diff --git a/cours.md b/cours.md index 653de2e3b7a8849d0d7d8b15cc0f7976b88c0699..09261301b5675cfeae08a2859b5ed5b668e5b750 100644 --- a/cours.md +++ b/cours.md @@ -396,12 +396,12 @@ l’intervalle $[a,b]$ de plusieurs façons: 2. $A^s(n)=\sum_{i=0}^{n-1} \sup\limits_{[x_i,x_{i+1}]} f(x)\cdot (x_{i+1}-x_i)$ comme étant l’aire supérieure. -3. $A^R(n)=\sum_{i=0}^{n-1} f(\xi_i)\cdot (x_{i+1}-x_i)$, $\xi_i\in [x_i,x_{i+1}] $ +3. $A^R(n)=\sum_{i=0}^{n-1} f(\xi_i)\cdot (x_{i+1}-x_i)$, $\xi_i\in [x_i,x_{i+1}]$ 1 et 2 sont les sommes de Darboux, 3 est une somme de Riemann qui, dépendant des choix des $\xi_i$, peut être égale à 1 ou à 2. L’aire de sous la fonction $f(x)$ est donnée par la limite pour -$n\rightarrow\infty$ de $A^i$ ou $A^s$ (si elle existe). Dans ce cas $n\rightarrow\infty$ $A^R$ (pris en sandwich entre $Aî$ et $A^n$) +$n\rightarrow\infty$ de $A^i$ ou $A^s$ (si elle existe). Dans ce cas $n\rightarrow\infty$ $A^R$ (pris en sandwich entre $A^i$ et $A^n$) nous donne aussi l'aire sous la fonction. Remarque +.#