Skip to content
Snippets Groups Projects
Commit 9d25989e authored by orestis.malaspin's avatar orestis.malaspin
Browse files

correction typo

parent dbe08a82
No related branches found
No related tags found
No related merge requests found
......@@ -415,7 +415,7 @@ La somme $\sum_{i=0}^n i=n(n+1)/2$}. Et donc en prenant la limite pour $n\righta
A^i=\lim\limits_{n\rightarrow\infty}\frac{n-1}{2n}=\frac{1}{2}.
\end{equation}
\item $A^s(n)=\delta\sum_{i=0}^{n-1} x_i=\delta\sum_{i=0}^{n-1}\frac{i+1}{n}=\delta\sum_{i=0}^{n}\frac{i}{n}=\frac{n(n+1)}{2n^2}=\frac{n+1}{2n}$. Et donc en prenant la limite pour $n\rightarrow\infty$ il vient
\item $A^s(n)=\delta\sum_{i=0}^{n-1} x_{i+1}=\delta\sum_{i=0}^{n-1}\frac{i+1}{n}=\delta\sum_{i=0}^{n}\frac{i}{n}=\frac{n(n+1)}{2n^2}=\frac{n+1}{2n}$. Et donc en prenant la limite pour $n\rightarrow\infty$ il vient
\begin{equation}
A^s=\lim\limits_{n\rightarrow\infty}\frac{n+1}{2n}=\frac{1}{2}.
\end{equation}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment