Pour rappel, la formule du produit de convolution en 1 dimension d'un signal discret est :
\begin{equation}
(s\ast u)[t] =\sum_{n=-N}^{+N} s[n]*u[t-n]
(s\ast u)[t] =\sum_{n=-N}^{+N} s[n]\cdot u[t-n]
\end{equation}
Lorsque l'on rajoute une nouvelle dimmension la formule devient, avec $-M$ l'indice de ligne le plus petit de la matrice A, et $+M$ le plus grand, ainsi que $-N$, $+N$ pour les indices de colonne :
Lorsque l'on rajoute une nouvelle dimmension la formule devient, avec $-M$ l'indice de ligne le plus petit de la matrice $\mat{A}$, et $+M$ le plus grand, ainsi que $-N$, $+N$ pour les indices de colonne :
Si l'on essaye de calculer $(A\ast B)[2,2]$, on découvre qu'il nous faut des valeurs qui ne sont pas dans notre matrice, comme par exemple, $b_{3,3}$. Voici 3 solutions différentes pour définir nos valeurs manquantes :
Si l'on essaye de calculer $(\mat{A}\ast \mat{B})[2,2]$, on découvre qu'il nous faut des valeurs qui ne sont pas dans notre matrice, comme par exemple, $b_{3,3}$. Voici 3 solutions différentes pour définir nos valeurs manquantes :
- Les valeurs en dehors de la matrice sont nulles, $b_{3,3} = 0$.
- Recopier la valeur du voisin le plus proche, $b_{3,3} = b_{2,2}$.
...
...
@@ -187,11 +187,11 @@ Pour visualiser votre image, vous pouvez à choix l'afficher avec la librairie S
Calculez à la main le produit de convolution de ces deux matrices, en utilisant la méthode de votre choix pour la gestion des bords :
\begin{equation*}
A=\begin{pmatrix}
\mat{A}=\begin{pmatrix}
0 & 1 & 0\\
-1 & 0 & -1\\
0 & 1 & 0
\end{pmatrix} ,\quad B=\begin{pmatrix}
\end{pmatrix} ,\quad \mat{B}=\begin{pmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
...
...
@@ -200,22 +200,22 @@ A=\begin{pmatrix}
#### Partie 2
Appliquez les 5 filtres ci-dessous en faisant le produit $F_n\ast \mathcal{I}$, où $\mathcal{I}$ est l'image "part2.pgm" jointe à l'énnoncé. Expliquez avec vos mots l'effet de ces filtres, est essayant d'être le plus descriptif possible (évitez les phrases de 3 mots).
Appliquez les 5 filtres ci-dessous en faisant le produit $\mat{F_n}\ast \mat{\mathcal{I}}$, où $\mat{\mathcal{I}}$ est l'image "part2.pgm" jointe à l'énnoncé. Expliquez avec vos mots l'effet de ces filtres, est essayant d'être le plus descriptif possible (évitez les phrases de 3 mots).
Récupérez sur cyberlearn l'image nommée "part3_\<n\>.pgm", où n est votre numéro de groupe. Cette image a été fortement bruitée, heureusement (quelle chance vraiment :)), le bruit est périodique, et peut être supprimé à l'aide d'un filtre moyenneur.
\begin{equation*}
F = \frac{1}{9}\begin{pmatrix}
\mat{F} = \frac{1}{9}\begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\\
1 & 1 & 1
\end{pmatrix}
\end{equation*}
Pour débruiter l'image vous devez lui appliquer le filtre $F$. Afin d'éviter les problèmes liés à la gestion des bords, vous n'afficherez que la partie interne de l'image filtrée. Autrement dit, vous supprimerez les 2 premières ainsi que les 2 dernières lignes et colonnes (si votre image fait 100x100, vous garderez le centre de taille 96x96).
Pour débruiter l'image vous devez lui appliquer le filtre $\mat{F}$. Afin d'éviter les problèmes liés à la gestion des bords, vous n'afficherez que la partie interne de l'image filtrée. Autrement dit, vous supprimerez les 2 premières ainsi que les 2 dernières lignes et colonnes (si votre image fait 100x100, vous garderez le centre de taille 96x96).
[^1]:Vous retrouverez les formules dans le polycopié.
[^2]:Exceptionnellement un stylo est également toléré.