Skip to content
Snippets Groups Projects
Verified Commit 77e03ea2 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

2025

parent 3825f153
No related branches found
No related tags found
No related merge requests found
Pipeline #38364 passed
---
title: "Arbres binaires, tri par tas"
date: "2025-03-14"
---
# Les arbres binaires
\Huge Les arbres binaires
# Rappel pour l'insertion
* Les éléments insérés ont une notion d'ordre
* On parcourt l'arbre jusqu'à pouvoir ajouter une nouvelle feuille
# Pseudo-code d'insertion (1/4)
* Deux parties:
* Recherche le parent où se passe l'insertion.
* Ajout de l'enfant dans l'arbre.
## Recherche du parent
```
tree position(arbre, clé)
si est_non_vide(arbre)
si clé < clé(arbre)
suivant = gauche(arbre)
sinon
suivant = droite(arbre)
tant que clé(arbre) != clé && est_non_vide(suivant)
arbre = suivant
si clé < clé(arbre)
suivant = gauche(arbre)
sinon
suivant = droite(arbre)
retourne arbre
```
# Pseudo-code d'insertion (2/4)
* Deux parties:
* Recherche de la position.
* Ajout dans l'arbre.
## Ajout de l'enfant
```
rien ajout(arbre, clé)
si est_vide(arbre)
arbre = nœud(clé)
sinon
si clé < clé(arbre)
gauche(arbre) = nœud(clé)
sinon si clé > clé(arbre)
droite(arbre) = nœud(clé)
sinon
retourne
```
# Code d'insertion en C
## Recherche du parent (ensemble)
. . .
```C
node *position(node *tree, key_t key) {
node * current = tree;
if (NULL != current) {
node *subtree = key > current->key
? current->right : current->left;
while (key != current->key && NULL != subtree) {
current = subtree;
subtree = key > current->key
? current->right : current->left;
}
}
return current;
}
```
# L'insertion (3/4)
* Deux parties:
* Recherche de la position.
* Ajout dans l'arbre.
## Ajout du fils (pseudo-code)
```
rien ajout(arbre, clé)
si est_vide(arbre)
arbre = nœud(clé)
sinon
arbre = position(arbre, clé)
si clé < clé(arbre)
gauche(arbre) = nœud(clé)
sinon si clé > clé(arbre)
droite(arbre) = nœud(clé)
sinon
retourne
```
# L'insertion (4/4)
## Ajout du fils (code)
\scriptsize
* 2 cas: arbre vide ou pas.
* on retourne un pointeur vers le nœud ajouté (ou `NULL`)
. . .
```C
node *add_key(node **tree, key_t key) {
node *new_node = calloc(1, sizeof(*new_node));
new_node->key = key;
if (NULL == *tree) {
*tree = new_node;
} else {
node * subtree = position(*tree, key);
if (key == subtree->key) {
return NULL;
} else {
if (key > subtree->key) {
subtree->right = new_node;
} else {
subtree->left = new_node;
}
}
}
return new_node;
}
```
# La suppression dans un arbre binaire
\Huge La suppression dans un arbre binaire
# La suppression de clé
::: columns
:::: column
## Cas simples:
* le nœud est absent,
* le nœud est une feuille,
* le nœuds a un seul fils.
## Une feuille (le 19 p.ex.).
```{.mermaid format=pdf width=150 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->21
20-->19
```
::::
:::: column
## Un seul fils (le 20 p.ex.).
```{.mermaid format=pdf width=400 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->25
20-->18
25-->24
25-->30
5-->4;
5-->8;
style 18 fill:#fff,stroke:#fff,color:#fff
```
## Dans tous les cas
* Chercher le nœud à supprimer: utiliser `position()`.
::::
:::
# La suppression de clé
::: columns
:::: column
## Cas compliqué
* Le nœud à supprimer a (au moins) deux descendants (10).
```{.mermaid format=pdf width=400 loc=figs/}
flowchart TB;
10-->20;
10-->5
20-->25
20-->18
25-->24
25-->30
5-->4;
5-->8;
```
::::
:::: column
* Si on enlève 10, il se passe quoi?
. . .
* On ne peut pas juste enlever `10` et recoller...
* Proposez une solution !
. . .
## Solution
* Échange de la valeur à droite dans le sous-arbre de gauche ou ...
* de la valeur de gauche dans le sous-arbre de droite!
* Puis, on retire le nœud.
::::
:::
# Le pseudo-code de la suppression
## Pour une feuille ou absent (ensemble)
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé)
si est_vide(sous_arbre) ou clé(sous_arbre) != clé
retourne vide
sinon
si est_feuille(sous_arbre) et clé(sous_arbre) == clé
nouvelle_feuille = parent(arbre, sous_arbre)
si est_vide(nouvelle_feuille)
arbre = vide
sinon
si gauche(nouvelle_feuille) == sous_arbre
gauche(nouvelle_feuille) = vide
sinon
droite(nouvelle_feuille) = vide
retourne sous_arbre
```
# Il nous manque le code pour le `parent`
## Pseudo-code pour trouver le parent (5min -> matrix)
. . .
```
tree parent(arbre, sous_arbre)
si est_non_vide(arbre)
actuel = arbre
parent = actuel
clé = clé(sous_arbre)
faire
si (clé != clé(actuel))
parent = actuel
si clé < clé(actuel)
actuel = gauche(actuel)
sinon
actuel = droite(actuel)
sinon
retour parent
tant_que (actuel != sous_arbre)
retourne vide
```
# Le pseudo-code de la suppression
\footnotesize
## Pour un seul enfant (5min -> matrix)
. . .
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé)
si est_vide(gauche(sous_arbre)) ou est_vide(droite(sous_arbre))
parent = parent(arbre, sous_arbre)
si est_vide(gauche(sous_arbre))
si droite(parent) == sous_arbre
droite(parent) = droite(sous_arbre)
sinon
gauche(parent) = droite(sous_arbre)
sinon
si droite(parent) == sous_arbre
droite(parent) = gauche(sous_arbre)
sinon
gauche(parent) = gauche(sous_arbre)
retourne sous_arbre
```
# Le pseudo-code de la suppression
\footnotesize
## Pour au moins deux enfants (ensemble)
```
tree suppression(arbre, clé)
sous_arbre = position(arbre, clé) # on revérifie pas que c'est bien la clé
si est_non_vide(gauche(sous_arbre)) et est_non_vide(droite(sous_arbre))
max_gauche = position(gauche(sous_arbre), clé)
échange(clé(max_gauche), clé(sous_arbre))
suppression(gauche(sous_arbre), clé)
```
# Exercices (poster sur matrix)
1. Écrire le pseudo-code de l'insertion purement en récursif.
. . .
```
tree insertion(arbre, clé)
si est_vide(arbre)
retourne nœud(clé)
si (clé < arbre->clé)
gauche(arbre) = insert(gauche(arbre), clé)
sinon
droite(arbre) = insert(droite(arbre), clé)
retourne arbre
```
# Exercices (poster sur matrix)
2. Écrire le pseudo-code de la recherche purement en récursif.
. . .
```
booléen recherche(arbre, clé)
si est_vide(arbre)
retourne faux // pas trouvée
si clé(arbre) == clé
retourne vrai // trouvée
si clé < clé(arbre)
retourne recherche(gauche(arbre), clé)
sinon
retourne recherche(droite(arbre), clé)
```
# Exercices (à la maison)
3. Écrire une fonction qui insère des mots dans un arbre et ensuite affiche
l'arbre.
# Trier un tableau à l'aide d'un arbre binaire
* Tableau représenté comme un arbre binaire.
* Aide à comprendre "comment" trier, mais on ne construit jamais l'arbre.
* Complexité $O(N\log_2 N)$ en moyenne et grande stabilité (pas de cas
dégénérés).
# Lien entre arbre et tableau
* La racine de l'arbre set le premier élément du tableau.
* Les deux fils d'un nœud d'indice $i$, ont pour indices $2i+1$ et $2i+2$:
* Les fils du nœud $i=0$, sont à $2\cdot 0+1=1$ et $2\cdot 0+2=2$.
* Les fils du nœud $i=1$, sont à $2\cdot 1+1=3$ et $2\cdot 1+2=4$.
* Les fils du nœud $i=2$, sont à $2\cdot 2+2=5$ et $2\cdot 1+2=6$.
* Les fils du nœud $i=3$, sont à $2\cdot 3+1=7$ et $2\cdot 3+2=8$.
* Un élément d'indice $i$ a pour parent l'élément $(i-1)/2$ (division entière):
* Le parent du nœud $i=8$ est $(8-1)/2=3$.
* Le parent du nœud $i=7$ est $(7-1)/2=3$.
# Visuellement
::: columns
:::: column
* Où vont les indices correspondant du tableau?
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0(( ))-->id1(( ));
id0-->id2(( ));
id1-->id3(( ));
id1-->id4(( ));
id2-->id5(( ));
id2-->id6(( ));
id3-->id7(( ));
id3-->id8(( ));
id4-->id9(( ));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
* Les flèche de gauche à droite, parent -> enfants.
* Les flèche de droite à gauche, enfants -> parent.
![Dualité tableau arbre binaire.](figs/heap_tree.svg)
::::
:::
**Propriétés:**
1. les feuilles sont toutes sur l'avant dernier ou dernier niveau.
2. les feuilles de profondeur maximale sont "tassée" à gauche.
# Le tas (ou heap)
## Définition
* Un arbre est un tas, si la valeur de chacun de ses descendants est inférieure
ou égale à sa propre valeur.
## Exemples (ou pas)
```
16 8 14 6 2 10 12 4 5 # Tas
16 14 8 6 2 10 12 4 5 # Non-tas, 10 > 8 et 12 > 8
```
## Exercices (ou pas)
```
19 18 12 12 17 1 13 4 5 # Tas ou pas tas?
19 18 16 12 17 1 12 4 5 # Tas ou pas tas?
```
. . .
```
19 18 12 12 17 1 13 4 5 # Pas tas! 13 > 12
19 18 16 12 17 1 12 4 5 # Tas!
```
# Exemple de tri par tas (1/13)
```
| 1 | 16 | 5 | 12 | 4 | 2 | 8 | 10 | 6 | 7 |
```
::: columns
:::: column
* Quel est l'arbre que cela représente?
. . .
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((4));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((7));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On commence à l'indice $N/2 = 5$: `4`.
* `7 > 4` (enfant `>` parent).
* intervertir `4` et `7`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
* *
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
# Exemple de tri par tas (2/13)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* On continue à l'indice $N/2-2 = 3$: `5`.
* `5 < 8`, échanger `8` et `5` (aka `max(2, 5, 8)`)
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
. . .
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (3/13)
```
| 1 | 16 | 5 | 12 | 7 | 2 | 8 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-1 = 4$: `12`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((5));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((8));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-2 = 3$: `5`.
* `5 < 8`, `5 <=> max(2, 5, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (4/13)
```
| 1 | 16 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-3 = 1$: `16`.
* Déjà un tas, rien à faire.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((16));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Indice $N/2-4 = 1$: `1`.
* `1 < 16 && 1 < 8`, `1 <=> max(1, 16, 8)`
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((1));
id0-->id2((8));
id1-->id3((12));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* *
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
# Exemple de tri par tas (5/13)
```
| 16 | 1 | 8 | 12 | 7 | 2 | 5 | 10 | 6 | 4 |
```
::: columns
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 12, 7)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((8));
id1-->id3((1));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((10));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Transformer l'arbre en tas.
* Recommencer avec `1`.
* `1 <=> max(1, 10, 6)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((16))-->id1((12));
id0-->id2((8));
id1-->id3((10));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8((6));
id4-->id9((4));
id4-->id10(( ));
style id10 fill:#fff,stroke:#fff
```
::::
:::
```
* * *
| 16 | 12 | 8 | 10 | 7 | 2 | 5 | 1 | 6 | 4 |
```
* L'arbre est un tas.
# Exemple de tri par tas (6/13)
```
| 16 | 12 | 8 | 10 | 7 | 2 | 5 | 1 | 6 | 4 |
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `16` (`max` de l'arbre) avec `4`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((4))-->id1((12));
id0-->id2((8));
id1-->id3((10));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8((6));
```
::::
:::: column
**But:** Trier les tas.
* `4 <=> max(4, 12, 8)`.
* `4 <=> max(4, 10, 7)`.
* `4 <=> max(4, 1, 6)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((12))-->id1((10));
id0-->id2((8));
id1-->id3((6));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8((4));
```
::::
:::
```
| 12 | 10 | 8 | 6 | 7 | 2 | 5 | 1 | 4 || 16
```
# Exemple de tri par tas (7/13)
```
| 12 | 10 | 8 | 6 | 7 | 2 | 5 | 1 | 4 || 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `12` (`max` de l'arbre) avec `4`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((4))-->id1((10));
id0-->id2((8));
id1-->id3((6));
id1-->id4((7));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8(( ));
style id8 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Trier les tas.
* `4 <=> max(4, 10, 8)`.
* `4 <=> max(4, 6, 7)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((10))-->id1((7));
id0-->id2((8));
id1-->id3((6));
id1-->id4((4));
id2-->id5((2));
id2-->id6((5));
id3-->id7((1));
id3-->id8(( ));
style id8 fill:#fff,stroke:#fff
```
::::
:::
```
| 10 | 7 | 8 | 6 | 4 | 2 | 5 | 1 || 12 | 16
```
# Exemple de tri par tas (8/13)
```
| 10 | 7 | 8 | 6 | 4 | 2 | 5 | 1 || 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `10` (`max` de l'arbre) avec `1`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((7));
id0-->id2((8));
id1-->id3((6));
id1-->id4((4));
id2-->id5((2));
id2-->id6((5));
```
::::
:::: column
**But:** Trier les tas.
* `1 <=> max(1, 7, 8)`.
* `5 <=> max(1, 2, 5)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((8))-->id1((7));
id0-->id2((5));
id1-->id3((6));
id1-->id4((4));
id2-->id5((2));
id2-->id6((1));
```
::::
:::
```
| 8 | 7 | 5 | 6 | 4 | 2 | 1 || 10 | 12 | 16
```
# Exemple de tri par tas (9/13)
```
| 8 | 7 | 5 | 6 | 4 | 2 | 1 || 10 | 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `8` (`max` de l'arbre) avec `1`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((7));
id0-->id2((5));
id1-->id3((6));
id1-->id4((4));
id2-->id5((2));
id2-->id6(( ));
style id6 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Trier les tas.
* `1 <=> max(1, 7, 5)`.
* `1 <=> max(1, 6, 4)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((7))-->id1((6));
id0-->id2((5));
id1-->id3((1));
id1-->id4((4));
id2-->id5((2));
id2-->id6(( ));
style id6 fill:#fff,stroke:#fff
```
::::
:::
```
| 7 | 6 | 5 | 1 | 4 | 2 || 8 | 10 | 12 | 16
```
# Exemple de tri par tas (10/13)
```
| 7 | 6 | 5 | 1 | 4 | 2 || 8 | 10 | 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `7` (`max` de l'arbre) avec `2`.
* Traiter la racine.
```{.mermaid format=pdf width=150 loc=figs/}
graph TD;
id0((2))-->id1((6));
id0-->id2((5));
id1-->id3((1));
id1-->id4((4));
```
::::
:::: column
**But:** Trier les tas.
* `2 <=> max(2, 6, 5)`.
* `2 <=> max(2, 1, 4)`.
```{.mermaid format=pdf width=150 loc=figs/}
graph TD;
id0((6))-->id1((4));
id0-->id2((5));
id1-->id3((1));
id1-->id4((2));
```
::::
:::
```
| 6 | 4 | 5 | 1 | 2 || 8 | 10 | 12 | 16
```
# Exemple de tri par tas (11/13)
```
| 6 | 4 | 5 | 1 | 2 || 8 | 10 | 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `6` (`max` de l'arbre) avec `2`.
* Traiter la racine.
```{.mermaid format=pdf width=150 loc=figs/}
graph TD;
id0((2))-->id1((4));
id0-->id2((5));
id1-->id3((1));
id1-->id4(( ));
style id4 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Trier les tas.
* `2 <=> max(2, 4, 5)`.
* `2 <=> max(2, 1, 4)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((5))-->id1((4));
id0-->id2((2));
id1-->id3((1));
id1-->id4(( ));
style id4 fill:#fff,stroke:#fff
```
::::
:::
```
| 5 | 4 | 2 | 1 || 6 | 8 | 10 | 12 | 16
```
# Exemple de tri par tas (12/13)
```
| 5 | 4 | 2 | 1 || 6 | 8 | 10 | 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `5` (`max` de l'arbre) avec `1`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((1))-->id1((4));
id0-->id2((2));
```
::::
:::: column
**But:** Trier les tas.
* `1 <=> max(1, 4, 2)`.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((4))-->id1((1));
id0-->id2((2));
```
::::
:::
```
| 4 | 1 | 2 || 5 | 6 | 8 | 10 | 12 | 16
```
# Exemple de tri par tas (13/13)
```
| 4 | 1 | 2 || 5 | 6 | 8 | 10 | 12 | 16
```
::: columns
:::: column
**But:** Trier les tas.
* Échanger la racine, `4` (`max` de l'arbre) avec `2`.
* Traiter la racine.
```{.mermaid format=pdf width=400 loc=figs/}
graph TD;
id0((2))-->id1((1));
id0-->id2(( ));
style id2 fill:#fff,stroke:#fff
```
::::
:::: column
**But:** Trier les tas. Plus rien à trier
* On fait les 2 dernières étapes en vitesse.
* Échange `2` avec `1`.
* Il reste que `1`. GGWP!
::::
:::
```
| 1 | 2 | 4 | 5 | 6 | 8 | 10 | 12 | 16
```
# Exercice (10min)
* Trier par tas le tableau
```
| 1 | 2 | 4 | 5 | 6 | 8 | 10 | 12 | 16
```
* Mettez autant de détails que possible.
* Que constatez-vous?
* Postez le résultat sur matrix.
# L'algorithme du tri par tas (1/2)
\footnotesize
## Deux étapes
1. Entassement: transformer l'arbre en tas.
2. Échanger la racine avec le dernier élément et entasser la racine.
## Pseudo-code d'entassement de l'arbre (15 min, matrix)
. . .
```python
rien tri_par_tas(tab)
entassement(tab)
échanger(tab[0], tab[size(tab)-1])
pour i de size(tab)-1 à 2
tamisage(tab, 0)
échanger(tab[0], tab[i-1])
rien entassement(tab)
pour i de size(tab)/2-1 à 0
tamisage(tab, i)
rien tamisage(tab, i)
ind_max = ind_max(tab, i, gauche(i), droite(i))
si i != ind_max
échanger(tab[i], tab[ind_max])
tamisage(tab, ind_max)
```
# L'algorithme du tri par tas (2/2)
* Fonctions utilitaires
```python
entier ind_max(tab, i, g, d)
ind_max = i
si tab[ind_max] < tab[g] && size(tab) > g
ind_max = g
si tab[ind_mx] < tab[d] && size(tab) > d
ind_max = d
retourne ind_max
entier gauche(i)
retourne 2 * i + 1
entier droite(i)
retourne 2 * i + 2
```
<!-- # L'algorithme du tri par tas (3/4)
\footnotesize
## Implémenter en C l'algorithme du tri par tas (matrix, 20min)
. . .
```C
void heapsort(int size, int tab[size]) {
heapify(size, tab);
swap(tab, tab + size - 1);
for (int s = size - 1; s > 1; s--) {
sift_up(s, tab, 0);
swap(tab, tab + s - 1);
}
}
void heapify(int size, int tab[size]) {
for (int i = size / 2 - 1; i >= 0; i--) {
sift_up(size, tab, i);
}
}
void sift_up(int size, int tab[size], int i) {
int ind_max = ind_max3(size, tab, i, left(i), right(i));
if (i != ind_max) {
swap(tab + i, tab + ind_max);
sift_up(size, tab, ind_max);
}
}
```
# L'algorithme du tri par tas (4/4)
\footnotesize
## Fonctions utilitaires
. . .
```C
int ind_max3(int size, int tab[size], int i, int l, int r) {
int ind_max = i;
if (l < size && tab[ind_max] < tab[l]) {
ind_max = l;
}
if (r < size && tab[ind_max] < tab[r]) {
ind_max = r;
}
return ind_max;
}
void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;
}
int left(int i) {
return 2 * i + 1;
}
int right(int i) {
return 2 * i + 2;
}
``` -->
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment