Skip to content
Snippets Groups Projects
Verified Commit 9b67b190 authored by orestis.malaspin's avatar orestis.malaspin
Browse files
parents 7ff83a67 f45b96c3
Branches
No related tags found
No related merge requests found
...@@ -52,13 +52,13 @@ Corrigé +.# ...@@ -52,13 +52,13 @@ Corrigé +.#
On calcule les coefficients de la série de Fourier à l'aide des formules On calcule les coefficients de la série de Fourier à l'aide des formules
\begin{align} \begin{align}
b_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\ a_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x, b_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x,
\end{align} \end{align}
où $T=2\pi$. On peut donc écrire où $T=2\pi$. On peut donc écrire
\begin{align} \begin{align}
b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\ a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x. b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x.
\end{align} \end{align}
Comme $f(x)$ est paire, on a que les coefficients $a_j$ sont tous nuls. Comme $f(x)$ est paire, on a que les coefficients $a_j$ sont tous nuls.
Il nous reste à calculer Il nous reste à calculer
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment