Skip to content
Snippets Groups Projects
Verified Commit 4733c99c authored by orestis.malaspin's avatar orestis.malaspin
Browse files

split into two parts

parent 55fe8c63
Branches
No related tags found
No related merge requests found
Pipeline #14960 passed
...@@ -408,347 +408,4 @@ int stack_peek(stack *s) { ...@@ -408,347 +408,4 @@ int stack_peek(stack *s) {
* Dépiler avec une pile vide. * Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide. * Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define
NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
- **Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
# La pile dynamique
## Comment modifier le code précédent pour avoir une taille dynamique?
. . .
```C
// alloue une zone mémoire de size octets
void *malloc(size_t size);
// change la taille allouée à size octets (contiguïté garantie)
void *realloc(void *ptr, size_t size);
```
## Et maintenant?
. . .
```C
stack_create(); // crée une pile avec une taille par défaut
// vérifie si la pile est pleine et réalloue si besoin
stack_push();
// vérifie si la pile est vide/trop grande
// et réalloue si besoin
stack_pop();
```
## Exercice: ouvrir un repo/issues pour l'implémentation
* Oui-oui cela est une introduction au développement collaboratif (et
hippie).
# Le tri à deux piles (1/N)
## Cas pratique
![Un exemple de tri à deux piles](figs/tri_piles.svg){width=70%}
# Le tri à deux piles (2/N)
## Exercice: formaliser l'algorithme
. . .
## Algorithme de tri nécessitant 2 piles (G, D)
Soit `tab` le tableau à trier:
```C
Pour tous les i = 0 à N-1
tant que (tab[i] > que le sommet de G
ou tab[i] < sommet de D) {
dépiler G dans D ou de D dans G
}
empiler tab[i] sur G
tab est trié dans G
```
# Le tri à deux piles (3/N)
## Exercice: trier le tableau `[2, 10, 5, 20, 15]`
```C
```
# La calculatrice (1/N)
## Vocabulaire
```C
2 + 3 = 2 3 +,
```
`2` et `3` sont les *opérandes*, `+` l'*opérateur*.
. . .
## La notation infixe
```C
2 * (3 + 2) - 4 = 6.
```
## La notation postfixe
```C
2 3 2 + * 4 - = 6.
```
## Exercice: écrire `2 * 3 * 4 + 2` en notation `postfixe`
. . .
```C
2 3 4 * * 2 + = (2 * (3 * 4)) + 2.
```
# La calculatrice (2/N)
## Évaluation d'expression postfixe: algorithme
* Chaque *opérateur* porte sur les deux opérandes qui le précèdent.
* Le *résultat d'une opération* est un nouvel *opérande* qui est remis au
sommet de la pile.
## Exemple
```C
2 3 4 + * 5 - = ?
```
* On parcours de gauche à droite:
```C
Caractère lu Pile opérandes
2 2
3 2, 3
4 2, 3, 4
+ 2, (3 + 4)
* 2 * 7
5 14, 5
- 14 - 5 = 9
```
# La calculatrice (3/N)
## Évaluation d'expression postfixe: algorithme
1. La valeur d'un opérande est *toujours* empilée.
2. L'opérateur s'applique *toujours* au 2 opérandes au sommet.
3. Le résultat est remis au sommet.
## Exercice: écrire l'algorithme (et poster sur matrix)
```C
bool evaluate(char *postfix, double *val) { // init stack
for (size_t i = 0; i < strlen(postfix); ++i) {
if (is_operand(postfix[i])) {
stack_push(&s, postfix[i]);
} else if (is_operator(postfix[i])) {
double rhs = stack_pop(&s);
double lhs = stack_pop(&s);
stack_push(&s, op(postfix[i], lhs, rhs);
} }
return stack_pop(&s);
}
```
# La calculatrice (4/N)
## De infixe à post-fixe
* Une *pile* est utilisée pour stocker *opérateurs* et *parenthèses*.
* Les opérateurs on des *priorités* différentes.
```C
^ : priorité 3
* / : priorité 2
+ - : priorité 1
( ) : priorité 0 // pas un opérateur mais bon
```
# La calculatrice (5/N)
## De infixe à post-fixe: algorithme
* On lit l'expression infixe de gauche à droite.
* On examine le prochain caractère de l'expression infixe.
* Si opérande, le placer dans l'expression du résultat.
* Si parenthèse le mettre dans la pile (priorité 0).
* Si opérateur, comparer sa priorité avec celui du sommet de la pile:
* Si sa priorité est plus élevée, empiler.
* Sinon dépiler l'opérateur de la pile dans l'expression du résultat et
recommencer jusqu'à apparition d'un opérateur de priorité plus faible
au sommet de la pile (ou pile vide).
* Si parenthèse fermée, dépiler les opérateurs du sommet de la pile et les
placer dans l'expression du résultat, jusqu'à ce qu'une parenthèse
ouverte apparaisse au sommet, dépiler également la parenthèse.
* Si il n'y a pas de caractère dans l'expression dépiler tous les
opérateurs dans le résultat.
# La calculatrice (6/N)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
(A*B)/D-F)/(G+H) Vide ( 0
A*B)/D-F)/(G+H) Vide (( 0
*B)/D-F)/(G+H) A (( 0
B)/D-F)/(G+H) A ((* 2
)/D-F)/(G+H) AB ((* 2
/D-F)/(G+H) AB* ( 0
D-F)/(G+H) AB* (/ 2
-F)/(G+H) AB*D (/ 2
F)/(G+H) AB*D/ (- 1
)/(G+H) AB*D/F (- 1
/(G+H) AB*D/F- Vide Néant
```
# La calculatrice (7/N)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
--------------------------------------------------------
/(G+H) AB*D/F- Vide Néant
(G+H) AB*D/F- / 2
G+H) AB*D/F- /( 0
+H) AB*D/F-G /( 0
H) AB*D/F-G /(+ 1
) AB*D/F-GH /(+ 1
Vide AB*D/F-GH+ / 2
Vide AB*D/F-GH+/ Vide Néant
```
# La calculatrice (8/N)
\footnotesize
## Exercice: écrire le code et le poster sur matrix
* Quelle est la signature de la fonction?
. . .
```C
char *infix_to_postfix(char* infix) { // init and alloc stack and postfix
for (size_t i = 0; i < strlen(infix); ++i) {
if (is_operand(infix[i])) {
// we just add operands in the new postfix string
} else if (infix[i] == '(') { // we push opening parenthesis into the stack
stack_push(&s, infix[i]);
} else if (infix[i] == ')') {
// we pop everything into the postfix
} else if (is_operator(infix[i])) {
// this is an operator. We add it to the postfix based
// on the priority of what is already in the stack and push it
}
}
// pop all the operators from the s at the end of postfix
// and end the postfix with `\0`
return postfix;
}
```
---
title: "Backtracking et piles"
date: "2021-11-25"
patat:
eval:
tai:
command: fish
fragment: false
replace: true
ccc:
command: fish
fragment: false
replace: true
images:
backend: auto
...
# Les piles (1/5)
## Qu'est-ce donc?
* Structure de données abstraite...
. . .
* de type `LIFO` (*Last in first out*).
![Une pile où on ajoute A, puis B avant de les retirer. Source:
[Wikipedia](https://upload.wikimedia.org/wikipedia/commons/e/e1/Stack_%28data_structure%29_LIFO.svg)](figs/Stack.svg){width=70%}
## Des exemples de la vraie vie
. . .
* Pile d'assiettes, de livres, ...
* Adresses visitées par un navigateur web.
* Les calculatrices du passé (en polonaise inverse).
* Les boutons *undo* de vos éditeurs de texte (aka *u* dans vim).
# Les piles (2/5)
## Fonctionnalités
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retrouner.
3. Liste vide? (is_empty?).
. . .
4. Jeter un oeil (peek): retourner l'élément du sommet de la pile (sans le dépiler).
5. Nombre d'éléments (length).
## Comment faire les 4,5 à partir de 1 à 3?
. . .
4. Dépiler l'élément, le copier, puis l'empiler à nouveau.
5. Dépiler jusqu'à ce que la pile soit vide, puis empiler à nouveau.
. . .
## Existe en deux goûts
* Pile avec ou sans limite de capacité (à concurrence de la taille de la
mémoire).
# Les piles (3/5)
## Implémentation
* Jusqu'ici on n'a pas du tout parlé d'implémentation (d'où le nom de structure
abstraite).
* Pas de choix unique d'implémentation.
## Quelle structure de données allons nous utiliser?
. . .
Et oui vous avez deviné: un tableau!
## La structure: de quoi avons-nous besoin (pile de taille fixe)?
. . .
```C
#define MAX_CAPACITY 500
typedef struct _stack {
int data[MAX_CAPACITY]; // les données
int top; // indice du sommet
} stack;
```
# Les piles (4/5)
## Initialisation
. . .
```C
void stack_init(stack *s) {
s->top = -1;
}
```
## Est vide?
. . .
```C
bool stack_is_empty(stack s) {
return s.top == -1;
}
```
## Empiler (ajouter un élément au sommet)
. . .
```C
void stack_push(stack *s, int val) {
s->top += 1;
s->data[s->top] = val;
}
```
# Les piles (5/5)
## Dépiler (enlever l'élément du sommet)
. . .
```C
int stack_pop(stack *s) {
s->top -= 1;
return s->data[s->top+1];
}
```
## Jeter un oeil (regarder le sommet)
. . .
```C
int stack_peek(stack *s) {
return s->data[s->top];
}
```
## Voyez-vous des problèmes potentiels avec cette implémentation?
. . .
* Empiler avec une pile pleine.
* Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define
NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
- **Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
# La pile dynamique
## Comment modifier le code précédent pour avoir une taille dynamique?
. . .
```C
// alloue une zone mémoire de size octets
void *malloc(size_t size);
// change la taille allouée à size octets (contiguïté garantie)
void *realloc(void *ptr, size_t size);
```
## Et maintenant?
. . .
```C
stack_create(); // crée une pile avec une taille par défaut
// vérifie si la pile est pleine et réalloue si besoin
stack_push();
// vérifie si la pile est vide/trop grande
// et réalloue si besoin
stack_pop();
```
## Exercice: ouvrir un repo/issues pour l'implémentation
* Oui-oui cela est une introduction au développement collaboratif (et
hippie).
# Le tri à deux piles (1/N)
## Cas pratique
![Un exemple de tri à deux piles](figs/tri_piles.svg){width=70%}
# Le tri à deux piles (2/N)
## Exercice: formaliser l'algorithme
. . .
## Algorithme de tri nécessitant 2 piles (G, D)
Soit `tab` le tableau à trier:
```C
Pour tous les i = 0 à N-1
tant que (tab[i] > que le sommet de G) {
dépiler G dans D
}
tant que (tab[i] < que le sommet de D) {
dépiler de D dans G
}
empiler tab[i] sur G
dépiler tout D dans G
tab est trié dans G
```
# Le tri à deux piles (3/N)
## Exercice: trier le tableau `[2, 10, 5, 20, 15]`
```C
```
# La calculatrice (1/8)
## Vocabulaire
```C
2 + 3 = 2 3 +,
```
`2` et `3` sont les *opérandes*, `+` l'*opérateur*.
. . .
## La notation infixe
```C
2 * (3 + 2) - 4 = 6.
```
## La notation postfixe
```C
2 3 2 + * 4 - = 6.
```
## Exercice: écrire `2 * 3 * 4 + 2` en notation `postfixe`
. . .
```C
2 3 4 * * 2 + = (2 * (3 * 4)) + 2.
```
# La calculatrice (2/8)
## Évaluation d'expression postfixe: algorithme
* Chaque *opérateur* porte sur les deux opérandes qui le précèdent.
* Le *résultat d'une opération* est un nouvel *opérande* qui est remis au
sommet de la pile.
## Exemple
```C
2 3 4 + * 5 - = ?
```
* On parcours de gauche à droite:
```C
Caractère lu Pile opérandes
2 2
3 2, 3
4 2, 3, 4
+ 2, (3 + 4)
* 2 * 7
5 14, 5
- 14 - 5 = 9
```
# La calculatrice (3/8)
## Évaluation d'expression postfixe: algorithme
1. La valeur d'un opérande est *toujours* empilée.
2. L'opérateur s'applique *toujours* au 2 opérandes au sommet.
3. Le résultat est remis au sommet.
## Exercice: écrire l'algorithme (et poster sur matrix)
```C
bool evaluate(char *postfix, double *val) { // init stack
for (size_t i = 0; i < strlen(postfix); ++i) {
if (is_operand(postfix[i])) {
stack_push(&s, postfix[i]);
} else if (is_operator(postfix[i])) {
double rhs = stack_pop(&s);
double lhs = stack_pop(&s);
stack_push(&s, op(postfix[i], lhs, rhs);
} }
return stack_pop(&s);
}
```
# La calculatrice (4/8)
## De infixe à post-fixe
* Une *pile* est utilisée pour stocker *opérateurs* et *parenthèses*.
* Les opérateurs on des *priorités* différentes.
```C
^ : priorité 3
* / : priorité 2
+ - : priorité 1
( ) : priorité 0 // pas un opérateur mais bon
```
# La calculatrice (5/8)
## De infixe à post-fixe: algorithme
* On lit l'expression infixe de gauche à droite.
* On examine le prochain caractère de l'expression infixe.
* Si opérande, le placer dans l'expression du résultat.
* Si parenthèse le mettre dans la pile (priorité 0).
* Si opérateur, comparer sa priorité avec celui du sommet de la pile:
* Si sa priorité est plus élevée, empiler.
* Sinon dépiler l'opérateur de la pile dans l'expression du résultat et
recommencer jusqu'à apparition d'un opérateur de priorité plus faible
au sommet de la pile (ou pile vide).
* Si parenthèse fermée, dépiler les opérateurs du sommet de la pile et les
placer dans l'expression du résultat, jusqu'à ce qu'une parenthèse
ouverte apparaisse au sommet, dépiler également la parenthèse.
* Si il n'y a pas de caractère dans l'expression dépiler tous les
opérateurs dans le résultat.
# La calculatrice (6/8)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
(A*B)/D-F)/(G+H) Vide ( 0
A*B)/D-F)/(G+H) Vide (( 0
*B)/D-F)/(G+H) A (( 0
B)/D-F)/(G+H) A ((* 2
)/D-F)/(G+H) AB ((* 2
/D-F)/(G+H) AB* ( 0
D-F)/(G+H) AB* (/ 2
-F)/(G+H) AB*D (/ 2
F)/(G+H) AB*D/ (- 1
)/(G+H) AB*D/F (- 1
/(G+H) AB*D/F- Vide Néant
```
# La calculatrice (7/8)
## De infixe à post-fixe: exemple
```C
Infixe Postfixe Pile Priorité
((A*B)/D-F)/(G+H) Vide Vide Néant
--------------------------------------------------------
/(G+H) AB*D/F- Vide Néant
(G+H) AB*D/F- / 2
G+H) AB*D/F- /( 0
+H) AB*D/F-G /( 0
H) AB*D/F-G /(+ 1
) AB*D/F-GH /(+ 1
Vide AB*D/F-GH+ / 2
Vide AB*D/F-GH+/ Vide Néant
```
# La calculatrice (8/8)
\footnotesize
## Exercice: écrire le code et le poster sur matrix
* Quelle est la signature de la fonction?
. . .
```C
char *infix_to_postfix(char* infix) { // init and alloc stack and postfix
for (size_t i = 0; i < strlen(infix); ++i) {
if (is_operand(infix[i])) {
// we just add operands in the new postfix string
} else if (infix[i] == '(') { // we push opening parenthesis into the stack
stack_push(&s, infix[i]);
} else if (infix[i] == ')') {
// we pop everything into the postfix
} else if (is_operator(infix[i])) {
// this is an operator. We add it to the postfix based
// on the priority of what is already in the stack and push it
}
}
// pop all the operators from the s at the end of postfix
// and end the postfix with `\0`
return postfix;
}
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment