Skip to content
Snippets Groups Projects
Verified Commit 8e9d04d0 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2023

parent 722827b9
No related branches found
No related tags found
No related merge requests found
......@@ -280,106 +280,6 @@ rien alveole_1(entier taille, entier tab[taille],
# pareil que alveole_0 mais dans l'autre sens
```
<!-- ```C
int index_min(int size,int tab[size],int i) {
//à compléter
return 0;
}
int index_max(int size,int tab[size],int i) {
//à compléter
return 0;
}
int get_bit(int x,int pos) {
//à compléter
return 0;
}
int get_nb_bits(int x) {
//à compléter
return 0;
}
void swap_ptr(int** a,int** b) {
//à compléter
return 0;
}
void bucket_0(int size,int* tab1,int* tab2,int pos) {
int k = 0;
for (int i = 0; i < size; i++) {
if (0 == get_bit(tab1[i], pos)) {
tab2[k] = tab1[i];
k += 1;
}
}
}
void bucket_1(int size,int* tab1,int* tab2,int pos) {
int k = size - 1;
for (int i = size - 1; i >= 0; i--) {
if (1 == get_bit(tab1[i], pos)) {
tab2[k] = tab1[i];
k -= 1;
}
}
}
void radix_sort(int size, int tab[size]) {
int val_min = tab[index_min(size,tab)];
int val_max = tab[index_max(size,tab)];
int nb_bits = get_nb_bits(val_max-val_min);
int tab_tmp[size];
int* tab1 = &tab[0];
int* tab2 = &tab_tmp[0];
// décalage des valeurs du tableau dans l'intervalle 0..val_max-val_min
for (int i=0; i < size; i++) {
tab1[i] -= val_min;
}
for (int pos=0;pos<nb_bits;pos++) {
bucket_0(size, tab1, tab2, pos);
bucket_1(size, tab1, tab2, pos);
swap_ptr(&tab1, &tab2);
}
// décalage inverse dans l'intervalle val_min..val_max
for (int i=0;i<size;i++) {
tab1[i] += val_min;
}
if (tab1 != tab) {
for (int i=0;i<size;i++) {
tab[i] = tab1[i];
}
}
}
``` -->
<!-- # Complexité
L'algorithme implémenté précédemment nécessite un certain nombre d'opérations lié à la taille du tableau.
Voici une liste de parcours utilitaires de tableau:
1. Recherche de la valeur minimum ```val_min```
2. Recherche de la valeur maximum ```val_max```
3. Décalage des valeurs dans l'intervalle ```0..val_max-val_min```
4. Décalage inverse pour revenir dans l'intervalle ```val_min..val_max```
5. Copie éventuelle du tableau temporaire dans le tableau originel
On a donc un nombre de parcours fixe (4 ou 5) qui se font en $\mathcal{O}(N)$ où $N$ est la taille du tableau.
La partie du tri à proprement parler est une boucle sur le nombre de bits *b* de ```val_min..val_max```.
A chaque passage à travers la boucle, on parcourt 2 fois le tableau: la 1ère fois pour s'occuper des éléments dont le bit courant à 0; la 2ème pour ceux dont le bit courant est à 1.
A noter que le nombre d'opérations est de l'ordre de *b* pour la lecture d'un bit et constant pour la fonction ```swap_ptr()```.
Ainsi, la complexité du tri par base est $\mathcal{O}(b\cdot N)$. -->
# Tri par fusion (merge sort)
* Tri par comparaison.
......@@ -421,7 +321,8 @@ Ainsi, la complexité du tri par base est $\mathcal{O}(b\cdot N)$. -->
| 3 | \textcolor{red}{-9} | \textcolor{red}{-6} | \textcolor{red}{-5} | \textcolor{red}{1} | \textcolor{red}{2} | \textcolor{red}{4} | \textcolor{red}{5} | \textcolor{red}{6} | \textcolor{green}{2} |
| 4 | -9 | -6 | -5 | 1 | 2 | 2 | 4 | 5 | 6 |
# Pseudo-code
# Pseudo-code (autrement)
```python
rien tri_fusion(entier taille, entier tab[taille])
......@@ -440,10 +341,27 @@ rien tri_fusion(entier taille, entier tab[taille])
echanger(tab, tab_tmp);
```
# La fonction de fusion
# Algorithme de fusion possible
## Une idée?
. . .
* Parcourir les deux tableaux jusqu'à atteindre la fin d'un des deux
* Comparer l'élément courant des 2 tableaux
* Écrire le plus petit élément dans le tableau résultat
* Avancer de 1 dans les tableaux du plus petit élément et résultat
* Copier les éléments du tableau restant dans le tableau résultat
# La fonction de fusion (pseudo-code autrement)
\footnotesize
## Une idée?
. . .
```python
# hyp: tab_g et tab_d sont triés
rien fusion(entier tab_g[], entier tab_d[], entier res[]):
......@@ -653,608 +571,3 @@ int partition(int size, int array[size], int first, int last) {
```
# Tri à bulle (1/4)
## Algorithme
* Parcours du tableau et comparaison des éléments consécutifs:
- Si deux éléments consécutifs ne sont pas dans l'ordre, ils sont échangés.
* On recommence depuis le début du tableau jusqu'à avoir plus d'échanges à
faire.
## Que peut-on dire sur le dernier élément du tableau après un parcours?
. . .
* Le plus grand élément est **à la fin** du tableau.
* Plus besoin de le traiter.
* A chaque parcours on s'arrête un élément plus tôt.
# Tri à bulle (2/4)
## Exemple
![Tri à bulles d'un tableau d'entiers](figs/tri_bulles.svg)
# Tri à bulle (3/4)
## Exercice: écrire l'algorithme (poster le résultat sur matrix)
. . .
```C
rien tri_a_bulles(entier tableau[])
pour i de longueur(tableau)-1 à 1:
trié = vrai
pour j de 0 à i-1:
si (tableau[j] > tableau[j+1])
échanger(array[j], array[j+1])
trié = faux
si trié
retourner
```
# Tri à bulle (4/4)
## Quelle est la complexité du tri à bulles?
. . .
* Dans le meilleurs des cas:
* Le tableau est déjà trié: $\mathcal{O}(N)$ comparaisons.
* Dans le pire des cas, $N\cdot (N-1)/2\sim\mathcal{O}(N^2)$:
$$
\sum_{i=1}^{N-1}i\mbox{ comparaison et }3\sum_{i=1}^{N-1}i \mbox{ affectations
(swap)}\Rightarrow \mathcal{O}(N^2).
$$
* En moyenne, $\mathcal{O}(N^2)$ ($N^2/2$ comparaisons).
# L'algorithme à la main
## Exercice *sur papier*
* Trier par tri à bulles le tableau `[5, -2, 1, 3, 10, 15, 7, 4]`
```C
```
# Efficacité d'un algorithmique
Comment mesurer l'efficacité d'un algorithme?
. . .
* Mesurer le temps CPU,
* Mesurer le temps d'accès à la mémoire,
* Mesurer la place prise mémoire,
. . .
Dépendant du **matériel**, du **compilateur**, des **options de compilation**, etc!
## Mesure du temps CPU
```C
#include <time.h>
struct timespec tstart={0,0}, tend={0,0};
clock_gettime(CLOCK_MONOTONIC, &tstart);
// some computation
clock_gettime(CLOCK_MONOTONIC, &tend);
printf("computation about %.5f seconds\n",
((double)tend.tv_sec + 1e-9*tend.tv_nsec) -
((double)tstart.tv_sec + 1e-9*tstart.tv_nsec));
```
# Programme simple: mesure du temps CPU
## Preuve sur un [petit exemple](../source_codes/complexity/sum.c)
```bash
source_codes/complexity$ make bench
RUN ONCE -O0
the computation took about 0.00836 seconds
RUN ONCE -O3
the computation took about 0.00203 seconds
RUN THOUSAND TIMES -O0
the computation took about 0.00363 seconds
RUN THOUSAND TIMES -O3
the computation took about 0.00046 seconds
```
Et sur votre machine les résultats seront **différents**.
. . .
## Conclusion
* Nécessité d'avoir une mesure indépendante du/de la
matériel/compilateur/façon de mesurer/météo.
# Analyse de complexité algorithmique (1/4)
* On analyse le **temps** pris par un algorithme en fonction de la **taille de
l'entrée**.
## Exemple: recherche d'un élément dans une liste triée de taille N
```C
int sorted_list[N];
bool in_list = is_present(N, sorted_list, elem);
```
* Plus `N` est grand, plus l'algorithme prend de temps sauf si...
. . .
* l'élément est le premier de la liste (ou à une position toujours la même).
* ce genre de cas pathologique ne rentre pas en ligne de compte.
# Analyse de complexité algorithmique (2/4)
## Recherche linéaire
```C
bool is_present(int n, int tab[], int elem) {
for (int i = 0; i < n; ++i) {
if (tab[i] == elem) {
return true;
} else if (elem < tab[i]) {
return false;
}
}
return false;
}
```
* Dans le **meilleurs des cas** il faut `1` comparaison.
* Dans le **pire des cas** (élément absent p.ex.) il faut `n` comparaisons.
. . .
La **complexité algorithmique** est proportionnelle à `N`: on double la taille
du tableau $\Rightarrow$ on double le temps pris par l'algorithme.
# Analyse de complexité algorithmique (3/4)
## Recherche dichotomique
```C
bool is_present_binary_search(int n, int tab[], int elem) {
int left = 0;
int right = n - 1;
while (left <= right) {
int mid = (right + left) / 2;
if (tab[mid] < elem) {
left = mid + 1;
} else if (tab[mid] > elem) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
```
# Analyse de complexité algorithmique (4/4)
## Recherche dichotomique
![Source: [Wikipédia](https://upload.wikimedia.org/wikipedia/commons/a/aa/Binary_search_complexity.svg)](figs/Binary_search_complexity.svg){width=80%}
. . .
* Dans le **meilleurs de cas** il faut `1` comparaison.
* Dans le **pire des cas** il faut $\log_2(N)+1$ comparaisons
. . .
## Linéaire vs dichotomique
* $N$ vs $\log_2(N)$ comparaisons logiques.
* Pour $N=1000000$: `1000000` vs `21` comparaisons.
# Notation pour la complexité
## Constante de proportionnalité
* Pour la recherche linéaire ou dichotomique, on a des algorithmes qui sont $\sim N$ ou $\sim \log_2(N)$
* Qu'est-ce que cela veut dire?
. . .
* Temps de calcul est $t=C\cdot N$ (où $C$ est le temps pris pour une comparaisons sur une machine/compilateur donné)
* La complexité ne dépend pas de $C$.
## Le $\mathcal{O}$ de Leibnitz
* Pour noter la complexité d'un algorithme on utilise le symbole $\mathcal{O}$ (ou "grand Ô de").
* Les complexités les plus couramment rencontrées sont
. . .
$$
\mathcal{O}(1),\quad \mathcal{O}(\log(N)),\quad \mathcal{O}(N),\quad
\mathcal{O}(\log(N)\cdot N), \quad \mathcal{O}(N^2), \quad
\mathcal{O}(N^3).
$$
# Ordres de grandeur
\begin{table}[!h]
\begin{center}
\caption{Valeurs approximatives de quelques fonctions usuelles de complexité.}
\medskip
\begin{tabular}{|c|c|c|c|c|}
\hline
$\log_2(N)$ & $\sqrt{N}$ & $N$ & $N\log_2(N)$ & $N^2$ \\
\hline\hline
$3$ & $3$ & $10$ & $30$ & $10^2$ \\
\hline
$6$ & $10$ & $10^2$ & $6\cdot 10^2$ & $10^4$ \\
\hline
$9$ & $31$ & $10^3$ & $9\cdot 10^3$ & $10^6$ \\
\hline
$13$ & $10^2$ & $10^4$ & $1.3\cdot 10^5$ & $10^8$ \\
\hline
$16$ & $3.1\cdot 10^2$ & $10^5$ & $1.6\cdot 10^6$ & $10^{10}$ \\
\hline
$19$ & $10^3$ & $10^6$ & $1.9\cdot 10^7$ & $10^{12}$ \\
\hline
\end{tabular}
\end{center}
\end{table}
# Quelques exercices (1/3)
## Complexité de l'algorithme de test de primalité naïf?
```C
for (i = 2; i < sqrt(N); ++i) {
if (N % i == 0) {
return false;
}
}
return true;
```
. . .
## Réponse
$$
\mathcal{O}(\sqrt{N}).
$$
# Quelques exercices (2/3)
## Complexité de trouver le minimum d'un tableau?
```C
int min = MAX;
for (i = 0; i < N; ++i) {
if (tab[i] < min) {
min = tab[i];
}
}
return min;
```
. . .
## Réponse
$$
\mathcal{O}(N).
$$
# Quelques exercices (3/3)
## Complexité du tri par sélection?
```C
int ind = 0;
while (ind < SIZE-1) {
min = find_min(tab[ind:SIZE]);
swap(min, tab[ind]);
ind += 1;
}
```
. . .
## Réponse
### `min = find_min`
$$
(N-1)+(N-2)+...+2+1=\sum_{i=1}^{N-1}i=N\cdot(N-1)/2=\mathcal{O}(N^2).
$$
## Finalement
$$
\mathcal{O}(N^2\mbox{ comparaisons}) + \mathcal{O}(N\mbox{swaps})=\mathcal{O}(N^2).
$$
# Tri par insertion (1/3)
## But
* trier un tableau par ordre croissant
## Algorithme
Prendre un élément du tableau et le mettre à sa place parmis les éléments déjà
triés du tableau.
![Tri par insertion d'un tableau d'entiers](figs/tri_insertion.svg)
# Tri par insertion (2/3)
## Exercice: Proposer un algorithme (en C)
. . .
```C
void tri_insertion(int N, int tab[N]) {
for (int i = 1; i < N; i++) {
int tmp = tab[i];
int pos = i;
while (pos > 0 && tab[pos - 1] > tmp) {
tab[pos] = tab[pos - 1];
pos = pos - 1;
}
tab[pos] = tmp;
}
}
```
# Tri par insertion (3/3)
## Question: Quelle est la complexité?
. . .
* Parcours de tous les éléments ($N-1$ passages dans la boucle)
* Placer: en moyenne $i$ comparaisons et affectations à l'étape $i$
* Moyenne: $\mathcal{O}(N^2)$
. . .
* Pire des cas, liste triée à l'envers: $\mathcal{O}(N^2)$
* Meilleurs des cas, liste déjà triée: $\mathcal{O}(N)$
# L'algorithme à la main
## Exercice *sur papier*
* Trier par insertion le tableau `[5, -2, 1, 3, 10]`
```C
```
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/N)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/N)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
nbr_solutions(board, column, count)
// pour chaque ligne
// si la case libre
// si column < n - 1
// copier board dans un "new" board,
// y poser une reine
// et mettre à jour ce "new" board
// nbr_solutions(new_board, column+1, count)
// sinon
// on a posé la n-ème et on a gagné
// count += 1
```
# Le code du problème des 8 reines (3/N)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
placer_devant(board, ligne, colonne)
// board est occupé à ligne/colonne
// toutes les cases des colonnes
// suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/N)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/N)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void prises_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
---
title: "Tris et complexité"
date: "2023-11-21"
header-includes: |
\usepackage{xcolor}
---
# Efficacité d'un algorithmique
Comment mesurer l'efficacité d'un algorithme?
. . .
* Mesurer le temps CPU,
* Mesurer le temps d'accès à la mémoire,
* Mesurer la place prise mémoire,
. . .
Dépendant du **matériel**, du **compilateur**, des **options de compilation**, etc!
## Mesure du temps CPU
```C
#include <time.h>
struct timespec tstart={0,0}, tend={0,0};
clock_gettime(CLOCK_MONOTONIC, &tstart);
// some computation
clock_gettime(CLOCK_MONOTONIC, &tend);
printf("computation about %.5f seconds\n",
((double)tend.tv_sec + 1e-9*tend.tv_nsec) -
((double)tstart.tv_sec + 1e-9*tstart.tv_nsec));
```
# Programme simple: mesure du temps CPU
## Preuve sur un [petit exemple](../source_codes/complexity/sum.c)
```bash
source_codes/complexity$ make bench
RUN ONCE -O0
the computation took about 0.00836 seconds
RUN ONCE -O3
the computation took about 0.00203 seconds
RUN THOUSAND TIMES -O0
the computation took about 0.00363 seconds
RUN THOUSAND TIMES -O3
the computation took about 0.00046 seconds
```
Et sur votre machine les résultats seront **différents**.
. . .
## Conclusion
* Nécessité d'avoir une mesure indépendante du/de la
matériel/compilateur/façon de mesurer/météo.
# Analyse de complexité algorithmique (1/4)
* On analyse le **temps** pris par un algorithme en fonction de la **taille de
l'entrée**.
## Exemple: recherche d'un élément dans une liste triée de taille N
```C
int sorted_list[N];
bool in_list = is_present(N, sorted_list, elem);
```
* Plus `N` est grand, plus l'algorithme prend de temps sauf si...
. . .
* l'élément est le premier de la liste (ou à une position toujours la même).
* ce genre de cas pathologique ne rentre pas en ligne de compte.
# Analyse de complexité algorithmique (2/4)
## Recherche linéaire
```C
bool is_present(int n, int tab[], int elem) {
for (int i = 0; i < n; ++i) {
if (tab[i] == elem) {
return true;
} else if (elem < tab[i]) {
return false;
}
}
return false;
}
```
* Dans le **meilleurs des cas** il faut `1` comparaison.
* Dans le **pire des cas** (élément absent p.ex.) il faut `n` comparaisons.
. . .
La **complexité algorithmique** est proportionnelle à `N`: on double la taille
du tableau $\Rightarrow$ on double le temps pris par l'algorithme.
# Analyse de complexité algorithmique (3/4)
## Recherche dichotomique
```C
bool is_present_binary_search(int n, int tab[], int elem) {
int left = 0;
int right = n - 1;
while (left <= right) {
int mid = (right + left) / 2;
if (tab[mid] < elem) {
left = mid + 1;
} else if (tab[mid] > elem) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
```
# Analyse de complexité algorithmique (4/4)
## Recherche dichotomique
![Source: [Wikipédia](https://upload.wikimedia.org/wikipedia/commons/a/aa/Binary_search_complexity.svg)](figs/Binary_search_complexity.svg){width=80%}
. . .
* Dans le **meilleurs de cas** il faut `1` comparaison.
* Dans le **pire des cas** il faut $\log_2(N)+1$ comparaisons
. . .
## Linéaire vs dichotomique
* $N$ vs $\log_2(N)$ comparaisons logiques.
* Pour $N=1000000$: `1000000` vs `21` comparaisons.
# Notation pour la complexité
## Constante de proportionnalité
* Pour la recherche linéaire ou dichotomique, on a des algorithmes qui sont $\sim N$ ou $\sim \log_2(N)$
* Qu'est-ce que cela veut dire?
. . .
* Temps de calcul est $t=C\cdot N$ (où $C$ est le temps pris pour une comparaisons sur une machine/compilateur donné)
* La complexité ne dépend pas de $C$.
## Le $\mathcal{O}$ de Leibnitz
* Pour noter la complexité d'un algorithme on utilise le symbole $\mathcal{O}$ (ou "grand Ô de").
* Les complexités les plus couramment rencontrées sont
. . .
$$
\mathcal{O}(1),\quad \mathcal{O}(\log(N)),\quad \mathcal{O}(N),\quad
\mathcal{O}(\log(N)\cdot N), \quad \mathcal{O}(N^2), \quad
\mathcal{O}(N^3).
$$
# Ordres de grandeur
\begin{table}[!h]
\begin{center}
\caption{Valeurs approximatives de quelques fonctions usuelles de complexité.}
\medskip
\begin{tabular}{|c|c|c|c|c|}
\hline
$\log_2(N)$ & $\sqrt{N}$ & $N$ & $N\log_2(N)$ & $N^2$ \\
\hline\hline
$3$ & $3$ & $10$ & $30$ & $10^2$ \\
\hline
$6$ & $10$ & $10^2$ & $6\cdot 10^2$ & $10^4$ \\
\hline
$9$ & $31$ & $10^3$ & $9\cdot 10^3$ & $10^6$ \\
\hline
$13$ & $10^2$ & $10^4$ & $1.3\cdot 10^5$ & $10^8$ \\
\hline
$16$ & $3.1\cdot 10^2$ & $10^5$ & $1.6\cdot 10^6$ & $10^{10}$ \\
\hline
$19$ & $10^3$ & $10^6$ & $1.9\cdot 10^7$ & $10^{12}$ \\
\hline
\end{tabular}
\end{center}
\end{table}
# Quelques exercices (1/3)
## Complexité de l'algorithme de test de primalité naïf?
```C
for (i = 2; i < sqrt(N); ++i) {
if (N % i == 0) {
return false;
}
}
return true;
```
. . .
## Réponse
$$
\mathcal{O}(\sqrt{N}).
$$
# Quelques exercices (2/3)
## Complexité de trouver le minimum d'un tableau?
```C
int min = MAX;
for (i = 0; i < N; ++i) {
if (tab[i] < min) {
min = tab[i];
}
}
return min;
```
. . .
## Réponse
$$
\mathcal{O}(N).
$$
# Quelques exercices (3/3)
## Complexité du tri par sélection?
```C
int ind = 0;
while (ind < SIZE-1) {
min = find_min(tab[ind:SIZE]);
swap(min, tab[ind]);
ind += 1;
}
```
. . .
## Réponse
### `min = find_min`
$$
(N-1)+(N-2)+...+2+1=\sum_{i=1}^{N-1}i=N\cdot(N-1)/2=\mathcal{O}(N^2).
$$
## Finalement
$$
\mathcal{O}(N^2\mbox{ comparaisons}) + \mathcal{O}(N\mbox{swaps})=\mathcal{O}(N^2).
$$
# Tri à bulle (1/4)
## Algorithme
* Parcours du tableau et comparaison des éléments consécutifs:
- Si deux éléments consécutifs ne sont pas dans l'ordre, ils sont échangés.
* On recommence depuis le début du tableau jusqu'à avoir plus d'échanges à
faire.
## Que peut-on dire sur le dernier élément du tableau après un parcours?
. . .
* Le plus grand élément est **à la fin** du tableau.
* Plus besoin de le traiter.
* A chaque parcours on s'arrête un élément plus tôt.
# Tri à bulle (2/4)
## Exemple
![Tri à bulles d'un tableau d'entiers](figs/tri_bulles.svg)
# Tri à bulle (3/4)
## Exercice: écrire l'algorithme (poster le résultat sur matrix)
. . .
```C
rien tri_a_bulles(entier tableau[])
pour i de longueur(tableau)-1 à 1:
trié = vrai
pour j de 0 à i-1:
si (tableau[j] > tableau[j+1])
échanger(array[j], array[j+1])
trié = faux
si trié
retourner
```
# Tri à bulle (4/4)
## Quelle est la complexité du tri à bulles?
. . .
* Dans le meilleurs des cas:
* Le tableau est déjà trié: $\mathcal{O}(N)$ comparaisons.
* Dans le pire des cas, $N\cdot (N-1)/2\sim\mathcal{O}(N^2)$:
$$
\sum_{i=1}^{N-1}i\mbox{ comparaison et }3\sum_{i=1}^{N-1}i \mbox{ affectations
(swap)}\Rightarrow \mathcal{O}(N^2).
$$
* En moyenne, $\mathcal{O}(N^2)$ ($N^2/2$ comparaisons).
# L'algorithme à la main
## Exercice *sur papier*
* Trier par tri à bulles le tableau `[5, -2, 1, 3, 10, 15, 7, 4]`
```C
```
# Tri par insertion (1/3)
## But
* trier un tableau par ordre croissant
## Algorithme
Prendre un élément du tableau et le mettre à sa place parmi les éléments déjà
triés du tableau.
![Tri par insertion d'un tableau d'entiers](figs/tri_insertion.svg)
# Tri par insertion (2/3)
## Exercice: Proposer un algorithme (en C)
. . .
```C
void tri_insertion(int N, int tab[N]) {
for (int i = 1; i < N; i++) {
int tmp = tab[i];
int pos = i;
while (pos > 0 && tab[pos - 1] > tmp) {
tab[pos] = tab[pos - 1];
pos = pos - 1;
}
tab[pos] = tmp;
}
}
```
# Tri par insertion (3/3)
## Question: Quelle est la complexité?
. . .
* Parcours de tous les éléments ($N-1$ passages dans la boucle)
* Placer: en moyenne $i$ comparaisons et affectations à l'étape $i$
* Moyenne: $\mathcal{O}(N^2)$
. . .
* Pire des cas, liste triée à l'envers: $\mathcal{O}(N^2)$
* Meilleurs des cas, liste déjà triée: $\mathcal{O}(N)$
# L'algorithme à la main
## Exercice *sur papier*
* Trier par insertion le tableau `[5, -2, 1, 3, 10]`
```C
```
# Complexité algorithmique du radix-sort (1/2)
## Pseudo-code
```python
rien radix_sort(entier taille, entier tab[taille]):
# initialisation
entier val_min = valeur_min(taille, tab)
entier val_max = valeur_max(taille, tab)
decaler(taille, tab, val_min)
entier nb_bits = nombre_de_bits(val_max - val_min)
# algo
entier tab_tmp[taille]
pour pos de 0 à nb_bits:
alveole_0(taille, tab, tab_tmp, pos) # 0 -> taille
alveole_1(taille, tab, tab_tmp, pos) # taille -> 0
echanger(tab, tab_tmp)
# post-traitement
decaler(taille, tab, -val_min)
```
# Complexité algorithmique du radix-sort (2/2)
\footnotesize
<!-- Voici une liste de parcours utilitaires de tableau:
1. Recherche de la valeur minimum ```val_min```
2. Recherche de la valeur maximum ```val_max```
3. Décalage des valeurs dans l'intervalle ```0..val_max-val_min```
4. Décalage inverse pour revenir dans l'intervalle ```val_min..val_max```
5. Copie éventuelle du tableau temporaire dans le tableau originel
On a donc un nombre de parcours fixe (4 ou 5) qui se font en $\mathcal{O}(N)$ où $N$ est la taille du tableau.
La partie du tri à proprement parler est une boucle sur le nombre de bits *b* de ```val_min..val_max```.
A chaque passage à travers la boucle, on parcourt 2 fois le tableau: la 1ère fois pour s'occuper des éléments dont le bit courant à 0; la 2ème pour ceux dont le bit courant est à 1.
A noter que le nombre d'opérations est de l'ordre de *b* pour la lecture d'un bit et constant pour la fonction ```swap_ptr()```.
Ainsi, la complexité du tri par base est $\mathcal{O}(b\cdot N)$. -->
## Pseudo-code
```python
rien radix_sort(entier taille, entier tab[taille]):
# initialisation
entier val_min = valeur_min(taille, tab) # O(taille)
entier val_max = valeur_max(taille, tab) # O(taille)
decaler(taille, tab, val_min) # O(taille)
entier nb_bits =
nombre_de_bits(val_max - val_min) # O(nb_bits)
# algo
entier tab_tmp[taille]
pour pos de 0 à nb_bits: # O(nb_bits)
alveole_0(taille, tab, tab_tmp, pos) # O(taille)
alveole_1(taille, tab, tab_tmp, pos) # O(taille)
echanger(tab, tab_tmp) # O(1)
# post-traitement
decaler(taille, tab, -val_min) # O(N)
```
. . .
* Au final: $\mathcal{O}(N\cdot (b+4))$.
# Complexité algorithmique du merge-sort (1/2)
## Pseudo-code
```python
rien tri_fusion(entier taille, entier tab[taille])
entier tab_tmp[taille];
entier nb_etapes = log_2(taille) + 1;
pour etape de 0 a nb_etapes - 1:
entier gauche = 0;
entier t_tranche = 2**etape;
tant que (gauche < taille):
fusion(
tab[gauche..gauche+t_tranche-1],
tab[gauche+t_tranche..gauche+2*t_tranche-1],
tab_tmp[gauche..gauche+2*t_tranche-1]);
gauche += 2*t_tranche;
echanger(tab, tab_tmp);
```
# Complexité algorithmique du merge-sort (2/2)
## Pseudo-code
```python
rien tri_fusion(entier taille, entier tab[taille])
entier tab_tmp[taille]
entier nb_etapes = log_2(taille) + 1
pour etape de 0 a nb_etapes - 1: # O(log2(taille))
entier gauche = 0;
entier t_tranche = 2**etape
tant que (gauche < taille): # O(taille)
fusion(
tab[gauche..gauche+t_tranche-1],
tab[gauche+t_tranche..gauche+2*t_tranche-1],
tab_tmp[gauche..gauche+2*t_tranche-1])
gauche += 2*t_tranche
echanger(tab, tab_tmp)
```
. . .
* Au final: $\mathcal{O}(N\log_2(N))$.
# Complexité algorithmique du quick-sort (1/2)
## Pseudocode: quicksort
```python
rien quicksort(entier tableau[], entier ind_min, entier ind_max)
si (longueur(tab) > 1)
ind_pivot = partition(tableau, ind_min, ind_max)
si (longueur(tableau[ind_min:ind_pivot-1]) != 0)
quicksort(tableau, ind_min, pivot_ind - 1)
si (longueur(tableau[ind_pivot+1:ind_max-1]) != 0)
quicksort(tableau, ind_pivot + 1, ind_max)
```
# Complexité algorithmique du quick-sort (2/2)
## Quelle est la complexité du tri rapide?
. . .
* Pire des cas: $\mathcal{O}(N^2)$
* Quand le pivot sépare toujours le tableau de façon déséquilibrée ($N-1$
éléments d'un côté $1$ de l'autre).
* $N$ boucles et $N$ comparaisons $\Rightarrow N^2$.
* Meilleur des cas (toujours le meilleur pivot): $\mathcal{O}(N\cdot \log_2(N))$.
* Chaque fois le tableau est séparé en $2$ parties égales.
* On a $\log_2(N)$ partitions, et $N$ boucles $\Rightarrow N\cdot
\log_2(N)$.
* En moyenne: $\mathcal{O}(N\cdot \log_2(N))$.
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/N)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/N)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
nbr_solutions(board, column, count)
// pour chaque ligne
// si la case libre
// si column < n - 1
// copier board dans un "new" board,
// y poser une reine
// et mettre à jour ce "new" board
// nbr_solutions(new_board, column+1, count)
// sinon
// on a posé la n-ème et on a gagné
// count += 1
```
# Le code du problème des 8 reines (3/N)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
placer_devant(board, ligne, colonne)
// board est occupé à ligne/colonne
// toutes les cases des colonnes
// suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/N)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/N)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void prises_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment