diff --git a/exercices/fourier_serie1.md b/exercices/fourier_serie1.md index 1d2df73a3bfce13e830139b0896d2fd19b6139d5..031d1a53883518aea3604b4e2010e23d3458287f 100644 --- a/exercices/fourier_serie1.md +++ b/exercices/fourier_serie1.md @@ -216,7 +216,7 @@ Corrigé +.# En utilisant la formule $$ -f[n]=\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N}, +f[n]=\frac{1}{N}\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N}, $$ on peut calculer la TFD de $\hat f=\{2, -1-i, 0, -1+i\}$ avec $N=4$. On obtient donc @@ -225,7 +225,7 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0. $$ Et ainsi de suite on obtient \begin{align} -f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\ -\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\ -\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0. +f[1]&=\frac{1}{4}(\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2})=\frac{1}{4}(2+i(-1-i)+(-i)(-1+i))=1,\\ +\hat f[2]&=\frac{1}{4}(f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i})=\frac{1}{4}(2+(-1)(-1-i)-1(-1+i))=1,\\ +\hat f[3]&=\frac{1}{4}(f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2})=\frac{1}{4}(2-i(-1-i)+i(-1+i))=0. \end{align}