Skip to content
Snippets Groups Projects
Verified Commit 6e4b959e authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2024

parent a2e0cbb2
Branches
Tags
No related merge requests found
Pipeline #32300 passed
......@@ -718,7 +718,7 @@ pour sommet dans graphe et sommet non-visité
## Remarque
* `i` est la distance de plus cours chemin entre `v` et les sommets en cours de visite.
* `i` est la distance de plus courts chemin entre `v` et les sommets en cours de visite.
# Le parcours en largeur
......@@ -955,471 +955,3 @@ $$
* Réseau électrique optimal;
* ...
# Plus courts chemins à source unique
* Soit un graphe, $G=(V, E)$, une fonction de pondération $w:E\rightarrow\mathbb{R}$, et un sommet $s\in V$
* Trouver pour tout sommet $v\in V$, le chemin de poids minimal reliant $s$ à $v$.
* Algorithmes standards:
* Dijkstra (arêtes de poids positif seulement);
* Bellman-Ford (arêtes de poids positifs ou négatifs, mais sans cycles).
* Comment résoudre le problèmes si tous les poids sont les mêmes?
. . .
* Un parcours en largeur!
# Algorithme de Dijkstra
## Comment chercher pour un plus court chemin?
. . .
```
si distance(u,v) > distance(u,w) + distance(w,v)
on passe par w plutôt qu'aller directement
```
# Algorithme de Dijkstra (1 à 5)
* $D$ est le tableau des distances au sommet $1$: $D[7]$ est la distance de 1 à 7.
* Le chemin est pas forcément direct.
* $S$ est le tableau des sommets visités.
::: columns
:::: column
![Initialisation.](figs/dijkstra_0.png)
::::
:::: column
. . .
![1 visité, `D[2]=1`, `D[4]=3`.](figs/dijkstra_1.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 2.](figs/dijkstra_1.png)
::::
:::: column
. . .
![2 visité, `D[3]=2`, `D[7]=3`.](figs/dijkstra_2.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 3.](figs/dijkstra_2.png)
::::
:::: column
. . .
![3 visité, `D[7]=3` inchangé, `D[6]=6`.](figs/dijkstra_3.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 4 ou 7.](figs/dijkstra_3.png)
::::
:::: column
. . .
![4 visité, `D[7]=3` inchangé, `D[5]=9`.](figs/dijkstra_4.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est `7`.](figs/dijkstra_4.png)
::::
:::: column
. . .
![7 visité, `D[5]=7`, `D[6]=6` inchangé.](figs/dijkstra_5.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 6.](figs/dijkstra_5.png)
::::
:::: column
. . .
![`6` visité, `D[5]=7` inchangé.](figs/dijkstra_6.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 5 et c'est la cible.](figs/dijkstra_6.png)
::::
:::: column
. . .
![The end, tous les sommets ont été visités.](figs/dijkstra_7.png)
::::
:::
# Algorithme de Dijkstra
## Idée générale
* On assigne à chaque noeud une distance $0$ pour $s$, $\infty$ pour les autres.
* Tous les noeuds sont marqués non-visités.
* Depuis du noeud courant, on suit chaque arête du noeud vers un sommet non visité et on calcule le poids du chemin à chaque voisin et on met à jour sa distance si elle est plus petite que la distance du noeud.
* Quand tous les voisins du noeud courant ont été visités, le noeud est mis à visité (il ne sera plus jamais visité).
* Continuer avec le noeud à la distance la plus faible.
* L'algorithme est terminé losrque le noeud de destination est marqué comme visité, ou qu'on a plus de noeuds qu'on peut visiter et que leur distance est infinie.
# Algorithme de Dijkstra
## Pseudo-code (5min, matrix)
\footnotesize
. . .
```C
tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t // on a atteint la cible
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
// on met à jour la distance du voisin en passant par u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
retourne distance
```
# Algorithme de Dijkstra
* Cet algorithme, nous donne le plus court chemin mais...
* ne nous donne pas le chemin!
## Comment modifier l'algorithme pour avoir le chemin?
. . .
* Pour chaque nouveau noeud à visiter, il suffit d'enregistrer d'où on est venu!
* On a besoin d'un tableau `precedent`.
## Modifier le pseudo-code ci-dessus pour ce faire (3min matrix)
# Algorithme de Dijkstra
\footnotesize
```C
tab, tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
precedent[v] = indéfini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
retourne distance, precedent
```
# Algorithme de Dijkstra
## Comment reconstruire un chemin ?
. . .
```C
pile parcours(precedent, s, t)
sommets = vide
u = t
// on a atteint t ou on ne connait pas de chemin
si u != s && precedent[u] != indéfini
tant que vrai
sommets = empiler(sommets, u)
u = precedent[u]
si u == s // la source est atteinte
retourne sommets
retourne sommets
```
# Algorithme de Dijkstra amélioré
## On peut améliorer l'algorithme
* Avec une file de priorité!
## Une file de priorité est
* Une file dont chaque élément possède une priorité,
* Elle existe en deux saveurs: `min` ou `max`:
* File `min`: les éléments les plus petits sont retirés en premier.
* File `max`: les éléments les plus grands sont retirés en premier.
* On regarde l'implémentation de la `max`.
## Comment on fait ça?
. . .
* On insère les éléments à haute priorité tout devant dans la file!
# Les files de priorité
## Trois fonction principales
```C
booléen est_vide(element) // triviale
element enfiler(element, data, priorite)
data defiler(element)
rien changer_priorite(element, data, priorite)
nombre priorite(element) // utilitaire
```
## Pseudo-implémentation: structure (1min)
. . .
```C
struct element
data
priorite
element suivant
```
# Les files de priorité
## Pseudo-implémentation: enfiler (2min)
. . .
```C
element enfiler(element, data, priorite)
n_element = creer_element(data, priorite)
si est_vide(element)
retourne n_element
si priorite(n_element) > priorite(element)
n_element.suivant = element
retourne n_element
sinon
tmp = element
prec = element
tant que !est_vide(tmp) && priorite < priorite(tmp)
prec = tmp
tmp = tmp.suivant
prev.suivant = n_element
n_element.suivant = tmp
retourne element
```
# Les files de priorité
## Pseudo-implémentation: defiler (2min)
. . .
```C
data, element defiler(element)
si est_vide(element)
retourne AARGL!
sinon
tmp = element.data
n_element = element.suivant
liberer(element)
retourne tmp, n_element
```
# Algorithme de Dijkstra avec file de priorité min
```C
distance, precedent dijkstra(graphe, s, t):
distance[source] = 0
fp = file_p_vide()
pour v dans sommets(graphe)
si v != s
distance[v] = infini
precedent[v] = indéfini
fp = enfiler(fp, v, distance[v])
tant que !est_vide(fp)
u, fp = defiler(fp)
pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
fp = changer_priorite(fp, v, n_distance)
retourne distance, precedent
```
# Algorithme de Dijkstra avec file
\footnotesize
```C
distance dijkstra(graphe, s, t)
---------------------------------------------------------
pour v dans sommets(graphe)
O(V) si v != s
distance[v] = infini
O(V) fp = enfiler(fp, v, distance[v]) // notre impl est nulle
------------------O(V * V)-------------------------------
tant que !est_vide(fp)
O(1) u, fp = defiler(fp)
---------------------------------------------------------
O(E) pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
O(V) fp = changer_priorite(fp, v, n_distance)
---------------------------------------------------------
retourne distance
```
* Total: $\mathcal{O}(|V|^2+|E|\cdot |V|)$:
* Graphe dense: $\mathcal{O}(|V|^3)$
* Graphe peu dense: $\mathcal{O}(|V|^2)$
# Algorithme de Dijkstra avec file
## On peut faire mieux
* Avec une meilleure implémentation de la file de priorité:
* Tas binaire: $\mathcal{O}(|V|\log|V|+|E|\log|V|)$.
* Tas de Fibonnacci: $\mathcal{O}(|V|+|E|\log|V|)$
* Graphe dense: $\mathcal{O}(|V|^2\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|\log|V|)$.
# Algorithme de Dijkstra (exercice, 5min)
![L'exercice.](figs/dijkstra_exo.png){width=60%}
* Donner la liste de priorité, puis...
## A chaque étape donner:
* Le tableau des distances à `a`;
* Le tableau des prédécesseurs;
* L'état de la file de priorité.
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 1.](figs/dijkstra_ex_0.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 2.](figs/dijkstra_ex_1.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 3.](figs/dijkstra_ex_2.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 4.](figs/dijkstra_ex_3.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 5.](figs/dijkstra_ex_4.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 6.](figs/dijkstra_ex_5.png)
# Limitation de l'algorithme de Dijkstra
## Que se passe-t-il pour?
![Exemple.](figs/exemple_neg.png){width=50%}
## Quel est le problème?
. . .
* L'algorithme n'essaiera jamais le chemin `s->x->y->v` et prendra direct `s->v`.
* Ce problème n'apparaît que s'il y a des poids négatifs.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment