Skip to content
Snippets Groups Projects
Commit 8dd37573 authored by Osoldier's avatar Osoldier Committed by Claudio
Browse files

Changed error

parent 6a273e69
Branches
Tags
3 merge requests!23Borne intégration,!21coeff complex,!6modulo nombre complexe
......@@ -2422,7 +2422,7 @@ de fréquence $\nu=1/T$. Ce genre de fonction a la propriété suivante
f(t+T)=f(t),\quad \forall t.
\end{equation}
Nous cherchons à décomposer $f$ en un ensemble potentiellement infini de fonctions périodiques. Notons
cet ensemble de fonctions $\{g_j\}_{0=1}^\infty$, où $g_j$ est une fonction périodique. En fait on cherche une décomposition
cet ensemble de fonctions $\{g_j\}_{j=0}^\infty$, où $g_j$ est une fonction périodique. En fait on cherche une décomposition
où pour un ensemble unique de $\{\alpha_j\}_{j=0}^\infty$
\begin{equation}
f(t)=\sum_{j=0}^\infty \alpha_j g_j(t).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment