diff --git a/README.md b/README.md index ebd7a7164b03e8db753ed24b1b3629557a4cb23e..e187f0ec3fe68935f8fffcc82fb2c02c0fed776e 100644 --- a/README.md +++ b/README.md @@ -41,14 +41,14 @@ After setting up the S3 bucket and Vector Store, we could process PDF files to g Run: -`python3 main.py --bucket_name [YourBucketName] --endpoint [YourVectorDBEndpoint] --index_name [Index_name]` +`python3 main.py --bucket_name [YourBucketName] --endpoint [YourVectorDBEndpoint] --index_name [Index_name] --local_path [local_path]` Where: - **--bucket_name**: The name of the S3 bucket containing the PDF files. - **--endpoint**: Endpoint for the vector database. - **--index_name**: The index_name where to store the embeddings in the collection. -- **--local_dir**: +- **--local_path**: local_path The main.py script will: