Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TP-Clustering
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
IA et Machine Learning
TP-Clustering
Commits
dc179203
Commit
dc179203
authored
1 year ago
by
thibault.capt
Browse files
Options
Downloads
Patches
Plain Diff
finish tp3
parent
42f78f72
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
decisiontree-iris.py
+39
-0
39 additions, 0 deletions
decisiontree-iris.py
decisiontree-student.py
+39
-0
39 additions, 0 deletions
decisiontree-student.py
with
78 additions
and
0 deletions
decisiontree-iris.py
0 → 100644
+
39
−
0
View file @
dc179203
# Import des bibliothèques nécessaires
import
pandas
as
pd
from
sklearn.model_selection
import
train_test_split
from
sklearn.tree
import
DecisionTreeClassifier
from
sklearn.metrics
import
accuracy_score
from
sklearn.tree
import
plot_tree
import
matplotlib.pyplot
as
plt
# Chargement des données depuis un fichier CSV
file_path_iris
=
'
./Data/iris.csv
'
df_iris
=
pd
.
read_csv
(
file_path_iris
,
names
=
[
'
sepal_length
'
,
'
sepal_width
'
,
'
petal_length
'
,
'
petal_width
'
,
'
class
'
])
# Séparation des features et de la cible
X_iris
=
df_iris
.
drop
(
'
class
'
,
axis
=
1
)
y_iris
=
df_iris
[
'
class
'
]
# Division des données en ensembles d'entraînement et de test
X_train_iris
,
X_test_iris
,
y_train_iris
,
y_test_iris
=
train_test_split
(
X_iris
,
y_iris
,
test_size
=
0.2
,
random_state
=
42
)
# Construction de l'arbre de décision avec des paramètres spécifiques
# Vous pouvez jouer avec les valeurs de min_samples_leaf et max_depth
clf_iris
=
DecisionTreeClassifier
(
min_samples_leaf
=
5
,
max_depth
=
3
)
clf_iris
.
fit
(
X_train_iris
,
y_train_iris
)
# Prédictions sur les ensembles d'entraînement et de test
y_train_pred_iris
=
clf_iris
.
predict
(
X_train_iris
)
y_test_pred_iris
=
clf_iris
.
predict
(
X_test_iris
)
# Mesure du taux de classification correcte
train_accuracy_iris
=
accuracy_score
(
y_train_iris
,
y_train_pred_iris
)
test_accuracy_iris
=
accuracy_score
(
y_test_iris
,
y_test_pred_iris
)
print
(
f
'
Taux de classification correcte (Entraînement):
{
train_accuracy_iris
:
.
2
f
}
'
)
print
(
f
'
Taux de classification correcte (Test):
{
test_accuracy_iris
:
.
2
f
}
'
)
# Visualisation de l'arbre de décision
plt
.
figure
(
figsize
=
(
12
,
8
))
plot_tree
(
clf_iris
,
filled
=
True
,
feature_names
=
X_iris
.
columns
,
class_names
=
df_iris
[
'
class
'
].
unique
(),
rounded
=
True
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
decisiontree-student.py
0 → 100644
+
39
−
0
View file @
dc179203
# Import des bibliothèques nécessaires
import
pandas
as
pd
from
sklearn.model_selection
import
train_test_split
from
sklearn.tree
import
DecisionTreeClassifier
from
sklearn.metrics
import
accuracy_score
from
sklearn.tree
import
plot_tree
import
matplotlib.pyplot
as
plt
# Chargement des données depuis un fichier CSV
file_path
=
'
./Data/student-data-train.csv
'
df
=
pd
.
read_csv
(
file_path
)
# Séparation des features et de la cible
X
=
df
.
drop
(
'
success
'
,
axis
=
1
)
y
=
df
[
'
success
'
]
# Division des données en ensembles d'entraînement et de test
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.2
,
random_state
=
42
)
# Vous pouvez ajuster la taille du test si nécessaire
# Construction de l'arbre de décision avec des paramètres spécifiques
# Vous pouvez jouer avec les valeurs de min_samples_leaf et max_depth
clf
=
DecisionTreeClassifier
(
min_samples_leaf
=
5
,
max_depth
=
3
)
clf
.
fit
(
X_train
,
y_train
)
# Prédictions sur les ensembles d'entraînement et de test
y_train_pred
=
clf
.
predict
(
X_train
)
y_test_pred
=
clf
.
predict
(
X_test
)
# Mesure du taux de classification correcte
train_accuracy
=
accuracy_score
(
y_train
,
y_train_pred
)
test_accuracy
=
accuracy_score
(
y_test
,
y_test_pred
)
print
(
f
'
Taux de classification correcte (Entraînement):
{
train_accuracy
:
.
2
f
}
'
)
print
(
f
'
Taux de classification correcte (Test):
{
test_accuracy
:
.
2
f
}
'
)
# Visualisation de l'arbre de décision
plt
.
figure
(
figsize
=
(
12
,
8
))
plot_tree
(
clf
,
filled
=
True
,
feature_names
=
X
.
columns
,
class_names
=
[
'
0
'
,
'
1
'
],
rounded
=
True
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment