Skip to content
Snippets Groups Projects
Verified Commit 42782e3e authored by orestis.malaspin's avatar orestis.malaspin
Browse files

corrected conflicrt

parents bf8c287a acd29ce2
No related branches found
No related tags found
No related merge requests found
Pipeline #14153 passed
......@@ -216,7 +216,7 @@ Corrigé +.#
En utilisant la formule
$$
f[n]=\sum_{k=0}^{N-1}\hat f[k]e^{2\pi ink/N},
f[n]=\frac{1}{N}\sum_{k=0}^{N-1}\hat f[k]e^{2\pi ink/N},
$$
on peut calculer la TFD de $\hat f=\{2, -1-i, 0, -1+i\}$ avec $N=4$.
On obtient donc
......@@ -225,7 +225,7 @@ f[0]=\hat f[0]+\hat f[1]+\hat f[2]+\hat f[3]=0.
$$
Et ainsi de suite on obtient
\begin{align}
f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\
\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\
\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0.
f[1]&=\frac{1}{4}(\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2})=\frac{1}{4}(2+i(-1-i)+(-i)(-1+i))=1,\\
\hat f[2]&=\frac{1}{4}(f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i})=\frac{1}{4}(2+(-1)(-1-i)-1(-1+i))=1,\\
\hat f[3]&=\frac{1}{4}(f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2})=\frac{1}{4}(2-i(-1-i)+i(-1+i))=0.
\end{align}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment