Skip to content
Snippets Groups Projects
Commit 1cbfe496 authored by IliasN's avatar IliasN
Browse files

Correction correction exercice 3.2 fourrier

parent 9b67b190
No related branches found
No related tags found
No related merge requests found
Pipeline #14147 failed
...@@ -216,7 +216,7 @@ Corrigé +.# ...@@ -216,7 +216,7 @@ Corrigé +.#
En utilisant la formule En utilisant la formule
$$ $$
f[n]=\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N}, f[n]=\frac{1}{N}\sum_{k=0}^{N-1}\hat f[n]e^{2\pi ink/N},
$$ $$
on peut calculer la TFD de $\hat f=\{2, -1-i, 0, -1+i\}$ avec $N=4$. on peut calculer la TFD de $\hat f=\{2, -1-i, 0, -1+i\}$ avec $N=4$.
On obtient donc On obtient donc
...@@ -225,7 +225,7 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0. ...@@ -225,7 +225,7 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0.
$$ $$
Et ainsi de suite on obtient Et ainsi de suite on obtient
\begin{align} \begin{align}
f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\ f[1]&=\frac{1}{4}(\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2})=\frac{1}{4}(2+i(-1-i)+(-i)(-1+i))=1,\\
\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\ \hat f[2]&=\frac{1}{4}(f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i})=\frac{1}{4}(2+(-1)(-1-i)-1(-1+i))=1,\\
\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0. \hat f[3]&=\frac{1}{4}(f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2})=\frac{1}{4}(2-i(-1-i)+i(-1+i))=0.
\end{align} \end{align}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment