Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
orestis.malaspin
math_tech_info
Commits
139e2969
Unverified
Commit
139e2969
authored
7 years ago
by
malaspinas
Committed by
GitHub
7 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Update cours.md
parent
4108a1f3
No related branches found
Branches containing commit
No related tags found
Tags containing commit
2 merge requests
!30
Update cours.md
,
!29
andy-text-math-23022018
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
cours.md
+2
-2
2 additions, 2 deletions
cours.md
with
2 additions
and
2 deletions
cours.md
+
2
−
2
View file @
139e2969
...
...
@@ -181,13 +181,13 @@ $\lim\limits_{x\rightarrow 0^-} f(x)=-\infty$.
Dans certains cas il peut être intéressant d’étudier le comportement des
fonctions quand $x
\r
ightarrow
\p
m
\i
nfty$. Dans ces cas-là on dit qu’on
s’intéresse au comportement
*asymptotique*
d’une fonction. Ce concept
est particulièrement
releva
nt quand on étudie une fonction qu
e
a la
est particulièrement
pertine
nt quand on étudie une fonction qu
i
a la
forme d’une fraction $$h(x)=
\f
rac{f(x)}{g(x)}.$$ Si on s’intéresse au
comportement à l’infini de cette fonction on va prendre sa “limite”
lorsque $x
\r
ightarrow
\i
nfty$
$$
\l
im_{x
\r
ightarrow
\i
nfty} h(x)=
\l
im_{x
\r
ightarrow
\i
nfty}
\l
eft(
\f
rac{f(x)}{g(x)}
\r
ight).$$
Un exemple peut être $f(x)=x-1$, $g(x)=x+1$ et donc $h(x)=(x-1)/(x+1)$
$$
\l
im_{x
\r
ightarrow
\i
nfty}
\f
rac{x-1}{x+1}=
\l
im_{x
\r
ightarrow
\i
nfty}
\f
rac{x
}{x
}=1.$$
$$
\l
im_{x
\r
ightarrow
\i
nfty}
\f
rac{x-1}{x+1}=
\l
im_{x
\r
ightarrow
\i
nfty}
\f
rac{x
(1-1/x)}{x(1+1/x)
}=1.$$
De même quand on a $f(x)=3x^4-5x^3+1$, $g(x)=1$ et donc
$h(x)=3x^4-5x^3+1$. Il vient donc
$$
\l
im_{x
\r
ightarrow
\i
nfty} 3x^4-5x^3+1=
\l
im_{x
\r
ightarrow
\i
nfty}3x^4=
\i
nfty.$$
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment