Skip to content
Snippets Groups Projects
Verified Commit 9b67b190 authored by orestis.malaspin's avatar orestis.malaspin
Browse files
parents 7ff83a67 f45b96c3
No related branches found
No related tags found
No related merge requests found
Pipeline #14142 passed
......@@ -52,13 +52,13 @@ Corrigé +.#
On calcule les coefficients de la série de Fourier à l'aide des formules
\begin{align}
b_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x,
a_j&=\frac{2}{T}\int_0^T\cos(j\omega x)f(x){\mathrm{d}}x,\\
b_j&=\frac{2}{T}\int_0^T\sin(j\omega x)f(x){\mathrm{d}}x,
\end{align}
où $T=2\pi$. On peut donc écrire
\begin{align}
b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\
a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x.
a_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\cos(j x)f(x){\mathrm{d}}x,\\
b_j&=\frac{2}{2\pi}\int_{-\pi}^\pi\sin(j x)f(x){\mathrm{d}}x.
\end{align}
Comme $f(x)$ est paire, on a que les coefficients $a_j$ sont tous nuls.
Il nous reste à calculer
......@@ -228,4 +228,4 @@ Et ainsi de suite on obtient
f[1]&=\hat f[0]+\hat f[1]e^{\pi i/2}+\hat f[2]e^{\pi i}+\hat f[3]e^{3\pi i/2}=2+i(-1-i)+(-i)(-1+i)=4,\\
\hat f[2]&=f[0]+f[1]e^{\pi i}+f[2]e^{2\pi i}+f[3]e^{3\pi i}=2+(-1)(-1-i)-1(-1+i)=4,\\
\hat f[3]&=f[0]+f[1]e^{3\pi i/2}+f[2]e^{3\pi i}+f[3]e^{9\pi i/2}=2-i(-1-i)+i(-1+i)=0.
\end{align}
\ No newline at end of file
\end{align}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment