diff --git a/polynomial.py b/polynomial.py
index 68434ce1653b700a9af7e0b27c6f007a7d1d03e7..8b514b74678a071eb1856ffdd9a2d69b2ec4e117 100644
--- a/polynomial.py
+++ b/polynomial.py
@@ -1,5 +1,5 @@
-import math
 import itertools
+import math
 
 
 def unicode_superscripts(number):
@@ -27,7 +27,6 @@ class Polynomial:
         Raises:
             TypeError: The type of the parameter "value" is not a tuple.
         """
-
         if not isinstance(value, tuple):
             raise TypeError('The "value" parameter is not of type tuple.')
         self.value = value
@@ -61,7 +60,7 @@ class Polynomial:
         b = list(other.value)
         c = []
 
-        # itertools pad 0 to the lowest list.
+        # Adds 0's to the list a if its length is less than that of b and vice versa.
         for (ai, bi) in itertools.zip_longest(a, b, fillvalue=0):
             c.append(ai + bi)
         return Polynomial(tuple(c))
@@ -113,13 +112,13 @@ class Polynomial:
 
         for i, x in enumerate(reversed(self.value)):
             x = math.ceil(x)
+
             if x == 0:
                 continue
             if i != 0:
                 str_value += " + " if x >= 0 else " - "
             if x != 1 or i == len(self.value) - 1:
                 str_value += str(abs(x))
-
             if len(self.value) - i - 1 >= 1:
                 str_value += "x"
             if len(self.value) - i - 1 >= 2:
@@ -145,16 +144,15 @@ def get_bezout_coefficients(a, b):
 
     while True:
         r.append(r[i - 2] % r[i - 1])
+
         # Continue until the rest is equal to 0
         if r[i] == 0:
             break
-
         q.append(int(r[i - 2] / r[i - 1]))
         x.append(x[i - 2] - q[i] * x[i - 1])
         y.append(y[i - 2] - q[i] * y[i - 1])
 
         i += 1
-
     return x[-1], y[-1]
 
 
@@ -223,27 +221,26 @@ def reed_solomon(points, data_length, last_error_index, prime_number):
 
         # Create the lagrange polynomial with the sublist of points
         lagrange = compute_lagrange_polynomial(sub_points, prime_number)
-
         nb_valid_points = 0
+
         # Parse each points to verify if the polynomial is correct
         for p in points:
             x = p[0]
             # Pass the x value of each points through the lagrange polynomial
             y = lagrange.evaluate_x(x) % prime_number
+
             # If the result is the same that the y value, then the point is correct
             if y == p[1]:
                 nb_valid_points += 1
-
         # Verify if we have enough valid points, so it must be equal or higher than m + n points
         # // = euclid division
         if nb_valid_points >= data_length + (len(points) - data_length) // 2:
             # Decode the message
             output = ""
+
             for i in range(data_length):
                 output += chr(lagrange.evaluate_x(i) % prime_number)
-
             return output
-
     return None