
T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Serverless / Function-as-a-Service

Assane Wade

Francisco Mendonça

Gabriel Strano

Nabil Abdennadher

2

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Overview

• The concepts Serverless Computing and Function-as-a-Service

• Motivation for FaaS

• AWS Lambda

• FaaS pricing model

• From three-Tier architecture to FaaS architecture (a use-case)

• Open-Source software for building FaaS platforms

3

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 4

Serverless computing

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 5

Serverless Computing

• Making devOps faster, cheaper and easier

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024
6

Serverless Computing

• Serverless is a cloud native development model that allows developers to build and run applications
without having to manage servers. “Cloud Native Computing Fondation”.

• Servers still exist but are abstracted away from the application development process.

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Serverless Computing

Benefits for developers:

• Zero server ops

• No provisioning, updating, and managing server infrastructure

• Fully automated scalability — no need to pre-plan capacity or configure rules for
autoscaling

• No compute cost when idle — no charge for idle VMs or containers

7

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 8

Serverless Computing

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Serverless - Tools

• AWS Serverless Application Model (SAM) :is an open-source framework for building serverless
applications. It provides shorthand syntax to express functions, APIs, databases, and event source
mappings.

• Azure serverless : Build, deploy, and operate serverless apps on an end-to-end platform

• Google Cloud Workflows

9

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Function as a Service (FaaS)

• Function-as-a-Service, or FaaS, is a serverless way to run functions in any
cloud environment.

• FaaS builds/runs applications without caring about provisioning, scaling, and
managing any servers.

• With FaaS, it may not be running at all until the function needs to be executed.
It starts the function within the needed time and then shuts it down.

• A new business model
• Eg: AWS Lambda, Azure Functions, Cloud Functions, Manta, Openwhisk etc.

8

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Function as a Service in a nutshell

• Run your code without supplying or administrating servers.
• No charge is applicable when your code is not running
• Scalability: Scaling up the IaaS infrastructure according to the needs
• Stateless functions: use external resources to manage the state of the application so that the state

can be shared.

9

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024
12

Cloud Service Models

Networking

On Premises

Vendor Manages

You Manage

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Storage

Servers

Virtualization

O/S

Middleware

Runt
ime

Data

Applications

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Infrastructure
(as a Service)

Platform
(as a Service)

Software
(as a Service)

Networking Networking Networking

Storage

Servers

OS

Networking

OS-level
Virtualization

Middleware

Runtime

Data

Applications

Container
Virtualization

Runt
ime

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Function
(as a Service)

Networking

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 13

AWS Lambda in a nutshell

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

handler

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

FaaS programming model

The programming model defines the interface between the developer's code and the runtime:

• The developer tells the runtime which method to run by defining a handler in the function configuration.

• When calling the handler, the runtime passes in two objects: Event & Context

• Event: a JSON-formatted document that contains data for a Lambda function to process. The Lambda
runtime converts the event to an object and passes it to the function code.

https://0wm4lhk445.execute-api.us-east-
1.amazonaws.com/StageName/NabilFunction?TableName=Music

{

"TableName": "Music"

}

• Context object. A context object is passed to the function by Lambda at runtime. This object provides
methods and properties that provide information about the invocation, function, and runtime environment.

15

event

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

FaaS programming model (Context)

16

For Lambda context object in Python, see this link

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Environment variables)

• Adjust your function's behaviour without updating code

• Environment variables are not evaluated before the function invocation.

• A key value pair

Example:

import os

region = os.environ['AWS_REGION']

17

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Trigger)

Trigger: a resource or configuration that invokes a Lambda function. Triggers include AWS services
that you can configure to invoke a function

18

Examples of
function triggers
(AWS services)

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Trigger)

19

Examples of function triggers
(third parties)

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Runtime)

• Provides a language-specific environment that runs in an execution environment.

• The user can use runtimes that Lambda provides (.zip), or build his own (container image).

• For a container image, you include the runtime when you build the image.

• The runtime converts the event to an object and passes it to the function code.

• Runtimes: Node.js, Python, Ruby, Java, .NET, Go

20

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Execution environment)

• Secure and isolated runtime environment

• Lambda uses configuration information (memory, execution time, etc.) to set up the execution
environment.

• After the function runs, the Lambda service freezes the execution environment and maintains it for
some time in anticipation of another function invocation.

21

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Execution environment)

The runtime process exposes three distinct phases in the lifecycle of the Lambda execution
environment: Init, Invoke and Shutdown.

• Init: The Init phase happens either during the first invocation, or in advance of function invocations if you
have enabled provisioned concurrency. The Init phase is split into three sub-phases: Extension init, Runtime
init, and Function init.

• Invoke: In this phase, Lambda invokes the function handler. After the function runs to completion, Lambda
prepares to handle another function invocation.

• Shutdown: triggered if the Lambda function does not receive any invocations for a period of time.

22

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Extensions)

• Used to solve a common request: How to smoothly integrate existing tools with Lambda?

• Extension use-cases:

• capturing diagnostic information before, during, and after function invocation

• fetching configuration settings or secrets before the function invocation

• Lambda supports external and internal extensions:

• An external extension runs as an independent process in the execution environment and
continues to run after the function invocation is fully processed. Because extensions run as
separate processes, you can write them in a different language than the function.

• An internal extension runs as part of the runtime process

23

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Layer)

• A Lambda layer is a .zip file archive that can contain additional code or other content

• Extensions are deployed as Lambda layers

• Layers provide a convenient way to package libraries and other dependencies used by the Lambda
functions.

• Functions deployed as a container image do not use layers. Instead, you package your runtime,
libraries, and other dependencies into the container image when you build the image.

24

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Deployment package)

Two types of deployment packages:

• A .zip file (up to 250 MB)

• Contains the function code and its dependencies.

• Lambda provides the operating system and runtime for the function.

• The .zip file can be uploaded from Amazon Simple Storage Service (Amazon S3) or the local
machine

• A container image (up to 10 GB)

• Contains the function code and dependencies to the image, the operating system and a Lambda
runtime.

• Lambda provides a set of open-source base images that you can use to build the container image

• The container image is stored in the Amazon Elastic Container Registry (Amazon ECR). To deploy
the image, the user mast specify the Amazon ECR image URL.

25

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Qualifier)

• When you invoke or view a function, you can include a qualifier to specify a version or
alias.

• A version is an immutable snapshot of a function's code and configuration that has a
numerical qualifier. For example, my-function:1.

• An alias is a pointer to a version that you can update to map to a different version, or split
traffic between two versions. For example, my-function:BLUE.

• You can use versions and aliases together to provide a stable interface for clients to
invoke your function.

26

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Destination)

• A destination is an AWS resource where Lambda can send events from an asynchronous invocation.

• You can configure a destination for events that fail processing.

• Some services also support a destination for events that are successfully processed.

27

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Concurrency)

• The number of requests that your function is serving at any given time

• The total concurrency for all of the functions in your account is subject to a per-region quota

• Two types of concurrency controls: Reserved concurrency and Provisioned concurrency

28

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Concurrency)
Reserved concurrency (no charge)

• Guarantees the maximum number of concurrent instances for the function.

• When a function has reserved concurrency, no other function can use that concurrency.

29

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Lambda concept (Concurrency)
Provisioned concurrency (incurs charges to the AWS account)

• initializes a requested number of execution environments so that they are prepared to respond immediately to
your function's invocations.

30

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

The cold start problem

• Cold start is about the delay between the execution of a function after someone invokes it.

• Cold start is about the time it takes to bring up a new container instance when there are no warm containers
available for the request.

31

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

FaaS pricing model

• Typical FaaS pricing models have two components:

• Billing by resources consumed (execution time x memory)

• Billing by number of invocations

• Ingress/egress network traffic is billed separately

• This is very different from IaaS or PaaS pricing that bills for VM/instance allocation time

32

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 33

FaaS pricing model
Pricing examples

Google Cloud
FunctionsAzure FunctionsAWS Lambda

US$ 0.40US$ 0.20US$ 0.201M invocations

100 ms100 ms100 msExecution time granularity

US$ 16.5US$ 16US$ 16.71Ms execution time with
1024 MB memory

2 million invocations,
400’000 GB-s

1 million invocations,
400’000 GB-s

1 million invocations,
400’000 GB-sFree tier (per month)

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Aws Step Functions

• AWS Step Functions is a visual workflow service that helps developers use AWS services to build distributed
applications, automate processes, orchestrate microservices, and create data and machine learning (ML)
pipelines.

• Same As Workflows in Google Cloud or Azure Logic Apps

34

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Aws Step Functions

35

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Software for building FaaS platforms

Open Source software for FaaS platforms:

• OpenFaaS — Independent project, funded through donations.

• Fn Project

• Fission

• OpenWhisk

• Kubeless

• TriggerMesh

Many of them use Docker containers as sandboxes and deploy them on Kubernetes

36

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

• Created under the Name Whisk in 2015 IBM research

• Launched in 2016 under the name Openwhisk

• 2016: IBM Cloud Functions from Openwhisk

• 2016: Became part of Apache Software Foundation Incubator

3
7

OpenWhisk

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

OpenWhisk

• Open source

• Serverless platform that executes functions (fx) in response to events at any scale.

• OpenWhisk manages the infrastructure, servers and scaling using Docker containers

3
8

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

OpenWhisk – Programming Model

The OpenWhisk platform supports a programming model in which developers write
functional logic (called Actions), in any supported programming language, that can be
dynamically scheduled and run in response to associated events (via Triggers) from external
sources (Feeds) or from HTTP requests.

3
9

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Programming Languages

4
0

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 4
1

OpenWhisk - Actions

Actions are stateless functions (code snippets) that run on the OpenWhisk platform. Actions encapsulate
application logic to be executed in response to events. Actions can be invoked manually by the OpenWhisk
REST API, OpenWhisk CLI, simple and user-created APIs or automated via Triggers which we will discuss
later.

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 4
2

OpenWhisk - Triggers and Rules

• Triggers are named channels for classes or kinds of events sent from Event Sources.
• Rules are used to associate one trigger with one action. After this kind of association is created, each
time a trigger event is fired, the action is invoked.

• Event Sources? These are services that generate events that often indicate changes in data or carry data
themselves (Message Queues, Changes in Databases, Changes in Document Stores, Website or Web
Application interactions)

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

• Trigger : Triggers are named channels for classes or kinds of events sent from Event Sources.

• Action :functional logic

• Rule : Rules are used to associate one trigger with one action.

• Invoke : Invokes a deployed function. You can send event data, read logs and display other
important information of the function invocation.

43

OpenWhisk - Definition

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Openwhisk - Architecture

44

https://github.com/apache/openwhisk/blob/master/docs/about.md#how-openWhisk-works

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Openwhisk - Deployment

Local or Cloud
Docker-compose
Ansible
Vagrant
Kubernetes

4
5

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

• What is Dnext?
• Commodity Data Platform

• Collect data in public and private databases such as government information,
customs, lineups, or freight.

• Goal :
• Provide data.

• Using advantage of data science to develop

• unique analytical features,

• hence pushing the forecasting

• data sharing within companies and between them

Use Case – Project MODIS

46

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Project MODIS - Goal

The technical goal of this project is to :
• Download and extract data from satellite files

• manipulate and process these data to achieve our Business goal

The Business goal of this project is to :
• Compare historical graphs of the growth of crop for specific state

• Predict the harvest time based on the weather

• Predict the price of a crop

• Predict how many weight of crop can be harvest

• …

47

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Project MODIS – Use case

To compare the growth between each year for specifics states, we need:
• Retrieve picture from a satellite

• Extract data corresponding to a specific crop (carrot)

• Apply filter for retrieving data for a state

• Make an average of this data

• Save in a database

• GUI for the costumers

48

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Retrieve picture from a satellites

• We choose NASA satellites MOLA and MOLT

• Data we would retrieve is NDVI (Normalized Difference Vegetation Index, healthiness of the vegetation
).

• The size of a picture taken by a satellites is very big it’s for that they decide to split it

Into multiple pictures called tiles (red line)

• We need to download these tiles and extract the data from an HDF file (Hierarchical Data Format)

• Merge these tiles into one file

• Apply a mask to keep only place where

the crop is planted

• Retrieve the boundary of a state and

make an average of the NDVI value

Project MODIS – Complexity

49

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024

Project MODIS – Step function

50

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 51

The trust Noise application

● ~ 600 sensors deployed in Carouge

● Send reports every 15 minutes: Lmin, Lmax,
Leq, L10, L50, L90, L95

● Communicate through LoRaWAN network

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 52
52

The Orbiwise noise sensors

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 53
53

The Orbiwise noise sensors

● The goal is to assess the “trustworthiness” of the retrieved data in order to deduce their
reliability.

● We must deal with:

○ Misbehaving sensors

○ Network issues

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 54
54

Signature
● A signature represents the context of a sensor
● A context is defined by:

○ Environmental setting
○ Road configuration
○ Acoustic configurations of the streets
○ Height placement
○ Rush hours
○ Weekends vs. working days
○ Summer vs. Winter
○ etc.

● Noise sensors in a same “context” should provide data matching a similar signature (look, pattern).
● Signatures must be “extracted” from “clean” data ô We need to filter data
● Extraction of signatures relies on clustering techniques

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 55
55

Signature

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 56
56

Signature

Filtering Interface

● The Filtering interface is used to support the user in the filtering phase: which data should be
considered for clustering?

● The filtering interface is assumed to be a Design Support System

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 57
57

Signature

Filtering Interface

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 58
58

Signature

Filtering Interface

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 59
59

VM Deployment

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 60
60

Filtering Interface deployment

• Due to fairly high processing power needed, for an almost real-time delivery, there is a need to
use large instances - which are costly

• Another alternative is a Function as a Service approach
• We used AWS Lambda

60

T-Cloud & Deployment | Serverless / Function-as-a-Service | Academic year 2023/2024 61
61

FaaS deployment

61

(1) init (read the CSV file)

(2) calculate_references, concurrency = 7

(3) calculate_temporal_param, concurrency = 7

(4) filter, concurrency = as many as there are days in the calendar

F
ilt

er
in

g
In

te
rf

a
ce

