Skip to content
Snippets Groups Projects
Commit f267b7ca authored by orestis.malaspin's avatar orestis.malaspin
Browse files

Merge branch 'malaspinas-patch-8'

parents b96a6660 edde5ad6
No related branches found
No related tags found
No related merge requests found
...@@ -192,7 +192,7 @@ De même quand on a $f(x)=3x^4-5x^3+1$, $g(x)=1$ et donc ...@@ -192,7 +192,7 @@ De même quand on a $f(x)=3x^4-5x^3+1$, $g(x)=1$ et donc
$h(x)=3x^4-5x^3+1$. Il vient donc $h(x)=3x^4-5x^3+1$. Il vient donc
$$\lim_{x\rightarrow\infty} 3x^4-5x^3+1=\lim_{x\rightarrow\infty}3x^4=\infty.$$ $$\lim_{x\rightarrow\infty} 3x^4-5x^3+1=\lim_{x\rightarrow\infty}3x^4=\infty.$$
Si nous compliquons un peu l’exemple, et que nous avons Si nous compliquons un peu l’exemple et que nous avons
$f(x)=x^3+3x^2+1$, $g(x)=x^2$ et donc $h(x)=(x^3+3x^2+1)/x^2$ $f(x)=x^3+3x^2+1$, $g(x)=x^2$ et donc $h(x)=(x^3+3x^2+1)/x^2$
$$\lim_{x\rightarrow\infty} (x^3+3x^2+1)/x^2=\lim_{x\rightarrow\infty} x=\infty.$$ $$\lim_{x\rightarrow\infty} (x^3+3x^2+1)/x^2=\lim_{x\rightarrow\infty} x=\infty.$$
Ce genre d’estimations est imporant en informatique lors de l’analyse de Ce genre d’estimations est imporant en informatique lors de l’analyse de
...@@ -214,7 +214,7 @@ La valeur de $y$ étant quelque chose de proche de 0, la somme converge ...@@ -214,7 +214,7 @@ La valeur de $y$ étant quelque chose de proche de 0, la somme converge
vite vers une valeur finie et on peut faire l’approximation vite vers une valeur finie et on peut faire l’approximation
$$\log(n)\cong(p-1)\log(10),$$ pour $n$ grand (ce qui est équivalent à $$\log(n)\cong(p-1)\log(10),$$ pour $n$ grand (ce qui est équivalent à
$p$ grand). On a donc que finalement le rapport $n/\log(n)$ va comme $p$ grand). On a donc que finalement le rapport $n/\log(n)$ va comme
$$\lim_{n\rightarrow\infty}\frac{n}{\log(n)}=\frac{A}{\log(10)}\cdot\lim_{n\rightarrow\infty}\frac{10^{p-1}}{(p-1)}=\frac{A}{\log(10)}\cdot\lim_{n\rightarrow\infty}\frac{10^{p-1}}{p}=\infty.$$ $$\lim_{n\rightarrow\infty}\frac{n}{\log(n)}=\frac{A}{\log(10)}\cdot\lim_{p\rightarrow\infty}\frac{10^{p-1}}{(p-1)}=\frac{A}{\log(10)}\cdot\lim_{p\rightarrow\infty}\frac{10^{p-1}}{p}=\infty.$$
Continuité Continuité
---------- ----------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment