@@ -110,10 +110,12 @@ Ensuite, on itère tant que l'`exposant` est supérieur à 0. À chaque itérati
#### Chiffrement/déchiffrement RSA
RSA est un chiffrement asymétrique, il existe donc toujours deux clés, la première la clé publique (chiffrement) et la deuxième la clé privée (déchiffrement).
RSA est un chiffrement asymétrique, il existe donc toujours deux clés, la première clé est la clé dites publique (utilisé pour le chiffrement) et la deuxième la clé est la clé dites privée (utilisé pour déchiffrement).

La clé publique se compose de deux variables, la variable _e_ et _n_ ce sont une partie des données que nous avons interceptées en plus du message chiffrée. La clé privée se compose elle aussi de deux variables, la variable d (*ce que nous cherchons à découvrir*) et n.
### Méthode de résolution
Nous avons commencé par calculer les valeurs de `p` et `q` afin de calculer l'exposant `d` à l'aide de l'inverse modulaire de `e` et de l'`indicatrice d'Euler`. Ensuite on va parcourir pour chacun des blocs, nommé `x`, du message on calcule la puissance modulaire de $x^d\, mod\, n$ que l'on convertit en bytes afin de le décoder en UTF-8 pour l'ajouter à la version décodée. Une fois tous les `x` parcourus, on affiche la version du message décodée.