* Les calculatrices du passé (en polonaise inverse).
* Les boutons *undo* de vos éditeurs de texte (aka *u* dans vim).
# Les piles (2/5)
## Fonctionnalités
. . .
1. Empiler (push): ajouter un élément sur la pile.
2. Dépiler (pop): retirer l'élément du sommet de la pile et le retrouner.
3. Liste vide? (is_empty?).
. . .
4. Jeter un oeil (peek): retourner l'élément du sommet de la pile (sans le dépiler).
5. Nombre d'éléments (length).
## Comment faire les 4,5 à partir de 1 à 3?
. . .
4. Dépiler l'élément, le copier, puis l'empiler à nouveau.
5. Dépiler jusqu'à ce que la pile soit vide, puis empiler à nouveau.
. . .
## Existe en deux goûts
* Pile avec ou sans limite de capacité (à concurrence de la taille de la
mémoire).
# Les piles (3/5)
## Implémentation
* Jusqu'ici on n'a pas du tout parlé d'implémentation (d'où le nom de structure
abstraite).
* Pas de choix unique d'implémentation.
## Quelle structure de données allons nous utiliser?
. . .
Et oui vous avez deviné: un tableau!
## La structure: de quoi avons-nous besoin (pile de taille fixe)?
. . .
```C
#define MAX_CAPACITY 500
typedef struct _stack {
int data[MAX_CAPACITY]; // les données
int top; // indice du sommet
} stack;
```
# Les piles (4/5)
## Initialisation
. . .
```C
void stack_init(stack *s) {
s->top = -1;
}
```
## Est vide?
. . .
```C
bool stack_is_empty(stack s) {
return s.top == -1;
}
```
## Empiler (ajouter un élément au sommet)
. . .
```C
void stack_push(stack *s, int val) {
s->top += 1;
s->data[s->top] = val;
}
```
# Les piles (5/5)
## Dépiler (enlever l'élément du sommet)
. . .
```C
int stack_pop(stack *s) {
s->top -= 1;
return s->data[s->top+1];
}
```
## Jeter un oeil (regarder le sommet)
. . .
```C
int stack_peek(stack *s) {
return s->data[s->top];
}
```
## Quelle est la complexité de ces opérations?
. . .
## Voyez-vous des problèmes potentiels avec cette implémentation?
. . .
* Empiler avec une pile pleine.
* Dépiler avec une pile vide.
* Jeter un oeil au sommet d'une pile vide.
# Gestion d'erreur, level 0
* Il y a plusieurs façon de traiter les erreur:
* Ne rien faire (laisser la responsabilité à l'utilisateur).
* Faire paniquer le programme (il plante plus ou moins violemment).
* Utiliser des codes d'erreurs.
## La panique
* En C, on a les `assert()` pour faire paniquer un programme.
# Assertions (1/3)
```C
#include <assert.h>
void assert(int expression);
```
## Qu'est-ce donc?
- Macro permettant de tester une condition lors de l'exécution d'un programme:
- Si `expression == 0`{.C} (condition fausse), `assert()`{.C} affiche un message d'erreur sur `stderr`{.C} et termine l'exécution du programme.
- Sinon l'exécution se poursuit normalement.
- Peuvent être désactivés à la compilation avec `-DNDEBUG` (équivalent à `#define
NDEBUG`)
## À quoi ça sert?
- Permet de réaliser des tests unitaires.
- Permet de tester des conditions catastrophiques d'un programme.
-**Ne permet pas** de gérer les erreurs.
# Assertions (2/3)
<!-- \footnotesize -->
## Exemple
```C
#include <assert.h>
void stack_push(stack *s, int val) {
assert(s->top < MAX_CAPACITY-1);
s->top += 1;
s->data[s->top] = val;
}
int stack_pop(stack *s) {
assert(s->top >= 0);
s->top -= 1;
return s->data[s->top+1];
}
int stack_peek(stack *s) {
assert(s->top >= 0);
return s->data[s->top];
}
```
# Assertions (3/3)
## Cas typiques d'utilisation
- Vérification de la validité des pointeurs (typiquement `!= NULL`{.C}).
- Vérification du domaine des indices (dépassement de tableau).
## Bug vs. erreur de *runtime*
- Les assertions sont là pour détecter les bugs (erreurs d'implémentation).
- Les assertions ne sont pas là pour gérer les problèmes externes au programme (allocation mémoire qui échoue, mauvais paramètre d'entrée passé par l'utilisateur, ...).
. . .
- Mais peuvent être pratiques quand même pour ça...
- Typiquement désactivées dans le code de production.
# La pile dynamique
## Comment modifier le code précédent pour avoir une taille dynamique?
. . .
```C
// alloue une zone mémoire de size octets
void *malloc(size_t size);
// change la taille allouée à size octets (contiguïté garantie)
void *realloc(void *ptr, size_t size);
```
## Et maintenant?
. . .
```C
stack_create(); // crée une pile avec une taille par défaut
// vérifie si la pile est pleine et réalloue si besoin
stack_push();
// vérifie si la pile est vide/trop grande
// et réalloue si besoin
stack_pop();
```
## Exercice: ouvrir un repo/issues pour l'implémentation
* Oui-oui cela est une introduction au développement collaboratif (et
hippie).
# Le tri à deux piles (1/3)
## Cas pratique
{width=70%}
# Le tri à deux piles (2/3)
## Exercice: formaliser l'algorithme
. . .
## Algorithme de tri nécessitant 2 piles (G, D)
Soit `tab` le tableau à trier:
```C
pour i de 0 à N-1
tant que (tab[i] > que le sommet de G)
dépiler G dans D
tant que (tab[i] < que le sommet de D)
dépiler de D dans G
empiler tab[i] sur G
dépiler tout D dans G
tab est trié dans G
```
# Le tri à deux piles (3/3)
## Exercice: trier le tableau `[2, 10, 5, 20, 15]`