Skip to content
Snippets Groups Projects
Verified Commit 22e21d08 authored by iliya.saroukha's avatar iliya.saroukha :first_quarter_moon:
Browse files

fix: return type hints and added MAX_ITER global variable

parent 93dfb9b1
Branches
Tags
No related merge requests found
......@@ -5,6 +5,8 @@ from typing import Callable
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
MAX_ITER = 1e5
def symb_grad_2d(f: Function) -> (Function, Function):
return f.diff(x), f.diff(y)
......@@ -21,7 +23,7 @@ def callable_func(f: Function) -> Callable[[float, float], float]:
def base_gd(f: Function, init_pt: list[float], lr: float) -> \
float:
pd.DataFrame:
df = pd.DataFrame(columns=['x', 'y', 'Cost', 'NormGrad'])
partialx, partialy = callable_grad_2d(f)
......@@ -32,16 +34,16 @@ def base_gd(f: Function, init_pt: list[float], lr: float) -> \
f_call = callable_func(f)
while iter < 1e4:
while iter < MAX_ITER:
if np.linalg.norm(grad) < 1e-6:
break
grad = np.array([partialx(x, y), partialy(x, y)])
df.loc[iter] = [x, y, f_call(x, y), np.linalg.norm(grad)]
step = -lr * grad
step = lr * grad
x += step[0]
y += step[1]
x -= step[0]
y -= step[1]
iter += 1
......@@ -49,7 +51,7 @@ def base_gd(f: Function, init_pt: list[float], lr: float) -> \
def momentum_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
-> float:
-> pd.DataFrame:
df = pd.DataFrame(columns=['x', 'y', 'Cost', 'NormGrad'])
partialx, partialy = callable_grad_2d(f)
......@@ -62,7 +64,7 @@ def momentum_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
step = np.array([0, 0])
while iter < 1e4:
while iter < MAX_ITER:
if np.linalg.norm(grad) < 1e-6:
break
......@@ -80,7 +82,7 @@ def momentum_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
def nesterov_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
-> float:
-> pd.DataFrame:
df = pd.DataFrame(columns=['x', 'y', 'Cost', 'NormGrad'])
partialx, partialy = callable_grad_2d(f)
......@@ -93,7 +95,7 @@ def nesterov_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
step = np.array([0, 0])
while iter < 1e4:
while iter < MAX_ITER:
grad = np.array([partialx(x, y), partialy(x, y)])
if np.linalg.norm(grad) < 1e-6:
break
......@@ -113,7 +115,7 @@ def nesterov_gd(f: Function, init_pt: list[float], lr: float, momentum: float)\
def adam_gd(f: Function, init_pt: list[float], lr: float)\
-> float:
-> pd.DataFrame:
df = pd.DataFrame(columns=['x', 'y', 'Cost', 'NormGrad'])
partialx, partialy = callable_grad_2d(f)
......@@ -130,8 +132,7 @@ def adam_gd(f: Function, init_pt: list[float], lr: float)\
iter = 0
grad = np.array([partialx(x, y), partialy(x, y)])
while iter < 1e4:
iter += 1
while iter < MAX_ITER:
grad = np.array([partialx(x, y), partialy(x, y)])
if np.linalg.norm(grad) < 1e-6:
break
......@@ -163,12 +164,12 @@ def adam_gd(f: Function, init_pt: list[float], lr: float)\
if __name__ == "__main__":
x, y = symbols('x y')
# f: Function = x**2 + 5 * y**2
f: Function = x**2 + 7 * y**2
# f: Function = 1 - exp(-10 * x**2 - y**2)
# f: Function = x**2 * y - 2 * x * y**3 + 3 * x * y + 4
# Rosenbrock(x, y)
# f: Function = (1 - x)**2 + 100 * (y - x**2)**2
# f: Function = (1 - x)**2 + 1 * (y - x**2)**2
# Beale(x, y)
# f: Function = (1.5 - x + x * y)**2 + (2.25 - x + x *
......@@ -178,17 +179,15 @@ if __name__ == "__main__":
# f: Function = (x + 2 * y - 7)**2 + (2 * x + y - 5)**2
# Ackley(x, y)
f: Function = -20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) - \
exp(0.5 * (cos(2 * pi * x) + cos(2 * pi * y))) + exp(1) + 20
# f: Function = -20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) - \
# exp(0.5 * (cos(2 * pi * x) + cos(2 * pi * y))) + exp(1) + 20
f_call = callable_func(f)
LR = 1e-2
MOMENTUM = 0.9
plot_range = (10, 10)
# init_pt = [1, 1]
plot_range = (7, 7)
init_pt = np.array([np.random.randint(-plot_range[0], plot_range[0] + 1),
np.random.randint(-plot_range[1], plot_range[1] + 1)])
......@@ -212,7 +211,7 @@ if __name__ == "__main__":
fig = plt.figure(1)
ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, cmap='jet', rstride=1,
cstride=1, norm=LogNorm(), alpha=0.2)
cstride=1, norm=LogNorm(), alpha=0.4)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment