Skip to content
Snippets Groups Projects
Commit f8ad8863 authored by orestis.malaspin's avatar orestis.malaspin
Browse files

corrected compilation error

parent 47331c07
No related branches found
No related tags found
No related merge requests found
......@@ -396,12 +396,12 @@ l’intervalle $[a,b]$ de plusieurs façons:
2. $A^s(n)=\sum_{i=0}^{n-1} \sup\limits_{[x_i,x_{i+1}]} f(x)\cdot (x_{i+1}-x_i)$
comme étant l’aire supérieure.
3. $A^R(n)=\sum_{i=0}^{n-1} f(\xi_i)\cdot (x_{i+1}-x_i)$, $\xi_i\in [x_i,x_{i+1}] $
3. $A^R(n)=\sum_{i=0}^{n-1} f(\xi_i)\cdot (x_{i+1}-x_i)$, $\xi_i\in [x_i,x_{i+1}]$
1 et 2 sont les sommes de Darboux, 3 est une somme de Riemann qui, dépendant des choix des $\xi_i$, peut être égale à 1 ou à 2.
L’aire de sous la fonction $f(x)$ est donnée par la limite pour
$n\rightarrow\infty$ de $A^i$ ou $A^s$ (si elle existe). Dans ce cas $n\rightarrow\infty$ $A^R$ (pris en sandwich entre $Aî$ et $A^n$)
$n\rightarrow\infty$ de $A^i$ ou $A^s$ (si elle existe). Dans ce cas $n\rightarrow\infty$ $A^R$ (pris en sandwich entre $A^i$ et $A^n$)
nous donne aussi l'aire sous la fonction.
Remarque +.#
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment