From 841b88993c4e8eb8ac2be188ea0b41d54747d58b Mon Sep 17 00:00:00 2001
From: mathintro <orestis.malaspinas@hesge.ch>
Date: Fri, 4 Nov 2016 11:54:12 +0100
Subject: [PATCH] corrcetion typos

---
 cours.tex | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/cours.tex b/cours.tex
index 885b9c6..f9b0d55 100644
--- a/cours.tex
+++ b/cours.tex
@@ -691,7 +691,7 @@ Calculer les primitives suivantes
   \begin{equation}
     \int x e^x=x e^x-\int e^x\dd x=x e^x-e^x+c.
   \end{equation}
-  \item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=\sin(x)$, $f(x)=\cos(x)$. Il vient
+  \item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=-\sin(x)$, $f(x)=-\cos(x)$. Il vient
   \begin{align}
     &\int \cos(x)\sin(x)\dd x=\sin^2(x)-\int \cos(x)\sin(x)\dd x\nonumber\\
     \Rightarrow &\int \cos(x)\sin(x)\dd x=\frac{1}{2}\sin^2(x).
-- 
GitLab