Skip to content
Snippets Groups Projects
Verified Commit 000e364a authored by orestis.malaspin's avatar orestis.malaspin
Browse files

added 2023

parent ea9080c5
No related branches found
No related tags found
No related merge requests found
......@@ -559,197 +559,3 @@ rien quicksort(entier tableau[], entier ind_min, entier ind_max)
\log_2(N)$.
* En moyenne: $\mathcal{O}(N\cdot \log_2(N))$.
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/N)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/N)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
nbr_solutions(board, column, count)
// pour chaque ligne
// si la case libre
// si column < n - 1
// copier board dans un "new" board,
// y poser une reine
// et mettre à jour ce "new" board
// nbr_solutions(new_board, column+1, count)
// sinon
// on a posé la n-ème et on a gagné
// count += 1
```
# Le code du problème des 8 reines (3/N)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
placer_devant(board, ligne, colonne)
// board est occupé à ligne/colonne
// toutes les cases des colonnes
// suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/N)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/N)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void prises_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
---
title: "Backtracking et piles"
date: "2023-11-28"
---
# Problème des 8-reines
* Placer 8 reines sur un échiquier de $8 \times 8$.
* Sans que les reines ne puissent se menacer mutuellement (92 solutions).
## Conséquence
* Deux reines ne partagent pas la même rangée, colonne, ou diagonale.
* Donc chaque solution a **une** reine **par colonne** ou **ligne**.
## Généralisation
* Placer $N$ reines sur un échiquier de $N \times
N$.
- Exemple de **backtracking** (retour en arrière) $\Rightarrow$ récursivité.
![Problème des 8-reines. Source:
[wikipedia](https://fr.wikipedia.org/wiki/Problème_des_huit_dames)](./figs/fig_recursivite_8_reines.png){width=35%}
# Problème des 2-reines
![Le problème des 2 reines n'a pas de solution.](figs/2reines.svg){width=50%}
# Comment trouver les solutions?
* On pose la première reine sur la première case disponible.
* On rend inaccessibles toutes les cases menacées.
* On pose la reine suivante sur la prochaine case non-menacée.
* Jusqu'à ce qu'on puisse plus poser de reine.
* On revient alors en arrière jusqu'au dernier coup où il y avait plus qu'une
possibilité de poser une reine.
* On recommence depuis là.
. . .
* Le jeu prend fin quand on a énuméré *toutes* les possibilités de poser les
reines.
# Problème des 3-reines
![Le problème des 3 reines n'a pas de solution non plus.](figs/3reines.svg)
# Problème des 4-reines
![Le problème des 4 reines a une solution.](figs/4reines.svg)
# Problème des 4-reines, symétrie
![Le problème des 4 reines a une autre solution (symétrie
horizontale).](figs/4reines_sym.svg)
# Problème des 5 reines
## Exercice: Trouver une solution au problème des 5 reines
* Faire une capture d'écran / une photo de votre solution et la poster sur
matrix.
```C
```
# Quelques observations sur le problème
* Une reine par colonne au plus.
* On place les reines sur des colonnes successives.
* On a pas besoin de "regarder en arrière" (on place "devant" uniquement).
* Trois étapes:
* On place une reine dans une case libre.
* On met à jour le tableau.
* Quand on a plus de cases libres on "revient dans le temps" ou c'est qu'on
a réussi.
# Le code du problème des 8 reines (1/5)
## Quelle structure de données?
. . .
Une matrice de booléens fera l'affaire:
```C
bool board[n][n];
```
## Quelles fonctionnalités?
. . .
```C
// Pour chaque ligne placer la reine sur toutes les colonnes
// et compter les solutions
void nbr_solutions(board, column, counter);
// Copier un tableau dans un autre
void copy(board_in, board_out);
// Placer la reine à li, co et rendre inaccessible devant
void placer_devant(board, li, co);
```
# Le code du problème des 8 reines (2/5)
## Le calcul du nombre de solutions
```C
// Calcule le nombre de solutions au problème des <n> reines
nbr_solutions(board, column, count)
// pour chaque ligne
// si la case libre
// si column < n - 1
// copier board dans un "new" board,
// y poser une reine
// et mettre à jour ce "new" board
// nbr_solutions(new_board, column+1, count)
// sinon
// on a posé la n-ème et on a gagné
// count += 1
```
# Le code du problème des 8 reines (3/5)
## Le calcul du nombre de solutions
```C
// Placer une reine et mettre à jour
placer_devant(board, ligne, colonne)
// board est occupé à ligne/colonne
// toutes les cases des colonnes
// suivantes sont mises à jour
```
# Le code du problème des 8 reines (4/5)
## Compris? Alors écrivez le code et postez le!
. . .
## Le nombre de solutions
\footnotesize
```C
// Calcule le nombre de solutions au problème des <n> reines
void nb_sol(int n, bool board[n][n], int co, int *ptr_cpt) {
for (int li = 0; li < n; li++) {
if (board[li][co]) {
if (co < n-1) {
bool new_board[n][n]; // alloué à chaque nouvelle tentative
copy(n, board, new_board);
prises_devant(n, new_board, li, co);
nb_sol(n, new_board, co+1, ptr_cpt);
} else {
*ptr_cpt = (*ptr_cpt)+1;
}
}
}
}
```
# Le code du problème des 8 reines (5/5)
\footnotesize
## Placer devant
```C
// Retourne une copie du tableau <board> complété avec les positions
// prises sur la droite droite par une reine placée en <board(li,co)>
void prises_devant(int n, bool board[n][n], int li, int co) {
board[li][co] = false; // position de la reine
for (int j = 1; j < n-co; j++) {
// horizontale et diagonales à droite de la reine
if (j <= li) {
board[li-j][co+j] = false;
}
board[li][co+j] = false;
if (li+j < n) {
board[li+j][co+j] = false;
}
}
}
```
# Les piles (1/5)
## Qu'est-ce donc?
* Structure de données abstraite...
. . .
* de type `LIFO` (*Last in first out*).
![Une pile où on ajoute A, puis B avant de les retirer. Source:
[Wikipedia](https://upload.wikimedia.org/wikipedia/commons/e/e1/Stack_%28data_structure%29_LIFO.svg)](figs/Stack.svg){width=70%}
## Des exemples de la vraie vie
. . .
* Pile d'assiettes, de livres, ...
* Adresses visitées par un navigateur web.
* Les calculatrices du passé (en polonaise inverse).
* Les boutons *undo* de vos éditeurs de texte (aka *u* dans vim).
# Les piles (2/5)
## Fonctionnalités
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retrouner.
3. Liste vide? (is_empty?).
. . .
4. Jeter un oeil (peek): retourner l'élément du sommet de la pile (sans le dépiler).
5. Nombre d'éléments (length).
## Comment faire les 4,5 à partir de 1 à 3?
. . .
4. Dépiler l'élément, le copier, puis l'empiler à nouveau.
5. Dépiler jusqu'à ce que la pile soit vide, puis empiler à nouveau.
. . .
## Existe en deux goûts
* Pile avec ou sans limite de capacité (à concurrence de la taille de la
mémoire).
# Les piles (3/5)
## Implémentation
* Jusqu'ici on n'a pas du tout parlé d'implémentation (d'où le nom de structure
abstraite).
* Pas de choix unique d'implémentation.
## Quelle structure de données allons nous utiliser?
. . .
Et oui vous avez deviné: un tableau!
## La structure: de quoi avons-nous besoin (pile de taille fixe)?
. . .
```C
#define MAX_CAPACITY 500
typedef struct _stack {
int data[MAX_CAPACITY]; // les données
int top; // indice du sommet
} stack;
```
# Les piles (4/5)
## Initialisation
. . .
```C
void stack_init(stack *s) {
s->top = -1;
}
```
## Est vide?
. . .
```C
bool stack_is_empty(stack s) {
return s.top == -1;
}
```
## Empiler (ajouter un élément au sommet)
. . .
```C
void stack_push(stack *s, int val) {
s->top += 1;
s->data[s->top] = val;
}
```
# Les piles (5/5)
## Dépiler (enlever l'élément du sommet)
. . .
```C
int stack_pop(stack *s) {
s->top -= 1;
return s->data[s->top+1];
}
```
## Jeter un oeil (regarder le sommet)
. . .
```C
int stack_peek(stack *s) {
return s->data[s->top];
}
```
## Quelle est la complexité de ces opérations?
. . .
## Voyez-vous des problèmes potentiels avec cette implémentation?
. . .
* Empiler avec une pile pleine.
* Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define
NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
- **Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
# La pile dynamique
## Comment modifier le code précédent pour avoir une taille dynamique?
. . .
```C
// alloue une zone mémoire de size octets
void *malloc(size_t size);
// change la taille allouée à size octets (contiguïté garantie)
void *realloc(void *ptr, size_t size);
```
## Et maintenant?
. . .
```C
stack_create(); // crée une pile avec une taille par défaut
// vérifie si la pile est pleine et réalloue si besoin
stack_push();
// vérifie si la pile est vide/trop grande
// et réalloue si besoin
stack_pop();
```
## Exercice: ouvrir un repo/issues pour l'implémentation
* Oui-oui cela est une introduction au développement collaboratif (et
hippie).
# Le tri à deux piles (1/3)
## Cas pratique
![Un exemple de tri à deux piles](figs/tri_piles.svg){width=70%}
# Le tri à deux piles (2/3)
## Exercice: formaliser l'algorithme
. . .
## Algorithme de tri nécessitant 2 piles (G, D)
Soit `tab` le tableau à trier:
```C
pour i de 0 à N-1
tant que (tab[i] > que le sommet de G)
dépiler G dans D
tant que (tab[i] < que le sommet de D)
dépiler de D dans G
empiler tab[i] sur G
dépiler tout D dans G
tab est trié dans G
```
# Le tri à deux piles (3/3)
## Exercice: trier le tableau `[2, 10, 5, 20, 15]`
```C
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment