Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Pokedex
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
michael.divia
Pokedex
Commits
cc235fa3
Commit
cc235fa3
authored
2 months ago
by
michael.divia
Browse files
Options
Downloads
Patches
Plain Diff
Ow Shit
parent
b165ab46
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
python/pokedex_Xception.py
+16
-10
16 additions, 10 deletions
python/pokedex_Xception.py
python/pokedex_test.py
+7
-1
7 additions, 1 deletion
python/pokedex_test.py
with
23 additions
and
11 deletions
python/pokedex_Xception.py
+
16
−
10
View file @
cc235fa3
...
@@ -13,9 +13,8 @@ strategy = tf.distribute.MirroredStrategy()
...
@@ -13,9 +13,8 @@ strategy = tf.distribute.MirroredStrategy()
print
(
"
Number of GPUs:
"
,
strategy
.
num_replicas_in_sync
)
print
(
"
Number of GPUs:
"
,
strategy
.
num_replicas_in_sync
)
# --- Paths ---
# --- Paths ---
parser
=
argparse
.
ArgumentParser
(
description
=
"
WHERE ?!
"
)
parser
=
argparse
.
ArgumentParser
(
description
=
"
Train Xception Pokémon Classifier
"
)
parser
.
add_argument
(
"
--hpc
"
,
choices
=
[
"
yes
"
,
"
no
"
],
default
=
"
no
"
,
parser
.
add_argument
(
"
--hpc
"
,
choices
=
[
"
yes
"
,
"
no
"
],
default
=
"
no
"
,
help
=
"
Use HPC paths if
'
yes
'
, otherwise local paths.
"
)
help
=
"
Use HPC paths if
'
yes
'
, otherwise local paths.
"
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
if
args
.
hpc
==
"
yes
"
:
if
args
.
hpc
==
"
yes
"
:
...
@@ -30,14 +29,12 @@ os.makedirs(model_output_path, exist_ok=True)
...
@@ -30,14 +29,12 @@ os.makedirs(model_output_path, exist_ok=True)
# --- Custom Xception-like model ---
# --- Custom Xception-like model ---
def
simple_xception
(
input_shape
,
num_classes
):
def
simple_xception
(
input_shape
,
num_classes
):
inputs
=
Input
(
shape
=
input_shape
)
inputs
=
Input
(
shape
=
input_shape
)
x
=
layers
.
Rescaling
(
1.0
/
255
)(
inputs
)
x
=
layers
.
Rescaling
(
1.0
/
255
)(
inputs
)
x
=
layers
.
Conv2D
(
128
,
3
,
strides
=
2
,
padding
=
"
same
"
)(
x
)
x
=
layers
.
Conv2D
(
128
,
3
,
strides
=
2
,
padding
=
"
same
"
)(
x
)
x
=
layers
.
BatchNormalization
()(
x
)
x
=
layers
.
BatchNormalization
()(
x
)
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
previous_block_activation
=
x
previous_block_activation
=
x
for
size
in
[
256
,
512
,
728
]:
for
size
in
[
256
,
512
,
728
]:
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
x
=
layers
.
SeparableConv2D
(
size
,
3
,
padding
=
"
same
"
)(
x
)
x
=
layers
.
SeparableConv2D
(
size
,
3
,
padding
=
"
same
"
)(
x
)
...
@@ -55,11 +52,11 @@ def simple_xception(input_shape, num_classes):
...
@@ -55,11 +52,11 @@ def simple_xception(input_shape, num_classes):
x
=
layers
.
SeparableConv2D
(
1024
,
3
,
padding
=
"
same
"
)(
x
)
x
=
layers
.
SeparableConv2D
(
1024
,
3
,
padding
=
"
same
"
)(
x
)
x
=
layers
.
BatchNormalization
()(
x
)
x
=
layers
.
BatchNormalization
()(
x
)
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
x
=
layers
.
Activation
(
"
relu
"
)(
x
)
x
=
layers
.
GlobalAveragePooling2D
()(
x
)
x
=
layers
.
GlobalAveragePooling2D
()(
x
)
x
=
layers
.
Dropout
(
0.25
)(
x
)
x
=
layers
.
Dropout
(
0.25
)(
x
)
outputs
=
layers
.
Dense
(
num_classes
,
activation
=
'
softmax
'
)(
x
)
# Output logits
outputs
=
layers
.
Dense
(
num_classes
,
activation
=
None
)(
x
)
return
models
.
Model
(
inputs
,
outputs
)
return
models
.
Model
(
inputs
,
outputs
)
# --- Image settings ---
# --- Image settings ---
...
@@ -83,7 +80,6 @@ raw_train_ds = image_dataset_from_directory(
...
@@ -83,7 +80,6 @@ raw_train_ds = image_dataset_from_directory(
subset
=
"
training
"
,
subset
=
"
training
"
,
seed
=
123
,
seed
=
123
,
)
)
raw_val_ds
=
image_dataset_from_directory
(
raw_val_ds
=
image_dataset_from_directory
(
dataset_path
,
dataset_path
,
image_size
=
img_size
,
image_size
=
img_size
,
...
@@ -110,6 +106,12 @@ class_weights = compute_class_weight(
...
@@ -110,6 +106,12 @@ class_weights = compute_class_weight(
class_weight_dict
=
dict
(
enumerate
(
class_weights
))
class_weight_dict
=
dict
(
enumerate
(
class_weights
))
print
(
"
Class weights ready.
"
)
print
(
"
Class weights ready.
"
)
# --- Debug print for class balance ---
print
(
"
Unique labels in training set:
"
,
np
.
unique
(
all_labels
))
print
(
"
Class Names (index -> name):
"
)
for
i
,
name
in
enumerate
(
class_names
):
print
(
f
"
{
i
}
:
{
name
}
"
)
# --- Performance improvements ---
# --- Performance improvements ---
AUTOTUNE
=
tf
.
data
.
AUTOTUNE
AUTOTUNE
=
tf
.
data
.
AUTOTUNE
train_ds
=
raw_train_ds
.
map
(
lambda
x
,
y
:
(
data_augmentation
(
x
),
y
)).
prefetch
(
AUTOTUNE
)
train_ds
=
raw_train_ds
.
map
(
lambda
x
,
y
:
(
data_augmentation
(
x
),
y
)).
prefetch
(
AUTOTUNE
)
...
@@ -118,7 +120,11 @@ val_ds = raw_val_ds.prefetch(buffer_size=AUTOTUNE)
...
@@ -118,7 +120,11 @@ val_ds = raw_val_ds.prefetch(buffer_size=AUTOTUNE)
# --- Build and compile model ---
# --- Build and compile model ---
with
strategy
.
scope
():
with
strategy
.
scope
():
model
=
simple_xception
((
*
img_size
,
3
),
num_classes
=
len
(
class_names
))
model
=
simple_xception
((
*
img_size
,
3
),
num_classes
=
len
(
class_names
))
model
.
compile
(
optimizer
=
'
adam
'
,
loss
=
'
sparse_categorical_crossentropy
'
,
metrics
=
[
'
accuracy
'
])
model
.
compile
(
optimizer
=
'
adam
'
,
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
),
metrics
=
[
'
accuracy
'
]
)
# --- Callbacks ---
# --- Callbacks ---
callbacks
=
[
callbacks
=
[
...
@@ -142,4 +148,4 @@ print(f"Model saved to {model_h5_path}")
...
@@ -142,4 +148,4 @@ print(f"Model saved to {model_h5_path}")
# --- Save as TensorFlow SavedModel ---
# --- Save as TensorFlow SavedModel ---
saved_model_path
=
os
.
path
.
join
(
model_output_path
,
"
saved_model
"
)
saved_model_path
=
os
.
path
.
join
(
model_output_path
,
"
saved_model
"
)
tf
.
saved_model
.
save
(
model
,
saved_model_path
)
tf
.
saved_model
.
save
(
model
,
saved_model_path
)
print
(
f
"
SavedModel exported to
{
saved_model_path
}
"
)
print
(
f
"
SavedModel exported to
{
saved_model_path
}
"
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
python/pokedex_test.py
+
7
−
1
View file @
cc235fa3
...
@@ -54,10 +54,16 @@ for i in range(4):
...
@@ -54,10 +54,16 @@ for i in range(4):
# --- Predict ---
# --- Predict ---
predictions
=
model
.
predict
(
img_array
,
verbose
=
0
)
predictions
=
model
.
predict
(
img_array
,
verbose
=
0
)
probabilities
=
tf
.
nn
.
softmax
(
predictions
[
0
]
)
probabilities
=
predictions
[
0
]
predicted_class_index
=
np
.
argmax
(
probabilities
)
predicted_class_index
=
np
.
argmax
(
probabilities
)
predicted_label
=
class_names
[
predicted_class_index
]
predicted_label
=
class_names
[
predicted_class_index
]
confidence
=
100
*
probabilities
[
predicted_class_index
]
confidence
=
100
*
probabilities
[
predicted_class_index
]
top_5_indices
=
np
.
argsort
(
probabilities
)[
-
5
:][::
-
1
]
print
(
"
\n
Top 5 predictions:
"
)
for
idx
in
top_5_indices
:
print
(
f
"
{
class_names
[
idx
]
:
<
20
}
:
{
probabilities
[
idx
]
:
.
4
f
}
"
)
# Compare with actual
# Compare with actual
is_correct
=
predicted_label
==
random_class
is_correct
=
predicted_label
==
random_class
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment