Newer
Older
int CLOUD_POINTS = 5000;
double RANDOMNESS = 0.01;
double LR = 0.0001;
double ER = 0.000001;
// La fonction pow() de math.h avait un problème aavec mon Makefile donc je l'ai refaite
// et puis après avoir résolu le problème (emplacement du -lm) afin de pouvoir utiliser
// sqrt() j'ai décidé de la laisser car le nom est mignon
double popow(double v, double w){
double u=v;
for(int i=1;i<w;i++){
v*=u;
}
return v;
}
double double_random(double min, double max)
{
double my_random;
my_random = (double)rand()/RAND_MAX*(max-min)+min;
//printf ( "%f\n", my_random);
return my_random;
}
double random_point_in_cloud2_5(Point* my_cloud){
double v = double_random(0,1);
for(int i=0;i<CLOUD_POINTS;i++){
if(v==my_cloud[i].x){
v =random_point_in_cloud2_5(my_cloud);
}
}
return v;
}
Point* cloud2_5(double *a, double *b){
Point * my_cloud = (Point*)malloc(sizeof(Point)*CLOUD_POINTS);
for(int i=0;i<CLOUD_POINTS;i++){
Point chosen_point;
chosen_point.x=random_point_in_cloud2_5(my_cloud);
double rj = double_random(-RANDOMNESS, RANDOMNESS);
chosen_point.y = (*a*chosen_point.x)+*b+rj;
my_cloud[i].x=chosen_point.x;
my_cloud[i].y=chosen_point.y;
//printf("\nx = %f | y = %f\n", my_cloud[i].x,my_cloud[i].y);
}
return my_cloud;
}
Point** cloud_splitter(Point* my_cloud){
Point ** tiny_clouds = malloc(sizeof(Point*)*3);
Point * g1 = (Point*)malloc(sizeof(Point)*(CLOUD_POINTS/3));
Point * g2 = (Point*)malloc(sizeof(Point)*((CLOUD_POINTS/3)));
Point * g3 = (Point*)malloc(sizeof(Point)*(CLOUD_POINTS-((CLOUD_POINTS*2)/3)));
// Pas besoin de shuffle les points ici car déjà fait dans cloud2_5()
for(int i=0;i<CLOUD_POINTS;i++){
if(i<(CLOUD_POINTS/3)){
g1[i]=my_cloud[i];
}if(i>=(CLOUD_POINTS/3) && i<((CLOUD_POINTS*2)/3)){
g2[i-(CLOUD_POINTS/3)]=my_cloud[i];
}else{
g3[i-((CLOUD_POINTS*2)/3)]=my_cloud[i];
}
}
tiny_clouds[0]=g1;
tiny_clouds[1]=g2;
tiny_clouds[2]=g3;
//free(g1);free(g2);free(g3);
printf("\nSplitter ok\n");
return tiny_clouds;
}
// version 3 du nuage, plus simple, x espacés uniformément
Point* cloud3(double *a, double *b){
Point * my_cloud = (Point*)malloc(sizeof(Point)*CLOUD_POINTS);
my_cloud[i].x=((double)i/(double)CLOUD_POINTS);
double rj = double_random(-RANDOMNESS, RANDOMNESS);
my_cloud[i].y = ((*a)*my_cloud[i].x)+(*b)+rj;
// Pour comparer les chiffres sur papier VS ceux de ce programme
Point* cloud_test(){
Point * my_cloud = (Point*)malloc(sizeof(Point)*3);
my_cloud[0].x = 0.51;
my_cloud[0].y = 0.24;
my_cloud[1].x = 0.98;
my_cloud[1].y = 0.867;
my_cloud[2].x = 0.1;
my_cloud[2].y = 0.0042;
return my_cloud;
}
double gradient(double *a, double *b, Point* my_cloud, int cloud_size, bool is_a){
double my_gradient;
for(int i = 0;i<cloud_size;i++){
//Somme des Xi(aXi+b-Yi)
if(is_a){
my_gradient+=(my_cloud[i].x)*((*a*(my_cloud[i].x)+*b-(my_cloud[i].y)));
//Somme des aXi+b-Yi
my_gradient+=(*a*(my_cloud[i].x))+*b-(my_cloud[i].y);
}
}
return my_gradient;
}
void gradient_descent_v4(double *a, double *b, Point* my_cloud){
double gr_A,gr_B,my_new_a,my_new_b,current_cost;
double *zero;
double z = 0.0;
zero = &z;
current_cost = cost2(zero,zero,a,b);
int nb_it = 0;
//double* a_n_b = (double*)malloc(sizeof(double)*2);
while(current_cost>=ER){
gr_A = gradient(a, b, my_cloud, CLOUD_POINTS, true);
gr_B = gradient(a, b, my_cloud, CLOUD_POINTS, false);
// Les 2 lignes ci-dessous pourraient être condensées, mais c'est pour rendre le code
// plus explicite que je sépare volontairement les étapes.
my_new_a = (*a) - (LR * gr_A);
//printf("\nNew A : %f\n", my_new_a);
my_new_b = (*b) - (LR * gr_B);
//printf("New B : %f\n", my_new_b);
current_cost = cost2(a,b,&my_new_a,&my_new_b);
//printf("\nCost : %f\n", current_cost);
*a = my_new_a; *b = my_new_b;
//current_cost = cost(a, b, my_cloud, CLOUD_POINTS);
nb_it++;
printf("\nCost : %g || Nombre d'itérations : %d\n ", current_cost, nb_it);
double cost2(double *a, double *b, double *new_a, double *new_b){
return sqrt(popow((*new_a - *a),2)+popow((*new_b - *b), 2));
Point* cloud_merger(Point* cloud_a, Point* cloud_b, bool g3_here){
int cloud_size;
if(!g3_here){
cloud_size = 2*(CLOUD_POINTS)/3;
}else{
cloud_size = CLOUD_POINTS-(CLOUD_POINTS/3);
}
Point * merged_cloud = (Point*)malloc(sizeof(Point)*cloud_size);
for(int i=0;i<cloud_size;i++){
if(i<(CLOUD_POINTS/3)){
merged_cloud[i]=cloud_a[i];
}else{
merged_cloud[i]=cloud_b[i-(CLOUD_POINTS/3)];
}
}
return merged_cloud;
}
/*// Create a vector X = [0,1,2...99]
double_vector_t *X = iota(100);
// Create a vector Y = my_function(x)
double_vector_t *Y = apply_function(X, my_function);
// Export our vectors into files
export_vector("./X.vec", X);
export_vector("./Y.vec", Y);
// Free our vectors
destroy_vector(&Y);
destroy_vector(&X);
*/
double a_init = 0.98902527076;
double b_init = -0.1537833935;
printf("\na optimal = %f || b optimal = %f\n", a_init, b_init);
double a = double_random(0,1);
double b = double_random(0,1);
double c = a;
double d = b;
Point* fluffy = cloud2_5(&a_init, &b_init);
//printf("\na random initial = %f || b random initial = %f\n", a, b);
/*for(int j=0;j<3;j++){
for(int i=0; i<CLOUD_POINTS/3;i++){
printf("\nG%d x = %g\nG%d y = %g\n", j+1,cloud_slayer[j][i].x , j+1, cloud_slayer[j][i].y);
}
}*/
Point* merged = cloud_merger(cloud_slayer[0], cloud_slayer[1], false);
for(int i=0;i<CLOUD_POINTS*2/3;i++){
printf("\nMERGED : x=%g y=%g\n", merged[i].x, merged[i].y);
//gradient_descent_v4(&a, &b, fluffy);
gradient_descent_v4(&a, &b, merged);
gradient_descent_v4(&c, &d, cloud_slayer[2]);
printf("\na1 trouvé = %f || b1 trouvé = %f\n", a, b);
printf("\na2 trouvé = %f || b2 trouvé = %f\n", c, d);
//printf("\nx = %g\ny = %g\n",cloud_slayer[0][1].x , cloud_slayer[0][1].y);
free(merged);
free(fluffy);
printf("\ndone\n");