Skip to content
Snippets Groups Projects
Verified Commit 6e4b959e authored by orestis.malaspin's avatar orestis.malaspin
Browse files

maj 2024

parent a2e0cbb2
No related branches found
No related tags found
No related merge requests found
......@@ -718,7 +718,7 @@ pour sommet dans graphe et sommet non-visité
## Remarque
* `i` est la distance de plus cours chemin entre `v` et les sommets en cours de visite.
* `i` est la distance de plus courts chemin entre `v` et les sommets en cours de visite.
# Le parcours en largeur
......@@ -955,471 +955,3 @@ $$
* Réseau électrique optimal;
* ...
# Plus courts chemins à source unique
* Soit un graphe, $G=(V, E)$, une fonction de pondération $w:E\rightarrow\mathbb{R}$, et un sommet $s\in V$
* Trouver pour tout sommet $v\in V$, le chemin de poids minimal reliant $s$ à $v$.
* Algorithmes standards:
* Dijkstra (arêtes de poids positif seulement);
* Bellman-Ford (arêtes de poids positifs ou négatifs, mais sans cycles).
* Comment résoudre le problèmes si tous les poids sont les mêmes?
. . .
* Un parcours en largeur!
# Algorithme de Dijkstra
## Comment chercher pour un plus court chemin?
. . .
```
si distance(u,v) > distance(u,w) + distance(w,v)
on passe par w plutôt qu'aller directement
```
# Algorithme de Dijkstra (1 à 5)
* $D$ est le tableau des distances au sommet $1$: $D[7]$ est la distance de 1 à 7.
* Le chemin est pas forcément direct.
* $S$ est le tableau des sommets visités.
::: columns
:::: column
![Initialisation.](figs/dijkstra_0.png)
::::
:::: column
. . .
![1 visité, `D[2]=1`, `D[4]=3`.](figs/dijkstra_1.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 2.](figs/dijkstra_1.png)
::::
:::: column
. . .
![2 visité, `D[3]=2`, `D[7]=3`.](figs/dijkstra_2.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 3.](figs/dijkstra_2.png)
::::
:::: column
. . .
![3 visité, `D[7]=3` inchangé, `D[6]=6`.](figs/dijkstra_3.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 4 ou 7.](figs/dijkstra_3.png)
::::
:::: column
. . .
![4 visité, `D[7]=3` inchangé, `D[5]=9`.](figs/dijkstra_4.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est `7`.](figs/dijkstra_4.png)
::::
:::: column
. . .
![7 visité, `D[5]=7`, `D[6]=6` inchangé.](figs/dijkstra_5.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 6.](figs/dijkstra_5.png)
::::
:::: column
. . .
![`6` visité, `D[5]=7` inchangé.](figs/dijkstra_6.png)
::::
:::
# Algorithme de Dijkstra (1 à 5)
::: columns
:::: column
![Plus court est 5 et c'est la cible.](figs/dijkstra_6.png)
::::
:::: column
. . .
![The end, tous les sommets ont été visités.](figs/dijkstra_7.png)
::::
:::
# Algorithme de Dijkstra
## Idée générale
* On assigne à chaque noeud une distance $0$ pour $s$, $\infty$ pour les autres.
* Tous les noeuds sont marqués non-visités.
* Depuis du noeud courant, on suit chaque arête du noeud vers un sommet non visité et on calcule le poids du chemin à chaque voisin et on met à jour sa distance si elle est plus petite que la distance du noeud.
* Quand tous les voisins du noeud courant ont été visités, le noeud est mis à visité (il ne sera plus jamais visité).
* Continuer avec le noeud à la distance la plus faible.
* L'algorithme est terminé losrque le noeud de destination est marqué comme visité, ou qu'on a plus de noeuds qu'on peut visiter et que leur distance est infinie.
# Algorithme de Dijkstra
## Pseudo-code (5min, matrix)
\footnotesize
. . .
```C
tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t // on a atteint la cible
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
// on met à jour la distance du voisin en passant par u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
retourne distance
```
# Algorithme de Dijkstra
* Cet algorithme, nous donne le plus court chemin mais...
* ne nous donne pas le chemin!
## Comment modifier l'algorithme pour avoir le chemin?
. . .
* Pour chaque nouveau noeud à visiter, il suffit d'enregistrer d'où on est venu!
* On a besoin d'un tableau `precedent`.
## Modifier le pseudo-code ci-dessus pour ce faire (3min matrix)
# Algorithme de Dijkstra
\footnotesize
```C
tab, tab dijkstra(graph, s, t)
pour chaque v dans graphe
distance[v] = infini
precedent[v] = indéfini
q = ajouter(q, v)
distance[s] = 0
tant que non_vide(q)
// sélection de u t.q. la distance dans q est min
u = min(q, distance)
si u == t
retourne distance
q = remove(q, u)
// voisin de u encore dans q
pour chaque v dans voisinage(u, q)
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
retourne distance, precedent
```
# Algorithme de Dijkstra
## Comment reconstruire un chemin ?
. . .
```C
pile parcours(precedent, s, t)
sommets = vide
u = t
// on a atteint t ou on ne connait pas de chemin
si u != s && precedent[u] != indéfini
tant que vrai
sommets = empiler(sommets, u)
u = precedent[u]
si u == s // la source est atteinte
retourne sommets
retourne sommets
```
# Algorithme de Dijkstra amélioré
## On peut améliorer l'algorithme
* Avec une file de priorité!
## Une file de priorité est
* Une file dont chaque élément possède une priorité,
* Elle existe en deux saveurs: `min` ou `max`:
* File `min`: les éléments les plus petits sont retirés en premier.
* File `max`: les éléments les plus grands sont retirés en premier.
* On regarde l'implémentation de la `max`.
## Comment on fait ça?
. . .
* On insère les éléments à haute priorité tout devant dans la file!
# Les files de priorité
## Trois fonction principales
```C
booléen est_vide(element) // triviale
element enfiler(element, data, priorite)
data defiler(element)
rien changer_priorite(element, data, priorite)
nombre priorite(element) // utilitaire
```
## Pseudo-implémentation: structure (1min)
. . .
```C
struct element
data
priorite
element suivant
```
# Les files de priorité
## Pseudo-implémentation: enfiler (2min)
. . .
```C
element enfiler(element, data, priorite)
n_element = creer_element(data, priorite)
si est_vide(element)
retourne n_element
si priorite(n_element) > priorite(element)
n_element.suivant = element
retourne n_element
sinon
tmp = element
prec = element
tant que !est_vide(tmp) && priorite < priorite(tmp)
prec = tmp
tmp = tmp.suivant
prev.suivant = n_element
n_element.suivant = tmp
retourne element
```
# Les files de priorité
## Pseudo-implémentation: defiler (2min)
. . .
```C
data, element defiler(element)
si est_vide(element)
retourne AARGL!
sinon
tmp = element.data
n_element = element.suivant
liberer(element)
retourne tmp, n_element
```
# Algorithme de Dijkstra avec file de priorité min
```C
distance, precedent dijkstra(graphe, s, t):
distance[source] = 0
fp = file_p_vide()
pour v dans sommets(graphe)
si v != s
distance[v] = infini
precedent[v] = indéfini
fp = enfiler(fp, v, distance[v])
tant que !est_vide(fp)
u, fp = defiler(fp)
pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
precedent[v] = u
fp = changer_priorite(fp, v, n_distance)
retourne distance, precedent
```
# Algorithme de Dijkstra avec file
\footnotesize
```C
distance dijkstra(graphe, s, t)
---------------------------------------------------------
pour v dans sommets(graphe)
O(V) si v != s
distance[v] = infini
O(V) fp = enfiler(fp, v, distance[v]) // notre impl est nulle
------------------O(V * V)-------------------------------
tant que !est_vide(fp)
O(1) u, fp = defiler(fp)
---------------------------------------------------------
O(E) pour v dans voisinage de u
n_distance = distance[u] + w(u, v)
si n_distance < distance[v]
distance[v] = n_distance
O(V) fp = changer_priorite(fp, v, n_distance)
---------------------------------------------------------
retourne distance
```
* Total: $\mathcal{O}(|V|^2+|E|\cdot |V|)$:
* Graphe dense: $\mathcal{O}(|V|^3)$
* Graphe peu dense: $\mathcal{O}(|V|^2)$
# Algorithme de Dijkstra avec file
## On peut faire mieux
* Avec une meilleure implémentation de la file de priorité:
* Tas binaire: $\mathcal{O}(|V|\log|V|+|E|\log|V|)$.
* Tas de Fibonnacci: $\mathcal{O}(|V|+|E|\log|V|)$
* Graphe dense: $\mathcal{O}(|V|^2\log|V|)$.
* Graphe peu dense: $\mathcal{O}(|V|\log|V|)$.
# Algorithme de Dijkstra (exercice, 5min)
![L'exercice.](figs/dijkstra_exo.png){width=60%}
* Donner la liste de priorité, puis...
## A chaque étape donner:
* Le tableau des distances à `a`;
* Le tableau des prédécesseurs;
* L'état de la file de priorité.
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 1.](figs/dijkstra_ex_0.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 2.](figs/dijkstra_ex_1.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 3.](figs/dijkstra_ex_2.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 4.](figs/dijkstra_ex_3.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 5.](figs/dijkstra_ex_4.png)
# Algorithme de Dijkstra (corrigé)
![Le corrigé partie 6.](figs/dijkstra_ex_5.png)
# Limitation de l'algorithme de Dijkstra
## Que se passe-t-il pour?
![Exemple.](figs/exemple_neg.png){width=50%}
## Quel est le problème?
. . .
* L'algorithme n'essaiera jamais le chemin `s->x->y->v` et prendra direct `s->v`.
* Ce problème n'apparaît que s'il y a des poids négatifs.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment