diff --git a/cours.tex b/cours.tex index 2340155a2953a4ccf75cfec651ea61f7c63bb0bb..3afa941f6331a61e7839692b45e8c621661e387a 100644 --- a/cours.tex +++ b/cours.tex @@ -2830,9 +2830,9 @@ Montrons à présent que la transformée inverse discrète de la transformée de discrète donne bien la suite de départ \begin{align} f[n]&=\frac{1}{N}\sum_{k=0}^{N-1} \fh[k] e^{\frac{2\pi i k n}{N}},\nonumber\\ - &=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{-\frac{2\pi k m}{N}} e^{\frac{2\pi i k n}{N}},\nonumber\\ - &=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{\frac{2\pi k (n-m)}{N}},\nonumber\\ - &=\frac{1}{N}\sum_{m=0}^{N-1} f[m] \sum_{k=0}^{N-1} e^{\frac{2\pi k (n-m)}{N}},\nonumber\\ + &=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{-\frac{2\pi i k m}{N}} e^{\frac{2\pi i k n}{N}},\nonumber\\ + &=\frac{1}{N}\sum_{k=0}^{N-1} \sum_{m=0}^{N-1} f[m] e^{\frac{2\pi i k (n-m)}{N}},\nonumber\\ + &=\frac{1}{N}\sum_{m=0}^{N-1} f[m] \sum_{k=0}^{N-1} e^{\frac{2\pi i k (n-m)}{N}},\nonumber\\ &=\frac{1}{N}\sum_{m=0}^{N-1} f[m] N \delta_{nm},\nonumber\\ &=f[n]. \end{align} @@ -2867,7 +2867,7 @@ La transformée de Fourier discrète étant un échantillonage de la transformé à temps discret, toutes les propriétés discutées pour la transformée de Fourier à temps discret restent valides. En particulier la transformée de Fourier discrète est périodique, de période $N$ \begin{equation} - f[n]=f[n+N]. + \fh[k]=\fh[k+N]. \end{equation} A démontrer en exercice.