diff --git a/cours.tex b/cours.tex
index f43c5e5706e3294010337da51c816770199ba889..8ed043a254a22231ff0e121d9fdc64cbbf8eaca9 100644
--- a/cours.tex
+++ b/cours.tex
@@ -2422,7 +2422,7 @@ de fréquence $\nu=1/T$. Ce genre de fonction a la propriété suivante
  f(t+T)=f(t),\quad \forall t.
 \end{equation}
 Nous cherchons à décomposer $f$ en un ensemble potentiellement infini de fonctions périodiques. Notons
-cet ensemble de fonctions $\{g_j\}_{0=1}^\infty$, où $g_j$ est une fonction périodique. En fait on cherche une décomposition
+cet ensemble de fonctions $\{g_j\}_{j=0}^\infty$, où $g_j$ est une fonction périodique. En fait on cherche une décomposition
 où pour un ensemble unique de $\{\alpha_j\}_{j=0}^\infty$
 \begin{equation}
  f(t)=\sum_{j=0}^\infty \alpha_j g_j(t).