From ec395452e545d219cde13b56913431d07d7fd402 Mon Sep 17 00:00:00 2001
From: Orestis Malaspinas <orestis.malaspinas@hesge.ch>
Date: Wed, 11 Oct 2017 10:29:36 +0200
Subject: [PATCH] corrected notation discrepancy

---
 cours.tex | 12 ++++++------
 1 file changed, 6 insertions(+), 6 deletions(-)

diff --git a/cours.tex b/cours.tex
index 6a11678..c83e232 100644
--- a/cours.tex
+++ b/cours.tex
@@ -472,12 +472,12 @@ $F$ telle que $F(a)=b$.
 \begin{exercices}
 Calculez les primitives suivantes (\textit{Indication: Il s'agit de trouver les fonctions $F(x)$ telles que $F'(x)=f(x)$}):
  \begin{enumerate}
-  \item $f(x)=\int x^2\dd x$.
-  \item $f(x)=\int x^n\dd x$, $n\in \real\backslash\{-1\}$.
-  \item $f(x)=\int \sqrt{x}\dd x$.
-  \item $f(x)=\int \frac{1}{x}\dd x$.
-  \item $f(x)=\int \exp(x)\dd x$.
-  \item $f(x)=\int \sin(x)\dd x$.
+  \item $F(x)=\int x^2\dd x$.
+  \item $F(x)=\int x^n\dd x$, $n\in \real\backslash\{-1\}$.
+  \item $F(x)=\int \sqrt{x}\dd x$.
+  \item $F(x)=\int \frac{1}{x}\dd x$.
+  \item $F(x)=\int \exp(x)\dd x$.
+  \item $F(x)=\int \sin(x)\dd x$.
  \end{enumerate}
 \end{exercices}
 
-- 
GitLab