Newer
Older
{width=100%}
- Un pointeur est une adresse mémoire.
```C
type *id;
```
- Pour interpréter le contenu de ce qu'il pointe, il doit être typé.
- Un pointeur n'est rien d'autre qu'un entier (64bit sur x86-64, soit 8 octets).
- Un pointeur peut être **déréférencé**: on accède à la valeur située à l'adresse mémoire sur laquelle il pointe.
```C
char *c; // déclaration pointeur de char
*c = 'a'; // assign. 'a' à valeur pointée par c
c = 1000; // on modifie l'adresse pointée par c
char d = *c; // on lit la valeur pointée par c. UB!
```
- `NULL`{.C} (ou `0`{.C}) est la seule adresse **toujours** invalide.
{width=100%}
- Permettent d'accéder à une valeur avec une indirection.
```C
int a = 2;
int *b = &a;
*b = 7; // on met 7 dans la case pointée par b
// ici a == 7 aussi
a = -2; // ici *b == -2 aussi
```
- Permettent d'avoir plusieurs chemins d'accès à une valeur.
- Lire **et** écrire en même temps dans un bout de mémoire devient possible: **danger**.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Pointeurs et `const`
## Deux niveaux de constance
- Le mot clé `const` permet de déclarer des valeurs "constantes" qui ne changeront plus en cours d'exécution du programme.
- Mais qu'est-ce que cela veut dire pour les pointeurs?
```C
int n = 12;
const int *p = &n; // la valeur *p est const, p non
int const *p = &n; // la valeur *p est const, p non
int *const p = &n; // la valeur p est const, *p non
const int *const p = &n; // la valeur p et *p sont const
```
## Exemples
```C
int n = 12; int m = 13;
const int *p = &n; // la valeur *p est const, p non
*p = m; // erreur de compilation.
p = &m; // OK
int const *p = &n; // la valeur *p est const, p non
*p = m; // erreur de compilation.
p = &m; // OK
int *const p = &n; // la valeur p est const, *p non
*p = m; // OK
p = &m; // erreur de compilation.
const int *const p = &n; // la valeur p et *p sont const
*p = m; // erreur de compilation.
p = &m; // erreur de compilation.
```
- La fonction `sizeof()`{.C} permet de connaître la taille en octets:
- d'une valeur,
- d'un type,
- d'une variable.
- Soit `int a = 2`{.C}, sur l'architecture x86_64 que vaut:
- `sizeof(a)`{.C}?
- `sizeof(&a)`{.C}?
- Soit `char b = 2`{.C},
- `sizeof(b)`{.C}?
- `sizeof(&b)`{.C}?
- Réponses:
- `sizeof(a) == 4`{.C}, `int`{.C} entier 32 bits.
- `sizeof(&a) == 8`{.C}, une adresse est de 64 bits.
- `sizeof(b) == 1`{.C}, `char`{.C} entier 8 bits.
- `sizeof(&b) == 8`{.C}, une adresse est de 64 bits.
- La fonction `malloc`{.C} permet d'allouer dynamiquement (pendant l'exécution du programme) une zone de mémoire contiguë.
```C
#include <stdlib.h>
void *malloc(size_t size);
```
- `size`{.C} est la taille de la zone mémoire **en octets**.
- Retourne un pointeur sur la zone mémoire ou `NULL`{.C} en cas d'échec: **toujours vérifier** que la valeur retournée est `!= NULL`{.C}.
```C
complex_t *num = malloc(sizeof(complex_t));
```
- La zone mémoire **n'est pas** initialisée.
- La mémoire doit être désallouée explicitement $\Rightarrow$ **fuites mémoires**.
<!-- - Toujours garder un pointeur sur la mémoire allouée sinon **pointeur pendouillant**. -->
{width=100%}
- La fonction `free()`{.C} permet de libérer une zone préalablement allouée avec `malloc()`{.C}.
```C
#include <stdlib.h>
void free(void *ptr);
```
- Pour chaque `malloc()`{.C} doit correspondre exactement un `free()`{.C}.
- Si la mémoire n'est pas libérée: **fuite mémoire** (l'ordinateur plante quand il y a plus de mémoire).
- Si la mémoire est **libérée deux** fois: *seg. fault*.
- Pour éviter les mauvaises surprises mettre `ptr`{.C} à `NULL`{.C}.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## Tableaux dynamiques
- Pour allouer un espace mémoire de 50 entiers:
```C
int *p = malloc(50 * sizeof(int));
```
- Cette espace peut alors être utilisé comme un tableau de 50 entiers:
```C
for (int i = 0; i < 50; ++i) {
p[i] = 0;
}
```
## Arithmétique de pointeurs
- On peut parcourir la mémoire différemment qu'avec l'indexation
```C
int *p = malloc(50 * sizeof(int));
// initialize somehow
double a = p[7];
double b = *(p + 7); // on avance de 7 "double"
p[0] == *p; // le pointeur est le premier élément
```
{width=100%}
## Pointeur de pointeur
- Tout comme une valeur a une adresse, un pointeur a lui-même une adresse:
```C
int a = 2;
int *b = &a;
int **c = &b;
```
- Chaque `*`{.C} ou `&`{.C} rajoute une indirection.
{height=100%}
- Avec `malloc()`, on peut allouer dynamiquement des tableaux de pointeurs:
```C
int **p = malloc(50 * sizeof(int*));
for (int i = 0; i < 50; ++i) {
p[i] = malloc(70 * sizeof(int));
}
int a = p[5][8]; // on indexe dans chaque dimension
```
- Ceci est une matrice (un tableau de tableau).
# Les *sanitizers*
Il existe différents outils pour détecter les problèmes mémoire:
* Dépassement de capacité de tableaux.
* Utilisation de mémoire non allouée.
* Fuites mémoire.
* ...
Notamment:
* Valgrind.
* Sanitizers.
Ici on utilise les sanitizers (modification de la ligne de compilation):
```bash
gcc -o main main.c -g -fsanitize=address -fsanitize=leak
```
**Attention:** Il faut également faire l'édition des liens avec les sanitizers.