Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tp_prob-stats
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
iliya.saroukha
tp_prob-stats
Commits
55d2f18a
Commit
55d2f18a
authored
2 years ago
by
adrian.spycher
Browse files
Options
Downloads
Patches
Plain Diff
add graph
parent
8970923e
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
graph.py
+95
-0
95 additions, 0 deletions
graph.py
simulator_v2.py
+16
-51
16 additions, 51 deletions
simulator_v2.py
with
111 additions
and
51 deletions
graph.py
0 → 100644
+
95
−
0
View file @
55d2f18a
from
simulator_v2
import
*
import
numpy
as
np
from
scipy.stats
import
norm
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
# --- CONST ---
arrival_rate
=
10
# average arrival rate of 2 visitors per time unit
service_rate
=
1
# average service rate of 1 visitor per time unit
num_visitors
=
100
# total number of visitors to simulate
num_queues
=
3
# total number of queues
generation_number
=
10000
# number of generation
queue_policy
=
[
'
random
'
,
'
round-robin
'
,
'
shortest-queue
'
]
# queue selection policy
# --- PROCESS ---
lsit_averages_by_policy
=
{}
for
p
in
queue_policy
:
lsit_averages_by_policy
[
p
]
=
[]
for
i
in
range
(
generation_number
):
simulator
=
PoissonQueueSimulator
(
arrival_rate
,
service_rate
,
num_visitors
,
num_queues
,
p
)
visitors
,
max_queue_lengths
,
average_waiting_times
=
simulator
.
simulate
()
average_queue_waiting_times
=
0
for
avg
in
average_waiting_times
:
average_queue_waiting_times
+=
avg
average_queue_waiting_times
/=
len
(
average_waiting_times
)
lsit_averages_by_policy
[
p
].
append
(
average_queue_waiting_times
)
# --- CMD ---
# print(f"Visitor ID\tArrival Time\t\tStart Time\t\tEnd Time\t\tProcess Time\t\tWaiting Time\t\tQueue ID")
# for visitor in visitors:
# print(f"{visitor['visitor_id']}\t\t{visitor['arrival_time']}\t"
# f"{visitor['start_time']}\t{visitor['end_time']}\t"
# f"{visitor['process_time']}\t{visitor['total_time']}\t"
# f"{visitor['queue_id']}")
# print()
# for queue_id, max_length in enumerate(max_queue_lengths):
# print(f"Queue ID: {queue_id}, Max Queue Length: {max_length}, Average Waiting Time: {average_waiting_times[queue_id]}")
# print("\n")
# --- PLOT ---
# fig, ax = plt.subplots()
# g_id = range(len(list_averages))
# ax.hist(g_id, list_averages)
# ax.set_ylabel('Average waiting time')
# ax.set_title(f"Waiting time per generation on {generation_number}")
# ax.legend(title='average waiting time')
# plt.show()
fig
,
ax
=
plt
.
subplots
(
3
)
num_bins
=
100
# mu, std = norm.fit(list_averages)
i
=
0
for
p
in
queue_policy
:
counts
,
bins
=
np
.
histogram
(
lsit_averages_by_policy
[
p
],
np
.
linspace
(
min
(
lsit_averages_by_policy
[
p
]),
max
(
lsit_averages_by_policy
[
p
]),
num_bins
))
ax
[
i
].
hist
(
lsit_averages_by_policy
[
p
],
bins
[:
-
1
],
alpha
=
0.75
,
weights
=
(
1
/
sum
(
counts
))
*
np
.
ones_like
(
lsit_averages_by_policy
[
p
]),
label
=
"
Height
'
s distribution
"
)
ax
[
i
].
set
(
xlabel
=
p
,
ylabel
=
'
percentage
'
)
i
+=
1
plt
.
xlabel
(
"
Averages waiting time
"
)
plt
.
ylabel
(
"
Percentage
"
)
# xmin, xmax = plt.xlim()
# x = np.linspace(xmin, xmax, 100)
# p = norm.pdf(x, mu, std)
# plt.plot(x, p, 'k', linewidth=2, color='r')
plt
.
show
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
simulator_v2.py
+
16
−
51
View file @
55d2f18a
...
@@ -11,14 +11,11 @@ class PoissonQueueSimulator:
...
@@ -11,14 +11,11 @@ class PoissonQueueSimulator:
self
.
num_queues
=
num_queues
self
.
num_queues
=
num_queues
self
.
queue_policy
=
queue_policy
self
.
queue_policy
=
queue_policy
self
.
_round_robin_count
=
0
self
.
_round_robin_count
=
0
self
.
visitor_queue
=
[[]
for
_
in
range
(
self
.
visitor_queue
=
[[]
for
_
in
range
(
self
.
num_queues
)]
# (end time, total time)
self
.
num_queues
)]
# (end time, total time)
def
simulate
(
self
):
def
simulate
(
self
):
arrival_times
=
np
.
random
.
exponential
(
arrival_times
=
np
.
random
.
exponential
(
scale
=
1
/
self
.
arrival_rate
,
size
=
self
.
num_visitors
)
scale
=
1
/
self
.
arrival_rate
,
size
=
self
.
num_visitors
)
process_times
=
np
.
random
.
exponential
(
scale
=
1
/
self
.
service_rate
,
size
=
self
.
num_visitors
)
process_times
=
np
.
random
.
exponential
(
scale
=
1
/
self
.
service_rate
,
size
=
self
.
num_visitors
)
max_queue_lengths
=
[
0
]
*
self
.
num_queues
max_queue_lengths
=
[
0
]
*
self
.
num_queues
total_waiting_times
=
[
0
]
*
self
.
num_queues
total_waiting_times
=
[
0
]
*
self
.
num_queues
num_visitors_in_queue
=
[
0
]
*
self
.
num_queues
num_visitors_in_queue
=
[
0
]
*
self
.
num_queues
...
@@ -90,52 +87,20 @@ class PoissonQueueSimulator:
...
@@ -90,52 +87,20 @@ class PoissonQueueSimulator:
minQueues
.
append
(
queue_id
)
minQueues
.
append
(
queue_id
)
return
minQueues
[
np
.
random
.
randint
(
0
,
len
(
minQueues
))]
return
minQueues
[
np
.
random
.
randint
(
0
,
len
(
minQueues
))]
def
_run
(
arrival_rate
,
service_rate
,
num_visitors
,
num_queues
,
queue_policy
):
def
_run
():
simulator
=
PoissonQueueSimulator
(
arrival_rate
,
service_rate
,
num_visitors
,
num_queues
,
queue_policy
)
simulator
=
PoissonQueueSimulator
(
arrival_rate
,
service_rate
,
num_visitors
,
num_queues
,
queue_policy
)
visitors
,
max_queue_lengths
,
average_waiting_times
=
simulator
.
simulate
()
visitors
,
max_queue_lengths
,
average_waiting_times
=
simulator
.
simulate
()
################ WRITING TO CSV ##################
print
(
f
"
Visitor ID
\t
Arrival Time
\t\t
Start Time
\t\t
End Time
\t\t
Process Time
\t\t
Waiting Time
\t\t
Queue ID
"
)
with
open
(
f
"
{
policy
}
.csv
"
,
"
w
"
,
newline
=
""
)
as
csvfile
:
fieldnames
=
[
"
Visitor ID
"
,
"
Arrival Time
"
,
"
Start Time
"
,
"
End Time
"
,
"
Process Time
"
,
"
Total Time
"
,
"
Queue ID
"
]
writer
=
csv
.
DictWriter
(
csvfile
,
fieldnames
=
fieldnames
)
writer
.
writeheader
()
for
visitor
in
visitors
:
writer
.
writerow
(
{
"
Visitor ID
"
:
visitor
[
"
visitor_id
"
],
"
Arrival Time
"
:
visitor
[
"
arrival_time
"
],
"
Start Time
"
:
visitor
[
"
start_time
"
],
"
End Time
"
:
visitor
[
"
end_time
"
],
"
Process Time
"
:
visitor
[
"
process_time
"
],
"
Total Time
"
:
visitor
[
"
total_time
"
],
"
Queue ID
"
:
visitor
[
"
queue_id
"
]})
################ WRITING TO CSV ##################
print
(
"
Visitors:
"
)
print
(
f
"
Visitor ID;Arrival Time;Start Time;End Time;Process Time;Total Time;Queue ID
"
)
for
visitor
in
visitors
:
for
visitor
in
visitors
:
print
(
f
"
{
visitor
[
'
visitor_id
'
]
}
;
{
visitor
[
'
arrival_time
'
]
}
;
"
print
(
f
"
{
visitor
[
'
visitor_id
'
]
}
\t\t
{
visitor
[
'
arrival_time
'
]
}
\t
"
f
"
{
visitor
[
'
start_time
'
]
}
;
{
visitor
[
'
end_time
'
]
}
;
"
f
"
{
visitor
[
'
start_time
'
]
}
\t
{
visitor
[
'
end_time
'
]
}
\t
"
f
"
{
visitor
[
'
process_time
'
]
}
;
{
visitor
[
'
total_time
'
]
}
;
"
f
"
{
visitor
[
'
process_time
'
]
}
\t
{
visitor
[
'
total_time
'
]
}
\t
"
f
"
{
visitor
[
'
queue_id
'
]
}
"
)
f
"
{
visitor
[
'
queue_id
'
]
}
"
)
print
(
"
\n
Queue Stats:
"
)
for
queue_id
,
max_length
in
enumerate
(
max_queue_lengths
):
print
(
f
"
Queue ID:
{
queue_id
}
, Max Queue Length:
{
max_length
}
, Average Waiting Time:
{
average_waiting_times
[
queue_id
]
}
"
)
print
()
# Example usage
for
queue_id
,
max_length
in
enumerate
(
max_queue_lengths
):
seed
=
int
(
time
.
time
())
print
(
f
"
Queue ID:
{
queue_id
}
, Max Queue Length:
{
max_length
}
, Average Waiting Time:
{
average_waiting_times
[
queue_id
]
}
"
)
np
.
random
.
seed
(
seed
)
arrival_rate
=
10
# average arrival rate of n visitors per time unit
service_rate
=
1
# average service rate of n visitors per time unit
num_visitors
=
10
# total number of visitors to simulate
num_queues
=
3
# total number of queues
# queue selection policy: random, round-robin, shortest-queue
# queue_policy = 'shortest-queue'
policies
=
[
"
random
"
,
"
round-robin
"
,
"
shortest-queue
"
]
for
policy
in
policies
:
queue_policy
=
policy
# for i in range(100):
print
(
"
\n
"
)
_run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment