper-Containing)", - "Diet, High-Fat", - "Obesity", - "Liver", - "Mice, Knockout", - "Diabetes Mellitus, Type 2", - "Adipose Tissue, White", - "Humans", - "Mice, Inbred C57BL" - ] - }, - { - "PMID": "39462558", - "Title": "The journal of medical investigation : JMI", - "ArticleTitle": "Characteristics of storage and voiding symptoms in adult patients with type 2 diabetes with lower urinary tract symptoms.", - "Abstract": "Our analysis of diabetic patients with LUTS revealed differences in the characteristics of storage and voiding symptoms. These findings provide evidence that the features of LUTS associated with diabetes may have different pathogenic origins. J. Med. Invest. 71 : 237-245, August, 2024.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Male", - "Diabetes Mellitus, Type 2", - "Female", - "Lower Urinary Tract Symptoms", - "Middle Aged", - "Cross-Sectional Studies", - "Aged", - "Urinary Bladder, Overactive", - "Adult" - ] - }, - { - "PMID": "39462543", - "Title": "Drug discoveries & therapeutics", - "ArticleTitle": "Effect of switching from dulaglutide to tirzepatide on blood glucose and renal function.", - "Abstract": "The case reports a woman in her 70s, with type 2 diabetes and chronic kidney disease in G4 stage. The patient had elevated HbA1c, and she was switched from linagliptin, a dipeptidyl peptidase 4 inhibitor, to dulaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA). Thereafter, the HbA1c level decreased; however, since the dulaglutide supply became a problem, the patient was switched to tirzepatide, a glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA. To date, no clinical studies have evaluated the efficacy and safety of switching from GLP-1RA to GIP/GLP-1RA, but we report this case because efficacy was observed in this patient. The therapeutic effects after switching to tirzepatide included decrease in HbA1c, increase in eGFR, and decrease in BUN, when compared to when dulaglutide was used. A change from dulaglutide to tirzepatide, could inhibit renal impairment progression and improve renal function.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Recombinant Fusion Proteins", - "Glucagon-Like Peptides", - "Immunoglobulin Fc Fragments", - "Female", - "Diabetes Mellitus, Type 2", - "Aged", - "Blood Glucose", - "Hypoglycemic Agents", - "Glycated Hemoglobin", - "Renal Insufficiency, Chronic", - "Drug Substitution", - "Linagliptin", - "Glomerular Filtration Rate", - "Kidney", - "Glucagon-Like Peptide-2 Receptor", - "Gastric Inhibitory Polypeptide", - "Tirzepatide", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39462334", - "Title": "BMC cardiovascular disorders", - "ArticleTitle": "Pattern and outcome of the first manifestation of cardiovascular disease among patients with type 2 diabetes mellitus in Cameroon: a cross-sectional study.", - "Abstract": "Not applicable.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Female", - "Male", - "Cameroon", - "Middle Aged", - "Aged", - "Cross-Sectional Studies", - "Adult", - "Aged, 80 and over", - "Cardiovascular Diseases", - "Young Adult", - "Time Factors", - "Adolescent", - "Incidence", - "Risk Factors", - "Risk Assessment", - "Prognosis", - "Retrospective Studies", - "Hospitalization", - "Heart Failure", - "Myocardial Infarction", - "Stroke", - "Hospital Mortality" - ] - }, - { - "PMID": "39462138", - "Title": "Scientific reports", - "ArticleTitle": "DII modulates the relationship between SVD3 and NAFLD prevalence, rather than liver fibrosis severity, in hospitalized T2DM population.", - "Abstract": "Type 2 diabetes (T2DM) patients are at high risk for non-alcoholic fatty liver disease (NAFLD). Studies show SVD3 and dietary inflammatory index (DII) are associated with NAFLD. It's unknown if they interact in T2DM patients with NAFLD. We collected data from 110 hospitalized T2DM patients, measured physiological and biochemical indicators, conducted dietary surveys, and converted data into DII and NFS, FIB-4, and BARD indices. We used logistic regression, mediation effect analysis, and moderation effect analysis to explore the relationship between DII and SVD3 with NAFLD and liver fibrosis in T2DM patients. DII was not significant in either NAFLD incidence in T2DM patients or liver fibrosis in NAFLD patients. SVD3 was positively correlated with NAFLD incidence in T2DM patients, but this correlation became insignificant as DII increased towards pro-inflammation. SVD3 is positively correlated with NAFLD incidence in T2DM patients, but this correlation becomes less significant as DII increases towards pro-inflammation.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Non-alcoholic Fatty Liver Disease", - "Male", - "Diabetes Mellitus, Type 2", - "Female", - "Middle Aged", - "Liver Cirrhosis", - "Prevalence", - "Aged", - "Inflammation", - "Hospitalization", - "Diet", - "Severity of Illness Index", - "Risk Factors", - "Incidence" - ] - }, - { - "PMID": "39462048", - "Title": "Scientific reports", - "ArticleTitle": "HbA1c and leukocyte mtDNA levels as major factors associated with post-COVID-19 syndrome in type 2 diabetes patients.", - "Abstract": "Post-COVID-19 syndrome (PCS) is an emerging health problem in people recovering from COVID-19 infection within the past 3-6 months. The current study aimed to define the predictive factors of PCS development by assessing the mitochondrial DNA (mtDNA) levels in blood leukocytes, inflammatory markers and HbA1c in type 2 diabetes patients (T2D) with regard to clinical phenotype, gender, and biological age. In this case-control study, 65 T2D patients were selected. Patients were divided into 2 groups depending on PCS presence: the PCS group (n\u2009=\u200944) and patients who did not develop PCS (n\u2009=\u200921) for up to 6 months after COVID-19 infection. HbA1c and mtDNA levels were the primary factors linked to PCS in different models. We observed significantly lower mtDNA content in T2D patients with PCS compared to those without PCS (1.26\u2009\u00b1\u20090.25 vs. 1.44\u2009\u00b1\u20090.24; p\u2009=\u20090.011). In gender-specific and age-related analyses, the mt-DNA amount did not differ significantly between the subgroups. According to the stepwise multivariate logistic regression analysis, low mtDNA content and HbA1c were independent variables associated with PCS development, regardless of oxygen, glucocorticoid therapy and COVID-19 severity. The top-performing model for PCS prediction was the gradient boosting machine (GBM). HbA1c and mtDNA had a notably greater influence than the other variables, indicating their potential as prognostic biomarkers.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "DNA, Mitochondrial", - "Diabetes Mellitus, Type 2", - "COVID-19", - "Male", - "Female", - "Middle Aged", - "Glycated Hemoglobin", - "Leukocytes", - "Case-Control Studies", - "Aged", - "SARS-CoV-2", - "Post-Acute COVID-19 Syndrome", - "Biomarkers", - "Adult" - ] - }, - { - "PMID": "39461977", - "Title": "Scientific reports", - "ArticleTitle": "One-year outcomes of a digital twin intervention for type 2 diabetes: a retrospective real-world study.", - "Abstract": "This retrospective observational study, building on prior research that demonstrated the efficacy of the Digital Twin (DT) Precision Treatment Program over shorter follow-up periods\u200b\u200b, aimed to examine glycemic control and reduced anti-diabetic medication use after one-year in a DT commercial program. T2D patients enrolled had adequate hepatic and renal function and no recent cardiovascular events. DT intervention powered by artificial intelligence utilizes precision nutrition, activity, sleep, and deep breathing exercises. Outcome measures included HbA1c change, medication reduction, anthropometrics, insulin markers, and continuous glucose monitoring (CGM) metrics. Of 1985 enrollees, 132 (6.6%) were lost to follow-up, leaving 1853 participants who completed one-year. At one-year, participants exhibited significant reductions in HbA1c [mean change: -1.8% (SD 1.7%), p\u2009<\u20090.001], with 1650 (89.0%) achieving HbA1c below 7%. At baseline, participants were on mean 1.9 (SD 1.4) anti-diabetic medications, which decreased to 0.5 (SD 0.7) at one-year [change: -1.5 (SD 1.3), p\u2009<\u20090.001]. Significant reductions in weight [mean change: -4.8\u00a0kg (SD 6.0\u00a0kg), p\u2009<\u20090.001], insulin resistance [HOMA2-IR: -0.1 (SD 1.2), p\u2009<\u20090.001], and improvements in \u03b2-cell function [HOMA2-B: +21.6 (SD 47.7), p\u2009<\u20090.001] were observed, along with better CGM metrics. These findings suggest that DT intervention could play a vital role in the future of T2D care.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Retrospective Studies", - "Middle Aged", - "Hypoglycemic Agents", - "Glycated Hemoglobin", - "Aged", - "Treatment Outcome", - "Blood Glucose", - "Blood Glucose Self-Monitoring", - "Adult" - ] - }, - { - "PMID": "39461936", - "Title": "Obesity surgery", - "ArticleTitle": "Eight Year Follow-Up After Gastric Bypass and Sleeve Gastrectomy in a Brazilian Cohort: Weight Trajectory and Health Outcomes.", - "Abstract": "Patients undergoing RYGB showed greater weight loss and less weight regain 8\u00a0years after bariatric surgery compared to those undergoing SG.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Brazil", - "Gastric Bypass", - "Male", - "Adult", - "Retrospective Studies", - "Obesity, Morbid", - "Gastrectomy", - "Follow-Up Studies", - "Weight Loss", - "Middle Aged", - "Diabetes Mellitus, Type 2", - "Body-Weight Trajectory", - "Weight Gain", - "Treatment Outcome", - "Dyslipidemias", - "Hypertension" - ] - }, - { - "PMID": "39461868", - "Title": "BMJ open", - "ArticleTitle": "Healthy Eating and Active Lifestyles for Diabetes (HEAL-D) Online: a mixed methods evaluation exploring the feasibility of implementing a virtual culturally tailored diabetes self-management programme for African and Caribbean communities.", - "Abstract": "This evaluation demonstrates the feasibility of delivering HEAL-D using an online platform, with its ability to achieve similar goals compared with its face-to-face counterpart. Challenges were identified around the identification, recruitment and referral of eligible patients into the programme, which need to be addressed for successful implementation on a wider scale.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Feasibility Studies", - "Female", - "Middle Aged", - "Self-Management", - "Caribbean Region", - "Diet, Healthy", - "London", - "Aged", - "Adult", - "Program Evaluation", - "Patient Education as Topic", - "Surveys and Questionnaires", - "Culturally Competent Care" - ] - }, - { - "PMID": "39461703", - "Title": "Neuroscience letters", - "ArticleTitle": "Neurometabolic substrate transport across brain barriers in diabetes mellitus: Implications for cognitive function and neurovascular health.", - "Abstract": "Neurometabolic homeostasis in the brain depends on the coordinated transport of glucose and other essential substrates across brain barriers, primarily the blood-brain barrier and the blood-cerebrospinal fluid barrier. In type 2 diabetes mellitus (T2DM), persistent hyperglycemia disrupts these processes, leading to neurovascular dysfunction and cognitive impairment. This review examines how T2DM alters glucose and neurometabolite transport, emphasizing the role of glucose transporters and the astrocyte-neuron lactate shuttle in maintaining cerebral energy balance. Reduced expression of glucose transporters and impaired neurovascular coupling are key contributors to cognitive decline in T2DM. Additionally, the review highlights insulin's pivotal role in the hippocampus, where it enhances neuro-glial coupling and modulates astrocyte glucose uptake to support neuronal energy demands. Synthesizing current findings, we underscore the importance of therapeutic strategies aimed at correcting glucose transport dysregulation to alleviate diabetes-associated cognitive decline.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Animals", - "Blood-Brain Barrier", - "Diabetes Mellitus, Type 2", - "Glucose", - "Cognition", - "Brain", - "Neurovascular Coupling", - "Glucose Transport Proteins, Facilitative", - "Biological Transport", - "Astrocytes", - "Neurons", - "Cognitive Dysfunction" - ] - }, - { - "PMID": "39461360", - "Title": "The lancet. Diabetes & endocrinology", - "ArticleTitle": "Younger-onset compared with later-onset type 2 diabetes: an analysis of the UK Prospective Diabetes Study (UKPDS) with up to 30 years of follow-up (UKPDS 92).", - "Abstract": "National Institute of Health and Care Research's Biomedical Research Centre.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Middle Aged", - "Female", - "Adult", - "United Kingdom", - "Follow-Up Studies", - "Aged", - "Age of Onset", - "Prospective Studies", - "Incidence" - ] - }, - { - "PMID": "39461230", - "Title": "Journal of diabetes and its complications", - "ArticleTitle": "Effects of moderate-intensity aerobic training on cardiac structure and function in type 2 mellitus diabetic rats: Based on echocardiography and speckle tracking.", - "Abstract": "LS-STE was a sensitive method to assess subclinical myocardial changes in T2DM rats. MIAT had the benefit of reversing cardiac systolic subclinical dysfunction in T2DM rats.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Diabetes Mellitus, Type 2", - "Echocardiography", - "Rats", - "Male", - "Physical Conditioning, Animal", - "Diabetes Mellitus, Experimental", - "Heart", - "Diabetic Cardiomyopathies", - "Rats, Sprague-Dawley", - "Ventricular Function, Left", - "Heart Ventricles" - ] - }, - { - "PMID": "39460755", - "Title": "Diabetologia", - "ArticleTitle": "Intermittently scanned continuous glucose\u00a0monitoring compared with blood glucose monitoring is associated with lower HbA", - "Abstract": "This study shows that Swedish adults with type 2 diabetes on insulin who are using isCGM have a significantly reduced HbA", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Female", - "Male", - "Glycated Hemoglobin", - "Middle Aged", - "Retrospective Studies", - "Hospitalization", - "Blood Glucose", - "Insulin", - "Aged", - "Blood Glucose Self-Monitoring", - "Hypoglycemic Agents", - "Sweden", - "Diabetes Complications", - "Adult", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39460574", - "Title": "Journal of diabetes investigation", - "ArticleTitle": "Association between malnutrition and adverse renal outcomes in patients with type 2 diabetes.", - "Abstract": "We observed an association between poor nutritional status, assessed by GNRI, and adverse outcomes in patients with type 2 diabetes. Nutritional status assessment has potential utility as a prognostic tool for individuals with type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Malnutrition", - "Aged", - "Prognosis", - "Middle Aged", - "Nutritional Status", - "Glomerular Filtration Rate", - "Risk Factors", - "Diabetic Nephropathies", - "Cohort Studies", - "Follow-Up Studies", - "Nutrition Assessment", - "Japan", - "Geriatric Assessment" - ] - }, - { - "PMID": "39460440", - "Title": "Pharmacotherapy", - "ArticleTitle": "ECLIPSES: Early initiation of sodium glucose cotransporter-2 inhibitors for cardiovascular protection in patients with type 2 diabetes following acute coronary syndrome and subsequent coronary artery bypass graft surgery.", - "Abstract": "Early initiation of SGLT2i use was not associated with a reduction in MACE in patients with T2DM who experienced ACS and underwent subsequent CABG surgery. However, no apparent safety concerns were identified. Adequately powered trials are required to confirm this finding.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Sodium-Glucose Transporter 2 Inhibitors", - "Diabetes Mellitus, Type 2", - "Acute Coronary Syndrome", - "Coronary Artery Bypass", - "Male", - "Female", - "Retrospective Studies", - "Middle Aged", - "Aged", - "Cohort Studies" - ] - }, - { - "PMID": "39459434", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Age-Related Changes in Insulin Resistance and Muscle Mass: Clinical Implications in Obese Older Adults.", - "Abstract": "The older segment of the global population is increasing at a rapid pace. Advancements in public health and modern medicine lengthened life expectancy and reduced the burden of disease in communities worldwide. Concurrent with this demographic change is the rise in overweight people and obesity, which is evident in all age groups. There is also an aging-related reduction in muscle mass and function, or sarcopenia, that is exacerbated by sedentary lifestyle and poor nutrition. The coexistence of muscle loss and elevated body mass index, termed \"sarcopenic obesity\", has particularly deleterious consequences in older individuals. Worsening insulin resistance and a proinflammatory state operate at the pathophysiologic level and lead to adverse health outcomes such as a proclivity to cardiovascular disease, type 2 diabetes, and even cognitive dysfunction. Although the concept of sarcopenic obesity as a disease construct is being increasingly recognized, a clearer understanding is warranted in order to define its components and health impact. Research is needed at the molecular-cellular level to tie together derangements in insulin action, cytokines, myokines, and endothelial dysfunction with clinical outcomes. Lifestyle modifications as well as targeted nonpharmacologic approaches, such as supplements and antioxidants, appear to have a promising role in reducing the chronic burden of this emerging disorder. Breakthroughs in drug therapies that retard or even reverse the underlying dynamics of sarcopenia and obesity in older persons are being actively explored.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Insulin Resistance", - "Obesity", - "Sarcopenia", - "Aged", - "Aging", - "Muscle, Skeletal", - "Body Mass Index", - "Male", - "Diabetes Mellitus, Type 2", - "Female" - ] - }, - { - "PMID": "39459431", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Scoring Health Behaviors of Patients with Type 2 Diabetes.", - "Abstract": { - "i": "Conclusions" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Middle Aged", - "Health Behavior", - "Surveys and Questionnaires", - "Aged", - "Poland", - "Adult", - "Exercise", - "Healthy Lifestyle", - "Life Style" - ] - }, - { - "PMID": "39459430", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Beyond Blood Sugar: Low Awareness of Kidney Disease among Type 2 Diabetes Mellitus Patients in Dalmatia-Insights from the First Open Public Call.", - "Abstract": { - "i": "Conclusions", - "sup": "2" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Female", - "Male", - "Cross-Sectional Studies", - "Middle Aged", - "Aged", - "Health Knowledge, Attitudes, Practice", - "Lithuania", - "Diet, Mediterranean", - "Prevalence", - "Kidney Diseases", - "Blood Glucose" - ] - }, - { - "PMID": "39459411", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Impact of the COVID-19 Pandemic on Lifestyle Behavior and Clinical Care Pathway Management in Type 2 Diabetes: A Retrospective Cross-Sectional Study.", - "Abstract": { - "i": "Conclusions:" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "COVID-19", - "Cross-Sectional Studies", - "Retrospective Studies", - "Male", - "Female", - "Middle Aged", - "Italy", - "Exercise", - "Life Style", - "Aged", - "Surveys and Questionnaires", - "SARS-CoV-2", - "Adult", - "Pandemics" - ] - }, - { - "PMID": "39459404", - "Title": "Medicina (Kaunas, Lithuania)", - "ArticleTitle": "Cardiovascular Risk Factors as Independent Predictors of Diabetic Retinopathy in Type II Diabetes Mellitus: The Development of a Predictive Model.", - "Abstract": { - "i": "Conclusions" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Diabetic Retinopathy", - "Middle Aged", - "Cross-Sectional Studies", - "Retrospective Studies", - "Aged", - "Heart Disease Risk Factors", - "Risk Factors", - "Logistic Models", - "Cardiovascular Diseases", - "Body Mass Index", - "ROC Curve" - ] - }, - { - "PMID": "39459249", - "Title": "Molecules (Basel, Switzerland)", - "ArticleTitle": "Identification of Novel PPAR\u03b3 Partial Agonists Based on Virtual Screening Strategy: In Silico and In Vitro Experimental Validation.", - "Abstract": "Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome proliferator-activated receptor gamma (PPAR\u03b3) full agonists, which have been known as a class to be among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities toward PPAR\u03b3 induced by the AF-2 helix-involved \"locked\" mechanism. Thereby, this study aimed to obtain novel PPAR\u03b3 partial agonists without direct interaction with the AF-2 helix. Through performing virtual screening of the Targetmol L6000 Natural Product Library and utilizing molecular dynamics (MD) simulation, as well as molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, four compounds including tubuloside b, podophyllotoxone, endomorphin 1 and paliperidone were identified as potential PPAR\u03b3 partial agonists. An in vitro TR-FRET competitive binding assay showed podophyllotoxone displayed the optimal binding affinity toward PPAR\u03b3 among the screened compounds, exhibiting IC", - "Predictions": [], - "MeshTerms": [ - "PPAR gamma", - "Molecular Dynamics Simulation", - "Humans", - "Molecular Docking Simulation", - "Hypoglycemic Agents", - "Thiazolidinediones", - "Protein Binding", - "Drug Evaluation, Preclinical", - "Rosiglitazone", - "Diabetes Mellitus, Type 2", - "Computer Simulation" - ] - }, - { - "PMID": "39458556", - "Title": "Nutrients", - "ArticleTitle": "Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases.", - "Abstract": { - "b": "Discussion and Conclusions", - "i": "LEPR" - }, - "Predictions": [], - "MeshTerms": [ - "Humans", - "Obesity", - "Alpha-Ketoglutarate-Dependent Dioxygenase FTO", - "Genetic Predisposition to Disease", - "Metabolic Diseases", - "Nutritional Status", - "Receptor, Melanocortin, Type 4", - "Diabetes Mellitus, Type 2", - "Diet", - "Feeding Behavior", - "Epigenesis, Genetic", - "Receptors, Leptin", - "Gene-Environment Interaction" - ] - }, - { - "PMID": "39458552", - "Title": "Nutrients", - "ArticleTitle": "The Contribution of Postprandial Glucose Levels to Hyperglycemia in Type 2 Diabetes Calculated from Continuous Glucose Monitoring Data: Real World Evidence from the DIALECT-2 Cohort.", - "Abstract": "Both PPG and FPG contribute to hyperglycemia, with PPG playing a larger role in patients with better glycemic control, especially after breakfast. Targeting PPG may be crucial for optimizing glucose management.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Blood Glucose", - "Postprandial Period", - "Male", - "Female", - "Hyperglycemia", - "Middle Aged", - "Blood Glucose Self-Monitoring", - "Aged", - "Glycated Hemoglobin", - "Cohort Studies", - "Fasting", - "Dietary Carbohydrates", - "Meals", - "Continuous Glucose Monitoring" - ] - }, - { - "PMID": "39458507", - "Title": "Nutrients", - "ArticleTitle": "Development of a Diabetes Dietary Quality Index: Reproducibility and Associations with Measures of Insulin Resistance, Beta Cell Function, and Hyperglycemia.", - "Abstract": "We identified a questionnaire-derived Diabetes Dietary Quality index that was reproducible and inversely associated with a number of type 2 diabetes mellitus and metabolic risk factors, like 2 h post-meal glucose, Hba1c and LDL, and total cholesterol. Once relative validity has been established, the Diabetes Dietary Quality index could be used by health care professionals to identify individuals with diets adversely related to development of type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Insulin Resistance", - "Male", - "Female", - "Diabetes Mellitus, Type 2", - "Insulin-Secreting Cells", - "Reproducibility of Results", - "Adult", - "Middle Aged", - "Hyperglycemia", - "Risk Factors", - "Surveys and Questionnaires", - "Blood Glucose", - "Diet, Healthy", - "Diet", - "Insulin", - "Diet Surveys", - "Glucose Clamp Technique" - ] - }, - { - "PMID": "39458504", - "Title": "Nutrients", - "ArticleTitle": "Does Online Social Support Affect the Eating Behaviors of Polish Women with Insulin Resistance?", - "Abstract": "Our study indicates a relationship between participation in online support groups and dietary behaviors and the subjective assessment of nutrition knowledge. Future research should focus on elucidating the mechanisms behind these influences and exploring how these communities can be optimized for broader public health initiatives.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Insulin Resistance", - "Poland", - "Middle Aged", - "Adult", - "Feeding Behavior", - "Social Support", - "Diabetes Mellitus, Type 2", - "Surveys and Questionnaires", - "Diet, Healthy", - "Self-Help Groups", - "Diet", - "Aged", - "Internet" - ] - }, - { - "PMID": "39458486", - "Title": "Nutrients", - "ArticleTitle": "Microbiota Transplantation in Individuals with Type 2 Diabetes and a High Degree of Insulin Resistance.", - "Abstract": "The objective of this study was to determine the results of fecal microbiota transplantation (FMT) from healthy lean subjects in patients with type 2 diabetes (T2D); Methods: We designed a phase II, randomized, single-blind, parallel-arm clinical trial. Twenty-one subjects (12 men [57.1%] and 9 women [42.9%]), who had previously signed an informed consent were randomized to FMT from lean donors, a probiotic (", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Female", - "Male", - "Insulin Resistance", - "Middle Aged", - "Fecal Microbiota Transplantation", - "Probiotics", - "Aged", - "Blood Glucose", - "Single-Blind Method", - "Glucose Tolerance Test", - "Gastrointestinal Microbiome", - "Insulin", - "Body Mass Index", - "Lactobacillus delbrueckii", - "Treatment Outcome", - "Glycated Hemoglobin" - ] - }, - { - "PMID": "39458482", - "Title": "Nutrients", - "ArticleTitle": "Experiences of Postpartum Follow-Up and Participation in a Lifestyle Intervention after Gestational Diabetes: A Qualitative Study.", - "Abstract": "The study findings can help support the development of future intervention programmes for women who have experienced gestational diabetes.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Female", - "Diabetes, Gestational", - "Pregnancy", - "Adult", - "Postpartum Period", - "Qualitative Research", - "Norway", - "Follow-Up Studies", - "Life Style", - "Healthy Lifestyle", - "Diabetes Mellitus, Type 2", - "Motivation" - ] - }, - { - "PMID": "39458444", - "Title": "Nutrients", - "ArticleTitle": "Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes.", - "Abstract": "The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, \u03b2-glucan, and ", - "Predictions": [], - "MeshTerms": [ - "Prebiotics", - "Humans", - "Diabetes Mellitus, Type 2", - "Gastrointestinal Microbiome", - "Dysbiosis", - "Blood Glucose" - ] - }, - { - "PMID": "39458436", - "Title": "Nutrients", - "ArticleTitle": { - "i": "Akkermansia muciniphila" - }, - "Abstract": "Overall, Akk appears to be effective at reducing the onset of type 2 diabetes and diet-induced obesity. Long-term studies with larger sample sizes are needed to confirm these beneficial effects, as the current animal studies were of short duration (less than 20 weeks).", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 2", - "Obesity", - "Animals", - "Akkermansia", - "Probiotics", - "Gastrointestinal Microbiome", - "Verrucomicrobia", - "Blood Glucose", - "Insulin", - "Disease Models, Animal", - "Weight Gain" - ] - }, - { - "PMID": "39457303", - "Title": "International journal of environmental research and public health", - "ArticleTitle": "Stakeholder Perspectives on the Acceptability, Design, and Integration of Produce Prescriptions for People with Type 2 Diabetes in Australia: A Formative Study.", - "Abstract": "Produce prescription programs can benefit both individuals and health systems; however, best practices for integrating such programs into the Australian health system are yet unknown. This study explored stakeholders' perspectives on the acceptability, potential design and integration of produce prescription programs for adults with type 2 diabetes in Australia. Purposive sampling was used to recruit 22 participants for an online workshop, representing six stakeholder groups (government, healthcare service, clinician, food retailer, consumer, non-government organisation). Participant responses were gathered through workshop discussions and a virtual collaboration tool (Mural). The workshop was video-recorded and transcribed verbatim, and thematic analysis was conducted using a deductive-inductive approach. Stakeholders recognised produce prescription as an acceptable intervention; however, they identified challenges to implementation related to contextuality, accessibility, and sustainability. Stakeholders were vocal about the approach (e.g., community-led) and infrastructure (e.g., screening tools) needed to support program design and implementation but expressed diverse views about potential funding models, indicating a need for further investigation. Aligning evaluation outcomes with existing measures in local, State and Federal initiatives was recommended, and entry points for integration were identified within and outside of the Australian health sector. Our findings provide clear considerations for future produce prescription interventions for people with type 2 diabetes.", - "Predictions": [], - "MeshTerms": [ - "Diabetes Mellitus, Type 2", - "Humans", - "Australia", - "Stakeholder Participation", - "Male", - "Female", - "Adult", - "Middle Aged", - "Prescriptions" - ] - }, - { - "PMID": "39457293", - "Title": "International journal of environmental research and public health", - "ArticleTitle": "Impact of Oral Hygiene Practices in Reducing Cardiometabolic Risk, Incidence, and Mortality: A Systematic Review.", - "Abstract": "Cardiometabolic diseases share many modifiable risk factors. However, periodontitis, a chronic inflammatory condition of the gums, is a risk factor that is rarely publicized. This systematic review aims to evaluate the impact of oral hygiene practices on the risk, incidence, and/or mortality rate of cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), and chronic kidney disease (CKD). Searches were conducted using MEDLINE, Embase, Scopus, and CINHAL. Randomized controlled trials (RCTs), quasi-RCTs, and observational studies were included. Eligible studies reported on associations of toothbrushing, interdental cleaning, mouthwash, or toothpaste use, either alone or in combination with CVD, CKD, and/or T2DM outcomes in adults \u2265 18 years. Fifty-five studies were included. Cochrane's risk of bias tool and the Newcastle-Ottawa Scale were used for quality assessment. Data synthesis is narratively presented. Toothbrushing and interdental cleaning were associated with lower risk of developing T2DM or hypertension HR 0.54 [", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Oral Hygiene", - "Cardiovascular Diseases", - "Incidence", - "Diabetes Mellitus, Type 2", - "Renal Insufficiency, Chronic", - "Mouthwashes", - "Risk Factors", - "Toothbrushing" - ] - }, - { - "PMID": "39457249", - "Title": "International journal of environmental research and public health", - "ArticleTitle": "Diabetes Distress and Health-Related Quality of Life among Patients with Type 2 Diabetes-Mediating Role of Experiential Avoidance and Moderating Role of Post-Traumatic Growth.", - "Abstract": "These findings underscore the importance of Acceptance and Commitment Therapy as it can potentially decrease the experiential avoidance behaviour of patients. Moreover, intervention should also target the facilitation of PTG due to its beneficial effects in reducing the negative effects of diabetes distress on health and recovery.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Diabetes Mellitus, Type 2", - "Quality of Life", - "Male", - "Female", - "Middle Aged", - "Nigeria", - "Posttraumatic Growth, Psychological", - "Adult", - "Aged", - "Stress, Psychological", - "Cross-Sectional Studies", - "Avoidance Learning" - ] - }, - { - "PMID": "39457110", - "Title": "International journal of molecular sciences", - "ArticleTitle": "Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes.", - "Abstract": "Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.", - "Predictions": [], - "MeshTerms": [ - "Animals", - "Acetylcholine", - "Diabetes Mellitus, Type 2", - "Male", - "Female", - "Rats, Zucker", - "Obesity", - "Rats", - "Vasodilation", - "Sex Characteristics", - "Nitric Oxide Synthase Type III", - "Aorta", - "NADPH Oxidase 4", - "Disease Models, Animal", - "NADPH Oxidases", - "Superoxides" - ] - }, - { - "PMID": "39457081", - "Title": "International journal of molecular sciences", - "ArticleTitle": "Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients.", - "Abstract": "Cancer patients, especially long cancer survivors, are exposed to several cardio-metabolic diseases, including diabetes, heart failure, and atherosclerosis, which increase their risk of cardiovascular mortality. Therapy with glucagon-like peptide 1 (GLP1) receptor agonists demonstrated several beneficial cardiovascular effects, including atherosclerosis and heart failure prevention. Cardiovascular outcome trials (CVOTs) suggest that GLP-1 RA could exert cardiorenal benefits and systemic anti-inflammatory effects in patients with type-2 diabetes through the activation of cAMP and PI3K/AkT pathways and the inhibition of NLRP-3 and MyD88. In this narrative review, we highlight the biochemical properties of GLP-1 RA through a deep analysis of the clinical and preclinical evidence of the primary prevention of cardiomyopathies. The overall picture of this review encourages the study of GLP-1 RA in cancer patients with type-2 diabetes, as a potential primary prevention strategy against heart failure and atherosclerosis.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Glucagon-Like Peptide-1 Receptor", - "Neoplasms", - "Diabetes Mellitus, Type 2", - "Animals", - "Cardiovascular Diseases", - "Atherosclerosis", - "Heart Failure", - "Hypoglycemic Agents", - "Cardio-Oncology", - "Glucagon-Like Peptide-1 Receptor Agonists" - ] - }, - { - "PMID": "39457018", - "Title": "International journal of molecular sciences", - "ArticleTitle": "Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes.", - "Abstract": "Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the \u03b2-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.", - "Predictions": [], - "MeshTerms": [ - "Humans", - "Peroxisomes", - "Diabetes Mellitus, Type 2", - "Mitochondria", - "Obesity", - "Female", - "Lipid Metabolism", - "Animals", - "Estrogens", - "Peroxisome Proliferator-Activated Receptors" - ] - } -] \ No newline at end of file diff --git a/model/data/training_data_paresed.json b/model/data/training_data_paresed.json deleted file mode 100644 index 39afad841fdd84389732fb11a7152a33c53c035a..0000000000000000000000000000000000000000 --- a/model/data/training_data_paresed.json +++ /dev/null @@ -1,1862 +0,0 @@ -[ - { - "text": "Current opinion in anaesthesiology \n Caring for patients with diabetes in the outpatient surgical setting: current recommendations and controversies. \n Future research needs to specifically examine chronic blood glucose control, day of surgery targets, effective home medication management and the risk of perioperative hyperglycemia in ambulatory surgery. Education, protocols and resources to support the care of perioperative patients in the outpatient setting will aid providers on the day of surgery and provide optimal diabetes care leading up to surgery.", - "labels": [ - 0 - ] - }, - { - "text": "PloS one \n Burden of diabetes mellitus in Weifang: Changing trends in prevalence and deaths from 2010 to 2021. \n The city is faced with a significant challenge of diabetes, which is influenced by factors such as gender, age, cultural background, and marital status. Unspecified diabetes mellitus (DM) with ketoacidosis (10.03%) and T2DM with renal complications (0.23%) are identified as the primary direct and underlying causes of death among diabetic patients, respectively. This study serves as a valuable reference for other regions in terms of diabetes prevention, control, and the management of chronic diseases.", - "labels": [ - 0 - ] - }, - { - "text": "Open biology \n The post-translational modification O-GlcNAc is a sensor and regulator of metabolism. \n Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.", - "labels": [ - 0 - ] - }, - { - "text": "Medical decision making : an international journal of the Society for Medical Decision Making \n Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models. \n Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q", - "labels": [ - 0, - 2 - ] - }, - { - "text": "BMC endocrine disorders \n Association between night blindness history and risk of diabetes in the Chinese population: a multi-center, cross sectional study. \n The results suggest that NB history might be associated with increased odds of diabetes in Chinese community-dwelling adults.", - "labels": [ - 0 - ] - }, - { - "text": "BMC health services research \n Geographical Access to Point-of-care diagnostic tests for diabetes, anaemia, Hepatitis B, and human immunodeficiency virus in the Bono Region, Ghana. \n The findings revealed moderate access to all the tests in districts across the region. However, geographical access to glucose, Hb, Hep B, and HIV POC testing was poor (distance\u2009\u2265\u200910\u00a0km and travel time of \u2265\u200993\u00a0min), in the Banda district. This study showed the need to prioritise the Banda district for targeted improvement for all the tests. A further study is recommended to identify potential solutions to addressing the POC testing implementation in the BR, as demonstrated by this study.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of managed care & specialty pharmacy \n Potential benefits of incorporating social determinants of health screening on comprehensive medication management effectiveness. \n Although not statistically significant, the results of this pilot evaluation suggest the potential for meaningful clinical improvements from screening and referral of SDoH needs as a part of CMM encounters. These results should be corroborated using a larger, more robust study design.", - "labels": [ - 0 - ] - }, - { - "text": "Current diabetes reports \n Implementation Science and Pediatric Diabetes: A Scoping Review of the State of the Literature and Recommendations for Future Research. \n Of 23 papers identified, 19 were published since 2017 and 21 focused on type 1 diabetes. Most involved medical evidence-based practices (EBPs; n\u2009=\u200915), whereas fewer focused on psychosocial (n\u2009=\u20097) and diabetes education (n\u2009=\u20092). The majority either identified barriers and facilitators of implementing an EBP (n\u2009=\u200911) or were implementation trials (n\u2009=\u200911). Fewer studies documented gaps in EBP implementation in standard care (n\u2009=\u20097) or development of implementation strategies (n\u2009=\u20091). Five papers employed IS theories and two aimed to improve equity. There is a paucity of IS research in pediatric diabetes care literature. Few papers employed IS theory, used consistent IS terminology, or described IS strategies or outcomes. Guidance for future research to improve IS research in pediatric diabetes is offered.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Biogerontology \n A novel (-)-(2S)-7,4'-dihydroxyflavanone compound for treating age-related diabetes mellitus through immunoinformatics-guided activation of CISD3. \n The iron-sulfur domain (CISD) proteins of CDGSH are classified into three classes: CISD1, CISD2, and CISD3. During premature ageing, mutations that affect these proteins, namely their binding sites, could result in reduced protein production and an inability to preserve cellular integrity. Consequently, this leads to the development of conditions such as diabetes. Notably, CISD3 plays a crucial role in the management of age-related disorders such as Wolfram syndrome, which is often referred to as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). Computational analyses have predicted that CISD3 regulates the redox state, safeguards the endoplasmic reticulum and mitochondria, and maintains intracellular calcium levels. CISD3, a member of a recently discovered gene family associated with the CDGSH iron protein apoptotic compensatory response, fulfils a crucial function in mitigating the effects of accelerated ageing. The compound \"(-)-(2S)-7,4'-Dihydroxyflavanone\" has been discovered by computational drug design as a possible activator of CISD3. It shows potential therapeutic benefits in ameliorating metabolic dysfunction and enhancing glucose regulation. The ligand binds to the binding pocket of the CISD3 protein, increasing the stability of the protein and enhancing its functionality. The current research investigates the binding processes of the molecule in various structures and its anticipated effects on these tissues, therefore providing valuable insights into the mitigation of age-related diabetes and metabolic dysfunction. The projected tripling of the worldwide population of individuals aged 50 and above by 2050 necessitates the urgent development of immunoinformatics-based approaches, including pharmaceutical therapies that target CISD3, to prevent age-related pathologies. The stimulation of CISD3, namely by compounds such as \"(-)-(2S)-7,4'-Dihydroxyflavanone\", has the potential to counteract telomere shortening and improve metabolic pathways.", - "labels": [ - 0 - ] - }, - { - "text": "The journals of gerontology. Series B, Psychological sciences and social sciences \n Economic Disadvantage During Childhood, Obesity, and Diabetes Across Three Birth Cohorts of Older Mexicans. \n High body weight across Mexican birth cohorts seemed to offset the potential benefits from improvements in childhood conditions on adult diabetes risk.", - "labels": [ - 0 - ] - }, - { - "text": "Stem cell research & therapy \n Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. \n Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.", - "labels": [ - 0 - ] - }, - { - "text": "BMC endocrine disorders \n Lipids as the link between central obesity and diabetes: perspectives from mediation analysis. \n In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.", - "labels": [ - 0, - 2 - ] - }, - { - "text": "Applied microbiology and biotechnology \n Gut microbiota predict retinopathy in patients with diabetes: A longitudinal cohort study. \n The gut microbiota has emerged as an independent risk factor for diabetes and its complications. This research aimed to delve into the intricate relationship between the gut microbiome and diabetic retinopathy (DR) through a dual approach of cross-sectional and prospective cohort studies. In our cross-sectional study cross-sectional investigation involving ninety-nine individuals with diabetes, distinct microbial signatures associated with DR were identified. Specifically, gut microbiome profiling revealed decreased levels of Butyricicoccus and Ruminococcus torques group, alongside upregulated methanogenesis pathways among DR patients. These individuals concurrently exhibited lower concentrations of short-chain fatty acids in their plasma. Leveraging machine learning models, including random forest classifiers, we constructed a panel of microbial genera and genes that robustly differentiated DR cases. Importantly, these genera also demonstrated significant correlations with dietary patterns and the molecular profiles of peripheral blood mononuclear cells. Building upon these findings, our prospective cohort study followed 62 diabetes patients over a 2-year period to assess the predictive value of these microbial markers. The results underlined the panel's efficacy in predicting DR incidence. By stratifying patients based on the predictive genera and metabolites identified in the cross-sectional phase, we established significant associations between reduced levels of Butyricicoccus, plasma acetate, and increased susceptibility to DR. This investigation not only deepens our understanding of how gut microbiota influences DR but also underscores the potential of microbial markers as early indicators of disease risk. These insights hold promise for developing targeted interventions aimed at mitigating the impact of diabetic complications. KEY POINTS: \u2022 Microbial signatures are differed in diabetic patients with and without retinopathy \u2022 DR-related taxa are linked to dietary habits and transcriptomic profiles \u2022 Lower abundances of Butyricicoccus and acetate were prospectively associated with DR.", - "labels": [ - 0 - ] - }, - { - "text": "Current medical research and opinion \n Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care. \n The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Medicine \n Association of triglyceride-glucose index with diabetes or prediabetes in Chinese hypertensive patients: A retrospective cohort study. \n Insulin resistance is a key factor in diabetes development. This study aimed to investigate the association between baseline triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, and the onset of hyperglycemia in Chinese individuals with hypertension. Using the Rich Healthcare Group database, this retrospective cohort study included 28,687 hypertensive individuals without preexisting diabetes. A wide range of demographic information and baseline biochemical indicators was collected and rigorously analyzed. This study utilized the Cox proportional hazards model and smooth curve fitting to explore the link between TyG index and the risk of developing hyperglycemia. The robustness of the findings was validated by sensitivity and subgroup analyses. During longitudinal monitoring of hypertensive patients in our retrospective cohort study, we observed that 5.31% (1524/28,687) progressed to diabetes, while 21.66% (4620/21,326) developed prediabetes. After adjusting for confounding variables, a statistically significant positive association was observed between the TyG index and the risk of hyperglycemia. Subgroup and sensitivity analyses further supported these findings, demonstrating consistent outcomes and reinforcing the robustness of our conclusions. The TyG index, which is significantly linked to hyperglycemia in hypertensives, can aid early risk identification and intervention.", - "labels": [ - 0 - ] - }, - { - "text": "Medicine \n Association between serum globulins and diabetes mellitus in American latent tuberculosis infection patients: A cross-sectional study. \n Diabetes mellitus (DM) is predisposing to the development of latent tuberculosis infection (LTBI). An understanding of the underlying factors of LTBI-DM is important for tuberculosis prevention and control. This study aims to evaluate the association between LTBI and DM among the noninstitutionalized civilian population in the United States, focusing on the impact of serum globulins. We performed a cross-sectional study design using public data from 2011 to 2012 National Health and Nutrition Examination Survey, focusing on participants diagnosed with LTBI who were aged 20 and above. Weighted Wilcoxon rank-sum and weighted chi-square tests were used to compare group differences. A multivariable logistic regression model was constructed to assess the association between serum globulin and DM, with subgroup analyses and evaluations of nonlinear relationships. Receiver operating characteristic curves were used to assess the predictive power of the models. A total of 694 participants (512 DM and 182 nonDM) were included in our study and the incidence of DM was 22%. Higher serum globulin levels were significantly associated with an increased risk of DM, with a 21% increase in risk for each unit increase in serum globulin (odds ratio\u2005=\u20051.21, 95% confidence interval [1.03, 1.43], P\u2005<\u2005.001). The relationship between serum globulin and DM was linear, and higher serum globulin levels were associated with a higher risk of DM, particularly in males (P\u2005=\u2005.043) and obese individuals (P\u2005=\u2005.019). The area under the curve for serum globulin predicting DM was 0.795, with an optimal cutoff value of 2.9. Elevated serum globulin levels are significantly associated with an increased risk of DM among individuals with LTBI, highlighting the potential role of serum globulin as a predictive biomarker for DM in this population. However, the specific mechanism between globulin and LTBI-DM needs to be further investigated.", - "labels": [ - 0 - ] - }, - { - "text": "Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions \n Drug-coated balloons in high-risk patients and diabetes mellitus: A meta-analysis of 10 studies. \n We confirmed a significant advantage of DCB versus DES in the treatment of de novo lesions in high-risk patients and mainly in DM, reducing overall mortality, MACE and target lesion revascularization.", - "labels": [ - 0 - ] - }, - { - "text": "Archives of Iranian medicine \n Prevalence of Chronic Kidney Disease and Associated Factors among the Diabetic and Prediabetic Population in the Bandare-Kong Cohort Study; A Population-Based Study. \n The study emphasizes the importance of early detection and management of CKD risk factors, particularly among high-risk individuals, to mitigate CKD progression and associated complications. By addressing modifiable risk factors, proactive screening, and enhanced awareness, significant strides can be made in reducing CKD burden and improving patient outcomes.", - "labels": [ - 0 - ] - }, - { - "text": "Frontiers in endocrinology \n A mobile health application use among diabetes mellitus patients: a systematic review and meta-analysis. \n https://www.crd.york.ac.uk/prospero/, identifier 42024537917.", - "labels": [ - 0 - ] - }, - { - "text": "Ethnicity & disease \n Racial Disparities in Foot Examination among People with Diabetes in Brazil: A Nationwide Survey, 2019. \n Black Brazilians with diabetes had higher negligence of foot examination by health care professionals. Strengthening primary care would help mitigate systemic racism in Brazil.", - "labels": [ - 0 - ] - }, - { - "text": "Scientific reports \n Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. \n Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet \u03b1 cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on \u03b2 cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed \u03b1- and/or \u03b2-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of \u03b1-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of \u03b1-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed \u03b1 and \u03b2 cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring \u03b2-cell GLP-1R protein expression may improve \u03b2-cell function in CFRD.", - "labels": [ - 0 - ] - }, - { - "text": "International journal of circumpolar health \n Substance use and lifestyle risk factors for somatic disorders among psychiatric patients in Greenland. \n Patients with psychotic disorders exhibit elevated mortality and morbidity rates compared to the general population primarily due to comorbid somatic diseases. This study aims to describe the prevalence of selected risk factors and somatic disorders among psychiatric patients with a diagnosis of psychotic disorder. Material and methods: Data were retrieved from Greenland's nationwide electronic medical record. The study population consists of 104 patients diagnosed with a psychotic disorder, encompassing schizophrenia or schizotypal and delusional disorders, residing in Nuuk. The study population comprised 104 patients (68 males and 36 females) with a mean age of 40\u2009years. More than 80% were daily smokers, and 68% had harmful use of cannabis. More than half had dyslipidemia (any imbalance in lipids), while over a quarter were classified as obese with body mass index of 30\u2009kg/m2 or higher. Eighteen percent had hypertension, and six percent suffered from diabetes. This study revealed a notable prevalence of risk factors for somatic diseases, particularly smoking and cannabis use among patients with schizophrenia in Nuuk, indicating that a high prevalence of somatic diseases might be expected as the population gets older and the risk of developing somatic diseases becomes greater. Increased focus on monitoring and preventing those as part of the health care is recommended.", - "labels": [ - 0 - ] - }, - { - "text": "International immunopharmacology \n Natural polysaccharides: The potential biomacromolecules for treating diabetes and its complications via AGEs-RAGE-oxidative stress axis. \n Diabetes mellitus, a chronic metabolic disorder, poses a significantly public health challenge. Extensive research highlights that contemporary dietary patterns, characterized by excessive intake of sugar, fat, and protein, are major contributors to the onset and progression of diabetes. The central element to this process is the aberrant activation of the advanced glycation end products (AGEs) - receptor for AGEs (RAGE) - oxidative stress axis, which plays a pivotal role in disrupting normal carbohydrate metabolism. This pathway presents a critical target for developing interventions aimed at mitigating diabetes and its complications. In recent years, natural polysaccharides have emerged as promising agents in the prevention and treatment of diabetes, due to their ability to inhibit AGE formation, regulate RAGE expression, and modulate the AGEs-RAGE-oxidative stress axis. In this paper, we explore the pathogenic mechanism of this axis and review the therapeutic potential of natural polysaccharides in managing diabetes and its complications. Our goal is to provide new insights for the effective management of diabetes and its associated health challenges.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of diabetes and its complications \n Prevalence and clinical implications of diabetes mellitus in autoimmune nodopathies: A systematic review. \n DM patients fall under the typical clinical phenotype of autoimmune nodopathy, displaying predominantly paranodal antibodies. Early suspicion is crucial, as unlike DPN, diagnosis of autoimmune nodopathy unfolds therapeutic perspectives.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Investigational new drugs \n A phase II study of ME2136 (Asenapine Maleate) plus standard antiemetic therapy for patients, including diabetic patients, receiving cisplatin-based chemotherapy. \n Olanzapine combined with the neurokinin-1 receptor antagonist, palonosetron and dexamethasone is the standard treatment for chemotherapy-induced nausea and vomiting (CINV) due to highly emetogenic chemotherapy (HEC). However, the use of olanzapine poses challenges in patients with diabetes mellitus (DM) due to the potential risk of hyperglycemia. ME2136, antipsychotic similar to olanzapine, is associated with a lower risk of hyperglycemia. This study investigated the antiemetic efficacy and safety of ME2136 for HEC. This single-arm phase 2 study examined the safety and efficacy of ME2136 5\u00a0mg for 4\u00a0days in combination with triplet-combination antiemetic therapy. Two cohorts were established for the safety assessment: DM and non-DM. Eligible patients had malignant tumors and were receiving cisplatin-based chemotherapy for the first time. The primary endpoint was the complete response (CR) rate, defined as the percentage of patients without vomiting and not requiring rescue medications in the delayed phase (24-120\u00a0h). Between December 2020 and January 2022, 40 patients were enrolled, with 20 in each cohort. All patients were included in the safety analysis and 35 in the efficacy analysis. The CR rate in the delayed phase was 71.4% [60% CI 63.1-78.6%] for all patients, 66.7% in the DM cohort, and 76.5% in the non-DM cohort. No treatment-related adverse events\u2009\u2265\u2009grade 3, including hyperglycemia, were reported. ME2136, when combined with standard triplet-combination antiemetic therapy, is expected to exert similar antiemetic effects to the standard treatment for CINV due to HEC. Currently, ME2136-02 trial is underway to examine the safety and efficacy of triplet-combination antiemetic therapy and a 5-day treatment with ME2136. This study was registered with the Japan Registry of Clinical Trials (jRCT2041200071) on 10 December 2020. Clinical trial registration: This study was registered with the Japan Registry of Clinical Trials (jRCT2041200071) on 10 December 2020.", - "labels": [ - 0 - ] - }, - { - "text": "Molecular biology reports \n Molecular remodeling in comorbidities associated with heart failure: a current update. \n Recent advances in genomics and proteomics have helped in understanding the molecular mechanisms and pathways of comorbidities and heart failure. In this narrative review, we reviewed molecular alterations in common comorbidities associated with heart failure such as obesity, diabetes mellitus, systemic hypertension, pulmonary hypertension, coronary artery disease, hypercholesteremia and lipoprotein abnormalities, chronic kidney disease, and atrial fibrillation. We searched the electronic databases, PubMed, Ovid, EMBASE, Google Scholar, CINAHL, and PhysioNet for articles without time restriction. Although the association between comorbidities and heart failure is already well established, recent studies have explored the molecular pathways in much detail. These molecular pathways demonstrate how novels drugs for heart failure works with respect to the pathways associated with comorbidities. Understanding the altered molecular milieu in heart failure and associated comorbidities could help to develop newer medications and targeted therapies that incorporate these molecular alterations as well as key molecular variations across individuals to improve therapeutic outcomes. The molecular alterations described in this study could be targeted for novel and personalized therapeutic approaches in the future. This knowledge is also critical for developing precision medicine strategies to improve the outcomes for patients living with these conditions.", - "labels": [ - 0 - ] - }, - { - "text": "Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery \n The Effects of Metformin on Cisplatin-Induced Ototoxicity in Diabetic Patients. \n Contrary to expectations from preclinical data, metformin did not reduce the incidence of hearing loss in patients receiving cisplatin and may, in fact, be associated with an increased risk.", - "labels": [ - 0 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Associations between Systemic and Dental Diseases in Elderly Korean Population. \n ", - "labels": [ - 0 - ] - }, - { - "text": "Nutrients \n Diet Quality and Eating Frequency Were Associated with Insulin-Taking Status among Adults. \n Evidence of the low diet quality and eating frequency of insulin takers may help inform and justify nutrition education to control and manage diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "BMC nephrology \n Efficacy of continuous glucose monitoring in people living with diabetes and end stage kidney disease on dialysis: a systematic review. \n PROSPERO registration number: CRD42023371635, https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=371635 .", - "labels": [ - 0, - 2 - ] - }, - { - "text": "Revista de gastroenterologia de Mexico (English) \n Gastrointestinal adverse effects of old and new antidiabetics: How do we deal with them in real life? \n Diabetes is a public health problem with an estimated worldwide prevalence of 10% and a prevalence of 12% in Mexico. The costs resulting from this chronic-degenerative disease are significant. Treatment for diabetes involves different medication groups, some of which can cause significant gastrointestinal adverse effects, such as dyspepsia, nausea, vomiting, bloating, diarrhea, and constipation. The medications most frequently associated with said adverse effects are metformin, acarbose, and GLP-1 agonists. Gastrointestinal adverse effects negatively impact the quality of life and management of patients with diabetes. The factors of visceral neuropathy, acute dysglycemia, dysbiosis, and intestinal bacterial overgrowth contribute to the gastrointestinal symptoms in patients with diabetes, making it necessary to consider multiple etiologic factors in the presence of gastrointestinal symptoms, and not exclusively attribute them to the use of antidiabetics. Personalized treatment, considering gastrointestinal comorbidity and the type of drug utilized, is essential for mitigating the adverse effects and improving the quality of life in patients with diabetes. The aim of the present narrative review was to describe the gastrointestinal adverse effects of the antidiabetic drugs, their pathophysiologic mechanisms, and the corresponding therapeutic measures.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of the American Board of Family Medicine : JABFM \n Impact of Point of Care Hemoglobin A1c Testing on Time to Therapeutic Intervention. \n Without compromising accuracy, point of care testing (POCT) provides immediate results at the time of in person patient consultation. The purpose of this study was to evaluate time until therapeutic intervention with POCT HbA1c versus venipuncture, where venipuncture was considered standard of care.The primary outcome was time (hours) to implementation of a therapeutic intervention based on POCT HbA1c result, as compared with most recent venipuncture HbA1c before the study and its associated therapeutic intervention. A total of 94 POCT HbA1c tests were included in the primary analysis.For the POCT HbA1c, the mean time to therapeutic intervention was 1.6\u2009\u00b1\u20093.14\u2009hours. For the previous venipuncture HbA1c, the mean time to therapeutic intervention was 1376.66\u2009\u00b1\u20093356.6\u2009hours (", - "labels": [ - 0 - ] - }, - { - "text": "Molecular metabolism \n PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology. \n SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.", - "labels": [ - 0 - ] - }, - { - "text": "The American journal of cardiology \n Impact of Diabetes Mellitus on Bifurcation Percutaneous Coronary Intervention: Insights from the Prospective Global Registry for the Study of Bifurcation Lesion Interventions Registry. \n The impact of diabetes mellitus (DM) on the outcomes of bifurcation percutaneous coronary intervention (PCI) has received limited study. We compared the procedural characteristics and outcomes of patients with and without DM in 1,302 bifurcation PCIs (1,147 patients) performed at 5 centers between 2013 and 2024. The prevalence of DM was 33.8% (n = 388). Patients with diabetes were younger and had more cardiovascular risk factors and greater angiographic complexity, including more main vessel calcification and more frequent stenoses in the left main, proximal left anterior descending, and right coronary artery. There was no difference in technical (95.5% vs 94.9%, p = 0.613) or procedural success (90.2% vs 91.3%, p = 0.540); provisional stenting was used less frequently in patients with diabetes (64.5% vs 71.1%, p = 0.015). Patients with diabetes had higher rates of repeat in-hospital PCI and acute kidney injury. Other in-hospital outcomes were similar after adjusting for confounders. During a median follow-up of 1,095 days, diabetes was independently associated with greater incidence of major adverse cardiovascular events (hazard ratio [HR] 2.04, 95% confidence intervals [CI] 1.52 to 2.72, p <0.001), myocardial infarction (HR 1.94, 95% CI 1.05 to 3.25, p = 0.033), death (HR 2.26, 95% CI 1.46 to 3.51, p <0.001), and target (HR 1.6, 95% CI 1.01 to 2.66, p = 0.045) and nontarget (HR 2.00, CI 1.06 to 3.78, p = 0.032) vessel revascularization. Patients with DM who underwent bifurcation PCI had greater risk of in-hospital repeat-PCI and major adverse cardiac events during follow-up than did those without diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes care \n Relationship of Plasma Apolipoprotein C-I Truncation With Risk of Diabetes in the Multi-Ethnic Study of Atherosclerosis and the Actos Now for the Prevention of Diabetes Study. \n Our results indicate that apoC-I truncation may contribute to changes in glucose levels, IR, and risk of diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "American journal of physiology. Heart and circulatory physiology \n Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. \n Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes care \n Consensus Considerations and Good Practice Points for Use of Continuous Glucose Monitoring Systems in Hospital Settings. \n Continuous glucose monitoring (CGM) systems provide frequent glucose measurements in interstitial fluid and have been used widely in ambulatory settings for diabetes management. During the coronavirus disease 2019 (COVID-19) pandemic, regulators in the U.S. and Canada temporarily allowed for CGM systems to be used in hospitals with the aim of reducing health care professional COVID-19 exposure and limiting use of personal protective equipment. As such, studies on hospital CGM system use have been possible. With improved sensor accuracy, there is increased interest in CGM usage for diabetes management in hospitals. Laboratorians and health care professionals must determine how to integrate CGM usage into practice. The aim of this consensus guidance document is to provide an update on the application of CGM systems in hospital, with insights and opinions from laboratory medicine, endocrinology, and nursing.", - "labels": [ - 0 - ] - }, - { - "text": "Biosensors \n Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors. \n We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing. The glucose variations in sweat display allometric (non-linear) dependence on those in blood, allowing more precise blood glucose estimation. Selective (avoiding false-positive responses) and sensitive (sweat glucose is on average 30-50 times lower) detection is possible with biosensors based on the glucose oxidase enzyme coupled with a Prussian Blue transducer. Reliable glucose detection in just secreted sweat would allow noninvasive monitoring of the glycemia level in diabetic patients.", - "labels": [ - 0 - ] - }, - { - "text": "Revista medica de Chile \n [Characteristics of Depressed Individuals with Hypertension and/ or Diabetes Mellitus in Primary Health Care in Santiago de Chile]. \n These are people with depressive episode, hypertension and/or diabetes who, having a personal and family history of depression, are not receiving pharmacological treatment for depression, which probably affects their quality of life. Better adherence to clinical guidelines for the treatment of depression is required.", - "labels": [ - 0 - ] - }, - { - "text": "Revista medica de Chile \n [Decline in Renal Function with Age in Chile: Gender Differences and the Impact of Comorbidities]. \n eGFR progressively decreased with age in the Chilean population, showing an early decline starting from 18 years, more pronounced in women, and in the presence of chronic diseases. Our findings provide relevant population-based information for interpreting eGFR across different age groups and risk categories.", - "labels": [ - 0 - ] - }, - { - "text": "BMC public health \n Longitudinal assessment of the impact of prevalent diabetes on hospital admissions and mortality in the general population: a prospective population-based study with 19 years of follow-up. \n Source: Pixabay.com. No permission or acknowledgement is required.", - "labels": [ - 0 - ] - }, - { - "text": "Scientific reports \n International dietary quality index and its association with diabetes in RaNCD cohort study. \n Diabetes and its complications pose a significant threat to global health. Various factors contribute to the development of diabetes, with diet being an important trigger. The Dietary Quality Index-International (DQI-I) serves as an indicator of changes in diet and its association with chronic diseases, including diabetes. The aim of this study is to examine the association between DQI-I and diabetes in adults. Data from the first phase of the Ravansar Non-Communicable Disease Cohort Study (RaNCD) were used for this cross-sectional study. The study included individuals from western Iran aged between 35 and 65 years. The DQI-I was used to assess diet quality and the essential aspects of a healthy diet. Multiple logistic regression analyses were performed to compare DQI-I total score and diabetes. A total of 7,079 individuals were included, including 608 diabetic and 6,471 healthy individuals. The mean DQI-I score was 60.51\u2009\u00b1\u20098.47 in healthy individuals and 63.12\u2009\u00b1\u20098.64 in diabetics. The odds of developing diabetes were higher in individuals with a higher DQI-I (adjusted odds ratio: 1.49, 95% CI: 1.30-1.73). The variety was 13.43\u2009\u00b1\u20094.47 in diabetics and 12.59\u2009\u00b1\u20094.79 in healthy individuals. Adequacy was 33.23\u2009\u00b1\u20093.71 in diabetics and 33.79\u2009\u00b1\u20093.37 in healthy individuals. Moderation was 13.27\u2009\u00b1\u20096.05 in diabetics and 11.79\u2009\u00b1\u20095.47 in healthy individuals. The overall balance was 2.88\u2009\u00b1\u20092.21 in the healthy group and 2.61\u2009\u00b1\u20092.13 in the diabetics. The macronutrient ratio was 2.15\u2009\u00b1\u20091.88 in the healthy group and 2.04\u2009\u00b1\u20091.84 in the diabetics. The fatty acid ratio was 0.72\u2009\u00b1\u20091.29 in the healthy group and 0.56\u2009\u00b1\u20091.17 in the diabetic group. The overall balance score was higher in the healthy subjects. The DQI-I total score was higher in diabetics, indicating a positive association between diabetes and the DQI-I. Therefore, the importance of continuous dietary management and education of diabetic patients should be emphasized.", - "labels": [ - 0 - ] - }, - { - "text": "Scientific reports \n Impaired glomerular filtration rate and associated factors among diabetic mellitus patients with hypertension in referral hospitals, Amhara Regional State, Ethiopia. \n Impaired glomerular filtration rate is common health problem in diabetic mellitus patients (DM) with hypertension (HTN). It is a major cause of morbidity, mortality, and poor quality of life. There is limited data on the prevalence and associated factors of impaired glomerular filtration among diabetic mellitus patients with hypertension in Ethiopia. Therefore, this study aimed to determine the prevalence of impaired glomerular filtration rate and associated factors among diabetic patients with hypertension in referral hospitals in Amhara Regional State, Ethiopia, 2020. An institution-based cross-sectional study was conducted in Amhara Regional referral hospitals from February 20 to April 30, 2020. Systemic sampling techniques were used to select diabetic mellitus patients with hypertension. Epi data version 3.0 was used to enter the coded data and then exported to STATA 14 for analysis. Glomerular filtration rate was estimated using the equations of collaboration with chronic kidney disease (CKD-EPI), diet modification in renal disease (MDRD-4), and creatinine clearance (CrCl). In bi-variable logistic regression, variables with a p-value of <\u20090.25 were included in multi-variable logistic regression. Using a 95% confidence interval, variables having a p-value\u2009\u2264\u20090.05 in multi-variable logistic regression were declared as statistically significant variables. In this study, a total of 326 study participants were involved, with a 100% response rate. The prevalence of an impaired glomerular filtration rate among diabetic patients with hypertension was 30.1% (95% CI 25.1%-35.1%), 36.6% (95% CI 30.1%-40.8%) and 45.4% (95% CI 39.9%-50.8%), using the equations CKD-EPI, MDRD-4, and CrCl, respectively. Being \u2265\u200955 years old (CKD-EPI AOR\u2009=\u20092.9, 95%: 1.5-5.5, MDRD-4 AOR\u2009=\u20092.1, 95% CI: 1.2-3.7, CrCl AOR\u2009=\u20095.9, 95% CI: 3.5-10.1), proteinuria (CKD-EPI AOR\u2009=\u20092.7, 95% CI: 1.4-5.3, MDRD-4 AOR\u2009=\u20091.9, 95% CI: 1.1-3.4, CrCl AOR\u2009=\u20091.7, 95% CI: 1.0-2.9), duration of the disease (\u2265\u20095 years) (CKD-EPI AOR\u2009=\u20097.9, 95% CI: 4.2-13.0, MDRD-4 AOR\u2009=\u20097.4, 95% CI: 4.2-13.0, CrCl AOR\u2009=\u20091.9, 95% CI: 1.2-3.3), a glucose level of \u2265\u2009150\u00a0mg/dl (CKD-EPI AOR\u2009=\u20092.3, 95% CI: 1.3-4.4, MDRD-4 AOR\u2009=\u20092.1, 95% CI: 1.2-3.8) were variables significantly associated with impaired glomerular filtration rate. The prevalence of impaired glomerular filtration rate among diabetic mellitus patients with hypertension was high. Independent predictors of impaired glomerular filtration rate were older age, duration of the disease, proteinuria, and higher blood glucose levels.", - "labels": [ - 0 - ] - }, - { - "text": "International journal of biological macromolecules \n Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. \n Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes research and clinical practice \n Salivary glycated albumin could be as reliable a marker of glycemic control as blood glycated albumin in people with diabetes. \n This exploratory research revealed that the salivary GA levels by this method were accurate and might be able to replace blood GA measurement. The home salivary GA measurement is expected to be developed that may reduce the burden and complications in people with diabetes mellitus and improve the quality of life.", - "labels": [ - 0, - 2 - ] - }, - { - "text": "PloS one \n Accuracy of ankle-brachial index in screening for peripheral arterial disease in people with diabetes. \n Although the ankle-brachial index (ABI) presents overall satisfactory accuracy, its sensitivity in the context of screening strategies does not ensure the detection of all individuals with peripheral arterial disease (PAD), especially in clinical situations where there is calcification of the arterial media layer. This study evaluated the accuracy of ABI in screening PAD among individuals with diabetes mellitus (DM) in a community setting. An observational study included only individuals with DM. ABI measurement was performed, and the lower limb duplex ultrasound (DU) was used as the reference standard for PAD diagnosis. Sensitivity, specificity, positive and negative predictive values (PPV and NPV), and positive and negative likelihood ratios (LR+ and LR-) of ABI were assessed. The analysis included 194 limbs from 99 participants, with a PAD prevalence identified by DU of 15.98%. ABI demonstrated an accuracy of 87.63%, with a sensitivity of 35.48%, specificity of 97.55%, PPV of 73.33%, NPV of 89.83%, LR+ of 14.46, and LR- of 0.66. ABI showed high specificity but limited sensitivity in detecting PAD among individuals with DM in a community setting. An LR- of 0.66 suggests that a normal ABI result reduces but does not eliminate the possibility of PAD, highlighting the importance of complementary diagnostic approaches to enhance accuracy in identifying PAD in high-risk patients, such as those with DM. Incorporating additional diagnostic methods may be necessary to improve the effectiveness of PAD screening in this group.", - "labels": [ - 0 - ] - }, - { - "text": "International journal of implant dentistry \n Correlation between marginal bone loss around dental implants and various systemic diseases: a cross-sectional study. \n Within the limitations of the present investigation, patients diagnosed with hyperlipidemia and hypertension were more likely to exhibit MBL surrounding dental implants.", - "labels": [ - 0 - ] - }, - { - "text": "Cancer medicine \n The association of diabetes mellitus and routinely collected patient-reported outcomes in patients with cancer. A real-world cohort study. \n The results of this study suggest that patients with cancer and diabetes may be at greater risk for anxiety, depression, fatigue, higher pain interference, and reduced physical function. Strengthening diabetes management is imperative to address the negative impact of diabetes on PROs. In particular, this may be true for patients with skin, breast, prostate, and kidney cancer.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of diabetes investigation \n Association of impaired fasting glucose with cardiometabolic multimorbidity: The\u00a0Kailuan study. \n IFG was a risk factor for CMM. The effect of IFG on diabetes mellitus was stronger than that on other cardiometabolic diseases. The effects of IFG for CMM differed by sex.", - "labels": [ - 0 - ] - }, - { - "text": "Middle East African journal of ophthalmology \n Status of Health-care Systems for Diabetes Mellitus and Diabetic Retinopathy in Jordan: Stakeholders and Health-care Providers Survey. \n Advanced DM and DR care is not accessible to most people. Programmatic efforts from the government and NGOs must formulate a national action plan to reduce the human and financial impact of the disease in Jordan.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Graded association of muscle strength with all-cause and cause-specific mortality in older adults with diabetes: Prospective cohort study across 28 countries. \n Muscle strength is gradually and inversely associated with all-cause and cause-specific mortality risk in older adults with diabetes. As muscle strength is highly adaptable to resistance training at all ages, the present findings highlight the importance of improving muscle strength in older adults with diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "Cardiovascular diabetology \n Impact of diabetes mellitus on right ventricular dysfunction and ventricular interdependence in hypertensive patients with heart failure with reduced ejection fraction assessed via 3.0 T cardiac MRI. \n In hypertensive HFrEF patients, comorbid DM may have aggravated RV dysfunction and was an independent determinant of impaired RV strain. RV dysfunction might be directly affected by DM and partially mediated by LV strain through unfavorable ventricular independence.", - "labels": [ - 0 - ] - }, - { - "text": "BMC medicine \n Unhealthy plant-based diet is associated with a higher cardiovascular disease risk in patients with prediabetes and diabetes: a large-scale population-based study. \n Adherence to an unhealthy plant-based diet is associated with a higher CVD risk in people with prediabetes or diabetes, which may be partially attributed to low consumption of whole grains, high intake of SSB, and high blood cystatin C levels.", - "labels": [ - 0 - ] - }, - { - "text": "BMC primary care \n Redesigning telemedicine: preliminary findings from an innovative assisted telemedicine healthcare model. \n The 'Digisahayam' model demonstrated feasibility in enhancing healthcare accessibility and quality by bridging healthcare gaps, diagnosing chronic conditions, and improving patient outcomes. The model presents a scalable and sustainable approach to revolutionising patient care and achieving digital health equity, with the potential for adaptation in similar settings worldwide.", - "labels": [ - 0 - ] - }, - { - "text": "Annals of epidemiology \n \u200eThe association between cumulative exposure to neighborhood walkability (NW) and diabetes risk, a prospective cohort study. \n Long-term residence in more walkable neighborhoods may be protective against diabetes in women, especially postmenopausal women.", - "labels": [ - 0, - 2 - ] - }, - { - "text": "The Journal of nutrition \n Betaine and B \n Our findings suggest that higher GSH level and higher intake of betaine, B", - "labels": [ - 0 - ] - }, - { - "text": "Brain research \n In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis. \n This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.", - "labels": [ - 0 - ] - }, - { - "text": "Farmaceuticos comunitarios \n [Validation of the JH-SEFAC Questionnaire on Knowledge on Insulin Management by Patients with Diabetes in Community Pharmacies]. \n The JH-SEFAC questionnaire was validated to evaluate the management of insulin injectables, providing community pharmacists with a valuable tool for therapeutic education.", - "labels": [ - 0 - ] - }, - { - "text": "Frontiers in endocrinology \n The emerging modulators of non-coding RNAs in diabetic wound healing. \n Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of primary care & community health \n Longer Multimorbidity Intervals Are Associated With Lower Mortality in Diabetes: A Whole-Population Nested Case-Control Study. \n Delayed multimorbidity among patients living with diabetes may be related to a lower risk of mortality. This study suggests that we should focus on mitigating and lowering the risk of multimorbidity in clinical management of diabetes to reduce further complication and mortality.", - "labels": [ - 0 - ] - }, - { - "text": "Yonsei medical journal \n Association of the COVID-19 Pandemic with HbA1c Testing and Complication Screening in Patients with Diabetes Mellitus. \n A high level of COVID-19 transmission was associated with a decrease in undergoing fundus examination and kidney disease screening. To fully realize the potential benefit of diabetes complication screenings, further effort is required to identify and address challenges to obtaining these screenings, especially in outbreak regions.", - "labels": [ - 0 - ] - }, - { - "text": "Digestive diseases and sciences \n Association Between Body Composition Measured by Artificial Intelligence and Long-Term Sequelae After Acute Pancreatitis. \n Body composition was not associated with having a recurrent AP. At follow-up, 30% and 25% of evaluated patients developed CP and DM, respectively. A higher SAT and IMAT were associated with a lower incidence of CP and higher incidence of DM, respectively.", - "labels": [ - 0 - ] - }, - { - "text": "Biomedical physics & engineering express \n Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis. \n The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.", - "labels": [ - 0 - ] - }, - { - "text": "The journal of nutrition, health & aging \n Impact of diabetes on the association between serum urate levels and incident dementia: a cohort study in the UK biobank. \n Appropriately higher urate levels within the threshold of hyperuricemia can reduce the adverse health effects of excessively high urate levels and better protect the cognitive health of people with varying diabetes status.", - "labels": [ - 0 - ] - }, - { - "text": "North Carolina medical journal \n \"It Takes a Village\"- A Conversation with the Interprofessional Diabetes Clinic at the ECU Health Family Medicine Center. \n Interprofessional collaboration and shared understanding positively impact both patients and providers. Current recommendations from the CDC and experts agree that collaboration between diverse professions is necessary to improve patient outcomes and empower patients to selfmanage their chronic conditions.", - "labels": [ - 0 - ] - }, - { - "text": "Medical gas research \n Nitric oxide-based treatments improve wound healing associated with diabetes mellitus. \n Non-healing wounds are long-term complications of diabetes mellitus (DM) that increase mortality risk and amputation-related disability and decrease the quality of life. Nitric oxide (NO\u00b7)-based treatments (i.e., use of both systemic and topical NO\u00b7 donors, NO\u00b7 precursors, and NO\u00b7 inducers) have received more attention as complementary approaches in treatments of DM wounds. Here, we aimed to highlight the potential benefits of NO\u00b7-based treatments on DM wounds through a literature review of experimental and clinical evidence. Various topical NO\u00b7-based treatments have been used. In rodents, topical NO\u00b7-based therapy facilitates wound healing, manifested as an increased healing rate and a decreased half-closure time. The wound healing effect of NO\u00b7-based treatments is attributed to increasing local blood flow, angiogenesis induction, collagen synthesis and deposition, re-epithelization, anti-inflammatory and anti-oxidative properties, and potent broad-spectrum antibacterial effects. The existing literature lacks human clinical evidence on the safety and efficacy of NO\u00b7-based treatments for DM wounds. Translating experimental favors of NO\u00b7-based treatments of DM wounds into human clinical practice needs conducting clinical trials with well-predefined effect sizes, i.e., wound reduction area, rate of wound healing, and hospital length of stay.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of diabetes \n Chronic glycemic control influences the relationship between acute perioperative dysglycemia and perioperative outcome. \n In surgical patients with diabetes, prior exposure to hyperglycemia attenuates the impact of perioperative hyperglycemia and glycemic variability on inpatient mortality and ICU admission. In patients without diabetes mellitus, all absolute thresholds of dysglycemia are associated with ICU admission, unlike those with diabetes, suggesting the need to use more relative measures such as the SHR.", - "labels": [ - 0 - ] - }, - { - "text": "Global health action \n Hypertension, diabetes, and cardiovascular disease nexus: investigating the role of urbanization and lifestyle in Cabo Verde. \n These findings add to the toolset of public health practitioners and policymakers in formulating policies and interventions aimed at managing cardiovascular diseases, particularly in developing nations.", - "labels": [ - 0 - ] - }, - { - "text": "The Korean journal of internal medicine \n Current status of modifiable risk factors for cardiovascular disease in Korean women. \n Hypertension, diabetes mellitus, dyslipidemia, obesity, and smoking are the primary modifiable risk factors contributing to the increasing morbidity and mortality rates from cardiovascular disease (CVD) among Korean women. Significant sex-related differences exist in the prevalence, awareness, treatment, and control of these risk factors, highlighting the importance of age- and sex-specific approaches to the management and prevention of CVD. Notably, the prevalence of hypertension and diabetes mellitus increases with age, with a higher prevalence in elderly women compared to men. Dyslipidemia and obesity are also trending upward, particularly in postmenopausal women, highlighting the impact of menopause on cardiovascular risk. The present review advocates for improved diagnostic, therapeutic, and educational efforts to mitigate the risk of CVD among Korean women, with the goals of reducing the overall burden of the disease and promoting better cardiovascular health outcomes.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Synergies between diabetes and hyperhomocysteinaemia: New insights to predict and prevent adverse cardiovascular effects. \n The findings highlight the synergistic impact of diabetes and HHcy on CVD. Joint assessments of diabetes and Hcy levels should be emphasized for risk stratification and primary prevention of CVD.", - "labels": [ - 0 - ] - }, - { - "text": "Trials \n Effects of an Exercise and Lifestyle Education Program in Brazilians living with prediabetes or diabetes: study protocol for a multicenter randomized controlled trial. \n ClinicalTrials.gov, NCT03914924 . Registered on April 16, 2019.", - "labels": [ - 0 - ] - }, - { - "text": "BMC primary care \n Perceptions of the 2D short animated videos for literacy against chronic diseases among adults with diabetes and/or hypertension: a qualitative study in primary care clinics. \n Animated videos are acceptable for delivering health information. Pilot testing animated videos for promoting literacy against chronic diseases in adults with diabetes and hypertension is needed for optimal utility.", - "labels": [ - 0 - ] - }, - { - "text": "Scientific data \n The Journey to a FAIR CORE DATA SET for Diabetes Research in Germany. \n The German Center for Diabetes Research (DZD) established a core data set (CDS) of clinical parameters relevant for diabetes research in 2021. The CDS is central to the design of current and future DZD studies. Here, we describe the process and outcomes of FAIRifying the initial version of the CDS. We first did a baseline evaluation of the FAIRness using the FAIR Data Maturity Model. The FAIRification process and the results of this assessment led us to convert the CDS into the recommended format for spreadsheets, annotating the parameters with standardized medical codes, licensing the data set, enriching the data set with metadata, and indexing the metadata. The FAIRified version of the CDS is more suitable for data sharing in diabetes research across DZD sites and beyond. It contributes to the reusability of health research studies.", - "labels": [ - 0 - ] - }, - { - "text": "Primary care diabetes \n Understanding primary care provider's knowledge and perceptions of diabetes self-management education and support. \n Providers have limited knowledge of the appropriate time to refer to DSMES but expressed a willingness to refer. They emphasized the importance of providing their patients with appropriate self-management education and support.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes care \n Diabetes and Driving: A Statement of the American Diabetes Association. \n Many people with diabetes in the U.S. will seek or currently hold a license to drive. For many, a driver's license is essential for everyday life. Considerable discussion has focused on whether, and the extent to which, diabetes may be a relevant factor in determining driver ability and eligibility for a license. This statement addresses such issues in relation to current scientific and medical evidence. A diagnosis of diabetes on its own is not sufficient to make judgments about an individual driver's ability or safety. This statement provides an overview of existing licensing rules for people with diabetes in the U.S., addresses the factors that affect driving ability, identifies general guidelines for assessing driver fitness and determining appropriately tailored licensing restrictions, and provides practical guidance for health care professionals regarding clinical interventions and education for people with diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "Medicine \n Mitochondrial diabetes presenting with spontaneous abortion and ketoacidosis onset: A case report and literature review. \n MDM presents with atypical clinical manifestations, and thorough physical examinations are crucial for its diagnosis. This case underscores the significance of genetic testing and family history in diagnosing MDM and the need for increased awareness among clinicians to prevent misdiagnosis.", - "labels": [ - 0 - ] - }, - { - "text": "Medicine \n Female and diabetes are risk factors for alpha-fetoprotein and protein induced by vitamin K absence or antagonist-II negative in hepatocellular carcinoma. \n Hepatocellular carcinoma (HCC) is a common type of tumor with a high incidence. Alpha-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II or des-gamma-carboxy prothrombin) are proven effective biomarkers for HCC. Combining them can enhance detection rates. However, when both AFP and PIVKA-II are negative, clinical diagnosis may be missed. This study aims to explore the risk factors for AFP and PIVKA-II negativity in HCC, thereby reducing missed diagnoses. A retrospective study enrolled 609 HCC patients at Shandong Public Health Clinical Center Affiliated with Shandong University from January 2010 to March 2022. Patients with negative AFP and PIVKA-II were the observed group, and others with at least 1 positive were controls. Epidemiological, clinical, laboratory, and radiological data were collected and analyzed to identify the frequency and factors influencing AFP and PIVKA-II negativity. Receiver operating characteristic (ROC) curves were used to assess the prediction model's ability to detect negative AFP and PIVKA-II in HCC. Gender (P\u2005=\u2005.045, 95% confidence interval [95%CI]\u2005=\u20051.013-3.277), diabetes mellitus (P\u2005=\u2005.018, 95%CI\u2005=\u20051.151-4.422), tumor size (P\u2005=\u2005.000, 95%CI\u2005=\u20050.677-0.841), glutamate transpeptidase (P\u2005=\u2005.003, 95%CI\u2005=\u20050.239-0.737), total bilirubin (P\u2005=\u2005.001, 95%CI\u2005=\u20050.235-0.705), and hepatitis B virus-associated infections (P\u2005=\u2005.007, 95%CI\u2005=\u20050.077-0.661) were significantly associated with AFP and PIVKA-II negativity in HCC. The prediction model had an area under curve of 0.832 (P\u2005<\u2005.001, 95%CI\u2005=\u20050.786-0.877), with a sensitivity of 81.2% and specificity of 75.5% in all HCC patients. Female diabetic patients with levels closer to normal for glutamate transpeptidase and total bilirubin are more likely to develop AFP and PIVKA-II-negative HCC. Imaging is crucial for screening liver cancer in these patients.", - "labels": [ - 0 - ] - }, - { - "text": "Epidemiologia e prevenzione \n [The study of migrant and immigrant population from the syndemic point of view]. \n The study of health of migrant and immigrant populations is of particular interest and actual in recent years, and there is a lack of research assessing aspects of aging of permanently resident immigrants, chronic non-communicable diseases, multimorbidity, and study of second generations. This contribution proposes to describe the relationship between health and immigration and their association with frailty through the anthropological concept of syndemics. Syndemics represents a set of closely interconnected and mutually enhancing health problems, significantly influencing the overall health status of a population. This occurs within the context of a perpetual pattern of harmful social conditions. Among the syndemics described in the literature, the most interesting in this area is the one concerning the increased frailty due to the interaction among diabetes, depression, immigration, and social distress, called VIDDA (Violence, Immigration, Depression, Diabetes, and Abuse), first identified in Mexican immigrant women in the United States. The main limitation of using the syndemic approach to study the health of immigrant populations is the difficulty in moving from the anthropological, primarily qualitative approach to the epidemiological-quantitative approach. Despite this, the epidemiological study of immigrant populations could benefit from the syndemic approach, because it can better describe complex causal relationships and provide evidence for modification of the clinical approach.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of diabetes science and technology \n Psychosocial Aspects of Diabetes Technologies: Commentary on the Current Status of the Evidence and Suggestions for Future Directions. \n Diabetes technologies, including continuous glucose monitors, insulin pumps, and automated insulin delivery systems offer the possibility of improving glycemic outcomes, including reduced hemoglobin A1c, increased time in range, and reduced hypoglycemia. Given the rapid expansion in the use of diabetes technology over the past few years, and touted promise of these devices for improving both clinical and psychosocial outcomes, it is critically important to understand issues in technology adoption, equity in access, maintaining long-term usage, opportunities for expanded device benefit, and limitations of the existing evidence base. We provide a brief overview of the status of the literature-with a focus on psychosocial outcomes-and provide recommendations for future work and considerations in clinical applications. Despite the wealth of the existing literature exploring psychosocial outcomes, there is substantial room to expand our current knowledge base to more comprehensively address reasons for differential effects, with increased attention to issues of health equity and data harmonization around patient-reported outcomes.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Journal of preventive medicine and hygiene \n Longitudinal trends in physical activity levels and lifetime cardiovascular disease risk: insights from the ATTICA cohort study (2002-2022). \n Promoting and maintaining regular physical activity throughout lifespan is crucial for reducing lifetime CVD risk and related risk factors. Tailored interventions addressing demographic and socioeconomic factors may help enhance cardiovascular health outcomes.", - "labels": [ - 0 - ] - }, - { - "text": "The Pan African medical journal \n Knowledge, attitudes, and practices regarding diabetic retinopathy among patients with diabetes in Dongola, Northern State, Sudan, 2022: a cross-sectional study. \n despite the good knowledge, favorable attitude and good practices, the regular eye check-up practice was significantly low. Urban residence was significantly associated with knowledge. Similarly, knowledge was found to be significantly associated with practice level. The most common barrier to regular eye check-up was the misconception that it is not important.", - "labels": [ - 0 - ] - }, - { - "text": "Cell reports \n A ONECUT1 regulatory, non-coding region in pancreatic development and diabetes. \n In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.", - "labels": [ - 0, - 2 - ] - }, - { - "text": "BMC oral health \n Association between total functional tooth unit score and hemoglobin A1c levels in Japanese community-dwelling individuals: the Nagasaki Islands study. \n In this community-based cross-sectional study, total FTU was significantly associated with HbA1c levels, independent of other risk factors. This suggests that reconstructed occlusal support areas, including dentures, are associated with glycemic control in the older population.", - "labels": [ - 0 - ] - }, - { - "text": "The science of diabetes self-management and care \n Participants' Perspectives on Diabetes Self-Management Programming at Church: Faith-Placed Versus Faith-Based Approach. \n Church holds promise as a setting for DSMES program delivery in Hispanic communities. Church-based DSMES programs using a FB approach may further facilitate program adoption and sustainability.", - "labels": [ - 0 - ] - }, - { - "text": "Cardiovascular diabetology \n Altered RBC deformability in diabetes: clinical characteristics and RBC pathophysiology. \n NCT00071526.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of the American Heart Association \n Association of Prepregnancy Cardiometabolic Health With Hypertensive Disorders of Pregnancy Among Historically Underrepresented Groups in the United States. \n Prepregnancy diabetes and obesity are associated with HDP across all racial and ethnic groups. Diabetes and obesity have highest population attributable fractions among Native Hawaiian and Other Pacific Islander individuals and should be aggressively targeted during childhood, adolescence, and young adulthood to reduce risk of HDPs.", - "labels": [ - 0 - ] - }, - { - "text": "BMJ open \n Diabetic health literacy and associated factors among patients with diabetes attending follow-up in public hospitals of Northeastern Ethiopia: a multicentre cross-sectional study. \n The study showed that less than a quarter of the patients have high DHL, with almost half having low levels of DHL. Tailoring health education programmes to diverse educational levels, incorporating multiple information sources and fostering social support networks could enhance DHL.", - "labels": [ - 0 - ] - }, - { - "text": "BMJ open \n Treatments, medical expenses and complications of hospital outpatient healthcare associated with stroke in patients with diabetes in China: a retrospective analysis of the Beijing Municipal Medical Insurance Database. \n Stroke is associated with a significant increase in complications and medications for patients with diabetes and greatly adds to the economic burden of these patients. Early identification of stroke risk factors in patients with diabetes, as well as targeted poststroke diabetes management, is crucial from a socioeconomic perspective for a comprehensive management and treatment of stroke in patients with diabetes.", - "labels": [ - 0 - ] - }, - { - "text": "BMJ open \n Exploring the decision-making experience of elderly diabetes patients regarding their health-seeking behaviour: a descriptive qualitative study. \n The health-seeking behavioural decision-making level of elderly diabetic patients is relatively low. Medical and healthcare professionals should formulate targeted intervention measures aimed at improving their disease cognition level, changing their coping styles and enhancing their health-seeking behavioural decision-making level to improve their health outcomes. Meanwhile, policymakers should plan and allocate medical resources in a targeted manner based on the needs and expectations of patients.", - "labels": [ - 0 - ] - }, - { - "text": "JMIR formative research \n Oral Diabetes Medication Videos on Douyin: Analysis of Information Quality and User Comment Attitudes. \n Despite most videos on Douyin being posted by doctors, with generally acceptable information quality and positive user comment attitudes, some content inaccuracies and poor actionability remain. Users show more positive attitudes toward videos with high-quality information about treatment choices. This study suggests that health care providers should ensure the accuracy and actionability of video content, enhance the information quality of treatment choices of oral diabetes medications to foster positive user attitudes, help users access accurate health information, and promote medication adherence.", - "labels": [ - 0 - ] - }, - { - "text": "PloS one \n Primary care physicians' perspectives on adults with diabetes and the recommended hepatitis B vaccine: A qualitative study. \n Our findings indicate that physicians are generally aware of the existence of the CDC guidelines, but not all physicians recommend the HepB vaccine to adults with diabetes. This is because of a wide variation in treatment concerning glucose monitoring or insulin injection due to varying opinions about actual risk. We also identified barriers adults with diabetes have in receiving the HepB vaccine and strategies to increase HepB vaccination.", - "labels": [ - 0 - ] - }, - { - "text": "Molecular medicine reports \n Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). \n Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non\u2011coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.", - "labels": [ - 0 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Phenotypic and molecular reanalysis of a cohort of patients with monogenic diabetes reveals a case of partial lipodystrophy due to the A8344G mutation in the mitochondrial DNA. \n Familial partial lipodystrophy (FPLD) is a very rare genetic disease characterized by insulin resistance due to a loss of subcutaneous fat from the extremities together with a progressive storage of fat around the face and neck and inside the abdomen. In over 50% of cases, molecular genetic testing reveals pathogenic variants in two nuclear genes, LMNA and PPARG. The case reported here refers to a woman phenotypically diagnosed with FPLD, who presented with diabetes and multiple cervical lipomatosis and in whom no variant had been found in the nuclear genes classically associated with this syndrome that could explain her phenotype. Genetic sequencing using a target panel containing 48 nuclear genes related to monogenic diabetes plus the whole mitochondrial genome revealed the mitochondrial variant m.A8344G in 84.1% heteroplasmy. Following molecular diagnosis, her phenotype was expanded with the recognition of additional clinical characteristics: mild sensorineural hearing loss, proximal myopathy, fatigue, cognitive impairment, sensory ataxia, cardiac abnormalities and, finally, muscle biopsy findings compatible with mitochondrial disease. Therefore, careful and detailed phenotypic and genotypic reanalysis proved crucial in improving molecular diagnosis in FPLD.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes research and clinical practice \n Nasopharyngeal carriage and antibiotic susceptibility of Streptococcus pneumoniae among diabetes patients in western Kenya. \n Nasopharyngeal carriage of S. pneumoniae is higher in patients with diabetes, with significant resistance to common antibiotics, though macrolides remain effective.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of diabetes and its complications \n Individual and joint effects of diabetes and depression on incident cardiovascular diseases and all-cause mortality: Results from a population-based cohort study. \n Individuals with both diabetes and depression had greater risk of CVD and all-cause mortality when compared to those with diabetes or depression alone, or those without either condition.", - "labels": [ - 0 - ] - }, - { - "text": "Journal of occupational and environmental medicine \n Developing a Job-Exposure Matrix for Sedentary Behavior: A Study Based on the Inpatient Clinico-Occupational Database of Rosai Hospital Group. \n The job-exposure matrix provides valuable insights into the health impacts of sedentary behavior in the workplace, underscoring significant disease risks associated with prolonged inactivity.", - "labels": [ - 0 - ] - }, - { - "text": "Diabetes \n Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes. \n The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.", - "labels": [ - 0 - ] - }, - { - "text": "Preventing chronic disease \n Prevalence of Self-Reported Diagnosed Diabetes Among Adults, by County Metropolitan Status and Region, United States, 2019-2022. \n The association of metropolitan residence with diabetes prevalence differs across US regions. These findings can help to guide efforts in areas where diabetes prevention and care resources may be better directed.", - "labels": [ - 0 - ] - }, - { - "text": "International journal of epidemiology \n Long-term exposure to PM2.5 and mortality: a national health insurance cohort study. \n This study identified the hypothesis that long-term exposure to PM2.5 is associated with mortality, and the association might be different by causes of death. Our result highlights a novel vulnerable population: the middle-aged population with risk factors related to heart failure.", - "labels": [ - 0 - ] - }, - { - "text": "Frontiers in endocrinology \n Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. \n Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu", - "labels": [ - 0 - ] - }, - { - "text": "Primary health care research & development \n Evaluating physical activities in clinical diabetes: lifestyle scores hypothesis. \n This report contributes to diabetes cardiovascular complications management. Sedentary ADL factors need integration in healthy lifestyle education especially among the elderly.", - "labels": [ - 0 - ] - }, - { - "text": "Brazilian dental journal \n Atorvastatin Accelerates Alveolar Bone Loss in Type 1 Diabetic Rats Submitted to Periodontitis. \n Periodontal bone loss is potentiated by diabetes. Despite the beneficial anti-inflammatory and antiresorptive effects of Atorvastatin (ATV) on periodontitis, it has been reported to increase the risk of diabetes, which may modify the course of periodontal disease. Therefore, this study aimed to evaluate the effect of ATV on alveolar bone in rats with periodontitis and diabetes. For this, 72 Wistar rats were divided into groups: Na\u00efve (N) not submitted to any procedure; Experimental periodontitis (EP) group submitted to ligature-induced periodontitis; diabetes mellitus (DM), submitted to EP and receiving single dose of streptozotocin (60 mg/kg, i.p.) after 12 hours of fasting; and ATV DM, submitted to EP and DM and receiving orally 27 mg/kg of ATV, 30 minutes before ligature placement, and continued daily until the 11th day. Animals from EP and DM received saline solution 0.9% as placebo. Glycemic levels measured in all animals and then were euthanized. Maxillae were collected for macroscopic, micro-tomographic, and microscopic analyses. DM caused intense bone loss (60%), characterized by a reduction in trabecular thickness and bone volume. DM reduced osteoblasts, increasing osteoclast counts, and induced an inflammatory infiltrate in the periodontium. ATV was found ineffective in protecting bone in diabetic rats, exacerbating bone loss by 21%. Additionally, ATV significantly increased blood glucose levels. In summary, ATV did not prevent alveolar bone loss or modulate inflammation in DM animals undergoing EP. ATV also increased blood glucose levels in these animals. Therefore, the systemic use of ATV in uncontrolled diabetic conditions should be carefully evaluated.", - "labels": [ - 1 - ] - }, - { - "text": "Current opinion in allergy and clinical immunology \n Expanding the spectrum of IPEX: from new clinical findings to novel treatments. \n Further research is needed to fully understand the variable clinical presentations of IPEX and optimize tailored therapies, ensuring better management and outcomes for affected individuals.", - "labels": [ - 1 - ] - }, - { - "text": "Endokrynologia Polska \n Falls in RAC-OST-POL Study: the results from 10-year prospective longitudinal observation. \n In long-term follow-up in postmenopausal women, falls were frequently observed, and their occurrence increased the fracture rate. Diabetes type 1 and depression increase the fall rate, which suggests the necessity of implementation of some preventive procedures.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes investigation \n The benefits and accuracy of real-time continuous glucose monitoring in children and adolescents with type 1 diabetes attending a summer camp. \n Rt-CGM exhibited higher usability and recommendation scores in HCPs than those in campers. This may be related to relatively lower accuracy in rt-CGM. Overall usability and recommendation are clinically satisfactory, but due to relatively low accuracy, no decision should be made based on a single, non-verified SG value alone.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetic medicine : a journal of the British Diabetic Association \n An audit and feedback-based intervention to improve diabetes management in the year after transfer to adult type 1 diabetes care: A multi-center quasi-experimental study. \n We found an effect of the intervention on glycaemic management one year following transfer to adult care. Future work will focus on refining and testing the effectiveness of the intervention in an expanded number of study sites and in collaboration with adult diabetes care providers.", - "labels": [ - 1 - ] - }, - { - "text": "BMC endocrine disorders \n Association between the soluble receptor for advanced glycation end products and diabetes mellitus: systematic review and meta-analysis. \n CRD42024521252.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Cardiovascular diabetology \n Excessive occupational sitting increases risk of cardiovascular events among working individuals with type 1 diabetes in the prospective Finnish Diabetic Nephropathy Study. \n Excessive occupational sitting is associated with a higher risk of cardiovascular events and all-cause mortality in individuals with type 1 diabetes. This association persists regardless of leisure-time physical activity, after adjusting for independently associated variables identified in our cross-sectional analyses. These findings underscore the need to update physical activity guidelines to better address sedentary behavior and improve outcomes for individuals with type 1 diabetes. Targeting occupational sitting should be considered a key focus for interventions aimed at reducing overall sedentary time.", - "labels": [ - 1 - ] - }, - { - "text": "Nature communications \n Physiological and pathogenic T cell autoreactivity converge in type 1 diabetes. \n Autoimmune diseases result from autoantigen-mediated activation of adaptive immunity; intriguingly, autoantigen-specific T cells are also present in healthy donors. An assessment of dynamic changes of this autoreactive repertoire in both health and disease is thus warranted. Here we investigate the physiological versus pathogenic autoreactive processes in the context of Type 1 diabetes (T1D) and one of its landmark autoantigens, glutamic acid decarboxylase 65 (GAD65). Using single cell gene expression profiling and tandem T cell receptor (TCR) sequencing, we find that GAD65-specific true na\u00efve cells are present in both health and disease, with GAD65-specific effector and memory responses showing similar ratios in healthy donors and patients. Deeper assessment of phenotype and TCR repertoire uncover differential features in GAD65-specific TCRs, including lower clonal sizes of healthy donor-derived clonotypes in patients. We thus propose a model whereby physiological autoimmunity against GAD65 is needed during early life, and that alterations of these physiological autoimmune processes in predisposed individuals trigger overt Type 1 diabetes.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes and its complications \n Effects of probiotics and fibers on markers of nephropathy, inflammation, intestinal barrier dysfunction and endothelial dysfunction in individuals with type 1 diabetes and albuminuria. The ProFOS Study. \n Twelve weeks treatment with synbiotic mix had no effect on UACR or on any of the secondary endpoints in subjects with type 1 diabetes and albuminuria.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of managed care & specialty pharmacy \n Comorbid depression and anxiety and their association with health care resource utilization among individuals with type 1 diabetes in the United States. \n Comorbid depression/anxiety among individuals with T1DM results in significantly higher HCRU than T1DM alone. The findings underscore the importance of effective management of comorbid depression/anxiety in the T1DM population.", - "labels": [ - 1 - ] - }, - { - "text": "Current diabetes reports \n Implementation Science and Pediatric Diabetes: A Scoping Review of the State of the Literature and Recommendations for Future Research. \n Of 23 papers identified, 19 were published since 2017 and 21 focused on type 1 diabetes. Most involved medical evidence-based practices (EBPs; n\u2009=\u200915), whereas fewer focused on psychosocial (n\u2009=\u20097) and diabetes education (n\u2009=\u20092). The majority either identified barriers and facilitators of implementing an EBP (n\u2009=\u200911) or were implementation trials (n\u2009=\u200911). Fewer studies documented gaps in EBP implementation in standard care (n\u2009=\u20097) or development of implementation strategies (n\u2009=\u20091). Five papers employed IS theories and two aimed to improve equity. There is a paucity of IS research in pediatric diabetes care literature. Few papers employed IS theory, used consistent IS terminology, or described IS strategies or outcomes. Guidance for future research to improve IS research in pediatric diabetes is offered.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Current diabetes reports \n Impact of Digitally Enabled Peer Support Interventions on Diabetes Distress and Depressive Symptoms in People Living with Type 1 Diabetes: A Systematic Review. \n We synthesized the results of nine key studies from a review of 3,623 English-language articles published between January 2012 and January 2024. Three studies demonstrated significant reductions in diabetes distress, and two studies reported reductions in depression. Data were analyzed using a narrative approach, including thematic synthesis. This process was structured around the Behavior Change Wheel framework Effective interventions shared several common features such as (1) involved participatory development approaches, (2) included diabetes education, (3) lasted over a longer time, (4) designed with a psychological framework, and (5) utilized peer mentors. Studies showed that digitally-enabled peer support has the potential to improve diabetes distress and depression among people living with T1D despite heterogeneity in intervention approaches. Moreover, designing interventions with certain features may enhance key psychosocial outcomes.", - "labels": [ - 1 - ] - }, - { - "text": "Trials \n Hypoglycaemia Prevention, Awareness of Symptoms, and Treatment (HypoPAST): protocol for a 24-week hybrid type 1 randomised controlled trial of a fully online psycho-educational programme for adults with type 1 diabetes. \n Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12623000894695 (21 August 2023).", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Body weight variability as a predictor of cardiovascular outcomes in type 1 diabetes: A nationwide cohort study. \n High BWV is associated with an increased risk of CVD and all-cause mortality in individuals with T1D, independently of canonical risk factors. Weight trends, sex and glycaemic control do not modify such association while older age attenuates it.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetologia \n The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. \n Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetologia \n Autoimmune diseases and the risk and prognosis of latent autoimmune diabetes in adults. \n We confirm that several common ADs confer an excess risk of LADA, especially LADA with higher GADA levels, but having such a comorbidity does not appear to affect the risk of diabetic retinopathy.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Diabetologia \n Exposure to antibiotics and risk of latent autoimmune diabetes in adults and type 2 diabetes: results from a Swedish case-control study (ESTRID) and the Norwegian HUNT study. \n We found no evidence that exposure to broad-spectrum antibiotics up to 10 years prior to diagnosis increases the risk of LADA. There was some indication of increased LADA risk with exposure to narrow-spectrum antibiotics, which warrants further investigation.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Current medical research and opinion \n Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care. \n The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Medicine \n Study on serum vitamin A level in patients with type 1 diabetes: A systematic review and meta-analysis. \n Serum VA levels seem to have decreased in T1DM patients. Further research is needed to strengthen this finding and clarify possible impact mechanisms.", - "labels": [ - 1 - ] - }, - { - "text": "Swiss medical weekly \n Recommendations for early identification of heart failure in patients with diabetes: Consensus statement of the Swiss Society of Endocrinology and Diabetology and the Heart Failure Working Group of the Swiss Society of Cardiology. \n Diabetes is a well-recognised risk factor for the development of heart failure, with a prevalence higher than 30% in patients with diabetes aged over 60 years. Heart failure often emerges as the primary cardiovascular manifestation in patients with type 2 diabetes and appears to be even more prevalent in type 1 diabetes. In Switzerland, there are approximately 500,000 individuals with diabetes, and the number of affected people has been steadily rising in recent years. Therefore, the consequences of heart failure will affect an increasing number of patients, further straining the Swiss healthcare system. Early lifestyle modification and initiation of appropriate treatment can prevent or at least significantly delay the onset of symptomatic heart failure by several years. These facts underscore the urgent need for early detection of individuals with subclinical heart failure, which often remains undiagnosed until the first episode of acute heart failure requiring hospital admission occurs. To address this issue, the European Society of Cardiology, the American Diabetes Association (ADA) and other international professional societies have published recommendations on heart failure screening, diagnosis and management. To address this issue in Switzerland, experts from the Swiss Society of Endocrinology and Diabetology, the Swiss Society of Cardiology and the General Internal Medicine specialty met and prepared a consensus report including a simple diagnostic algorithm for use in everyday practice.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Frontiers in immunology \n Circulating hsa-miR-320a and its regulatory network in type 1 diabetes mellitus. \n Our study presents a novel link between hsa-miR-320a-3p and T1D, and highlights its key regulatory role in the network of mRNA markers and transcription factors involved in T1D pathogenesis.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes \n Gut microbiota, serum metabolites, and lipids related to blood glucose control and type 1 diabetes. \n We identified distinct characteristics of gut microbiota, metabolites, and lipids in T1D patients exhibiting different levels of glycemic control. Through comprehensive analysis, microbiota (Bacteroides_nordii, Bacteroides_coprocola), metabolites (D-fructose), and lipids (Monoglycerides) may serve as potential mediators that communicated the interaction between the gut, circulatory systems, and glucose fluctuations in T1D patients.", - "labels": [ - 1 - ] - }, - { - "text": "The journal of medical investigation : JMI \n Difference in the accuracy of the third-generation algorithm and the first-generation algorithm of FreeStyle Libre continuous glucose monitoring device. \n No proportional bias in the measurements by Gen. 3 algorithm was observed, but in those by Gen. 1 algorithm. J. Med. Invest. 71 : 225-231, August, 2024.", - "labels": [ - 1 - ] - }, - { - "text": "BMC psychology \n Changes in health, lifestyle, and wellbeing of children with type 1 diabetes and their parents during the pandemic. \n Our findings indicate that the COVID-19 lockdown has had a significant psychological and possibly physiological impact on children with Type 1 diabetes and their parents. We conclude that there is a need for mental health support services focusing on these groups. Although full lockdown restrictions will have stopped in the past year, post-pandemic stressors may be expected to continue to adversely affect this cohort.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes and its complications \n Prevalence and clinical implications of diabetes mellitus in autoimmune nodopathies: A systematic review. \n DM patients fall under the typical clinical phenotype of autoimmune nodopathy, displaying predominantly paranodal antibodies. Early suspicion is crucial, as unlike DPN, diagnosis of autoimmune nodopathy unfolds therapeutic perspectives.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "International journal of molecular sciences \n Relationship Between C-Peptide Levels, Clinical Features, and Serum Data in a Brazilian Type 1 Diabetes Population with Large Variations in Genomic Ancestry. \n Type 1 diabetes (T1D) is a chronic disease characterized by the immune-mediated destruction of the pancreatic beta cells responsible for insulin production. The secreted insulin and C-peptide are equimolar. Due to its longer half-life, C-peptide has become a safer means of assessing the pancreatic reserve. C-peptide levels were evaluated in a population of patients with T1D, focusing on the relationship between this variable and other factors. In addition, the influence of C-peptide on metabolic control and microvascular complications was investigated. This cross-sectional study included 95 patients who had been diagnosed with T1D at least five years earlier. These patients were evaluated using a clinical demographic survey, anthropometric data, laboratory tests, and fundoscopy. This study showed that 29.5% of patients had residual insulin secretion, which correlated directly with their age at diagnosis. No statistically significant differences in metabolic control or microvascular complications were observed between the C-peptide level groups. In addition, our results indicate that ancestry does not influence the persistence of residual C-peptide function in our highly mixed population. It is recommended that future research consider incorporating new variables, such as HLA and pancreatic autoimmunity, as factors that may influence residual \u03b2-cell function.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of nanobiotechnology \n Islet cell spheroids produced by a thermally sensitive scaffold: a new diabetes treatment. \n The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet \u03b2-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic \u03b2 cells (\u03b2-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6\u00a0N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.", - "labels": [ - 1 - ] - }, - { - "text": "Scientific reports \n Causal relationships between allergic and autoimmune diseases with chronic rhinosinusitis. \n Chronic rhinosinusitis (CRS) is a prevalent inflammatory airway disease affecting over 10% of the global population, leading to considerable socio-economic impacts, especially in developing countries. The pathogenesis of CRS is multifactorial, involving potential contributions from both genetic and environmental factors. While the influence of allergic and autoimmune diseases on CRS has been observed, the causal relationships between these diseases and CRS remain unclear. We extracted data from large-scale genome-wide association studies (GWAS) and utilized a bidirectional two-sample Mendelian randomization (MR) analysis to explore the causal relationships between CRS and ten autoimmune and allergic diseases, including asthma, allergic rhinitis (AR), atopic dermatitis (AD), psoriasis, type 1 diabetes (T1D), hypothyroidism, celiac disease (CeD), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Additionally, we conducted colocalization analysis to determine whether the allergic/autoimmune diseases showing statistical causal relationships with CRS are driven by the same genetic variants. The MR analysis identified that AR (OR\u2009=\u20091.30; 95% CI\u2009=\u20091.21-1.40; P\u2009=\u20093.26E-13), asthma (OR\u2009=\u20091.35; 95% CI\u2009=\u20091.25-1.45; P\u2009=\u20091.35E-14), and AD (OR\u2009=\u20091.17; 95% CI\u2009=\u20091.06-1.30; P\u2009=\u20090.003) were significantly associated with an increased risk of developing CRS. Interestingly, psoriasis (OR\u2009=\u20090.05; 95% CI\u2009=\u20090.01-0.37; P\u2009=\u20090.004) appeared to have a protective effect against CRS. Associations for T1D and hypothyroidism were also suggestive as potential risk factors for CRS. No significant associations in the reverse MR analysis, suggesting a one-directional relationship. Colocalization analysis indicated that asthma (PP.H4\u2009=\u20090.99) shared the same genetic variant (IL-33 rs3939286) with CRS. In conclusion, our study confirmed the causal relationships between allergic and autoimmune diseases (AR, asthma, AD, and psoriasis) and CRS. Notably, we identified a shared genetic variant, rs3939286 in the IL-33 gene, between asthma and CRS, suggesting that targeting the IL-33 pathway may provide a therapeutic strategy for both diseases.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of the American Board of Family Medicine : JABFM \n Clinician-Reported Barriers and Needs for Implementation of Continuous Glucose Monitoring. \n Primary care clinicians face several challenges to prescribing CGM, but they are interested in learning more to help them offer it to their patients. This study reinforces the ongoing need for improved clinician education on CGM technology and continued expansion of insurance coverage for people with both type 1 and type 2 diabetes.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Cells \n Immunomodulatory Functions of TNF-Related Apoptosis-Inducing Ligand in Type 1 Diabetes. \n Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF protein superfamily and was initially identified as a protein capable of inducing apoptosis in cancer cells. In addition, TRAIL can promote pro-survival and proliferation signaling in various cell types. Subsequent studies have demonstrated that TRAIL plays several important roles in immunoregulation, immunosuppression, and immune effector functions. Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia due to the loss of insulin-producing \u03b2-cells, primarily driven by T-cell-mediated pancreatic islet inflammation. Various genetic, epigenetic, and environmental factors, in conjunction with the immune system, contribute to the initiation, development, and progression of T1D. Recent reports have highlighted TRAIL as an important immunomodulatory molecule with protective effects on pancreatic islets. Experimental data suggest that TRAIL protects against T1D by reducing the proliferation of diabetogenic T cells and pancreatic islet inflammation and restoring normoglycemia in animal models. In this review, we aimed to summarize the consequences of TRAIL action in T1D, focusing on and discussing its signaling mechanisms, role in the immune system, and protective effects in T1D.", - "labels": [ - 1 - ] - }, - { - "text": "Pediatric endocrinology, diabetes, and metabolism \n Guidelines of the Polish Society of Pediatric Endocrinology and Diabetology and Pediatric Section of Diabetes Poland on insulin therapy using hybrid closed-loop systems in children and adolescents with diabetes in Poland. \n Currently, hybrid closed loop (HCL) systems represent the most advantageous therapeutic option for people with diabetes requiring intensive insulin therapy. They make it possible to achieve optimal metabolic control of the disease in any age group while improving the quality of life of children and adolescents with diabetes and their families. Therefore, we present recommendations for the use of HCL systems in children and adolescents focusing on systems currently available in Poland. These systems should be the first choice in terms of method of insulin therapy in the paediatric population. They can be implemented at any stage of diabetes management. These recommendations are based on scientific evidence and experts' experience. They include principles for the initiation, optimisation, and ongoing management of HCL therapy, as well as the required HCL-related education.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of pediatric psychology \n Barriers to healthy behaviors: perspectives from teens with comorbid Type 1 diabetes and overweight/obesity, caregivers, and pediatric endocrinologists. \n Results identify perceived limitations to engaging in recommended healthy lifestyle behaviors and diabetes management concurrently. Results may assist research and clinical care in identifying supports and guidance needed to support adolescents in meeting behavioral recommendations for their health.", - "labels": [ - 1 - ] - }, - { - "text": "Nature reviews. Endocrinology \n The epidemiology of type 1 diabetes mellitus in older adults. \n Although type 1 diabetes mellitus (T1DM) is traditionally viewed as a youth-onset disorder, the number of older adults being diagnosed with this disease is growing. Improvements in the average life expectancy of people with T1DM have also contributed to the growing number of older people living with this disease. We summarize the evidence regarding the epidemiology (incidence, prevalence and excess mortality) of T1DM in older adults (ages \u226560 years) as well as the genetics, immunology and diagnostic challenges. Several studies report an incidence peak of T1DM in older adults of a similar size to or exceeding that in children, and population prevalence generally increases with increasing age. Glutamic acid decarboxylase antibody positivity is frequently observed in adult-onset T1DM. Guidelines for differentiating T1DM from type 2 diabetes mellitus in older adults recommend measuring levels of C-peptide and autoantibodies, including glutamic acid decarboxylase antibodies. However, there is no gold standard for differentiating T1DM from type 2 diabetes mellitus in people aged 60 years and over. As such, the global variation observed in T1DM epidemiology might be in part explained by misclassification, which increases with increasing age of diabetes mellitus onset. With a growing global population of older adults with T1DM, improved genetic and immunological evidence is needed to differentiate diabetes mellitus type at older ages so that a clear epidemiological picture can emerge.", - "labels": [ - 1 - ] - }, - { - "text": "Psychotherapie, Psychosomatik, medizinische Psychologie \n [Patients with Diabetes Mellitus and Comorbid Mental Disorders - Is there a Psychotherapeutic Undertreatment? - Results of the DiMPS Study]. \n Equating the frequency of mental disorders with the need for psychotherapeutic and/or psychopharmacological treatment without considering the specific treatment needs and preferences of patients may lead to an overestimation of the need for care.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Diabetes technology & therapeutics \n Possible Glycemic Effects of Vagus Nerve Stimulation Evaluated by Continuous Glucose Monitoring in People with Diabetes and Autonomic Neuropathy: A Randomized, Sham-Controlled Trial. \n ", - "labels": [ - 1, - 2 - ] - }, - { - "text": "PloS one \n Association of variants in AGTR1, ACE, MTHFR genes with microalbuminuria and risk factors for the onset of diabetic nephropathy in adolescents with type 1 diabetes in the population of Serbia. \n Our data suggest that common variants in the AGTR1, ACE, and MTHFR genes are not strongly associated with diabetic nephropathy in our patients with type 1 diabetes.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes \n Emerging Concepts and Success Stories in Type 1 Diabetes Research: A Road Map for a Bright Future. \n Type 1 diabetes treatment stands at a crucial and exciting crossroad since the 2022 U.S. Food and Drug Administration approval of teplizumab to delay disease development. In this article, we discuss four major conceptual and practical issues that emerged as key to further advancement in type 1 diabetes research and therapies. First, collaborative networks leveraging the synergy between the type 1 diabetes research and care community members are key to fostering innovation, know-how, and translation into the clinical arena worldwide. Second, recent clinical trials in presymptomatic stage 2 and recent-onset stage 3 disease have shown the promise, and potential pitfalls, of using immunomodulatory and/or \u03b2-cell protective agents to achieve sustained remission or prevention. Third, the increasingly appreciated heterogeneity of clinical, immunological, and metabolic phenotypes and disease trajectories is of critical importance to advance the decision-making process for tailored type 1 diabetes care and therapy. Fourth, the clinical benefits of early diagnosis of \u03b2-cell autoimmunity warrant consideration of general population screening for islet autoantibodies, which requires further efforts to address the technical, organizational, and ethical challenges inherent to a sustainable program. Efforts are underway to integrate these four concepts into the future directions of type 1 diabetes research and therapy.", - "labels": [ - 1 - ] - }, - { - "text": "BMC health services research \n Bridging the gap: a qualitative process evaluation from the perspectives of healthcare professionals of an audit-and-feedback-based intervention to improve transition to adult care for young people living with type 1 diabetes. \n BTG resulted in a CoP among practitioners delivering transition care to youth with T1D, which could be scaled up to promote a learning health system in pediatric diabetes care. Qualitative process evaluation is a useful tool for understanding how contextual factors affect the implementation and outcomes of complex QI interventions.", - "labels": [ - 1 - ] - }, - { - "text": "Scientific reports \n The effect of war and siege on children with diabetes admitted to ayder comprehensive specialized hospital in mekelle, tigray, ethiopia: a cross-sectional study. \n The armed conflict in Tigray, which spanned from November 2020 to November 2022, along with the accompanying siege, led to the near-total collapse of Tigray's healthcare system. Type 1 Diabetes Mellitus, the most common chronic condition in children, requires significant lifestyle adjustments, including daily insulin injections, regular glucose monitoring, and dietary modifications; all of which are severely impacted by war and siege. This study compared Type 1 diabetes care for children at the Ayder Comprehensive Specialized Hospital, Tigray, during the conflict and siege period with that of the pre-war period. We conducted a retrospective cross-sectional survey, analyzing data from September 2019 to August 2020 (pre-war period) and comparing it with data from September 2021 to August 2022 (war and siege period). Descriptive statistics, including frequencies and percentages, were employed, and Pearson's or Spearman's correlation analyses were used to evaluate correlations where appropriate. We identified 143 pediatric patients admitted (56 during the pre-war period and 87 during the war and siege period), with a mean age of 109 months in both periods. During the war and siege, a higher proportion of diabetes admissions were due to diabetic ketoacidosis (DKA) (90%) compared to the pre-war period (75%). In the pre-war period, the most common trigger for DKA was infections (35%), while in the war and siege period, it shifted to malnutrition (47%), infections (46%), lack of access to healthcare facilities (31%), and running out of medicines (24%). Complications such as death, renal failure, cerebral edema, and shock were more prevalent during the war and siege periods. The case fatality rate was significantly higher during the war and siege (9%) compared to the pre-war period (0%), correlating strongly with the severity of DKA, the degree of hypokalemia, the presence of complications, and admission during the war and siege. Our study showed the negative impact of war and siege on diabetes care in children demonstrating a high rate of DKA admissions with increased severity, complications, malnutrition, and case fatality rates. People with diabetes especially type 1 deserve great attention during such a crisis as the lack of insulin could lead to severe complications including death.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes research and clinical practice \n Time in range and mean glucose cut-off points for reduction of fetal outcomes in pregnant women with type 1 diabetes using automated insulin delivery systems. \n TIRp\u00a0>\u00a059.1\u00a0% and mean glucose\u00a0<\u00a0133\u00a0mg/dl in the second trimester, is associated with lower fetal outcomes of large for gestational age. One of the strategies that would improve TIRp is the early use of AHCL systems. Further studies are needed before a strong recommendation can be made.", - "labels": [ - 1 - ] - }, - { - "text": "Georgian medical news \n EVALUATION OF DENTAL AND PERIODONTAL STATUS IN CHILDREN WITH TYPE 1 DIABETES MELLITUS. \n Children with T1DM exhibit poor oral health conditions related to the level of metabolic control. Maintenance of toothbrushing habits and regular dental check-ups recommended to manage and prevent these complications. Additionally, proper management of metabolic control can also help mitigate the adverse effects on oral health.", - "labels": [ - 1 - ] - }, - { - "text": "Cardiovascular diabetology \n Evaluation of the Steno Type 1 Risk Engine in predicting cardiovascular events in an ethnic mixed population of type 1 diabetes mellitus and its association with chronic microangiopathy complications. \n ST1RE performed well in predicting CV events at 5 and 10 years of follow-up. Moreover, higher ST1RE scores were associated with the progression of microangiopathy complications in this genetically heterogeneous T1D population.", - "labels": [ - 1 - ] - }, - { - "text": "Nature communications \n Uncovering genetic loci and biological pathways associated with age-related cataracts through GWAS meta-analysis. \n Age-related cataracts is a highly prevalent eye disorder that results in the clouding of the crystalline lens and is one of the leading causes of visual impairment and blindness. The disease is influenced by multiple factors including genetics, prolonged exposure to ultraviolet radiation, and a history of diabetes. However, the extent to which each of these factors contributes to the development of cataracts remains unclear. Our study identified 101 independent genome-wide significant loci, 57 of which are novel. We identified multiple genes and biological pathways associated with the cataracts, including four drug-gene interactions. Our results suggest a causal association between type 1 diabetes and cataracts. Also, we highlighted a surrogate measure of UV light exposure as a marker of cataract risk in adults.", - "labels": [ - 1 - ] - }, - { - "text": "Brain research \n Quantification of white matter hyperintensities in type 1 diabetes and its relation to neuropathy and clinical characteristics. \n Our findings indicate increased burden of periventricular WMHs in diabetes which were associated to DPN severity and measurements reflecting neurodegeneration. Deep WMHs, often considered as chronic ischemic, were not significantly different. Mechanisms reflecting neurodegeneration and accelerated brain aging could be an overlooked aspect of peripheral and central neuropathy.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes and its complications \n Subcutaneous rapid-acting insulin analogues in mild to moderate diabetic ketoacidosis: A meta-analysis of randomized controlled trials. \n In this meta-analysis of eight RCTs we found that SC RAIAs and regular IV insulin are comparable in resolving mild to moderate DKA in children and adults. PROSPERO registration: CRD42023485032.", - "labels": [ - 1 - ] - }, - { - "text": "PloS one \n Type 1 diabetes and parasite infection: An exploratory study in NOD mice. \n Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.", - "labels": [ - 1 - ] - }, - { - "text": "The Journal of clinical investigation \n Attenuated kidney oxidative metabolism in young adults with type 1 diabetes. \n BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HCs, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, and GBM, and lower insulin sensitivity and cortical oxidative metabolism.CONCLUSIONThese early structural and metabolic changes in T1D kidneys may precede clinical DKD.TRIAL REGISTRATIONClinicalTrials.gov NCT04074668.FUNDINGUniversity of Michigan O'Brien Kidney Translational Core Center grant (P30 DK081943); CROCODILE studies by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (P30 DK116073), Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2019-845-S-B), Boettcher Foundation, Intramural Research Program at NIDDK and Centers for Disease Control and Prevention (CKD Initiative) under Inter-Agency Agreement #21FED2100157DPG.", - "labels": [ - 1 - ] - }, - { - "text": "Annals of medicine \n Increased purchases of prescription medicines in offspring of women with type 1 diabetes: a Finnish register-based cohort study between 1995 and 2018. \n Our findings suggest that exposed offspring purchase more reimbursable prescription medicines than reference offspring from age seven to thirty years. More research is needed to examine the effects of intrauterine exposure to hyperglycemia on long-term health in offspring.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n The associations between functional vitamin K status and all-cause mortality, cardiovascular disease and end-stage kidney disease in persons with type 1 diabetes. \n In persons with type 1 diabetes, lower vitamin K status was associated with higher mortality, CVD and progression to ESKD, however, not after adjustment for other risk factors. Interventional studies are needed to elucidate the role of vitamin K in persons with type 1 diabetes.", - "labels": [ - 1 - ] - }, - { - "text": "JPMA. The Journal of the Pakistan Medical Association \n Assessment of growth status in children and adolescents with type 1 diabetes mellitus in Baghdad: a case-control study. \n Children with type 1 diabetes mellitus had significantly lower mean height, weight and body mass index Z scores compared to their counterparts in the control group. Pubertal age group, poor glycaemic control, longer disease duration, and using conventional insulin regimen were the factors affecting growth parameters.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes research and clinical practice \n Beyond the insulin pump: Unraveling diabetes tech dependency. \n The use of technology for Type 1 diabetes (T1D) has significantly developed in the last 20\u00a0years leading to several benefits in life-style management but also to potentially overreliance and addiction to such life changing devices. Insulin pumps (CSII) being small, discreet and sophisticated, offer features such as customizable basal rates, bolus calculators and integration with Continuous Glucose Monitoring (CGM) systems becoming a must have for diabetic patients. Indeed CGM, firstly introduced in the late 1990s and now being highly sophisticated provide trends and patterns hence allowing a better management of T1D. In this review we inquire the multifactorial aspects of dependency on diabetes technology, focusing not only on the benefits and the advancements these automations offer, but also the challenges, limits and possible risks associated with overreliance on them. Specifically, the impact that early introduction to technology had on patients, the dependency on CSII and CGM, the importance of learning and self-management skills and strategies for addressing unexpected events.", - "labels": [ - 1 - ] - }, - { - "text": "JMIR formative research \n Feasibility and Acceptability of a Self-Guided Digital Family Skills Management Intervention for Children Newly Diagnosed With Type 1 Diabetes: Pilot Randomized Controlled Trial. \n ClinicalTrials.gov NCT03720912; https://clinicaltrials.gov/study/NCT03720912.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetic medicine : a journal of the British Diabetic Association \n The diabetes annual review in a postal box: A qualitative study exploring the views of people living with diabetes (DiaBox-Qual). \n Postal boxes for annual reviews were well-received by those living with diabetes. Designed well, they have the potential to overcome more than just the physical barriers to annual review attendance.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Medicine \n Exploring the mechanism of comorbidity in patients with T1DM and COVID-19: Integrating bioinformatics and Mendelian randomization methods. \n During the coronavirus disease 2019 (COVID-19) pandemic, the incidence of type 1 diabetes mellitus (T1DM) has increased. Additionally, evidence suggests that individuals with diabetes mellitus may have increased susceptibility to severe acute respiratory syndrome coronavirus 2 infection. However, the specific causal relationships and interaction mechanisms between T1DM and COVID-19 remain unclear. This study aims to investigate the causal relationship between T1DM and COVID-19, utilizing differential gene expression and Mendelian randomization analyses. Differentially expressed gene sets from datasets GSE156035 and GSE171110 were intersected to identify shared genes, analyzed for functional enrichment. Mendelian randomization models were employed to assess causal effects, revealing no direct causal link between T1DM and COVID-19 in the European population (P\u2005>\u2005.05). Notably, DNA replication and sister chromatid cohesion 1 (DSCC1) showed negative causal associations with both diseases (T1DM: OR\u2005=\u20050.943, 95% CI: 0.898-0.991, P\u2005=\u2005.020; COVID-19: OR\u2005=\u20050.919, 95% CI: 0.882-0.958, P\u2005<\u2005.001), suggesting a protective effect against their comorbidity. This genetic evidence highlights DSCC1 as a potential target for monitoring and managing the co-occurrence of T1DM and COVID-19.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes science and technology \n Psychosocial Aspects of Diabetes Technologies: Commentary on the Current Status of the Evidence and Suggestions for Future Directions. \n Diabetes technologies, including continuous glucose monitors, insulin pumps, and automated insulin delivery systems offer the possibility of improving glycemic outcomes, including reduced hemoglobin A1c, increased time in range, and reduced hypoglycemia. Given the rapid expansion in the use of diabetes technology over the past few years, and touted promise of these devices for improving both clinical and psychosocial outcomes, it is critically important to understand issues in technology adoption, equity in access, maintaining long-term usage, opportunities for expanded device benefit, and limitations of the existing evidence base. We provide a brief overview of the status of the literature-with a focus on psychosocial outcomes-and provide recommendations for future work and considerations in clinical applications. Despite the wealth of the existing literature exploring psychosocial outcomes, there is substantial room to expand our current knowledge base to more comprehensively address reasons for differential effects, with increased attention to issues of health equity and data harmonization around patient-reported outcomes.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Frontiers in endocrinology \n A novel class of oral, non-immunosuppressive, beta cell-targeting, TXNIP-inhibiting T1D drugs is emerging. \n Diabetes treatment options have improved dramatically over the last 100 years, however, close to 2 million individuals in the U.S. alone live with type 1 diabetes (T1D) and are still dependent on multiple daily insulin injections and/or continuous insulin infusion with a pump to stay alive and no oral medications are available. After decades of focusing on immunosuppressive/immunomodulatory approaches for T1D, it has now become apparent that at least after disease onset, this by itself may not be sufficient, and in order to be effective, therapies need to also address beta cell health. This Perspective article discusses the emergence of such a beta cell-targeting, novel class of oral T1D drugs targeting thioredoxin-interacting protein (TXNIP) and some very recent advances in this field that start to address this unmet medical need. It thereby focuses on repurposing of the antihypertensive drug, verapamil found to non-specifically inhibit TXNIP and on TIX100, a new chemical entity specifically developed as an oral anti-diabetic drug to inhibit TXNIP. Both have shown striking anti-diabetic effects in preclinical studies. Verapamil has also proven to be beneficial in adults and children with recent onset T1D, while TIX100 has just been cleared by the U.S. Food and Drug Administration (FDA) to proceed to clinical trials. Taken together, we propose that such non-immunosuppressive, adjunctive therapies to insulin, alone or in combination with immune modulatory approaches, are critical in order to achieve effective and durable disease-modifying treatments for T1D.", - "labels": [ - 1 - ] - }, - { - "text": "Nursing & health sciences \n A Qualitative Evidence Synthesis of Continuous Subcutaneous Insulin Infusion: Acceptability, Implementation, Equity. \n This work provides a synthesis of the perceptions of people with type 1 diabetes mellitus (T1DM) and healthcare professionals about the acceptability, implementation, and equity of continuous subcutaneous insulin infusion (CSII). A qualitative evidence synthesis was carried out. Three online databases (Medline, Embase, and Web of Science) were searched. Qualitative articles which were available in Spanish or English were included. A descriptive thematic synthesis was conducted according to PRISMA and ENTREQ guidelines. Thirty-two references met the inclusion criteria of the study and were included out of an initial 345 identified references. Seven main themes were identified: (a) acceptability, (b) adaptation to the insulin pump, (c) facilitators for the adequate use of insulin pump, (d) variability of acceptability, (e) barriers for the use of insulin pump, (f) feasibility and implementation considerations, and (g) equity. CSII is well accepted by most people with T1DM, with some exceptions. CSII can relieve management burden, increase autonomy and flexibility and improve family relationships. There were multiple perceived barriers to its continued use. Future studies should continue to analyze inequalities in access and use of the CSII.", - "labels": [ - 1 - ] - }, - { - "text": "Medical engineering & physics \n Platform for precise, personalised glucose forecasting through continuous glucose and physical activity monitoring and deep learning. \n Emerging research has demonstrated the advantage of continuous glucose monitoring for use in artificial pancreas and diabetes management in general. Recent studies demonstrate that glucose level forecasting using deep learning can help avoid postprandial hyperglycemia (\u2265 180 mg/dL) or hypoglycemia (\u226470 mg/dL) from delayed or increased insulin dosing in artificial pancreas. In this paper, a novel hybrid deep learning framework with integration of content-based attention learning is presented, to effectively predict the glucose measurements with prediction horizons (PH) = 15, 30 and, 60 minutes for T1D and T2D patients based on past data. We also present a complete cloud-based system and mobile app used for collecting CGM sensor, physical activity data, CHO values and insulin measurements to perform glucose forecasts using the proposed model running on Cloud. This model was validated using clinical data of individual with Type 1 diabetes (OhioT1DM) and individual with Type 2 diabetes. The mean absolute relative difference (MARD) was 12.33\u00b13.15, 7.14\u00b11.76% for PH=60 and, 30 min respectively on OhioT1DM clinical Dataset. The root mean squared error (RMSE) was 29.41\u00b15.92 mg/dL and 17.19\u00b13.22 mg/dL and the mean absolute error (MAE) was 21.96\u00b14.67 mg/dL and 12.58\u00b12.34 mg/dL for PH=60 and, 30 min respectively on the same clinical dataset. It was observed that inclusion of physical activity leads to improved glucose forecasting accuracy. Furthermore, all these results were obtained by training the model on only 8 days of clinical data of a single patient, followed by testing on clinical data on the following days. The results indicate that training on a single patient data may lead to better personalisation and better glucose forecasting results compared to existing works.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Psychiatry research \n Impact of mental disorders on the all-cause mortality and cardiovascular disease outcomes in adults with new-onset type 1 diabetes: A nationwide cohort study. \n Mental disorders are associated with an elevated risk of all-cause mortality and CVD in adults with newly diagnosed type 1 diabetes. Early detection and greater attention to premature death and CVD development are required in patients with new-onset type 1 diabetes and mental disorders.", - "labels": [ - 1 - ] - }, - { - "text": "Placenta \n Gene expression profiles in placenta and their association with anesthesia, delivery mode and maternal diabetes. \n The findings reveal suppression of immune pathways and upregulation of ribosome activity in the placenta by maternal diabetes highlighting the importance of confounding factors when examining cell and tissue expression profiles. Further studies should determine whether the observed gene expression differences are related to underlying causes for cesarean section deliveries.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes and its complications \n All-cause mortality and factors associated with it in Finnish patients with type 1 diabetes. \n There's substantial excess mortality due to DM1 in Finland. Interventions should focus on addressing both renal and cardiovascular risk factors but also pay more attention to mental health.", - "labels": [ - 1 - ] - }, - { - "text": "Molecular biology reports \n Association of polymorphism of NLRP3, ICAM-1, PTPN22, INS genes in childhood onset type 1 diabetes in a Pakistani population. \n The present study provides evidence that SNPs in the PTPN22, INS, NLRP3, and ICAM-1 genes are associated with the development of T1D. Further research is needed to explore their potential use in genetic screening and personalized medication.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of diabetes and its complications \n Characterizing the relationship between social determinants of health and risk of albuminuria among children with type 1 diabetes. \n In a cohort of 2303 children with type 1 diabetes (T1D), we found that non-English speaking status (HR 2.82, 95% CI 1.54-5.18) and public insurance (HR 1.48, 95% CI 1.07-2.05) were associated with an increased risk of incident albuminuria, after adjusting for T1D-related variables (age, hemoglobin A1c, diabetic ketoacidosis episodes with acute kidney injury).", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes care \n Efficacy and Safety of a Tubeless AID System Compared With Pump Therapy With CGM in the Treatment of Type 1 Diabetes in Adults With Suboptimal Glycemia: A Randomized, Parallel-Group Clinical Trial. \n Use of the tubeless AID system led to improved glycemic outcomes compared with pump therapy with CGM among adults with type 1 diabetes, underscoring the clinical benefit of AID and bolstering recommendations to establish AID systems as preferred therapy for this population.", - "labels": [ - 1 - ] - }, - { - "text": "The Journal of international medical research \n Factors associated with severe diabetic ketoacidosis in patients diagnosed with type 1 diabetes: a decade-long cross-sectional analysis. \n The present findings highlight the need for improving awareness about diabetes symptoms among physicians and the public to reduce the occurrence and severity of DKA at the onset of T1DM.", - "labels": [ - 1 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Decoding the relationship between cow's milk proteins and development of type 1 diabetes mellitus. \n The findings of this study provide further evidence for a potential role of cow's milk proteins in triggering T1DM. The in silico analysis suggests that molecular mimicry mechanisms between cow's milk proteins and human beta-cell antigens may contribute to the autoimmune response leading to T1DM.", - "labels": [ - 1 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Clinical screening for GCK-MODY in 2,989 patients from the Brazilian Monogenic Diabetes Study Group (BRASMOD) and the Brazilian Type 1 Diabetes Study Group (BrazDiab1SG). \n This study identified a highly accurate (98%) composite model for differentiating GCK-MODY and T1D. This model may help clinicians select patients for genetic evaluation of monogenic diabetes, enabling them to implement correct treatment without overusing limited resources.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Whom should we target? A brief report on a prospective study to identify predictors of mental health and self-care worsening in patients with diabetes mellitus during the COVID-19 pandemic. \n Some clinical and socioeconomic characteristics may be suitable for identifying patients at higher risk of mental health and self-care worsening, signaling who needs to be monitored more closely during crisis situations.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Clinical features most frequently present in patients with concomitant diabetic kidney disease and diabetic retinopathy. \n Among patients with DKD and type 2 diabetes, insulin use, longer diabetes duration, and higher systolic blood pressure level were associated with the presence of DR.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Euglycemic diabetic ketoacidosis in a patient with new-onset type 1 diabetes following a ketogenic diet: a potential risk of a dangerous dietary trend. \n Euglycemic diabetic ketoacidosis (DKA) is a rare complication of diabetes mellitus (DM) characterized by metabolic acidosis, ketosis, and blood glucose levels < 250 mg/dL. The prevalence of euglycemic DKA is increasing with the popularity of ketogenic (low-carbohydrate) diets. We present herein the case of a patient with newly diagnosed type 1 DM who developed euglycemic DKA following a ketogenic diet. A 22-year-old woman presented to the emergency department with malaise, fatigue, nausea, and vomiting. She had no family history of DM. She had consulted her primary care physician 2 weeks before due to hair loss, numbness, and tingling sensation in her fingertips. Her fasting blood glucose was 205 mg/dL at that time. Reluctant to use medication to control her blood glucose levels, she started a ketogenic diet. On admission, she was conscious, oriented, cooperative, and tachycardic. Her body mass index was 17.6 kg/m", - "labels": [ - 1 - ] - }, - { - "text": "Archives of endocrinology and metabolism \n Underreporting of diabetes mellitus as the cause of death in Bauru, State of S\u00e3o Paulo, Brazil over 40 years: a documental study. \n The underreporting of DM as the cause of death was very frequently found, and was associated with male gender, decade of death, shorter DM duration and DM2. If our data could be applied to the whole country, DM would possibly emerge as a more prominent cause of death in Brazil. Future studies in other cities and geographic regions are warranted to confirm our findings.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Gut microbes \n Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. \n Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Journal of medical case reports \n Treatment switch from multiple daily insulin injections to sulphonylureas in an African young adult diagnosed with HNF1A MODY: a case report. \n This case reveals that HNF1A maturity onset diabetes of the young (and probably other causes of monogenic diabetes) can present in sub-Saharan Africa. A diagnosis of maturity onset diabetes of the young can have significant life-changing therapeutic implications.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Cardiovascular diabetology \n Unseen threat: how subclinical atherosclerosis increases mortality risk in patients with type 1 diabetes. \n Subclinical atherosclerosis is independently associated with increased overall mortality and MACE in patients with type 1 diabetes. Identifying clinical predictors can improve risk stratification and personalised therapeutic strategies to prevent MACEs in this high-risk population.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of molecular medicine (Berlin, Germany) \n Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches. \n For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of molecular histology \n Type I Diabetes Mellitus impairs cytotoxic immunity through CEACAM5 upregulation in colorectal cancer : Exploring the intersection of autoimmune dysfunction and cancer progression: the role of NF-\u03baB p65 in colorectal cancer. \n Type 1 diabetes (T1D) is characterized by an autoimmune-mediated destruction of pancreatic beta cells and a chronic inflammatory state, which may influence the progression of colorectal cancer (CRC) through immune system dysregulation and enhanced tumor immune evasion. This study aims to elucidate the role of p65 in modulating the tumor microenvironment in CRC within the context of T1D and to determine how this modulation affects tumor growth, immune cell infiltration, and the expression of immune evasion molecules such as CEACAM5. NOD mice, which model T1D, were inoculated with MC38 colon carcinoma cells engineered to knock down p65. Tumor growth was monitored, and the tumor microenvironment was analyzed using flow cytometry to assess the infiltration of immune cells. The expression of Ki-67 and CEACAM5 in tumor cells was also evaluated. Additionally, in vitro assays were conducted to study the proliferation and activation of T cells co-cultured with tumor cells. Knockdown of p65 in tumor cells significantly inhibited tumor growth in NOD mice. This was accompanied by an increased infiltration of cytotoxic CD8+ T cells and no significant change in CD4+\u2009or Foxp3\u2009+ T regulatory cells within the tumor microenvironment. There was a notable reduction in the expression of Ki-67 and CEACAM5, indicating decreased proliferation and potential immune evasion capabilities of the tumor cells. Our findings demonstrate that the NF-\u03baB p65 subunit plays a crucial role in promoting tumor growth and modulating the immune microenvironment in CRC, particularly in the context of T1D. Knocking down p65 not only reduces tumor progression but also enhances the anti-tumor immune response by decreasing immune evasion mechanisms. These results suggest that targeting the NF-\u03baB pathway may be a viable strategy to improve the efficacy of cancer immunotherapy, especially in patients with autoimmune diseases like T1D. Physical activity enhances the effect of immune checkpoint blockade by inhibiting the intratumoral HIF1-\u03b1/CEACAM5 axis.", - "labels": [ - 1 - ] - }, - { - "text": "Antiviral research \n Vemurafenib inhibits the replication of diabetogenic enteroviruses in intestinal epithelial and pancreatic beta cells. \n Enteroviruses, which infect via the gut, have been implicated in type 1 diabetes (T1D) development. Prolonged faecal shedding of enterovirus has been associated with islet autoimmunity. Additionally, enteroviral proteins and viral RNA have been detected in the pancreatic islets of individuals with recent-onset T1D, implicating their possible role in beta cell destruction. Despite this, no approved antiviral drugs currently exist that specifically target enterovirus infections for utilisation in disease interventions. Drug repurposing allows for the discovery of new clinical uses for existing drugs and can expedite drug discovery. Previously, the cancer drug Vemurafenib demonstrated unprecedented antiviral activity against several enteroviruses. In the present study, we assessed the efficacy of Vemurafenib and an analogue thereof in preventing infection or reducing the replication of enteroviruses associated with T1D. We tested Vemurafenib in intestinal epithelial cells (IECs) and insulin-producing beta cells. Additionally, we established a protocol for infecting human stem cell-derived islets (SC-islets) and used Vemurafenib and its analogue in this model. Our studies revealed that Vemurafenib exhibited strong antiviral properties in IECs and a beta cell line. The antiviral effect was also seen with the Vemurafenib analogue. SC-islets expressed the viral receptors CAR and DAF, with their highest expression in insulin- and glucagon-positive cells, respectively. SC-islets were successfully infected by CVBs and the antiviral activity of Vemurafenib and its analogue was confirmed in most SC-islet batches. In summary, our observations suggest that Vemurafenib and its analogue warrant further exploration as potential antiviral agents for the treatment of enterovirus-induced diseases, including T1D.", - "labels": [ - 1 - ] - }, - { - "text": "The lancet. Diabetes & endocrinology \n Continuous glucose sensor accuracy: beyond the headline metric. \n The promotion of continuous glucose monitoring (CGM) to standard of care for type 1 diabetes and insulin-treated type 2 diabetes reflects a robust and wide evidence base for the technology's effectiveness supported by real-world efficacy data. Multiple CGM devices are available worldwide and are marketed, in part, based on accuracy data. In this Viewpoint, we argue that accuracy metrics are no longer a point of difference between CGM devices as almost all exceed an acceptable threshold. We also argue that domains of standardisation, clinical outcomes, and sustainability should now be given primacy as CGM devices seek to be implemented for new indications. These domains are key for the success of the next generation of CGM devices. Additionally, we discuss the need to address inequalities in accessing clinically impactful technologies.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Diabetes care \n Eighteen-Month Hybrid Closed-Loop Use in Very Young Children With Type 1 Diabetes: A Single-Arm Multicenter Trial. \n Use of the Cambridge hybrid CL system led to sustained improvements in glycemic control lasting more than 18 months in very young children with T1D.", - "labels": [ - 1 - ] - }, - { - "text": "Scientific reports \n Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes. \n Type-1 diabetes (T1D) is an autoimmune disorder characterized by impaired insulin release by islet \u03b2 cells. It has been shown that proinflammatory cytokines released during the disease can exacerbate the condition, while anti-inflammatory cytokines offer protection. This study analyzed the clinical role of interleukin (IL)-6, -8, -10, and vitamin D levels in T1D patients compared to healthy controls. The levels of IL-6, IL-8, IL-10, and vitamin D in the participants' serum samples were analyzed using ELISA. The findings showed that T1D patients had significantly increased levels (p\u2009<\u20090.0001) of fasting blood glucose, HbA1c, systolic blood pressure, low-density lipoprotein, triglycerides, cholesterol, and very low-density lipoprotein and decreased levels of high-density lipoprotein and vitamin D (p\u2009<\u20090.0001) compared to healthy controls. Moreover, the levels of IL-6, IL-8, and IL-10 were also significantly greater (p\u2009<\u20090.0001) in T1D patients. The study also determined the significance of these cytokines among T1D patients and healthy controls using ROC curves. Furthermore, we found that smokers had significantly higher levels of IL-6 (p\u2009=\u20090.01) and IL-8 (p\u2009=\u20090.003) than non-smokers. These results showed that elevated levels of IL-6, IL-8, and IL-10, decreased vitamin D levels, and smoking among T1D participants could contribute to the worsening of T1D disease and could serve as predictive indicators.", - "labels": [ - 1 - ] - }, - { - "text": "Acta paediatrica (Oslo, Norway : 1992) \n Low-carbohydrate diet proved effective and safe for youths with type 1 diabetes: A randomised trial. \n Both diets improved glycaemic outcomes in adolescents and youths with type 1 diabetes, without increasing hypoglycaemia or cardiovascular risk factors, indicating comparable safety and efficacy.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Use of continuous glucose monitoring and hybrid closed-loop therapy in pregnancy. \n Continuous glucose monitoring (CGM) has led to a paradigm shift in the management of pregnant women with type 1 diabetes (T1D), with improved glycaemic control, less hypoglycaemia and fewer pregnancy complications. Data on CGM use in pregnant women with type 2 diabetes (T2D) are limited. A large randomized controlled trial (RCT) on CGM use in people with T2D in pregnancy is ongoing. Small studies on CGM use in women with gestational diabetes (GDM) have suggested improved glycaemic control and better qualification when insulin is needed. However, none of these studies was powered to evaluate pregnancy outcomes. Several large RCTs are ongoing in women with GDM. In addition to CGM, other technologies, such as advanced hybrid closed-loop (AHCL) systems have further improved glycaemic management in people with T1D. AHCL therapy adapts insulin delivery via a predictive algorithm integrated with CGM and an insulin pump. A large RCT with the AHCL CamAPS\u00ae FX demonstrated a 10% increase in time in range compared to standard insulin therapy in a pregnant population with T1D. Recently, an RCT of an AHCL system not approved for use in pregnancy (780G MiniMed) has also demonstrated additional benefits of AHCL therapy compared to standard insulin therapy, with improved time in range overnight, less hypoglycaemia and improved treatment satisfaction. More evidence is needed on the impact of AHCL therapy on maternal and neonatal outcomes and on which glycaemic targets with CGM should be used in pregnant women with T2D and GDM. We review the current evidence on the use of CGM and AHCL therapy in pregnancy.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Frontiers in immunology \n TNF-\u03b1 inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial. \n Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing \u03b2-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate \u03b2-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived \u03b2-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving \u03b2-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-\u03b1) inhibitors have demonstrated efficacy at preserving \u03b2-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-\u03b1 inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-\u03b1 inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-\u03b1 inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-\u03b1 inhibitors in T1D and considerations for strategies collectively identified to advance TNF-\u03b1 inhibitors beyond phase 2 clinical studies for stage 3 T1D.", - "labels": [ - 1 - ] - }, - { - "text": "Frontiers in endocrinology \n Clinical perspective on innovative insulin delivery technologies in diabetes management. \n The present study highlights that physicians are generally supportive of utilizing new technology. The questionnaires and the open discussion revealed the expectation that the Smart MDI technology provides better control, primarily by identifying missed boluses, while expressing concerns on the use of the technology by teenagers and children, who might forget the device and be reluctant to use in public, and by the older population, who might be challenged by the technology.", - "labels": [ - 0, - 1 - ] - }, - { - "text": "Journal of pediatric gastroenterology and nutrition \n Is HLA-DQ typing useful in screening for celiac disease among Arabs with type 1 diabetes? A case-control study. \n Only 4% of Saudi patients with T1D carry DQ-genotypes at no risk to develop CD, which supports the European guidelines that recommend celiac serology test as the most cost-effective screening method. We identified the risk gradient associated with DQ-genotypes to develop CD in our population which could help in counseling patients for the risk to develop CD and planning follow-up serology tests.", - "labels": [ - 1 - ] - }, - { - "text": "International journal of molecular sciences \n Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus. \n Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic \u03b2 cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches.", - "labels": [ - 1 - ] - }, - { - "text": "Nutrients \n Nutrition and Glycemic Control in Children and Adolescents with Type 1 Diabetes Mellitus Attending Diabetes Camps. \n ", - "labels": [ - 1 - ] - }, - { - "text": "BMC oral health \n Genetic and therapeutic for oral lichen planus and diabetes mellitus: a comprehensive study. \n The study highlighted a complex interplay between diabetes and OLP, underscoring the efficacy of integrated therapeutic strategies that target both conditions. The findings suggest that both pharmaceutical and herbal treatments can effectively manage the clinical manifestations of OLP and associated metabolic challenges. This holistic approach to treatment could significantly enhance patient outcomes by addressing the interconnected aspects of these chronic conditions.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Nature communications \n TGF-\u03b2-mediated crosstalk between TIGIT \n Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing \u03b2-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT", - "labels": [ - 1 - ] - }, - { - "text": "Computers in biology and medicine \n Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. \n This study demonstrates the utility of UMAP in enhancing the analysis of CGM data for diabetes management. We revealed distinct clustering of glycemic profiles between healthy individuals and diabetics on daily insulin indicating that in most instances insulin does not restore a normal glycemic phenotype. In addition, the SS quantifies day by day the degree of this continued dysglycemia and therefore potentially offers a novel approach for personalized diabetes care.", - "labels": [ - 1 - ] - }, - { - "text": "Diabetologia \n Quantitative analysis of islet prohormone convertase 1/3 expression in human pancreas donors with diabetes. \n Our high-resolution histomorphological analysis of human pancreatic islets from donors with and without diabetes has uncovered details of the cellular origin of islet prohormone peptide processing defects. Reduced beta cell PC1/3 and increased alpha cell PC1/3 in islets from donors with type 1 diabetes pinpointed the functional deterioration of beta cells and the concomitant potential increase in PC1/3 usage for prohormone processing in alpha cells during the pathogenesis of type 1 diabetes. Our finding of PC1/3 loss in beta cells may inform the discovery of new prohormone biomarkers as indicators of beta cell dysfunction, and the finding of elevated PC1/3 expression in alpha cells may encourage the design of therapeutic targets via leveraging alpha cell adaptation in diabetes.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Italian journal of pediatrics \n Promising predictors of diabetic peripheral neuropathy in children and adolescents with type 1 diabetes mellitus. \n Despite limited research in pediatrics, MNSI and serum NSE are promising predictive tools for DPN in children and adolescents with T1DM, even when they are asymptomatic. Poor glycemic control and lipid profile changes may play a critical role in the development of DPN in these patients, despite conflicting results in various studies.", - "labels": [ - 1 - ] - }, - { - "text": "Cell transplantation \n Xenogenic Engraftment of Human-Induced Pluripotent Stem Cell-Derived Pancreatic Islet Cells in an Immunosuppressive Diabetic G\u00f6ttingen Mini-Pig Model. \n In the development of cell therapy products, immunocompromised animal models closer in size to humans are valuable for enhancing the translatability of ", - "labels": [ - 1 - ] - }, - { - "text": "Frontiers in immunology \n Enhancing human islet xenotransplant survival and function in diabetic immunocompetent mice through LRH-1/NR5A2 pharmacological activation. \n The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.", - "labels": [ - 1 - ] - }, - { - "text": "Frontiers in endocrinology \n Exploring the influencing factors of non-insulin drug prescriptions in discharged patients with type 1 diabetes. \n We identified notable factors that influence discharge prescriptions in patients with T1D. In order to enhance the treatment outcome for the patient, clinicians ought to have a special focus on these indicators or factors.", - "labels": [ - 1 - ] - }, - { - "text": "The Israel Medical Association journal : IMAJ \n Hospitalization Outcomes of Patients with Type 2 Diabetes Mellitus Complicated with Diabetic Ketoacidosis. \n Our findings underscore the importance of recognizing DKA as a substantial complication in diabetic patients, particularly those with T2DM. Vigilance in management, adherence to DKA guidelines, and awareness of triggers such as SGLT2 inhibitors are crucial for improving outcomes in this population.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences \n [Fulminant type 1 diabetes mellitus with acute pancreatitis: A case report and literature review]. \n The objective was to report a relatively rare case of fulminant type 1 diabetes (FT1DM) complicated with acute pancreatitis (AP), to summarize the characteristics as well as experience of diagnosis and treatment, and to explore its pathogenesis. Clinical data of a case of FT1DM complicated with AP in the Department of Endocrinology of our hospital were analyzed retrospectively. A 66-year-old male presented with acute fever and abdominal pain, accompanying with the significantly elevated pancreatic enzymes, and his abdominal CT scan showed exudation around the pancreas. The clinical manifestations mentioned above were consistent with the diagnosis of AP. Five days after onset, the patient developed clinical symptoms, such as obvious thirst, polyuria, polyasthenia and fatigue. Meanwhile, his plasma glucose increased significantly and the diabetic ketoacidosis (DKA) occurred. The patient's fasting and postprandial 2 hours C peptide decreased significantly (all 0.02 \u03bcg/L), glycated hemoglobin level was not high (6%), and his islet-related autoantibodies were undetectable. Thus, the patient could be diagnosed with FT1DM. After the treatment of fasting, fluid replacement, anti-infection, somatostatin, anticoagulation and intravenous insulin sequential subcutaneous insulin pump, the patient gained the alleviation of pancreatitis, restoration of oral intake, and relatively stable blood glucose levels. Summarizing the characte-ristics of this case and reviewing the literature, FT1DM complicated with AP was relatively rare in FT1DM. Its common characteristics were described below: (1) Most cases started with AP and the blood glucose elevated within 1 week, or some cases had the simultaneously onset of AP and FT1DM. (2) The clinical course of AP was short and relieved no more than 1 week; Pancreatic imaging could completely return to normal within 1 to 4 weeks after onset. (3) The etiology of AP most was idiopathic; The elevation of pancreatic enzyme level was slight and the recovery was rapidly compared with AP of other etiologies. FT1DM could be complicated with AP, which was different from the physiological manifestations of pancreatic disease in general FT1DM patients. Virus infection mignt be the common cause of AP and FT1DM, and AP might be the early clinical manifestation of some FT1DM. The FT1DM patients developed with abdominal pain was easy to be missed, misdiagnosed and delayed, which should receive more attention in clinic.", - "labels": [ - 1 - ] - }, - { - "text": "Experimental eye research \n Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction. \n Diabetic mellitus (DM) causes various complications, including the corneal endothelial dysfunction that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused corneal endothelial dysfunction remains incomplete understood. Here we firstly screened and identified the glutamine contents of aqueous humor (AH) were significantly reduced in the type 2 diabetic patients and type 1 and type 2 diabetic mice. To explore the potential therapeutic effects of glutamine (Gln) supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pump function of cornea. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells (CECs) from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the Gln depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelium.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Immunity \n Autoimmune CD4 \n Self-reactive T\u00a0cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4", - "labels": [ - 1 - ] - }, - { - "text": "Brain research \n Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing. \n Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.", - "labels": [ - 1 - ] - }, - { - "text": "Contemporary clinical trials \n DiaBetter Together: Clinical trial protocol for a strengths-based Peer Mentor intervention for young adults with type 1 diabetes transitioning to adult care. \n The goal of this research is to evaluate a developmentally appropriate, supportive intervention that can improve T1D self-management and successful transfer of care during the difficult young adult years and promote optimal T1D health outcomes.", - "labels": [ - 1 - ] - }, - { - "text": "Journal of medical Internet research \n Characterization of Telecare Conversations on Lifestyle Management and Their Relation to Health Care Utilization for Patients with Heart Failure: Mixed Methods Study. \n Our approach and findings offer novel perspectives on the content, structure, and clinical associations of telehealth conversations on lifestyle management for patients with HF. Hence, our study could inform ways to enhance telehealth programs for self-care management in chronic conditions.", - "labels": [ - 2 - ] - }, - { - "text": "JAMA network open \n Cardiovascular Risks With SGLT2 Inhibitors in Clinical Practice Among Patients With Type 2 Diabetes. \n In this cohort study of patients with T2D, the use of SGLT2is vs DPP4is was associated with reduced total cardiovascular burden, suggesting that long-term use of this therapy may optimize treatment benefit among patients with chronic CVD. The SGLT2i-associated benefit among patients with high risk of CVD encourages the prioritization of SGLT2i use for these vulnerable individuals.", - "labels": [ - 2 - ] - }, - { - "text": "Arquivos brasileiros de cardiologia \n Causal Relationship between Television Viewing Time, Cardiovascular Diseases, and Potential Mechanisms. \n An overview of the effect of television viewing time on cardiovascular diseases and biomarkers of cardiometabolic risk.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of molecular endocrinology \n The role of mu-opioid receptors in pancreatic islet \u03b1-cells. \n Diabetes is a complex disease that impacts more than 500 million people across the world. Many of these individuals will develop diabetic neuropathy as a comorbidity, which is historically treated with exogenous opioids, such as morphine, oxycodone, or tramadol. Although these opioids are effective analgesics, growing evidence indicates that they may directly impact the endocrine pancreas function in patients. One common feature of these exogenous opioid ligands is their preference for the mu-opioid receptor (MOPR), so we aimed to determine whether endogenous MOPRs directly regulate pancreatic islet metabolism and hormone secretion. We show that pharmacological antagonism of MOPRs enhances glucagon secretion, but not insulin secretion, from human islets under high-glucose conditions. This increased secretion is accompanied by increased cAMP signaling. mRNA expression of MOPRs is robust in nondiabetic human islets but downregulated in islets from T2D donors, suggesting a link between metabolism and MOPR expression. Conditional genetic knockout of MOPRs in murine \u03b1-cells increases glucagon secretion under high-glucose conditions without increasing glucagon content. Consistent with downregulation of MOPRs during metabolic disease, conditional MOPR knockout mice treated with a high-fat diet show impaired glucose tolerance, increased glucagon secretion, increased insulin content, and increased islet size. Together, these results demonstrate a direct mechanism of action for endogenous opioid regulation of endocrine pancreas.", - "labels": [ - 2 - ] - }, - { - "text": "Endokrynologia Polska \n Identification of fibrosis-associated lncRNAs in diabetic cardiomyopathy patients. \n Our study disclosed a subset of lncRNAs and mRNAs that are implicated in diabetic cardiomyopathy and myocardial fibrosis, thereby presenting themselves as promising biomarkers and therapeutic targets for the management of both diabetic cardiomyopathy and myocardial fibrosis.", - "labels": [ - 2 - ] - }, - { - "text": "Endokrynologia Polska \n The correlation between S-nitrosylation and type 2 diabetes mellitus: a review. \n Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder, constituting over 90% of all diabetes cases. Its primary characteristics include insulin deficiency and insulin resistance. The aetiology of T2DM is complex, which is attributed to a convergence of genetic and environmental factors. Moreover, it can engender various complications such as diabetes retinopathy, diabetes nephropathy, and diabetes neuropathy. T2DM cannot be cured fundamentally, it can only delay the development of the disease by controlling the blood sugar level. If the blood sugar is at a high level for a long time, it will aggravate the disease progress, and even lead to death in serious cases. Therefore, understanding the pathogenesis of diabetes, early detection, and intervention are the main means of treatment. S-nitrosylation (SNO), a post-translational modification of proteins based on redox, possesses the capacity to regulate a variety of physiological and pathological processes, and it is also involved in the occurrence and development of T2DM. However, the relationship between the dysregulation of SNO homeostasis and the occurrence of diabetes is not fully understood. This article reviews the correlation between SNO and T2DM, elucidating the mechanism by which SNO contributes to T2DM, encompassing diminishing insulin secretion, inducing insulin resistance, and affecting glucokinase activity. Understanding the correlation between SNO and T2DM provides a new research direction for the pathogenesis and treatment targets of diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "British journal of hospital medicine (London, England : 2005) \n Advances in Research on the Anticancer Properties and Mechanisms of Metformin in Lung Cancer. \n Lung cancer is a leading cause of death globally with high mortality and morbidity. Patients are often diagnosed at an advanced stage. Metformin has become a primary medication used in the clinical management of type 2 diabetes mellitus (T2DM) due to its relative safety, low cost, and effectiveness, mainly exerting its hypoglycemic effect by inhibiting hepatic gluconeogenesis and insulin resistance. Research data indicate that metformin extends the distant metastasis-free survival (DMFS) and progression-free survival (PFS) of diabetic patients with lung cancer, improving overall survival rates. Metformin lowers the risk of tumour development through various mechanisms, including the adenosine 5'-monophosphate-activated protein kinase/liver kinase B1/mechanistic target of rapamycin (AMPK/LKB1/mTOR) pathway, insulin-like growth factor-1 receptor pathway, apoptosis, and autophagy. However, research findings are not entirely consistent. This article reviews the research progress of metformin in terms of lung cancer treatment within the past few years, aiming to provide a more comprehensive understanding of how metformin exerts its anti-cancer impact and how it can be clinically applied, as well as provide new insights for lung cancer treatment.", - "labels": [ - 2 - ] - }, - { - "text": "British journal of hospital medicine (London, England : 2005) \n Impact of Co-Management Mode on Diagnosis and Treatment Compliance in Community-Level Diabetic Patients with Retinopathy. \n ", - "labels": [ - 2 - ] - }, - { - "text": "The British journal of nutrition \n Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. \n Epidemiological and clinical trial evidence indicates that ", - "labels": [ - 2 - ] - }, - { - "text": "Medical decision making : an international journal of the Society for Medical Decision Making \n Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models. \n Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q", - "labels": [ - 0, - 2 - ] - }, - { - "text": "Nederlands tijdschrift voor geneeskunde \n [Acute blindness in a patient with metformin-associated lactic acidosis]. \n Lactic acidosis is a rare metabolic complication that can occur in patients with diabetes mellitus type 2 who use metformin. We discuss a 79-year old woman with metformin-associated lactic acidosis (MALA) and acute kidney injury based on gastroenteritis. Patient reported acute blindness which in literature is described as a rare presentation of a metabolic acidosis (regardless of its underlying cause). Immediate treatment with hemodialysis led to improvement of the acidosis and complete recovery of the vision. It is important that patients who use metformin are instructed to consult their health care provider and/or discontinue metformin in case of intercurrent diseases.", - "labels": [ - 2 - ] - }, - { - "text": "AIDS (London, England) \n Hepatic steatosis-insulin resistance and type 2 diabetes in people with HIV at diagnosis: effect of initial antiretroviral therapy. \n We evaluated the impact of hepatic steatosis-insulin resistance (HS-IR) and liver fibrosis (LF) on type 2 diabetes mellitus (DM2) using triglyceride-glucose (TyG) and Fibrosis-4 (FIB-4). The incidence of DM2 was 12.9 [95% confidence interval (CI), 16.9-9.7] and 9.8 (95% CI, 6.9-13.6) per 1000 person-years in HS-IR and LF. The prevalence of HS-IR was significantly lower at 12 and 24\u200amonths with TDF + (3TC or FTC) + RPV [hazard ratio (HR) 0.5 [95% CI, 0.3-0.8], P\u200a<\u200a0.01 at 12\u200amonths; 0.6 [0.4-0.9], P\u200a=\u200a0.01 at 24\u200amonths].", - "labels": [ - 2 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Cost-utility analysis of once-weekly insulin icodec and once-daily insulin glargine in patients with type 2 diabetes receiving basal-bolus insulin therapy in China. \n The conclusion drawn from this study is that, with insulin glargine as the cost reference, the economic cost of insulin icodec for Chinese type 2 diabetes patients is expected to range from $784.90 to $1145.96, providing a reference basis for clinical decision-making and healthcare policy formulation.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes research \n Impact of Vitamin E Supplementation on High-Density Lipoprotein in Patients With Haptoglobin Genotype-Stratified Diabetes: A Systematic Review of Randomized Controlled Trials. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes research \n Adipocytokines and Inflammation in Patients and a Gerbil Model: Implications for Obesity-Related and Nonobese Diabetes. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Diabetic medicine : a journal of the British Diabetic Association \n The effect of high-fibre diets on glycaemic control in women with diabetes in pregnancy: A systematic review and meta-analysis. \n High-quality dietary intervention studies in pregnancy are lacking. Our results suggest that high-fibre diets improve fasting and postprandial glycaemia and reduce the likelihood of requiring insulin in women with diabetes in pregnancy.", - "labels": [ - 2 - ] - }, - { - "text": "Gut microbes \n Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. \n Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.", - "labels": [ - 2 - ] - }, - { - "text": "BMC endocrine disorders \n Association between the soluble receptor for advanced glycation end products and diabetes mellitus: systematic review and meta-analysis. \n CRD42024521252.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "BMC psychiatry \n Association of antipsychotic drugs on type 2 diabetes mellitus risk in patients with schizophrenia: a population-based cohort and in vitro glucose homeostasis-related gene expression study. \n This study demonstrates the impact of schizophrenia and APs and the risk of developing T2DM in Asian populations. Unmeasured confounding risk factors for T2DM may not have been included in the study. These findings may help psychiatric practitioners identify patients at risk of developing T2DM.", - "labels": [ - 2 - ] - }, - { - "text": "Nature communications \n Identification of gut microbiome features associated with host metabolic health in a large population-based cohort. \n The complex relationship between the gut microbiome and host metabolic health has been an emerging research area. Several recent studies have highlighted the potential effects of the microbiome's diversity, composition and metabolic production capabilities on Body Mass Index (BMI), liver health, glucose homeostasis and Type-2 Diabetes (T2D). The majority of these studies were constrained by relatively small cohorts, mostly focusing on individuals with metabolic disorders, limiting a comprehensive understanding of the microbiome's role in metabolic health. Leveraging a large-scale, comprehensive cohort of nearly 9000 individuals, measured using Continuous Glucose Monitoring (CGM), Dual-energy X-ray absorptiometry (DXA) scan and liver Ultrasound (US) we examined the functional profile of the gut microbiome, and its relation to 38 metabolic health measures. We identified 145 unique bacterial pathways significantly correlated with metabolic health measures, with 86.9% of these showing significant associations with more than one metabolic health measure. Furthermore, 87,678 unique bacterial gene families were found to be significantly associated with at least one metabolic health measure. Notably, \"key\" bacterial pathways such as purine ribonucleosides degradation and anaerobic energy metabolism demonstrated multiple robust associations across various metabolic health measures, highlighting their potential roles in regulating metabolic processes. Our results remained largely unchanged after adjustments for nutritional habits and for BMI they were replicated in a geographically independent cohort. These insights pave the way for future research and potentially the development of microbiome-targeted interventions to enhance metabolic health.", - "labels": [ - 2 - ] - }, - { - "text": "Nature communications \n Heterogeneous enhancer states orchestrate \u03b2 cell responses to metabolic stress. \n Obesity-induced \u03b2 cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with \u03b2 cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1", - "labels": [ - 2 - ] - }, - { - "text": "Clinica chimica acta; international journal of clinical chemistry \n HPLC-MS/MS method for simultaneous analysis of plasma 2-hydroxybutyrate and 2-hydroxyisobutyrate: Development and clinical significance. \n Recent studies have identified relationships between diabetes mellitus and short-chain fatty acids, including 2-hydroxybutyrate (2-HB) and 2-hydroxyisobutyrate (2-HiB); 2-HB has been associated to the early stages of insulin resistance, while 2-HiB with the risk and progression of complications of Type 1 diabetes. Their metabolism and pathophysiological role in humans are not fully clarified. The possible association between 2-HB and 2-HiB and diabetes mellitus was investigated with a novel mass spectrometry-based assay, capable of discriminating plasma 2-HiB and 2-HB from their HB isomers. Accuracy and precision (RSD%) were always in the range 99-102% and 0.7-3.5%, respectively. The study involved samples from subjects with normal glucose tolerance (NGT) and Type 2 diabetes (T2D), originally included in a multicenter study investigating mechanisms involved in atherothrombosis. NGT subjects exhibited concentrations of 2-HB and 2-HiB of 61 (36) and 3.1 (1.9) \u00b5mol/L, median (interquartile range), respectively, that were significantly lower than those of the T2D patients, whose values were 74 (4.0) and 3.8 (2.9) \u00b5mol/L, respectively. The pattern of association of these molecules with clinical and metabolic variables is partially different: both compounds were directly related to male sex, BMI, HbA", - "labels": [ - 2 - ] - }, - { - "text": "The journal of nutrition, health & aging \n Spatiotemporal trends of Type 2 diabetes due to low physical activity from 1990 to 2019 and forecasted prevalence in 2050: A Global Burden of Disease Study 2019. \n LPA significantly impacts T2DM, particularly in low SDI regions. Promotion of physical activity is crucial to reduce this burden, particularly in regions where the disease's impact is most severe.", - "labels": [ - 2 - ] - }, - { - "text": "Geriatric nursing (New York, N.Y.) \n Impact of a motor-cognitive intervention on cognitive function in middle-aged and older patients with type 2 diabetes. \n This study evaluated the impact of a motor-cognitive intervention on cognitive function in patients with type 2 diabetes mellitus (T2DM). A single-group design with repeated measures was used, with twenty-six middle-aged and older patients with T2DM (aged 68.58 \u00b1 6.15 years) tested on two occasions four weeks apart to establish a baseline before participating in the exercise programme (55-60 min per session; 3 x week) for eight weeks. Participants were then tested again immediately after the training programme. Except for phonemic fluency error scores, the baseline data remained unchanged. After the training programme, statistical tests showed a significant improvement in some variables of executive function and attention demand, (p < 0.017, Bonferroni adjustment to compensate for multiple comparisons), as well as a positive effect on information processing speed, and dual-task performance. Combining physical and cognitive stimulation can have a positive impact on the cognitive functioning of participants with T2DM.", - "labels": [ - 2 - ] - }, - { - "text": "International immunopharmacology \n Tirzepatide's role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance. \n Tirzepatide's potential as a therapeutic strategy for addressing metabolic diseases associated with obesity and T2DM by targeting ATM activity and mitigating obesity-associated inflammation.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of managed care & specialty pharmacy \n Social determinants of health and newer glucose-lowering drugs adoption among US Medicare beneficiaries with type 2 diabetes. \n We identified key contextual-level SDOH associated with real-world adoption of newer GLDs and explored their geographic variation through spatially explicit, data-driven analytical approaches. Identifying areas of strong association between SDOH and newer GLD initiation is crucial for policymakers to allocate resources and develop interventions that address structural inequities.", - "labels": [ - 2 - ] - }, - { - "text": "ACS nano \n Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic. \n Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.", - "labels": [ - 2 - ] - }, - { - "text": "Neuromolecular medicine \n Distinct Hippocampal Expression Profiles of lncRNAs in Obese Type 2 Diabetes Mice Exhibiting Cognitive Impairment. \n Cognitive dysfunction has been accepted as a possible complication of type 2 diabetes (T2D), but few studies revealed the potential roles of Long non\u2011coding RNAs (lncRNAs) in cognitive dysfunction in T2D. The current research aims to demonstrate the specific expression patterns of lncRNA-mRNA in the hippocampi of T2D db/db mice exhibiting cognitive impairment. In this study, the results from behavioral tests showed that T2D db/db mice displayed short-term and spatial working memory deficits compared to db/m mice. Furthermore, western blot analysis demonstrated that compared with db/m mice, p-GSK3\u03b2 (ser9) protein levels were markedly elevated in T2D db/db mice (P\u2009<\u20090.01). In addition, though not statistically significant, the ratio of p-Tau (Ser396) to Tau 46, \u03b1-Synuclein expression, and p-GSK3\u03b1 (ser21) expression were also relatively higher in T2D db/db mice than in db/m mice. The microarray profiling revealed that 75 lncRNAs and 26 mRNAs were dysregulated in T2D db/db mice (>\u20092.0 fold change, P\u2009<\u20090.05). GO analysis demonstrated that the differentially expressed mRNAs participated in immune response, extracellular membrane-bounded organelle, and extracellular region. KEGG analysis revealed that the differentially expressed mRNAs were mainly involved in one carbon pool by folate, glyoxylate and dicarboxylate metabolism, autophagy, glycine, serine and threonine metabolism, and B cell receptor signaling pathway. A lncRNA\u2011mRNA coexpression network containing 71 lncRNAs and 26 mRNAs was built to investigate the interaction between lncRNA and mRNA. Collectively, these results revealed the differential hippocampal expression profiles of lncRNAs in T2D mice with cognitive dysfunction, and the findings from this study provide new clues for exploring the potential roles of lncRNAs in the pathogenesis of cognitive dysfunction in T2D.", - "labels": [ - 2 - ] - }, - { - "text": "Medicine \n Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. \n Metformin, the first line treatment for patients with type 2 diabetes mellitus, has alternative novel roles, including cancer and diabetes prevention. This narrative review aims to explore its diverse mechanisms, effects and intolerance, using sources obtained by searching Scopus, PubMed and Web of Science databases, and following Scale for the Assessment of Narrative Review Articles reporting guidelines. Metformin exerts it actions through duration influenced, and organ specific, diverse mechanisms. Its use is associated with inhibition of hepatic gluconeogenesis targeted by mitochondria and lysosomes, reduction of cholesterol levels involving brown adipose tissue, weight reduction influenced by growth differentiation factor 15 and novel commensal bacteria, in addition to counteraction of meta-inflammation alongside immuno-modulation. Interactions with the gastrointestinal tract include alteration of gut microbiota, enhancement of glucose uptake and glucagon like peptide 1 and reduction of bile acid absorption. Though beneficial, they may be linked to intolerance. Metformin related gastrointestinal adverse effects are associated with dose escalation, immediate release formulations, gut microbiota alteration, epigenetic predisposition, inhibition of organic cation transporters in addition to interactions with serotonin, histamine and the enterohepatic circulation. Potentially effective measures to overcome intolerance encompasses carefully objective targeted dose escalation, prescription of fixed dose combination, microbiome modulators and prebiotics, in addition to use of extended release formulations.", - "labels": [ - 2 - ] - }, - { - "text": "Hepatology communications \n Clinical care guidance in patients with diabetes and metabolic dysfunction-associated steatotic liver disease: A joint consensus. \n Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, affecting >30% of the global population. Metabolic dysregulation, particularly insulin resistance and its subsequent manifestation as type 2 diabetes mellitus, serves as the fundamental pathogenesis of metabolic liver disease. Clinical evidence of the recent nomenclature evolution is accumulating. The interaction and impacts are bidirectional between MASLD and diabetes in terms of disease course, risk, and prognosis. Therefore, there is an urgent need to highlight the multifaceted links between MASLD and diabetes for both hepatologists and diabetologists. The surveillance strategy, risk stratification of management, and current therapeutic achievements of metabolic liver disease remain the major pillars in a clinical care setting. Therefore, the Taiwan Association for the Study of the Liver (TASL), Taiwanese Association of Diabetes Educators, and Diabetes Association of the Republic of China (Taiwan) collaboratively completed the first guidance in patients with diabetes and MASLD, which provides practical recommendations for patient care.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes \n Association of systolic blood pressure variability with cognitive decline in type 2 diabetes: A post hoc analysis of a randomized clinical trial. \n A greater visit-to-visit systolic BPV was significantly associated with an increased risk of cognitive decline measured by DSST and an increase in white matter lesion volume in patients with type 2 diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of biochemical and molecular toxicology \n Sesamol Alleviated Lipotoxicity-Induced Dysfunction in MIN6 Cells via Facilitating Cellular Senescence Caused by Endoplasmic Reticulum Stress. \n Obesity is found to be a significant risk factor for type 2 diabetes mellitus (T2DM), attributed to lipotoxicity-induced \u03b2-cell dysfunction. However, the specific mechanism involved in the process remains incompletely unclarified. The current study demonstrated lipotoxicity resulted in the activation of ER stress, which increased the protein level of TXNIP, thereby inducing senescence-assiciated dysfunction in MIN6 cells under high fat environment. And we also found sesamol, a natural functional component extracted from sesame, was able to alleviate senescence-associated \u03b2-cell dysfunction induced by lipotoxicity by inhibiting ER stress and TXNIP. Our findings provided novel insights into senescence-related T2DM and propose innovative therapeutic approaches for utilizing sesamol in the treatment of T2DM in the obese elderly population.", - "labels": [ - 2 - ] - }, - { - "text": "Frontiers in endocrinology \n Tracing links between micronutrients and type 2 diabetes risk: the singular role of selenium. \n Our study presents novel evidence of a positive correlation between selenium intake and T2D risk, underscoring the importance of micronutrients in diabetes prevention and treatment strategies. Further research is necessary to confirm these findings and to clarify the specific biological mechanisms through which selenium influences diabetes risk.", - "labels": [ - 2 - ] - }, - { - "text": "Sheng li xue bao : [Acta physiologica Sinica] \n [Resistance exercise regulates hippocampal microglia polarization through TREM2/NF-\u03baB/STAT3 signal pathway to improve cognitive dysfunction in T2DM mice]. \n The study aimed to explore the effect and mechanism of resistance exercise (RE) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) mice. Six 8-week-old male m/m mice were used as control (Con) group, and db/db mice of the matched age were randomly divided into model control (db/db) group and db+RE group, with 6 mice in each group. The db+RE group was given 8 weeks of resistance climbing ladder exercise intervention. The fasting blood glucose and body weight of the mice were measured weekly. After the intervention, the spatial learning and memory of the mice were detected by Morris water maze, and the neuronal damage in the hippocampus of the mice was detected by Nissl staining. The protein expression levels of PSD93, PSD95, BDNF, CREB, p-CREB, IL-6, IL-1\u03b2, TNF-\u03b1, Iba-1, iNOS, CD206, Arg1, triggering receptor expressed on myeloid cells 2 (TREM2), NF-\u03baB, p-STAT3, and STAT3 were detected by Western blot. The mRNA expression levels of inflammatory factors and TREM2 in hippocampus were evaluated by qRT-PCR, and the expression and localization of Iba-1, CD206, CD86, and TREM2 were determined by immunofluorescence staining. The results showed that the spatial learning and memory of the db/db group were significantly declined, the neurons in the hippocampus were damaged, the protein levels of PSD93, PSD95, BDNF, CD206, Arg1, TREM2 and the ratio of p-CREB/CREB were significantly down-regulated, the mRNA and protein expression levels of IL-6, IL-1\u03b2 and TNF-\u03b1 were significantly up-regulated, and the protein levels of iNOS, Iba-1, NF-\u03baB and the ratio of p-STAT3/STAT3 were significantly increased compared with the Con group. However, the 8-week RE improved the spatial learning and memory of db/db mice, alleviated the damage of hippocampal neurons, promoted the polarization of M2 microglia, and inhibited the neuroinflammation. The above results suggest that RE can improve cognitive dysfunction in T2DM mice, and its mechanism may be related to regulating microglia polarization via TREM2/NF-\u03baB/STAT3 signaling pathway.", - "labels": [ - 2 - ] - }, - { - "text": "Age and ageing \n Assessing 1-year sodium-glucose co-transporter-2 inhibitor tolerance in older adults. \n No clinically meaningful differences in SGLT2 inhibitor intolerance were observed in patients up to 84\u00a0years. Our findings support having closer follow-up when initiating in patients 85\u00a0years and older.", - "labels": [ - 2 - ] - }, - { - "text": "BMC endocrine disorders \n Lipids as the link between central obesity and diabetes: perspectives from mediation analysis. \n In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.", - "labels": [ - 0, - 2 - ] - }, - { - "text": "Cardiovascular diabetology \n The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. \n Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.", - "labels": [ - 2 - ] - }, - { - "text": "BMC endocrine disorders \n To analyse the correlation between UAER and eGFR and the risk factors for reducing eGFR in patients with type 2 diabetes. \n Peripheral vascular disease, systolic blood pressure, fatty liver, and beta-2-microglobulin are risk factors for decreased eGFR levels in patients with T2DM, which should be applied for control DKD. HDL and fasting CP have important effects on maintaining eGFR, and blood pressure and fasting CP can be used as new targets for subsequent diabetic kidney disease treatment.", - "labels": [ - 2 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Visit-to-visit HbA1c variability and risk of potentially avoidable hospitalisations in adults with type 2 diabetes receiving outpatient care at a tertiary hospital. \n In individuals receiving care at specialist outpatient clinics of a tertiary hospital, HbA1c variability is associated with a higher risk of PAH. Comprehensive diabetes management strategies addressing both glycaemic control and variability may offer benefits.", - "labels": [ - 2 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Effect of spironolactone wash-out on albuminuria after long-term treatment in individuals with type 2 diabetes and high risk of kidney disease-An observational follow-up of the PRIORITY study. \n UACR did not change after discontinuation of long-term treatment with spironolactone. However, an increase in eGFR was observed supporting a haemodynamic effect of spironolactone in the kidneys.", - "labels": [ - 2 - ] - }, - { - "text": "Scientific reports \n Cardiometabolic risk factor clusters in older adults using latent class analysis on the Bushehr elderly health program. \n Metabolic syndrome (MetS), comprising obesity, insulin resistance, hypertension, and dyslipidemia, increases the risk of type II diabetes mellitus and cardiovascular disease. This study aimed to identify the prevalence and determinants of specific clusters of the MetS components and tobacco consumption among older adults in Iran. The current study was conducted in the second stage of the Bushehr Elderly Health (BEH) program in southern Iran-a population-based cohort including 2424 subjects aged\u2009\u2265\u200960 years. Latent class analysis (LCA) was used to identify MetS and tobacco consumption patterns. Multinomial logistic regression was conducted to investigate factors associated with each MetS class, including sociodemographic and behavioral variables. Out of 2424 individuals, the overall percentage of people with one or more components of MetS or current tobacco use was 57.8% and 20.8%, respectively. The mean (SD) age of all participants was 69.3(6.4) years. LCA ascertained the presence of four latent classes: class 1 (\"low risk\"; with a prevalence of 35.3%), class 2 (\"MetS with medication-controlled diabetes\"; 11.1%), class 3 (\"high risk of MetS and associated medication use\"; 27.1%), and class 4 (\"central obesity and treated hypertension\"; 26.4%). Compared to participants with a body mass index (BMI)\u2009<\u200930, participants with BMI\u2009\u2265\u200930 were more likely to belong to class 3 (OR 1.91, 95% CI 1.31-2.79) and class 4 (OR 1.49, 95% CI 1.06-2.08). Polypharmacy was associated with membership in class 2 (OR 2.07, 95% CI 1.12-3.81), class 3 (OR 9.77, 95% CI 6.12-15.59), and class 4 (OR 1.76, 95% CI 1.07-2.91). The elevated triglyceride-glucose index was associated with membership in class 2 (OR 12.33, 95% CI 7.75-19.61) and class 3 (OR 12.04, 95% CI 8.31-17.45). Individuals with poor self-related health were more likely to belong to class 3 (OR 1.43; 95% CI 1.08-1.93). Four classes were identified among older adults in Iran with distinct patterns of cardiometabolic risk factors. Segmenting elderly individuals into these cardiometabolic categories has the potential to enhance the monitoring and management of cardiometabolic risk factors. This strategy may help reduce the severe outcomes of metabolic syndrome in this susceptible population.", - "labels": [ - 2 - ] - }, - { - "text": "Nature communications \n Transcriptome-wide Mendelian randomization during CD4 \n Immunity has shown potentials in informing drug development for cardiometabolic diseases, such as type 2 diabetes (T2D) and coronary artery disease (CAD). Here, we performed a transcriptome-wide Mendelian randomization (MR) study to estimate the putative causal effects of 11,021 gene expression profiles during CD4", - "labels": [ - 2 - ] - }, - { - "text": "Heart failure reviews \n Sodium-glucose cotransporter-2 inhibitors in acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. \n We aimed to assess the efficacy and safety of sodium-glucose cotransporter-2 inhibitors (SGLT2i) versus placebo, initiated within the hospitalization period, in addition to habitual treatment, for treating adult patients with confirmed acute myocardial infarction (AMI). We also conducted subgroup analysis by diabetes mellitus (DM) status and type of AMI. We systematically searched PubMed, Embase, and Cochrane Library for randomized controlled trials (RCTs). The primary outcome was hospitalization for heart failure (HF). The secondary outcomes were all-cause death, cardiovascular death, and serious adverse events (AEs). We pooled risk ratios (RR) with a 95% confidence interval (CI) for binary outcomes. The between-study variance was assessed using tau", - "labels": [ - 2 - ] - }, - { - "text": "Diabetologia \n Autoimmune diseases and the risk and prognosis of latent autoimmune diabetes in adults. \n We confirm that several common ADs confer an excess risk of LADA, especially LADA with higher GADA levels, but having such a comorbidity does not appear to affect the risk of diabetic retinopathy.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Diabetologia \n Exposure to antibiotics and risk of latent autoimmune diabetes in adults and type 2 diabetes: results from a Swedish case-control study (ESTRID) and the Norwegian HUNT study. \n We found no evidence that exposure to broad-spectrum antibiotics up to 10 years prior to diagnosis increases the risk of LADA. There was some indication of increased LADA risk with exposure to narrow-spectrum antibiotics, which warrants further investigation.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "PloS one \n Associations of the TyG index with albuminuria and chronic kidney disease in patients with type 2 diabetes. \n The TyG index is positively associated with albuminuria and CKD in patients with T2DM and may be a marker for predicting the occurrence of early kidney injury in patients with T2DM. Clinicians should test this indicator early to detect lesions and improve patient prognosis.", - "labels": [ - 2 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Subphenotypes of adult-onset diabetes: Data-driven clustering in the population-based KORA cohort. \n T2D subphenotyping based on its sample's own clinical characteristics leads to stable categorization and adequately reflects T2D heterogeneity.", - "labels": [ - 2 - ] - }, - { - "text": "Diabetes, obesity & metabolism \n Dietary potassium intake and its interaction with sodium intake on risk of developing cardiovascular disease in persons with type 2 diabetes: The Japan Diabetes Complication and its Prevention Prospective study (JDCP study 12). \n Low potassium intake in conjunction with high sodium intake was significantly associated with increased incident CVD in persons with T2DM. However, CVD incidence was not related to high potassium intake, regardless of sodium intake.", - "labels": [ - 2 - ] - }, - { - "text": "The science of diabetes self-management and care \n Characteristics and Correlates of Health Information Literacy Among Patients With Type 2 Diabetes and Metabolic Syndrome: A Cross-Sectional Study. \n Overall, the health information literacy among Chinese patients with type 2 diabetes coexisting with metabolic syndrome is suboptimal. Study findings demonstrated that personal and social contextual resources factors are significantly related to health information literacy. Health care professionals should consider strategies to enhance people's health information literacy level and promote individuals' health problem-solving, enhance chronic illness resources, and improve self-management knowledge when developing tailored interventions.", - "labels": [ - 2 - ] - }, - { - "text": "The science of diabetes self-management and care \n Exploring Type 2 Diabetes Self-Management Practices Among African Americans in Rural Counties: A Qualitative Study. \n The decision-making involved in glycemic level management emerges as a complex developmental process influenced by disease trajectory and cultural and environmental factors. These findings may inform a conceptual framework to guide future inquiries and provide insights for primary care clinicians and diabetes care and education specialists to better understand the complexities of T2D management among African American individuals in rural settings.", - "labels": [ - 2 - ] - }, - { - "text": "Medicine \n Effect of glucagon-like peptide-1 receptor agonists on prostate cancer: A review. \n Glucagon-like peptide-1 receptor agonist (GLP-1RA) is widely used in the treatment of type 2 diabetes mellitus (T2DM) for its significant hypoglycemic effect, weight loss and small side effects. Some studies have shown that GLP-1RA has an inhibitory effect on prostate cancer, and its application will produce adverse effects associated with an increased or decreased risk of some tumors. GLP-1R is widely expressed by various types of cells and tissues in the human body, so GLP-1RA has attracted wide clinical attention to the occurrence, development and prognosis of tumors, which brings more new directions and hopes for the treatment of prostate cancer. This paper describes the expression of glucagon-like peptide-1 receptor (GLP-1R) in prostate cancer and the effects of glucagon-like peptide-1 receptor agonist (GLP-1RA) on prostate cancer.", - "labels": [ - 2 - ] - }, - { - "text": "Medicine \n Association of metformin use with asthma development and adverse outcomes: A systematic review and meta-analysis. \n In most outcome indicators, it cannot be assumed that the use of metformin can reduce asthma-related adverse events. However, the conclusion is not so certain, and longer observation and more evidence are still required. Metformin still shows some potential in the intervention of respiratory diseases.", - "labels": [ - 2 - ] - }, - { - "text": "Epidemiology and psychiatric sciences \n Mediating pathways between attention deficit hyperactivity disorder and type 2 diabetes mellitus: evidence from a two-step and multivariable Mendelian randomization study. \n These findings suggest a potentially causal, positive relationship between ADHD liability and T2D, with mediation through higher BMI, more TV watching and lower EA. Intervention on these factors may thus have beneficial effects on T2D risk in individuals with ADHD.", - "labels": [ - 2 - ] - }, - { - "text": "The British journal of nutrition \n Type 2 diabetes prevention: genetic association analysis of dried fruit intake and disease risk. \n Prior research has suggested an inverse correlation between dried fruit intake and type 2 diabetes mellitus (T2DM), yet the causal link remains uncertain. This study seeks to investigate the potential causal impact of dried fruit intake on T2DM, covering cases both with and without various complications, as well as glycaemic traits, using a two-sample Mendelian randomisation (MR) approach. Using MR analysis with genome-wide association study summary statistics, the primary analysis investigated the causal relationship between dried fruit intake and T2DM, both with and without complications, as well as glycaemic traits, employing the inverse variance weighted method. Supplementary analyses were conducted using MR-Egger and the weighted median method. Heterogeneity and intercept tests were utilised to evaluate the robustness of the study outcomes. The results show a significant association between dried fruit intake and T2DM without complications, as well as fasting insulin. Sensitivity analyses confirmed the robustness of the results and the independence from multicollinearity. However, no association was found between dried fruit intake and T2DM with various complications or other glycaemic traits. The significant association between dried fruit intake and T2DM without complications and fasting insulin persisted even after adjusting for BMI. This study offers genetic evidence endorsing the protective effects of dried fruit intake against T2DM, specifically for cases without complications, and in regulating fasting insulin. These findings suggest that dried fruit intake might serve as a primary preventive strategy for T2DM.", - "labels": [ - 2 - ] - }, - { - "text": "Trials \n Effectiveness of specialist involvement in case discussion conferences with primary healthcare providers on the management of type 2 diabetes patients: a study protocol for a cluster randomized controlled trial. \n Chinese Clinical Trial Registry ChiCTR2300078829. Registered on December 19, 2023. https://www.chictr.org.cn/showproj.html?proj=210293.", - "labels": [ - 2 - ] - }, - { - "text": "Alzheimer's research & therapy \n Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. \n Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards \"energy metabolism\" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.", - "labels": [ - 2 - ] - }, - { - "text": "BMC gastroenterology \n Effect of diabetes mellitus type 2 and sulfonylurea on colorectal cancer development: a case-control study. \n This study found an insignificant association between type 2 diabetes and the chance of CRC development in an adjusted state. Sulfonylurea consumption was also associated with a higher chance of CRC development among patients with T2D. These findings have implications for clinical practice and public health strategies in CRC prevention for patients with T2D.", - "labels": [ - 2 - ] - }, - { - "text": "Swiss medical weekly \n Recommendations for early identification of heart failure in patients with diabetes: Consensus statement of the Swiss Society of Endocrinology and Diabetology and the Heart Failure Working Group of the Swiss Society of Cardiology. \n Diabetes is a well-recognised risk factor for the development of heart failure, with a prevalence higher than 30% in patients with diabetes aged over 60 years. Heart failure often emerges as the primary cardiovascular manifestation in patients with type 2 diabetes and appears to be even more prevalent in type 1 diabetes. In Switzerland, there are approximately 500,000 individuals with diabetes, and the number of affected people has been steadily rising in recent years. Therefore, the consequences of heart failure will affect an increasing number of patients, further straining the Swiss healthcare system. Early lifestyle modification and initiation of appropriate treatment can prevent or at least significantly delay the onset of symptomatic heart failure by several years. These facts underscore the urgent need for early detection of individuals with subclinical heart failure, which often remains undiagnosed until the first episode of acute heart failure requiring hospital admission occurs. To address this issue, the European Society of Cardiology, the American Diabetes Association (ADA) and other international professional societies have published recommendations on heart failure screening, diagnosis and management. To address this issue in Switzerland, experts from the Swiss Society of Endocrinology and Diabetology, the Swiss Society of Cardiology and the General Internal Medicine specialty met and prepared a consensus report including a simple diagnostic algorithm for use in everyday practice.", - "labels": [ - 1, - 2 - ] - }, - { - "text": "Scientific reports \n Dietary acid load adopts the effect of ApoB ins/del genetic variant (rs11279109) on obesity trait, cardiovascular markers, lipid profile, and serum leptin level among patients with diabetes: a cross-sectional study. \n ApoB insertion/deletion (ins/del) genetic variant (rs11279109) is thought to be related to cardio-metabolic markers and obesity. This association has the potential to be modified by dietary patterns. Since the majority of studies concerned the role of dietary acid load (DAL) or ApoB in type 2 diabetes mellitus\u00a0(T2DM) and its complications independently, and due to the insufficient data regarding the possible interactions between ApoB genetic variants and DAL on anthropometric and metabolic markers, we aimed to study the interaction between this genetic variant and dietary acid load (DAL) on cardio-metabolic markers, along with leptin among Iranian individuals with T2DM. 700 T2DM patients were randomly recruited. A validated semi-quantitative food frequency questionnaire was used for DAL calculation including potential renal acid load (PRAL) and net-endogenous acid production (NEAP). The polymerase chain reaction was used for genotyping the ApoB ins/del (rs11279109). The general linear model was applied to find the interactions in the crude and adjusted models. Patients with del/del genotype (rs11279109) with high PRAL intake have lower low-density lipoprotein cholesterol (LDL-C) (P", - "labels": [ - 2 - ] - }, - { - "text": "PeerJ \n Association analysis of MTHFR (rs1801133 and rs1801131) gene polymorphism towards the development of type 2 diabetes mellitus in Dali area population from Yunnan Province, China. \n Our study suggests that the genetic variations of MTHFR C677T and A1298C are significantly associated with T2DM susceptibility in the population of the Dali area of Yunnan Province, China.", - "labels": [ - 2 - ] - }, - { - "text": "Romanian journal of ophthalmology \n Correlations between dyslipidemia and retinal parameters measured with Angio-OCT in type II diabetics without diabetic retinopathy. \n Type II diabetes patients tend to have elevated serum lipid levels compared to normal subjects, but the impact of dyslipidemia on the onset and progression of DR is incompletely elucidated.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of the Academy of Nutrition and Dietetics \n Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents With Type 2 Diabetes. \n Recruitment and retention rates suggest a trial of lTRE in adolescents with T2D was feasible. lTRE was seen as acceptable by participants and adherence was high. A revised intervention, building on the successful elements of this pilot alongside adapting implementations strategies to augment adherence and engagement, should therefore be considered.", - "labels": [ - 2 - ] - }, - { - "text": "Frontiers in endocrinology \n Risk of bone fracture by using dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a network meta-analysis of population-based cohort studies. \n https://www.crd.york.ac.uk/prospero/, identifier CRD42023448720.", - "labels": [ - 2 - ] - }, - { - "text": "Acta medica Indonesiana \n Effectiveness and Safety of DLBS3233 in Newly Diagnosed Type 2 Diabetes Mellitus: A 12-week Clinical Trial. \n DLBS3233 showed potential for improving postprandial glucose control in newly diagnosed T2DM individuals. Although significant changes were limited, the study suggests that DLBS3233 could enhance glycemic regulation. The safety evaluation indicated no adverse effects on vital parameters. Further research with larger samples and more prolonged duration is warranted to comprehensively explore DLBS3233's potential in T2DM management.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes \n Stratum corneum hydration levels are negatively correlated with HbA1c levels in the elderly Chinese. \n Highlights Stratum corneum hydration levels are negatively correlated with HbA1c levels and positively correlated with skin surface pH. Individuals with type 2 diabetes display lower levels of stratum corneum hydration. Because low stratum corneum hydration levels can increase circulating levels of proinflammatory cytokines, which are linked to the pathogenesis of type 2 diabetes, improvement in stratum corneum hydration can be an alternative approach in the management of type 2 diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "Clinical breast cancer \n Effective Strategies for the Prevention and Mitigation of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia: Optimizing Patient Care. \n Hyperglycemia is a common adverse event (AE) associated with phosphatidylinositol-3-kinase inhibitors (PI3Kis) and considered an on-target effect. Presence of hyperglycemia is associated with poor outcomes in patients with cancer, and there is need for further refinement of hyperglycemia prevention and mitigation strategies in patients receiving PI3Kis. In this review, the authors highlight effective strategies for preventing PI3Ki-induced hyperglycemia before and during treatment as well as hyperglycemia management. Prior to initiating treatment with PI3Ki, identify baseline risk factors of patients at increased risk for developing hyperglycemia, which include older age, obesity, and glycosylated hemoglobin (HbA1c) 5.7%-6.4% (prediabetes or Type 2 diabetes). To prevent new-onset hyperglycemia, optimize blood glucose, and recommend a low-carbohydrate (60-130 g/day) diet along with regular exercise to all patients prior to initiating the PI3Ki. Prophylactic metformin may be considered in all patients starting a PI3Ki with HbA1c \u22646.4%. Although existing recommendations support monitoring fasting blood glucose (FBG) once weekly (twice-weekly for intermediate-risk, daily for high-risk patients) and HbA1c every 3 months upon initiation of PI3Ki, more frequent FBG monitoring may be considered for prompt detection of hyperglycemia. Experts also recommend considering postprandial glucose monitoring because it is an early indicator of glucose intolerance. If hyperglycemia develops, metformin (first-line) and/or sodium glucose co-transporter 2 inhibitors or thiazolidinediones (second-/third-line) are the preferred agents; consider early referral to an endocrinologist. In conclusion, hyperglycemia is a common but manageable AE associated with PI3Kis. Multidisciplinary approach to the prevention, monitoring, and management of hyperglycemia optimizes patient care and allows patients to maintain therapy on PI3Ki.", - "labels": [ - 2 - ] - }, - { - "text": "Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi \n [Functional study of amine oxidase copper-containing 1 (AOC1) in lipid metabolism]. \n Amine oxidase copper-containing 1 (AOC1) is a key member of copper amine oxidase family, which is responsible for deamination oxidation of histamine and putrescine. In recent years, AOC1 has been reported to be associated with various cancers, with its expression levels significantly elevated in certain cancer cells, suggesting its potential role in cancer progression. However, its function in lipid metabolism still remains unclear. Through genetic analysis, we have discovered a potential relationship between AOC1 and lipid metabolism. To further investigate, we generated ", - "labels": [ - 2 - ] - }, - { - "text": "The journal of medical investigation : JMI \n Characteristics of storage and voiding symptoms in adult patients with type 2 diabetes with lower urinary tract symptoms. \n Our analysis of diabetic patients with LUTS revealed differences in the characteristics of storage and voiding symptoms. These findings provide evidence that the features of LUTS associated with diabetes may have different pathogenic origins. J. Med. Invest. 71 : 237-245, August, 2024.", - "labels": [ - 2 - ] - }, - { - "text": "Drug discoveries & therapeutics \n Effect of switching from dulaglutide to tirzepatide on blood glucose and renal function. \n The case reports a woman in her 70s, with type 2 diabetes and chronic kidney disease in G4 stage. The patient had elevated HbA1c, and she was switched from linagliptin, a dipeptidyl peptidase 4 inhibitor, to dulaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA). Thereafter, the HbA1c level decreased; however, since the dulaglutide supply became a problem, the patient was switched to tirzepatide, a glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA. To date, no clinical studies have evaluated the efficacy and safety of switching from GLP-1RA to GIP/GLP-1RA, but we report this case because efficacy was observed in this patient. The therapeutic effects after switching to tirzepatide included decrease in HbA1c, increase in eGFR, and decrease in BUN, when compared to when dulaglutide was used. A change from dulaglutide to tirzepatide, could inhibit renal impairment progression and improve renal function.", - "labels": [ - 2 - ] - }, - { - "text": "BMC cardiovascular disorders \n Pattern and outcome of the first manifestation of cardiovascular disease among patients with type 2 diabetes mellitus in Cameroon: a cross-sectional study. \n Not applicable.", - "labels": [ - 2 - ] - }, - { - "text": "Scientific reports \n DII modulates the relationship between SVD3 and NAFLD prevalence, rather than liver fibrosis severity, in hospitalized T2DM population. \n Type 2 diabetes (T2DM) patients are at high risk for non-alcoholic fatty liver disease (NAFLD). Studies show SVD3 and dietary inflammatory index (DII) are associated with NAFLD. It's unknown if they interact in T2DM patients with NAFLD. We collected data from 110 hospitalized T2DM patients, measured physiological and biochemical indicators, conducted dietary surveys, and converted data into DII and NFS, FIB-4, and BARD indices. We used logistic regression, mediation effect analysis, and moderation effect analysis to explore the relationship between DII and SVD3 with NAFLD and liver fibrosis in T2DM patients. DII was not significant in either NAFLD incidence in T2DM patients or liver fibrosis in NAFLD patients. SVD3 was positively correlated with NAFLD incidence in T2DM patients, but this correlation became insignificant as DII increased towards pro-inflammation. SVD3 is positively correlated with NAFLD incidence in T2DM patients, but this correlation becomes less significant as DII increases towards pro-inflammation.", - "labels": [ - 2 - ] - }, - { - "text": "Scientific reports \n HbA1c and leukocyte mtDNA levels as major factors associated with post-COVID-19 syndrome in type 2 diabetes patients. \n Post-COVID-19 syndrome (PCS) is an emerging health problem in people recovering from COVID-19 infection within the past 3-6 months. The current study aimed to define the predictive factors of PCS development by assessing the mitochondrial DNA (mtDNA) levels in blood leukocytes, inflammatory markers and HbA1c in type 2 diabetes patients (T2D) with regard to clinical phenotype, gender, and biological age. In this case-control study, 65 T2D patients were selected. Patients were divided into 2 groups depending on PCS presence: the PCS group (n\u2009=\u200944) and patients who did not develop PCS (n\u2009=\u200921) for up to 6 months after COVID-19 infection. HbA1c and mtDNA levels were the primary factors linked to PCS in different models. We observed significantly lower mtDNA content in T2D patients with PCS compared to those without PCS (1.26\u2009\u00b1\u20090.25 vs. 1.44\u2009\u00b1\u20090.24; p\u2009=\u20090.011). In gender-specific and age-related analyses, the mt-DNA amount did not differ significantly between the subgroups. According to the stepwise multivariate logistic regression analysis, low mtDNA content and HbA1c were independent variables associated with PCS development, regardless of oxygen, glucocorticoid therapy and COVID-19 severity. The top-performing model for PCS prediction was the gradient boosting machine (GBM). HbA1c and mtDNA had a notably greater influence than the other variables, indicating their potential as prognostic biomarkers.", - "labels": [ - 2 - ] - }, - { - "text": "Scientific reports \n One-year outcomes of a digital twin intervention for type 2 diabetes: a retrospective real-world study. \n This retrospective observational study, building on prior research that demonstrated the efficacy of the Digital Twin (DT) Precision Treatment Program over shorter follow-up periods\u200b\u200b, aimed to examine glycemic control and reduced anti-diabetic medication use after one-year in a DT commercial program. T2D patients enrolled had adequate hepatic and renal function and no recent cardiovascular events. DT intervention powered by artificial intelligence utilizes precision nutrition, activity, sleep, and deep breathing exercises. Outcome measures included HbA1c change, medication reduction, anthropometrics, insulin markers, and continuous glucose monitoring (CGM) metrics. Of 1985 enrollees, 132 (6.6%) were lost to follow-up, leaving 1853 participants who completed one-year. At one-year, participants exhibited significant reductions in HbA1c [mean change: -1.8% (SD 1.7%), p\u2009<\u20090.001], with 1650 (89.0%) achieving HbA1c below 7%. At baseline, participants were on mean 1.9 (SD 1.4) anti-diabetic medications, which decreased to 0.5 (SD 0.7) at one-year [change: -1.5 (SD 1.3), p\u2009<\u20090.001]. Significant reductions in weight [mean change: -4.8\u00a0kg (SD 6.0\u00a0kg), p\u2009<\u20090.001], insulin resistance [HOMA2-IR: -0.1 (SD 1.2), p\u2009<\u20090.001], and improvements in \u03b2-cell function [HOMA2-B: +21.6 (SD 47.7), p\u2009<\u20090.001] were observed, along with better CGM metrics. These findings suggest that DT intervention could play a vital role in the future of T2D care.", - "labels": [ - 2 - ] - }, - { - "text": "Obesity surgery \n Eight Year Follow-Up After Gastric Bypass and Sleeve Gastrectomy in a Brazilian Cohort: Weight Trajectory and Health Outcomes. \n Patients undergoing RYGB showed greater weight loss and less weight regain 8\u00a0years after bariatric surgery compared to those undergoing SG.", - "labels": [ - 2 - ] - }, - { - "text": "BMJ open \n Healthy Eating and Active Lifestyles for Diabetes (HEAL-D) Online: a mixed methods evaluation exploring the feasibility of implementing a virtual culturally tailored diabetes self-management programme for African and Caribbean communities. \n This evaluation demonstrates the feasibility of delivering HEAL-D using an online platform, with its ability to achieve similar goals compared with its face-to-face counterpart. Challenges were identified around the identification, recruitment and referral of eligible patients into the programme, which need to be addressed for successful implementation on a wider scale.", - "labels": [ - 2 - ] - }, - { - "text": "Neuroscience letters \n Neurometabolic substrate transport across brain barriers in diabetes mellitus: Implications for cognitive function and neurovascular health. \n Neurometabolic homeostasis in the brain depends on the coordinated transport of glucose and other essential substrates across brain barriers, primarily the blood-brain barrier and the blood-cerebrospinal fluid barrier. In type 2 diabetes mellitus (T2DM), persistent hyperglycemia disrupts these processes, leading to neurovascular dysfunction and cognitive impairment. This review examines how T2DM alters glucose and neurometabolite transport, emphasizing the role of glucose transporters and the astrocyte-neuron lactate shuttle in maintaining cerebral energy balance. Reduced expression of glucose transporters and impaired neurovascular coupling are key contributors to cognitive decline in T2DM. Additionally, the review highlights insulin's pivotal role in the hippocampus, where it enhances neuro-glial coupling and modulates astrocyte glucose uptake to support neuronal energy demands. Synthesizing current findings, we underscore the importance of therapeutic strategies aimed at correcting glucose transport dysregulation to alleviate diabetes-associated cognitive decline.", - "labels": [ - 2 - ] - }, - { - "text": "The lancet. Diabetes & endocrinology \n Younger-onset compared with later-onset type 2 diabetes: an analysis of the UK Prospective Diabetes Study (UKPDS) with up to 30 years of follow-up (UKPDS 92). \n National Institute of Health and Care Research's Biomedical Research Centre.", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes and its complications \n Effects of moderate-intensity aerobic training on cardiac structure and function in type 2 mellitus diabetic rats: Based on echocardiography and speckle tracking. \n LS-STE was a sensitive method to assess subclinical myocardial changes in T2DM rats. MIAT had the benefit of reversing cardiac systolic subclinical dysfunction in T2DM rats.", - "labels": [ - 2 - ] - }, - { - "text": "Diabetologia \n Intermittently scanned continuous glucose\u00a0monitoring compared with blood glucose monitoring is associated with lower HbA \n This study shows that Swedish adults with type 2 diabetes on insulin who are using isCGM have a significantly reduced HbA", - "labels": [ - 2 - ] - }, - { - "text": "Journal of diabetes investigation \n Association between malnutrition and adverse renal outcomes in patients with type 2 diabetes. \n We observed an association between poor nutritional status, assessed by GNRI, and adverse outcomes in patients with type 2 diabetes. Nutritional status assessment has potential utility as a prognostic tool for individuals with type 2 diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "Pharmacotherapy \n ECLIPSES: Early initiation of sodium glucose cotransporter-2 inhibitors for cardiovascular protection in patients with type 2 diabetes following acute coronary syndrome and subsequent coronary artery bypass graft surgery. \n Early initiation of SGLT2i use was not associated with a reduction in MACE in patients with T2DM who experienced ACS and underwent subsequent CABG surgery. However, no apparent safety concerns were identified. Adequately powered trials are required to confirm this finding.", - "labels": [ - 2 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Age-Related Changes in Insulin Resistance and Muscle Mass: Clinical Implications in Obese Older Adults. \n The older segment of the global population is increasing at a rapid pace. Advancements in public health and modern medicine lengthened life expectancy and reduced the burden of disease in communities worldwide. Concurrent with this demographic change is the rise in overweight people and obesity, which is evident in all age groups. There is also an aging-related reduction in muscle mass and function, or sarcopenia, that is exacerbated by sedentary lifestyle and poor nutrition. The coexistence of muscle loss and elevated body mass index, termed \"sarcopenic obesity\", has particularly deleterious consequences in older individuals. Worsening insulin resistance and a proinflammatory state operate at the pathophysiologic level and lead to adverse health outcomes such as a proclivity to cardiovascular disease, type 2 diabetes, and even cognitive dysfunction. Although the concept of sarcopenic obesity as a disease construct is being increasingly recognized, a clearer understanding is warranted in order to define its components and health impact. Research is needed at the molecular-cellular level to tie together derangements in insulin action, cytokines, myokines, and endothelial dysfunction with clinical outcomes. Lifestyle modifications as well as targeted nonpharmacologic approaches, such as supplements and antioxidants, appear to have a promising role in reducing the chronic burden of this emerging disorder. Breakthroughs in drug therapies that retard or even reverse the underlying dynamics of sarcopenia and obesity in older persons are being actively explored.", - "labels": [ - 2 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Scoring Health Behaviors of Patients with Type 2 Diabetes. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Beyond Blood Sugar: Low Awareness of Kidney Disease among Type 2 Diabetes Mellitus Patients in Dalmatia-Insights from the First Open Public Call. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Impact of the COVID-19 Pandemic on Lifestyle Behavior and Clinical Care Pathway Management in Type 2 Diabetes: A Retrospective Cross-Sectional Study. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Medicina (Kaunas, Lithuania) \n Cardiovascular Risk Factors as Independent Predictors of Diabetic Retinopathy in Type II Diabetes Mellitus: The Development of a Predictive Model. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Molecules (Basel, Switzerland) \n Identification of Novel PPAR\u03b3 Partial Agonists Based on Virtual Screening Strategy: In Silico and In Vitro Experimental Validation. \n Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome proliferator-activated receptor gamma (PPAR\u03b3) full agonists, which have been known as a class to be among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities toward PPAR\u03b3 induced by the AF-2 helix-involved \"locked\" mechanism. Thereby, this study aimed to obtain novel PPAR\u03b3 partial agonists without direct interaction with the AF-2 helix. Through performing virtual screening of the Targetmol L6000 Natural Product Library and utilizing molecular dynamics (MD) simulation, as well as molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, four compounds including tubuloside b, podophyllotoxone, endomorphin 1 and paliperidone were identified as potential PPAR\u03b3 partial agonists. An in vitro TR-FRET competitive binding assay showed podophyllotoxone displayed the optimal binding affinity toward PPAR\u03b3 among the screened compounds, exhibiting IC", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. \n ", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n The Contribution of Postprandial Glucose Levels to Hyperglycemia in Type 2 Diabetes Calculated from Continuous Glucose Monitoring Data: Real World Evidence from the DIALECT-2 Cohort. \n Both PPG and FPG contribute to hyperglycemia, with PPG playing a larger role in patients with better glycemic control, especially after breakfast. Targeting PPG may be crucial for optimizing glucose management.", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Development of a Diabetes Dietary Quality Index: Reproducibility and Associations with Measures of Insulin Resistance, Beta Cell Function, and Hyperglycemia. \n We identified a questionnaire-derived Diabetes Dietary Quality index that was reproducible and inversely associated with a number of type 2 diabetes mellitus and metabolic risk factors, like 2 h post-meal glucose, Hba1c and LDL, and total cholesterol. Once relative validity has been established, the Diabetes Dietary Quality index could be used by health care professionals to identify individuals with diets adversely related to development of type 2 diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Does Online Social Support Affect the Eating Behaviors of Polish Women with Insulin Resistance? \n Our study indicates a relationship between participation in online support groups and dietary behaviors and the subjective assessment of nutrition knowledge. Future research should focus on elucidating the mechanisms behind these influences and exploring how these communities can be optimized for broader public health initiatives.", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Microbiota Transplantation in Individuals with Type 2 Diabetes and a High Degree of Insulin Resistance. \n The objective of this study was to determine the results of fecal microbiota transplantation (FMT) from healthy lean subjects in patients with type 2 diabetes (T2D); Methods: We designed a phase II, randomized, single-blind, parallel-arm clinical trial. Twenty-one subjects (12 men [57.1%] and 9 women [42.9%]), who had previously signed an informed consent were randomized to FMT from lean donors, a probiotic (", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Experiences of Postpartum Follow-Up and Participation in a Lifestyle Intervention after Gestational Diabetes: A Qualitative Study. \n The study findings can help support the development of future intervention programmes for women who have experienced gestational diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. \n The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, \u03b2-glucan, and ", - "labels": [ - 2 - ] - }, - { - "text": "Nutrients \n \n Overall, Akk appears to be effective at reducing the onset of type 2 diabetes and diet-induced obesity. Long-term studies with larger sample sizes are needed to confirm these beneficial effects, as the current animal studies were of short duration (less than 20 weeks).", - "labels": [ - 2 - ] - }, - { - "text": "International journal of environmental research and public health \n Stakeholder Perspectives on the Acceptability, Design, and Integration of Produce Prescriptions for People with Type 2 Diabetes in Australia: A Formative Study. \n Produce prescription programs can benefit both individuals and health systems; however, best practices for integrating such programs into the Australian health system are yet unknown. This study explored stakeholders' perspectives on the acceptability, potential design and integration of produce prescription programs for adults with type 2 diabetes in Australia. Purposive sampling was used to recruit 22 participants for an online workshop, representing six stakeholder groups (government, healthcare service, clinician, food retailer, consumer, non-government organisation). Participant responses were gathered through workshop discussions and a virtual collaboration tool (Mural). The workshop was video-recorded and transcribed verbatim, and thematic analysis was conducted using a deductive-inductive approach. Stakeholders recognised produce prescription as an acceptable intervention; however, they identified challenges to implementation related to contextuality, accessibility, and sustainability. Stakeholders were vocal about the approach (e.g., community-led) and infrastructure (e.g., screening tools) needed to support program design and implementation but expressed diverse views about potential funding models, indicating a need for further investigation. Aligning evaluation outcomes with existing measures in local, State and Federal initiatives was recommended, and entry points for integration were identified within and outside of the Australian health sector. Our findings provide clear considerations for future produce prescription interventions for people with type 2 diabetes.", - "labels": [ - 2 - ] - }, - { - "text": "International journal of environmental research and public health \n Impact of Oral Hygiene Practices in Reducing Cardiometabolic Risk, Incidence, and Mortality: A Systematic Review. \n Cardiometabolic diseases share many modifiable risk factors. However, periodontitis, a chronic inflammatory condition of the gums, is a risk factor that is rarely publicized. This systematic review aims to evaluate the impact of oral hygiene practices on the risk, incidence, and/or mortality rate of cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), and chronic kidney disease (CKD). Searches were conducted using MEDLINE, Embase, Scopus, and CINHAL. Randomized controlled trials (RCTs), quasi-RCTs, and observational studies were included. Eligible studies reported on associations of toothbrushing, interdental cleaning, mouthwash, or toothpaste use, either alone or in combination with CVD, CKD, and/or T2DM outcomes in adults \u2265 18 years. Fifty-five studies were included. Cochrane's risk of bias tool and the Newcastle-Ottawa Scale were used for quality assessment. Data synthesis is narratively presented. Toothbrushing and interdental cleaning were associated with lower risk of developing T2DM or hypertension HR 0.54 [", - "labels": [ - 2 - ] - }, - { - "text": "International journal of environmental research and public health \n Diabetes Distress and Health-Related Quality of Life among Patients with Type 2 Diabetes-Mediating Role of Experiential Avoidance and Moderating Role of Post-Traumatic Growth. \n These findings underscore the importance of Acceptance and Commitment Therapy as it can potentially decrease the experiential avoidance behaviour of patients. Moreover, intervention should also target the facilitation of PTG due to its beneficial effects in reducing the negative effects of diabetes distress on health and recovery.", - "labels": [ - 2 - ] - }, - { - "text": "International journal of molecular sciences \n Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. \n Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.", - "labels": [ - 2 - ] - }, - { - "text": "International journal of molecular sciences \n Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients. \n Cancer patients, especially long cancer survivors, are exposed to several cardio-metabolic diseases, including diabetes, heart failure, and atherosclerosis, which increase their risk of cardiovascular mortality. Therapy with glucagon-like peptide 1 (GLP1) receptor agonists demonstrated several beneficial cardiovascular effects, including atherosclerosis and heart failure prevention. Cardiovascular outcome trials (CVOTs) suggest that GLP-1 RA could exert cardiorenal benefits and systemic anti-inflammatory effects in patients with type-2 diabetes through the activation of cAMP and PI3K/AkT pathways and the inhibition of NLRP-3 and MyD88. In this narrative review, we highlight the biochemical properties of GLP-1 RA through a deep analysis of the clinical and preclinical evidence of the primary prevention of cardiomyopathies. The overall picture of this review encourages the study of GLP-1 RA in cancer patients with type-2 diabetes, as a potential primary prevention strategy against heart failure and atherosclerosis.", - "labels": [ - 2 - ] - }, - { - "text": "International journal of molecular sciences \n Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. \n Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the \u03b2-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.", - "labels": [ - 2 - ] - } -] \ No newline at end of file diff --git a/model/gpt-test.py b/models/LLM/ChatGpt/gpt-test.py similarity index 100% rename from model/gpt-test.py rename to models/LLM/ChatGpt/gpt-test.py diff --git a/model/claude.py b/models/LLM/Claude/claude.py similarity index 100% rename from model/claude.py rename to models/LLM/Claude/claude.py diff --git a/model/cohereCommand.py b/models/LLM/Cohere/cohereCommand.py similarity index 100% rename from model/cohereCommand.py rename to models/LLM/Cohere/cohereCommand.py diff --git a/model/doc/cohere.md b/models/LLM/Cohere/doc/cohere.md similarity index 100% rename from model/doc/cohere.md rename to models/LLM/Cohere/doc/cohere.md diff --git a/model/doc/gemini.md b/models/LLM/Gemini/doc/gemini.md similarity index 100% rename from model/doc/gemini.md rename to models/LLM/Gemini/doc/gemini.md diff --git a/model/gemini.py b/models/LLM/Gemini/gemini.py similarity index 100% rename from model/gemini.py rename to models/LLM/Gemini/gemini.py diff --git a/model/llama.py b/models/LLM/Llama/llama.py similarity index 100% rename from model/llama.py rename to models/LLM/Llama/llama.py diff --git a/model/HuggingFace/HuggingFace.md b/models/ZeroShotClassifier/HuggingFace/doc/HuggingFace.md similarity index 100% rename from model/HuggingFace/HuggingFace.md rename to models/ZeroShotClassifier/HuggingFace/doc/HuggingFace.md diff --git a/model/doc/facebookBartLargeMnli.md b/models/ZeroShotClassifier/HuggingFace/doc/facebookBartLargeMnli.md similarity index 100% rename from model/doc/facebookBartLargeMnli.md rename to models/ZeroShotClassifier/HuggingFace/doc/facebookBartLargeMnli.md diff --git a/model/HuggingFace/zero_shot_classification.py b/models/ZeroShotClassifier/HuggingFace/zero_shot_classification.py similarity index 100% rename from model/HuggingFace/zero_shot_classification.py rename to models/ZeroShotClassifier/HuggingFace/zero_shot_classification.py diff --git a/model/doc/source.md b/models/ZeroShotClassifier/doc/source.md similarity index 100% rename from model/doc/source.md rename to models/ZeroShotClassifier/doc/source.md diff --git a/model/BiomedBERT.py b/old/BiomedBERT.py similarity index 98% rename from model/BiomedBERT.py rename to old/BiomedBERT.py index a47b9dcb74028332b6a6d20c2af3d0af6f0f7ec6..a65476a958d701e4c78edd2b4255534ef1e8865d 100644 --- a/model/BiomedBERT.py +++ b/old/BiomedBERT.py @@ -4,7 +4,7 @@ import os # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from api.pubmedApi import getPubmedData +from dataSources.PubMed.pubmedApi import getPubmedData from transformers import AutoTokenizer, AutoModelForSequenceClassification import time import json diff --git a/api/model/img/GptClassificationResult.png b/old/GptClassificationResult.png similarity index 100% rename from api/model/img/GptClassificationResult.png rename to old/GptClassificationResult.png diff --git a/api/main.py b/old/main.py similarity index 87% rename from api/main.py rename to old/main.py index ab6f9a5d24660018a9e09b26085b348690dcaa6c..db2c53795a61caf9298aae212e5b7dbd0999c849 100644 --- a/api/main.py +++ b/old/main.py @@ -1,6 +1,6 @@ -from parser.jsonParser import parseJsonFile -from parser.xlsxParser import parseXlsxFile -from whoApi import getCountriesList +from parsers.jsonParser import parseJsonFile +from parsers.xlsxParser import parseXlsxFile +from dataSources.WHO.whoApi import getCountriesList if __name__ == "__main__": print("\nKeywords:\n") diff --git a/api/model/models.md b/old/models.md similarity index 98% rename from api/model/models.md rename to old/models.md index adcd11f1e78a978ee75e8213366ec4f7ad187cfb..afdeedc7fd205714f34607a81065473eb81ba8b2 100644 --- a/api/model/models.md +++ b/old/models.md @@ -23,4 +23,4 @@ Voici un texte : Cardiovascular events are frequent among individuals with predi #### Résultat - \ No newline at end of file + \ No newline at end of file diff --git a/api/model/tars.py b/old/tars.py similarity index 100% rename from api/model/tars.py rename to old/tars.py diff --git a/api/parser/jsonParser.py b/parsers/jsonParser.py similarity index 100% rename from api/parser/jsonParser.py rename to parsers/jsonParser.py diff --git a/api/parser/xlsxParser.py b/parsers/xlsxParser.py similarity index 100% rename from api/parser/xlsxParser.py rename to parsers/xlsxParser.py diff --git a/api/parser/xmlParser.py b/parsers/xmlParser.py similarity index 100% rename from api/parser/xmlParser.py rename to parsers/xmlParser.py diff --git a/rapport.md b/rapports/rapport.md similarity index 100% rename from rapport.md rename to rapports/rapport.md diff --git a/model/dataset/cancer.json b/testModel/dataset/cancer.json similarity index 100% rename from model/dataset/cancer.json rename to testModel/dataset/cancer.json diff --git a/model/dataset/cardiovascular_diseases.json b/testModel/dataset/cardiovascular_diseases.json similarity index 100% rename from model/dataset/cardiovascular_diseases.json rename to testModel/dataset/cardiovascular_diseases.json diff --git a/model/dataset/chronic_respiratory_disease.json b/testModel/dataset/chronic_respiratory_disease.json similarity index 100% rename from model/dataset/chronic_respiratory_disease.json rename to testModel/dataset/chronic_respiratory_disease.json diff --git a/model/create_test_data.py b/testModel/dataset/create_test_data.py similarity index 96% rename from model/create_test_data.py rename to testModel/dataset/create_test_data.py index 398ea24456a9030721477c4695b2582e66232a86..c618a35a221026f143e70e46554cb38d0612dbdd 100644 --- a/model/create_test_data.py +++ b/testModel/dataset/create_test_data.py @@ -6,7 +6,7 @@ import time # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from api.pubmedApi import getPubmedData +from folders.dataSources.PubMed.pubmedApi import getPubmedData LABELS = [ "Noncommunicable Diseases", diff --git a/model/dataset/diabetes.json b/testModel/dataset/diabetes.json similarity index 100% rename from model/dataset/diabetes.json rename to testModel/dataset/diabetes.json diff --git a/model/dataset/diabetes_type_1.json b/testModel/dataset/diabetes_type_1.json similarity index 100% rename from model/dataset/diabetes_type_1.json rename to testModel/dataset/diabetes_type_1.json diff --git a/model/dataset/diabetes_type_2.json b/testModel/dataset/diabetes_type_2.json similarity index 100% rename from model/dataset/diabetes_type_2.json rename to testModel/dataset/diabetes_type_2.json diff --git a/model/dataset/mental_health.json b/testModel/dataset/mental_health.json similarity index 100% rename from model/dataset/mental_health.json rename to testModel/dataset/mental_health.json diff --git a/model/dataset/noncommunicable_diseases.json b/testModel/dataset/noncommunicable_diseases.json similarity index 100% rename from model/dataset/noncommunicable_diseases.json rename to testModel/dataset/noncommunicable_diseases.json diff --git a/docImg/smallTextPredictions.png b/testModel/doc/img/smallTextPredictions.png similarity index 100% rename from docImg/smallTextPredictions.png rename to testModel/doc/img/smallTextPredictions.png diff --git a/model/doc/small_text_test.md b/testModel/doc/small_text_test.md similarity index 94% rename from model/doc/small_text_test.md rename to testModel/doc/small_text_test.md index dfe16a827f3bf6a043533f3132d9b1a4158d3501..1e6d3c23f53341e6b2cc1c2ac7972afefb34b5f7 100644 --- a/model/doc/small_text_test.md +++ b/testModel/doc/small_text_test.md @@ -15,6 +15,6 @@ For an entrie that have: - Results: 'Diabetes type 2' -> 0.7203449606895447 (~ 72%) Results for the 5 entries: - + I saw that the lenght of the text didn't really have an impact on the acuracy of the prediction. \ No newline at end of file diff --git a/model/multi_label_test.py b/testModel/multi_label_test.py similarity index 96% rename from model/multi_label_test.py rename to testModel/multi_label_test.py index 525799826f4c4001244e6af91d53edae23aeb9ba..1660e9c5cc1e921a9a705c59aa44ef25f22e337e 100644 --- a/model/multi_label_test.py +++ b/testModel/multi_label_test.py @@ -4,7 +4,7 @@ import os # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from model.HuggingFace.zero_shot_classification import create_classifier, classify +from models.ZeroShotClassifier.HuggingFace.zero_shot_classification import create_classifier, classify labels = [ "Diabetes", diff --git a/model/results/cohere/v1.txt b/testModel/results/cohere/v1.txt similarity index 100% rename from model/results/cohere/v1.txt rename to testModel/results/cohere/v1.txt diff --git a/model/results/gemini/v1.txt b/testModel/results/gemini/v1.txt similarity index 100% rename from model/results/gemini/v1.txt rename to testModel/results/gemini/v1.txt diff --git a/model/results/gemini/v2.txt b/testModel/results/gemini/v2.txt similarity index 100% rename from model/results/gemini/v2.txt rename to testModel/results/gemini/v2.txt diff --git a/model/results/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v1/facebook-bart_large_mnli.txt b/testModel/results/v1/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v1/facebook-bart_large_mnli.txt rename to testModel/results/v1/facebook-bart_large_mnli.txt diff --git a/model/results/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v2/facebook-bart_large_mnli.txt b/testModel/results/v2/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v2/facebook-bart_large_mnli.txt rename to testModel/results/v2/facebook-bart_large_mnli.txt diff --git a/model/results/v2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v3/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v3/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v3/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v3/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v3/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v3/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v3/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v3/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v3/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v3/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v3/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v3/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v3/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v3/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v3/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v3/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v3/facebook-bart_large_mnli.txt b/testModel/results/v3/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v3/facebook-bart_large_mnli.txt rename to testModel/results/v3/facebook-bart_large_mnli.txt diff --git a/model/results/v3/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v3/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v3/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v3/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v4/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v4/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v4/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v4/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v4/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v4/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v4/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v4/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v4/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v4/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v4/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v4/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v4/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v4/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v4/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v4/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v4/facebook-bart_large_mnli.txt b/testModel/results/v4/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v4/facebook-bart_large_mnli.txt rename to testModel/results/v4/facebook-bart_large_mnli.txt diff --git a/model/results/v4/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v4/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v4/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v4/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v5_1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v5_1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v5_1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v5_1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v5_1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v5_1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v5_1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v5_1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v5_1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v5_1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v5_1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v5_1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v5_1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v5_1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v5_1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v5_1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v5_1/facebook-bart_large_mnli.txt b/testModel/results/v5_1/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v5_1/facebook-bart_large_mnli.txt rename to testModel/results/v5_1/facebook-bart_large_mnli.txt diff --git a/model/results/v5_1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v5_1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v5_1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v5_1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v5_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v5_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v5_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v5_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v5_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v5_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v5_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v5_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v5_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v5_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v5_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v5_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v5_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v5_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v5_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v5_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v5_2/facebook-bart_large_mnli.txt b/testModel/results/v5_2/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v5_2/facebook-bart_large_mnli.txt rename to testModel/results/v5_2/facebook-bart_large_mnli.txt diff --git a/model/results/v5_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v5_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v5_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v5_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/v6_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/v6_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/v6_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/v6_2/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/v6_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/v6_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/v6_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/v6_2/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/v6_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/v6_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/v6_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/v6_2/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/v6_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/v6_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/v6_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/v6_2/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/v6_2/facebook-bart_large_mnli.txt b/testModel/results/v6_2/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/v6_2/facebook-bart_large_mnli.txt rename to testModel/results/v6_2/facebook-bart_large_mnli.txt diff --git a/model/results/v6_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/v6_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/v6_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/v6_2/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/results/zero_shot/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt b/testModel/results/zero_shot/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt similarity index 100% rename from model/results/zero_shot/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt rename to testModel/results/zero_shot/v1/MoritzLaurer-DeBERTa_v3_base_mnli_fever_anli.txt diff --git a/model/results/zero_shot/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt b/testModel/results/zero_shot/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt similarity index 100% rename from model/results/zero_shot/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt rename to testModel/results/zero_shot/v1/MoritzLaurer-bge_m3_zeroshot_v2_0.txt diff --git a/model/results/zero_shot/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt b/testModel/results/zero_shot/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt similarity index 100% rename from model/results/zero_shot/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt rename to testModel/results/zero_shot/v1/MoritzLaurer-deberta_v3_base_zeroshot_v1_1_all_33.txt diff --git a/model/results/zero_shot/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt b/testModel/results/zero_shot/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt similarity index 100% rename from model/results/zero_shot/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt rename to testModel/results/zero_shot/v1/MoritzLaurer-multilingual_MiniLMv2_L6_mnli_xnli.txt diff --git a/model/results/zero_shot/v1/facebook-bart_large_mnli.txt b/testModel/results/zero_shot/v1/facebook-bart_large_mnli.txt similarity index 100% rename from model/results/zero_shot/v1/facebook-bart_large_mnli.txt rename to testModel/results/zero_shot/v1/facebook-bart_large_mnli.txt diff --git a/model/results/zero_shot/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt b/testModel/results/zero_shot/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt similarity index 100% rename from model/results/zero_shot/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt rename to testModel/results/zero_shot/v1/microsoft-BiomedNLP_BiomedBERT_base_uncased_abstract.txt diff --git a/model/smallTextTest.py b/testModel/smallTextTest.py similarity index 100% rename from model/smallTextTest.py rename to testModel/smallTextTest.py diff --git a/model/test_cohere.py b/testModel/test_cohere.py similarity index 97% rename from model/test_cohere.py rename to testModel/test_cohere.py index 66cc9cb566666ca97b62f93d9599b672a350e837..8b9024518ec34407095836516d10383bdfabb7eb 100644 --- a/model/test_cohere.py +++ b/testModel/test_cohere.py @@ -4,10 +4,10 @@ import os # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from api.parser.jsonParser import parseJsonFile +from parsers.jsonParser import parseJsonFile import time -from model.cohereCommand import cohere_classify +from models.LLM.Cohere.cohereCommand import cohere_classify LABELS = [ "Noncommunicable Diseases", diff --git a/model/test_gemini.py b/testModel/test_gemini.py similarity index 97% rename from model/test_gemini.py rename to testModel/test_gemini.py index 4964469aa5f7113f5b05b409f8711b69a9b90708..5cd68459e06c26a72a0de129406301200308006a 100644 --- a/model/test_gemini.py +++ b/testModel/test_gemini.py @@ -4,10 +4,10 @@ import os # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from api.parser.jsonParser import parseJsonFile +from parsers.jsonParser import parseJsonFile import time -from model.gemini import gemini_classify, gemini_start_chat +from models.LLM.Gemini.gemini import gemini_classify, gemini_start_chat LABELS = [ "Noncommunicable Diseases", diff --git a/model/test_model.py b/testModel/test_model.py similarity index 97% rename from model/test_model.py rename to testModel/test_model.py index ce084a8f0a775b93b5911c598f0912bccdf96c2e..183f9f202e9813131ee5825eecf6f20e7e07d8ae 100644 --- a/model/test_model.py +++ b/testModel/test_model.py @@ -4,11 +4,11 @@ import os # Ajouter le répertoire parent au chemin de recherche sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../"))) -from api.parser.jsonParser import parseJsonFile +from parsers.jsonParser import parseJsonFile import time import statistics -from model.HuggingFace.zero_shot_classification import create_classifier, classify, MODELS +from models.ZeroShotClassifier.HuggingFace.zero_shot_classification import create_classifier, classify, MODELS TRESHOLD = 0.7