diff --git a/03_charge_electrique_champs_electrique.md b/03_charge_electrique_champs_electrique.md index 7754dedaf7e485fd9ac2f8850dbfbc4e25226ad5..12c15c1129102d38b442ebb27ad56b067957e5ba 100644 --- a/03_charge_electrique_champs_electrique.md +++ b/03_charge_electrique_champs_electrique.md @@ -389,13 +389,15 @@ $$ $$ La loi de Coulomb nous donne immédiatement $F_{2\rightarrow 3}$ et $F_{1\rightarrow 3}$ \begin{align} -F_{2\rightarrow 3}&=k\frac{Q_2Q_3}{r_23^2}\cong 1.2\mathrm{N},\\ -F_{1\rightarrow 3}&=k\frac{Q_1Q_3}{r_13^2}\cong 2.7\mathrm{N}. +F_{2\rightarrow 3}&=k\frac{Q_2Q_3}{r_{23}^2}\cong +2.02\mathrm{N},\\ +F_{1\rightarrow 3}&=k\frac{Q_1Q_3}{r_{13}^2}\cong +0.86\mathrm{N}. \end{align} La charge $Q_3$ étant négative la force de $Q_1$ est répulsive, alors que celle de $Q_2$ est attractive. On a donc finalement $$ -F=-F_{2\rightarrow 3}+F_{1\rightarrow 3}=-1.5\mathrm{N}, +F=-F_{2\rightarrow 3}+F_{1\rightarrow 3}=-1.16\mathrm{N}, $$ et la force pointe vers la gauche.