Skip to content
Snippets Groups Projects
Commit 767ab885 authored by abir.chebbi's avatar abir.chebbi
Browse files

Update .gitignore to include config.ini and Readme

parent 8cdea5bc
No related branches found
No related tags found
No related merge requests found
config.ini
[aws]
aws_access_key_id =
aws_secret_access_key =
region =
aws_access_key_id = AKIAVEKYIBTQKSG2R342
aws_secret_access_key = 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
region = us-east-1
[opensearch]
endpoint =
......
......@@ -83,7 +83,7 @@ Use the provided create_instance.py script to deploy your EC2 instance with the
In the `ec2.create_instance` we have the following parameters:
- ImageId: `ami-05747e7a13dac9d14`, this is a custom Amazon Machine Image (AMI) that contains all the configurations and dependencies required for the chatbot application.
- ImageId: `ami-08919ae65ab65be94`, this is a custom Amazon Machine Image (AMI) that contains all the configurations and dependencies required for the chatbot application.
- UserData: is used to run script after the instance starts. The script will put the credentials in the instance so that the instance can aceess other services in AWS, the endpoint of the Vector DB, and the index name. Then the script will run the application.
This is the script:
......@@ -96,14 +96,19 @@ In the `ec2.create_instance` we have the following parameters:
source /home/ubuntu/chatbotlab/bin/activate
## Run the apllication
cd /home/ubuntu/chatbot-lab/Part2
streamlit run main.py
streamlit run chatbot.py
"""
````
Run the following command to create your instance:
`python3 create_instance.py`
`python3 create_instance.py --ami_id `ami-08919ae65ab65be94` --key_pair_name [KeyPairName] --security_group_id [SecurityGroupID]`
Where:
- **[KeyPairName]**: The name of the key_pair created earlier.
- **[SecurityGroupID]**: The id of the security group created earlier.
## Step 3: Accessing the app:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment