import numpy as np import matplotlib.pyplot as plt import functools import matplotlib.animation as animation swiss = np.array([2.100350058, 3.150525088, 4.900816803, 6.534422404, 10.501750292, 13.302217036, 24.970828471, 31.271878646, 39.323220537, 43.640606768, 57.292882147, 76.079346558, 100.116686114, 131.271878646, 158.576429405, 256.709451575, 256.709451575, 268.378063011, 309.218203034, 353.325554259, 453.675612602]) swiss = np.array([18, 27, 42, 56, 90, 114, 214, 268, 337, 374, 491, 652, 858, 1125, 1359, 2200, 2200, 2300, 2650, 3028, 3888]) days = np.array(range(1,len(swiss)+1)) def update(i, lines, t, p): n_pop, length = p.shape for j in range(0, n_pop): lines[j].set_data(t[0:i], p[j][0:i]) return lines # def policy_r0(R_0, R_target, t, delta_t): # if (t <= ) def seir(y, t, R_0, Tinf, Tinc): N = np.sum(y) y1 = np.zeros(4) y1[0] = - R_0 / Tinf * y[2] * y[0] / N y1[1] = R_0 / Tinf * y[2] * y[0] / N - 1.0 / Tinc * y[1] y1[2] = 1.0 / Tinc * y[1] - 1.0 / Tinf * y[2] y1[3] = 1.0 / Tinf * y[2] return y1 def seihse(y, t, R_0, Tinf, Tinc, Thos, Tsev): N = np.sum(y) y1 = np.zeros(6) y1[0] = - R_0 / Tinf * y[2] * y[0] / N # Sane y1[1] = R_0 / Tinf * y[2] * y[0] / N - 1.0 / Tinc * y[1] # Exposed y1[2] = 1.0 / Tinc * y[1] - 1.0 / Tinf * y[2] - 1.0 / Tinf * y[2] # Infectious y1[3] = 1.0 / Tinf * y[2] + 1.0 / Thos * y[4] + 1.0 / Tsev * y[5] # Recovered y1[4] = - 1.0 / Thos * y[4] + 1.0 / Tinf * y[2] - 1.0 / Tsev * y[4] # Hospitalized y1[5] = - 1.0 / Tsev * y[5] + 1.0 / Thos * y[4] # Severe return y1 def rk4(F, y, t, dt): k1 = dt * F(y, t) k2 = dt * F(y + k1 / 2, t + dt/2) k3 = dt * F(y + k2 / 2, t + dt/2) k4 = dt * F(y + k3, t + dt) return y + (k1 + 2 * (k2 + k3) + k4) / 6 R_0 = 4.26 R_01 = 4.26 R_02 = 1 - 1/R_01 Tinf = 7.0 Tinc = 5.1 Thos = 14.0 Tsev = 14.0 N = 500000 I0 = 214 / 0.2 E0 = 2000 R0 = 0 S0 = N-E0-I0 H0 = 0 Sev0 = 0 t0 = 24 # max_t = 5*days[len(swiss)-1] max_t = 200.0 n_steps = 1000 dt = max_t / n_steps y0 = np.array([S0, E0, I0, R0, H0, Sev0]) y_list = [y0] t_list = [t0] for i in range(0, n_steps): t = t_list[i] + dt # foo = functools.partial(seir, R_0=R_0, Tinf=Tinf, Tinc=Tinc) foo = functools.partial(seihse, R_0=R_0, Tinf=Tinf, Tinc=Tinc, Thos=Thos, Tsev=Tsev) y1 = rk4(foo, y_list[i], t, dt) y_list.append(y1) t_list.append(t) if (y1[1] + y1[2] < 1): break t = np.array(t_list) y = np.array(y_list) p = np.transpose(y) fig = plt.figure() # ax = plt.axes(xlim=(-0.1*np.max(t),np.max(t)*1.1), ylim=(-0.1*np.max(p),np.max(p)*1.1)) ax = plt.axes(xlim=(1,np.max(t)*1.1), ylim=(1,np.max(p)*1.1)) lines = [plt.semilogy([], [], 'r-')[0], plt.semilogy([], [], 'b-')[0], plt.semilogy([], [], 'g-')[0], plt.semilogy([], [], 'k-')[0], plt.semilogy([], [], 'c-')[0], plt.semilogy([], [], 'y-')[0] ] # anim = animation.FuncAnimation(fig, functools.partial(update, lines=lines, t=t, p=p), # frames=n_steps, interval=10, blit=True) ax.legend(['Sain', 'Exposé', 'Infectieux', 'Rétablis', 'Hospitalisés', 'Soins intensifs']) anim = animation.FuncAnimation(fig, functools.partial(update, lines=lines, t=t, p=p), frames=n_steps, interval=10, blit=True) # plt.semilogy(t, p[0], 'b') # plt.semilogy(t, p[1], 'r') # plt.semilogy(t, p[2], 'k') # plt.semilogy(t, p[3], 'g') # # plt.semilogy(days, swiss, 'k*') # plt.legend(['S', 'E', 'I', 'R', 'swiss']) plt.show()