Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
math_tech_info
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
quentin.rod
math_tech_info
Commits
005daa45
Commit
005daa45
authored
4 years ago
by
quentin
Browse files
Options
Downloads
Patches
Plain Diff
Modification of integrales and rappel
parent
e9fa663d
Branches
master
No related tags found
No related merge requests found
Pipeline
#12824
failed
4 years ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
01_rappel.md
+2
-2
2 additions, 2 deletions
01_rappel.md
03_integrales.md
+3
-3
3 additions, 3 deletions
03_integrales.md
with
5 additions
and
5 deletions
01_rappel.md
+
2
−
2
View file @
005daa45
...
...
@@ -110,7 +110,7 @@ $$\forall\varepsilon>0,\exists\delta>0\ |\ \forall x\in D,\ |x-a|<\delta\Rightar
#### Remarque {-}
Il n'est pas nécessaire que $a
\i
n D$. Mais si c'est le cas et donc
$f$ est définie en $a$ alors on a $
\l
im
\l
imits_{x
\r
ightarrow a}=f(a)$.
$f$ est définie en $a$ alors on a $
\l
im
\l
imits_{x
\r
ightarrow a}
f(x)
=f(a)$.
---
...
...
@@ -267,7 +267,7 @@ et $g'$), et $a\in{\real}$, alors
4.
Si $g$ ne s'annule pas $(f/g)'=(f'g-fg')/g^2$.
5.
$(g
\c
irc f)'=(g'
\c
irc f)
\c
dot f'$, autrement dit pour $x
\i
n D$, $(g(f(x)))'=g'(f(x)
\c
dot f'(x)$.
5.
$(g
\c
irc f)'=(g'
\c
irc f)
\c
dot f'$, autrement dit pour $x
\i
n D$, $(g(f(x)))'=g'(f(x)
)
\c
dot f'(x)$.
Il existe quelques dérivées importantes que nous allons utiliser
régulièrement dans la suite de ce cours. En supposons que
...
...
This diff is collapsed.
Click to expand it.
03_integrales.md
+
3
−
3
View file @
005daa45
...
...
@@ -282,7 +282,7 @@ $$\int_a^b f(x){\mathrm{d}}x = \lim\limits_{\varepsilon\rightarrow 0}\int_a^{c-\
#### Exercice {-}
Montrer que $$
\i
nt_{-1}^2
\f
rac{1}{x}=
\l
n{2}.$$
Montrer que $$
\i
nt_{-1}^2
\f
rac{1}{x}
{
\m
athrm{d}}x
=
\l
n{2}.$$
#### Définition (Valeur moyenne) {-}
...
...
@@ -396,12 +396,12 @@ Calculer les primitives suivantes
1.
$
\i
nt x e^x{
\m
athrm{d}}x$. $g(x)=x$, $f'(x)=e^x$ et donc $g'(x)=1$,
$f(x)=e^x$. Il vient
$$
\i
nt x e^x=x e^x-
\i
nt e^x{
\m
athrm{d}}x=x e^x-e^x+c.$$
$$
\i
nt x e^x
{
\m
athrm{d}}x
=x e^x-
\i
nt e^x{
\m
athrm{d}}x=x e^x-e^x+c.$$
2.
$
\i
nt
\c
os(x)
\s
in(x){
\m
athrm{d}}x$. $g=
\c
os(x)$, $f'(x)=
\s
in(x)$ et
donc $g'(x)=-
\s
in(x)$, $f(x)=-
\c
os(x)$. Il vient $$
\b
egin{aligned}
&
\i
nt
\c
os(x)
\s
in(x){
\m
athrm{d}}x=
\s
in^2(x)-
\i
nt
\c
os(x)
\s
in(x){
\m
athrm{d}}x
\n
onumber
\\
\R
ightarrow &
\i
nt
\c
os(x)
\s
in(x){
\m
athrm{d}}x=
\f
rac{1}{2}
\s
in^2(x).
\R
ightarrow &
\i
nt
\c
os(x)
\s
in(x){
\m
athrm{d}}x=
\f
rac{1}{2}
\s
in^2(x)
+c
.
\e
nd{aligned}$$
On voit que le résultat de l’intégration par
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment