Newer
Older
# Structures de contrôle: `switch`{.C} .. `case`{.C} (1/2)
```C
switch (expression) {
case constant-expression:
instructions;
break; // optionnel
case constant-expression:
instructions;
break; // optionnel
// ...
default:
instructions;
}
```
# Structures de contrôle: `switch`{.C} .. `case`{.C} (2/2)
```C
int x = 0;
switch (x) {
case 0:
case 1:
printf("0 ou 1\n");
break;
case 2:
printf("2\n");
break;
default:
printf("autre\n");
}
```
**Dangereux, mais c'est un moyen d'avoir un "ou" logique dans un case.**
## [Quiz: `switch ... case`{.C}](https://cyberlearn.hes-so.ch/mod/evoting/view.php?id=1033916)
```C
for (expression1; expression2; expression3) {
instructions;
}
```
```C
int sum = 0; // syntaxe C99
for (int i = 0; i < 10; i++) {
sum += i;
}
for (int i = 0; i != 1; i = rand() % 4) { // ésotérique
printf("C'est plus ésotérique.\n");
}
```
# Structures de contrôle: `continue`{.C}, `break`{.C} (2/2)
- `continue`{.C} saute à la prochaine itération d'une boucle.
int i = 0;
while (i < 10) {
if (i == 3) {
continue;
}
printf("%d\n", i);
i += 1;
}
- `break`{.C} quitte le bloc itératif courant d'une boucle.
```C
for (int i = 0; i < 10; i++) {
if (i == 3) {
break;
}
printf("%d\n", i);
}
```
- Les parties indépendantes d'un programme.
- Permettent de modulariser et compartimenter le code.
type identificateur(paramètres) {
// variables optionnelles
// type expression == type
return expression;
```C
int max(int a, int b) {
if (a > b) {
return a;
} else {
return b;
- Il existe un type `void`{.C}, "sans type", en C.
- Il peut être utilisé pour signifier qu'une fonction ne retourne rien, ou qu'elle n'a pas d'arguments.
- `return`{.C} utilisé pour sortir de la fonction.
- Exemple:
```C
void show_text(void) { // second void optionnel
printf("Aucun argument et pas de retour.\n");
return; // optionnel
}
void show_text_again() { // c'est pareil
printf("Aucun argument et pas de retour.\n");
}
```
## Prototypes de fonctions
- Le prototype donne la **signature** de la fonction, avant qu'on connaisse son implémentation.
- L'appel d'une fonction doit être fait **après** la déclaration du prototype.
```C
int max(int a, int b); // prototype
int max(int a, int b) { // implémentation
if (a > b) {
return a;
} else {
return b;
}
}
```
## Arguments de fonctions
- Les arguments d'une fonction sont toujours passés **par copie**.
- Les arguments d'une fonction ne peuvent **jamais** être modifiés.
```C
void set_to_two(int a) { // a: nouvelle variable
// valeur de a est une copie de x
// lorsque la fonction est appelée, ici -1
a = 2; // la valeur de a est fixée à 2
} // a est détruite
int main() {
int x = -1;
set_to_two(x); // -1 est passé en argument
// x vaudra toujours -1 ici
}
```
## Arguments de fonctions: pointeurs
- Pour modifier un variable, il faut passer son **adresse mémoire**.
- L'adresse d'une variable, `x`{.C}, est accédé par `&x`{.C}.
- Un **pointeur** vers une variable entière a le type, `int *x`{.C}.
- La syntaxe `*x`{.C} sert à **déréférencer** le pointeur (à accéder à la mémoire pointée).
## Exemple
```C
void set_to_two(int *a) {
// a contient une copie de l'adresse de la
// variable passée en argument
*a = 2; // on accède à la valeur pointée par a,
// et on lui assigne 2
} // le pointeur est détruit, pas la valeur pointée
int main() {
int x = -1;
set_to_two(&x); // l'adresse de x est passée
// x vaudra 2 ici
}
```
## [Quiz: Les fonctions](https://cyberlearn.hes-so.ch/mod/evoting/view.php?id=1038560)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
<!-- TODO quiz;
```C
void set_to_two(int *a) {
a = 2;
}
int main() {
int x = -1;
set_to_two(&x);
}
void add_two(int *a) {
*a += 2;
}
int main() {
int x = -1;
add_two(&x);
}
void add_two(int a) {
a += 2;
printf("%d", a);
}
int main() {
int x = -1;
add_two(&x);
}
``` -->
- Point d'entrée du programme.
- Retourne le code d'erreur du programme:
- 0: tout s'est bien passé.
- Pas zéro: problème.
- La valeur de retour peut être lue par le shell qui a exécuté le programme.
- `EXIT_SUCCESS`{.C} et `EXIT_FAILURE`{.C} (de `stdlib.h`) sont des valeurs de retour **portables** de programmes C.
## Exemple
```C
int main() {
// ...
if (error)
return EXIT_FAILURE;
else
return EXIT_SUCCESS;
}
```
- Le code d'erreur est lu dans le shell avec `$?`{.bash}
```bash
$ ./prog
$ echo $?
0 # tout s'est bien passé par exemple
$ if [ $? -eq 0 ]; then echo "OK" ; else echo "ERROR"; fi
ERROR # si tout s'est mal passé
```
- `C` offre uniquement des tableaux statiques
- Un tableau est un "bloc" de mémoire contiguë associé à un nom
- taille fixe déterminée à la déclaration du tableau
- la taille ne peut pas être changée.
- Pas d’assignation de tableaux.
- Un tableau déclaré dans une fonction ou un bloc est détruit à la sortie de celle/celui-ci
- $\Rightarrow$ Un tableau local à une fonction ne doit **jamais être retourné** (aussi valable pour toute variable locale)!
- Les éléments d’un tableau sont accédés avec `[i]`{.C} où `i`{.C} est l’index de l’élément.
- Le premier élément du tableau à l’index `0`{.C}!
- Lorsqu’un tableau est déclaré, la taille de celui-ci doit toujours être spécifiée, sauf s’il est initialisé lors de sa déclaration.
## Exemple
```C
float tab1[5]; // tableau de floats à 5 éléments
// ses valeurs sont indéfinies
int tab2[] = {1, 2, 3}; // tableau de 3 entiers,
// taille inférée
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
int val = tab2[1]; // val vaut 2 à présent
int w = tab1[5]; // index hors des limites du tableau
// comportement indéfini!
// pas d'erreur du compilateur
```
<!-- TODO QUIZ:
```C
int a1[5]; // OK
int a2[] = { 1, 2, 3 }; // OK
int a3[4][5]; // OK
int [] a4; // Erreur
int a5[]; // Erreur
int[] function(void) { // Erreur
int array[5]; // OK
return array; // Erreur
}
void foo(int a[]) { // OK
a[3] = 0; // OK
}
void bar(void) {
int a[5]; // OK
foo(a); // OK
a = a5; // Erreur
}
``` -->
<!-- ```C
#include <stdio.h>
int main(void) {
char i;
char a1[] = { 100,200,300,400,500 };
char a2[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
a2[10] = 42;
for (i = 0; i < 5; i++) {
printf("a1[%d] = %d\n", i, a1[i]);
}
return 0;
}
``` -->
x[i] = 0;
}
int j = 0;
while (j < 10) {
x[j] = 1;
j += 1;
}
int j = 0;
do {
x[j] = -1;
j += 1;
} while (j < 9)
- Un tableau est le pointeur vers sa première case.
- Pas moyen de connaître sa taille: `sizeof()`{.C} inutile.
- Toujours spécifier la taille d'un tableau passé en argument.
for (int i = 0; i < ?; ++i) {
// on sait pas quoi mettre pour ?
for (int i = 0; i < n; ++i) {
printf("tab[%d] = %d\n", i, tab[i]);
}
}
```
## Quels sont les bugs dans ce code?
```C
#include <stdio.h>
int main(void) {
char i;
char a1[] = { 100,200,300,400,500 };
char a2[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
a2[10] = 42;
for (i = 0; i < 5; i++) {
printf("a1[%d] = %d\n", i, a1[i]);
}
return 0;
}
```
## Quels sont les bugs dans ce code?
```C
#include <stdio.h>
int main(void) {
char i;
// 200, .., 500 char overflow
char a1[] = { 100,200,300,400,500 };
char a2[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
a2[10] = 42; // [10] out of bounds
for (i = 0; i < 5; i++) {
printf("a1[%d] = %d\n", i, a1[i]);
}
return 0;
}
```
<!-- TODO quiz: -->
<!-- que retourne sizeof(tab[]) -->