diff --git a/covid/python/covid.py b/covid/python/covid.py index 07754a5eb2f380ea3437fc5e83c62047f5584e87..26a11dcc4c39bd71cb43e1eb24ed84223f9236a3 100644 --- a/covid/python/covid.py +++ b/covid/python/covid.py @@ -6,6 +6,22 @@ swiss = np.array([18, 27, 42, 56, 90, 114, 214, 268, 337, 374, 491, 652, 858, 11 days = np.array(range(1,len(swiss)+1)) +def F(yx, yy, yz, t): + return sigma * (yy - yz), rho * yx, (mu * yx + yz) + +def rk2(yx, yy, yz, t, dt): + yx_tmp, yy_tmp, yz_tmp = F(yx, yy, yz, t) + yx0 = yx + dt / 2 * yx_tmp + yy0 = yy + dt / 2 * yy_tmp + yz0 = yz + dt / 2 * yz_tmp + + y1x, y1y, y1z = F(yx0, yy0, yz0, t+dt/2) + + return yx + dt * y1x, yy + dt * y1y, yz + dt * y1z + +def yx(dt, yx0, yy0, yz0, sig): + return yx0 + dt * sigma * (yy0-yz0) + def s(dt, beta, S0, I0, N): return S0 - dt * (beta * S0 * I0 / N) diff --git a/covid/python/seir.py b/covid/python/seir.py index a9d852f2cf1ef0ae8945470190a57ff65b1eb463..aa022a416215056a0057a778966edaed8813a160 100644 --- a/covid/python/seir.py +++ b/covid/python/seir.py @@ -1,12 +1,24 @@ import numpy as np import matplotlib.pyplot as plt import functools +import matplotlib.animation as animation swiss = np.array([2.100350058, 3.150525088, 4.900816803, 6.534422404, 10.501750292, 13.302217036, 24.970828471, 31.271878646, 39.323220537, 43.640606768, 57.292882147, 76.079346558, 100.116686114, 131.271878646, 158.576429405, 256.709451575, 256.709451575, 268.378063011, 309.218203034, 353.325554259, 453.675612602]) swiss = np.array([18, 27, 42, 56, 90, 114, 214, 268, 337, 374, 491, 652, 858, 1125, 1359, 2200, 2200, 2300, 2650, 3028, 3888]) days = np.array(range(1,len(swiss)+1)) +def update(i, lines, t, p): + n_pop, length = p.shape + for j in range(0, n_pop): + lines[j].set_data(t[0:i], p[j][0:i]) + return lines + +# def policy_r0(R_0, R_target, t, delta_t): +# if (t <= ) + + + def seir(y, t, R_0, Tinf, Tinc): N = np.sum(y) y1 = np.zeros(4) @@ -16,6 +28,18 @@ def seir(y, t, R_0, Tinf, Tinc): y1[3] = 1.0 / Tinf * y[2] return y1 + +def seihse(y, t, R_0, Tinf, Tinc, Thos, Tsev): + N = np.sum(y) + y1 = np.zeros(6) + y1[0] = - R_0 / Tinf * y[2] * y[0] / N # Sane + y1[1] = R_0 / Tinf * y[2] * y[0] / N - 1.0 / Tinc * y[1] # Exposed + y1[2] = 1.0 / Tinc * y[1] - 1.0 / Tinf * y[2] - 1.0 / Tinf * y[2] # Infectious + y1[3] = 1.0 / Tinf * y[2] + 1.0 / Thos * y[4] + 1.0 / Tsev * y[5] # Recovered + y1[4] = - 1.0 / Thos * y[4] + 1.0 / Tinf * y[2] - 1.0 / Tsev * y[4] # Hospitalized + y1[5] = - 1.0 / Tsev * y[5] + 1.0 / Thos * y[4] # Severe + + return y1 def rk4(F, y, t, dt): k1 = dt * F(y, t) @@ -30,33 +54,35 @@ R_02 = 1 - 1/R_01 Tinf = 7.0 Tinc = 5.1 +Thos = 14.0 +Tsev = 14.0 + N = 500000 I0 = 214 / 0.2 E0 = 2000 R0 = 0 S0 = N-E0-I0 +H0 = 0 +Sev0 = 0 t0 = 24 # max_t = 5*days[len(swiss)-1] max_t = 200.0 -n_steps = 10000 +n_steps = 1000 dt = max_t / n_steps -y0 = np.array([S0, E0, I0, R0]) +y0 = np.array([S0, E0, I0, R0, H0, Sev0]) y_list = [y0] t_list = [t0] for i in range(0, n_steps): t = t_list[i] + dt - foo = functools.partial(seir, R_0=R_0, Tinf=Tinf, Tinc=Tinc) + # foo = functools.partial(seir, R_0=R_0, Tinf=Tinf, Tinc=Tinc) + foo = functools.partial(seihse, R_0=R_0, Tinf=Tinf, Tinc=Tinc, Thos=Thos, Tsev=Tsev) y1 = rk4(foo, y_list[i], t, dt) y_list.append(y1) t_list.append(t) - if (t > t0 and t <= t0 + 30) or (t >= t0 + 60 and t <= t0 + 90) : - R_0 = R_02 - else: - R_0 = R_01 if (y1[1] + y1[2] < 1): break @@ -66,11 +92,30 @@ y = np.array(y_list) p = np.transpose(y) -plt.semilogy(t, p[0], 'b') -plt.semilogy(t, p[1], 'r') -plt.semilogy(t, p[2], 'k') -plt.semilogy(t, p[3], 'g') -# plt.semilogy(days, swiss, 'k*') -plt.legend(['S', 'E', 'I', 'R', 'swiss']) + +fig = plt.figure() +# ax = plt.axes(xlim=(-0.1*np.max(t),np.max(t)*1.1), ylim=(-0.1*np.max(p),np.max(p)*1.1)) +ax = plt.axes(xlim=(1,np.max(t)*1.1), ylim=(1,np.max(p)*1.1)) + +lines = [plt.semilogy([], [], 'r-')[0], + plt.semilogy([], [], 'b-')[0], + plt.semilogy([], [], 'g-')[0], + plt.semilogy([], [], 'k-')[0], + plt.semilogy([], [], 'c-')[0], + plt.semilogy([], [], 'y-')[0] ] + +# anim = animation.FuncAnimation(fig, functools.partial(update, lines=lines, t=t, p=p), +# frames=n_steps, interval=10, blit=True) +ax.legend(['Sain', 'Exposé', 'Infectieux', 'Rétablis', 'Hospitalisés', 'Soins intensifs']) + +anim = animation.FuncAnimation(fig, functools.partial(update, lines=lines, t=t, p=p), + frames=n_steps, interval=10, blit=True) + +# plt.semilogy(t, p[0], 'b') +# plt.semilogy(t, p[1], 'r') +# plt.semilogy(t, p[2], 'k') +# plt.semilogy(t, p[3], 'g') +# # plt.semilogy(days, swiss, 'k*') +# plt.legend(['S', 'E', 'I', 'R', 'swiss']) plt.show() diff --git a/tpEdo/tpEquadiffs.md b/tpEdo/tpEquadiffs.md index 17f6465400896a881c553f2b8de226768db1e5ac..ef63b2867100cf5585963612f864b2434889bb28 100644 --- a/tpEdo/tpEquadiffs.md +++ b/tpEdo/tpEquadiffs.md @@ -166,7 +166,7 @@ et par quatre équation différentielles ordinaires S'(t)&=-\frac{\mathcal{R}_0}{T_{inf}}I(t)\frac{S(t)}{N},\\ E'(t)&=\frac{\mathcal{R}_0}{T_{inf}}I(t)\frac{S(t)}{N}-\frac{1}{T_{inc}}E(t),\\ I'(t)&=\frac{1}{T_{inc}}E(t)-\frac{1}{T_{inf}}I(t),\\ -R'(t)&=-\frac{1}{T_{inf}}I(t), +R'(t)&=\frac{1}{T_{inf}}I(t), \end{align} où $\mathcal{R}_0$ est taux de reproduction de base, $T_{inf}$ est le temps où un individu est infectieux, et $T_{inc}$ est le temps d'incubation de la maladie. La taux de reproduction de base peut être remplacé par le taux de reproduction effectif, $\mathcal{R}_t=\mathcal{R}_0\frac{S(t)}{N}$ qui représente