diff --git a/polynomial.py b/polynomial.py
index 05175259fa3c246664121f4166654910adab9643..216a6f064aeeae0d90583007a85bb07901b75bd5 100644
--- a/polynomial.py
+++ b/polynomial.py
@@ -6,24 +6,23 @@ from typing import Tuple
 
 
 def unicode_superscripts(value):
-    exponent_dict = {"0": "⁰", "1": "¹", "2": "²", "3": "³",
-                     "4": "⁴", "5": "⁵", "6": "⁶", "7": "⁷", "8": "⁸", "9": "⁹"}
+    exponent_dict = {"0": "⁰", "1": "¹", "2": "²", "3": "³", "4": "⁴", "5": "⁵", "6": "⁶", "7": "⁷", "8": "⁸", "9": "⁹"}
     return ("⁻" if value < 0 else "") + "".join(exponent_dict[x] for x in str(abs(value)))
 
 
 class Polynomial:
     def __init__(self, value=()):
         if not isinstance(value, tuple):
-            raise TypeError("The \"value\" parameter is not of type tuple.")
+            raise TypeError('The "value" parameter is not of type tuple.')
         self.value = value
 
     def pass_x_throughout(self, x):
         a = list(self.value)
-        sum = (a[len(a)-1]*x)+a[len(a)-2]
-        for i in reversed(range(len(a)-2)):
-            sum = sum*x+a[i]
+        sum = (a[len(a) - 1] * x) + a[len(a) - 2]
+        for i in reversed(range(len(a) - 2)):
+            sum = sum * x + a[i]
         return sum
-            
+
     def __add__(self, other):
         a = list(self.value)
         b = list(other.value)
@@ -31,17 +30,17 @@ class Polynomial:
         a_count = len(a)
         b_count = len(b)
         if a_count > b_count:
-            diff = a_count-b_count
+            diff = a_count - b_count
             for x in range(diff):
                 b.append(0)
         else:
-            diff = b_count-a_count
+            diff = b_count - a_count
             for x in range(diff):
                 a.append(0)
 
         c = [0] * len(a)
         for x in range(len(a)):
-            c[x] = a[x]+b[x]
+            c[x] = a[x] + b[x]
 
         return Polynomial(tuple(c))
 
@@ -50,12 +49,12 @@ class Polynomial:
         b = list(other.value)
         a_count = len(a)
         b_count = len(b)
-        size = ((a_count - 1) + (b_count - 1) + 1)
+        size = (a_count - 1) + (b_count - 1) + 1
         c = [0] * size
 
         for i in range(a_count):
             for j in range(b_count):
-                c[i+j] += a[i]*b[j]
+                c[i + j] += a[i] * b[j]
 
         return Polynomial(tuple(c))
 
@@ -94,22 +93,31 @@ class Polynomial:
 
 
 def compute_bachet_bezout(a, b):
+    r = []
+    x = []
+    y = []
+    q = []
+
     # Init
+    r.append(a)
+    x.append(1)
+    y.append(0)
+    q.append(0)
 
-    r = [a, b]
-    x = [1, 0]
-    y = [0, 1]
-    q = [0, 0]
+    r.append(b)
+    x.append(0)
+    y.append(1)
+    q.append(0)
 
     # Computing
     i = 1
     while r[i] > 0:
         i += 1
-        r.append(r[i-2] % r[i-1])
-        q.append(int(r[i-2] / r[i-1]))
+        r.append(r[i - 2] % r[i - 1])
+        q.append(int(r[i - 2] / r[i - 1]))
         if r[i] > 0:
-            x.append(x[i-2]-q[i]*x[i-1])
-            y.append(y[i-2]-q[i]*y[i-1])
+            x.append(x[i - 2] - q[i] * x[i - 1])
+            y.append(y[i - 2] - q[i] * y[i - 1])
 
     return x[-1], y[-1]
 
@@ -136,53 +144,27 @@ def compute_lagrange_polynomial(points, prime_number):
                 dividend = Polynomial((-points[k][0], 1))  # x - value
 
                 poly_li *= dividend
-                divider *= (points[i][0] - points[k][0])
+                divider *= points[i][0] - points[k][0]
 
-        divider = modular_inverse(divider, prime_number)
+        divider = 1 / divider
         point_yi = points[i][1]
         poly_li = poly_li * Polynomial((divider,)) * Polynomial((point_yi,))
 
         lagrange += poly_li
-        lagrange %= prime_number
 
     return lagrange
 
 
 def reed_solomon(points, data_length, last_error_index, prime_number):
-    pass
+    return None
 
 
 def main():
+    message = {"data_length": 25, "last_error_index": 23, "prime_number": 401, "points": [67, 101, 38, 109, 101, 115, 133, 118, 103, 128, 62, 118, 97, 156, 116, 77, 49, 56, 86, 112, 171, 105, 176, 116, 115, 183, 30, 315, 368, 29, 352, 54, 333, 198, 139, 234, 321, 92, 5, 272, 396, 265, 397, 386, 229, 153, 276]}
 
-    p1 = Polynomial((5, 1, 4))
-    p2 = Polynomial((5, 2, 3, 4))
-    p3 = p1*p2
-    # print(p1)
-    # print(p2)
-    # print(p3)
-    # print(p3 % 4)
-    # print(p3 % 5)
-    a = 168
-    b = 68
-    x, y = compute_bachet_bezout(a, b)
-    print("Pour les chiffres " + str(a) + " et " + str(b) +
-          ". Les coéfficients de Bachet-Bézout sont : " + str(x) + " et " + str(y))
-
-    a = 3
-    b = 7
-    print("Inverse modulaire de " + str(a) + " % " +
-          str(b) + " est " + str(modular_inverse(a, b)))
-
-    with open("messages.json") as f:
-        messages = json.load(f)
-    print(len(messages))
-
-    for message in messages:
-        points = [(x, y) for x, y in enumerate(message["points"])]
-        corrected_data = reed_solomon(
-            points, message["data_length"], message["last_error_index"], message["prime_number"])
-        print(corrected_data)
-        break
+    points = [(x, y) for x, y in enumerate(message["points"])]
+    corrected_data = reed_solomon(points, message["data_length"], message["last_error_index"], message["prime_number"])
+    print(corrected_data)
 
 
 if __name__ == "__main__":