From ec395452e545d219cde13b56913431d07d7fd402 Mon Sep 17 00:00:00 2001 From: Orestis Malaspinas <orestis.malaspinas@hesge.ch> Date: Wed, 11 Oct 2017 10:29:36 +0200 Subject: [PATCH] corrected notation discrepancy --- cours.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/cours.tex b/cours.tex index 6a11678..c83e232 100644 --- a/cours.tex +++ b/cours.tex @@ -472,12 +472,12 @@ $F$ telle que $F(a)=b$. \begin{exercices} Calculez les primitives suivantes (\textit{Indication: Il s'agit de trouver les fonctions $F(x)$ telles que $F'(x)=f(x)$}): \begin{enumerate} - \item $f(x)=\int x^2\dd x$. - \item $f(x)=\int x^n\dd x$, $n\in \real\backslash\{-1\}$. - \item $f(x)=\int \sqrt{x}\dd x$. - \item $f(x)=\int \frac{1}{x}\dd x$. - \item $f(x)=\int \exp(x)\dd x$. - \item $f(x)=\int \sin(x)\dd x$. + \item $F(x)=\int x^2\dd x$. + \item $F(x)=\int x^n\dd x$, $n\in \real\backslash\{-1\}$. + \item $F(x)=\int \sqrt{x}\dd x$. + \item $F(x)=\int \frac{1}{x}\dd x$. + \item $F(x)=\int \exp(x)\dd x$. + \item $F(x)=\int \sin(x)\dd x$. \end{enumerate} \end{exercices} -- GitLab