Skip to content
Snippets Groups Projects
Commit 841b8899 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

corrcetion typos

parent ff5c5aa3
Branches
Tags
No related merge requests found
......@@ -691,7 +691,7 @@ Calculer les primitives suivantes
\begin{equation}
\int x e^x=x e^x-\int e^x\dd x=x e^x-e^x+c.
\end{equation}
\item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=\sin(x)$, $f(x)=\cos(x)$. Il vient
\item $\int \cos(x)\sin(x)\dd x$. $g= \cos(x)$, $f'(x)=\sin(x)$ et donc $g'(x)=-\sin(x)$, $f(x)=-\cos(x)$. Il vient
\begin{align}
&\int \cos(x)\sin(x)\dd x=\sin^2(x)-\int \cos(x)\sin(x)\dd x\nonumber\\
\Rightarrow &\int \cos(x)\sin(x)\dd x=\frac{1}{2}\sin^2(x).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment