Skip to content
Snippets Groups Projects
Verified Commit dc497e8b authored by orestis.malaspin's avatar orestis.malaspin
Browse files

updated cours 6 with complexite

parent 62422a49
No related branches found
No related tags found
No related merge requests found
---
title: "Récursivité"
title: "Récursivité et complexité"
date: "2021-11-03"
patat:
eval:
......@@ -151,7 +151,7 @@ int fib_imp(int n) {
}
```
# Exponentiation rapide ou indienne (1/N)
# Exponentiation rapide ou indienne (1/4)
## But: Calculer $x^n$
......@@ -173,7 +173,7 @@ int fib_imp(int n) {
* Complexité? Combien de multiplication en fonction de `n`?
# Exponentiation rapide ou indienne (1/N)
# Exponentiation rapide ou indienne (2/4)
* Algorithme naïf et récursif
......@@ -187,10 +187,293 @@ int fib_imp(int n) {
}
```
# Exercices pour les semaines sans cours
# Exponentiation rapide ou indienne (3/4)
## Exponentiation rapide ou indienne de $x^n$
* Écrivons $n=\sum_{i=0}^{d-1}b_i 2^i,\ b_i=\{0,1\}$ (écriture binaire sur $d$ bits, avec
$d\sim\log_2(n)$).
*
$$
x^n={x^{2^0}}^{b_0}\cdot {x^{2^1}}^{b_1}\cdots {x^{2^{d-1}}}^{b_{d-1}}.
$$
* On a besoin de $d$ calculs pour les $x^{2^i}$.
* On a besoin de $d$ calculs pour évaluer les produits de tous les termes.
## Combien de calculs en terme de $n$?
. . .
* $n$ est représenté en binaire avec $d$ bits $\Rightarrow d\sim\log_2(n)$.
* il y a $2\log_2(n)\sim \log_2(n)$ calculs.
# Exponentiation rapide ou indienne (4/4)
## Le vrai algorithme
* Si n est pair: calculer $\left(x^{n/2}\right)^2$,
* Si n est impair: calculer $x \cdot \left(x^{(n-1)/2}\right)^2$.
## Exercice: écrire l'algorithme récursif correspondant
. . .
```C
double pow(double x, int n) {
if (1 == n) {
return x;
} else if (n % 2 == 0) {
return pow(x, n / 2) * pow(x, n/2);
} else {
return x * pow(x, (n-1));
}
}
```
# Efficacité d'un algorithmique
Comment mesurer l'efficacité d'un algorithme?
. . .
* Mesurer le temps CPU,
* Mesurer le temps d'accès à la mémoire,
* Mesurer la place prise mémoire,
. . .
Dépendant du **matériel**, du **compilateur**, des **options de compilation**,
etc!
## Mesure du temps CPU
```C
#include <time.h>
struct timespec tstart={0,0}, tend={0,0};
clock_gettime(CLOCK_MONOTONIC, &tstart);
// some computation
clock_gettime(CLOCK_MONOTONIC, &tend);
printf("computation about %.5f seconds\n",
((double)tend.tv_sec + 1e-9*tend.tv_nsec) -
((double)tstart.tv_sec + 1e-9*tstart.tv_nsec));
```
# Programme simple: mesure du temps CPU
## Preuve sur un [petit exemple](../source_codes/complexity/sum.c)
```bash
source_codes/complexity$ make bench
RUN ONCE -O0
the computation took about 0.00836 seconds
RUN ONCE -O3
the computation took about 0.00203 seconds
RUN THOUSAND TIMES -O0
the computation took about 0.00363 seconds
RUN THOUSAND TIMES -O3
the computation took about 0.00046 seconds
```
Et sur votre machine les résultats seront **différents**.
. . .
## Conclusion
* Nécessité d'avoir une mesure indépendante du/de la
matériel/compilateur/façon de mesurer/météo.
# Analyse de complexité algorithmique (1/N)
* On analyse le **temps** pris par un algorithme en fonction de la **taille de
l'entrée**.
## Exemple: recherche d'un élément dans une liste triée de taille N
```C
int sorted_list[N];
bool in_list = is_present(N, sorted_list, elem);
```
* Plus `N` est grand, plus l'algorithme prend de temps sauf si...
. . .
* l'élément est le premier de la liste (ou à une position toujours la même).
* ce genre de cas pathologique ne rentre pas en ligne de compte.
# Analyse de complexité algorithmique (2/N)
## Recherche linéaire
```C
bool is_present(int n, int tab[], int elem) {
for (int i = 0; i < n; ++i) {
if (tab[i] == elem) {
return true;
} else if (elem < tab[i]) {
return false;
}
}
return false;
}
```
* Dans le **meilleurs des cas** il faut `1` comparaison.
* Dans le **pire des cas** (élément absent p.ex.) il faut `n`
comparaisons.
. . .
La **complexité algorithmique** est proportionnelle à `N`: on double la taille
du tableau $\Rightarrow$ on double le temps pris par l'algorithme.
# Analyse de complexité algorithmique (3/N)
## Recherche dichotomique
```C
bool is_present_binary_search(int n, int tab[], int elem) {
int left = 0;
int right = n - 1;
while (left <= right) {
int mid = (right + left) / 2;
if (tab[mid] < elem) {
left = mid + 1;
} else if (tab[mid] > elem) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
```
# Analyse de complexité algorithmique (4/N)
## Recherche dichotomique
![Source:
[Wikipédia](https://upload.wikimedia.org/wikipedia/commons/a/aa/Binary_search_complexity.svg)](figs/Binary_search_complexity.svg){width=80%}
. . .
* Dans le **meilleurs de cas** il faut `1` comparaison.
* Dans le **pire des cas** il faut $\log_2(N)+1$ comparaisons
. . .
## Linéaire vs dichotomique
* $N$ vs $\log_2(N)$ comparaisons logiques.
* Pour $N=1000000$: `1000000` vs `21` comparaisons.
# Notation pour la complexité
## Constante de proportionnalité
* Pour la recherche linéaire ou dichotomique, on a des algorithmes qui sont
$\sim N$ ou $\sim \log_2(N)$
* Qu'est-ce que cela veut dire?
. . .
* Temps de calcul est $t=C\cdot N$ (où $C$ est le temps pris pour une
comparaisons sur une machine/compilateur donné)
* La complexité ne dépend pas de $C$.
## Le $\mathcal{O}$ de Leibnitz
* Pour noter la complexité d'un algorithme on utilise le symbole
$\mathcal{O}$ (ou "grand Ô de").
* Les complexités les plus couramment rencontrées sont
. . .
$$
\mathcal{O}(1),\quad \mathcal{O}(\log(N)),\quad \mathcal{O}(N),\quad
\mathcal{O}(\log(N)\cdot N), \quad \mathcal{O}(N^2), \quad
\mathcal{O}(N^3).
$$
. . .
<https://fr.wikipedia.org/wiki/Analyse_de_la_complexit%C3%A9_des_algorithmes>
# Quelques exercices (1/3)
## Complexité de l'algorithme de test de primalité naïf?
```C
for (i = 2; i < sqrt(N); ++i) {
if (N % i == 0) {
return false;
}
}
return true;
```
. . .
## Réponse
$$
\mathcal{O}(\sqrt{N}).
$$
# Quelques exercices (2/3)
## Complexité de trouver le minimum d'un tableau?
```C
min = MAX;
for (i = 0; i < N; ++i) {
if (tab[i] < min) {
min = tab[i];
}
}
return min;
```
. . .
## Réponse
$$
\mathcal{O}(N).
$$
# Quelques exercices (3/3)
## Complexité du tri par sélection?
```C
ind = 0
while (ind < SIZE-1) {
min = find_min(tab[ind:SIZE]);
swap(min, tab[ind]);
ind += 1
}
```
. . .
## Réponse
### `min = find_min`
$$
(N-1)+(N-2)+...+2+1=\sum_{i=1}^{N-1}i=N\cdot(N-1)/2=\mathcal{O}(N^2).
$$
## Finalement
$$
\mathcal{O}(N^2\mbox{ comparaisons}) + \mathcal{O}(N\mbox{
swaps})=\mathcal{O}(N^2).
$$
## Quelques algorithmes à réaliser et poster sur matrix
1. Algorithme du PPCM.
2. La puissance indienne.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment