From 98aecddd060f7726b628327c77a5fe14edbb2e6c Mon Sep 17 00:00:00 2001 From: mathintro <orestis.malaspinas@hesge.ch> Date: Fri, 4 Nov 2016 11:54:12 +0100 Subject: [PATCH] corrcetion typos --- cours.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cours.tex b/cours.tex index 885b9c6..f9b0d55 100644 --- a/cours.tex +++ b/cours.tex @@ -691,7 +691,7 @@ Calculer les primitives suivantes \begin{equation} \int x e^x=x e^x-\int e^x\dd x=x e^x-e^x+c. \end{equation} - \item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=\sin(x)$, $f(x)=\cos(x)$. Il vient + \item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=-\sin(x)$, $f(x)=-\cos(x)$. Il vient \begin{align} &\int \cos(x)\sin(x)\dd x=\sin^2(x)-\int \cos(x)\sin(x)\dd x\nonumber\\ \Rightarrow &\int \cos(x)\sin(x)\dd x=\frac{1}{2}\sin^2(x). -- GitLab